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A B S T R A C T

In addition to time efficiency, minimisation of fuel consumption and related emissions has started
to be considered by research on optimisation of airport surface operations as more airports face
severe congestion and tightening environmental regulations. Objectives are related to economic
cost which can be used as preferences to search for a region of cost efficient and Pareto optimal
solutions. A multi-objective evolutionary optimisation framework with preferences is proposed in
this paper to solve a complex optimisation problem integrating runway scheduling and airport
ground movement problem. The evolutionary search algorithm uses modified crowding distance
in the replacement procedure to take into account cost of delay and fuel price. Furthermore,
uncertainty inherent in prices is reflected by expressing preferences as an interval. Preference
information is used to control the extent of region of interest, which has a beneficial effect on
algorithm performance. As a result, the search algorithm can achieve faster convergence and
potentially better solutions. A filtering procedure is further proposed to select an evenly dis-
tributed subset of Pareto optimal solutions in order to reduce its size and help the decision maker.
The computational results with data from major international hub airports show the efficiency of
the proposed approach.

1. Introduction

Twice as many passengers are predicted to be carried by air traffic in 2030 compared to 2013 (ICAO, 2014). With this continuous
growth and no actions taken, congestion will become a serious problem for many airports together with a significant environmental
impact. As a result, a lot of attention has been attracted towards research on airport operations on the surface (Atkin et al., 2010;
Chen et al., 2016a,b; Marín and Codina, 2008; Lesire, 2010; Clare and Richards, 2011; Deau et al., 2009; Ravizza et al., 2013; Roling
and Visser, 2008) and near airspace (Bianco et al., 2006; Samà et al., 2013).

Recently, the Active Routing (AR) approach for airport ground movement has been introduced (Chen et al., 2016a,b; Weiszer
et al., 2015a; Weiszer et al., 2015b) with the aim of providing near-optimal nondominated speed profiles and routes for taxiing
aircraft. AR enables the routing and scheduling of taxiing aircraft, which was previously based on distance, emphasising time effi-
ciency, to be optimised with regard to richer information embedded within speed profiles. These include the taxiing times, the
corresponding fuel consumption, and the associated economic implications, i.e. cost of taxi time and fuel (Chen et al., 2016b). Results
in Ravizza et al. (2013), Chen et al. (2016b) demonstrated a significant trade-off between taxi time and fuel consumption using
different speed profiles and routes, which facilitates multi-objective decision making (e.g. selecting the taxi time efficient solutions in
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the peak period and fuel efficient ones in the off-peak period as in Chen et al. (2016b)). The real-time application of the AR fra-
mework can be achieved using a pre-computed database of nondominated speed profiles for key building blocks (i.e. straight taxiway
segments) of the airport layout (Weiszer et al., 2015a). The database acts as a middleware to effectively separate the speed profile
generation module from the routing and scheduling module. Furthermore, the airport ground movement problem has been shown in
Weiszer et al. (2015b) to have an impact on another critical surface operation, runway scheduling.

Due to the multi-objective nature of speed profile generation, routing and scheduling in the AR framework implies an existence
of Pareto optimal solutions for different conflicting objectives. This gives rise to the following issues: (1) which Pareto optimal
solutions should be selected and stored in the database when the size of the Pareto optimal set is extensively large; (2) which
routing and scheduling solution should be selected and implemented for the airport ground movement and the runway scheduling
problem.

State-of-the-art approaches for the multi-objective optimisation problem considered in this study, e.g. those in Clare and Richards
(2011), Frankovich and Bertsimas (2013), are proved to be computationally demanding for larger and complex instances. Therefore,
a legitimate approach in this case is multi-objective evolutionary optimisation algorithms, as they are suitable for complex opti-
misation problems and have the ability to find multiple near-Pareto optimal solutions in a single run compared to the classical
optimisation methods (Deb et al., 2002). Traditionally, multi-objective evolutionary optimisation algorithms have emphasised on the
search for a complete Pareto optimal set. It is often the case that a decision maker (DM) is expected to select a preferred solution from
the obtained Pareto optimal set, i.e. a posteriori, according to his/her preferences. However, the complete Pareto optimal set may be
difficult to approximate and an unconverged Pareto front does not allow the DM to find an ideal solution to his/her preferences (Deb
and Kumar, 2007). As a consequence, a solution with higher taxi time and fuel consumption may be chosen by the DM. On the
contrary, if DM’s preferences are considered before the search, i.e. a priori, the optimisation algorithm can concentrate on guiding the
search to a preferred region of interest (RoI), making the search more computationally efficient with faster convergence (Branke and
Deb, 2005; Karahan and Köksalan, 2010). The search by the optimisation algorithm can be also steered in an interactive manner, in
which the DM progressively articulates the preferences during the search.

Scalarizing functions (Miettinen and Mäkelä, 2002) involving some additional parameters corresponding to DM’s preference are
often used to transform a multi-objective problem into a single-objective one. However, this approach may be counterproductive
(Deb et al., 2006). The DM cannot investigate other optimal or near-optimal solutions and their properties corresponding to the
preference information if only a single solution is found during the search. Moreover, in practice, the preferences are often only vague
as relative weighing of the priorities is usually approximate. Therefore, the preferences are better to be utilised to search for a RoI
rather than a single solution in order to take into account such uncertainty.

Research on incorporating preferences into evolutionary algorithms has been active in the last two decades. For a recent
review, see (Purshouse et al., 2014). There are several ways of expressing preferences (Coello, 2000). In addition to use weights,
reference points (Deb et al., 2006; Deb and Jain, 2014), aspiration levels or goal vectors to represent the desired values of ob-
jectives, the DM can also specify a utility function, preference (López-Jaimes and Coello, 2014) or outranking relation (Jaszkiewicz
and Słowiński, 1999). Weights or trade-off information (i.e. how many units in one objective is at most worth a unit improvement
in another objective) are often used to express preferences. Examples include an evolutionary algorithm in Branke et al. (2001)
with maximally acceptable trade-off rate between objectives, a weight distribution function in Friedrich et al. (2011) and a
modified Nondominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002) with reference direction (weights) (Branke and
Deb, 2005; Deb and Kumar, 2007). The dominance relation is modified according to the distance to the reference point in Ben Said
et al. (2010) or aspiration level satisfaction in Molina et al. (2009). An achievement scalarizing function taking into account
reference point is used to prefer some solutions closer to the RoI in Thiele et al. (2009), López-Jaimes and Coello (2014), Deb and
Kumar (2007).

Although the abovementioned approaches assume inherently approximate preferences and search for the RoI instead of a single
solution, sometimes more information about the preference is available. For example, an interval provides more information (upper
and lower bound) about the underlying uncertainty in the preference compared to the single value of the reference point, weight, etc.
The uncertainty in preferences should be linked to the size of the RoI, with the RoI adjusted accordingly. Usually, a user defined
parameter is introduced to control the extent of the RoI (Branke and Deb, 2005; Deb et al., 2006; Deb and Jain, 2014). From a
practical point of view, setting up this parameter is not intuitive and the DM can control the extent of the RoI only approximately. As
a result, improper parameter setting will lead to either a too wide RoI, wasting computational resources, or a too narrow RoI, not
including preferred solutions. In more recent development, Tchebycheff weights that minimise the weighted Tchebycheff distance
from the ideal point in Karahan and Köksalan (2010) and objective function values in a co-evolutionary algorithm (Wang et al., 2015)
can be expressed as an interval. Also, a brushing technique (Wang et al., 2015) enables the DM to conveniently specify a range of
preferred objective function values by drawing in the objective space. However, the specification of these ranges in Karahan and
Köksalan (2010), Wang et al. (2015) is left completely to the DM.

In addition, a scalarizing function (i.e. weighted aggregation) and its corresponding parameters (i.e. weights) can express
approximate preference. Scalarizing functions have been used in decomposition evolutionary algorithms (Zhang and Li, 2007) to
convert a multi-objective problem into a set of single-objective subproblems. By varying the parameters of the scalarizing function,
different solutions are obtained during the search and combined to provide a Pareto set. The DM can select multiple parameters
according to his/her approximate preference, or the parameters can be set by the algorithm as in Mohammadi et al. (2012) to find
solutions close to a reference point. However, the decomposition based approach has the following disadvantages: (1) if a weighted
sum is used as a scalarizing function, the decomposition based algorithm cannot reach solutions on a non-convex Pareto front; (2) if
a reference point is used, then it leads to a problem of controlling the extent of the RoI as described earlier; and (3) selecting evenly
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distributed parameters does not always result in even distribution of solutions. Therefore, in this paper, the scalarizing function is
used only for controlling the extent of the RoI, rather than for decomposition. To the best of our knowledge, this is the first
application of the scalarizing function for this purpose, especially in the context of airport surface operations.

