3,159 research outputs found

    Salford postgraduate annual research conference (SPARC) 2012 proceedings

    Get PDF
    These proceedings bring together a selection of papers from the 2012 Salford Postgraduate Annual Research Conference (SPARC). They reflect the breadth and diversity of research interests showcased at the conference, at which over 130 researchers from Salford, the North West and other UK universities presented their work. 21 papers are collated here from the humanities, arts, social sciences, health, engineering, environment and life sciences, built environment and business

    Artificial Cognition for Social Human-Robot Interaction: An Implementation

    Get PDF
    © 2017 The Authors Human–Robot Interaction challenges Artificial Intelligence in many regards: dynamic, partially unknown environments that were not originally designed for robots; a broad variety of situations with rich semantics to understand and interpret; physical interactions with humans that requires fine, low-latency yet socially acceptable control strategies; natural and multi-modal communication which mandates common-sense knowledge and the representation of possibly divergent mental models. This article is an attempt to characterise these challenges and to exhibit a set of key decisional issues that need to be addressed for a cognitive robot to successfully share space and tasks with a human. We identify first the needed individual and collaborative cognitive skills: geometric reasoning and situation assessment based on perspective-taking and affordance analysis; acquisition and representation of knowledge models for multiple agents (humans and robots, with their specificities); situated, natural and multi-modal dialogue; human-aware task planning; human–robot joint task achievement. The article discusses each of these abilities, presents working implementations, and shows how they combine in a coherent and original deliberative architecture for human–robot interaction. Supported by experimental results, we eventually show how explicit knowledge management, both symbolic and geometric, proves to be instrumental to richer and more natural human–robot interactions by pushing for pervasive, human-level semantics within the robot's deliberative system

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions

    Proceedings of the 6th Joint ISO-ACL SIGSEM Workshop on Interoperable Semantic Annotation (ISA-6)

    Get PDF

    Intelligent Systems

    Get PDF
    This book is dedicated to intelligent systems of broad-spectrum application, such as personal and social biosafety or use of intelligent sensory micro-nanosystems such as "e-nose", "e-tongue" and "e-eye". In addition to that, effective acquiring information, knowledge management and improved knowledge transfer in any media, as well as modeling its information content using meta-and hyper heuristics and semantic reasoning all benefit from the systems covered in this book. Intelligent systems can also be applied in education and generating the intelligent distributed eLearning architecture, as well as in a large number of technical fields, such as industrial design, manufacturing and utilization, e.g., in precision agriculture, cartography, electric power distribution systems, intelligent building management systems, drilling operations etc. Furthermore, decision making using fuzzy logic models, computational recognition of comprehension uncertainty and the joint synthesis of goals and means of intelligent behavior biosystems, as well as diagnostic and human support in the healthcare environment have also been made easier

    Research in the Language, Information and Computation Laboratory of the University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLiFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. Naturally, this introduction cannot spell out all the connections between these abstracts; we invite you to explore them on your own. In fact, with this issue it’s easier than ever to do so: this document is accessible on the “information superhighway”. Just call up http://www.cis.upenn.edu/~cliff-group/94/cliffnotes.html In addition, you can find many of the papers referenced in the CLiFF Notes on the net. Most can be obtained by following links from the authors’ abstracts in the web version of this report. The abstracts describe the researchers’ many areas of investigation, explain their shared concerns, and present some interesting work in Cognitive Science. We hope its new online format makes the CLiFF Notes a more useful and interesting guide to Computational Linguistics activity at Penn

    Proceedings of the 6th Joint ISO-ACL SIGSEM Workshop on Interoperable Semantic Annotation (ISA-6)

    Get PDF

    The VERBMOBIL domain model version 1.0

    Get PDF
    This report describes the domain model used in the German Machine Translation project VERBMOBIL. In order make the design principles underlying the modeling explicit, we begin with a brief sketch of the VERBMOBIL demonstrator architecture from the perspective of the domain model. We then present some rather general considerations on the nature of domain modeling and its relationship to semantics. We claim that the semantic information contained in the model mainly serves two tasks. For one thing, it provides the basis for a conceptual transfer from German to English; on the other hand, it provides information needed for disambiguation. We argue that these tasks pose different requirements, and that domain modeling in general is highly task-dependent. A brief overview of domain models or ontologies used in existing NLP systems confirms this position. We finally describe the different parts of the domain model, explain our design decisions, and present examples of how the information contained in the model can be actually used in the VERBMOBIL demonstrator. In doing so, we also point out the main functionality of FLEX, the Description Logic system used for the modeling

    Dagstuhl News January - December 2006

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    The impact on students' self-efficacy and attainment of the explicit teaching of cognitive and metacognitive problem solving strategies in post-16 physics. The case for a GCE A-level physics course in an inner London Academy

    Get PDF
    Problem solving plays a pivotal role in the physics curriculum at all levels, as a summative assessment tool or a pedagogic barometer to gauge transfer of acquired physics knowledge and skills. However, evidence shows that students’ performance in problem solving remains limited to basic routine problems, with evidence of poor performance in solving problems that go beyond basic equation retrieval and substitution. Research into physics problem solving, with very little literature existent for the UK, has advocated for explicit teaching of problem-solving strategies but with little impact of these studies on the actual learning-teaching process of physics. In heeding the call by most researchers to extend research on physics problem to real classrooms situations, an action research methodology, consisting of two cycles, was adopted. This action research study attempted to bridge the `research-practical divide´ by explicitly teaching physics problem-solving strategies through collaborative group problem-solving sessions embedded within the curriculum. The target group was a GCE-A level cohort in the AS course, the only course cohort at this inner London academy. The objective was to trigger the generative mechanisms identified within the information processing, sociocultural theory and social cognitive theories. These mechanisms were viewed as possessing causal powers to enable an improvement in physics problem-solving competence. Data were collected using external assessments and video recordings of individual and collaborative group problem-solving sessions. The data analysis revealed a general positive shift in the students’ problem-solving patterns, both at group and individual level. All four students demonstrated a deliberate, well-planned deployment of the taught strategies. The marked positive shifts in collaborative competences, cognitive competences, metacognitive processing and increased self-efficacy are positively correlated with attainment in problem solving in physics. However, this shift proved to be due to different mechanisms triggered in the different students
    • …
    corecore