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Abstract

Many-objective optimisation poses great challenges to evolutionary algorithms. To

start with, the ineffectiveness of the Pareto dominance relation, which is the most

important criterion in multi-objective optimisation, results in the underperformance

of traditional Pareto-based algorithms. Also, the aggravation of the conflict between

proximity and diversity, along with increasing time or space requirement as well as

parameter sensitivity, has become key barriers to the design of effective many-objective

optimisation algorithms. Furthermore, the infeasibility of solutions’ direct observation

can lead to serious difficulties in algorithms’ performance investigation and comparison.

In this thesis, we address these challenges, aiming to make evolutionary algorithms

as effective in many-objective optimisation as in two- or three-objective optimisation.

First, we significantly enhance Pareto-based algorithms to make them suitable for

many-objective optimisation by placing individuals with poor proximity into crowded

regions so that these individuals can have a better chance to be eliminated. Second,

we propose a grid-based evolutionary algorithm which explores the potential of the

grid to deal with many-objective optimisation problems. Third, we present a bi-goal

evolution framework that converts many objectives of a given problem into two ob-

jectives regarding proximity and diversity, thus creating an optimisation problem in

which the objectives are the goals of the search process itself. Fourth, we propose a

comprehensive performance indicator to compare evolutionary algorithms in optimi-

sation problems with various Pareto front shapes and any objective dimensionality.

Finally, we construct a test problem to aid the visual investigation of evolutionary

search, with its Pareto optimal solutions in a two-dimensional decision space having

similar distribution to their images in a higher-dimensional objective space.

The work reported in this thesis is the outcome of innovative attempts at addressing

some of the most challenging problems in evolutionary many-objective optimisation.

This research has not only made some of the existing approaches, such as Pareto-

based or grid-based algorithms that were traditionally regarded as unsuitable, now

effective for many-objective optimisation, but also pushed other important boundaries

with novel ideas including bi-goal evolution, a comprehensive performance indicator
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and a test problem for visual investigation. All the proposed algorithms have been

systematically evaluated against existing state of the arts, and some of these algorithms

have already been taken up by researchers and practitioners in the field.
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Zhang, Ovidiu Pârvu, Kang Wang, and Zuofeng Zhang. I am also grateful to the fol-

lowing people or groups for providing their experimental data or opening their source

codes for my research: Prof. Hisao Ishibuchi, Dr. Markus Wagner, Prof. Gary G. Yen,

Prof. Kalyanmoy Deb, Prof. Qingfu Zhang, Dr. Tsung-Che Chiang, Dr. Evan J. Hughes,

PISA, Jmetal, and OTL.

Further thank-yous are offered to my colleagues and friends from the Centre for

Intelligent Data Analysis for the pleasant and enjoyable working atmosphere: Liang

Hu, Chuang Wang, Dr. Djibril Kaba, Dr. Valeria Bo, Neda Trifonova, Izaz Rahman,

Mohsina Ferdous, Dr. Emma Haddi, Dr. Zujian Wu, Dr. Yuanxi Li, Dr. Haitao Duan,

Dr. Qian Gao, Dr. Ali Tarhini, Dr. Ana Salazar-Gonzalez. In addition, a special thank-

5



you goes to Ela Heaney for her kind help with everything at Brunel.

I would like to express my warmest thanks to my parents and my wife. My par-

ents have always respected my choices and given me unconditional love, support and

encouragement through all my life. My wife Su Guo, who had to go through difficult

time to help me fulfil my dream, is so kind, patient, loving and caring and has provided

tremendous support for my graduate study.

Finally, I would like to thank the Department of Computer Science, Brunel Univer-

sity London for funding my four-year PhD research.

6



Contents

1 Introduction 23

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Background 34

2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Evolutionary Multi-Objective Optimisation . . . . . . . . . . . . . . . . 36

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.3 Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.4 Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Many-Objective Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2 Difficulties in Many-objective Optimisation . . . . . . . . . . . . 47

2.3.3 Visualisation in Many-objective Optimisation . . . . . . . . . . . 49

2.4 Evolutionary Approaches for Many-objective Optimisation . . . . . . . . 51

2.4.1 Modified Pareto Dominance Criteria . . . . . . . . . . . . . . . . 52

2.4.2 Modified Diversity Maintenance Operations . . . . . . . . . . . . 55

2.4.3 Decomposition-based Algorithms . . . . . . . . . . . . . . . . . . 55

2.4.4 Aggregation-based Methods . . . . . . . . . . . . . . . . . . . . . 60

7



2.4.5 Indicator-based Algorithms . . . . . . . . . . . . . . . . . . . . . 61

2.4.6 Modified Recombination Operations . . . . . . . . . . . . . . . . 63

2.4.7 New Algorithm Frameworks . . . . . . . . . . . . . . . . . . . . . 64

2.4.8 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . 64

2.4.9 Preference-based Search . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.10 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Shift-based Density Estimation 70

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Integrating SDE into NSGA-II, SPEA2 and PESA-II . . . . . . . . . . . 77

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.1 NSGA-II vs NSGA-II+SDE . . . . . . . . . . . . . . . . . . . . . 80

3.4.2 SPEA2 vs SPEA2+SDE . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.3 PESA-II vs PESA-II+SDE . . . . . . . . . . . . . . . . . . . . . 83

3.4.4 Comparison among NSGA-II+SDE, SPEA2+SDE and PESA-

II+SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.5 Comparison with State-of-the-Art Algorithms . . . . . . . . . . . 91

3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 A Grid-Based Evolutionary Algorithm 101

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.1 Definitions and Concepts . . . . . . . . . . . . . . . . . . . . . . 105

4.2.2 Basic Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.3 Fitness Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.4 Mating Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.5 Environmental Selection . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8



4.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . 122

4.3.3 Study of Different Parameter Configurations . . . . . . . . . . . 131

4.3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 135

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Bi-Goal Evolution 138

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.1 Basic Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.2 Proximity Estimation . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.3 Crowding Degree Estimation . . . . . . . . . . . . . . . . . . . . 142

5.2.4 Mating Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.5 Environmental Selection . . . . . . . . . . . . . . . . . . . . . . . 145

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.2 Experimental Comparison . . . . . . . . . . . . . . . . . . . . . . 150

5.4 Further Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.4.1 Effect of the Population Size and Objective Dimensionality . . . 156

5.4.2 Effect of the Sharing Discriminator in the Sharing Function . . . 157

5.4.3 Comparison with Average Ranking Methods . . . . . . . . . . . 160

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 A Performance Indicator 164

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4 Comparison with State of the Art . . . . . . . . . . . . . . . . . . . . . . 177

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9



7 A Test Problem for Visual Investigation 185

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2 The Proposed Test Problem . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.3.1 Instance I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.3.2 Instance II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.3.3 Instance III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8 Conclusion 201

8.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Bibliography 207

10



List of Figures

3.1 Evolutionary trajectories of the convergence metric (CM) for a run of

the original NSGA-II and the modified NSGA-II without the density

estimation procedure on the 10-objective DTLZ2. . . . . . . . . . . . . . 74

3.2 An illustration of shift-based density estimation in a bi-objective min-

imisation scenario. To estimate the density of individual A, individuals

B, C, and D are shifted to B′, C′, and D′, respectively. . . . . . . . . . 75

3.3 Shift-based density estimation for four situations of an individual (A) in

the population for a minimisation MOP. . . . . . . . . . . . . . . . . . . 76

3.4 An illustration of the three density estimators in traditional and shift-

based density estimation, where individual A is to be estimated in the

population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Result comparison between NSGA-II and NSGA-II+SDE on the 10-

objective DTLZ2. The final solutions of the algorithms are shown re-

garding the two-dimensional objective space f1 and f2. . . . . . . . . . . 81

3.6 Result comparison between SPEA2 and SPEA2+SDE on the 10-objective

TSP with TSPcp = 0. The final solutions of the algorithms are shown

regarding the two-dimensional objective space f1 and f2. . . . . . . . . . 83

3.7 Result comparison between PESA-II and PESA-II+SDE on the 10-

objective DTLZ6. The final solutions of the algorithms are shown re-

garding the two-dimensional objective space f1 and f2. . . . . . . . . . . 86

3.8 The final solution set of the three algorithms on the ten-objective DTLZ3,

shown by parallel coordinates. . . . . . . . . . . . . . . . . . . . . . . . . 88

11



3.9 An illustration of the failure of the crowding distance in TDE and SDE

on a tri-objective scenario, showed by parallel coordinates. In a nondom-

inated set consisting of A(1, 1, 1), B(0, 10, 2), C(2, 0, 10) and D(10, 2, 0),

individual A performs well in terms of proximity and diversity. But A

will be assigned a poor density value in both TDE and SDE since the

crowding distance separately considers its neighbours on each objective. 90

3.10 An illustration of the inaccuracy of the grid crowding degree. D has two

very close neighbours G and H in SDE, but its grid crowding degree is

smaller than that of C which has a relatively distant neighbour F. . . . 91

3.11 The final solution set of the six algorithms on the ten-objective DTLZ7,

shown by parallel coordinates. . . . . . . . . . . . . . . . . . . . . . . . . 95

3.12 Result comparison between SPEA2+SDE and the other algorithms on

the 10-objective TSP with TSPcp = −0.2. The final solutions of the

algorithms are shown regarding the two-dimensional objective space f1

and f2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 An illustration of individuals in grid for a bi-objective scenario. . . . . . 102

4.2 Setting of grid in the kth objective. . . . . . . . . . . . . . . . . . . . . . 106

4.3 Illustration of fitness assignment. The numbers in the brackets associ-

ated with each solution correspond to GR and GCD, respectively. . . . . 110

4.4 A set of 4-objective individuals for archiving. The numbers in the brack-

ets correspond to their objective values. . . . . . . . . . . . . . . . . . . 117

4.5 An illustration of the environmental selection process. Individuals are

arranged in the order of their fitness values for observation. The framed

individuals mean that they have entered the archive set. The archive

size is set to 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 Distribution of the solution set for the 4-objective example by parallel

coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 The final solution set of the six algorithms on the ten-objective DTLZ2,

shown by parallel coordinates. . . . . . . . . . . . . . . . . . . . . . . . . 124

12



4.8 Evolutionary trajectories of IGD for the six algorithms on the ten-

objective DTLZ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.9 The final solution set of the six algorithms on DTLZ5(6,10), shown by

parallel coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.10 Evolutionary trajectories of HV for the six algorithms on the five-objective

TSP, where TSPcp = −0.2. . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.11 IGD of GrEA with different number of divisions on DTLZ2. . . . . . . . 132

4.12 The final solution set of GrEA with different divisions on the six-objective

DTLZ2, shown by parallel coordinates. . . . . . . . . . . . . . . . . . . . 133

4.13 The final solution set of GrEA with different divisions on the three-

objective DTLZ2, shown by Cartesian coordinates. . . . . . . . . . . . . 134

5.1 Evolutionary trajectories of the average convergence metric (CM) for 30

runs of the original NSGA-II (denoted as A) and the modified NSGA-II

without the diversity maintenance mechanism (denoted as A∗) on DTLZ2.139

5.2 An illustration of the conversion from the actual objective space to the

bi-goal space of proximity and crowding degree on a bi-objective min-

imisation problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 An illustration of the case that similar individuals in the objective space

may be located closely and nondominated to each other in the bi-goal

space, and its remedy. (a) The actual objective space; (b) The bi-goal

space with respect to the proximity and the original crowding degree;

(c) The bi-goal space with respect to the proximity and the modified

crowding degree. The numerical values of the individuals in these three

spaces are given in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4 The average number of solutions in all the nondominated layers under

(a) the bi-goal Pareto nondominated sorting and (b) the original Pareto

nondominated sorting, where the population size is 100, the number of

runs is 30, and the test instance is DTLZ2. . . . . . . . . . . . . . . . . 147

5.5 The final solution set of the six algorithms on the ten-objective WFG9,

shown by parallel coordinates. . . . . . . . . . . . . . . . . . . . . . . . . 152

13



5.6 Result comparison between BiGE and each of the other five algorithms

on the 15-objective TSP. The final solutions of the algorithms are shown

regarding the two-dimensional objective space f1 and f2. . . . . . . . . . 155

5.7 Normalised HV of the six algorithms with different settings of the pop-

ulation size on the 10-objective WFG9. . . . . . . . . . . . . . . . . . . . 157

5.8 Normalised HV of the six algorithms with different settings of the num-

ber of objectives on WFG9. . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.1 An example that HV prefers the knee and boundary points on the Pareto

front, where two sets of Pareto optimal solutions on DTLZ2 are obtained

by MOEA/D and IBEA. The solution set with better distribution (ob-

tained by MOEA/D) has a worse (lower) HV result, as given in Table 6.1.167

6.2 An example that the unary additive ε-indicator fails to distinguish be-

tween two approximation sets. P and Q have the same evaluation result

(ε = 2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3 An example that IGD and IGD+ fails to reflect the performance differ-

ence between approximation sets, where the reference set is constructed

by the approximation sets themselves. P and Q have the same IGD and

IGD+ evaluation results (0.884 and 0.625 respectively). . . . . . . . . . 170

6.4 An example that the dominance distance of a set of solutions to a cluster

can be smaller than the minimum of their single dominance distance to

the cluster. For three sets P1, P2, and P3 (P1 ∈ C1, P2 ∈ C2, P3 ∈

C3, P = P1 ∪ P2 ∪ P3), their dominance distance to C1, C2 and C3 is

0.707, 0.559 and 0.0, respectively, while the minimum of their single

solution’s dominance distance to C1, C2 and C3 is 0.707, 1.031 and 1.0,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5 Approximation sets of the six algorithms and their PCI result on the

modified tri-objective DTLZ1. . . . . . . . . . . . . . . . . . . . . . . . . 180

6.6 Approximation sets of the six algorithms and their PCI result on the

tri-objective DTLZ7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

14



6.7 Approximation sets of the six algorithms in the two-variable decision

space and their PCI result on the four-objective Rectangle problem,

where the Pareto optimal solutions in the decision space are similar to

their images in the objective space in the sense of Euclidean geometry. . 182

6.8 Parallel coordinate plot of approximation sets of the six algorithms and

their PCI result on the ten-objective DTLZ3. . . . . . . . . . . . . . . . 183

7.1 An illustration of a four-objective distance minimisation problem whose

Pareto optimal region is determined by the four points. . . . . . . . . . 188

7.2 An illustration of a Rectangle problem whose Pareto optimal region is

determined by the four lines. . . . . . . . . . . . . . . . . . . . . . . . . 189

7.3 The final solution set of the 15 algorithms on the Rectangle problem

where x1, x2 ∈ [−20, 120]. . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.4 The final solution set of the five implementations of MOEA/D-PBI

with different penalty parameter values on the Rectangle problem where

x1, x2 ∈ [−20, 120]. The number in the bracket denotes the penalty

parameter value of the algorithm. . . . . . . . . . . . . . . . . . . . . . . 194

7.5 The final solution set of the 15 algorithms on the Rectangle problem

where x1, x2 ∈ [−10000, 10000]. . . . . . . . . . . . . . . . . . . . . . . . 195

7.6 An illustration of the difficulty for algorithms to converge on the Rect-

angle problem. The shadows are the regions that dominate x1 and x2,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.7 The final solution set of the four algorithms on the Rectangle problem

where x1, x2 ∈ [−1012, 1012]. . . . . . . . . . . . . . . . . . . . . . . . . . 198

15



List of Tables

2.1 Performance Indicators and their Properties . . . . . . . . . . . . . . . . 42

2.2 Difficulties in many-objective optimisation and their scope of the effect in

EMO, including algorithm design, algorithm assessment (investigation)

or/and multi-criteria decision making (MCDM). . . . . . . . . . . . . . 50

3.1 Properties of test problems and parameter setting in PESA-II, PESA-

II+SDE, and ε-MOEA. The settings of div and ε correspond to the

different numbers of objectives of a problem. m and n denote the number

of objectives and decision variables, respectively . . . . . . . . . . . . . . 79

3.2 Performance comparison between NSGA-II and NSGA-II+SDE regard-

ing the mean and standard deviation (SD) values on the DTLZ and TSP

test suites, where IGD was used for DTLZ and HV for TSP. The better

result regarding the mean for each problem instance is highlighted in

boldface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Performance comparison between SPEA2 and SPEA2+SDE regarding

the mean and standard deviation (SD) values on the DTLZ and TSP

test suites, where IGD was used for DTLZ and HV for TSP. The better

result regarding the mean for each problem instance is highlighted in

boldface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

16



3.4 Performance comparison between PESA-II and PESA-II+SDE regard-

ing the mean and standard deviation (SD) values on the DTLZ and TSP

test suites, where IGD was used for DTLZ and HV for TSP. The better

result regarding the mean for each problem instance is highlighted in

boldface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Performance comparison (mean and SD) of NSGA-II+SDE, SPEA2+SDE,

and PESA-II+SDE on the DTLZ and TSP test suites, where IGD was

used for DTLZ and HV for TSP. The best result regarding the mean

value among the three algorithms for each problem instance is high-

lighted in boldface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 IGD results (mean and SD) of the six algorithms on the DTLZ problems.

The best result regarding the mean IGD value among the algorithms for

each problem instance is highlighted in boldface . . . . . . . . . . . . . . 93

3.7 HV results (mean and SD) of the six algorithms on the TSP problems.

The best result regarding the mean HV value among the algorithms for

each problem instance is highlighted in boldface . . . . . . . . . . . . . . 96

4.1 Settings of the test problems . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Parameter settings in GrEA and ε-MOEA, where m is the number of

objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 IGD results of the six algorithms on DTLZ2, DTLZ4, DTLZ5, and DTLZ7123

4.4 IGD results of the six algorithms on DTLZ1, DTLZ3, and DTLZ6 . . . 126

4.5 IGD results of the six algorithms on DTLZ5(I,m), where m = 10. . . . 128

4.6 HV results of the six algorithms on the multi-objective TSP. . . . . . . . 129

4.7 Performance of GrEA with different number of divisions on the six-

objective DTLZ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1 Individual values in the three spaces for the example of Figure 5.3. . . . 144

5.2 Properties of test problems in comparative studies . . . . . . . . . . . . 148

17



5.3 Normalised HV results (mean and SD) of the six algorithms on the

WFG problem. The best and the second mean among the algorithms

for each problem instance is shown with dark and light grey background,

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4 Normalised HV results (mean and SD) of the six algorithms on the

Knapsack problem. The best and the second mean among the algorithms

for each problem instance is shown with dark and light grey background,

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.5 Normalised HV results (mean and SD) of the six algorithms on the

TSP problem. The best and the second mean among the algorithms for

each problem instance is shown with dark and light grey background,

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6 Normalised HV results (mean and SD) of the six algorithms on the

water problem. The best and the second mean among the algorithms

for each problem instance is shown with dark and light grey background,

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.7 Normalised HV of BiGE with different settings of the sharing discrimi-

nator on the 10-objective WFG9. . . . . . . . . . . . . . . . . . . . . . . 159

5.8 Normalised HV of BiGE with the settings of the sharing discriminator

that only discourage the individual with worse proximity on the 10-

objective WFG9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.9 Normalised HV results (mean and SD) of the four algorithms on all the

34 test instances. The best and the second mean among the algorithms

for each problem instance is shown with dark and light grey background,

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1 HV results of the two sets in Figure 6.1 under different reference points.