A scalarizing function can be a cost function, i.e. a unit of each objective has an economic value: the price of fuel or cost
corresponding to a minute of delay spent at the airport surface or emissions produced. Economic costs are commonly used in
airport sector as incentives (Chen et al., 2016b) when several stakeholders (e.g. airlines, airport) are involved in airport surface
operations. However, unit cost are often available as approximate values, reflecting the range of inputs used for their calculation,
e.g. different costs for different airlines. The assumption made in this paper is that the uncertainty in the unit cost can be modelled
as the RoI. The linear cost function of the unit cost and the total objective function values can evaluate each solution in terms of
the total costs, determining the solution with minimal cost from the Pareto set. By varying the unit costs within an interval,
reflecting the approximate preference, different solutions will have the minimum cost. A set of these solutions will then form
the RoI.

Once the RoI is found, the DM can select a single preferred routing and scheduling solution to be implemented. However, due to
the large number of optimal solutions in the RoI, especially in the presence of many objectives, such a decision making process can
pose a significant cognitive load on the DM. Therefore, a representative subset of solutions in the RoI is often favoured by the DM.
This subset should be uniformly-distributed, i.e. with uniform distances between the solutions in the objective space. Too large
distance can result in too big difference between two alternative solutions. The same requirement applies to the subset of speed
profiles which are stored in the database with a finite size. In this case, reducing the number while retaining an uniform dis-
tribution of available speed profiles is essential in reducing the search space of the airport ground movement and runway sche-
duling problem.

The issue of finding a set of well-distributed optimal solutions in the objective space has been addressed by preferring less
crowded regions such as in NSGA-II (Deb et al., 2002) or by a controllable distance between the solutions during the search (a priori)
(Karahan and Köksalan, 2010; Deb et al., 2005; Chen and Mahfouf, 2006; Deb and Jain, 2014), after (a posteriori), e.g. by filtering
methods in Faulkenberg and Wiecek (2010). The uniform spread of solutions in NSGA-II (Deb et al., 2002) is achieved by a crowding
distance favoring solutions further apart from each other, however without any control by the user over the desired distance. In Deb
et al. (2005), ∊-dominance divides the objective space into hyper-boxes with equal size of ∊ and only one solution is retained within
each box. However, the location of the solution within the box is not considered, which may result in an uneven distribution. R-
NSGA-II (Deb et al., 2006) prefers only one solution within the ∊-neighbourhood in a similar way to ∊-dominance. The territory
concept presented in Karahan and Köksalan (2010) prevents solutions to have smaller than the pre-defined distance. Although the
territory concept is similar to ∊-dominance, it prevents losing solutions towards the extremes of the Pareto front (Karahan and
Köksalan, 2010). Similarly, network suppression threshold in Chen and Mahfouf (2006) controls the minimum euclidean distance of
solutions. However, the solutions can still be unevenly dispersed as (1) the maximum distance between the solutions is not restricted
in Karahan and Köksalan (2010), Chen and Mahfouf (2006), and (2) only maximum distance is considered in Karahan and Köksalan
(2010). The reference-point-based many-objective evolutionary algorithm proposed in Deb and Jain (2014) evenly distributes re-
ference points so their projections on the Pareto front result in well-distributed solutions. However as noted in Jain and Deb (2014),
in practical problems with constraints or discontinuities in the Pareto front, even though reference points are evenly selected, the
algorithm may not end up distributing all solutions uniformly on the Pareto front. In contrast to a priori methods, a posteriori filtering
methods select a subset of solutions after the search has finished. This is advantageous as the filtering method can consider all
solutions found after the search, not only a few constantly changing solutions generated during each iteration of the search algorithm.
A review of a posteriori methods is given in Faulkenberg and Wiecek (2010).

In the light of the discussion above, a gap in the existing research is identified: ability to handle approximate or uncertain
preferences while finding uniform distribution of solutions on the Pareto front. Therefore, in this paper, we introduce a multi-
objective evolutionary optimisation (EMO) framework that addresses the above issues. In particular, the novelty of this study can be
summarised as follows:

1. An EMO framework is introduced which can handle approximate preferences. The scalarizing function and its corresponding
parameters (i.e. an interval of economic value for a unit of each objective) specify the RoI. Specially designed new crowding
distance for the replacement procedure of the EMO framework controls the extent of RoI efficiently, which has a direct impact on
the algorithm’s performance. The main idea is that using interval preference information to define the extent of the RoI results in
better solutions found by the EMO algorithm than the algorithms which use user defined parameters for this purpose.

2. A new filtering procedure is proposed to find a representative uniformly-distributed subset of solutions, which further improves
the ability of the DM to select a cost efficient solution.

3. The proposed EMO algorithm and filtering procedure are applied to an integrated ground movement and runway scheduling
problem formulated in our previous work (Weiszer et al., 2015b) with an additional objective corresponding to emissions.

The algorithm design choices, i.e. crowding distance and filtering procedure have a practical relevance in terms of saved total
time, fuel, emissions and economic costs.

The rest of the paper is organised as follows. Details and related work about the integrated optimisation problem, consisting of the
ground movement problem and runway scheduling, are provided in Section 2. Section 3 describes the EMO framework incorporating
the preferences and uniform distribution of solutions. Section 4 presents experiments with the proposed algorithm on data instances
from Manchester, Beijing Capital International and Doha International Airports. Lastly, Section 5 draws conclusions and future work.
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2. Airport ground movement and runway scheduling problem

This section provides a description of the models for the integrated airport ground movement and runway scheduling problem. A
table with complete notation is in Appendix A.

2.1. Related work

The ground movement problem has been mostly investigated with the aim of minimisation of the total taxi time or time
associated objective (Atkin et al., 2010). Integer programming (Marín and Codina, 2008; Roling and Visser, 2008) or graph-based
approaches such as (Ravizza et al., 2013; Lesire, 2010) have been employed to tackle this problem. Apart from the taxi time, a
limited number of studies considered fuel burn as an objective. Research on the stand holding problem (Atkin et al., 2010, 2011;
Burgain et al., 2009) minimises the fuel burn by holding the aircraft at the stand with inactive engines for as long as possible.
However, the stand holding problem does not consider fuel variations during taxiing due to different acceleration. Results in
Ravizza et al. (2013), Chen and Stewart (2011) demonstrated that the minimum taxi time results in a higher fuel burn caused by
heavy and multiple accelerations/decelerations required to achieve fast movement. Also, as shown in Chen et al. (2015),
emissions are a conflicting objective with taxi time and fuel consumption. In light of this, the recently proposed AR framework
(Chen et al., 2016a,b) provided a holistic decision making framework for multi-objective routing and scheduling of taxiing
aircraft. This renders the AR approach the ability to search for efficient taxiing in terms of not only time, but also fuel con-
sumption and emissions. A similar approach is introduced in Evertse and Visser (2017), considering taxi time, deviation from
departure slots and emissions for ground movement. Unlike the multi-objective AR framework, Evertse and Visser (2017) ag-
gregates all objectives together in an scalarized objective function using weights. Therefore, only one solution is obtained after a
single run of the algorithm.

The runway scheduling problem has often an objective related to delay, makespan of the schedule, the number of changes in
comparison with the First-come-first-served (FCFS) sequence, or various combinations. Approaches employed to solve this problem
include hybrid tabu search (Atkin et al., 2007), dynamic programming (Balakrishnan and Chandran, 2006), branch and bound
(Sölveling and Clarke, 2014) and genetic algorithms (Hu and Di Paolo, 2008). For a detailed review on this topic, see (Bennell et al.,
2013). Routing, sequencing and scheduling aircraft in terminal area around the runway has also attracted attention of researchers
(Murça and Müller, 2015; Bianco et al., 2006; Samà et al., 2013, 2014, 2017a,b; Lieder and Stolletz, 2016). Similarly to the runway
scheduling problem, approaches for the terminal area often have a time related objective, such as minimisation of delay from
scheduled landing/take off times, or minimum distance in case of routing (Sadovsky et al., 2013).

As pointed out in Atkin et al. (2010), the ground movement problem is interconnected with runway scheduling. The ground
movement needs to make sure that the departing aircraft can reach the runway on time. Similarly, the runway schedule determines
the time and sequence for the arriving aircraft to taxi. Researchers have started to consider the ground movement and runway
scheduling in an integrated manner. A two-stage model was adopted in Deau et al. (2009) where a runway sequence is fixed first by a
branch and bound algorithm, and then the ground movement problem is solved by a genetic algorithm considering a delay related
objective. An integer programming proposed in Frankovich and Bertsimas (2013) decomposes the integrated problem in a similar
way. Runway scheduling constraints are imposed on ground movement in the mixed integer linear programming model in Clare and
Richards (2011). These approaches can result in a suboptimal solution as the problems are treated in separate stages. More recently, a
heuristic for the integrated problem has been introduced in Benlic et al. (2016) and Guépet et al. (2017) considering only the time
related objective. In addition to ground movements and runway scheduling, the model in Samà et al. (2017c) integrates also
scheduling aircraft in the terminal area. In contrast to the previous single-objective approaches, a multi-objective genetic algorithm
proposed in Weiszer et al. (2015b) for the integrated ground movement and runway scheduling problem takes into account aircraft
speed profiles, improving both time and fuel efficiency. In light of this, in this study, a multi-objective and integrated modelling
approach similar to Weiszer et al. (2015b), but additionally incorporating emissions as another objective and preferences, is adopted.
Minimising time and fuel consumption due to surface operations bears significant economic implications to airlines and airports
(Chen et al., 2016b). Also, minimisation of emissions is often considered by airports as shown in Scheelhaase (2010) in order to
mitigate their environmental impact.

