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Abstract

Among many-objective optimization problems(MaOPs), the proportion of non-

dominated solutions is too large to distinguish among different solutions, which

is a great obstacle in the process of solving MaOPs. Thus, this paper propos-

es an algorithm which uses a weighted subpopulation knee point. The weight

is used to divide the whole population into a number of subpopulations, and

the knee point of each subpopulation guides other solutions to search. Addi-

tionally, the convergence of the knee point approach can be exploited, and the

subpopulation-based approach improves performance by improving the diversity

of the evolutionary algorithm. Therefore, these advantages can make the algo-

rithm suitable for solving MaOPs. Experimental results show that the proposed

algorithm performs better on most test problems than six other state-of-the-art

many-objective evolutionary algorithms.
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1. INTRODUCTION1

In the real world, multiobjective optimization problems (MOPs) [1] involve2

at least two conflicting objectives. A MOP which has as least four objectives3

is referred to as a many-objective optimization problem(MaOP) [1]. There are4

many applications of these problems, such as in the design of water resources5

allocation systems [2], standard settings for automotive engines [3] and engi-6

neering resource scheduling [4]. Due to the failure of Pareto-dominance and7

the necessity of expensive investment when using traditional algorithms to solve8

MaOPs, researchers have used evolutionary algorithms (EA) to solve these kind-9

s of problems.[5]. From this research, a series of many-objective evolutionary10

algorithms(MaEAs) has been proposed.11

Traditional algorithms, such as NSGA-II [6], SPEA-II [7], PESAII [8] and12

others [9, 10, 11, 12, 13], have used Pareto dominance to distinguish between13

different individuals. This is because Pareto-based nondominated sorting ap-14

proaches can select a solution which has better performance in the population15

or in mixed populations. However, the efficiency of Pareto-dominance gradually16

declines as the number of objectives increases. The proportion of non-dominated17

individuals in the population is then too large to converge. When the problem18

has more than eight objectives, Pareto-dominance will be completely ineffective19

[5].20

To enhance the performance of traditional MOEAs in handling MaOPs,21

many algorithms have been proposed, which can be split into six categories [1].22

The first category is the relaxed-dominance-based approach. The main idea23

of this approach is to weaken the conditions for judging dominate relations to24

enhance the ability to select excellent solutions. There are many algorithms25

of this type, such as ε-MOEA [14], CDAS [15] and GrEA [16]. In ε-MOEA,26

the objective space is divided into grids, and grid dominance is used to replace27
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Pareto dominance. This type of strategy increases the scope of domination28

and distinguishes dominated solutions from nondominated ones. A method to29

control the dominance area of solutions was proposed by Sato et al.[15] to adjust30

the selection pressure, thus changing the algorithm convergence. In GrEA, a31

grid-based evolutionary algorithm was proposed to optimize MaOPs [1]. Three32

criteria — grid ranking(GR), grid crowding distance(GCD) and grid coordinate33

point distance(GCPD) — were integrated into GrEA [16] to select solutions34

in the process of mating or environmental selection. Based on the adaptive35

construction of grids, the selection pressure was increased by grid dominance.36

Test problems demonstrated that the relaxed-dominance-based algorithm has37

a certain competitive ability; However, because the set of relaxation degrees38

is according to the decision maker, it is hard to determine an exact value and39

reach the ideal state.40

The second category is the well-known diversity-based approach. Diversity41

is used as a criterion for evaluating algorithms and is often used as a selection42

strategy within the critical layer [6]. It has been shown that diversity-based43

algorithms, such as DM [17], SDE [18] and 1by1EA [19], express excellent per-44

formance. In SDE, the shift operation pushes poorly converged solutions into45

crowded regions, so this approach can balance convergence and diversity. In46

DM, whether to activate the diversity promotion or not is according to the47

distribution of the population. When the population is excessively dispersed,48

diversity promotion is closed. As proven by S. F. Adra [17], the improved al-49

gorithm performs better than the original one. In 1by1EA, the selection of50

offspring individuals is based on a computationally efficient convergence indica-51

tor. Meanwhile, the neighbors of the selected individual are de-emphasized to52

guarantee the diversity of the population.53

The third category is the aggregation-based method. MSOPS [20], DQGA54

[21] and MOEA/D [22] are the classical algorithms of this type. Zhang and Li55

[22] proposed a decomposition-based algorithm named MOEA/D. In MOEA/D,56

the neighbors of a solution are valuable to the solution. First, the vertical dis-57

tance between the weight vectors is calculated, and a part of the vector near58

3



each weight vector is found. Then, all the weight vectors are assigned solutions59

respectively. Finally, the population is updated by the aggregate function value60

of the new solution. Weighted sum, weighted Tchebycheff and boundary inter-61

section methods are commonly used as aggregation function [22]. In MSOPS,62

Hughes [20] proposes that all solutions in the population be sorted according to63

vector angle distance scaling and weighted Tchebycheff methods.64

The fourth category includes performance-indicator-based approaches. Con-65

sidering that the performance indicator is a criterion of the evaluation algorithm,66

the indicator-based approach is the most straightforward method. This type of67

algorithm includes HypE [23], SMS-EMOA [24], and IBEA [25]. Performance-68

indicator-based algorithms have good performance in solving MaOPs; however,69

their computational load increases exponentially when the number of objectives70

increases.71

The fifth category contains reference-set-based algorithms. These algorithm-72

s use a set of reference points to guide the search direction of the population.73

Examples of this type of algorithm include NSGA-III [26], TAA [27], TC-SEA74

[28] and VaEA [29]. In NSGA-III, an association operation is used to asso-75

ciate a reference point with a solution; then the solutions that are associated76

with the same weight can be operated as a niche. TAA divides the popula-77

tion into two parts, taking advantage of the historic and current populations’78

information to construct the reference set and guide the search. In VaEA, two79

principles, maximum-vector-angle-first principle and worse-elimination princi-80

ple, were adopted to guarantee the quality of the solution set. The former81

guarantees a good performance in terms of spread and distribution of the solu-82

tion set, the latter ensures that the worst solutions in terms of convergence can83

be conditionally replaced by other individuals.84

The sixth category includes dimensionality reduction approaches. This type85

of algorithm includes L-PCA [30], CDR [11] and SSR [31]. In solving MaOPs,86

some redundant objectives are merged. When a MaOP with high dimensions87

has a similar Pareto front(PF) to another problem with low-dimensions, we can88

try to optimize the lower-dimensional problem instead of the original one.89
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This paper proposes a knee-point-based evolutionary algorithm using a weight-90

ed subpopulation for many-objective optimization(WSK). The core of the pro-91

posed algorithm is to guide the search direction of the population through the92

knee point of the subpopulation. Uniform weights are used to classify popula-93

tions into different subpopulations and calculate the distance between solution94

and hyperplane. The solution with the shortest hyperdistance is considered to95

be the knee point. Every knee point represents the best performance in its96

subpopulation. These knee points are used to guide the population to search in97

the direction of the PF. This algorithm is very competitive when compared to98

other state-of-the-art algorithms.99

2. RELATED WORK100

In decomposition-based algorithms, a number of weight vectors convert a101

MOP into a set of single objective problems(SOPs) through a scalar function102

which is then optimized separately. The global optima can be obtained by103

combining the solutions of the SOPs. Zhang and Li [22] proposed MOEA/D,104

which decomposes a MOP into a number of scalar subproblems and optimizes105

them simultaneously. To start, a set of weight vectors ~w(w1, w2, · · · , wm) is106

generated, and the neighbor structure is established for every weight vector.107

The solution associated with the weight can use the neighborhood information to108

promote evolution. This kind of algorithm usually has two benefits: 1)decreasing109

the complexity of computation and 2)using the shared information of neighbors.110

However, these algorithms, which rely on aggregate function, to be removed,111

which have better values in Pareto-dominance but worse values in aggregation112

function.113

An example of an aggregate function value calculation is described in Figure114

1. The d1 is Euclidean distance from perpendicular to the origin, and the d2115

is Euclidean distance from perpendicular to the individual P. These parameters116
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Figure 1: Illustration of the penalty-based

boundary intersection approach in MOEA/D.

f1

f2

d2

d2

w

p1

p2

d1

d1
individualPF

Feasible 

Region

Figure 2: Illustration of the update operation.

can be computed respectively as follows:117

d1 =
||f(x) · wj ||
||wj ||

. (1)

d2 = ||f(x)− d1(wj/||wj ||)||. (2)

AF = d1 + θ ∗ d2, (3)

where the θ is set by the decision maker and AF is the aggregate function value118

of the solution. It can be seen in Figure 2 that individual p1 will more likely be119

replaced by individual p2 according to the aggregate function value, yet, p1 has120

better convergence than p2.121

To solve this problem, we propose using the knee point selection strategy122

instead of the aggregate function value strategy. This effectively prevents the123

optimal solution from being replaced by the inferior solution. The knee point is124

the most critical point on the PF. There are many methods to choose the knee125

point. For example, you can see a knee point selection based on the angle[32]126

in Figure 3. Slopes of the two lines through an individual and its two neighbors127
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Figure 3: Illustration for determining knee

point by angle for a bi-objective minimiza-

tion problem.
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Figure 4: Illustration for determining knee

point by distance for a bi-objective minimiza-

tion problem.