The range of DTLZ2’s Pareto front is [0, 1] for all objectives. . . . . . . 168

6.2 Properties of some performance indicators . . . . . . . . . . . . . . . . . 178

18



6.3 Evaluation results of PCI and the peer indicator (HV, ε-indicator, or

IGD+) on the approximation set instances in Figures 6.1–6.3. The ref-

erence point 1.1 is used in the HV calculation of Figure 6.1’s instance.

A better result is highlighted in boldface. . . . . . . . . . . . . . . . . . 179

7.1 The parameter setting and the source of the tested algorithms . . . . . . 191

19



Nomenclature

Acronyms

ASF achievement scalarizing function

CM convergence measure

DM decision-maker

DTLZ Deb, Thiele, Laumanns and Zitzler test suite

EaMO evolutionary many-objective optimisation

EMO evolutionary multi-objective optimisation

GCD grid crowding distance

GCPD grid coordinate point distance

GR grid ranking

HV hypervolume indicator

IGD inverted generational distance

MCDM multi-criteria decision making

MOP multi-objective optimisation problem

MaOP many-objective optimisation problem

PCA principle component analysis

PCI performance comparison indicator

ROI region of interest

SBX simulated binary crossover

SOP single-objective optimisation problem

TSP travelling salesman problem

UF unconstrained function

WFG walking fish group test suite

ZDT Zitzler, Deb and Thiele test suite

20



Algorithms

AGE-II approximation-guided evolutionary algorithm

AR average ranking

AR+Grid average ranking combined with grid

BiGE bi-goal evolution

DMO diversity management operator

EA evolutionary algorithm

ε-MOEA ε-dominance based MOEA

FD-NSGA-II fuzzy dominance-based NSGA-II

GrEA grid-based evolutionary algorithm

HypE hypervolume estimation algorithm

IBEA indicator based evolutionary algorithm

MOEA multi-objective evolutionary algorithm

MOEA/D multi-objective evolutionary algorithm based on decomposition

MOEA/D+PBI MOEA/D with penalty boundary intersection function

MOEA/D+TCH MOEA/D with Tchebycheff function

MSOPS multiple single objective Pareto sampling

NSGA-II non-dominated sorting genetic algorithm II

NSGA-II+SDE NSGA-II with shift-based density estimation

NSGA-III non-dominated sorting genetic algorithm III

PESA-II Pareto envelope-based selection algorithm II

PESA-II+SDE PESA-II with shift-based density estimation

POGA preference order based genetic algorithm

SDE shift-based density estimation

SMS-EMOA S-metric selection based EMO algorithm

SPEA2 strength Pareto evolutionary algorithm 2

SPEA2+SDE SPEA2 with shift-based density estimation

21



Symbols

div number of divisions in the grid

fi the ith objective value

Gi grid coordinate in the ith objective

m number of objectives

n number of decision variables

N population size

P evolutionary population (solution set)

pc crossover probability

pm mutation probability

Q archive set

Rn field of real numbers

TSPcp correlation parameter in TSP

xi the ith decision variable

ηc distribution index in SBX crossover

ηm distribution index in polynomial mutation

≺ to Pareto dominate

22



Chapter 1

Introduction

An individual would like to maximise the chance of being healthy and wealthy while

still having fun and time for family and friends. A software engineer would be inter-

ested in finding the cheapest test suite while achieving full coverage (e.g., statement

coverage, branch coverage and decision coverage). When prescribing radiotherapy to

a cancer patient, a doctor would have to balance the attack on tumour, potential im-

pact on healthy organs, and the overall condition of the patient. These multi-objective

optimisation problems (MOPs) can be seen in various fields, sharing the same issue of

pursuing several, often conflicting, objectives at the same time.

In MOPs, due to the conflicting nature of objectives, there is usually no single

optimal solution but rather a set of alternative solutions, known as Pareto optimal

solutions. These solutions are optimal in the sense that there are no other solutions in

the search space that are superior for all objectives considered.

Evolutionary algorithms (EAs) are a class of stochastic optimisation methods that

simulate the process of natural evolution. EAs have been recognised to be well suited

for MOPs due to its characteristics of 1) low requirements on the problem properties, 2)

being capable of handling large and highly complex search spaces, and particularly 3)

population-based property which can search for a set of solutions in a single optimisa-

tion run, each representing a particular performance trade-off amongst the objectives.

As a subcategory of MOPs, many-objective optimisation problems (MaOPs) refer

to an optimisation problem having four or more objectives. Over the last decade, many-
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objective optimisation has been gaining rapidly increasing attention in the evolutionary

computation community, driven by a wide variety of real-world applications (see [168]).

However, there exists great difference between many-objective optimisation and

two- or three-objective optimisation. Major challenges lie in the way of the use of EAs

to deal with MaOPs. In this thesis, we present a number of approaches to address these

challenges, paving the way for the effective use of EAs in many-objective optimisation.

In this chapter, we first explain the motivation that led to the undertaking of this

research, then we outline the main contributions of our work and the overall structure

of this thesis, and finally we detail the publications which have resulted from the thesis.

1.1 Motivation

Since the early 90s, evolutionary multi-objective optimisation (EMO) algorithms1 have

demonstrated their effectiveness in solving various two- or three-objective optimisation

problems. However, in practice, it is not uncommon to face an optimisation problem

with four or more objectives (sometimes up to 10 or 15 objectives). Thus, it is not

surprising that handling MaOPs has been one of the main research activities in the

EMO area during the past few years.

Many-objective optimisation poses a number of challenges to EMO algorithms.

Most notably, the Pareto dominance relation, which is the most important criterion

in multi-objective optimisation, loses its effectiveness to differentiate individuals (solu-

tions) in many-objective optimisation [74, 50, 67]. This makes EMO algorithms that

work under the principle of Pareto dominance fail to provide selection pressure towards

the Pareto front (i.e., Pareto optimal solutions in the objective space) [216, 256, 128].

In these algorithms, the density-based selection criterion will play a leading role in

determining the survival of individuals in the evolutionary process, thus resulting in

the final individuals distributed widely over the objective space but distant from the

desired Pareto front. In fact, some studies have shown that a random search algorithm

may even achieve better results than Pareto-based algorithms in problems with around

10 objectives [216, 152, 164].

1EAs which are used in multi-objective optimisation are usually called EMO algorithms.
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In multi-objective optimisation, an EMO algorithm pursues two basic but often

conflicting goals, proximity (also called convergence in some literature) and diversity.

Such conflict has a detrimental impact on an algorithm’s optimisation process and

is particularly aggravated in many-objective optimisation [216, 1]. The algorithms

capable of achieving a good balance between proximity and diversity in two- or three-

objective problems could easily fail in many-objective optimisation [256, 138, 88]. In

addition, a high objective dimensionality can also give rise to difficulty for the crowding

evaluation [162, 52], parameter settings [216, 88, 180], and data structure used in EMO

algorithms [45, 256]. All of these bring a big challenge for the design of new algorithms

in many-objective optimisation.

Performance assessment is an important issue in evolutionary many-objective op-

timisation. However, many performance indicators, which are designed in principle

for any number of objectives, are invalid or infeasible in practice to be used in many-

objective optimisation [174, 254]. For example, indicators which is based on Pareto

dominance relation typically return undifferentiated results of two solution sets with

high dimensions. Indicators whose time or space requirement exponentially increases

with the number of objectives may not be suitable for many-objective optimisation.

Indicators which require a substitution of the Pareto front (as a reference set for com-

parison) could become inaccurate since it is very hard to properly represent a high-

dimensional Pareto front.

Finally, a visual observation of the population becomes difficult in many-objective

optimisation. Even though some effort has been made along this line (see [259, 249]),

there is still a lack of simple, intuitive way to visualise solutions in the objective space

with four or more objectives. This directly affects the algorithm analysis and investi-

gation and also subsequent decision-making process.

Overall, the above challenges cause great difficulties in the use of classic Pareto-

based algorithms in many-objective optimisation, in the design of new algorithms for

many-objective problems, in the assessment of solution sets obtained by many-objective

optimisers, and in the visualisation of solutions in a high-dimensional space. All of

these suggest the pressing need of new methodologies for evolutionary many-objective
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optimisation.

With these in mind, this thesis explores a number of innovative approaches to ad-

dress these challenges in evolutionary many-objective optimisation, including a general

enhancement of Pareto-based algorithms to make them suitable for many-objective op-

timisation (Chapter 3), an evolutionary algorithm which exploits the potential of the

grid in many-objective optimisation (Chapter 4), an optimisation framework for many-

objective problems (Chapter 5), a performance indicator for assessing solution sets with

any number of objectives (Chapter 6), and a test problem for visual investigation of

high-dimensional evolutionary search (Chapter 7). In short, our aim is to make EAs

be considered as an effective tool in many-objective optimisation as in low-dimensional

multi-objective (i.e., two- or three-objective) optimisation.

1.2 Contributions

The main contributions of the thesis are listed as follows.

• We significantly enhance Pareto-based algorithms by introducing a shift-based

density estimation (SDE) to make them suitable for many-objective problems

(Chapter 3). Unlike most of the current work which typically relaxes the Pareto

dominance relation to make more individuals comparable, SDE works on the den-

sity estimation operation in Pareto-based algorithms. In view of the preference

of density estimators for individuals in sparse regions, SDE “puts” individuals

with poor proximity into crowded regions. This way, these poorly-converged in-

dividuals will be assigned a high density value, thus having a better chance to be

eliminated in the diversity maintenance process of Pareto-based algorithms. The

implementation of SDE is very simple, with negligible computational cost, and

it can be applied to any Pareto-based algorithm without the need of additional

parameters.

The application of SDE in three popular Pareto-based algorithms has shown its

high effectiveness in many-objective optimisation, especially when working with

an accurate density estimator. Furthermore, from a comprehensive comparison
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with five state-of-the-art algorithms, SDE has been demonstrated to be very com-

petitive in finding a well-converged and well-distributed solution set on various

many-objective optimisation problems with up to 10 objectives2.

• We propose a novel algorithm, GrEA, to deal with many-objective optimisation

problems (Chapter 4). GrEA explores the potential of the use of the grid in

many-objective optimisation. Specifically, a set of grid-based criteria are intro-

duced to guide the search towards the optimal front, and a grid-based fitness

adjustment strategy is proposed to maintain an extensive and uniform distribu-

tion among individuals. In particular, to measure the crowding of individuals,

GrEA considers the distribution of their neighbours in a set of hyperboxes whose

size increases with the number of objectives, thus providing an accurate evalua-

tion of individuals’ crowding degree.

From systematic experiments on 52 test instances with many objectives, GrEA

has demonstrated its effectiveness in balancing proximity and diversity. Moreover,

an appealing property of the algorithm is that its computational cost is almost

independent on the number of hyperboxes in the grid and only increases linearly

with the number of objectives. This is against the commonly accepted view [45]

that grid-based approaches are not suitable in many-objective optimisation given

their operation relying on the hyperboxes that exponentially grow in size with

the number of objectives.

• We propose a bi-goal evolution (BiGE) framework for addressing many-objective

optimisation problems (Chapter 5). Inspired by two observations: 1) the con-

flict between proximity and diversity is aggravated with the increase of objective

dimensionality and 2) the Pareto dominance loses its effectiveness for a high-

dimensional space but works well on a low-dimensional space, BiGE converts a

given many-objective optimisation problem into a bi-goal (objective) optimisa-

tion problem regarding proximity and diversity, and then handles it using the

Pareto dominance relation in this bi-goal domain.

2In several recent studies [167, 283], SDE has been found to be promising even for 20 objectives.
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Systematic experiments are carried out to compare BiGE with five state-of-the-

art algorithms on three groups of continuous and combinatorial benchmark suites

with 5 to 15 objectives as well as on a real-world problem. In contrast to its com-

petitors which work well on only a fraction of the test problems, BiGE can achieve

a good balance between individuals’ proximity and diversity on the problems with

various properties.

• We propose a novel performance comparison indicator (PCI) to assess solution

sets obtained by stochastic search algorithms in multi-objective optimisation

(Chapter 6). In doing so, we also make a detailed analysis of the difficulties

of popular performance indicators encountering in many-objective optimisation.

PCI provides a comprehensive assessment of solution sets’ proximity and diver-

sity, and it can be used in problems with various Pareto front shapes and any

objective dimensionality. In contrast to current state of the art, PCI is par-

ticularly practical in many-objective optimisation, given its characteristics of 1)

no need for a specified reference set, 2) quadratic time complexity, 3) providing

higher selection pressure than Pareto dominance but still being compliant with

the latter, and 4) no requirement of parameter setting in the assessment.

• Finally, we construct a test problem (called Rectangle problem) to aid the visual

investigation of multi-objective search (Chapter 7). Key features of the Rectangle

problem are that the Pareto optimal solutions 1) lie in a rectangle in the two-

variable decision space and 2) are similar to their images in the four-dimensional

objective space (in the sense of Euclidean geometry). In this case, it is capable

of visually examining the behaviour of objective vectors in terms of both prox-

imity and diversity, by observing their closeness to the optimal rectangle and

their distribution in the rectangle, respectively, in the decision space. Fifteen

well-established algorithms are investigated on the Rectangle problem. Inter-

estingly, most state-of-the-art algorithms (including those designed specially for

many-objective optimisation) struggle on this relatively low-dimensional problem

(having only 4 objectives). This indicates that the Rectangle problem can also be
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used as a challenging benchmark function to test algorithms’ ability in balancing

proximity and diversity.

Altogether, these five contributions represent a significant advance in evolutionary

many-objective optimisation, which should provide considerable help for researchers

and practitioners in both algorithm development and problem solving. When design-

ing a Pareto-based algorithm, researchers only need to focus on tackling two- or three-

objective problems; for an optimisation problem with many objectives, SDE (Chap-

ter 3) could be easily used. When working out a many-objective algorithm, the de-

veloper can use the Rectangle problem (Chapter 7) to investigate the behaviour of

the algorithm or/and the PCI indicator (Chapter 6) to assess the performance of the

algorithm. When dealing with a many-objective problem in hand, the user can di-

rectly adopt the algorithm GrEA (Chapter 4) or design new proximity and diversity

estimation methods under the bi-goal evolution framework (Chapter 5).

1.3 Thesis Structure

This thesis is organised as follows.

Chapter 2 provides the necessary background material for the thesis. Beginning

with the basic concepts in multi-objective optimisation, the chapter introduces key

parts of EMO, including algorithm components, mainstream methods, test problems,

and performance indicators. Then, general issues on many-objective optimisation are

introduced, with a particular focus on the difficulties in many-objective optimisation

and visualisation approaches in a high-dimensional space. Finally, various evolutionary

many-objective optimisation techniques are described from different perspectives of

addressing MaOPs.

Starting by the motivation of the work, Chapter 3 introduces a general enhancement

of density estimation in Pareto-based algorithms to make them suitable for many-

objective problems. SDE is integrated into three popular Pareto-based algorithms,

NSGA-II, SPEA2 and PESA-II. Three groups of experiments are carried out to sep-

arately investigate 1) whether SDE improves the performance of all the three Pareto-
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based algorithms, 2) among the density estimators in NSGA-II, SPEA2 and PESA-II

which one is most suitable for SDE, and 3) how Pareto-based algorithms, when inte-

grated with SDE, compare with other state-of-the-art algorithms designed specially for

MaOPs.

Chapter 4 begins with the motivation of the use of grid in many-objective optimi-

sation. Then, three grid-based fitness criteria are introduced, followed by their use in

the mating selection and environmental selection processes. Finally, the performance

of GrEA is empirically verified in sequence by the comparative study, parameter inves-

tigation, and algorithm analysis.

In Chapter 5, we propose a bi-goal evolution framework for many-objective prob-

lems. We first give the motivation of this work and then detail the BiGE framework and

its implementation. This implementation includes four parts: proximity estimation, di-

versity estimation, mating selection, and environmental selection. Next, experimental

results of BiGE in comparison with five best-in-class algorithms are shown, and fi-

nally a further investigation is provided to verify the proposed framework as well as its

implementation.

The above three chapters present three approaches to deal with many-objective op-

timisation problems. In Chapter 6, we suggest a performance indicator to assess many-

objective optimisation approaches. We first review related works in multi-objective

optimisation and analyse their difficulties in many-objective optimisation. Then, we

detail the proposed indicator. Finally, two classes of comparative studies are conducted

to analytically and empirically verify PCI, respectively.

Chapter 7 focuses on another important issue in many-objective optimisation: vi-

sual investigation of multi-objective search. There, we present a test problem whose

Pareto optimal solutions in the 2D search space have a similar distribution to their im-

ages in the 4D objective space. The proposed problem is tested by 15 EMO algorithms,

with three instances of the problem to provide different challenges for these algorithms

in balancing proximity and diversity.

In Chapter 8, we summarise the work presented in this thesis and look at how this

has contributed to the field of evolutionary many-objective optimisation. Furthermore,
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we suggest several directions of future research which have arisen during the course of

this thesis.

1.4 Publications

The work resulting from this thesis has been published in the following papers:

• M. Li, S. Yang, and X. Liu. Bi-goal evolution for many-objective optimization

problems. Artificial Intelligence, 228: 45–65, 2015.

(Resulting from Chapter 5)

• M. Li, S. Yang and X. Liu. A performance comparison indicator for Pareto

front approximations in many-objective optimization. In Proceedings of the 17th

Annual Conference on Genetic and evolutionary computation (GECCO), 703–

710, 2015, ACM.

(Resulting from Chapter 6)

• M. Li, S. Yang, and X. Liu. Shift-based density estimation for Pareto-based

algorithms in many-objective optimization. IEEE Transactions on Evolutionary

Computation, 18(3): 348–365, 2014.

(Resulting from Chapter 3)

• M. Li, S. Yang, and X. Liu. Diversity comparison of Pareto front approx-

imations in many-objective optimization. IEEE Transactions on Cybernetics,

44(12): 2568–2584, 2014.

(Resulting from Chapters 2 and 6)

• M. Li, S. Yang, and X. Liu. A test problem for visual investigation of high-

dimensional multi-objective search. In Proceedings of IEEE Congress on Evo-

lutionary Computation (CEC), 2140–2147, 2014, IEEE. (Best Student Paper

Award)

(Resulting from Chapter 7)
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• S. Yang, M. Li, X. Liu, and J. Zheng. A grid-based evolutionary algorithm for

many-objective optimization. IEEE Transactions on Evolutionary Computation,
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(Resulting from Chapter 4)
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Springer.