2.2. Ground movement problem

The ground movement problem aims to obtain conflict-free routes and schedules with minimum taxi time, fuel and emissions for
all aircraft taxiing between gates/stands and runway or in an opposite direction. The total taxi time ttaxi, total fuel consumption f taxi

and total emissions εtaxi for all aircraft = …i h1, , are calculated as outlined in Algorithm 1. As described in our previous works
(Weiszer et al., 2015b,a), the ground movement problem is divided into two parts:

1. Preprocessing: the nondominated speed profiles for key building blocks of the airport layout are found and stored in a database in
Lines 1–4.

2. Routing and scheduling: the routes and schedules for all taxiing aircraft are found in Lines 5–17, using the speed profiles for
building blocks retrieved from the database.
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Algorithm 1. Outline of the ground movement problem.

In Line 1, building blocks are identified from a graph representation of airport taxiway layout (Weiszer et al., 2015a). The
building blocks include all straight segments of taxiways, separated by turning segments. Using building blocks and turning segments,
any route between gates/stands and runway (or vice versa) can be recreated. Then, nondominated speed profiles for each building
block are found in Line 2. Taxiing on each building block is divided into four phases: acceleration, constant speed, deceleration and
rapid deceleration, representing a simplified typical taxiing behaviour as shown in Fig. 1. As described in Chen et al. (2016a), by
varying acceleration rate and the length of each phase, different speed profiles can be explored. In order to have an unrestricted
search space for the integrated optimisation problem, all speed profiles, without considering preferences, are explored in Line 2.
Without loss of generality, a recently proposed Population Adaptive Based Immune Algorithm (PAIA) (Chen and Mahfouf, 2006) is
adopted. PAIA achieved good results in terms of performance indicators for the speed profile optimisation problem compared to other
algorithms (Chen et al., 2016a). However, it should be noted that any search algorithm can be employed for this task. The set of
nondominated speed profiles is filtered through the filtering procedure described in the next section for uniformly-distributed
nondominated speed profiles which are then stored in the database in Line 4. Note, that Lines 1–4 are run before the preference-based
EMO framework described later in this paper.

Lines 5–18 detail the routing and scheduling part for each aircraft = …i h1, , . The aircraft are ordered with respect to their
pushback/landing times. For departures (Line 7), aircraft start taxiing at time +t xi

base
i, where xi is a decision variable and corre-

sponds to time in seconds for which the departing aircraft is held at the gate after the baseline departure time ti
base. Arriving aircraft

Fig. 1. An example of a speed profile with four phases.
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(Line 9), start taxiing at landing time ti
r . For each departing/arriving aircraft i, route qi is found by the heuristic k-QPPTW algorithm

described in Ravizza et al. (2013). In order to keep computational times reasonable, in this paper, for each arriving aircraft i, only the
fastest route qi in terms of taxi time is generated, based on assumed constant speed 15.43m/s (30 kn) for straight segments and
5.14m/s (10 kn) for turns. Due to the assumption of generating only the fastest route based on the constant speed, this route is
slightly worse than the optimal one. By generating additional routes up to 10 (the 2nd fastest route, 3rd fastest route, …), an
improvement of 2–5% and 2–7% in taxi time and fuel consumption, respectively, was observed in Chen et al. (2016b) compared to
the fastest route. In this paper, the generated routes take into account previously routed aircraft and do not change with subsequently
processed aircraft. Based on route qi, a set of building blocks Si, corresponding to qi is determined in Line 11. For all ∈s Si, speed
profile yi is then retrieved from the database. yi is a decision variable that determines which speed profile is retrieved from Nsp speed
profiles. Then, taxi time ti s, , fuel consumption fi s, and emissions εi s

pp
, of pollutant pp for building block s are determined as follows. The

taxi time ti s, of aircraft i required to travel through building block s following speed profile yi consists of partial times t y( )p
phase

i spent in
each taxiing phase p:

∑=
=

t t y( ).i s
p

p
phase

i,
1

4

(1)

As described in Chen et al. (2016a), fuel consumption needed to follow a speed profile depends on thrust levels η which are-
determined for each taxiing phase p. During deceleration and rapid deceleration, =η 5% of full rated power, and during turning

=η 7% (Nikoleris et al., 2011). For acceleration and constant speed phase, η is calculated in (2) where weight is the weight of the
aircraft, acc is the acceleration rate, μ weight g· · acc is the rolling resistance force and Foo is the maximum power output of the jet engine.
μ is rolling resistance coefficient, set to 0.015 (Chen et al., 2016a) in this paper. = −g 9.81m·sacc 2 is the gravitational acceleration.
Note, that the air resistance is not assumed here due to low speeds involved.

=
+

η
weight acc μ weight g

F
· · · acc

oo (2)

The thrust level η corresponds to a fuel flow ϕ y( )p i which is calculated by linearly interpolating or extrapolating fuel flow values
for =η 7% and =η 30% reported in ICAO database, following the approach in Nikoleris et al. (2011). The fuel consumption fi s, of
aircraft i for building block s following speed profile yi is defined in (3).

∑=
=

f ϕ y t y( )· ( )i s
p

p i p
phase

i,
1

4

(3)

Given a calculated fuel flow ϕ y( )p i , the corresponding emission indices EI ϕ y( ( ))pp
p i (g of pollutant for each kg of burned fuel) for

pollutant pp is a function of ϕ y( )p i . EI ϕ y( ( ))pp
p i can be obtained using curves fitted to the values reported in ICAO Emissions Databank,

similarly as in Chen et al. (2015). Finally, the total emission εi s
pp
, of pp of aircraft i during taxiing on s is calculated in (4). It should be

noted that the relationship between fuel flow ϕ y( )p i and emission indices EI ϕ y( ( ))pp
p i is non-linear and inversely proportionate for

hydrocarbons (HC) and carbon monoxide (CO) pollutants, i.e. a higher fuel flow yields less pollutants per kg of fuel than the lower
fuel flow does.

∑=
=

ε ϕ y t y EI ϕ y( )· ( )· ( ( ))i s
pp

p
p i p

phase
i

pp
p i,

1

4

(4)

In the previous research (Chen et al., 2015), it was shown that HC and CO pollutants for light and medium category aircraft are
strongly correlated with the taxi time. Therefore, for light and medium category aircraft it is assumed that minimising taxi time will
minimise HC and CO emissions at the same time. The nitrous pollutants (NOx) are linearly dependent on fuel flow for light, medium
and heavy category aircraft, and for that reason are not considered in the search. For the heavy category aircraft, the HC and CO
pollutants are considered as an individual objective. However, due to the strong correlation between them, it is sufficient to include
only one of them, e.g. HC, in the optimisation. As a result, only HC is considered as an additional objective for heavy aircraft in this
paper. For light and medium category aircraft, only taxi time and fuel consumption is considered during the search. After efficient
solutions in terms of these two objectives are found, the value of HC is calculated for aircraft in these categories according to (4).

After t f ε, ,i s i s i s
pp

, , , are determined, the route qi with taxi time∑ = ts
S

i s1
| |

,
i is reserved for aircraft i. Lines 5–17 are repeated until all aircraft

are processed. Finally, the total taxi time ttaxi, the total fuel consumption f taxi and emission εtaxi for all aircraft = …i h1,2, , , are
calculated in (5)–(7). Due to reasons mentioned above εtaxi only considers εi s

HC
, .

∑ ∑=
= =

t t ,taxi

i

h

s

S

i s
1 1

| |

,

i

(5)

∑ ∑=
= =

f f ,taxi

i

h

s

S

i s
1 1

| |

,

i

(6)

∑ ∑=
= =

ε ε .taxi

i

h

s

S

i s
HC

1 1

| |

,

i

(7)
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2.3. Runway scheduling problem

The runway scheduling problem aims to find landing and take-off times for all aircraft arriving or departing from a given runway.
The objectives of runway scheduling are the minimum delay, fuel consumption due to waiting and associated emissions subject to
safe separation between aircraft. In this study, landing times are fixed and only take-off times are subject to search. This is due to the
fact that holding arriving aircraft still in air has more impact on the air traffic control system compared to departing aircraft on the
airport surface.

The minimum amount of time which must elapse between subsequent aircraft using the runway is due to air turbulence (called
wake vortices) generated by departing/landing aircraft and in-flight separation constraints imposed by different speeds of airborne
aircraft. In this study, only separation to prevent wake vortices is considered for simplicity.