are shared, and then the angle between these slopes is regarded as a criterion128

of whether the individual is at a knee or not. It is obvious that the angle θd is129

the largest among all of the angles, so solution d is chosen as the knee point.130

Another method for selecting knee points is based on the distance from the131

point to hyperplane [33]. Using the ideal point and nadir point to construct a132

hyperplane, the vertical distance of all solutions to the hyperplane is calculated.133

The solution with the shortest vertical distance is chosen as the knee point.134

Take two objective problems as an example, such as Figure 4, the solution with135

the shortest distance will be the knee point.136

Of the aforementioned methods, the first uses the angle of the adjacent137

solution on both sides, meaning it cannot be applied to MaOPs because adjacent138

angles are unsure. Thus, we choose the latter as the way to calculate the knee139

point. In the KnEA [33], the knee point is selected from solutions of the same140

Pareto layer. The solutions around the knee point are eliminated until all knee141

points of the same Pareto layer are found. Even though the region exclusion142

method is adopted, the population still easily falls into the marginal region.143

This method can make full use of the solution’s convergence, but the diversity144
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Figure 5: Illustration of repartition operati-

on in WSK.
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Figure 6: Illustration for determining knee

point of subpopulation by distance for a bi-

objective minimization problem.

is not as good as the former.145

In order to maximize the performance of the knee point, this paper proposes146

an algorithm to introduce the concept of knee point to subpopulation. The147

distance from solution to weight is computed to associated solution with weight.148

In every subpopulation, the line through an ideal point and a nadir point is used149

to construct a hyperplane. The distance from solution to hyperplane can be150

regarded as a criterion of whether the individual is at a knee or not. As in Figure151

5 and Figure 6, the whole population is divided into a set of subpopulations, and152

the knee point is found in every subpopulation. We can see each subpopulation153

has its own standard for calculating knee point rather than the unified formula154

of MOEA/D.155

3. PROPOSED ALGORITHM: WSK156

The key task of WSK is to find the knee point of the subpopulation. As in157

[33], the subpopulation knee point can be defined as follows:158

Definition of subpopulation knee point: An individual is considered159

to be a knee point if and only if it has the shortest vertical distance from the160
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Figure 7: Illustration of the uniqueness of the

knee point in the subpopulation.

individual to the hyperplane among the subpopulation.161

According to this definition, the subpopulation’s knee point has the following162

properties:163

Property: If x is the knee point, it cannot be Pareto-dominated by other164

individuals in the subpopulation.165

Proof: Let us use a specific example shown in Figure 7 to prove this defini-166

tion. Suppose x is knee point and y Pareto-dominates x. Connecting x and y,167

it can be seen that vertical line yy′ is parallel with vertical line xx′. According168

to the similarity theorem of triangles, Ryy′ ∼ Rxx′ (Triangle Ryy′ is similar to169

Triangle Rxx′). Since Ry < Rx, we can derive that yy′ < xx′. Obviously, the170

result contradicts the hypothesis. Therefore, the property is reasonable.171

3.1. General Framework of the Proposed Algorithm172

The general framework of WSK consists of three parts: (1) Initialization,173

which mainly aims to initialize a population; (2) Mating selection, which is to174

select N individuals for evolutionary operations through the binary tournament175

selection. (In binary tournament selection, three criteria are adopted, namely,176

the dominance relationship, the knee point judge and the crowding degree.) (3)177
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Environmental selection, which selects N individuals as the parent population of178

the next generation. This procedure is repeated until the termination condition179

is satisfied and the pseudocode of the general framework of WSK is shown in180

Algorithm 1.

Algorithm 1 General Framework of WSK

Input: P (population),W (weight)

Output: Ptmax

1: Initialization(P,W )

2: while T < Tmax do

3: P = Mating selection(P )

4: Q = Variation(P )

5: Environmental selection(P, P ,W )

6: T++

7: end while

181

3.2. Mating Selection182

The binary tournament selection has three competitive strategies. First, two183

solutions are randomly chosen from the population. If one solution dominates184

the other solution, the former is chosen. If there is no dominance relation185

between the two solutions, individuals are checked to see whether they are knee186

points or not. If one solution is a knee point and the other solution is not,187

the former is chosen; otherwise, a third strategy is used. Next, the crowding188

degrees between the two individuals are compared, and the bigger one was is189

selected. The crowding degree is the sum of the angles between the solution and190

the nearest two individuals. Finally, if the above conditions are all invalid, a191

solution will be chosen randomly. The pseudocode of mating selection is shown192

in Algorithm 2.193

3.3. Environmental Selection194

Environmental selection is to select solutions to form the next generation195

of the population. Unlike other MOEAs with a nondominated sort, WSK does196
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Algorithm 2 Mating Selection(P )

Input: P (population)

Output: Q(childpopulation)

1: Q← ∅

2: while |Q| < |N | do

3: randomly choose a and b from P

4: if a ≺ b then

5: Q← Q ∪ {a}

6: else if b ≺ a then

7: Q← Q ∪ {b}

8: else

9: if a.judgekneeistrue and b.judgekneeisfalse then

10: Q← Q ∪ {a}

11: else if b.judgekneeistrue and a.judgekneeisfalse then

12: Q← Q ∪ {b}

13: else

14: if a.crowd > b.crowd then

15: Q← Q ∪ {a}

16: else

17: Q← Q ∪ {b}

18: end if

19: end if

20: end if

21: end while

not use nondominated sorting but elite replacement. The elite replacement197

strategy is to replace the original population with the elite solutions of the198

new population. Before environmental-selection operation, some strategies are199

used. Normalization is used to compress the population into the standard space.200

The repartition operation finds the nearest weight through min angle between201

solution and weight. Hyperdistance represents the performance of a solution.202
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The details of environmental selection of WSK are presented in Algorithm 3.

Algorithm 3 Environmental Selection(P, P ′,W )

Input: P (population), N(populationsize), Q(archive)

Output: P (thenewpopulation)

1: i = 1

2: Normalization(P ′)

3: Repartition(P ′,W )

4: ComputeHyperdistance(P ′,W )

5: while i < |W | do

6: UpdatePopulation(P, P ′,Wi)

7: i+ +

8: end while

9: if |P | > |W | then

10: Reduction(P )

11: end if

203

1) Normalization: The procedure of normalization is shown in Algorithm4.

First, the ideal point Zmin = (zmin
1 , zmin

2 , . . . , zmin
m ) and nadir point Zmax =

(zmax
1 , zmax

2 , . . . , zmax
m ) are found, where the Zmin and Zmax denote the min-

imal and maximal objective values in each objective function, respective-

ly. Then the solutions in the populations are normalized to standard space

through the following formula:

f ′i(xj) =
fi − Zmin

i

Zmax
i − Zmin

i

, i = 1, 2, . . . ,m. (4)

Here the f ′i(xj) is the transformed objective value.204

2) Repartition: After the transformation of objective space, the repartition

operation can be executed in transformed objective space. The angle between

solution and weight are used to find the nearest weight of each solution in

the population. The formula for calculating angles is as follows:

cosθ =
Fi(x) ·Wj(x)

|Fi(x)| · |Wj(x)|
, i = 1, 2, ...,m. (5)
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Algorithm 4 Normalization(P )

Input: P (population)

1: Calculate the minimal objective value Zmin , where Zmin
i = min

|P |
j=1fi(xj),

i=1,2, . . . , m.

2: Calculate the minimal objective value Zmax , where Zmax
i = max

|P |
j=1fi(xj),

i=1,2, . . . , m.

3: for j = 1 to P do

4: for i = 1 to M do

5: f ′i(xj) = (fi − Zmin
i )/(Zmax

i − Zmin
i )

6: end for

7: end for

Here Fi(x) ·Wj(x) return the inner product between Fi(x) and Wj(x). The205

angle value is between zero and one. This procedure is shown in Algorithm5.206

Algorithm 5 Repartition(P,W )

Input: P (population),W (weightvector)

1: for i = 1 to |P | do

2: for j = 1 to |W | do

3: cosθ =
Fi(x)·Wj(x)
|Fi(x)|·|Wj(x)| , i = 1, 2, ...,m

4: end for

5: end for

3) Compute Hyperdistance: The computation of hyperdistance is executed in207

each subpopulation. By computing the direction of the ideal point and nadir208

point, the normal vector of the hyperplane can be obtained. The solution209

in the subpopulation needs to be calculated by taking the distance from the210

point to hyperplane and the distance from the point to normal vector. The211

sum of the two distances is used to indicate fitness value.212

4) Update Population: The new population and original population need not be213

merged, but the old population is updated by the new population. We need214

to compare the distribution of new and old populations on the same weight.215
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If there is a solution assigned to this weight in the new population, but not216

in the old population, the solution in the new population will be added. If217

the old and new populations have solutions assigned to the same weight, the218

best solution of the new population will replace the worst solution of the old219

population. The superiority or inferiority of a solution is expressed by the220

sum of hyperdistance and vertical distance between solution and weight. In221

addition to the above two cases, other situations do not take any action.

