15 research outputs found

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Approximate Solutions to Fractional Subdiffusion Equations: The heat-balance integral method

    Full text link
    The work presents integral solutions of the fractional subdiffusion equation by an integral method, as an alternative approach to the solutions employing hypergeometric functions. The integral solution suggests a preliminary defined profile with unknown coefficients and the concept of penetration (boundary layer). The prescribed profile satisfies the boundary conditions imposed by the boundary layer that allows its coefficients to be expressed through its depth as unique parameter. The integral approach to the fractional subdiffusion equation suggests a replacement of the real distribution function by the approximate profile. The solution was performed with Riemann -Liouville time-fractional derivative since the integral approach avoids the definition of the initial value of the time-derivative required by the Laplace transformed equations and leading to a transition to Caputo derivatives. The method is demonstrated by solutions to two simple fractional subdiffusion equations (Dirichlet problems): 1) Time-Fractional Diffusion Equation, and 2) Time-Fractional Drift Equation, both of them having fundamental solutions expressed through the M-Write function. The solutions demonstrate some basic issues of the suggested integral approach, among them: a) Choice of the profile, b) Integration problem emerging when the distribution (profile) is replaced by a prescribed one with unknown coefficients; c) Optimization of the profile in view to minimize the average error of approximations; d) Numerical results allowing comparisons to the known solutions expressed to the M-Write function and error estimations.Comment: 15 pages, 7 figures, 3 table

    Effective Modified Fractional Reduced Differential Transform Method for Solving Multi-Term Time-Fractional Wave-Diffusion Equations

    No full text
    In this work, we suggest a new method for solving linear multi-term time-fractional wave-diffusion equations, which is named the modified fractional reduced differential transform method (m-FRDTM). The importance of this technique is that it suggests a solution for a multi-term time-fractional equation. Very few techniques have been proposed to solve this type of equation, as will be shown in this paper. To show the effectiveness and efficiency of this proposed method, we introduce two different applications in two-term fractional differential equations. The three-dimensional and two-dimensional plots for different values of the fractional derivative are depicted to compare our results with the exact solutions

    Solving Linear and Nonlinear Fractional Differential Equations Using Spline Functions

    No full text
    Suitable spline functions of polynomial form are derived and used to solve linear and nonlinear fractional differential equations. The proposed method is applicable for 0<α≤1 and α≥1, where α denotes the order of the fractional derivative in the Caputo sense. The results obtained are in good agreement with the exact analytical solutions and the numerical results presented elsewhere. Results also show that the technique introduced here is robust and easy to apply

    Solving a Higher-Dimensional Time-Fractional Diffusion Equation via the Fractional Reduced Differential Transform Method

    No full text
    In this study, exact and approximate solutions of higher-dimensional time-fractional diffusion equations were obtained using a relatively new method, the fractional reduced differential transform method (FRDTM). The exact solutions can be found with the benefit of a special function, and we applied Caputo fractional derivatives in this method. The numerical results and graphical representations specified that the proposed method is very effective for solving fractional diffusion equations in higher dimensions
    corecore