273 research outputs found

    Preference-based evolutionary algorithm for airport surface operations

    Get PDF
    In addition to time efficiency, minimisation of fuel consumption and related emissions has started to be considered by research on optimisation of airport surface operations as more airports face severe congestion and tightening environmental regulations. Objectives are related to economic cost which can be used as preferences to search for a region of cost efficient and Pareto optimal solutions. A multi-objective evolutionary optimisation framework with preferences is proposed in this paper to solve a complex optimisation problem integrating runway scheduling and airport ground movement problem. The evolutionary search algorithm uses modified crowding distance in the replacement procedure to take into account cost of delay and fuel price. Furthermore, uncertainty inherent in prices is reflected by expressing preferences as an interval. Preference information is used to control the extent of region of interest, which has a beneficial effect on algorithm performance. As a result, the search algorithm can achieve faster convergence and potentially better solutions. A filtering procedure is further proposed to select an evenly distributed subset of Pareto optimal solutions in order to reduce its size and help the decision maker. The computational results with data from major international hub airports show the efficiency of the proposed approach

    Preference-based evolutionary algorithm for airport surface operations

    Get PDF
    In addition to time efficiency, minimisation of fuel consumption and related emissions has started to be considered by research on optimisation of airport surface operations as more airports face severe congestion and tightening environmental regulations. Objectives are related to economic cost which can be used as preferences to search for a region of cost efficient and Pareto optimal solutions. A multi-objective evolutionary optimisation framework with preferences is proposed in this paper to solve a complex optimisation problem integrating runway scheduling and airport ground movement problem. The evolutionary search algorithm uses modified crowding distance in the replacement procedure to take into account cost of delay and fuel price. Furthermore, uncertainty inherent in prices is reflected by expressing preferences as an interval. Preference information is used to control the extent of region of interest, which has a beneficial effect on algorithm performance. As a result, the search algorithm can achieve faster convergence and potentially better solutions. A filtering procedure is further proposed to select an evenly distributed subset of Pareto optimal solutions in order to reduce its size and help the decision maker. The computational results with data from major international hub airports show the efficiency of the proposed approach.This work is supported in part by the Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/H004424/1, EP/N029496/1 and EP/N029496/2

    Benefit analysis of using soft DC links in medium voltage distribution networks

    Get PDF
    Soft DC Links are power electronic converters enabling the control of power flow between distribution feeders or networks. This thesis considers the use of Soft DC Links in Medium Voltage (MV) distribution networks to improve network operation while facilitating the integration of distributed generators (DGs). Soft DC Links include Soft Open Points (SOPs) and Medium Voltage Direct Current (MVDC) links. An SOP can be installed to replace mechanical switchgear in a network, providing controllable active power exchange between connected feeders, as well as reactive power compensation at each interface terminal. The deployment of an MVDC link enables power and voltage controls over a wider area, and facilitates the effective use of available capacity between adjacent networks. The benefits of using SOP and MVDC link in MV distribution networks were investigated. A multi-objective optimisation framework was proposed to quantify the operational benefits of a distribution network with an SOP. An optimisation method integrating both global and local search techniques was developed to determine the set-points of an SOP. It was found that an SOP can improve network operation along multiple criteria and facilitate the integration capacity of DGs. A Grid Transformer-based control method of an MVDC link was proposed, which requires only measurements at the grid transformers to determine the operation of an MVDC link. Control strategies considering different objectives were developed. The proposed control method is used in the ANGLE-DC project, which aims to trial the first MVDC link in Europe by converting an existing AC circuit to DC operation. It was found that an MVDC link can significantly increase the network hosting capacity for DG connections while reducing network losses compared to an AC line. An impact quantification of Soft DC Links was carried out on statistically-similar distribution networks, which refer to a set of networks with similar but different topological and electrical properties. A model was developed to determine the optimal allocation of Soft DC Links. It was found that a Soft DC Link can reduce the network annual cost under a wide range of DG penetration conditions. The statistical analysis provides distribution network planners with more robust decisions on the implementation of Soft DC Links

    A knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimization

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Among many-objective optimization problems (MaOPs), the proportion of nondominated solutions is too large to distinguish among different solutions, which is a great obstacle in the process of solving MaOPs. Thus, this paper proposes an algorithm which uses a weighted subpopulation knee point. The weight is used to divide the whole population into a number of subpopulations, and the knee point of each subpopulation guides other solutions to search. Besides, Additionally, the convergence of the knee point approach can be exploited, and the subpopulation-based approach improves performance by improving the diversity of the evolutionary algorithm. Therefore, these advantages can make the algorithm suitable for solving MaOPs. Experimental results show that the proposed algorithm performs better on most test problems than six other state-of-the-art many-objective evolutionary algorithms

    COMPUTER AIDED TAXI DISPATCHING. SPECIFICATION OF THE SYSTEM.

    Get PDF
    Taxi is one of the most important transporters in the public. However, how to make the taxi services more efficient in order to benefit not only taxi owners but also taxi drivers is one of the most interesting questions recently, especially when other competitors in this service are becoming more and more. In the current situation, there is no suggested service that drivers can rely on, which would recommend the highly possible pickup point that will most likely to have the customers at the particular time and location. At the moment, taxi drivers only believe in their routines to go to the station that is believed to have awaiting customers. Therefore, the idea of building a solution which can have a logical suggestion for drivers could be a promising project, that will satisfy not only taxi owners but also drivers and customers. The aim of the thesis is going to find a general solution in order to make the idea becoming real. Besides, some interesting topic such as the machine learning technique and neural network are also the main parts of the thesis as they were selected as the solution for the problem

    A new dominance relation-based evolutionary algorithm for many-objective optimization

    Get PDF

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    Modeling Human Mobility Entropy as a Function of Spatial and Temporal Quantizations

    Get PDF
    The knowledge of human mobility is an integral component of several different branches of research and planning, including delay tolerant network routing, cellular network planning, disease prevention, and urban planning. The uncertainty associated with a person's movement plays a central role in movement predictability studies. The uncertainty can be quantified in a succinct manner using entropy rate, which is based on the information theoretic entropy. The entropy rate is usually calculated from past mobility traces. While the uncertainty, and therefore, the entropy rate depend on the human behavior, the entropy rate is not invariant to spatial resolution and sampling interval employed to collect mobility traces. The entropy rate of a person is a manifestation of the observable features in the person's mobility traces. Like entropy rate, these features are also dependent on spatio-temporal quantization. Different mobility studies are carried out using different spatio-temporal quantization, which can obscure the behavioral differences of the study populations. But these behavioral differences are important for population-specific planning. The goal of dissertation is to develop a theoretical model that will address this shortcoming of mobility studies by separating parameters pertaining to human behavior from the spatial and temporal parameters
    • …
    corecore