The set of all h aircraft is denoted as H and consists of A arriving and D departing aircraft. The function W w w( , )j i returns the wake
vortex separation for a pair of subsequent (leading/trailing) aircraft j i, with weight categories wj and wi. The values of required
separations between a leading and trailing aircraft departing/arriving on the runway are given in Table 1. As can be seen, longer
separations are generally needed when the heavier aircraft is followed by a lighter one. For aircraft departing in the order of j i e, , , the
triangle inequality + ⩾W w w W w w W w w( , ) ( , ) ( , )j i i e j e holds.

Let ti
r be the actual landing or take-off time for arriving and departing aircraft i, respectively. ti

r is given for arriving aircraft ∈i A.
For departures, i.e. ∈i D t, i

d is the arrival time at the runway holding point which is calculated as = + ∑ =t t ti
d

i
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s
S

i s1
| |

,
i . If the difference

between ti
d and tj

r of previous aircraft j complies with the minimum separation W w w( , )i j , aircraft i can take-off without delay, i.e.
=t ti

d
i
r . Otherwise, departing aircraft i at the runway holding point needs to postpone its take-off as defined in (8), subject to ⩾t ti

r
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d

and ⩾ +t t W w w( , )i
r

j
r

i j .

=

⎧

⎨

⎪⎪

⎩
⎪
⎪

−
⩾

+

− −

t

t t t
W w w

t W w w

t t

if
( , ),

( , )

( ) otherwise.

i
r

i
d

i
d

j
r

i j

i
d

i j

i
d

j
r

(8)

Therefore, the waiting time ti
w of the departing aircraft ∈i D is equal to = −t t ti

w
i
d

i
r . In this paper, we assume that no departure

slots are prescribed, and aircraft can take off immediately as long as it is safe to do so.
Minimisation of the total runway delay trwy, as defined in (9), is the first objective of the runway scheduling. The second objective

to be minimised is the total runway fuel f rwy used during ti
w by jet engines with idle fuel flow ϕwi. The third objective is to minimise

emissions εrwy associated with the fuel f rwy.

∑=
=

t t ,rwy
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(9)
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(10)

∑=
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ε t ϕ EI· · .rwy
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D

i
w

w
pp

1

| |

i
(11)

The idle fuel flow ϕwi and emissions EIpp correspond to fuel flow and emissions, respectively, and are based on the International
Civil Aviation Organisation (ICAO) engine database for =η 5% of the representative aircraft. Similarly, as for the ground movement
problem, only HC emissions are considered in (11). For heavy category aircraft, HC emission serves as an individual objective,
whereas for light and medium category aircraft emissions are calculated after the search.

Table 1
Separations in seconds between departures (D) and arrivals (A) for different weight categories w: heavy (Hv), medium (M) and light (L) (Frankovich
and Bertsimas, 2013).

Trailing

A-Hv A-M A-L D-Hv D-M D-L

Leading A-Hv 96 157 207 60 60 60
A-M 60 69 123 60 60 60
A-L 60 69 82 60 60 60
D-Hv 60 60 60 96 120 120
D-M 60 60 60 60 60 60
D-L 60 60 60 60 60 60
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2.4. Integrated optimisation problem

Following the modelling approaches in Sections 2.2 and 2.3, in this section, the ground movement and runway scheduling
problem are integrated into a multi-objective optimisation problem. The objective functions considered are (12)–(14). g1 corresponds
to the total time, g2 is the fuel consumption and g3 is the total emission of HC. Each objective function consists of two components.
The first component is for ground movement, and the second one is for the runway scheduling part. Each component is based on
equations detailed in Sections 2.2 and 2.3.

= +g t tmin ,taxi rwy
1 (12)

= +g f fmin ,taxi rwy
2 (13)

= +g ε εmin .taxi rwy
3 (14)

For the integrated optimisation problem, the decision variables are the following: the pushback time xi for departing aircraft ∈i D
and the speed profile ∈ …y N{1, , }i

sp for all aircraft ∈i H . xi determines when aircraft i starts ground movement and therefore arrival
time at the runway holding point. In this paper, xi is limited to an integer value within …{0, ,300}. yi determines the duration of ground
movement for arriving/departing aircraft i and arrival time at the runway holding point in case of departures. The complete solution
to the integrated optimisation problem is represented as a vector of integer values: { … …x x x y y y, , , , , , ,D h1 2 | | 1 2 }. Given the decision vari-
ables, the objective function values g g g, ,1 2 3 are determined by:

1. t f ε, ,taxi taxi taxi,
2. t f ε, ,rwy rwy rwy.

In order to search for the values of decision variables, the EMO framework is adopted and is described later.

2.5. Economic values of objectives

In practice, each unit of objectives g g g, ,1 2 3 defined in Section 2.4 correspond to an economic value, i.e. a unit cost. Economic costs
are recognised in Chen et al. (2016b) as incentives and an efficient way to consider different stakeholders’ interests during airport
surface operations: the airlines and the airport. As described in Chen et al. (2016b), the following costs are related to airport surface
operations (this includes taxiing and waiting at the runway):

• time dependent cost (€·s−1) related to g1 which consists of:
– aircraft maintenance cost: maintenance is needed at a regular time intervals,
– aircraft opportunity cost: revenues missed because time during taxiing or waiting at the runway is not used for profitable
service,

– other operational costs related to aircraft (e.g. crew salaries)
– airport opportunity cost: revenues missed because infrastructure at the airport is not used for profitable service,

• fuel costs (€·kg−1) related to g2,

• emission costs (€·g−1) related to g3 used in this paper.

Emission costs are a monetary value for each g of the pollutant emitted. Some airports have already applied an emissions charge
scheme (Scheelhaase, 2010) due to which airlines need to pay for their emissions. However, the schemes usually lump HC and NOx
emissions together and the detailed information of charges per unit for individual pollutants is missing. Therefore, in this study, no
monetary value for g3 is assumed and the decision is left to the DM.

However, some unit costs are often difficult to determine and only approximations are available. For example, a unit cost of g1
depends on maintenance cost or crew salaries which can be different for different airlines. Therefore, searching for a RoI with
solutions within a range of objective function values, corresponding to certain ranges of unit costs for g g,1 2 bears more pragmatic
meaning. The scalarizing function used in this work is defined as a function C z c( , )total

k which evaluates a solution zj found during the
search in terms of the total monetary cost for nrobj objectives, using a unit cost vector = … ⩾ = …c c c m nrc [ , , ], 0 for 1, ,nr m

obj
1 obj for each

objective:

∑=
=

C c gz c z( , ) · ( ).total
k

m

nr

m m k
1

obj

(15)

If no information about the economic value for objective m is available, =c 0m . It should be noted that (15) can be rewritten such
that different cm is used for aircraft in different weight categories and then multiplied by the sum of the objective function values of
aircraft belonging to that weight category. For example, different fuel price can be used for heavy category aircraft if more equal
consideration of heavy (which consume more fuel) and medium aircraft is desired.

The vector = …c cc [ , , ]u1 defines the most probable unit costs ⩾ = …c m nr0 for 1, ,m
obj. Furthermore, to include the uncertainty in

the unit costs, for each cm an upper bound cm
upper and lower bound cm

lower is defined such that < <c c cm
lower

m m
upper. It should be noted that
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c c c, ,m
lower

m m
upper can be elicited from the DM or from the data held by the airport, e.g. the range of fuel price during a certain period.

In the next section, we show how the preferred region defined by the DM or based on scalarizing function and unit costs of
objectives is constructed during the search by the EMO framework, to guide the preference-based EMO algorithm towards the RoI.
This is carried out in conjunction with a filtering procedure to obtain uniformly-distributed solutions.

3. EMO framework with preferences

In this section, we describe the EMO framework based on the preferred region and filtering procedure to find solutions in the RoI
for the integrated optimisation problem as defined in Section 2.4. The structure of the EMO framework is outlined in Algorithm 2.
Lines 1–13 describe the Preference-based EMO algorithm (P-EMOA) and Line 14 refers to the filtering procedure. P-EMOA is a
derivative of a generic EMO algorithm, such as NSGA-II (Deb et al., 2002). In Line 1, the initial population is filled with solutions with
random values of decision variables. Each solution in the population is assigned objective function values g g g, ,1 2 3 in Lines 2–4, as
described in Section 2.4. In Line 6, solutions with better objective function values are selected for reproduction. Reproduction is
performed by applying a 2-point crossover, with a given probability, to two parent solutions. In Line 9, mutation randomly changes
the value of decision variables according to the mutation rate. Then, the solution is assigned the values of g g g, ,1 2 3. Solutions, surviving
to the next generation, are selected in Line 12. The replacement procedure in P-EMOA is adapted to incorporate preferences. A
generic EMO favours non-dominated solutions which are in less ”crowded“ regions of the whole objective space, such as in the
standard NSGA-II. In P-EMOA, the replacement prefers solutions which are in the RoI as well as not crowded within it. For this
purpose, the replacement procedure with a modified crowding distance taking into account these two requirements is adopted and
will be described in the next section. The loop in Lines 5–13 is repeated until the maximum number of generations is reached. The
final population is then filtered by a filtering procedure to obtain a representative subset of solutions.