Algorithm 6 UpdatePopulation(P, P ,W )

Input: P (population),W (weightvector)

1: for i = 1 to |W | do

2: if d(Wi).size = 0 then

3: P = P ∪ P ′(Wi)

4: else

5: for j = 1 to |P ′(Wi)| do

6: if P ′.best betterthan P.worst then

7: swap(P ′.best, P.worst)

8: end if

9: end for

10: end if

11: end for

222

5) Reduction: After the update of the population, the size of the old population223

may exceed the size required, so we need a reduction operation to reduce224

some solutions in the population. To begin with, the extreme solutions in225

each population are eliminated. Then, many solutions assigned to the same226

weight are reduced. This prevents a knee point with poor performance and227

extreme hyperdistance.228

3.4. Computational Complexity Analysis229

In this section, we show the analysis of the computational complexity of the230

algorithms mentioned in this paper. We use the complexity within one iteration231
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Algorithm 7 Reduction(P )

Input: P (population),W (weightvector)

1: while |P | > |W | do

2: Find the exS in P

3: reduce exS

4: end while

5: while |P | > |W | do

6: Calculate the maximal number of d(Wi)

7: Reduce worst individual in d(Wi)

8: end while

as the complexity of the algorithm. For a population size N and optimiza-232

tion problem of M objectives, the repartition operation has time complexity233

O(MN2). Finding the ideal point and nadir point require a total of O(MN)234

computations. The update operation has a time complexity of O(MN2). For235

computing the operation of hyperdistance, a runtime of O(MN) is needed.236

Therefore, the overall complexity of one generation in WSK is O(MN2). Com-237

pared with recent popular MaEAs, the computational complexity of WSK is238

considerable.239

3.5. Discussion240

In MOEA/D, NSGA-III and WSK, each population member is associated241

with a reference line based on the perpendicular distance that could be measured242

by angles to some extent. Notably, both ways consider the relation between the243

individual and the reference line, which has no obvious difference in validity and244

performance.245

Consider the neighborhood concept. MOEA/D makes full use of the neigh-246

bor’s information, but the probability that the population falls into the local247

optima increases. Different from MOEA/D, which uses a scalar function to248

measure the convergence of a solution, WSK introduces the concept of a sub-249

population knee point, where the subpopulation knee point represents the best250
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convergence in the subpopulation. Meanwhile, one of the major differences be-251

tween the two algorithms is that WSK does not convert a MOP into a number252

of scalar optimization subproblems. In NSGA-III, the perpendicular distance253

between the individual and the reference line is served as either convergence or254

diversity. Therefore, the NSGA-III has more difficulty converging than other255

algorithms.256

Unlike other algorithms such as KnEA and NSGA-III, which are based on257

the nondominated sort, WSK uses elite replacement. The elite replacement258

strategy replaces the original population with the elite solutions of the new259

population. The subpopulation knee point used in WSK is different from KnEA.260

Even though it has the same calculation method, the subpopulation knee point261

is defined for each subpopulation and each one is unique, while the knee point262

in KnEA is defined for the whole population and the number of knee points263

increases with the evolution.264

4. SIMULATION RESULTS265

In this section, the performance of WSK is verified experimentally. We266

compared WSK with seven state-of-the-art MaEAs for MaOPs, namely, S-267

PEA2+SDE [18], MOEA/D [22], MSOPS [20], NSGA-III [26], GrEA [16], HypE268

[23] and KnEA [33] on the WFG [34], DTLZ [35] and ZDT [36] test suites.269

4.1. Experimental Setting270

For fairness, general parameters are used in this paper. Parameters were set271

as follows:272

1) Crossover and Mutation: The recommended SBX [37] and polynomial mu-273

tation [38] were adopted to generate offspring. The distribution index nc274

of crossover was set to 20, and the crossover probability pc was set to 1.0.275

Similarly, the distribution index nm of mutation was set to 20, and the mu-276

tation probability pm was set to 1/n, where n denotes the number of decision277

variables.278
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Table 1: Setting of population size

M H NSGA-III
MOEA/D

WSK

3 91 92 91

5 210 212 210

8 156(h1=3, h2=2) 156 156

10 275(h1=3, h2=2) 276 275

15 135(h1=2, h2=1) 136 135

2) Population Size: The strategy of two-layered reference points in NSGA-279

III[26] was adopted to generate a set of uniformly distributed weight vectors.280

Table 1 shows the setting of population size in MOEA/D and NSGA-III.281

3) Number of Runs and Termination Condition: All algorithms were indepen-282

dently run 30 times on each test instance according to the parameter condi-283

tions. The setting of maximum function evaluations (MFEs) can be seen in284

Table II. For different numbers of objectives, the termination condition can285

be calculated by Tmax = MFE/N.286

4.2. Performance Metrics287

In our experiment, two quality indicators were adopted to compare the per-288

formance of different algorithms. Both Inverted Generational Distance(IGD)289

[39] and Hypervolume (HV) [40] can provide the information of convergence290

and distribution of the algorithm simultaneously, have been accepted by peers291

and are used as a common measure of algorithm performance evaluation.292

1) IGD: This metric represents the mean distance between the solution on the293

true PF and the nearest solution in the population. Let P be a set of points294

uniformly distributed on the true PF, and P ′ be a set of points in the pop-295

ulation. For IGD, the smaller value is preferable, which indicates that the296

solution set is close to the true PF and has a good distribution. The IGD297

metrics are defined as follows:298

IGD =
1

|P ′|
∑
z∈P ′

dist(z, P ). (6)
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2) HV: This metric calculates the volume between the solution in the population299

and the given reference point. A key issue that must be addressed to calculate300

the HV indicator is the choice of the reference point. The objective value of301

the population is normalized into the standard space according to the range302

of the problems’ PFs. Similarly, the reference point is set to 1.1 times the303

upper bound of the true PFs. We used Monte Carlo sampling[23] to evaluate304

the performance of the algorithms. For HV, the bigger value is preferable.305

To have statistically comprehensive conclusions, the Wilcoxon’s Rank test[41]306

at a 0.05 significance level was adopted to test the significant difference between307

the data obtained by paired algorithms.308

4.3. Results and Analysis309

The WFG test suite [34] is a set of widely used benchmark problems. These310

test problems have various properties, such as having a concave, convex, mixed,311

discontinuous, or degenerate PF and having a multimodal, biased or deceptive312

search space. HV results in terms of the mean and standard deviation of the313

MaEAs are shown in Table 2. As can be seen from the table, WSK performed314

outstanding on all test problems except for WFG1. WFG1 has a mixed PF315

and a biased search space. For WFG1, the performance of WSK is general and316

SDE achieved the best HV value on all numbers of objectives. This occurrence317

may be because the mixed PF affects the selection of the subpopulation knee318

point. WFG2 has a convex and discontinuous PF. For WFG2, WSK achieved319

the best HV values on 8-objective and 10-objective problems and achieved the320

second best HV value on 3-objective and 5-objective problems. WFG3 has a321

degenerate PF. WSK performs better than other algorithms on WFG2 with all322

numbers of objectives except for 3.323

For the other problems, different algorithms have their own strengths. Six324

test problems, from WFG4 to WFG9 have a concave PF. For WFG4 and WFG8,325

WSK obtained the best HV value on three test instances and obtained the sec-326

ond best HV value on three test instances. From the statistics, WSK is slightly327

inferior to SDE and NSGA-III. For WFG5, WFG6, WFG7 and WFG9, WSK328

18



performed better than the other algorithms. As we can see from the statistics,329

WSK had excellent performance when dealing with asymmetric problems.330

Table 2: HV (mean and standard deviation) results of the five algorithms on the WFG suites,

where the best mean is shown with a deep gray background and the second best with a light

gray background.

Problem Obj. WSK GrEA MOEA/D HypE SDE MSOPS NSGA-III KnEA

WFG1

3 4.088E+01 ( 7.27E-01 ) 4.774E+01 ( 2.12E+00 )∗ 4.557E+01 ( 2.39E+00 )∗ 4.010E+01 ( 1.33E+00 )‡ 5.133E+01 ( 2.53E+00 )∗ 5.042E+01 ( 1.81E+00 )∗ 4.648E+01 ( 2.55E+00 )∗ 4.927E+01 ( 2.93E+00 )∗

5 3.359E+03 ( 6.44E+01 ) 3.796E+03 ( 6.13E+01 )∗ 3.973E+03 ( 1.17E+02 )∗ 3.222E+03 ( 1.21E+02 )‡ 4.272E+03 ( 1.39E+02 )∗ 4.210E+03 ( 1.12E+02 )∗ 4.219E+03 ( 7.96E+01 )∗ 4.274E+03 ( 1.97E+02) )∗

8 1.107E+07 ( 1.66E+05 ) 1.047E+07 ( 1.36E+05 )∗ 1.146E+07 ( 2.79E+05 )∗ 9.201E+06 ( 1.41E+05 )‡ 1.397E+07 ( 6.19E+05 )∗ 1.081E+07 ( 1.38E+05 )‡ 1.102E+07 ( 4.01E+05 )† 1.398E+07 ( 4.18E+05 )∗