(Resulting from Chapter 2)
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research, can be seen as indirect results of the research discussed in this thesis, as listed
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objective optimisation or applied multi- or many-objective evolutionary approaches
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• M. Li, S. Yang, and X. Liu. Pareto or non-Pareto: Bi-criterion evolution in multi-

objective optimization. IEEE Transactions on Evolutionary Computation, 2015,

in press.
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Chapter 2

Background

This chapter provides a review of evolutionary multi- and many-objective optimisation.

The literature on this particular topic is vast and we will highlight the most relevant

to this study.

This chapter is organised as follows. In Section 2.1, we present basic concepts in

multi-objective optimisation, and this is followed by the description of key parts in EMO

in Section 2.2. Section 2.3 introduces many-objective optimisation, with particular

focuses on the difficulties of EMO algorithms in many-objective optimisation and the

visualisation of solutions in a high-dimensional space. Finally, Section 2.4 provides a

thorough review of evolutionary approaches for many-objective optimisation.

2.1 Basic Concepts

In general, a multi-objective optimisation problem (MOP) includes a set of n decision

variables, a set of m objective functions, a set of J inequality constraints, and a set of

K equality constraints. Without loss of generality, a minimisation MOP is defined as
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the following form:

Minimize fj(x), j = 1, 2, ...,m

Subject to gj(x) ≤ 0, j = 1, 2, ..., J

hk(x) = 0, k = 1, 2, ...,K

Li ≤ xi ≤ Ui, i = 1, 2, ..., n

(2.1)

where x is a vector of n decision variables: x = (x1, x2, ..., xn), x ∈ Rn. The last

constraint set is called variable bounds, restricting each decision variable xi within the

range of [Li, Ui]. In an MOP, feasible solutions (denoted as x ∈ Rnf ) refer to those

solutions which satisfy all inequality and equality constraints. In the following, we

introduce some underlying concepts in multi-objective optimisation.

Definition 2.1.1 (Pareto dominance). For two decision variables x and y, x is said

to Pareto dominate y (denoted as x ≺ y), if and only if

∀i ∈ (1, 2, ...,m) : fi(x) ≤ fi(y) ∧

∃j ∈ (1, 2, ...,m) : fj(x) < fj(y)
(2.2)

Pareto dominance reflects the weakest assumption about the preference of the deci-

sion maker; a solution is always preferable to another solution if the former dominates

the latter. Accordingly, those solutions that are not dominated by any other solution

are denoted as Pareto optimal. Pareto optimal solutions are characterised by the fact

that improving in any one objective means worsening at least one other objective. The

set of Pareto optimal solutions in the decision space is denoted as the Pareto set, and

the corresponding set of objective vectors is denoted as the Pareto front. Next, we give

the formal definition of these concepts.

Definition 2.1.2 (Pareto optimality). A solution x ∈ Rnf is said to be Pareto optimal

if and only if @y ∈ Rnf , y ≺ x.

Definition 2.1.3 (Pareto set). The Pareto set (PS) is defined as the set of all Pareto

optimal solutions, namely, PS = {x ∈ Rnf |@y ∈ Rnf ,y ≺ x}.
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Definition 2.1.4 (Pareto front). The Pareto front (PF) is defined as the set of all ob-

jective vectors corresponding to the solutions in PS, namely, PF = {(f1(x), ..., fm(x)) :

x ∈ PS}.

Note that the size of the Pareto optimal solutions might be infinite and it is often

infeasible to obtain the whole Pareto front. In practice, we want to obtain an approxi-

mation of the Pareto front that contains as much information as possible of the Pareto

front, so the decision maker can either choose one element of the approximation as the

final solution, or use this information to specify preferences that help search and find

a satisfied solution.

2.2 Evolutionary Multi-Objective Optimisation

This section introduces some key parts in EMO, including algorithm components (Sec-

tion 2.2.1), mainstream EMO methods (Section 2.2.2), performance indicators (Sec-

tion 2.2.3), and test problems (Section 2.2.4).

2.2.1 Introduction

Evolutionary algorithms (EAs) stand for a class of stochastic search and optimisation

methods that mimic the process of natural evolution. Over the past two decades, there

has been significant interest in the use of EAs to solve MOPs (usually called evolu-

tionary multi-objective optimisation (EMO) algorithms or multi-objective optimisation

algorithms (MOEAs)), with success in fields as diverse as engineering, physics, chem-

istry, biology, economics, marketing, operations research, and social sciences [50, 41,

40, 285, 209]. This can be attributed to two major advantages of EAs. One is that they

have low requirements on the problem characteristics and are capable of handling large

and highly complex search spaces. The other is that their population-based search can

achieve an approximation of the problem’s Pareto front, with each solution representing

a particular trade-off amongst the objectives.

The goal of approximating the Pareto front is itself multi-objective. In general, an

EMO algorithm, in the absence of any further information provided by the decision
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maker, pursues two ultimate goals with respect to its solution set – minimising the

distance to the Pareto front (i.e., proximity or convergence) and maximising the distri-

bution over the Pareto front (i.e., diversity). These two goals run through the design

of all components of an EMO algorithm.

In the following, we briefly introduce several components of an EMO algorithm

which are closely related to this thesis: fitness assignment, diversity maintenance, and

selection; of course, other components are also crucial, such as variation, population

initialisation, and stop criterion of an evolutionary algorithm.

Fitness Assignment

In contrast to single-objective optimisation in which the objective function and fit-

ness function are typically identical, fitness assignment in multi-objective optimisation

must allow for several goals. Many EMO algorithms design the fitness function on

the basis of the Pareto dominance relation in the sense that the information of indi-

viduals dominating, being dominated or nondominated is used to define a rank, such

as dominance count, dominance rank, strength, and others [50, 19, 43]. In addition,

since Pareto dominance fails to reflect the diversity of individuals in a population,

density information is also recognised as an auxiliary consideration to incorporate into

the fitness function. This enables the population to evolve towards the optimum and

simultaneously to diversify its individuals uniformly along the trade-off front.

Recently, there has been increasing interest in the use of other criteria (instead

of Pareto dominance) in fitness assignment, with the aggregation-based criterion and

indicator-based criterion being important examples. Typically, they convert an objec-

tive vector into a scalar value, thus providing a totally-ordered set of individuals in the

population. Compared with Pareto dominance, such criteria have clear advantages,

e.g., providing higher selection pressure towards the Pareto front [17, 138] and being

easier to work with local search techniques stemming from global optimisation [169, 13].

Diversity Maintenance

Most EMO algorithms try to maintain diversity by incorporating density infor-

mation into the selection process (often for nondominated individuals): the higher the
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density of the surrounding area of an individual in the population, the lower the chance

of the individual being selected. At the beginning, the niching technique, introduced

by Goldberg [86], has been used to estimate the crowding degree of individuals in

a population. With the development of the area, more density estimation methods,

along with new EMO algorithms, have been presented. Among them, the cluster [294],

crowding distance [55, 205], k-th nearest neighbour [292, 62], grid crowding degree

[44, 150, 273, 181], and harmonic crowding distance [266] are representative examples.

On the other hand, some EMO algorithms maintain diversity of a population from

other perspectives, for example, by integrating proximity and diversity into a single cri-

terion [291] or by decomposing an MOP into a number of scalar optimisation problems

with a set of well-distributed weight vectors [278]. These methods have been found to

be very effective on some MOPs [17, 278]. However, since they are not completely in

line with individuals’ density in the population, their performance may be dependant

on the shape of the Pareto front of an MOP at hand to some extent [179].

Selection

In the evolutionary process, selection represents the competition for resources among

individuals. Some individuals better than others are naturally more likely to survive

and to reproduce their genetic information. According to this principle, the overall se-

lection operation in EMO algorithms can be split into two processes, mating selection

(i.e., selection for variation) and environmental selection (i.e., selection for survival)

[215]. Mating selection aims at picking promising individuals for variation and is usu-

ally performed in a random way. Environmental selection determines which of the

previously stored individuals and the newly created ones are preserved in the archive

(or the next population) and is usually performed in a deterministic way.

Interestingly, most EMO algorithms do not pay much attention to this difference

and often directly perform the selection operation according to the fitness value of

individuals for both selection processes. Nevertheless, there do exist some preliminary

studies taking this into account, designing distinct strategies for mating selection and

environmental selection [182, 271].
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2.2.2 Methods

As mentioned before, in the absence of the information provided by the decision maker,

EMO algorithms are designed with regard to two common goals, proximity and diver-

sity. To achieve these two goals, however, different algorithms are implemented in

distinct ways. In general, EMO algorithms, based on their selection mechanisms, can

be classified into three groups – Pareto-based algorithms, decomposition-based algo-

rithms, and indicator-based algorithms [39, 256].

Pareto-based Algorithms

Since the optimal outcome of an MOP is a set of Pareto optimal solutions, the Pareto

dominance relation naturally becomes a criterion to distinguish between solutions dur-

ing the evolutionary process of an algorithm. Behind such Pareto-based algorithms, the

basic idea is to compare solutions according to their dominance relation and density.

The former is considered as the primary selection and favours nondominated solutions

over dominated ones, and the latter is used to maintain diversity and is activated when

solutions are incomparable using the primary selection.

Most of the existing EMO algorithms belong to this group. Among them, sev-

eral representative algorithms, such as the nondominated sorting genetic algorithm II

(NSGA-II) [55], strength Pareto evolutionary algorithm 2 (SPEA2) [292], and Pareto

envelope-based selection algorithm II (PESA-II) [44], are being widely applied to vari-

ous problem domains [244, 266, 285, 287].

Decomposition-based Algorithms

In decomposition-based algorithms, the objectives of an MOP are aggregated by a

scalarizing function such that a single scalar value is generated. In these algorithms,

the diversity of a population is maintained by specifying a set of well-distributed ref-

erence points (or directions) to guide its individuals to search simultaneously towards

different optima [200]. As the earliest multi-objective optimisation approach that can

be traced back to the middle of the last century [161], this group has become popu-

lar again in recent years. One of the important reasons is due to the appearance of
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an efficient algorithm, the decomposition-based multi-objective evolutionary algorithm

(MOEA/D) [278, 170].

In decomposition-based EMO techniques, one important issue is to maintain uni-

formity of intersection points of the specified search directions to the problem’s true

Pareto front. Uniformly-distributed weight vectors cannot guarantee the uniformity of

the intersection points. In fact, it is challenging for decomposition-based algorithms

to access a set of the well-distributed intersection points for any MOP, especially for

a problem having a highly irregular optimal front (e.g., a discontinuous or degener-

ate front). Despite the difficulty, much effort has been made on this issue recently

[140, 82, 87, 83, 52, 218, 172].

Indicator-based Algorithms

The idea of indicator-based algorithms, which was first introduced by Zitzler and

Künzli [291], is to utilise a performance indicator to guide the search during the evo-

lutionary process. An interesting characteristic is that, in contrast to Pareto-based

algorithms that compare individuals using two criteria (i.e., dominance relation and

density), indicator-based algorithms adopt a single indicator to optimise a desired prop-

erty of the evolutionary population.

The indicator-based evolutionary algorithm (IBEA) [291] is a pioneer in this group.

Recently, a number of performance indicators, such as the ε indicator [165], inverted

generational distance (IGD) [42], and R2 indicator [28], have been used in indicator-

based algorithms [26, 227, 29], Of these, the hypervolume indicator [294] is a represen-

tative example. Due to the good theoretical and empirical properties [295, 24, 76], the

hypervolume indicator has been frequently used to guide the search of an evolution-

ary population, such as in the S metric selection EMO algorithm (SMS-EMOA) [17]

and multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES)

[112]. Whereas super-polynomial time complexity is required in the calculation of the

hypervolume indicator (unless P = NP ) [22], lots of effort is being made to reduce its

computational cost, in terms of both the exact computation [16, 23, 267, 142] and the

approximate estimation [10, 25, 129].
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2.2.3 Performance Indicators

With the rapid development of EMO algorithms, the issue of performance assessment

has become increasingly important and has developed into an independent research

topic. During the past two decades, a variety of performance indicators have been

emerging [75, 92, 295, 207, 153, 290, 272, 174]. They mainly concentrate on three as-

pects: 1) the proximity of the Pareto front approximation (i.e., the solution set obtained

by a stochastic search algorithm, typically an EMO algorithm), 2) the uniformity of the

approximation, and 3) the spread (i.e., extensity) of the approximation. The latter two

are closely related, and in general, they are called the diversity of the approximation.

Table 2.1 lists some performance indicators and their properties, including the per-

formance aspect(s) assessed by the indicators, the number of Pareto front approxima-

tions handled by the indicators, the computational cost needed by the indicators, and

the state whether a reference set is required by the indicators or not. As can be seen

from the table, some indicators only involve one aspect of the performance of Pareto

front approximations, some focus on the diversity (i.e., both uniformity and extensity)

of approximations, while the others give a comprehensive assessment of approxima-

tions’ performance in terms of proximity, uniformity and extensity. Next, we briefly

introduce two well-known comprehensive performance indicators, hypervolume [294]

and IGD [42], which are used in the following chapters.

The hypervolume (HV) indicator calculates the volume of the objective space en-

closed by a Pareto front approximation and a reference point. A large value is prefer-

able. It can be described as the Lebesgue measure Λ of the union hypercubes hi defined

by a solution pi in the approximation and the reference point xref as follows:

HV = Λ({
⋃
i

hi | pi ∈ P}) = Λ(
⋃
pi∈P
{x | pi ≺ x ≺ xref}) (2.3)

The IGD indicator measures the average distance from the points in the Pareto

front to their closest solution in a Pareto front approximation. Mathematically, let P ∗

be a reference set representing the Pareto front, then the IGD value from P ∗ to the
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obtained solution set P is defined as follows:

IGD =
∑
z∈P ∗

d(z, P )

/
|P ∗| (2.4)

where |P ∗| denotes the size of P ∗ (i.e., the number of points in P ∗) and d(z, P ) is the

minimum Euclidean distance from point z to P . A low IGD value is preferable, which

indicates that the obtained solution set is close to the Pareto front as well as having a

good distribution.

Although both HV and IGD imply a combined performance of proximity and di-

veristy, there do exist some performance biases of the two indicators. IGD, which is

based on uniformly-distributed points along the entire Pareto front, prefers the distri-

bution uniformity of the solution set; HV, which is typically influenced more by the

boundary solutions, has a bias towards the extensity of the solution set.

2.2.4 Test Problems

A number of test problems have been developed to benchmark the performance of EMO

algorithms [122]. This section reviews six widely used benchmark suites. They are four

continuous suites, ZDT [289], DTLZ [57], WFG [105], UF [281], and two combinatorial

ones, multi-objective 0-1 knapsack [294] and multi-objective TSP [45].

The ZDT suite consists of six bi-objective test problems, with ZDT1, ZDT4 and

ZDT5 having a convex Pareto front, ZDT2 and ZDT6 having a concave Pareto front,

and ZDT3 having a disconnected Pareto front. All the problems are separable in the

sense that the Pareto optimal set can be obtained by optimising each decision variable

separately. ZDT4 and ZDT6 are multi-modal (i.e., have a number of local Pareto

fronts) and ZDT6 also has a non-uniform mapping.

One important property of the DTLZ suite is that the test problems are scalable to

any number of objectives and decision variables. All the seven problems are separable.

DTLZ1 has a plane Pareto front but has a huge numer of local optima (115− 1) in the

objective space. Despite having the same optimal front, DTLZ2, DTLZ3 and DTLZ4

are designed to investigate different abilities of EMO algorithms. DTLZ2 is an easy
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test problem with a spherical Pareto front. Based on DTLZ2, DTLZ3 introduces a vast

number of local optima (310 − 1) and DTLZ4 introduces a non-uniform mapping from

the search space to the objective space. The Pareto front of DTLZ5 and DTLZ6 is a

degenerate curve in order to test the ability of an algorithm to find a lower-dimensional

optimal front while working with a higher-dimensional objective space. The difference

between the two problems is that DTLZ6 is much harder than DTLZ5 by introducing

bias in the g function [57]. DTLZ7 has a number of disconnected Pareto optimal

regions, which is able to test an algorithm’s ability to maintain sub-populations in

disconnected portions of the objective space.

The WFG suite has nine test problems, which are also scalable in the number of

objectives and decision variables. Compared with the ZDT and DTLZ suites, the WFG

suite is more challenging, introducing more problem attributes, e.g., separability/non-

separability, unimodality/multimodality, and unbiased/biased parameters. In WFG, a

solution vector contains k position parameters and l distance parameters, and so the

number of decision variables n = k+ l. In contrast to ZDT and DTLZ, most WFG test

problems are non-separable. This provides a big challenge for algorithms to achieve

the Pareto front. Another property of the WFG problems is that they have dissimilar

ranges of the Pareto front.

The UF suite has 10 test problems, among which UF1–UF7 have two objectives

and UF8–UF10 have three objectives. Like the ZDT, DTLZ and WFG suites, UF

uses component functions for defining its Pareto front as well as introducing various

characteristics. A major advantage of UF over other test problems is that the Pareto

set can be easily specified. In the UF problems, complex Pareto sets are used, with

a strong linkage in variables among the Pareto optimal solutions. This poses a big

challenge for EMO algorithms to search for the whole Pareto front.

The multi-objective 0-1 knapsack problem is one standard combinatorial problem

in multi-objective optimisation. Given a set of l items and a set of m knapsacks, the
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multi-objective knapsack problem can be defined as follows:

Maximize fi(x) =
l∑

j=1

pijxj , i = 1, ...,m

Subject to
l∑

j=1

wijxj ≤ ci, i = 1, ...,m

x = (x1, ..., xl)
T ∈ {0, 1}l

(2.5)

where pij ≥ 0 is the profit of item j in knapsack i, wij ≥ 0 is the weight of item

j in knapsack i, ci is the capacity of knapsack i, and xj = 1 means that item j is

selected in the knapsacks. Typically, pij and wij are set to random integers in the

interval [10, 100], and the knapsack capacity to half of the total weight regarding the

corresponding knapsack.

The multi-objective travelling salesman problem (TSP) is also a typical combina-

torial optimisation problem and can be stated as follows: given a network L = (V,C),

where V = {v1, v2, ..., vn} is a set of n nodes and C = {ck : k ∈ {1, 2, ...,m}} is a set of

m cost matrices between nodes (ck : V × V ), we need to determine the Pareto optimal

set of Hamiltonian cycles that minimise each of the m cost objectives. According to

[45]. the matrix c1 is first generated by assigning each distinct pair of nodes with a

random number between 0 and 1. Then the matrix ck+1 is generated according to the

matrix ck:

ck+1(i, j) = TSPcp× ck(i, j) + (1− TSPcp)× rand (2.6)

where ck(i, j) denotes the cost from node i to node j in matrix ck and rand is a function

to generate a uniform random number in [0, 1]. TSPcp ∈ (−1, 1) is a simple TSP

“correlation parameter”, where TSPcp < 0, TSPcp = 0, and TSPcp > 0 introduce

negative, zero, and positive inter-objective correlations, respectively.