Algorithm 2. Structure of the EMO framework.

3.1. Replacement procedure for P-EMOA

During each generation, a non-dominated sorting (Deb et al., 2002) is performed during the replacement to identify the non-
dominated fronts. Within each front, surviving solutions are selected based on the preferred region of the Pareto front of solutions in
the objective space. The preferred region is defined as follows. Firstly, the middle point zC is identified as the most preferred solution
within the front. Next, boundary solutions za

B, called the characteristic neighbours are selected such that for each objective gm an
interval v v[ , ]m

min
m
max is defined for = …m nr1, , obj as shown in Fig. 2. The middle point together with the boundary solutions specify the

RoI. It should be noted, that the middle point and the boundary solutions can be selected by the DM interactively via the brushing
technique (Wang et al., 2015). As described in Section 2.5, a scalarizing function Ctotal can be utilised for finding the middle point and
the boundary solutions. In such case, c c c, ,m

lower
m m

upper need to be provided by the DM. The middle point is determined as a solution zk
which has a minimum scalarizing function value with respect to the unit cost vector c:

= Cz z carg min( ( , )).C total
k

zk (16)

In order to determine boundary solutions, we define a boundary unit cost vector cB. The vector cB is a vector with boundary unit
cost values, i.e. cm equals to cm

lower or cm
upper . Therefore, for u objectives, this leads to =nr 2B nrobj boundary unit cost vectors cB, which
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are the complete combinations of upper/lower bounds, e.g. = c c cc [ , , ]B lower upper upper
1 2 3 . Each a-th cB corresponds to a characteristic

neighbour, which is a solution zk with a minimum scalarizing function value using ca
B:

= Cz z carg min( ( , )).a
B total

k a
B

zk (17)

All zB define a RoI, within which solutions with minimum C z c( , )total
k m for any unit cost vector cm between cm

lower and cm
upper are

located, as illustrated in Fig. 2. Furthermore, the RoI obtained from the scalarizing function can be further modified by the DM during
each generation.

In order to focus the search on the RoI, the crowding distance cdk is modified as follows. For each zk within the same non-
dominated front, cdk is calculated as:

=
⎧

⎨
⎪

⎩⎪

∞
+cd M d

C

z z
z z

z c

if is the middle point ,
else if outranks ,

1/ ( , ) otherwise.
k

k
C

k
cd C

total
k

j

(18)

If the solution zk is the middle point, = ∞cdk and ensures that it is always selected for the next generation. Otherwise, cdk is
determined based on the outranking relation (Jaszkiewicz and Słowiński, 1999) of zk to zC. The middle point zC is outranked by zk
(denoted as Sz zk

C) if ⩽ ⩽v g vz( )m
min

m k m
max for all objectives = …m nr1, , obj. All zk outranking zC form the outranking neighbourhood.

Solution Sz zk
C if all gm for = …m nr1, , obj are within v v[ , ]m

min
m
max . The interval v v[ , ]m

min
m
max , called the veto interval, for objective m is

determined by nr B characteristic neighbours:

= = …v g a nrzmin{ ( ), 1, , },m
min

m a
B B (19)

= = …v g a nrzmax{ ( ), 1, , }.m
max

m a
B B (20)

Determining whether zk belongs to the outranking neighbourhood does not depend on its Ctotal value as defined in (15). This is
important, as it is well known (e.g. (Marler and Arora, 2010)) that such weighted sum aggregation can discover solutions located only
on a convex part of the Pareto front.

Solutions zk belonging to the outranking neighbourhood have the crowding distance equal to +M dk
cd, where =M 106 in this

paper. dk
cd estimates the distance to the neighbouring solutions in (21), sorted according to Deb et al. (2002):

∑=
−
−=

+ −d
g z g z

g g
( ) ( )

.k
cd

m

u
m j m j

m m1

1 1
max min (21)

where g g,m m
min max correspond to the minimum and maximum value of objective gm encountered during the search so far. With M set to

big positive integer, cdk ensures that the replacement performs its intended function, i.e. always preferring solutions from the
characteristic neighbourhood, whereas the diversity within RoI is maintained by favouring solutions which are more distant from
each other by adding dk

cd.
For solutions outside the characteristic neighbourhood, cdk is inversely related to C z c( , )total

k , with larger cdk assigned to solutions
with smaller C z c( , )total

k . As a result, solutions zk with smaller C z c( , )total
k and therefore smaller distance to the RoI are favoured. If a

scalarizing function is not used, euclidean distance from the nearest characteristic neighbourhood solution can be used instead. This
is particularly important if there are not enough solutions in the outranking neighbourhood to fill the population such as in early
stages of evolution or due to the nature of the optimisation problem.

Finally, solutions are selected according to descending value of cdk until the population is filled. After the specified number of

Fig. 2. Preferred region on Pareto front of the convex DTLZ2 problem (Deb et al., 2002), for
= = = = = = =c c c c c cc [1,1,1], 0.8, 1.2lower lower lower upper upper upper

1 2 3 1 2 3 .
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generations has elapsed, the final population containing solutions from the RoI is archived into set R. However, as mentioned
previously, the possibly large number of solutions and their uneven distribution pose a difficulty for the DM to make a decision,
particularly in the case of higher number of objectives. Therefore, the same filtering procedure used to fill the database is applied
again to obtain a representative subset of uniformly-distributed solutions from R.

3.2. Filtering procedure of Pareto optimal solutions

As discussed in Section 2.2, a representative subset of solutions helps the DM in the selection process and reduces the number of
solutions to be stored in a database. The procedure is performed in two steps:

1. → ∗R R using territory concept (Karahan and Köksalan, 2010),
2. →∗ ∗∗R R using the ξ -heuristic proposed in this paper.

Firstly, R is filtered using the territory concept to obtain an initial set ∗R . However, as discussed below, the distance between
solutions after filtering in the first step may still be non-uniform. Therefore, in the second step, ∗R is further refined into ∗∗R using the
evenness measure.

In the first step, only solutions zk which do not have any other solution zl in their territory are kept. The territory of zk is defined as
the region within a distance τ of zk in each objective among the regions that neither dominate nor are dominated by zk as shown in
Fig. 3.

The first step of the filtering procedure is detailed as follows. For each solution zk in R:

1. If ∗R is empty, zk is accepted into ∗R . Otherwise, proceed to the next step.
2. Objective values gm of zk are normalised as defined in (22), where g g,m

max
m
min refer to the maximum/minimum objective value g of

the m-th objective in R.

=
−
−

g
g g

g gm
m m

min

m
max

m
min (22)

3. The rectilinear distance dkl
rect of zk is calculated to each solution zl in ∗R :

∑= −
=

d g gz z| ( ) ( )|kl
rect

m

nr

m k m l
1

obj

(23)

4. A solution ∗zl with the smallest rectilinear distance ∗dkl
rect to zk is found as =∗l darg min( )

l
kl
rect .

5. The maximum scaled absolute objective difference δ between zk and ∗zl is found according to (24).

= −
= …

∗δ g gz zmax | ( ) ( )|
m nr

m k m l
1,2, , obj (24)

6. If ⩾δ τ z, k is accepted and moved into ∗R . Otherwise, zk is rejected.

Fig. 3. Illustration of the territory concept.
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The filtering procedure in the first step depends on the value of τ , effectively controlling the size of the archive population. Two
strategies for setting up the value of τ are proposed: (1) If a fixed number of solutions NR is preferred, the value of τ is set to

= +−τ N o1/( )Rnrobj 1 , with =o 0 initially. If the number of solutions obtained using the initial τ is less than N o,R is iteratively
increased until the number of filtered solutions equals NR. (2) If a minimum difference incm in objective m between any two solutions
is required, =τ incm , where incm is normalised similarly as in (22). This ensures that δ is at least incm in (24). Instead of setting up
different incn for each objective n with a different scale than objective m, an initial incm is set up for any m objective. In order to set
incn for objective ≠n m, the objective normalisation for n can be adjusted with adjn as outlined in (25). adjn is derived from (26) and
adjusts the scale of n such that τ (based on incm) corresponds to incn. The difference incn can be also based on the economic value, in
which case incn multiplied by cn corresponds to the desired difference in monetary units.