10 3.893E+09 ( 6.43E+07 ) 3.972E+09 ( 6.50E+07 )∗ 4.461E+09 ( 1.31E+08 )∗ 3.489E+09 ( 8.55E+07 )‡ 5.496E+09 ( 2.16E+08 )∗ 4.077E+09 ( 9.20E+07 )∗ 4.327E+09 ( 2.12E+08 )∗ 5.418E+09 ( 9.77E+09 )∗

15 6.085E+16 ( 1.12E+15 ) 4.820E+16 ( 1.20E+15 )‡ 4.678E+16 ( 6.68E+14 )‡ 4.195E+16 ( 1.75E+15 )‡ 7.352E+16 ( 4.47E+15 )∗ 4.832E+16 ( 9.12E+14 )‡ 6.066E+16 ( 3.40E+15 )‡ 4.036E+16 ( 4.01E+17 )‡

WFG2

3 9.633E+01 ( 5.13E+00 ) 9.242E+01 ( 6.47E+00 )‡ 7.896E+01 ( 5.56E+00 )‡ 9.222E+01 ( 5.93E+00 )‡ 9.287E+01 ( 6.99E+00 )‡ 9.746E+01 ( 3.74E+00 )∗ 9.608E+01 ( 6.94E+00 )‡ 9.275E+01 ( 7.93E+00 )‡

5 1.006E+04 ( 4.96E+01 ) 9.339E+03 ( 7.51E+02 )‡ 7.734E+03 ( 3.31E+02 )‡ 9.158E+03 ( 7.87E+02 )‡ 9.275E+03 ( 7.98E+02 )‡ 9.578E+03 ( 7.40E+02 )‡ 1.053E+04 ( 1.30E+01 )∗ 9.433E+03 ( 2.62E+02 )‡

8 3.252E+07 ( 1.50E+06 ) 2.957E+07 ( 2.20E+06 )‡ 2.282E+07 ( 1.70E+06 )‡ 2.835E+07 ( 1.52E+06 )‡ 3.117E+07 ( 2.25E+06 )‡ 3.241E+07 ( 1.88E+06 )‡ 3.168E+07 ( 2.66E+06 )‡ 3.152E+07 ( 1.73E+06 )‡

10 1.322E+10 ( 9.91E+08 ) 1.186E+10 ( 9.58E+08 )‡ 8.818E+09 ( 6.66E+08 )‡ 1.102E+10 ( 2.27E+08 )‡ 1.078E+10 ( 1.03E+09 )‡ 1.243E+10 ( 7.44E+08 )‡ 1.272E+10 ( 6.47E+08 )‡ 1.089E+10 ( 5.33E+08 )‡

15 1.465E+17 ( 1.59E+16 ) 1.649E+17 ( 1.37E+16 )∗ 1.195E+17 ( 9.84E+15 )‡ 1.379E+17 ( 1.32E+16 )‡ 1.487E+17 ( 1.40E+16 )∗ 1.640E+17 ( 1.34E+16 )∗ 1.757E+17 ( 1.64E+16 )∗ 1.477E+17 ( 1.09E+17 )∗

WFG3

3 7.363E+01 ( 6.23E-01 ) 7.369E+01 ( 6.16E-01 )‡ 6.925E+01 ( 2.28E+00 )‡ 7.063E+01 ( 3.55E+00 )‡ 7.421E+01 ( 4.36E-01 )∗ 7.236E+01 ( 5.56E-01 )‡ 7.208E+01 ( 4.53E-01 )† 7.396E+01 ( 4.24E+00 )∗

5 6.599E+03 ( 2.49E+02 ) 6.471E+03 ( 1.37E+02 )‡ 5.836E+03 ( 1.98E+02 )‡ 3.367E+03 ( 7.84E+02 )‡ 6.163E+03 ( 2.13E+02 )‡ 6.443E+03 ( 8.40E+01 )‡ 6.344E+03 ( 4.56E+01 )‡ 6.173E+03 ( 3.97E+02 )‡

8 2.010E+07 ( 2.47E+06 ) 1.864E+07 ( 6.89E+05 )‡ 1.288E+07 ( 1.39E+06 )‡ 3.231E+06 ( 2.01E+05 )‡ 1.945E+07 ( 8.68E+05 )‡ 1.717E+07 ( 5.46E+05 )‡ 1.960E+07 ( 1.42E+06 )‡ 1.971E+07 ( 8.44E+05 )†

10 8.236E+09 ( 2.16E+08 ) 6.669E+09 ( 7.80E+08 )‡ 3.200E+09 ( 9.00E+07 )‡ 9.606E+08 ( 8.22E+07 )‡ 7.492E+09 ( 3.40E+08 )‡ 6.589E+09 ( 1.82E+08 )‡ 7.815E+09 ( 8.29E+08 )‡ 7.256E+09 ( 9.48E+07 )‡

15 9.298E+16 ( 1.60E+16 ) 8.196E+16 ( 8.89E+15 )‡ 1.808E+16 ( 1.11E+15 )‡ 1.083E+16 ( 2.26E+15 )‡ 8.587E+16 ( 1.07E+16 )‡ 8.055E+16 ( 5.02E+15 )‡ 7.575E+16 ( 1.29E+16 )‡ 8.536E+16 ( 7.42E+15 )‡

WFG4

3 7.510E+01 ( 4.00E-01 ) 7.382E+01 ( 3.30E-01 )‡ 7.126E+01 ( 7.60E-01 )‡ 7.093E+01 ( 3.12E+00 )‡ 7.501E+01 ( 4.22E-01 )† 7.292E+01 ( 6.86E-01 )‡ 7.441E+01 ( 3.71E-01 )‡ 7.312E+01 ( 5.27E-01 )‡

5 8.218E+03 ( 5.66E+01 ) 8.007E+03 ( 1.13E+02 )‡ 7.432E+03 ( 1.15E+02 )‡ 5.264E+03 ( 4.76E+02 )‡ 8.096E+03 ( 3.92E+01 )‡ 7.923E+03 ( 4.35E+01 )‡ 7.990E+03 ( 4.47E+02 )‡ 8.210E+03 ( 7.14E+00 )‡

8 2.473E+07 ( 5.32E+05 ) 2.335E+07 ( 9.14E+05 )‡ 1.757E+07 ( 1.01E+06 )‡ 9.144E+06 ( 8.64E+05 )‡ 2.626E+07 ( 4.94E+05 )∗ 2.280E+07 ( 6.21E+05 )‡ 2.779E+07 ( 1.74E+06 )∗ 2.834E+07 ( 3.99E+05 )∗

10 9.016E+09 ( 2.30E+08 ) 5.728E+09 ( 2.61E+08 )‡ 6.374E+09 ( 7.87E+08 )‡ 3.604E+09 ( 4.56E+08 )‡ 1.020E+10 ( 2.46E+08 )∗ 8.526E+09 ( 3.13E+08 )‡ 8.615E+09 ( 2.72E+08 )‡ 1.081E+10 ( 3.06E+08 )∗

15 1.267E+17 ( 1.68E+15 ) 4.993E+16 ( 5.20E+15 )‡ 7.996E+16 ( 2.28E+16 )‡ 4.302E+16 ( 6.76E+15 )‡ 1.308E+17 ( 2.64E+15 )† 8.077E+16 ( 5.17E+15 )‡ 1.425E+17 ( 5.22E+15 )∗ 1.404E+17 ( 9.65E+15 )∗

WFG5

3 7.210E+01 ( 4.88E-01 ) 7.051E+01 ( 3.34E-01 )‡ 6.926E+01 ( 5.82E-01 )‡ 7.013E+01 ( 3.06E+00 )‡ 7.204E+01 ( 6.01E-01 )† 6.959E+01 ( 3.98E-01 )‡ 7.273E+01 ( 4.70E-01 )∗ 7.015E+01 ( 5.17E-01 )‡

5 8.119E+03 ( 5.97E+01 ) 7.964E+03 ( 5.65E+01 )‡ 7.229E+03 ( 2.08E+02 )‡ 7.185E+03 ( 3.81E+02 )‡ 8.048E+03 ( 5.95E+01 )‡ 7.684E+03 ( 5.81E+01 )‡ 7.958E+03 ( 2.20E+01 )‡ 8.072E+03 ( 8.01E+01 )‡

8 2.587E+07 ( 3.51E+05 ) 2.415E+07 ( 5.23E+05 )‡ 1.742E+07 ( 1.19E+06 )‡ 9.462E+06 ( 1.83E+06 )‡ 2.578E+07 ( 4.60E+05 )‡ 2.423E+07 ( 4.16E+05 )‡ 2.454E+07 ( 2.49E+06 )‡ 2.574E+07 ( 5.10E+05 )‡

10 9.244E+09 ( 1.22E+08 ) 3.906E+09 ( 4.04E+08 )‡ 6.381E+09 ( 3.08E+08 )‡ 2.812E+09 ( 2.76E+08 )‡ 9.477E+09 ( 1.45E+08 )∗ 9.014E+09 ( 2.31E+08 )‡ 1.071E+10 ( 5.86E+08 )∗ 1.071E+10 ( 4.82E+07 )∗

