1,288 research outputs found

    Enhancing K-12 science education through a multi-device web tool to facilitate content integration and e-infrastructure access

    Get PDF
    An effective K-12 science education is essential to succeed in future phases of the curriculum and the e-Infrastructures for education provide new opportunities to enhance it. This paper presents ViSH Viewer, an innovative web tool to consume educational content which aims to facilitate e-Science infrastructures access through a next generation learning object called "Virtual Excursion". Virtual Excursions provide a new way to explore science in class by taking advantage of e-Infrastructure resources and their integration with other educational contents, resulting in the creation of a reusable, interoperable and granular learning object. In order to better understand how this tool can allow teachers and students a joyful exploration of e-Science, we also present three Virtual Excursion examples. Details about the design, development and the tool itself are explained in this paper as well as the concept, structure and metadata of the new learning object

    Networked experiments and scientific resource sharing in cooperative knowledge spaces

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Cooperative knowledge spaces create new potentials for the experimental fields in natural sciences and engineering because they enhance the accessibility of experimental setups through virtual laboratories and remote technology, opening them for collaborative and distributed usage. A concept for extending existing virtual knowledge spaces for the means of the technological disciplines (“ViCToR‐Spaces” ‐ Virtual Cooperation in Teaching and Research for Mathematics, Natural Sciences and Engineering) is presented. The integration of networked virtual laboratories and remote experiments (“NanoLab Approach”), as well as an approach to community‐driven content sharing and content development within virtual knowledge spaces (NanoWiki) are described

    Metadata schema to support FAIR data in scanning electron microscopy

    Get PDF
    The development and the adoption of metadata schemas and standards are a key aspect in data management. In this paper, we introduce our approach to a metadata model in the field of Materials Science. We present the specific use case of a metadata schema for Scanning Electron Microscopy, a characterization technique which is routinely used in Materials Science. This metadata schema is aiming to be a de-facto standard which will be openly available for reuse and further extension to other electron microscopy techniques

    How should the completeness and quality of curated nanomaterial data be evaluated?

    Get PDF
    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated

    How should the completeness and quality of curated nanomaterial data be evaluated

    Get PDF
    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials’ behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated

    Nanoinformatics: developing new computing applications for nanomedicine

    Get PDF
    Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others

    Nanoinformatics knowledge infrastructures: bringing efficient information management to nanomedical research

    Get PDF
    Nanotechnology represents an area of particular promise and significant opportunity across multiple scientific disciplines. Ongoing nanotechnology research ranges from the characterization of nanoparticles and nanomaterials to the analysis and processing of experimental data seeking correlations between nanoparticles and their functionalities and side effects. Due to their special properties, nanoparticles are suitable for cellular-level diagnostics and therapy, offering numerous applications in medicine, e.g. development of biomedical devices, tissue repair, drug delivery systems and biosensors. In nanomedicine, recent studies are producing large amounts of structural and property data, highlighting the role for computational approaches in information management. While in vitro and in vivo assays are expensive, the cost of computing is falling. Furthermore, improvements in the accuracy of computational methods (e.g. data mining, knowledge discovery, modeling and simulation) have enabled effective tools to automate the extraction, management and storage of these vast data volumes. Since this information is widely distributed, one major issue is how to locate and access data where it resides (which also poses data-sharing limitations). The novel discipline of nanoinformatics addresses the information challenges related to nanotechnology research. In this paper, we summarize the needs and challenges in the field and present an overview of extant initiatives and efforts

    Data management tools for NFFA-EUROPE project

    Get PDF
    This thesis discusses and presents some developments toward new data services within the EU NFFAEUROPE project. The work performed originates by the need to rationalize and organize large scientific data-sets using a FAIR approach. The activity leverages on results obtained in previous MHPC work and tackle some of the issues about FAIR principle that are coming out due to an increase in size of variety of the original datasets. More specifically the overall goal of the thesis is to setup well organized data services to manage all the SEM images coming from different sources and partner within the NFFA-EUROPE project. The specific goals within this thesis are the following; \u2022 Creation of python application to collect and enrich metadata for SEM images coming from different sources. \u2022 Develop a massive parallel processing approach to be able to reduce time in collecting metadata on a large amount of images. \u2022 Plan and develop of an easy to setup and portable computational ecosystem to accomplish the above goal based on Kubernetes and Spark, with the idea to easily deploy in on different computational infrastructure. \u2022 Measure performance on different computational infrastructure of the massive data processing

    Towards an Ontology for Data-driven Discovery of New Materials

    Get PDF
    Materials scientists and nano-technologists are struggling with the challenge of managing the large volumes of multivariate, multidimensional and mixed-media data sets being generated from the experimental, characterisation, testing and post-processing steps associated with their search for new materials. In addition, they need to access large publicly available databases containing: crystallographic structure data; thermodynamic data; phase stability data and ionic conduction data. Materials scientists are demanding data integration tools to enable them to search across these disparate databases and to correlate their experimental data with the public databases, in order to identify new fertile areas for searching. Systematic data integration and analysis tools are required to generate targeted experimental programs that reduce duplication of costly compound preparation, testing and characterisation. This paper presents MatOnto – an extensible ontology, based on the DOLCE upper ontology, that aims to represent structured knowledge about materials, their structure and properties and the processing steps involved in their composition and engineering. The primary aim of MatOnto is to provide a common, extensible model for the exchange, re-use and integration of materials science data and experimentation
    corecore