=
−

− +
g

g g
g g adjn

n n
min

n
max

n
min

n (25)

− + =τ g g adj inc·( )n
max

n
min

n n (26)

The filtering in the first step provides a good initial set ∗R . However, solutions in ∗R may be closer than τ in some dimensions as
only maximum distance is considered in (24). Also, as δ is not required to be strictly equal to τ , and indeed it can be any value larger
or equal to τ , a large distance between solutions is possible. Therefore, ∗R needs to be refined by a ξ -heuristic based on the evenness
measure (Messac and Mattson, 2004) in the second step. The evenness measure is defined as follows. For each solution zk in ∗R , two
spheres (circles in case of 2 objectives or hyper-spheres for more than 3 objectives) are constructed, as illustrated in Fig. 4. The first
sphere is the smallest sphere that can be constructed between zk and any other solution in ∗R . The diameter of this sphere is denoted
as dk

L. The second sphere is the largest sphere that can be constructed between zk and any other solution in ∗R such that no other
solution in ∗R is within the sphere. The diameter of this sphere is denoted as dk

U . The diameters dk
L and dk

U are calculated as euclidean
distances between corresponding points. The evenness measure for ∗R is then defined in (27), where σd and ̂d refer to the standard
deviation and mean, respectively, of the set of all diameters for all solutions in … ∪ …∗R d d d d d d: { , , , } { , , , }L L

k
L U U

k
U

1 2 1 2 .

̂=ξ σ
d

d

(27)

A set of solutions is exactly evenly distributed when =ξ 0, i.e. all diameters are equal. This is illustrated in Fig. 4, where >d dU L
1 1

for z1, in contrast to ≈d dU L
2 2 for z2.

The set ∗R is refined by the ξ -heuristic by replacing solutions zk from ∗R with better solutions zl from R. The ξ -heuristic replaces
solutions based on the value of absolute difference ̂−d d| |i

L and ̂−d d| |i
U . A small value of ̂ ̂− −d d d d| |,| |i

L
i
U , respectively indicates that

d d,i
L

i
U are close to an ideal value, approximated by ̂d . The ξ -heuristic is performed as follows. For each solution zk in R:

1. The nearest solution zl from ∗R is determined in terms of euclidean distance.
2. Solution zl is temporarily removed from ∗R and zk temporarily inserted to ∗R .
3. Then, diameters dk

L and dk
U are calculated as euclidean distance between zk and the corresponding points on the sphere.

4. If ̂ ̂ ̂ ̂− < − ∧ − < −d d d d d d d d| | | | | | | |k
L

i
L

k
U

i
U , solution zk is accepted into ∗R and zl is finally removed. For example, solution z3 replaces

z1 in Fig. 4. Otherwise, zk is rejected and zl is returned to ∗R .

After all solutions from R are tested, =∗∗ ∗R R .

Fig. 4. Illustration of the evenness measure for (a) 2-objective case, (b) 3-objective case.
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4. Computational results and discussion

4.1. Experimental setup

The proposed EMO framework was tested on a set of instances of real arrival and departure flights from 3 airports: Manchester
(MAN), Beijing Capital International (PEK) and Doha International Airport (DOH). The complexity of the taxiway layout ranges from
simple (DOH), medium (MAN) to complex (PEK) as can be seen in Fig. 5. The data provided specified landing/pushback times and
gates/runway exits for each flight. man instances are extracted from Nottingham ASAP instances.1 Complete data instances are
available at https://doi.org/10.5281/zenodo.1197292. The details of instances are given in Table 2. The size of instances ranges from
13 to 36 aircraft with different mix of arrivals and departures, representing a balanced set of different traffic levels.

As a simplification, all aircraft have been categorised into 3 weight categories (light, medium, heavy) and representative aircraft
is designated for each category: Learjet 35A, Airbus A320 and Airbus A333 for light, medium and heavy category, respectively. The
specifications of the representative aircraft are used for calculation of wake vortex separations, fuel burned and emissions. For each
building block, the number of speed profiles which are saved into the database was set to =N 10sp for light and medium category
aircraft. For heavy category aircraft, =N 20sp as 3 objectives are considered during the speed profile generation, in contrast to 2
objectives for light and medium category aircraft, as explained in Section 2.2.

The EMO framework is implemented using the Inspyred package for Python (Garrett, 2012). Based on initial experiments with
instance man1, the termination criteria for EMO framework was set to 50 generations and the number of individuals in population
was 50. The crossover operator was set to a two-point crossover with probability 1, the mutation operator randomly changed a single
gene with a probability 0.1. A scalarizing function described in Eq. 15 and a unit cost vector =c [0.469,0.71,0] was used for the RoI
specification. c is a vector of cost of delay, set similarly as in Weiszer et al. (2015b) and fuel price (as of 14.1.2014), all in Euro. The
unit cost boundsin this paper, without loss of generality, were set to ±c 20%: = × ×c [1.2 0.469,1.2 0.71,0]upper and

= × ×c [0.8 0.469,0.8 0.71,0]lower . After the search, the resulting solutions were filtered to obtain =N 10R solutions.

4.2. Computational results

The performance of the proposed two-phase EMO framework (P-EMOA with the filtering procedure) was compared to other
evolutionary algorithms: NSGA-II (Deb et al., 2002) without preference information, R-NSGA-II (Deb et al., 2006), MOEA/D (Zhang
and Li, 2007) and NSGA-III (Deb and Jain, 2014) with preferences. MOEA/D decomposes the optimisation problem into subproblem
based on weights. As preference in this paper is formulated using a scalarizing function and unit cost bounds, it directly applies to
MOEA/D. More specifically, we use (15) as a decomposition method with weights randomly generated within cupper and clower as
defined in Section 4.1. R-NSGA-II and NSGA-III require reference points as an input, which were generated as follows. In each
generation of R-NSGA-II and NSGA-III, the middle point and characteristic neighbours are calculated as defined in Section 3.1 and
used as reference points. The crossover and mutation settings for NSGA-II, R-NSGA-II, MOEA/D and NSGA-III were identical as for P-
EMOA. For R-NSGA-II, ∊ = 0.1 is used to control the extent of obtained solutions. Other parameters of algorithms were left unchanged
from the ones suggested in the original studies. It should be noted that although =c 03 , all algorithms consider and minimise all 3
objectives and c3 applies only to preference information.

Fig. 6 shows an example of the Pareto front for pek1 instance. As can be seen, P-EMOA focused its search on the RoI. Setting no

Fig. 5. A directed graph representation of the airport surface for (a) Doha International Airport, (b) Manchester, (c) Beijing Capital International
Airport.

1 http://www.asap.cs.nott.ac.uk/external/atr/benchmarks/data/groundMovement/MAN_OSM_Benchmark_20111029_GM.txt.
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preference for the emissions =c 03 produced a 3 dimensional front defined by the middle and characteristic neighbour points based
only on unit costs incurred by c c,1 2. Within this front, emissions are not restricted. Due to the inverse and non-linear relationship
between fuel flow and emissions per kg of fuel described in Section 2.2, solutions with higher fuel consumption due to a higher
acceleration rate and fuel flow have less emissions in total. From a visual comparison, P-EMOA resulted in a better convergence
compared to other algorithms. For NSGA-II, this is expected, as it concentrates on the whole Pareto front. MOEA/D produced inferior
solutions, although not very far from the ones generated by P-EMOA. Both R-NSGA-II and NSGA-III resulted in worse convergence
compared to P-EMOA. Also, for both MOEA/D and NSGA-III, the resulting fronts tend to have solutions not evenly distributed.

In order to fairly compare the performance of P-EMOA with NSGA-II, R-NSGA-II, MOEA/D and NSGA-III, a quantitative measure
is further calculated. As the aim of the search in this study is to find solutions corresponding to the DM’s preferences, a measure which
can take into account the utility of obtained solutions according to preferences is needed. Traditional measures such as the hy-
pervolume indicator (Zitzler and Thiele, 1998), can be unsuitable for preference-based algorithms (Li and Deb, 2016), as they do not
take into account the preference information. For example, one set of solutions can have better hypervolume value compared to

Table 2
Data instances.

Instance Aircraft Arrivals Departures Date

man1 25 13 12 12:00, 3.9.2011
man2 21 12 9 21:00, 3.9.2011
man3 24 8 16 18:00, 3.9.2011
man4 36 15 21 07:00, 3.9.2011
man5 13 4 9 9:00, 3.9.2011
man6 21 11 10 6:00, 3.9.2011
doh1 21 17 4 19:00, 16.3.2014
doh2 21 19 2 21:00, 16.3.2014
pek1 17 3 14 13:00, 9.7.2014
pek2 20 6 14 13:00, 9.7.2014

Fig. 6. Pareto fronts from an experiment for pek1 instance shown (a) in a 3-objective view, (b) g g,1 2 projection, (c) g g,1 3 projection, (d) g g,2 3
projection.
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another set, even if it is further away from the RoI. Few performance measures have been introduced in the literature recently
(Mohammadi et al., 2013; Li and Deb, 2016), designed specifically for preferences expressed as reference points. These measures
assume that the RoI is defined as solutions within a radius (set as a user parameter) from the reference point. However, this is
different to the definition of RoI used in this work, i.e. solutions within a range of objective function values, determined by the
characteristic neighbours, corresponding to cm

lower and cm
upper for objectives = …m nr1, , obj. As a results, selecting solutions within a

radius from the reference point may include solutions which are not in the RoI. Furthermore, as explained below, an improperly
selected RoI can affect search performance. Therefore, the R3 indicator (Hansen and Jaszkiewicz, 1998) is employed as it directly
incorporates weights into the evaluation procedure, which enables to define an interval of weights, similar to cm

lower and cm
upper . The R3

indicator evaluates Pareto set approximations based on a utility value of individual solutions. Let the weighted linear utility function
u λ P( , )A of the Pareto front PA be the minimum value of the scalarizing function (15) obtained across all solutions in PA:

= −
∀ ∈

∗u λ P C λ C λz z( , ) ( min {| ( , ) ( , )|}).A
P

total total
k

z Aj (28)

where ∈λ Λ is a weight vector, =λ λ λ λ( , , )1 2 3 and ∗z is the ideal point, i.e. the minimum values of objectives found during
the experiments. Note, that in this case the lower value of the utility function corresponds to lower economic costs, thus
better solution. In our case, the set Λ consists of 10,000 randomly generated vectors with the bounds

∈ × × ∈ × × =λ λ λ(0.8 0.469,1.2 0.469), (0.8 0.71,1.2 0.71), 01 2 3 , according to preferences set in Section 4.1.
Then, the IR3 indicator for two approximation sets P P,A B can be calculated as:

=
∑ −∈I P P

u λ P u λ P u λ P
( , )

[ ( , ) ( , )]/ ( , )
|Λ|R A B

λ B A B
3

Λ
(29)

Positive values of IR3 mean that PA is preferable to PB and larger values show bigger difference between the two sets.
Average IR3 indicators for P-EMOA and one of the NSGA-II, R-NSGA-II, MOEA/D, NSGA-III algorithms over 30 runs are given in

Table 3. The results presented are before applying the filtering procedure and after. The IR3 indicator is calculated before the filtering
procedure, where all solutions generated by the algorithms are considered, and after the filtering, where only =N 10R solutions from
each algorithm are compared. For comparisons with NSGA-II, R-NSGA-II and NSGA-III, all values are positive, meaning that P-EMOA
resulted in a better convergence, i.e. better solutions in terms of utility than NSGA-II, R-NSGA-II and NSGA-III for both filtered and
unfiltered solutions. For MOEA/D, most values are relatively small and positive, indicating a slightly worse performance compared to
P-EMOA.

Despite R-NSGA-II and NSGA-III use preference information to focus their search, IR3 indicator showed worse convergence
compared to P-EMOA. From algorithm point of view, it should be noted that the difference between R-NSGA-II, NSGA-III and P-
EMOA lies in their replacement procedures, which selects solutions surviving to the next generation. R-NSGA-II and NSGA-III em-
phasise solutions associated with reference points. Solutions are associated to the closest reference point in terms of distance in
objective space. In R-NSGA-II, all solutions near the reference point are associated with it and only one solution within a ∊-neigh-
bourhood is preferred (Deb et al., 2006). In NSGA-III, all solutions near the reference point are associated with it and the preferred
solutions are selected randomly (Deb and Jain, 2014). Table 4 summarises results of experiments analysing the relationship between
the size of space associated with a reference point and convergence conducted on man1 instance. The convergence is expressed by
average utility u as defined in (28) over 10 runs of the investigated algorithms. For R-NSGA-II, ∊ value was varied, whereas for NSGA-
III, the solutions associated with a reference point were ordered in terms of their distances to the reference point, and only a fraction r
of closest solutions were considered. As can be seen, the size of space associated with a reference point determined by ∊ and r affects
convergence to the RoI. For comparison, P-EMOA achieved =u 72.4613. In P-EMOA, outranking neighbourhood comprises a different
portion of objective space compared to the space associated with a reference point in R-NSGA-II and NSGA-III. For larger values of ∊
and r, the space associated with a reference point is too large and with too diverse solutions, leading to worse convergence. On the
other hand, for small values of ∊ and r the space associated with a reference point is too small and convergence is compromised due to
lost of solution diversity.

Table 3
Average IR3 indicator for P-EMOA and one of the investigated algorithms for 30 runs before applying the filtering procedure and after.

NSGA-II R-NSGA-II MOEA/D NSGA-III

Before After Before After Before After Before After

man1 0.1367 0.1692 0.0901 0.1061 −0.0024 −0.0024 0.1899 0.2028
man2 0.0929 0.1102 0.0439 0.0518 0.0398 0.0310 0.2039 0.2013
man3 0.0834 0.1076 0.1021 0.1112 0.0085 0.0030 0.1985 0.1983
man4 0.2110 0.2443 0.1419 0.1600 0.0846 0.0844 0.2501 0.2540
man5 0.0775 0.1214 0.0966 0.1163 0.1218 0.1185 0.2406 0.2429
man6 0.1630 0.2081 0.1169 0.1404 0.1347 0.1323 0.2563 0.2685
doh1 0.1161 0.1484 0.1372 0.1633 0.0067 0.0032 0.2035 0.2079
doh2 0.1103 0.1478 0.1235 0.1515 0.0079 0.0086 0.1979 0.2065
pek1 0.1470 0.1845 0.1079 0.1396 0.0934 0.0898 0.2118 0.2189
pek2 0.1351 0.1703 0.0933 0.1071 −0.0112 −0.0128 0.1960 0.2049
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To illustrate the practical relevance of the proposed approach, pek1 instance and Pareto fronts (before applying the filtering
procedure) from Fig. 6 are further analysed as a representative example. The solution with minimum g1 from all experiments has
objective values [3534, 1483, 5468]. The solution with minimum taxi time is often preferred in the previous research on the ground
movement problem (Atkin et al., 2010). Suppose, that the DM is interested in solutions with minimum Ctotal for unit costs

=c [0.469,0.71,0]. The objectives for such solutions are in Table 5. The best convergence of P-EMOA resulted in minimum values of
g g C, , total

1 2 compared to other algorithms. In comparison with the solution with minimum taxi time, the best solution in cost for P-
EMOA could save 58 kg of fuel at the expense of g g,1 3. The difference for g g,1 2 and Ctotal of P-EMOA and NSGA-II (with the highest Ctotal)
is 7 s, 14 kg and 13 EUR, respectively. Beijing Capital International Airport had 567,759 departures/landings in 2013 (ACI, 2014).
Projecting the differences in values for P-EMOA and NSGA-II for the whole year would result in 233,783 s, 467,566 kg and 434,169
EUR, respectively. The annual difference between the solution with minimum taxi time, and the best solution in cost for P-EMOA
results in 1,937,060 kg of fuel. As can be seen, even relatively small difference in this case can results in substantial amounts given the
annual traffic numbers. For objective g3, P-EMOA resulted in worse value than NSGA-II, as =c 03 . However, if the DM is interested in
lower values of g3, he/she can choose a solution [3587, 1431, 5661] with the minimum value of g3 for P-EMOA with =C 2698total ,
which is still lower than Ctotal of the best solution in cost for NSGA-II.

IR3 is not the only measure that can be applied to compare the performance of algorithms. The consideration of distribution of
solutions is also important from the DM’s perspective. The distribution of solutions in the Pareto front in terms of the evenness
measure as defined in (27) is compared in Table 6. The results for P-EMOA are given after applying the filtering procedure (the 1st
column) and before (the 2nd column). Firstly, we compare P-EMOA without the filtering procedure with other algorithms. P-EMOA
without the filtering procedure resulted in the similar evenness measure as NSGA-II, due to the similar niching mechanism by the
crowding distance in (21). On the other hand, R-NSGA-II produced more evenly distributed solutions. Allowing only one solution
within its ∊-neighbourhood in R-NSGA-II actively limits the distance between solutions in contrast to the crowding distance. MOEA/D
and NSGA-III which rely on the distribution of reference points and weights for the even distribution of solutions achieved worse
results than P-EMOA without the filtering procedure. The solutions obtained by P-EMOA without the filtering procedure give a good
starting point for the filtering procedure, after which P-EMOA achieved better evenness measure than other algorithms. The a
posteriori filtering procedure complements the a priori crowding distance niching in P-EMOA. Note, that the filtering procedure can
be used with any algorithm such as NSGA-II, R-NSGA-II, MOEA/D and NSGA-III. The filtering procedure applied to R-NSGA-II can
obtain the same of slightly better evenness measure than P-EMOA. However, only P-EMOA could obtain an even distribution and
good convergence of solutions at the same time as documented in Tables 3 and 6. Given the relatively good performance of R-NSGA-II
in the evenness measure, one could wonder if it could improve its convergence using the same mechanism as described in Section 3.1
to restrict its RoI in each generation. However, R-NSGA-II uses ∊-neighbourhood, which in combination with restricted RoI would
reduce the number of surviving solutions. More solutions found within the veto interval do not result in more solutions in RoI, as only
one solution is allowed within its ∊-neighbourhood. Therefore, a negative impact on its convergence is expected.

The filtering procedure is further analysed in Table 7. The filtering procedure selects the solutions in two steps using: (1) the
territory concept (Karahan and Köksalan, 2010), (2) ξ -heuristic as described in Section 3.2. Table 7 gives results of the each step
applied to nondominated speed profiles for MAN and PEK airports as described in Section 2.2 and solutions of the integrated ground
movement and runway scheduling problem in Section 2.4. Note, that for DOH airport a subset of speed profiles from PEK was used,
thus no search and filtering was required. As it can be seen, the ξ -heuristic improved the evenness measure by 18% on average after

Table 4
Average utility for man1 for 10 runs of algorithms.