15 1.316E+17 ( 1.63E+15 ) 3.002E+16 ( 2.85E+15 )‡ 6.255E+16 ( 1.93E+15 )‡ 3.471E+16 ( 3.31E+15 )‡ 1.239E+17 ( 5.47E+15 )‡ 9.718E+16 ( 3.81E+15 )‡ 1.346E+17 ( 3.85E+15 )∗ 1.514E+17 ( 3.17E+14 )∗

WFG6

3 7.249E+01 ( 4.44E-01 ) 7.194E+01 ( 4.32E-01 )∗ 6.832E+01 ( 1.35E+00 )‡ 7.066E+01 ( 3.66E+00 )‡ 7.265E+01 ( 6.04E-01 )∗ 7.044E+01 ( 5.30E-01 )‡ 7.035E+01 ( 5.00E-01 )‡ 6.882E+01 ( 7.10E-01 )‡

5 8.170E+03 ( 5.45E+01 ) 8.094E+03 ( 9.38E+01 )‡ 6.474E+03 ( 5.21E+02 )‡ 6.275E+03 ( 2.02E+02 )‡ 8.028E+03 ( 1.11E+02 )‡ 7.792E+03 ( 7.50E+01 )‡ 8.733E+03 ( 4.85E+01 )∗ 7.965E+03 ( 8.10E+01 )‡

8 2.687E+07 ( 4.61E+05 ) 2.515E+07 ( 6.28E+05 )‡ 1.365E+07 ( 3.17E+05 )‡ 1.757E+07 ( 4.44E+06 )‡ 2.592E+07 ( 3.68E+05 )† 2.568E+07 ( 7.17E+05 )‡ 3.076E+07 ( 3.16E+05 )∗ 2.634E+07 ( 4.94E+05 )‡

10 1.276E+10 ( 3.32E+08 ) 4.024E+09 ( 2.92E+08 )‡ 4.595E+09 ( 9.12E+07 )‡ 3.033E+09 ( 5.59E+08 )‡ 1.069E+10 ( 2.27E+08 )∗ 9.897E+09 ( 1.64E+08 )∗ 8.959E+09 ( 6.30E+07 )‡ 1.112E+10 ( 2.87E+08 )‡

15 1.479E+17 ( 6.90E+15 ) 2.967E+16 ( 3.91E+15 )‡ 6.070E+16 ( 2.21E+15 )‡ 2.084E+16 ( 8.43E+15 )‡ 1.391E+17 ( 5.03E+15 )‡ 1.169E+17 ( 4.25E+15 )‡ 1.331E+17 ( 6.75E+15 )‡ 1.419E+17 ( 2.20E+15 )‡

WFG7

3 7.574E+01 ( 2.86E-01 ) 7.492E+01 ( 2.72E-01 )‡ 6.921E+01 ( 2.04E+00 )‡ 7.393E+01 ( 2.59E+00 )‡ 7.608E+01 ( 4.55E-01 )∗ 7.327E+01 ( 5.74E-01 )‡ 7.435E+01 ( 4.51E-01 )‡ 7.432E+01 ( 2.05E+00 )‡

5 8.702E+03 ( 6.72E+01 ) 8.577E+03 ( 7.42E+01 )‡ 7.112E+03 ( 2.50E+02 )‡ 7.428E+03 ( 3.78E+02 )‡ 8.553E+03 ( 5.73E+01 )‡ 8.255E+03 ( 8.83E+01 )‡ 9.186E+03 ( 2.78E+01 )∗ 8.682E+03 ( 3.39E+01 )‡

8 2.695E+07 ( 6.87E+05 ) 2.592E+07 ( 6.43E+05 )‡ 1.494E+07 ( 6.95E+05 )‡ 1.430E+07 ( 2.31E+06 )‡ 2.528E+07 ( 4.32E+05 )‡ 2.572E+07 ( 6.91E+05 )‡ 2.213E+07 ( 4.51E+06 )‡ 2.571E+07 ( 8.00E+05 )‡

10 9.827E+09 ( 2.15E+08 ) 5.455E+09 ( 1.93E+08 )‡ 5.852E+09 ( 7.23E+08 )‡ 4.435E+09 ( 1.14E+09 )‡ 9.762E+09 ( 3.68E+08 )‡ 8.874E+09 ( 4.22E+08 )‡ 6.786E+09 ( 9.02E+08 )‡ 1.005E+10 ( 9.48E+08 )∗

15 1.525E+17 ( 4.57E+15 ) 4.675E+16 ( 4.29E+15 )‡ 6.672E+16 ( 1.65E+15 )‡ 3.760E+16 ( 4.74E+15 )‡ 1.456E+17 ( 4.89E+15 )‡ 7.536E+16 ( 9.35E+15 )‡ 1.462E+17 ( 1.82E+15 )‡ 1.524E+17 ( 4.77E+15 )†

WFG8

3 6.903E+01 ( 3.90E-01 ) 6.754E+01 ( 4.65E-01 )‡ 6.606E+01 ( 9.11E-01 )‡ 6.609E+01 ( 2.61E+00 )‡ 6.833E+01 ( 2.93E-01 )‡ 6.695E+01 ( 3.25E-01 )‡ 7.060E+01 ( 4.55E-01 )∗ 6.393E+01 ( 9.70E-01 )‡

5 7.381E+03 ( 1.06E+02 ) 7.024E+03 ( 6.83E+01 )‡ 5.254E+03 ( 7.32E+02 )‡ 5.692E+03 ( 3.40E+02 )‡ 7.260E+03 ( 7.27E+01 )‡ 6.585E+03 ( 1.26E+02 )‡ 7.275E+03 ( 3.24E+02 )‡ 6.978E+03 ( 6.71E+01 )‡

8 2.423E+07 ( 4.99E+05 ) 1.633E+07 ( 5.31E+05 )‡ 6.534E+06 ( 2.59E+06 )‡ 1.349E+07 ( 1.44E+06 )‡ 2.125E+07 ( 3.51E+05 )‡ 1.665E+07 ( 1.03E+06 )‡ 2.624E+07 ( 2.82E+06 )∗ 2.130E+07 ( 2.26E+06 )‡

10 7.848E+09 ( 2.58E+08 ) 4.325E+09 ( 3.01E+08 )‡ 1.806E+09 ( 2.80E+08 )‡ 4.778E+09 ( 1.18E+09 )‡ 9.713E+09 ( 1.37E+08 )∗ 6.142E+09 ( 1.93E+08 )‡ 8.672E+09 ( 2.97E+08 )∗ 9.271E+09 ( 1.46E+09 )∗

15 1.288E+17 ( 1.88E+15 ) 3.840E+16 ( 4.18E+15 )‡ 8.194E+16 ( 4.26E+16 )‡ 3.983E+16 ( 6.66E+15 )‡ 1.381E+17 ( 3.24E+15 )∗ 5.556E+16 ( 5.72E+15 )‡ 1.446E+17 ( 2.67E+15 )∗ 1.327E+17 ( 1.71E+17 )∗

WFG9

3 7.013E+01 ( 1.66E+00 ) 6.742E+01 ( 2.00E+00 )‡ 6.288E+01 ( 1.38E+00 )‡ 6.337E+01 ( 2.73E+00 )‡ 6.830E+01 ( 1.85E+00 )‡ 6.754E+01 ( 1.87E+00 )‡ 7.011E+01 ( 2.58E+00 )† 6.668E+01 ( 2.06E+00 )‡

5 7.500E+03 ( 7.74E+01 ) 7.411E+03 ( 1.79E+02 )‡ 6.490E+03 ( 7.45E+02 )‡ 6.189E+03 ( 3.62E+02 )‡ 7.311E+03 ( 2.01E+02 )‡ 6.836E+03 ( 9.44E+01 )‡ 7.444E+03 ( 1.91E+02 )‡ 7.222E+03 ( 1.90E+03 )‡

8 2.263E+07 ( 9.97E+05 ) 1.949E+07 ( 1.19E+06 )‡ 1.077E+07 ( 3.73E+06 )‡ 1.083E+07 ( 2.08E+06 )‡ 2.254E+07 ( 6.53E+05 )‡ 1.771E+07 ( 1.55E+06 )‡ 2.508E+07 ( 1.31E+06 )∗ 2.541E+07 ( 7.62E+05 )∗

10 8.386E+09 ( 4.35E+08 ) 4.700E+09 ( 3.77E+08 )‡ 4.859E+09 ( 1.39E+09 )‡ 3.152E+09 ( 6.97E+08 )‡ 8.567E+09 ( 4.27E+08 )∗ 5.853E+09 ( 5.99E+08 )‡ 8.616E+10 ( 2.60E+08 )∗ 9.435E+09 ( 4.80E+08 )∗

15 1.140E+17 ( 4.41E+15 ) 4.439E+16 ( 3.79E+15 )‡ 2.693E+16 ( 1.28E+16 )‡ 3.819E+16 ( 7.03E+15 )‡ 1.110E+17 ( 3.95E+15 )‡ 5.944E+16 ( 9.88E+15 )‡ 1.058E+17 ( 2.84E+15 )‡ 1.124E+17 ( 1.11E+15 )‡

‡ indicates that the value is significantly outperformed by WSK

∗ indicates that the value is significantly better than WSK

† indicates that no significant difference is detected.