2.3 Many-Objective Optimisation

This section introduces many-objective optimisation, with particular focus on the dif-

ficulties of evolutionary algorithms in many-objective optimisation (Section 2.3.2) and
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the visualisation of solutions in a high-dimensional space (Section 2.3.3).

2.3.1 Introduction

Many-objective optimisation refers to the simultaneous optimisation of more than three

objectives. Many-objective optimisation problems (MaOPs) appear widely in real-

world applications, such as water resource engineering [224, 58, 146, 145], industrial

scheduling problem [243], radar waveform optimisation problem [109], control system

design [71, 100, 204], molecular design [159], space trajectory design [137], and software

engineering [210, 236, 97, 196, 101, 208, 284]. Readers seeking more applications of

many-objective optimisation can refer to a recent survey of evolutionary many-objective

optimisation (EMaO) algorithms [168].

The term “many-objective optimisation” has been coined in 2002 [67], although

some earlier work had realised a rapid increase of problems’ difficulty with objective

dimensionality [74, 50, 113, 91]. After that, EMO researchers did not pay much at-

tention to many-objective optimisation, with the appearance of only a few studies

for almost half a decade (2002–2006) [147, 215, 71, 107, 56]. Since 2007, there has

been rapidly increasing interest in the use of evolutionary algorithms on MaOPs, as

witnessed by a range of studies, including the algorithm analysis [216, 152] and design

[108, 156, 229, 164, 212, 198, 135], empirical studies [256, 45, 127, 138], and review work

[128, 110]. These enable many-objective optimisation to become one of the most active

research topics in the EMO area. In recent years, some researchers have investigated

particular topics of many-objective optimisation, such as the visualisation [259, 69, 249],

test problems [235, 119, 115], performance indicators [132, 174, 6], theoretical analy-

sis [248, 27, 239], experimental comparison [88, 180], and real-world applications (see

[168]), while others have concentrated on developing new EMaO techniques (see Chap-

ter 2.4 for details). Very recently, a couple of survey and review articles of EMaO

algorithms have also emerged [254, 168].
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2.3.2 Difficulties in Many-objective Optimisation

There exists great difference between many-objective optimisation and multi-objective

optimisation with two or three objectives. Many difficulties lie in the way of the use

of EAs in many-objective optimisation. Summarised from the literature [56, 216, 45,

128, 79, 52, 177], there are the following nine difficulties in evolutionary many-objective

optimisation.

• Incomparability of individuals on the basis of Pareto dominance. As

the number of objectives increases, the proportion of Pareto nondominated indi-

viduals in a population becomes large. The portion of any two individuals being

comparable in an m-dimensional objective space is η = 1/2m−1. For a two- or

three-dimensional space, η is equal to 0.5 or 0.25, respectively, but whenm reaches

six, η is already as low as 0.03125. This means that only around three individuals

are comparable in a population with randomly-produced 100 individuals.

• Ineffectiveness of Pareto-based algorithms. In Pareto-based algorithms,

when the Pareto dominance criterion fails to distinguish between individuals, the

density-based selection criterion will play a leading role in determining the sur-

vival of individuals. This phenomenon is termed active diversity promotion [216].

Some empirical observations [128, 256] indicated that the active diversity promo-

tion has a detrimental impact on the algorithm’s proximity due to its preference

for dominance resistant solutions [113] (i.e., the solutions with an extremely poor

value in at least one of the objectives, but with near optimal values in some

others). As a result, the individuals in the final population in Pareto-based al-

gorithms may be distributed uniformly over the objective space, but far away

from the desired Pareto front. In fact, some studies have shown that a random

search algorithm may even achieve better results than Pareto-based algorithms

in problems with around 10 objectives [216, 152, 164].

• Aggravation of the conflict between proximity and diversity. In multi-

objective optimisation, an EA pursues two basic but often conflicting goals, prox-

imity and diversity. Such conflict has a detrimental impact on an algorithm’s
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optimisation process and is particularly aggravated in many-objective optimisa-

tion [216, 1, 178]. The algorithms capable of achieving a good balance between

proximity and diversity in 2- or 3-objective problems could easily fail in many-

objective optimisation.

• Inaccuracy of density estimation. In many-objective optimisation, some

density estimation methods may fail to accurately reflect the crowding degree

of individuals in a population. For example, the well-known density estimator

crowding distance [55] works well only on bi-objective problems [163, 175]. The

density estimators in some grid-based EMO algorithms (such as PAES [149],

PESA-II [44] and DMOEA [273]), which consider the number of individuals in

one hyperbox of the grid, may not accurately reflect individuals’ crowding degree

in many-objective optimisation. This is because the number of hyperboxes in the

grid exponentially increases with the number of objectives and thus the individu-

als are most likely to disperse in different hyperboxes. In addition, the Euclidean

distance, which is typically used in density estimators to measure similarity of

individuals, can be inaccurate in a high-dimensional space [260].

• Inefficiency of recombination operation. In a high-dimensional space, indi-

viduals are likely to be widely distant from each other. In this case, the effect

of recombination operation becomes questionable [216, 52]. Two distant parent

individuals are likely to produce offspring that are also distant from parents. This

can slows down the search process and lead to the inefficiency of overall EMO

algorithms.

• Increasing sensitivity of parameter settings. Purshouse and Fleming [216]

have shown that the sweet-spot of algorithm parameter setting that produces good

results could shrink markedly in many-objective optimisation. Similar observa-

tions have also been reported in [88]. In addition, empirical studies in [180] have

demonstrated that “many-objective” brings about severe instability for a classic

algorithm, ε-MOEA [54]. For some 10-objective problems (such as DTLZ3 and

WFG8), no matter how setting the parameter ε, the size of the final archive set
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of ε-MOEA in several runs could be completely different – for some runs, the

archive set has over 1600 individuals, yet for some other runs, the archive set has

only one individual.

• Rapid increase of time or space requirement. The storage or time re-

quirement of some EMO algorithms, such as PAES [149], PESA-II [44] and SMS-

EMOA [17], increases exponentially with the number of objectives. This also

applies to some performance indicators, like those based on the exact hypervol-

ume calculation [294] or grid-centred calculation [53]. The exponential increase

of the resource required can largely limit their applicability on many-objective

optimisation.

• Difficulty of representing the trade-off surface. The Pareto front of an

m-objective MOP is typically an (m− 1)-dimension hyper-surface. The number

of points required to accurately represent such a surface increases exponentially

with the number of objectives. In addition, it is also difficult for the decision

maker to consider such a large number of trade-off points.

• Difficulty of visualisation. Finally, a visual observation of the population

becomes difficult when the number of objectives is larger than three. This is in

contrast to two- or three-objective problems, where the population can be easily

and comprehensively visualised using graphical ways.

Overall, these difficulties pose big challenges in the aspects of the design of EMaO

algorithms, assessment of Pareto front approximations, and individual choice of the

decision maker. Table 2.2 gives the effect scope of the difficulties with respect to the

above three aspects.

2.3.3 Visualisation in Many-objective Optimisation

Visualisation is an important issue in multi-objective optimisation. It can be used in

many respects [249]: 1) understanding the location, range and shape of Pareto front

approximations, 2) assessing conflicts and trade-offs among objectives, 3) comparing the
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Table 2.2: Difficulties in many-objective optimisation and their scope of the effect in
EMO, including algorithm design, algorithm assessment (investigation) or/and multi-
criteria decision making (MCDM).

Difficulties Algorithm design Algorithm assessment MCDM
Incomparability on the basis of Pareto dominance

√ √

Ineffectiveness of Pareto-based algorithms
√

Conflict aggravation between proximity and diversity
√

Inaccuracy of density estimation
√

Inefficiency of recombination operation
√

Increasing sensitivity of parameter settings
√ √

Rapid increase of time or space requirement
√ √

Difficulty of representation of the trade-off surface
√ √ √

Difficulty of visualisation
√ √

performance of Pareto front approximations, 4) helping to choose candidate solutions

for the DM, and 5) monitoring the progress of an EMO algorithm.

However, as stated before, visualisation becomes difficult in many-objective optimi-

sation. In contrast to two- or three-objective problems where it is straightforward to

show objective vectors by scatter plots, for problems with four or more objectives one

cannot intuitively observe the behaviour of objective vectors, such as how they evolve,

how they are distributed, and how close they are to the Pareto front.

Effort has been made to ease this difficulty (see [259, 249], two comprehensive

reviews of multi-objective visualisation). In general, there exist two classes of methods

to visualise a set of vectors in the objective space. One, stemming from the multiple

criterion decision-making (MCDM) community, is on the direct display by using a

plane plot in the sense that objective vectors are displayed with no modifications, such

as scatter plot matrix [192], parallel coordinates [114], star coordinates [50], trade-off

plot [187], radial coordinate visualization [102], and heatmap [213]. These methods,

however, often come without information about the Pareto dominance relation between

vectors.

The other class is on the mapping of high-dimensional objective vectors to two-

or three-dimensional ones for visualization. Key concerns under such mapping include

the maintenance of the Pareto dominance relation between vectors and the reflection

of their location information in the population. Many current studies originate from

this motivation, presenting various interesting attempts, such as self-organizing map
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[206], Sammon mapping [250], two-stage mapping [157, 69], multidimensional scaling

[47], Isomap [247, 160], interactive decision maps [190], level diagrams [18], hyper-radial

visualization [37], Pareto shells [257], seriated heatmaps [259], and prosection method

[249]. However, inevitable information loss associated with the dimension reduction

will influence the observation and understanding of objective vectors.

In addition, several methods of constructing and/or mapping some “key” vectors

of a Pareto front approximation have been developed [183, 240, 64]. Despite failing

to display all vectors completely, these methods can provide an outline of the whole

Pareto front approximation, e.g., the range and location of the approximation in the

space.

Finally, it is worth mentioning that some researchers have constructed (or intro-

duced) a particular class of test problems to help the visual investigation of evolutionary

search. Specifically, Köppen and Yoshida [156] presented a class of many-objective test

problems whose Pareto optimal set is in a regular polygon on a two-dimensional de-

cision space. This allows easy visualisation and examination of the proximity of the

obtained solutions to the optimal region and their distribution in the decision space.

Later on, Ishibuchi et al. [119, 130] extended and generalized this class of problems

(called distance minimisation problems), introducing multiple Pareto optimal polygons

with same [119] or different shapes [115] as well as making decision variables’ dimen-

sionality scalable [130]. Overall, these problems have provided a good alternative to

help understand the behaviour of multi-objective evolutionary search, and have been

used to investigate many-objective algorithms in some recent studies [241, 175, 180].

2.4 Evolutionary Approaches for Many-objective Optimi-

sation

Since the pioneering studies at the beginning of the century [67], a wide variety of evolu-

tionary approaches have been proposed to address MaOPs [45, 128, 132, 88, 254, 168].

Of these, some concentrate on the investigation or improvement of the existing ap-

proaches for two- or three-objective MOPs, while the others are dedicated to developing
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new techniques specially for MaOPs. In general, these approaches could be classified

into ten categories: 1) modified Pareto dominance criteria, 2) modified diversity main-

tenance operations, 3) decomposition-based algorithms, 4) aggregation-based methods,

5) indicator-based algorithms, 6) modified recombination operations, 7) new algorithm

frameworks, 8) dimensionality reduction, 9) preference-based search, and 10) hybrid

approaches.

2.4.1 Modified Pareto Dominance Criteria

A straightforward idea to resolve the difficulty of EMO algorithms in many-objective

optimisation is to modify or enhance the Pareto dominance criterion. This can make

more individuals comparable in a high-dimensional space, thus increasing the selection

pressure towards the Pareto front. There are a large number of studies based on this

idea (see [263, 168]). They can generally be divided into two groups: one is to change

the dominance region, e.g., by controlling the dominance angle; the other is to consider

the dominance relation on a part of objectives (rather than all objectives in the original

Pareto dominance).

Modification of Dominance Region

ε-dominance, developed by Laumanns et al. [165], is one representative in this

group, although not designed particularly for many-objective optimisation. There are

two manners to implement ε-dominance, namely, additive and multiplicative. Given

two solutions x,y ∈ Rnf and ε > 0, x is said to additively (multiplicatively) ε-dominate

y if and only if ∀i ∈ {1, ...,m}, fi(x)− ε 6 fi(y) (fi(x)(1− ε) 6 fi(y)). It is clear that

both additive and multiplicative ε-dominance relations enlarge the dominance region

by ε. ε-dominance has been frequently used in many-objective optimisation, such as

to replace the crowding distance in NSGA-II [156], to classify the entire population

into a number of individual sets [3], and to control the size of archive set during the

evolutionary process [255]. On the other hand, a classic ε-dominance based algorithm,

ε-MOEA [54], has been found to work well on MaOPs [256, 88, 180, 176]. Dividing

the objective space into many hyperboxes, ε-MOEA assigns each hyperbox at most a
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single solution according to ε-dominance and the distance from solutions to the utopia

point in the hyperbox. However, one major issue for ε-dominance based methods is

how to determine a suitable ε value, especially when the number of objective is large

[180]. Moreover, ε-dominance based EMO algorithms (like ε-MOEA) often fail to find

boundary individuals of a population and also are somewhat sensitive to the shape of

the Pareto front [99, 271, 176].

Ikeda et al. [113] proposed another relaxed form of Pareto dominance relation,

called α-dominance. The basic idea is that a small deterioration in one objective can

be compensated by a large improvement in other objectives. The α-dominance uses

linear trade-off functions to define the tolerance of dominance. A similar idea was also

presented by Branke [21], where the author explained it as a preference incorporation

method.

Sato et al. [229] developed a preference relation to control the dominance area,

called CDAS. According to a user-defined parameter, the dominance area can be ex-

panded or contracted. However, it is not straightforward to specify a proper value of

this parameter as the optimal setting varies, heavily depending on the problem in hand.

Recently, some improvements of CDAS have been made, including making the param-

eter adaptive during the search [230, 203], controlling the number of crossed genes in

many-objective optimisation [231], and applying the dominance area control to particle

swarm optimisation [49].

In addition, Batista et al. [14] proposed another dominance relation, called Pareto

cone ε-dominance as an improvement of ε-dominance. The cone ε-dominance can be

seen as a combination of ε-dominance and α-dominance, and has been demonstrated

to be able to overcome some weaknesses of ε-dominance [14]. Yet, again, a problem is

on the choice of a proper ε value and the angle of the cone.

Consideration of a part of objectives

Drechsler et al. [61] proposed a preference relation, called favour, to differentiate

nondominated solutions. When comparing two solutions, the favour relation considers

the number of objectives for which one is better than the other. Later, the favour
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relation has been improved by Sülflow et al. [243] by taking into account not only the

number of objectives for which one solution is better than the other but also their

quantitative difference on each objective.

The (1− k)-dominance, proposed by Farina and Amato [67, 68], can be seen as an

extension of the favour relation. The (1− k)-dominance uses a parameter k ∈ [0, 1] to

control the number of objectives for which one solution performs better than the other.

When k = 0, the (1− k)-dominance is actually the Pareto dominance; when k = 1, the

(1−k)-dominance is equal to the favour relation (including the case that two solutions

perform equally in terms of the number of objectives).

Di Pierro et al. [59] presented a new preference relation, preference order ranking,

for many-objective optimisation. Unlike the previous methods which only involve the

comparison between two solutions, the preference order ranking considers the efficiency

of the solutions compared with all other solutions in a population. A solution with

“efficiency” of order k means that it is not Pareto dominated by any solutions in a

population for any of
(
m
k

)
objectives. A small order of efficiency is preferred. An

experimental study has demonstrated its advantage over Pareto-based algorithms for

MaOPs [59].

Köppen and Yoshida [155] defined a fuzzy Pareto dominance relation. The fuzzy

Pareto dominance considers all the objectives of one solution being worse than its com-

petitor, and fuses the magnitudes of these objectives into a single value. An advantage

of the fuzzy Pareto dominance is that it can imply the crowding of solutions in the

population, thereby providing a good coverage on some MaOPs [156].

Aguirre and Tanaka [4] proposed an approach to partition the objective space into

several subspaces for MaOPs. In this approach, the environmental and mating selec-

tions are independently performed in each subspace to emphasise the search in smaller

regions of the objective space. Later on, several enhancements have been made for this

approach, including an introduction of the conflict information among objectives [131]

and an adaptive set of the parameters in space partitioning [133]. These enhancements

have been demonstrated to be effective on both combinatorial and continuous MaOPs

[131, 133].
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2.4.2 Modified Diversity Maintenance Operations

As stated before, when Pareto dominance fails to distinguish between solutions, diver-

sity maintenance plays a decisive role and could lead the population away from the

Pareto front. Therefore, another way of adapting Pareto-based algorithms for MaOPs

is to modify their diversity maintenance strategy. However, interestingly, in contrast to

the popularity of the modification of Pareto dominance, the modification of diversity

maintenance operation has received little attention. There only exist a couple of studies

from this modification so far.

Wagner et al. [256] demonstrated that assigning the crowding distance of boundary

solutions a zero value in NSGA-II can clearly improve the performance in terms of

proximity, despite the risk of losing diversity among solutions [126].

Adra and Fleming [1] employed a diversity management operator (DMO) to adjust

the diversity requirement in the mating and environmental selection. By comparing

the boundary values between the current population and the Pareto front, the diversity

maintenance mechanism is controlled (i.e., activated or inactivated) during the evolu-

tionary process. DMO has shown its advantage over NSGA-II in terms of proximity

and diversity for DTLZ2 with up to 20 objectives.

Recently, inspired by the study in [2], Wang et al. [260] have shown the failure of

using the Euclidean distance (L2 norm) and Manhattan distance (L1 norm) to calculate

the similarity degree of solutions in a high-dimensional space, and then proposed a Lp-

norm based distance to maintain diversity for MaOPs, where p is set to 1/m (m denotes

the number of objectives).

2.4.3 Decomposition-based Algorithms

As the earliest multi-objective optimisation technique that can be traced back to the

middle of the last century [161], the decomposition-based approach can be a good alter-

native in dealing with MaOPs. Instead of searching the entire search space for Pareto

optimal solutions, decomposition-based algorithms decompose an MOP into a set of

scalar optimisation subproblems by a set of weight vectors and an achievement scalar-
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izing function (ASF). Commonly-used ASFs include weighted sum, Tchebycheff, vector

angle distance scaling, and boundary intersection [195, 278, 111]. In the decomposition-

based approach, since the optimal point associated with each search direction (weight

vector) is targeted, sufficient selection pressure forwards can be provided and also a

good distribution among solutions can be maintained in a high-dimensional space. Ac-

cording to the predefined multiple targets, the decomposition-based approach can be

further divided into search-directions based and reference-points based algorithms [52].