R-NSGA-II NSGA-III

∊ u r u

0.5 84.3981 1 83.5896
0.2 83.3158 0.75 85.7992
0.1 79.4351 0.5 82.9054
0.05 73.3123 0.35 82.6533
0.01 74.0890 0.25 82.1816
0.005 76.3028 0.15 85.7848
0.001 75.3737 0 89.4186

Table 5
Objectives g g g, ,1 2 3 with minimum Ctotal for unit costs =c [0.469,0.71,0] for pek1 instance.

Algorithm g1 (s) g2 (kg) g3 (g) Ctotal (EUR)

P-EMOA 3574 1425 5837 2688
NSGA-II 3581 1439 5796 2701
R-NSGA-II 3545 1446 5812 2689
MOEA/D 3583 1423 5976 2691
NSGA-III 3564 1448 5701 2700
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the first step. An example of such filtering is shown in Fig. 7. The evenness measure ξ as defined in (27), improved from 0.2357 to
0.1315 in Fig. 7. Improved distribution has a practical implication for the DM. If the filtered solutions are not evenly distributed,
some regions of the Pareto front will be covered less. In such a case, if the solution with minimum C z c( , )total

k lies in such regions, the
nearest selected solution will be located far from the this solution, resulting in a solution with higher Ctotal, i.e. the total monetary cost
being chosen by the DM. For example, suppose the unit costs were equal = = =c c c3, 8, 0.21 2 3 , the solution with minimum C z c( , )total

k
would be =z1 [47.03, 33.48, 191.51] with economic cost =C z c( , ) 447.20total

1 in Fig. 7. Considering only filtered solutions from the
first step in Fig. 7, the solution with minimum C z c( , )total

k is =z2 [48.07, 32.99, 200.30] with =C z c( , ) 448.22total
2 . For filtered solutions

from the second step, the solution with minimum C z c( , )total
k is =z3 [47.80, 33.13, 196.29] with =C z c( , ) 447.73total

3 . As can be seen,
more even distribution of filtered points resulted in a lower Ctotal (economic costs) for the efficient solution compared to the points
obtained from the first step. Minimum Ctotal are important when selecting a subset of nondominated speed profiles for the database

Table 6
Average evenness measure for 30 runs of algorithms.

P-EMOA P-EMOA w/o filtering NSGA-II R-NSGA-II MOEA/D NSGA-III

man1 0.1983 0.5704 0.6130 0.5108 1.1168 0.9151
man2 0.2267 0.8060 0.9545 0.6436 0.9199 1.0900
man3 0.2290 0.7517 0.8532 0.5330 0.9214 1.0756
man4 0.2235 0.5857 0.6358 0.4814 0.8790 0.8032
man5 0.2437 0.7925 0.8043 0.5072 0.8863 1.0888
man6 0.2378 0.6141 0.6066 0.4927 1.1480 0.7500
doh1 0.2320 0.5087 0.5964 0.4149 1.3990 0.7091
doh2 0.2262 0.5440 0.5886 0.4740 0.8765 0.6908
pek1 0.2273 0.6089 0.6309 0.4721 1.1227 0.7067
pek2 0.2235 0.5937 0.6647 0.4777 1.4012 0.8399

Avg 0.2268 0.6376 0.6948 0.5007 1.0671 0.8669

Table 7
Average evenness measure for two steps of the filtering procedure.

Instance Step1 Step2

Speed profiles man 0.4576 0.3836
Speed profiles pek 0.5584 0.4914
man1 0.2581 0.1983
man2 0.2767 0.2267
man3 0.2831 0.2290
man4 0.2748 0.2235
man5 0.2933 0.2437
man6 0.2873 0.2378
doh1 0.2823 0.2320
doh2 0.2785 0.2262
pek1 0.2800 0.2273
pek2 0.2771 0.2235

Fig. 7. Pareto front for speed profile optimisation problem with filtered solutions.
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and economically efficient routes and schedules based on the speed profiles. For each aircraft = …i h1,2, , its set Si usually consists of
several building blocks for which speed profiles are retrieved from the database. For example, for 17 aircraft of pek1 instance 80
building blocks were needed. If we assume, that for each building block a similar difference − =C Cz c z c( , ) ( , ) 0.49total total

2 3 is between
evenly distributed solutions and less evenly distributed ones, then the difference is 39.2 EUR in total. Again, for a yearly traffic of
567,759 departures/landings in 2013 (ACI, 2014) for Beijing Capital International airport this would result in 1,309,185 EUR dif-
ference. Therefore, any economic cost difference between the selected and efficient solution quickly adds up, emphasising the im-
portance of even distribution.

5. Conclusion

In this paper, a multi-objective evolutionary optimisation framework with preferences and filtering procedure is proposed for the
integrated optimisation problem. This problem combines airport ground movement and runway scheduling problem. The proposed
approach was tested on data from major international hub airports. Two challenging tasks were addressed by the proposed evolu-
tionary framework: (1) ability to handle approximate or uncertain preferences expressed as an interval of the economic value for a
unit of each objective; (2) finding uniform distribution of solutions on the Pareto front.

To tackle the first challenge, a newly designed crowding distance within the replacement procedure of the evolutionary algorithm
takes into account unit cost range for taxi delay and fuel consumption, to control the extent of the RoI. Efficient control of the extent
of the RoI during the evolution successfully improved the convergence of the algorithm. Such improvement has a practical relevance,
as better solutions in terms of total time, fuel consumption and emissions can be discovered. The computational results illustrated the
scale of the potential savings compared to other baseline algorithms.

The second challenge was tackled by the proposed filtering procedure which was applied to select a uniformly distributed subset
of speed profiles to be stored in the database and solutions from the RoI to be presented to the DM. Experiments highlighted the
importance of having evenly distributed solutions in terms of the saved costs.

The computational experiments suggest that airports could benefit from adoption of the proposed approach for decision support.
For the future research, the proposed a posteriori filtering procedure could be embedded within EMO to select evenly distributed

solutions during evolution. Also, the idea of including uncertainty into preference information in a systematic manner deserves more
attention. As an example, the uncertainty could be expressed in terms of fuzzy values. Finally, finding not only optimal but also robust
solutions (robust against deviation in taxi time, departure and arrival time) is of high importance when dealing with a real-world
problem like airport operations. To this aim, elements of robust optimisation could be included within the search algorithm.
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Appendix A. Notation

See Table 8.

Table 8
Notation.

Description

g1 total time objective Nsp number of speed profiles
g2 fuel consumption objective Ctotal scalarizing function

g3 total emission objective zk solution vector
H Set of all aircraft c vector of unit costs cm
h The number of all aircraft m n, objective index
A Set of arriving aircraft nrobj number of objectives

D Set of departing aircraft c vector of the most probable unit costs cm
i j e, , Aircraft index c c,m

upper
m
lower upper/lower bound of unit cost cm

yi speed profile of aircraft i zC middle point
qi route of aircraft i za

B characteristic neighbour

xi pushback time of aircraft i a characteristic neighbour index
acc acceleration rate v v,m

min
m
max minimum and maximum bounds of objective m

ti
base baseline departure time cB boundary unit cost vector

(continued on next page)
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weight aircraft weight τ territory distance
μ rolling resistance coefficient g g,m

max
m
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ϕ y( )p i fuel flow in phase p of yi gm normalised value of the m-th objective

EI ϕ y( ( ))pp
p i amount of pollutant for each kg of burned fuel for pp given ϕ y( )p i dkl

rect rectilinear distance between solutions k and l

pp pollutant δ The maximum scaled absolute objective difference
Si Set of building blocks for the route of aircraft i NR preferred number of solutions in R

ttaxi total taxi time o territory adjustment

f taxi total taxi fuel consumption incn preferred minimum difference in objective n

εtaxi total taxi emission incm normalised incn

ti s, taxi time for building block s of aircraft i adjn adjustment for objective n

fi s, fuel consumption for building block s of aircraft i d d,k
L

k
U diameters of the smallest/largest sphere for solution k

εi s
pp
, emissions of pp for building block s of aircraft i ξ evenness measure

W wake vortex separation function σd standard deviation of diameters
wi weight category of aircraft i ̂d mean of diameters

ti
r landing/take-off time for aircraft i ∊ extent of obtained solutions for R-NSGA-II

ti
d arrival time at the runway holding point for aircraft i u utility function

ti
w waiting time for aircraft i λ weight vector

ϕwi
idle idle fuel flow for wi Λ set of weight vectors

trwy total runway delay P P,A B Pareto fronts
f rwy total runway fuel consumption ∗z ideal point
εrwy total runway emission r fraction of solutions for NSGA-III
k l, solution index gacc gravitational acceleration
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