As in previous work, we compared the performance of these algorithms on331

the seven DTLZ test problems in terms of IGD. From Table 3, some contrasting332

results can be observed. WSK performed well on DTLZ2, DTLZ3 and DTLZ4.333

For DTLZ1, WSK achieved the best IGD only on 5-objective problems. This334
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(a) WSK (b) GrEA (c) MOEA/D (d) HypE

(e) SDE (f) MSOPS (g) NSGA-III (g) KnEA

Figure 8: Final solution set of the seven algorithms on the 10-objective WFG9, shown by

parallel coordinates.

Figure 9: Final solution set of the seven algorithms on the 5, 10, 15-objective WFG9, shown

by box plots.
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occurrence may be attributed to the flat PF. Although the subpopulation was335

divided by weight, the calculation of the distance between the solution to the336

hyperplane may still be affected by the PF. WSK achieved the best and sec-337

ond best IGD values on DTLZ2, DTLZ3 and DTLZ4. Among the DTLZ test338

problems, DTLZ5 and DTLZ6 are considered to be degenerated problems. The339

performance of WSK was general in DTLZ5 and DTLZ6. MOEA/D, SDE, M-340

SOPS and NSGA-III performed well on DTLZ5 and DTLZ6. This occurrence341

may be attributed to the selection of the knee point. Although the knee point342

represents the critical point in the subpopulation, the weight allocated on the343

PF is very limited to degradation. For DTLZ7, WSK achieved the best IGD344

value on 5 objectives and second best IGD value on 3 objectives. GrEA and345

SDE performed well on DTLZ7.346

Table 3: IGD (mean and standard deviation) results of the five algorithms on the DTLZ

suites, where the best mean is shown with a deep gray background and the second best with

a light gray background.

Problem Obj. WSK GrEA MOEA/D HypE SDE MSOPS NSGA-III KnEA

DTLZ1

3 2.345E-02 ( 9.96E-03 ) 3.721E-02 ( 1.09E-02 )‡ 1.866E-02 ( 2.02E-05 )∗ 5.835E-02 ( 7.88E-03 )‡ 1.947E-02 ( 2.58E-03 )∗ 2.813E-02 ( 4.75E-04 )‡ 1.920E-01 ( 5.71E-05 )∗ 3.875E-02 ( 3.04E-03 )‡

5 5.391E-02 ( 1.88E-03 ) 6.835E-02 ( 1.47E-02 )‡ 6.175E-02 ( 1.63E-04 )‡ 1.401E-01 ( 6.53E-03 )‡ 6.231E-02 ( 5.94E-04 )‡ 8.036E-02 ( 7.26E-04 )‡ 5.876E-02 ( 1.34E-02 )‡ 1.903E-01 ( 1.38E+00 )‡

8 1.279E-01 ( 1.22E-01 ) 1.077E-01 ( 7.89E-03 )∗ 1.088E-01 ( 6.39E-04 )∗ 3.610E+01 ( 2.52E+00 )‡ 8.695E-02 ( 1.80E-03 )∗ 1.267E-01 ( 8.75E-04 )† 1.101E-01 ( 8.89E-02 )∗ 5.801E-01 ( 2.62E-01 )‡

10 1.417E-01 ( 1.25E-02 ) 2.684E-01 ( 1.40E-01 )‡ 9.655E-02 ( 2.38E-04 )∗ 3.881E+01 ( 5.69E+00 )‡ 1.174E-01 ( 2.90E-03 )∗ 1.468E-01 ( 9.50E-04 )‡ 9.522E-02 ( 1.09E-01 )∗ 6.166E+00 ( 2.04E+00 )‡

15 4.732E-01 ( 1.51E-02 ) 3.521E+01 ( 3.53E+01 )‡ 1.393E-01 ( 2.37E-03 )∗ 4.249E-01 ( 1.34E-01 )∗ 1.497E-01 ( 1.89E-03 )∗ 1.706E-01 ( 1.91E-03 )∗ 7.082E-02 ( 2.96E-01 )∗ 9.005E+00 ( 1.11E+01 )‡

DTLZ2

3 5.402E-02 ( 1.12E-04 ) 5.779E-02 ( 1.08E-03 )‡ 5.425E-02 ( 4.62E-06 )‡ 1.875E-01 ( 2.42E-02 )‡ 7.215E-02 ( 2.95E-03 )‡ 7.258E-02 ( 3.68E-04 )‡ 5.396E-02 ( 1.08E-04 )† 6.991E-02 ( 7.43E-02 )‡

5 1.322E-01 ( 2.22E-04 ) 1.745E-01 ( 1.46E-03 )‡ 1.579E-01 ( 2.18E-04 )‡ 4.159E-01 ( 2.27E-02 )‡ 1.804E-01 ( 9.85E-03 )‡ 1.901E-01 ( 3.99E-03 )‡ 1.348E-01 ( 1.81E-03 )‡ 1.739E-01 ( 5.02E-01 )‡

8 3.751E-01 ( 2.90E-03 ) 3.965E-01 ( 3.67E-03 )‡ 4.497E-01 ( 7.08E-04 )‡ 6.753E-01 ( 1.16E-02 )‡ 4.479E-01 ( 4.58E-03 )‡ 4.177E-01 ( 2.38E-03 )‡ 3.699E-01 ( 1.39E-03 )∗ 5.467E-01 ( 1.57E-01 )‡

10 4.339E-01 ( 2.48E-03 ) 4.838E-01 ( 4.32E-03 )‡ 4.209E-01 ( 5.59E-04 )∗ 8.029E-01 ( 4.12E-02 )‡ 5.197E-01 ( 6.90E-03 )‡ 4.961E-01 ( 2.50E-03 )‡ 5.194E-01 ( 1.73E-01 )‡ 4.252E-01 ( 4.68E-03 )∗

15 6.377E-01 ( 2.68E-03 ) 1.134E+00 ( 1.46E-01 )‡ 6.527E-01 ( 2.90E-02 )‡ 1.051E+00 ( 2.36E-02 )‡ 6.966E-01 ( 6.92E-03 )‡ 6.304E-01 ( 6.03E-03 )∗ 1.083E+00 ( 2.34E-02 )‡ 6.482E-01 ( 1.53E-02 )‡

DTLZ3

3 7.063E-02 ( 3.67E-03 ) 8.208E-02 ( 1.03E-02 )‡ 5.039E-02 ( 2.00E-04 )∗ 2.316E-01 ( 6.07E-02 )‡ 7.738E-02 ( 3.02E-03 )‡ 7.247E-02 ( 6.32E-04 )‡ 5.036E-02 ( 9.10E-05 )∗ 8.050E-02 ( 1.33E-04 )‡

5 1.507E-01 ( 5.13E-03 ) 3.469E-01 ( 2.80E-01 )‡ 1.592E-01 ( 5.82E-04 )‡ 1.855E+02 ( 5.66E+01 )‡ 1.898E-01 ( 5.55E-03 )‡ 1.837E-01 ( 3.79E-03 )‡ 1.618E-01 ( 3.77E-02 )‡ 4.589E-01 ( 6.12E-02 )‡

8 4.299E-01 ( 8.90E-03 ) 7.677E-01 ( 2.16E-01 )‡ 6.704E-01 ( 2.79E-01 )‡ 2.440E+02 ( 7.93E+00 )‡ 5.444E-01 ( 1.37E-02 )‡ 6.058E-01 ( 3.36E-01 )‡ 4.480E-01 ( 1.48E+00 )‡ 6.286E+01 ( 8.40E+00 )‡

10 4.640E-01 ( 5.13E-03 ) 7.191E-01 ( 2.46E-01 )‡ 9.314E-01 ( 3.41E-01 )‡ 2.461E+02 ( 5.42E+00 )‡ 6.203E-01 ( 1.39E-02 )‡ 1.147E+00 ( 6.47E-01 )‡ 9.582E-01 ( 2.86E+01 )‡ 2.780E+02 ( 1.01E+02 )‡

15 8.694E-01 ( 3.28E-02 ) 1.877E+02 ( 5.77E+01 )‡ 1.069E+00 ( 2.58E-01 )‡ 1.233E+02 ( 5.37E+01 )‡ 7.423E-01 ( 8.81E-03 )∗ 1.820E+00 ( 9.40E-01 )‡ 1.071E+00 ( 2.08E+01 )‡ 4.152E+02 ( 1.52E+02 )‡

DTLZ4

3 5.425E-02 ( 1.94E-01 ) 7.775E-02 ( 1.62E-03 )‡ 4.867E-01 ( 4.48E-01 )‡ 2.036E-01 ( 1.72E-01 )‡ 6.904E-02 ( 2.73E-01 )‡ 7.335E-02 ( 1.84E-04 )‡ 2.696E-01 ( 2.81E-01 )‡ 9.203E-02 ( 2.81E-03 )‡