Search-Direction based Algorithms

As one of the most well-known EMO algorithms developed recently, MOEA/D,

proposed by Zhang and Li [278], deals with a set of scalar subproblems (by specifying

multiple search directions) in a collaborative manner. Neighbourhood relations among

these subproblems are defined on the basis of the similarity between their weight vec-

tors. When optimising a subproblem, the information from its neighbouring subprob-

lems is adopted. In MOEA/D, each subproblem keeps one individual in its memory,

which could be the best individual found so far for it. For each subproblem, the al-

gorithm generates a new individual by performing variation operators on some of its

neighbouring individuals (i.e., the individuals of its neighbouring subproblems). The

memory of both the considered subproblem and its neighbouring subproblems will be

updated if the new individual is better than their current one. Despite not designed

for MaOPs, MOEA/D, due to the potential in balancing proximity and diversity, leads

to a number of subsequent works in many-objective optimisation.

Ishibuchi et al. [124] observed that MOEA/D with the weighted sum ASF is suitable

for MaOPs with a convex Pareto front, while MOEA/D with the Tchebycheff ASF

works well for a non-convex Pareto front. Based on these observations, the authors

proposed to automatically alternate between weighted sum and Tchebycheff ASFs in

MOEA/D. Later, Ishibuchi et al. [117] have also examined the relation between the

neighbourhood size and the performance of MOEA/D, and found that MOEA/D with

a large neighbourhood has a high search ability in the objective space, while a small

neighbourhood is beneficial for diversity maintenance in the decision space.
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Tan et al. [246] adopts a uniform design method to set weight vectors of the subprob-

lems in MOEA/D. The experimental results have demonstrated that this method can

improve the performance of MOEA/D and NSGA-II on most many-objective problems,

including those with complicated Pareto set shapes.

Sato [228] improved the penalty boundary intersection (PBI) (called the inverted

PBI) in MOEA/D to enhance the spread of solutions in the objective space and improve

the search performance of the algorithm in MaOPs. The inverted PBI uses the param-

eter θ which is similar to the original PBI function, yet with θ = 0 having the similar

effect to the weighted sum function. That is, the inverted PBI involves the weighted

sum achieving high search performance in MaOPs and also is able to emphasise the

directivity for the search directions (determined by weight vectors) by increasing θ.

The comparative experiments have shown the competitiveness of the inverted PBI on

both continuous and combinatorial MaOPs.

Li et al. [171] integrated the Pareto dominance and niche-based diversity mainte-

nance into MOEA/D (called MOEA/DD), with a hierarchical update of the popula-

tion based on the order of Pareto dominance, local density estimation, scalarization

functions. In MOEA/DD, each weight vector, apart from being associated with a

subproblem, specifies a unique subregion in the objective space. Also, a steady-state

selection scheme is adopted in the sense of updating the population once one offspring

is produced.

Very recently, Yuan et al. [276] analysed the problem of the contour lines of the

Tchebycheff function in diversity maintenance, and proposed to explicitly exploit the

perpendicular distance from the solution to the weight vector in the objective space.

The strategy is implemented in MOEA/D with the Tchebycheff function as well as in

an ensemble fitness ranking method [274]. The experimental results have verified the

effectiveness of the proposed strategy in balancing proximity and diversity.

On the other hand, researchers have also designed a range of decomposition-based

algorithms specially for many-objective optimisation. Hughes [106] used multiple single

Pareto sampling (MSOPS) to address MaOPs. In MSOPS, a set of T weight vectors

are used to evaluate each solution (using a weighted min-max method), which is in
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contrast to MOEA/D where a solution corresponds to only one weight vector. MSOPS

has been found to perform better than NSGA-II in a couple of MaOPs [106]. Later on,

Hughes [108] presented MSOPS-II with two extensions to MSOPS. The first extension

is a method that uses the current population as input to generate a set of target

vectors, and the second one is to reduce the time complexity of fitness assignment of

the original algorithm. Recently, the author combined the aggregation method from

MSOPS with the directed line search based on approximated local gradient [111]. The

proposed algorithm has demonstrated its competitiveness on a constrained function

with a concave Pareto front having up to 20 objectives.

Giagkiozis et al. [84] introduced the concept of generalised decomposition. Gener-

alised decomposition provides a framework with which the DM can guide the search

algorithm toward the Pareto front with the desired distribution of optimal solutions.

This approach allows decomposition-based algorithms to focus on only the proximity to

the Pareto front rather than all the three performance goals (proximity, uniformity and

extensity). Combined with cross-entropy method, the proposed approach has shown

to perform better than MOEA/D and RM-MEDA [280].

Reference-Point based Algorihtms

The reference-point based approach can be seen as another class of decomposition

algorithms, which uses multiple predefined reference points (instead of search direc-

tions) to specify the search targets. This may be suitable for non-commensurable

MOPs as the specified reference points can be well scaled by the current population.

NSGA-III [52] is a representative of such reference-point based decomposition al-

gorithms. NSGA-III uses Pareto dominance to promote proximity and a niche opera-

tion to maintain diversity by a set of well-distributed reference points. Since poorly-

converged solutions are often far away from the reference lines (i.e., the lines connect-

ing the reference points with the original point), this niche operation implicitly prefers

solutions with good proximity, thus leading to the algorithm better than traditional

Pareto-based algorithms in a high-dimensional space. NSGA-III has been shown to be

promising on various MaOPs [52, 139], including those with an irregular or a discon-
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tinuous Pareto front on which the decomposition-based approach typically encounters

difficulty [180].

Figueira et al. [70] presented a reference-point based approach, which can be parti-

tioned into two phases, preparation phase and running phase. The preparation phase

consists of estimating the boundary of the Pareto front, generating multiple reference

points, and determining a solver’s version for each reference point. The running phase

launches a solver for each reference point in every processor.

Moen et al. [197] proposed a taxi-cab surface evolutionary algorithm (TC-SEA) for

MaOPs. Manhattan distance is used as the selection criterion as well as the basis for

generating the reference points, which leads to a fast, efficient algorithm. In comparison

with several modern algorithms on problems with up to 20 dimensions, TC-SEA has

shown its effectiveness as a many-objective optimiser [197].

Asafuddoula et al. [5] introduced an improved decomposition based evolutionary

algorithm (I-DBEA) to deal with MaOPs. I-DBEA uses a steady-state evolution form,

and a newly-generated solution is allowed to enter the population only if it is nondomi-

nated with respect to individuals in the population. Like MOEA/D-PBI [278], I-DBEA

uses two distance measures, perpendicular distance (d2) from the reference direction

and distance (d1) along the reference direction, in sequence, to compare individuals.

But, this comparison is quite similar to the method in NSGA-III as only d2 is activated

in most cases. Later on, the authors used I-DBEA in many-objective robust design

optimisation [7].

Yuan et al. [275] proposed a new dominance relation (θ-dominance) on the basis

of decomposition-based approach. The authors aimed to enhance the proximity of

NSGA-III but inherit its strength in terms of diversity maintenance. In θ-dominance,

solutions are allocated into different niches represented by well-distributed reference

points, and the solutions within the same niche have the competitive relationship. From

an extensive comparison with eight state-of-the-art algorithms, the proposed approach

has been demonstrated to be a promising alternative for many-objective optimisation

[275].

In summary, the performance of the decomposition-based approach (including both
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search-directions based and reference-points based) could be largely dependent on two

key factors: the specification of the targeted directions and the association of solutions

to targeted directions.

The specification of the search targets includes the selection of weight vectors [83,

52, 246, 108, 279, 277] and the selection of the ASF functions [124, 228]. ASF functions

behave differently for different MaOPs. The weighted sum ASF is suitable for MaOPs

with a convex Pareto front [124], the Tchebycheff ASF for many-objective 0-1 knapsack

problems [118], and the boundary intersection ASF for the DTLZ suites [52].

The association of solutions to targeted directions directly determines the selection

operation in the evolutionary process. Two distance measures, the distance along

the targeted direction and the perpendicular distance from the targeted direction, are

widely used in environmental selection via different comparison strategies [278, 52, 5,

275]. In contrast, mating selection has received relatively little attention, with only a

couple of works being presented so far [35].

2.4.4 Aggregation-based Methods

The aggregation of objective functions (or individual rankings) is an alternative to

differentiate individuals (in contrast to Pareto dominance) in many-objective optimi-

sation1. A key issue in such aggregation techniques is how to maintain individuals’

diversity because the information aggregation is unlikely to reflect their distribution in

the population.

Average Ranking (AR), proposed by Bentley and Wakefield [15], is a popular in-

dividual comparison strategy in many-objective optimisation [45, 138]. AR compares

all solutions in each objective and independently ranks them. The final ranking of a

solution is obtained by summing its rankings of all objectives. However, due to the

lack of a diversity maintenance scheme, AR may lead the evolutionary population to

converge into a small part of the Pareto front [138, 180, 176]. Recently, some effort has

been made to enhance diversity for AR in terms of the objective space [217, 184] and

1Decomposition-based technique is also an aggregation-based approach, but in this section we discuss
the aggregation techniques which do not decompose an MOP into a number of subproblems to deal
with.
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decision space [154].

Kruisselbrink et al. [159] used desirability functions to combine groups of objectives

in order to recast the original MaOPs into an optimisation problem with a low number

of objectives. The purpose of this remodelling is to transform the original objectives so

that a good view on the trade-off between the different objectives and the satisfaction

of constraints is obtained in an evolutionary search method. The proposed technique

was evaluated in a case study on automated drug design where the authors aim to find

molecular structures that could serve as oestrogen receptor antagonists [159].

Garza-Fabre et al. [80] proposed a clustering-based elitist genetic algorithm (CEGA),

which adopts an aggregation scheme to promote proximity and a clustering technique

to maintain diversity. CEGA introduces an aggregation method, called the global detri-

ment [79], which accumulates the inferiority of a solution to every other solution with

respect to each objective in the population. Then, the clustering is applied to guide

the selection in order to enhance the exploratory capabilities of the algorithm. The

proposed algorithm has been well verified in the DTLZ test suite.

Recently, Cheng et al. [36] proposed a many-objective evolutionary algorithm based

on directional diversity and favourable convergence, with the former being used in

environmental selection and the latter in both mating and environmental selection.

The favourable convergence is defined on the basis of the concept of favourable weight

[242], and the directional diversity is defined by the projection lines from individuals

to a hyperplane.

In fact, many EMaO techniques, despite not mentioning “aggregation” in their

study, can fall into this category, since they somewhat use the aggregation of objective

functions or individual rankings, such as ranking dominance [164], favour relation [243],

winning score [191], correlation-based weighted sum [201], path control [225], and some

distance-based ranking methods [198, 268, 296].

2.4.5 Indicator-based Algorithms

Indicator-based EMO algorithms utilise a performance indicator to optimise a desired

property of the evolutionary population [291]. Due to good theoretical characteristics,
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the indicator hypervolume (HV) [294] is widely used as a drive to guide the evolutionary

population towards the Pareto front [17, 112, 10].

Emmerich et al. [63] proposed the S-metric Selection EMO algorithm (SMS-EMOA),

a steady-state algorithm that aims to maximise the hypervolume. SMS-EMOA com-

bines the maximisation of the hypervolume contribution with the non-dominated sort-

ing in NSGA-II and only considers the hypervolume contribution of individuals when

they are located in the “critical” layer. Although SMS-EMOA has shown good results

for MOPs with up to six objectives [256], an exponentially increasing computational

cost is required with the increase of the objective dimensionality in the algorithm.

HypE [10] is a hypervolume-based algorithm designed specially for many-objective

optimisation. Unlike SMS-EMOA, HypE adopts Monte Carlo simulation to approx-

imate the hypervolume value. This significantly reduces the time cost of the hyper-

volume calculation and enables the hypervolume-based search to be easily applied on

many-objective optimisation, even when the number of objectives reaches 50.

Recently, some other performance indicators have also been demonstrated to be

promising in guiding a well-converged and well-distributed population, such as the R2

[92, 29], IGD [227] and distance-based indicators [26, 255]. Diaz-Manriquez et al. [60]

integrated the R2 indicator into a variant of the nondominated sorting procedure and

presented that the obtained algorithm is very competitive with SMS-EMOA on the

DTLZ suite with up to 10 objectives, but consumes much less computational time.

Similar performance has been achieved by another R2-based EMaO algorithm proposed

by Hernandez and Coello [98].

Bringmann et al. [26] proposed an approximation-guided evolutionary (AGE) algo-

rithm, which aims at minimising a particular indicator (called the α indicator). Using

the best knowledge obtained so far during the evolutionary process, AGE improves

the approximation quality of the current population. AGE has been shown to outper-

form state-of-the-art algorithms in dealing with MaOPs. Despite good performance,

AGE suffers from heavy computational cost as new incomparable solutions can uncon-

ditionally insert into AGE’s archive. To tackle this issue, a fast, effective AGE (called

AGE-II) has been developed by Wagner et al. [255]. AGE-II introduces an adaptive
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ε-dominance approach to balance the convergence speed and runtime. Also, the mating

selection strategy is elaborately designed to emphasise the diversity of the population.

2.4.6 Modified Recombination Operations

In contrast to the above methodologies which mainly focus on the environmental se-

lection (i.e., selection for survival) in EAs, this category works on the recombination

operation. Since individuals in a high-dimensional space are likely to be widely distant

from each other, their offspring could be produced to be distant from them, thus seldom

inheriting their “good” genes. Modifying recombination operation for many-objective

optimisation can be divided into two types: 1) the use of mating restriction and 2) the

design of new recombination operators.

Mating restriction can be naturally used in the decomposition-based approach in

which two individuals from neighbouring search targets are participated in the recom-

bination operation [278, 52, 35]. This mating restriction has been found to be useful in

many-objective problems, by the evidence that increasing the size of a neighbourhood

structure for recombination operation can deteriorate the performance of MOEA/D

[125]. In addition, some researchers have shown that the recombination of similar

individuals can improve the performance of Pareto-based algorithms [229, 158] and

indicator-based algorithms [116] on many-objective 0/1 knapsack problems.

Despite receiving less attention, developing recombination operators (according to

the characteristics of MOPs [173]) could be very effective in many-objective optimi-

sation. Sato et al. [231] controlled the number of crossed genes (CCG) in crossover

operators by using a user-defined parameter α. They have shown that a small number

of crossed genes can improve the search performance in many-objective optimisation,

and also the effectiveness of the CCG operator becomes significant with the increase of

the objective dimensionality [231]. Later on, the authors developed an adaptive CCG

to avoid parameter tuning and automatically find an appropriate α during the search

process [232]. Simulation results have shown that the value of α can converge to an

appropriate value even when the adaptation is started from any initial value.
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2.4.7 New Algorithm Frameworks

To deal with MaOPs, researchers also designed new algorithm frameworks, including

the coevolutionary of multiple populations [211, 81, 167, 260, 179] and multiple phases

to separately focus on different performance (i.e., proximity and diversity) [94],

Garza-Fabre et al. [81] proposed a parallel genetic algorithm (PGA) for many-

objective optimisation. In PGA, individuals are divided into multiple sub-populations

which evolve in isolation most of the time. Sub-populations are evolved by means of

an elitist genetic algorithm which is driven by a weighted sum ranking to promote

proximity.

Wang et al. [260] presented a two-archive algorithm for MaOPs. The authors as-

signed different selection criteria in the two archives, with one archive being guided

by the indicator Iepsilon+ (from IBEA [291]) and the other by the Pareto dominance

criterion. The experimental results have shown that the presented algorithm is able to

deal with MaOPs with satisfactory proximity, diversity and complexity.

He and Yen [94] proposed a two-stage strategy for many-objective optimisation.

Unlike the decomposition-based algorithms stated before, the authors only considered

the decomposition for the boundary points of an MOP, In their two-stage strategy,

first, the whole population quickly approaches a small number of “targeted” points

which form the range of the estimated Pareto front, and then, a diversity improvement

strategy is applied to diversify individuals over the estimated Pareto front.

2.4.8 Dimensionality Reduction

In view of the fact that an MaOP (or after somehow converted) may have a low-

dimensional Pareto front, dimensionality reduction (also named objective reduction)

aims at removing redundant objectives of the original MaOP. Over the last decade,

there are a range of objective reduction techniques in the context of evolutionary many-

objective optimisation [234, 168].

Deb and Saxena [56] proposed a principal component analysis (PCA) based ob-

jective reduction method, which progresses iteratively from the interior of the search
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space towards the optimal front by adaptively finding the correct lower-dimensional

interactions. The proposed method was integrated into NSGA-II to deal with a class

of MaOPs with a low-dimensional Pareto front (i.e., DTLZ5(I,m) [56]). Later, on

the basis of this work, the authors [233] developed two new non-linear dimensional-

ity reduction methods: one based on the correntropy PCA concept and the other on

the maximum variance unfolding principle. Recently, Saxena et al. [234] presented a

framework for both linear and nonlinear objective reduction algorithms which is built

upon the above two methods (PCA and maximum variance unfolding principle). The

performance of the proposed algorithms has been investigated on 30 test instances and

two real-world problems.

Brockhoff and Zitzler [30] proposed a class of objective reduction techniques based

on the dominance structure. Specifically, they presented the minimum objective subset

problem (MOSS) asking which objective functions are essential, introduced a general

notion of conflicts between objective sets, and developed an exact algorithm and a

greedy heuristic for the NP hard MOSS problem. Later on, they allowed slight changes

of the problem dominance structure to obtain a smaller minimum set of objectives [31].

Recently, Brockhoff and Zitzler [33] proposed an objective reduction methodology that

allows both to consider black-box optimisation criteria and to maintain and control

the dominance structure. This includes 1) an investigation on how adding or omitting

objectives affects the problem characteristics, 2) a general notion of conflict between

objective sets as a theoretical foundation for objective reduction, 3) exact and heuristic

algorithms to systematically reduce the number of objectives, while preserving as much

as possible the dominance structure of MaOPs, and 4) an experimental usefulness

demonstration of the proposed methods in the context of both decision making and

search.

Feature selection was used by Jaimes et al. [135] to design objective reduction meth-

ods. The authors presented two algorithms to reduce the objective dimensionality by

identifying the most conflicting objectives. One determines the minimum subset of ob-

jectives that yields the minimum possible error and the other finds a subset of objectives

of a given size that yields the minimum error. Later, Jaimes et al. [134] proposed two
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schemes to integrate an objective reduction technique into an EMO algorithm (online

objective reduction). One scheme periodically reduces the number of objectives during

the search process, but for the last generation of the algorithm the original objectives

are used. The other scheme alternately uses the objective reduction and the original

objective set during the search process. Both schemes have been demonstrated to be

promising to improve the proximity of EMO algorithms in many-objective optimisa-

tion. Recently, inspired by [134], Bandyopadhyay and Mukherjee [11] developed an

objective reduction method, which periodically reorders the objectives on the basis of

their conflict status and selects a subset of conflicting objectives for further processing.