5 1.331E-01 ( 3.67E-04 ) 1.854E-01 ( 3.91E-02 )‡ 4.475E-01 ( 3.08E-01 )‡ 3.658E-01 ( 7.34E-02 )‡ 1.761E-01 ( 1.22E-01 )‡ 1.918E-01 ( 4.42E-03 )‡ 1.650E-01 ( 1.90E-01 )‡ 2.246E-01 ( 3.37E-03 )‡

8 3.853E-01 ( 3.94E-03 ) 3.997E-01 ( 3.58E-03 )‡ 7.342E-01 ( 1.73E-01 )‡ 7.423E-01 ( 3.47E-02 )‡ 4.584E-01 ( 4.40E-02 )‡ 4.300E-01 ( 2.40E-03 )‡ 4.818E-01 ( 3.52E-01 )‡ 5.525E-01 ( 4.93E-03 )‡

10 4.681E-01 ( 1.66E-03 ) 4.903E-01 ( 3.33E-03 )‡ 8.345E-01 ( 1.44E-01 )‡ 7.856E-01 ( 1.59E-02 )‡ 5.614E-01 ( 2.33E-02 )‡ 5.137E-01 ( 2.44E-03 )‡ 4.454E-01 ( 2.44E-01 )∗ 5.449E-01 ( 1.09E-02 )‡

15 6.485E-01 ( 4.51E-04 ) 1.426E+00 ( 9.40E-02 )‡ 9.917E-01 ( 1.58E-01 )‡ 8.518E-01 ( 1.90E-02 )‡ 7.165E-01 ( 5.58E-03 )∗ 6.630E-01 ( 4.04E-03 )‡ 4.039E-01 ( 1.29E-01 )∗ 6.582E-01 ( 2.20E-03 )‡

DTLZ5

3 3.464E-02 ( 2.08E-03 ) 1.309E-02 ( 6.74E-04 )∗ 3.199E-02 ( 1.09E-04 )∗ 3.518E-02 ( 7.73E-03 )∗ 8.889E-03 ( 5.98E-04 )‡ 2.000E-02 ( 1.38E-04 )∗ 1.591E-02 ( 4.79E-03 )∗ 8.726E-03 ( 5.70E-03 )∗

5 1.058E-01 ( 4.97E-02 ) 3.634E-02 ( 1.45E-02 )‡ 2.931E-02 ( 2.65E-04 )∗ 1.783E-01 ( 6.07E-02 )‡ 8.489E-02 ( 1.10E-02 )∗ 2.360E-02 ( 5.11E-03 )∗ 3.157E-02 ( 6.43E-02 )∗ 2.238E-01 ( 7.84E-01 )‡

8 1.334E-01 ( 2.72E-02 ) 2.208E-01 ( 3.73E-02 )‡ 6.731E-02 ( 9.91E-05 )∗ 5.365E-01 ( 1.23E-01 )‡ 1.121E-01 ( 2.96E-02 )∗ 1.940E-02 ( 9.05E-03 )∗ 7.574E-01 ( 3.00E-01 )‡ 6.671E-01 ( 3.80E-01 )‡

10 1.349E-01 ( 3.70E-02 ) 3.408E-01 ( 5.52E-02 )‡ 5.033E-02 ( 6.29E-03 )∗ 4.856E-01 ( 9.27E-02 )‡ 1.334E-01 ( 3.18E-02 )‡ 2.956E-02 ( 3.15E-02 )∗ 1.398E-01 ( 2.27E-01 )‡ 6.867E-01 ( 7.27E-01 )‡

15 1.755E-01 ( 6.32E-02 ) 6.347E-01 ( 1.02E-01 )‡ 1.535E-01 ( 4.16E-05 )∗ 4.440E-01 ( 1.27E-01 )‡ 1.605E-01 ( 2.46E-02 )∗ 1.319E-01 ( 6.81E-02 )∗ 2.114E-01 ( 1.11E-01 )‡ 9.984E-01 ( 4.74E+00 )‡

DTLZ6

3 8.045E-02 ( 1.48E-02 ) 4.125E-02 ( 7.35E-03 )∗ 5.870E-02 ( 9.64E-03 )∗ 1.434E-01 ( 4.62E-02 )‡ 3.539E-02 ( 7.37E-03 )∗ 5.789E-02 ( 1.06E-02 )∗ 6.095E-02 ( 6.26E-03 )∗ 6.370E-02 ( 1.05E+01 )∗

5 3.498E-01 ( 1.72E-02 ) 2.776E-01 ( 3.06E-01 )∗ 8.290E-02 ( 1.66E-02 )∗ 2.633E+00 ( 8.57E-02 )‡ 1.127E-01 ( 1.18E-02 )∗ 4.126E-01 ( 3.70E-02 )‡ 4.818E-01 ( 1.54E-01 )‡ 8.830E-01 ( 4.83E+00 )‡

8 4.558E-01 ( 2.49E-02 ) 7.830E-01 ( 9.28E-01 )‡ 1.100E-01 ( 1.51E-02 )∗ 2.560E+00 ( 1.92E-01 )‡ 2.950E-01 ( 2.67E-02 )∗ 3.184E+00 ( 5.02E-01 )‡ 9.578E-01 ( 2.73E-01 )‡ 6.492E-01 ( 5.53E+00 )‡

10 8.788E-01 ( 3.98E-02 ) 1.486E+00 ( 1.86E+00 )‡ 1.209E-01 ( 2.21E-02 )∗ 2.963E+00 ( 4.23E-01 )‡ 2.419E-01 ( 4.03E-02 )∗ 3.102E+00 ( 7.79E-01 )‡ 2.148E+00 ( 1.54E+00 )‡ 1.191E+01 ( 4.34E+01 )‡

15 5.465E-01 ( 7.06E-02 ) 3.948E+00 ( 1.23E+00 )‡ 2.078E-01 ( 3.12E-02 )∗ 2.672E+00 ( 5.21E-01 )‡ 2.683E-01 ( 6.07E-02 )∗ 3.560E+00 ( 4.06E-01 )‡ 4.070E+00 ( 1.99E-01 )‡ 1.483E+00 ( 4.86E-02 )‡

DTLZ7

3 8.838E-02 ( 8.18E-02 ) 9.971E-02 ( 6.98E-03 )‡ 1.956E-01 ( 2.08E-01 )‡ 2.676E-01 ( 6.57E-02 )‡ 5.845E-02 ( 9.46E-02 )∗ 1.625E-01 ( 1.42E-02 )‡ 1.103E-01 ( 7.77E-02 )‡ 9.600E-02 ( 6.61E-01 )‡

5 3.108E-01 ( 2.58E-02 ) 3.169E-01 ( 8.78E-03 )‡ 9.151E-01 ( 4.22E-01 )‡ 1.009E+00 ( 3.78E-01 )‡ 3.675E-01 ( 1.63E-02 )‡ 5.124E-01 ( 3.06E-02 )‡ 8.853E-01 ( 3.28E-01 )‡ 4.498E-01 ( 8.55E-02 )‡

8 1.489E+00 ( 1.40E-01 ) 7.097E-01 ( 2.09E-02 )∗ 2.887E+00 ( 9.31E-01 )‡ 4.667E+00 ( 7.65E-01 )‡ 6.918E-01 ( 3.99E-02 )∗ 1.284E+00 ( 1.05E-01 )∗ 1.583E+00 ( 3.13E-01 )‡ 1.214E+00 ( 4.23E-02 )∗

10 2.562E+00 ( 5.32E-01 ) 9.650E-01 ( 3.39E-02 )∗ 2.084E+00 ( 9.84E-01 )∗ 7.416E+00 ( 2.32E-01 )‡ 1.039E+00 ( 7.64E-03 )∗ 3.170E+00 ( 3.73E-01 )‡ 1.983E+00 ( 9.58E-01 )∗ 6.873E-01 ( 2.03E-02 )∗

15 4.131E+00 ( 5.71E-01 ) 1.569E+00 ( 1.16E-01 )∗ 6.418E+00 ( 1.96E+00 )‡ 1.647E+00 ( 3.03E-01 )∗ 1.751E+00 ( 8.82E-02 )∗ 5.468E+00 ( 8.78E-01 )‡ 5.106E+00 ( 7.31E+00 )‡ 3.118E+00 ( 3.55E-01 )∗

To visualize the performance of algorithms in high-dimensional objective347

space, the final solution set of the seven algorithms is shown by parallel coor-348
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(a) WSK (b) GrEA (c) MOEA/D (d) HypE

(e) SDE (f) MSOPS (g) NSGA-III (g) KnEA

Figure 10: Final solution set of the seven algorithms on the 10-objective DTLZ2, shown by

parallel coordinates.

Figure 11: Final solution set of the seven algorithms on the 5, 10, 15-objective DTLZ2, shown

by box plots.
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dinates. The lines with different colors represent different individuals in the349

figure, so that information can be easily acquired by readers. Figure 8 shows350

the final solution set of the WSK, GrEA, MOEA/D, HypE, SDE, MSOPS and351

NSGA-III on the 10-objective WFG9. Clearly, for this problem, WSK has a set352

of excellently distributed solutions over the PF; NSGA-III and SDE were slight-353

ly worse than WSK, and other algorithms were unable to maintain uniformity354

in their solutions. Figure 10 gives the final solution obtained by WSK, GrEA,355

MOEA/D, HypE, SDE, MSOPS and NSGA-III on the 10-objective DTLZ2. For356

this problem, WSK and NSGA-III have a set of excellently distributed solutions357

on the PF, HypE is unable to maintain uniformity of the solutions, and other358

algorithms performed well in maintaining distribution.359

Box plots are shown Figure 9 and Figure 11, where the plus sign represents360

the extreme solution; the short line represents the range of all solutions; the red361

line represents the mean value, and the rectangle represents the range of most362

solutions except for the extreme solution. The smaller the rectangle is, the more363

stable the algorithm is. In Figure 9 and Figure 11, WSK has a minimal rect-364

angle, indicating that WSK is a stable algorithm. In Figure 9, WSK achieved365

a best mean value and best stability on the 5-objective and 15-objective prob-366

lems. NSGA-III achieved the best mean value on the 10-objective problems.367

For DTLZ2, WSK obtained the best mean value on the 5-objective problem-368

s. MOEA/D obtained the best mean value on 10-objective problems. MSOPS369

obtained the best mean value on 15 objectives.370

From Table 2 and Table 3, we can see WSK achieved the best HV in eighteen371

test instances and second best HV in twelve out of forty-five WFG test instances.372

Furthermore, WSK achieved the best IGD in nine test instances and the second373

best IGD in seven out of 35 DTLZ test instances. As a whole, WSK performed374

better than the other algorithms.375

As shown in tables 2 and 3, the best performance of WSK appears in the376

problems DTLZ2-DTLZ4 and WFG4-WFG9. Specifically, WSK is good at these377

kinds of problems. Although having various properties, these problems have the378

same PF, which has a spherical shape. The reason for the better performance379
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Table 4: IGD (mean and standard deviation) results of the five algorithms on the ZDT suites,

where the best mean is shown with a deep gray background and the second best with a light

gray background.

Problem WSK GrEA MOEA/D HypE SDE MSOPS NSGA-III KnEA

ZDT1 8.522E-02(2.14E-03) 1.899E-01(7.70E-03)‡ 1.203E-01(3.34E-04)‡ 5.246E-01(2.10E-03)‡ 8.679E-02(2.22E-03)‡ 8.492E-01(1.03E-01)‡ 5.674E-01(4.05E-02)‡ 2.765E-01(8.73E-03)‡

ZDT2 2.483E-01(3.70E-03) 4.605E-01(1.92E-02)‡ 4.225E-01(4.58E-02)‡ 6.339E-01(5.95E-03)‡ 4.092E-01(1.00E-02)‡ 1.149E+00(1.45E-01)‡ 1.112E+00(1.27E-01)‡ 4.254E-01(4.13E-02)‡

ZDT3 2.293E-01(4.91E-03) 1.776E-01(8.20E-03)∗ 1.565E-01(3.29E-03)∗ 4.947E-01(8.17E-03)‡ 1.054E-01(1.04E-03)∗ 8.377E-01(6.66E-02)‡ 4.132E-01(1.06E-01)‡ 2.472E-01(9.95E-03)‡

ZDT4 1.283E-01(1.74E-03) 2.410E-01(1.41E-02)‡ 5.739E-01(5.33E-02)‡ 6.245E-01(1.32E-02)‡ 1.280E-01(1.73E-03)∗ 9.009E-01(1.29E-01)‡ 4.825E-01(8.34E-02)‡ 3.374E-01(4.14E-02)‡

ZDT5 1.167E+00(4.85E-02) 3.173E+00(2.06E+00)‡ 7.897E+00(3.45E-03)‡ 2.350E+00(4.96E-02)‡ 1.013E+00(3.65E-02)∗ 1.456E+00(3.00E-01)‡ 1.026E+00(6.51E-02)∗ 6.075E+00(1.18E+00)‡

ZDT6 6.982E-02(3.27E-04) 1.610E-01(9.84E-04)‡ 1.050E-01(5.51E-04)‡ 8.552E-02(1.33E-03)‡ 7.022E-02(3.30E-04)† 2.477E-01(9.67E-03)‡ 4.095E-01(3.18E-02)‡ 1.045E-01(2.27E-03)‡

of WSK on these test problems is that not only can the subpopulation knee380

point ensure the direction of the search, but it can also dynamically adjust381

the search direction of each subpopulation. What is more, the diversity and382

convergence in WSK are kept balanced by update-population and reduction383

operation. Meanwhile, this also may be attributed to the fact that the PFs of384

the test problems are regular. To these problems, weight vectors cover the whole385

PF regions, so the subpopulation knee point can take full advantage of its guide386

function. Therefore, unlike NSGA-III and MOEA/D in which the directions are387

fixed by weight vectors, WSK cannot be easily trapped into local optima.388

Table 5: Statistical Result (mean and standard deviation)

of the IGD value obtained by WSK* and WSK on DTLZ1

-DTLZ4,The best mean is shown with a deep gray

background.

Problem Obj. WSK* WSK

DTLZ1

5 5.146E-02 ( 7.72E-09 ) 5.391E-02 ( 1.88E-03 )‡

10 8.100E-02 ( 1.65E-06 ) 1.417E-01 ( 1.25E-02 )‡

15 1.535E-01 ( 4.71E-06 ) 4.732E-01 ( 1.51E-02 )‡

DTLZ2

5 1.330E-01(1.89E-08) 1.322E-01 ( 2.22E-04 )‡

10 4.254E-01 ( 5.05E-06 ) 4.339E-01 ( 2.48E-03 )‡

15 6.356E-01 ( 4.19E-06 ) 6.377E-01 ( 2.68E-03 )‡

DTLZ3

5 1.340E-01 ( 8.95E-07 ) 1.507E-01 ( 5.13E-03 )‡

10 4.360E-01 ( 9.07E-06 ) 4.640E-01 ( 5.13E-03 )‡

15 6.465E-01 ( 2.21E-04 ) 8.694E-01 ( 3.28E-02 )‡

DTLZ4

5 1.499E-01(2.68E-03) 1.331E-01 ( 3.67E-04 )‡

10 4.540E-01 ( 1.38E-05 ) 4.681E-01 ( 1.66E-03 )‡

15 6.473E-01 ( 5.84E-07 ) 6.485E-01 ( 4.51E-04 )‡
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From Table 4, some contrasting results can be observed. WSK achieved389

the best and second-best IGD values on ZDT1, ZDT2, ZDT4 and ZDT6. The390

performance of WSK was general in ZDT3 and ZDT5. This occurrence may391

be attributed to the discrete and discontinuous properties of the test problems.392

In these problem, weight vectors have difficulty covering the whole PF regions393

accurately, so the knee point cannot guide the population direction.394

4.4. Discussion395

To illustrate the performance of WSK, it was compared to six other state-396

of-the-art MaEAs on a series of test problems. The experimental results on test397

problems with 3 to 15 objectives show that WSK is significantly better than398

GrEA, MSOPS, and MOEA/D, and is comparative with SDE and NSGA-III.399

In summary, given a large number of benchmark problems with various problem400

characteristics and the performance metrics IGD and HV, WSK ensures better401

performance in both convergence and diversity.402

Meanwhile, the WSK with the normalization strategy removed (denoted as403

WSK* hereafter) is compared with the original WSK. To compare the perfor-404

mance of the solutions obtained by WSK* and WSK, the IGD indicator is used.405

As shown in Table 5, WSK* significantly outperformed the original WSK on406

DTLZ1-4. The major reason for the better performance of WSK* on these407

test problems is scaling of objective function. Since the association operation408

of algorithm does not consider the scaling of individuals, the dimensions with409

different scales will cause uneven distribution in the population. The accuracy410

of the association operation will be reduced.411

5. CONCLUSION412

In order to ensure excellent convergence and diversity in solving MaOPs, this413

paper has proposed an algorithm combining the advantages of decomposition414

and knee point. In WSK, the worst solution of the old population was replaced415

by the best solution in the new population. By repeating the update operation,416

a solution set with good performance was obtained.417
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In addition, it is also worth mentioning that the performance of proposed418

WSK is related to the shape of the PF for a given multiobjective problem since419

a set of weights have different distributions on different shapes of PF. When420

the shape of the PF is convex, the weight tends to be more concentrated on421

the center of the PF; when the shape of the PF is concave, the weight tends422

concentrate more on the edges of the PF. Therefore, WSK is not good at solving423

convex problems because the number of solutions on the edge is difficult to424

maintain. However, this problem can be addressed by adjusting each dimension425

of weights (according to the extreme individual in the current population) before426

the association operation.427

In the next stage, we will have a deeper insight into the weight adjustment of428

WSK, so as to further improve its performance. It would also be interesting to429

extend our WSK to solve the problems with convex traits. Moreover, we would430

apply WSK to real-world problems in order to further verify its effectiveness.431

Studies on MOEAs have been carried out for many years. So far, many432

MOEAs have been proposed. These algorithms have important guiding signif-433

icance for solving MOPs and practical research. In the study of MOEA, we434

need to fully understand the idea of the algorithm and grasp its strengths and435

weaknesses in order to provide a theoretical basis for further research.436
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