Singh et al. [240] proposed a Pareto corner search evolutionary algorithm (PCSEA)

for objective reduction in many-objective optimisation. Instead of seeking for the entire

Pareto front, PCSEA searches for the boundary solutions first and then use them to

identify the relevant objectives, given the fact that the solutions lying on the Pareto

front’s boundaries are diverse in terms of the range of the objective values and should

aid in accurate estimation of actual dimensionality of the Pareto front.

Walker et al. [258] presented a rank-based dimension reduction for solution sets

with high dimensions. The authors investigated objective selection methods which

aim to preserve the average rank of individuals but with fewer objectives. Applying

the objective selection process to the Times Good University Guide 2009 dataset has

demonstrated that the two most significant objectives (i.e., contributing the most to

the overall structure) are research quality and entry standards.

Recently, Wang and Yao [261] proposed an objective reduction method based on

nonlinear correlation information entropy (NCIE). The NCIE matrix is used to mea-

sure the linear and nonlinear correlation between objectives, and a simple method is

presented to select the most conflicting objectives during the evolutionary process. The

proposed approach has been found to be well suited for Pareto-based algorithms but

not for indicator-based ones.
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2.4.9 Preference-based Search

In general, the Pareto front of an m-objective MOP is an (m − 1)-dimensional front.

To accurately represent this front having one higher dimension, exponentially more

solutions are required. However, the decision maker (DM) is typically interested in

only particular regions of the Pareto front. Therefore, designing an EMO algorithm

which focuses on a subset of the Pareto front according to the DM’s preference is a

good alternative in many-objective optimisation.

There are two key issues in the preference-based approach: when to incorporate the

preference information and how to model the DM preferences. According to when DM

preferences are incorporated, EMO algorithms can be divided into three classes – a

priori, interactive and a posteriori. An a priori decision making approach incorporates

the DM preferences prior to the search process; an interactive decision making approach

does so progressively during the optimisation process; and an a posteriori decision

making approach does so after the search in the sense of selecting a preferred solution

(by the DM) from an approximation of the whole Pareto front. According to the study

of Coello et al. [43], methods for modelling DM preferences can be categorised into

six forms: aspiration level (reference point), weight information, trade-off information,

utility function, outranking, and fuzzy logic. All of these forms, coupled with three

approaches of the DM preference incorporation, give rise to a wide variety of preference-

based EMO algorithms (see [38, 20, 221, 263, 214]), including those focusing on many-

objective optimisation [8, 219, 136].

In addition, it is worth mentioning that there exist another class of preference-based

algorithms which aim to obtain a satisfactory approximation of the whole Pareto front.

That is, the preference information is used to provide discrimination between solutions

in a high-dimensional space rather than steer the search toward a particular region

preferred by the DM. For example, Purshouse et al. [217] and Wang et al. [264, 265]

proposed preference inspired co-evolutionary algorithms (PICEAs) based on a con-

cept of co-evolving the common population of candidate solutions with a family of

decision-maker preferences. Two realisations of PICEAs (PICEA-g and PICEA-w) are

developed. PICEA-g co-evolves goal vectors with candidate solutions and PICEA-w
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co-evolves weight vectors with candidate solutions. Compared with several modern al-

gorithms, both of them have been found to be competitive in balancing proximity and

diversity for many-objective optimisation. In addition, Zhang et al. [282] presented a

knee point driven evolutionary algorithm for MaOPs. The basic idea behind this algo-

rithm is that knee points are naturally most preferred among nondominated solutions

if no explicit user preferences are given. Due to the use of multiple knee points to

guide the population, the presented algorithm can maintain good distribution among

individuals.

2.4.10 Hybrid Approaches

Combining several of the above approaches could be a promising way to deal with

many-objective problems. This can make good use of their strengths and compensate

for each other’s weaknesses.

Brockhoff and Zitzler [32] combined objective reduction with the hypervolume-

based EMO algorithms, saving a lot of computational cost of the hypervolume calcula-

tion. The authors developed a general approach on how objective reduction techniques

can be incorporated into hypervolume-based algorithms and presented that the omis-

sion of objectives can improve the algorithms drastically in terms of the hypervolume

results.

Li et al [167] proposed an improved two-archive algorithm for many-objective op-

timisation, with one archive guided by a decomposition-based approach for proximity

and the other archive guided by a modified diversity maintenance approach for di-

versity. The efficiency of the proposed algorithm was demonstrated by experimental

studies on the DTLZ test suite.

2.4.11 Summary

In short, the above approaches have led to a range of possible solutions to many-

objective problems, some of which have already demonstrated early promise in some

domains. However, great improvements are needed before evolutionary algorithms can

be considered as an effective tool for many-objective problems as for two- or three-
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objective problems. As demonstrated in some studies [217, 88, 180], modern EMaO

algorithms can even struggle on some easy many-objective problems. This suggests a

pressing need for new methodologies in the area.
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Chapter 3

Shift-based Density Estimation

It is well known that Pareto-based algorithms encounter difficulties in dealing with

MaOPs. In Pareto-based algorithms, the ineffectiveness of the Pareto dominance rela-

tion for a high-dimensional space leads to diversity maintenance mechanisms to play

the leading role during the evolutionary process, while the preference of diversity main-

tenance mechanisms for individuals in sparse regions results in the final solutions dis-

tributed widely over the objective space but distant from the desired Pareto front.

Intuitively, there are two ways to address this problem: 1) modifying the Pareto domi-

nance relation and 2) modifying the diversity maintenance mechanism in the algorithm.

In this chapter, we focus on the latter and propose a shift-based density estimation

(SDE) strategy. The aim of our study is to develop a general enhancement of den-

sity estimation in order to make Pareto-based algorithms suitable for many-objective

optimisation.

This chapter is organised as follows. In Section 3.1, we introduce the motivation of

SDE. Section 3.2 details the SDE approach, and then Section 3.3 shows how SDE is

integrated in three popular Pareto-based algorithms, NSGA-II [55], SPEA2 [292], and

PESA-II [44]. Section 3.4 is devoted to experimental studies, which is followed by some

discussions of SDE in Section 3.5. Finally, we summarise the work in Section 3.6.
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3.1 Motivation

In a population, the density of an individual represents the crowding degree of the area

where the individual is located. Due to the close relation with diversity maintenance,

density estimation is very important in EAs and is widely applied in various optimisa-

tion scenarios, such as multimodal optimisation [193], dynamic optimisation [270], and

robustness optimisation [143].

In multi-objective optimisation, usually there is no single optimal solution but

rather a set of Pareto optimal solutions. Naturally, density estimation plays a funda-

mental role in the evolutionary process of multi-objective optimisation for an algorithm

to obtain a representative and diverse approximation of the Pareto front [19, 166].

There are a wide range of density estimation techniques that have been developed

in the EMO community. They act on different neighbours of an individual, involve dif-

ferent neighbourhoods, and consider different measures [148]. For example, the niched

Pareto genetic algorithm (NPGA) considers the niche of an individual and measures

the degree of crowding in the niche [103]. The strength Pareto evolutionary algorithm

(SPEA) uses a clustering technique to estimate the crowding degree of an individual

[294]. NSGA-II defines a new measure, “crowding distance”, to reflect the density of

an individual, only acting on the two closest neighbours located in either side for each

objective. Most grid-based EMO approaches, such as PESA-II and the dynamic multi-

objective EA (DMOEA) [273], estimate the density of an individual by counting the

individuals in the hyperbox where it is located [181], whereas some recent grid-based

approaches consider the crowding degree of a region constructed by a set of hyperboxes

whose range varies with the number of objectives [184, 185]. SPEA2 considers the

k-th nearest neighbour of an individual in the population [292]. Instead of using the

Euclidean distance in SPEA2, Horoba and Neumann used the Tchebycheff distance to

determine the k-th nearest neighbor [104]. In [181], a Euclidean minimum spanning

tree (EMST) of individuals in a population is generated, and the density of an individ-

ual is estimated by its edges in the EMST. Farhang-Mehr and Azarm calculated the

entropy in the population, estimating the density of an individual by considering the
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influences coming from all other individuals in the population [65]. Also, the harmonic

distance has been used to reflect the crowding degree of individuals in the population

[266].

Despite the variety of density estimation techniques, they all measure the similar-

ity degree among individuals in the population, i.e., they estimate the density of an

individual by considering the mutual position relation between it and other individuals

in the population. Formally, the density of an individual p in a population P can be

expressed as follows:

D(p, P ) = D(dist(p, q1), dist(p, q2), ..., dist(p, qN−1)) (3.1)

where qi ∈ P and qi 6= p, N is the size of P and dist(p, q) is the similarity degree between

individuals p and q, usually measured by their distance, e.g., Euclidean distance. D()

is the function of the similarity degree between the interested individual and other

individuals in the population. The specific implementation of D(), as stated above,

depends on the density estimator used in an EMO algorithm.

In Pareto-based algorithms, in general, when two individuals are nondominated

ones in a population, the one with the lower density is preferable. This rule is very

effective for an MOP with 2 or 3 objectives since it can provide a good balance between

proximity and diversity. However, in many-objective optimisation, this rule may fail

to guide the population to search towards the optimal direction.

As mentioned before, the proportion of nondominated individuals in the popula-

tion becomes considerably large when a large number of objectives are involved. In the

extreme case, all individuals in the population may become nondominated with each

other, where the density of individuals will play a leading or even unique role in distin-

guishing between them in the selection process of algorithms. As a result, individuals

that are distributed in sparse regions (i.e., individuals that have a low similarity degree

to other individuals) will be preferred as long as they are nondominated in the popula-

tion. However, it is likely that such individuals are located far away from the optimal

front (e.g., they are slightly better than or comparable with other individuals in some
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objectives but are significantly worse in at least one objective). For example, consider-

ing a population of four nondominated individuals A, B, C, and D with their objective

value (0, 1, 1, 100), (1, 0, 2, 1), (2, 1, 0, 1), and (1, 2, 1, 0), individual A performs worst

regarding proximity but is preferable in Pareto-based algorithms.

This density-leading criterion severely deteriorates the search performance of al-

gorithms, which is reflected in both the mating and environmental selection. In the

mating selection, there will be a higher probability that those poorly-converged non-

dominated individuals (such as individual A in the above example) are selected to

recombine and produce low performance offspring. In the environmental selection, the

long-term existence of those poorly-converged individuals will lead to the elimination

of some well-converged ones due to the restriction of the population size. Consequently,

the solutions, at the end of the optimisation process, may be distributed widely over the

objective space, but far away from the desired Pareto front. Figure 3.1 plots the evolu-

tionary trajectories of the proximity results1 of the original NSGA-II and its modified

version where the density estimation procedure is removed for the 10-objective DTLZ2

[57]. Evidently, with the evolution process, the original NSGA-II gradually draws the

population away from the Pareto front, while replacing the crowding distance-based

selection with random selection noticeably improves the proximity performance of the

algorithm.

The above observations indicate that one reason for the failure of Pareto-based

algorithms in many-objective optimisation is their dislike for individuals in crowded

regions. Then, can we “put” those poorly-converged individuals into crowded regions?

In this case, any density estimator can identify these poorly-converged individuals as

long as it can correctly reflect the crowding degree of individuals. Keeping this in

mind, we present a new general density estimation methodology – shift-based density

estimation (SDE); to facilitate contrast, we abbreviate traditional density estimation

as TDE.

1The results are evaluated by the convergence measure (CM) metric [53]. CM assesses the proximity
of a solution set by calculating the average normalised Euclidean distance from the set to the Pareto
front.
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Figure 3.1: Evolutionary trajectories of the convergence metric (CM) for a run of the
original NSGA-II and the modified NSGA-II without the density estimation procedure
on the 10-objective DTLZ2.

3.2 The Proposed Approach

As stated previously, the density estimation of an individual in the population is based

on the relative positions of other individuals with regard to the individual. In SDE, we

adjust these positions, trying to reflect the proximity of the individual in the population.

When estimating the density of an individual p, SDE shifts the positions of other

individuals in the population according to the proximity comparison between these

individuals and p on each objective. More specifically, if an individual performs better2

than p for an objective, it will be shifted to the same position of p on this objective;

otherwise, it remains unchanged. Formally, without lose of generality, assuming that

we consider a minimisation MOP, the new density D′(p, P ) of individual p in the

population P can be expressed as follows:

D′(p, P ) = D(dist(p, q′1), dist(p, q′2), ..., dist(p, q′N−1)) (3.2)

where N denotes the size of P , dist(p, q′i) is the similarity degree between individuals

p and q′i, and q′i is the shifted version of individual qi (qi ∈ P and qi 6= p), which is

2For minimisation MOPs, performing better means having a lower value; for maximisation MOPs,
it means having a higher value.
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Figure 3.2: An illustration of shift-based density estimation in a bi-objective minimi-
sation scenario. To estimate the density of individual A, individuals B, C, and D are
shifted to B′, C′, and D′, respectively.

defined as follows:

q′i(j) =

 p(j), if qi(j) < pi(j)

qi(j), otherwise
, j ∈ (1, 2, ...,m) (3.3)

where p(j), qi(j), and q′i(j) denote the j-th objective value of individuals p, qi, and q′i,

respectively, and m denotes the number of objectives.

Figure 3.2 shows a bi-objective example to illustrate this shift-based density esti-

mation operation. To estimate the density of individual A in a population composed of

four nondominated individuals A(10, 17), B(1, 18), C(11, 6), and D(18, 2), B is shifted

to B′(10, 18) since B1 = 1 < A1 = 10, and C and D are shifted to C′(11, 17) and

D′(18, 17), respectively, since C2 = 6 < A2 = 17 and D2 = 2 < A2 = 17.

Clearly, individual A, which has a low similarity degree with other individuals in the

original population, has two close neighbours in its new density estimation, and thus

will be assigned a high density value. This occurs because there are two individuals B

and C performing significantly better than A in terms of proximity (i.e., being slightly

inferior to A in one or some objectives but greatly superior to A in the others). These

individuals contribute large similarity degrees to A in its density estimation since the

value on their advantageous objective(s) becomes equal to that of A. This means that
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Figure 3.3: Shift-based density estimation for four situations of an individual (A) in
the population for a minimisation MOP.

the individuals which have no clear advantage over other individuals in the population

will have a high density value in SDE.

In order to further understand SDE, we next consider four typical situations of the

distribution of an individual in the population for a minimum MOP (i.e., performing

well in proximity and diversity, performing well in diversity but poorly in proximity,

performing well in proximity but poorly in diversity, and performing poorly in both

proximity and diversity) in Figure 3.3.

As can be seen from Figure 3.3, only the individual with both good proximity and

good diversity has a low crowding degree in SDE. The individual with either poor prox-

imity or poor diversity has some close neighbours, and the individual with both poor

proximity and poor diversity has the highest crowding degree in the four situations.

In addition, note that the individuals with poor diversity (e.g., see Figure. 3.3(c) and

Figure 3.3(d)) are always located in crowded regions no matter how well they perform
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in terms of proximity, which means that SDE can maintain the distribution character-

istic of individuals in the population while reflecting the proximity difference between

individuals.

3.3 Integrating SDE into NSGA-II, SPEA2 and PESA-II

In this section, we apply SDE to three classical Pareto-based EMO algorithms: NSGA-

II [55], SPEA2 [292] and PESA-II [44]. NSGA-II is known for its nondominated sorting

and crowding distance-based fitness assignment strategies. SPEA2 defines a strength

value for each individual, and combines it with the k-th nearest neighbor method to

distinguish between individuals in the population. The main characteristic of PESA-II

is its grid-based diversity maintenance mechanism, which is used in both the mating

and environmental selection schemes. The density estimators (i.e., the crowding dis-

tance, k-th nearest neighbour and grid crowding degree) in the three algorithms are

representative and are briefly described below.

To estimate the density of an individual in the population, NSGA-II considers its

two closest points on either side along each objective. The crowding distance is defined

as the average distance between the two points on each objective. The nearest neigh-

bour technique used in SPEA2 takes the distance of an individual to its k-th nearest

neighbor into account to estimate the density in its neighbourhood. This density es-

timator is used in both the fitness assignment and archive truncation procedures to

maintain diversity. PESA-II uses an adaptive grid technique to define the neighbour-

hood of individuals. The density around an individual is estimated by the number of

individuals in its hyperbox in the grid. Figure 3.4 illustrates the three density estima-

tors used in TDE and SDE.

It is necessary to point out that since the crowding distance mechanism in NSGA-II

separately estimates an individual’s crowding degree on each objective, individuals may

be overlapping on a single axis of the objective space in SDE. For example, when esti-

mating the shift-based crowding degree of A on the f1 axis in Figure 3.4(a), individuals

A, B, and C are overlapping. Here, we keep the original order before individuals are
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Figure 3.4: An illustration of the three density estimators in traditional and shift-based
density estimation, where individual A is to be estimated in the population.

shifted. That is, on the f1 axis, individual C is still viewed as the left neighbour of A,

and individual D is viewed as its right neighbour in the shift-based crowding distance

calculation of A. In this case, the crowding distance of A in TDE (shown with a dashed

line) is changed to the average distance between A and the shifted C and D in SDE

(shown with a solid line).

In Figure 3.4(b), C and B are the two nearest neighbours of A in the original

population (shown with a dashed arrow), but, to estimate the density of A in SDE,

the two nearest individuals, the shifted D and C, are considered (shown with a solid

arrow). Concerning Figure 3.4(c), there is no individual in the neighbourhood of A in

TDE, but in SDE, the shifted D is the neighbour of A, thereby contributing to its grid

crowding degree.

Overall, although the implementation of the three density estimators is totally

different, the individuals (like individual D in Figure 3.4) which do not perform signifi-

cantly worse than the considered individual will contribute a lot to its density estimation

in SDE.

In the next section, we will empirically investigate the proposed method, trying to

answer the following questions – Can SDE improve the performance of all the three

Pareto-based algorithms? Among these three density estimators, which one is most

suitable for SDE in many-objective optimisation? How would the Pareto-based al-

gorithms, when integrated with SDE, compare with other state-of-the-art algorithms
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Table 3.1: Properties of test problems and parameter setting in PESA-II, PESA-
II+SDE, and ε-MOEA. The settings of div and ε correspond to the different numbers
of objectives of a problem. m and n denote the number of objectives and decision
variables, respectively

Problem m n Properties div in PESA-IIdiv in PESA-II+SDE ε in ε-MOEA
DTLZ1 4, 6, 10 M+4 Linear, Multimodal 5, 40, 20 15, 12, 7 0.04, 0.054, 0.052
DTLZ2 4, 6, 10 M+9 Concave 5, 6, 7 11, 6, 4 0.105, 0.2, 0.275
DTLZ3 4, 6, 10 M+9 Concave, Multimodal 40, 40, 40 18, 16, 6 0.105, 0.2, 0.8
DTLZ4 4, 6, 10 M+9 Concave, Biased 6, 7, 10 13, 5, 4 0.105, 0.2, 0.275
DTLZ5 4, 6, 10 M+9 Concave, Degenerate 11, 7, 5 30, 20, 10 0.032, 0.11, 0.14
DTLZ6 4, 6, 10 M+9 Concave, Degenerate, Biased 9, 6, 6 23, 11, 5 0.095, 0.732, 1.48
DTLZ7 4, 6, 10M+19Mixed, Disconnected, Multimodal 7, 5, 3 13, 11, 5 0.09, 0.26, 0.73

TSP(–0.2)4, 6, 10 30 Convex, Negative correlation 9, 6, 4 17, 9, 5 0.9, 1.9, 4.3
TSP(0) 4, 6, 10 30 Convex, Zero correlation 9, 5, 7 18, 10, 5 0.65, 1.3, 3.15

TSP(0.2) 4, 6, 10 30 Convex, Positive correlation 8, 5, 3 19, 10, 5 0.42, 0.85, 2.26

designed specially for many-objective problems?

3.4 Experimental Results

In this section, we first integrate SDE into the aforementioned three Pareto-based

algorithms (which results in three new EMO algorithms, denoted NSGA-II+SDE,

SPEA2+SDE, and PESA-II+SDE, respectively) and separately perform the compari-

son of NSGA-II vs NSGA-II+SDE, SPEA2 vs SPEA2+SDE, and PESA-II vs PESA-

II+SDE. Thereafter, we compare three SDE-based algorithms and investigate the rea-

son for their behaviour in many-objective optimisation. Finally, we test the compet-

itiveness of SDE to existing state-of-the-art approaches by comparing SPEA2+SDE

with five representative algorithms taken from different categories of solving MaOPs.

Two well-established test problem suites, DTLZ [57] and the multi-objective TSP

[45], are used in this study (see Chapter 2.2.4 for details). In multi-objective TSP,

TSPcp is assigned to −0.2, 0 and 0.2 to represent different characteristics of the prob-

lem. The characteristics of all the tested problems are summarised in Table 3.1.

To compare the performance of the algorithms, the IGD [19, 278] and hypervolume

(HV) indicators are considered. These two indicators have been introduced in Chap-

ter 2.2.3 in detail. IGD is used to assess algorithms on the problems whose Pareto front

are known (i.e., DTLZ) and HV on the problems whose Pareto front are unknown (i.e.,
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the multi-objective TSP). In the calculation of HV, the determination of the reference

point is a crucial issue. Choosing a reference point that is slightly larger than the worst

value of each objective on the Pareto front has been found to be appropriate since the

effects of proximity and diversity of the set can be well balanced [9, 119]. Since the

range of the Pareto front is unknown in TSP, we regard the point with 22 for each

objective (i.e., r = 22m) as the reference point, given that it is slightly larger than the

worst value of the mixed nondominated solution set constructed by all Pareto front

approximation obtained. In addition, since the exact calculation of the HV metric

is infeasible for a solution set with 10 objectives, we approximately estimate the HV

result of a solution set by the Monte Carlo sampling method used in [10]. Here, 107

sampling points are used to ensure accuracy [10].

The algorithm PESA-II requires a grid division parameter (div). Due to the inte-

gration of SDE, the optimal setting for div in PESA-II+SDE is different from that in

PESA-II. The settings of div in Table 3.1 can enable the two algorithms separately to

achieve the best performance on the test instances.

All the results presented in this chapter are obtained by executing 30 independent

runs of each algorithm on each problem with the termination criterion of 100,000 eval-

uations. Following the practice in [119], the population size was set to 200 for the

tested algorithms, and the archive was also maintained with the same size if required.

A crossover probability pc = 1.0 and a mutation probability pm = 1/n (where n de-

notes the number of decision variables) were used. For the continuous problem DTLZ,

the simulated binary crossover (SBX) and polynomial mutation with both distribution

indexes 20 [10] were used as crossover and mutation operators. For the combinatorial

TSP, the order crossover and inversion mutation were used according to [194].

3.4.1 NSGA-II vs NSGA-II+SDE

Table 3.2 shows the results of the two algorithms on the DTLZ and TSP problems

regarding the mean and standard deviation (SD) values, where IGD and HV were used

for the DTLZ and TSP problems, respectively. The better result regarding the mean

for each problem is highlighted in boldface. Moreover, in order to have statistically
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Figure 3.5: Result comparison between NSGA-II and NSGA-II+SDE on the 10-
objective DTLZ2. The final solutions of the algorithms are shown regarding the two-
dimensional objective space f1 and f2.

sound conclusions, the Wilcoxon’s rank sum test [290] at a 0.05 significance level was

adopted to test the significance of the differences between assessment results obtained

by two competing algorithms.

As can be seen from Table 3.2, the performance of NSGA-II has an improvement

when SDE is applied to the algorithm, achieving a better value in 24 out of all 30 test

instances. Also, for most of the problems on which NSGA-II+SDE outperforms NSGA-

II, the results have statistical significance (21 out of the 24 problems). Especially, for the

TSP problem suite, NSGA-II+SDE shows a significant advantage over its competitor,

with statistical significance for all 9 test instances.

Despite an improvement obtained, NSGA-II+SDE actually struggles to cope with

MaOPs. Figure 3.5 plots the final solutions of the two algorithms in a single run

regarding the two-dimensional objective space f1 and f2 of the 10-objective DTLZ2.

Similar plots can be obtained for other objectives of the problem. This particular run is

associated with the result which is the closest to the mean IGD value. Clearly, although

NSGA-II+SDE tends to perform slightly better than NSGA-II in terms of diversity,

both algorithms fail to approach the Pareto front of the problem, given that the range

of the optimal front is [0, 1] for each objective. A detailed explanation of the failure of

NSGA-II+SDE will be given in Chapter 3.4.4.
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Figure 3.6: Result comparison between SPEA2 and SPEA2+SDE on the 10-objective
TSP with TSPcp = 0. The final solutions of the algorithms are shown regarding the
two-dimensional objective space f1 and f2.

3.4.2 SPEA2 vs SPEA2+SDE

Table 3.3 shows the comparative results of the two algorithms on the DTLZ and TSP

test problems. In contrast to the slight difference between NSGA-II+SDE and NSGA-

II, SPEA2+SDE significantly outperforms the original SPEA2. SPEA2+SDE achieves

a better value for all the 30 test instances except the 4-objective DTLZ2, and with

statistical significance on 28 instances. Moreover, the advantage of SPEA2+SDE be-

comes clearer as the number of objectives increases – more than an order of magni-

tude advantage of IGD is obtained for most of the 10-objective instances (i.e., DTLZ1,

DTLZ3, DTLZ5, DTLZ6, and three TSP problems with different conflict degrees among

the objectives). Figure 3.6 shows the final solutions of a single run of SPEA2 and

SPEA2+SDE regarding the objective space f1 and f2 of the 10-objective TSP with

TSPcp = 0. It is clear from the figure that the proximity performance of SPEA2 is

significantly improved when SDE is applied to the algorithm.

3.4.3 PESA-II vs PESA-II+SDE

Using a grid technique to maintain diversity, PESA-II has been found to outperform

NSGA-II and SPEA2 in many-objective optimisation [147]. In spite of this, SDE

can significantly enhance the performance of PESA-II. Table 3.4 gives the compar-
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Figure 3.7: Result comparison between PESA-II and PESA-II+SDE on the 10-
objective DTLZ6. The final solutions of the algorithms are shown regarding the two-
dimensional objective space f1 and f2.

ative results of PESA-II and PESA-II+SDE on the DTLZ and TSP test problems.

PESA-II+SDE achieves a better assessment result than the original PESA-II on all

the 30 instances except the 4-objective DTLZ4, and with statistical significance for 28

instances. Especially, on some MOPs where big obstacles exist for an algorithm to

converge into the Pareto front, such as DTLZ1, DTLZ3, and DTLZ6, more than an

order of magnitude advantage is achieved for all the 4, 6, and 10-objective instances.

Figure 3.7 plots the final solutions of a single run of the two algorithms regarding the

objective space f1 and f2 of the 10-objective DTLZ6. A clear difference in terms of

proximity between the two solution sets can be observed in the figure.

3.4.4 Comparison among NSGA-II+SDE, SPEA2+SDE and PESA-

II+SDE

Previous studies presented different behaviours of the three Pareto-based algorithms

when SDE is integrated to them in many-objective optimisation. This section compares

the three new algorithms and tries to investigate: 1) why they behave differently and

2) which density estimator is more suitable for SDE. Table 3.5 gives the comparative

results of the three algorithms on the DTLZ and TSP test problems.

As can be seen from Table 3.5, SPEA2+SDE and PESA-II+SDE significantly out-
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3.4. Experimental Results 3. Shift-based Density Estimation

Table 3.5: Performance comparison (mean and SD) of NSGA-II+SDE, SPEA2+SDE,
and PESA-II+SDE on the DTLZ and TSP test suites, where IGD was used for DTLZ
and HV for TSP. The best result regarding the mean value among the three algorithms
for each problem instance is highlighted in boldface

Problem Obj. NSGA-II+SDE SPEA2+SDE PESA-II+SDE

DTLZ1
4 5.294E–2 (6.9E–2)† 3.258E–2 (3.3E–4)† 3.729E–2 (3.4E–3)†

6 1.512E+1 (7.8E+0)† 6.223E–2 (5.0E–4)† 8.920E–2 (1.1E–2)†

10 4.801E+1 (2.2E+1)† 9.861E–2 (1.3E–3)† 1.552E–1 (4.4E–2)†

DTLZ2
4 1.168E–1 (4.2E–3)† 1.121E–1 (2.1E–3) 1.113E–1 (5.3E–3)†

6 6.160E–1 (8.0E–2)† 2.703E–1 (4.0E–3)† 2.249E–1 (3.5E–3)†

10 1.907E+0 (1.8E–1)† 4.906E–1 (4.8E–3)† 3.756E–1 (3.2E–3)†

DTLZ3
4 4.234E+0 (2.2E+0)† 1.133E–1 (2.8E–3)† 2.365E–1 (2.5E–1)†

6 1.593E+2 (3.9E+1)† 2.703E–1 (3.3E–3)† 4.464E–1 (2.9E–1)†

10 3.802E+2 (1.4E+2)† 4.947E–1 (8.1E–3)† 1.222E+0 (1.4E+0)†

DTLZ4
4 1.098E–1 (3.1E–3)† 1.129E–1 (2.3E–3)† 2.752E–1 (2.8E–1)

6 3.388E–1 (3.9E–2)† 2.722E–1 (2.9E–2)† 2.579E–1 (6.4E–2)†

10 2.275E+0 (2.9E–2)† 4.701E–1 (6.0E–3)† 3.955E–1 (1.8E–2)†

DTLZ5
4 3.650E–2 (1.0E–2)† 2.431E–2 (2.2E–3)† 4.805E–2 (6.5E–3)†

6 1.503E–1 (3.4E–2)† 8.052E–2 (1.3E–2)† 3.283E–1 (7.4E–2)†

10 3.880E–1 (1.7E–1)† 1.375E–1 (3.0E–2)† 4.087E–1 (7.0E–2)

DTLZ6
4 2.867E+0 (2.4E–1)† 7.879E–2 (1.8E–2)† 1.510E–1 (2.7E–2)†

6 7.772E+0 (4.5E–1)† 1.470E–1 (1.9E–2)† 5.516E–1 (3.2E–2)†

10 9.701E+0 (2.8E–1)† 2.784E–1 (2.2E–2)† 8.679E–1 (1.2E–1)†

DTLZ7
4 1.493E–1 (4.7E–3)† 1.326E–1 (5.0E–3) 1.352E–1 (4.8E–3)†

6 5.227E–1 (1.9E–2)† 4.217E–1 (8.5E–3)† 4.147E–1 (6.9E–2)†

10 2.160E+0 (5.6E–1)† 8.868E–1 (4.7E–3)† 1.259E+0 (3.6E–1)†

TSP(–0.2)
4 6.377E+4 (4.4E+3)† 9.667E+4 (1.7E+3)† 8.984E+4 (2.3E+3)†

6 4.274E+6 (5.2E+5)† 1.825E+7 (5.1E+5)† 1.533E+7 (6.4E+5)†

10 1.582E+10 (2.3E+09)†3.669E+11 (1.6E+10)†1.855E+11 (2.6E+10)†

TSP(0)
4 6.866E+4 (3.9E+3)† 8.357E+4 (1.7E+3)† 7.883E+4 (1.8E+3)†

6 5.669E+6 (6.0E+5)† 1.550E+7 (3.5E+5)† 1.354E+7 (5.5E+5)†

10 2.496E+10 (6.4E+09)†2.984E+11 (9.8E+09)†2.022E+11 (1.5E+10)†

TSP(0.2)
4 6.917E+4 (2.4E+3)† 7.493E+4 (1.7E+3)† 7.160E+4 (1.3E+3)†

6 7.580E+6 (8.0E+5)† 1.357E+7 (3.1E+5)† 1.249E+7 (3.8E+5)†

10 3.622E+10 (8.5E+09)†2.481E+11 (9.1E+09)†1.897E+11 (7.8E+09)†

“†” indicates that the result of the considered algorithm is significantly different from that of its right
algorithm (i.e., NSGA-II+SDE vs SPEA2+SDE, SPEA2+SDE vs PESA-II+SDE, and PESA-II+SDE
vs NSGA-II+SDE) at a 0.05 level by the Wilcoxon’s rank sum test.
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(a) NSGA-II+SDE (b) SPEA2+SDE (c) PESA-II+SDE

Figure 3.8: The final solution set of the three algorithms on the ten-objective DTLZ3,
shown by parallel coordinates.

performs NSGA-II+SDE. SPEA2+SDE outperforms NSGA-II+SDE for all test in-

stances except for the 4-objective DTLZ4, and PESA-II outperforms NSGA-II+SDE

in 26 out of all 30 instances. Especially, for the 6- and 10-objective DTLZ1 and

DTLZ3 problems, the advantage of the first two algorithms over NSGA-II+SDE is

more than two orders of magnitude. On the other hand, considering the results be-

tween SPEA2+SDE and PESA-II+SDE, the performance difference is also clear. The

former has an advantage over the latter in 24 out of the 30 instances. More specifi-

cally, SPEA2+SDE achieves better results on all the DTLZ1, DTLZ3, DTLZ5, DTLZ6,

and TSP instances as well as on most of the DTLZ7 instances, while PESA-II+SDE

performs better on the three instances of DTLZ2, 6- and 10-objective DTLZ4, and

6-objective DTLZ7. In addition, the difference among three algorithms has statis-

tical significance on most of all the 30 test instances: 30 for NSGA-II+SDE versus

SPEA2+SDE, 28 for SPEA2+SDE versus PESA-II+SDE, and 28 for PESA-II+SDE

versus NSGA-II+SDE.

Figure 3.8 shows the final solutions of the three algorithms on the 10-objective

DTLZ3 by parallel coordinates based on the single run where the result is the closest

to the mean IGD value. Parallel coordinates have been found to be a useful tool

for visualising many-objective solutions in a two-dimensional graph [71]. Each line in

the graph connects the objective values achieved by an individual of the population

and represents a potential solution to the given problem. The DTLZ3 test problem,

by introducing a vast number of local optima (310 − 1), poses a stiff challenge for
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an algorithm to search towards the global optimal front, especially when the number

of objectives becomes large. The global optimal front of the problem is a spherical

front satisfying f2
1 + f2

2 + ... + f2
M = 1 in the range f1, f2, ..., fM ∈ [0, 1]. For this

problem, NSGA-II+SDE fails to approach the Pareto front, with the upper boundary

of its solutions exceeding 1600 on each objective, as shown in Figure 3.8. Most of

the solutions of PESA-II+SDE can converge into the Pareto front, but fail to cover the

whole optimal range. Only SPEA2+SDE can achieve a good balance between proximity

and diversity, having a spread of solutions over fi ∈ [0, 1] for all the 10 objectives.

Due to the ineffectiveness of the Pareto dominance relation in distinguishing be-

tween individuals for many-objective optimisation, the performance differences among

NSGA-II+SDE, SPEA2+SDE, and PESA-II+SDE can be attributed to the different

behaviours of their density estimators (i.e., the crowding distance, k-th nearest neigh-

bor, and grid crowding degree) in SDE. In the following, we will investigate them in

detail.

Recall that to estimate the density of an individual, the crowding distance estima-

tor considers its two closest points on either side along each objective. Due to this

separate consideration of the neighbours on each objective, an incorrect estimation of

an individual’s density may be obtained when the number of objectives is larger than

two3. This phenomenon has been reported in Kukkonen and Deb’s study [163]. In

this case, an individual which is far from other individuals in the population may be

assigned a low (poor) crowding distance, leading to an incorrect estimation in SDE.

Consider a tri-objective scenario where a population is composed of four non-

dominated individuals A(1, 1, 1), B(0, 10, 2), C(2, 0, 10) and D(10, 2, 0), as shown in

Figure 3.9 by parallel coordinates. Clearly, individual A has a low similar degree with

the other three individuals and performs significantly better than them in terms of

proximity. However, A is assigned a poor crowding distance in both TDE and SDE. In

TDE, A has two close neighbours on each objective (i.e., B and C on f1, C and D on

f2, and D and B on f3). In SDE, the upper neighbour of A on each objective remains

3For a bi-objective problem, the crowding distance can correctly estimate the density of an individual
in the nondominated set since the property of the Pareto dominance relation (which implies a monotonic
relation between individuals in the objective space) causes individuals to come close together along both
the objectives.
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Figure 3.9: An illustration of the failure of the crowding distance in TDE and SDE
on a tri-objective scenario, showed by parallel coordinates. In a nondominated set
consisting of A(1, 1, 1), B(0, 10, 2), C(2, 0, 10) and D(10, 2, 0), individual A performs
well in terms of proximity and diversity. But A will be assigned a poor density value
in both TDE and SDE since the crowding distance separately considers its neighbours
on each objective.

unchanged, while the lower neighbour moves to the position of A. Thus, the crowding

distance of A in SDE is CD(A) = ((Af1 −Cf1) + (Af2 −Df2) + (Af3 −Bf3))/3 = 1,

which is clearly worse than CD(B) = CD(C) = CD(D) = 3.

Unlike the crowding distance, the k-th nearest neighbour and grid crowding degree

estimators consider an individual as a whole, thus avoiding the above misjudgement.

The inferior performance of PESA-II+SDE against SPEA2+SDE may be due to the

coarseness of the grid-based density estimator. As pointed out in [90], the judgement

of density of an individual in grid depends partly on the size of a hyperbox and the

position of the hyperbox where the individual is located.

As an explanation for the problem of the grid crowding degree, Figure 3.10 shows a

bi-objective nondominated set consisting of individuals A, B, C, D and E. Individual

D performs worse than C and E in terms of proximity, thus having two very close

neighbours G and H in SDE. However, since they are distributed in different hyper-

boxes, the grid crowding degree of D is still equal to one. In contrast, individual C,

which has a relatively distant neighbour F in its hyperbox, is assigned a higher grid

crowding degree (2). Concerning the k-th nearest neighbour in SPEA2+SDE, it is clear

that D has a higher density value than C since the Euclidean distance between D and
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Figure 3.10: An illustration of the inaccuracy of the grid crowding degree. D has two
very close neighbours G and H in SDE, but its grid crowding degree is smaller than
that of C which has a relatively distant neighbour F.

its nearest neighbour G is smaller than that between C and its nearest neighbour F.

Overall, the performance difference among the algorithms is due to the difference

in the degree of accuracy of their density estimators. A density estimator will be

well suited in SDE as long as it can accurately estimate the density of individuals.

Next, we will test the competitiveness of the proposed method to existing state-of-

the-art methods in many-objective optimisation by comparing SPEA2+SDE with five

representative algorithms taken from different categories solving MaOPs.

3.4.5 Comparison with State-of-the-Art Algorithms

We consider five peer algorithms, MOEA/D4 [278], MSOPS [106], HypE [10], ε-MOEA

[54], and DMO [1]. These algorithms are representative approaches in dealing with

MaOPs, and their performance has been well verified in many-objective optimisation

[81, 88, 256, 264, 180]. Readers can refer to Chapter 2.4 for their descriptions.

Parameters need to be set in some algorithms. According to their original papers,

the neighbourhood size and the penalty parameter in MOEA/D were set to 10% of

the population size and 5, respectively, and the number of sampling points in HypE

4Here, the penalty-based boundary intersection (PBI) function is used since MOEA/D with PBI
has been found to be more competitive when solving problems with a high-dimensional objective space
[52].
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was set to 10,000. Since increasing the number of weight vectors with the number

of objectives benefits the performance of MSOPS, 200 weight vectors were selected in

MSOPS according to the experimental results in [256]. In ε-MOEA, the size of the

archive set is determined by the ε value. In order to guarantee a fair comparison, we

set ε so that the archive of ε-MOEA is approximately of the same size (200) as that

of the other algorithms (given in Table 3.1). In addition, in MOEA/D the population

size cannot be arbitrarily specified since it is equal to the number of weight vectors.

As suggested in [119], we used the closest number to 200 among the possible values

as the population size (i.e., 220, 252, and 220 for 4-, 6-, and 10-objective problems,

respectively).

Comparison on the DTLZ Test Problems

Table 3.6 shows the comparative results of the six algorithms on the DTLZ problem

suite. First, we consider the DTLZ1 problem which has an easy, linear Pareto front, but

a huge number of local optima (115−1). For this problem, SPEA2+SDE and MOEA/D

perform clearly better than the other four algorithms. More precisely, MOEA/D

slightly outperforms SPEA2+SDE on the 4-objective instance, while SPEA2+SDE

achieves a lower IGD value when a larger number of objectives are involved.

Although having the same optimal front, the problems DTLZ2, DTLZ3, and DTLZ4

are designed to challenge different capabilities of an algorithm. DTLZ2 is a relatively

easy function with a spherical Pareto front. Based on DTLZ2, a vast number of local

optima are introduced in DTLZ3, creating a big challenge for algorithms to search

towards the global optimal front, and a non-uniform density of solutions are introduced

in DTLZ4, creating a big challenge for algorithms to maintain diversity in the objective

space. As can be seen from Table 3.6, for the DTLZ2 problem, generally, ε-MOEA

performs best, followed by MOEA/D and SPEA2+SDE. On DTLZ3, MOEA/D and

SPEA2+SDE are significantly superior to the other algorithms. The former reaches

the best result on the two low-dimensional instances, and the latter outperforms the

other algorithms when the number of objectives reaches 10. On DTLZ4, SPEA2+SDE

is very competitive. Although MSOPS performs slightly better than SPEA2+SDE on
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the 4-objective instance, SPEA2+SDE has a clear advantage over the other algorithms

for the remaining instances. In addition, note that MOEA/D, which works very well on

the first three problems (DTLZ1, DTLZ2, and DTLZ3), tends to struggle on DTLZ4,

obtaining the worst IGD value on 4- and 6-objective test instances. Similar observations

have been reported in [52].

The Pareto front of DTLZ5 and DTLZ6 is a degenerate curve in order to test

the ability of an algorithm to find a lower-dimensional optimal front while working

with a higher-dimensional objective space. The difference between the two problems

is that DTLZ6 is much harder than DTLZ5 by introducing bias in the g function

[57]. For such problems, MSOPS and MOEA/D work very well. The former performs

best on DTLZ5, and the latter outperforms the other algorithms on most of the DTLZ6

instances. Nevertheless, SPEA2+SDE show advantages in the low-dimensional DTLZ6,

and for the high-dimensional instances, it performs significantly better than the peer

algorithms except MOEA/D. On DTLZ5, SPEA2+SDE is always in the third place,

better than HypE, ε-MOEA, and DMO.

With a number of disconnected Pareto optimal regions, DTLZ7 tests an algorithm’s

ability to maintain sub-populations in disconnected portions of the objective space.

For this problem, SPEA2+SDE has a clear advantage over the other five algorithms,

obtaining the best IGD value for all the three instances. In contrast, two decomposition-

based algorithms, MOEA/D and MSOPS, have great difficulty with this problem. The

former performs worst on the 4-objective instance, and the latter obtains the worst

IGD result for the 6- and 10-objective instances. Figure 3.11 plots the final solutions of

the six algorithms in a single run on the 10-objective DTLZ7 by parallel coordinates.

This particular run is associated with the result which is the closest to the mean IGD

value. It is clear from the figure that the solutions of MSOPS, HypE, and DMO

fail to converge into the optimal front (the upper bound of the last objective in the

Pareto front of DTLZ7 is equal to 2×m, i.e., f10 ≤ 20 for the 10-objective instance).

MOEA/D and ε-MOEA struggle to maintain diversity, with their solutions converging

into a portion of the disconnected Pareto front. Only SPEA2+SDE achieves a good

approximation and coverage of the Pareto front.
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Figure 3.11: The final solution set of the six algorithms on the ten-objective DTLZ7,
shown by parallel coordinates.

Overall, SPEA2+SDE is very competitive on the DTLZ problem suite. It ob-

tains the best IGD value in 9 out of the 21 test instances, followed by MOEA/D,

MSOPS, and ε-MOEA, with the best value in 6, 4, and 2, respectively. Moreover,

unlike MOEA/D and MSOPS, whose search ability has sharp contrasts on different

problems, SPEA2+SDE has stable performance, ranking well for all the test instances.

Comparison on the TSP Test Problems

EMO algorithms usually show different behaviour on combinatorial optimisation

problems from on continuous ones. One important property of the multi-objective

TSP problem is that the conflict degree among the objectives can be adjusted accord-

ing to the parameter TSPcp, where a lower value means a greater degree of conflict.

From the HV results shown in Table 3.7, the advantage of SPEA2+SDE over the

other algorithms on the TSP seems to be greater than that on the DTLZ problems.

SPEA2+SDE significantly outperforms the five peer algorithms for all the instances

except the 4-objective TSP with TSPcp = 0, where MOEA/D performs slightly better
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Figure 3.12: Result comparison between SPEA2+SDE and the other algorithms on the
10-objective TSP with TSPcp = −0.2. The final solutions of the algorithms are shown
regarding the two-dimensional objective space f1 and f2.

than SPEA2+SDE. Moreover, the performance difference can be better observed with

the increase of the number of objectives.

To facilitate visual comparison, Figure 3.12 shows the final solutions of a single

run of the six algorithms regarding the two-dimensional objective space f1 and f2 of

the 10-objective TSP with TSPcp = −0.2. Clearly, the solutions of SPEA2+SDE

have a good balance between proximity and diversity. In contrast, the solutions of

MSOPS, ε-MOEA, and DMO are worse than those of SPEA2+SDE in terms of prox-

imity. MOEA/D struggles to maintain diversity, making its solutions concentrated in

a small region. Although there are several solutions distributed widely, most of the

solutions of HypE have a poor proximity, thus leading to its low HV value.

Finally, it is worth mentioning that the difference between SPEA2+SDE and the

peer algorithms on most of all the 30 DTLZ and TSP problems has statistical signif-

icance. Specifically, the proportion of the test instances where SPEA2+SDE outper-
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forms MOEA/D, MSOPS, HypE, ε-MOEA and DMO with statistical significance is

15/19, 25/25, 28/30, 24/27 and 29/30, respectively.

3.5 Discussions

The impressive results of SPEA2+SDE motivate us to deeply explore the density esti-

mation mechanism (i.e., the k-th nearest neighbour) in SPEA2. SPEA2 employs Eu-

clidean distance to measure the similarity degree between individuals. The calculation

of Euclidean distance can be viewed as an aggregation of each dimension’s difference.

In SDE, the dimensions in the aggregation are switched on (or off) when the interested

individual performs better (or worse) than its opponent. This means that an individual

which has no clear advantage over its opponents will have a high similarity degree with

them, thus being assigned a high density value in the population.

In addition, the parameter k in the k-th nearest neighbour approach has no clear in-

fluence on the performance of SPEA2+SDE in many-objective optimisation. In SPEA2,

k is used in the fitness assignment procedure, which serves the purpose of sorting indi-

viduals for archiving when the number of nondominated individuals is smaller than the

archive size. However, in many-objective optimisation, most individuals are nondomi-

nated to each other, and usually the number of nondominated individuals is far larger

than the archive size. In this case, the archive truncation procedure, which does not

need to specify the parameter k, plays a decisive role in the algorithm’s performance.

Finally, note that there is little additional computational cost of the proposed ap-

proach. Contrasting the calculation of SDE (Eqs. (3.2) and (3.3)) with that of TDE

(Eq. (3.1)), only a comparison of objective values was added before estimating the sim-

ilarity degree between individuals. This indicates a negligible computational difference

between the original Pareto-based algorithms and their SDE version.

3.6 Summary

Many-objective optimisation presents great challenges for traditional Pareto-based al-

gorithms. The imbalance of the role between the Pareto dominance relation and di-
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versity maintenance suggests the need for new methodologies in the EMO community.

In this chapter, we proposed a shift-based density estimation (SDE) strategy to en-

hance traditional density estimators in Pareto-based algorithms for MaOPs. By shift-

ing individuals’ positions according to their relative closeness to the Pareto front, SDE

considers both proximity and diversity for each individual in the population. The im-

plementation of SDE is simple and it can be applied to any specific density estimator

without the need of additional parameters.

Systematic experiments were carried out by providing an extensive comparison on

several groups of well-defined continuous and combinatorial test problems. SDE was

separately applied to three popular Pareto-based algorithms, NSGA-II, SPEA2, and

PESA-II. From the comparative results, it has been observed that all the three algo-

rithms after the implementation of SDE achieve an improvement of performance with

varying degrees. A further comparative study among NSGA-II+SDE, SPEA2+SDE,

and PESA-II+SDE has revealed that SDE is well suited for the density estimator

which can accurately reflect the density of individuals in the population. Moreover,

five state-of-the-art EMO algorithms (MOEA/D, MSOPS, HypE, ε-MOEA, and DMO)

for solving MaOPs from different perspectives were used as peer algorithms to verify

the proposed SDE strategy. The experimental results have shown that SPEA2+SDE

is very competitive against the peer algorithms in terms of providing a good balance

between proximity and diversity. This leads to the two key findings of this chapter.

• Pareto-based algorithms, with a general enhancement, can be appropriate for

many-objective optimisation, which refutes the common belief that the Pareto-

based algorithm framework performs worse than the decomposition-based or

indicator-based algorithm frameworks in dealing with MaOPs.

• When designing a Pareto-based algorithm, researchers only need to focus on tack-

ling low-dimensional (i.e., 2-objective and 3-objective) optimisation problems;

when addressing an MOP with many objectives, SDE may be easily and effec-

tively adopted, provided that the algorithm’s density estimator can accurately

reflect the density of individuals.
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Finally, it is important to note that using density estimators that reflect both prox-

imity and density information will reduce the degree of accuracy of density estimation

to some extent. This is a bit like the classical fitness sharing and penalty based ap-

proaches [86, 72], which change the original fitness value (with respect to proximity) of

individuals to reflect their distribution information. Similarly, SDE changes the origi-

nal density value of individuals to reflect their proximity information in the case of the

Pareto dominance relation losing its effectiveness.
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Chapter 4

A Grid-Based Evolutionary

Algorithm

In multi-objective optimisation, the grid has an inherent property of reflecting the

information of proximity and diversity simultaneously. Each solution in the grid has

a deterministic location. The performance of a solution regarding proximity can be

estimated by its grid location in comparison with other solutions, and the performance

of a solution regarding diversity can be estimated by the number of solutions whose

grid locations are identical with or similar to its grid location. Moreover, in contrast

to the Pareto dominance criterion, a grid-based criterion can not only qualitatively

compare solutions but also give the quantitative difference in each objective among

them. This is well suited to MaOPs, given the increase of selection pressure obtained

from the quantitative comparison of solutions’ objective values [128, 45].

With these in mind, this chapter proposes a grid-based evolutionary algorithm

(GrEA), which takes maximum advantage of the potential of the grid to deal with

many-objective optimisation problems.

The chapter is organised as follows. In Section 4.1, we give the motivation of this

work. Section 4.2 describes the proposed approach in detail. Section 4.3 is devoted to

experimental studies, consisting of experimental setting, algorithm comparison, param-

eter investigation, and computational cost examination. Finally, Section 4.4 provides
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f2

f1

A(0, 4)

B(1, 1)
C(3, 1)

D(3, 1)

E(4, 0)

Figure 4.1: An illustration of individuals in grid for a bi-objective scenario.

some concluding remarks.

4.1 Motivation

Grid has a natural ability to reflect the distribution of individuals in the evolutionary

process by their own grid locations (i.e., grid coordinates). The difference between grid

coordinates of individuals indicates the distance between solutions and further implies

the density information of individuals in the population. For example, Figure 4.1

illustrates individuals in grid in a bi-objective space. For individuals A, B, and C in

the figure, their grid coordinates are (0, 4), (1, 1), and (3, 1), respectively. The difference

of grid coordinates between A and C (i.e., (3 − 0) + (4 − 1) = 6) is larger than that

between A and B (i.e., (1− 0) + (4− 1) = 4), which indicates that C is farther away

from A than B. In addition, given that there exists another individual (D) which has

the identical grid coordinate with C (i.e., the difference of grid coordinates between

them is 0), C can be considered to be of a higher crowding degree in comparison with

A and B.

On the other hand, grid is also capable of indicating the evolutionary status of

individuals in terms of proximity. The grid coordinate takes into account not only

whether one individual is better than another but also the difference in objective values
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between them. For example, considering individuals A and B with their own grid

coordinates (0, 4) and (1, 1) in Figure 4.1, it is clear that the difference in objective f2

between them is greater than that in objective f1 (i.e., (4− 1) > (1− 0)). This means

that grid can further distinguish between individuals when they are on a tie in the

sense of Pareto dominance, thereby providing a higher selection pressure in the EMaO

process.

Over the last decade, grid-based techniques have been widely applied in the EMO

community, resulting in the appearance of several grid-based algorithms. Their be-

haviour has also been well studied, both theoretically and experimentally [151, 286,

165, 54, 220].

In the first known study of this kind, grid was introduced into the Pareto-based

evolution strategy (PAES) proposed by Knowles and Corne [150] to maintain the di-

versity of the archive set. The crowding degree of an individual is estimated by the

number of individuals sharing its grid location. When a nondominated candidate is to

join an archive that is full, it replaces one of the individuals with the highest crowding

degree if its own crowding degree is lower. Some extended theoretical and practical

studies were also presented in [151, 46].

Yen and Lu [273] presented a dynamic multi-objective evolutionary algorithm, using

adaptive grid-based rank and density estimation. Unlike PAES and PESA, grid, here,

is regarded as an implement to store the information of both proximity and diversity

of solutions. Each cell in grid is assigned a rank and a density value according to the

Pareto dominance relation and grid location of solutions.

The concept of ε-dominance proposed firstly by Laumanns et al. [165] can be seen as

a grid-based technique to combine the proximity properties of an EMO algorithm with

the need to preserve a diverse set of solutions. Deb et al. [54] developed a steady-state

algorithm ε-MOEA using ε-dominance. It divides the objective space into hyperboxes

by the size of ε and each hyperbox contains at most a single individual. However, the

boundary solutions may be lost in the evolutionary process of the algorithm due to

the feature of ε-dominance [54, 99]. To address this issue, Hernández-Dı́az et al. [99]

proposed a variant of the algorithm, called Pareto adaptive ε-dominance.
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Rachmawati and Srinivasan [220] introduced a dynamic grid resizing strategy, which

is capable of shrinking or expanding hyperboxes as necessity dictates. The strategy uses

two metrics, the mean occupancy and neighbor occupancy, to detect the setting of grid

sizes and further adjusts them correspondingly.

More recently, Karahan and Köksalan [144] developed a territory-based EMO al-

gorithm, TDEA, to solve MOPs. Similar to ε-MOEA, TDEA is also a steady-state

algorithm. It defines a territory τ around an individual to maintain diversity. Its main

difference from ε-MOEA lies in that the hyperbox of TDEA is based on individuals

rather than being independent on them.

Overall, the above grid-based EMO algorithms are successful, and most of them

perform very well on the problems with two or three objectives. However, it is inter-

esting that their application to many-objective problems has received little attention.

This may mainly be attributed to three reasons below.

• The need of data storage and computational time increases exponentially. The

calculation of most existing grid-based algorithms revolves around hyperboxes

in grid. Such box-centred calculation often needs to store the information of

each hyperbox in grid (e.g., the number of individuals in each hyperbox). As

pointed out by Corne and Knowles [45], these algorithms may not be suitable

for many-objective problems since their operation relies on the data structures

that exponentially grow in size with the number of objectives. Additionally, the

computational cost for high dimensional problems would be tremendous when

the box-centred calculation is implemented [147]. If we traverse each hyperbox

in an m-dimensional grid, there will be rm hyperboxes to be accessed, where r is

the number of divisions in each dimension.

• The properties of grid are not utilised or exploited sufficiently. The selection

criterion of some grid-based algorithms (such as PAES, PESA and TDEA), in

the sense of proximity, is based on the Pareto dominance relation, and thus may

fail to provide enough selection pressure towards the desired direction in the

evolutionary process of many-objective optimisation.
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• The density estimator may fail to reflect the distribution of solutions accurately.

Since the number of hyperboxes in grid exponentially increases with the number

of objectives, the solutions for many-objective problems are likely to disperse in

different hyperboxes. Consequently, existing grid-based algorithms which only

consider the number of individuals in a single hyperbox would not discriminate

individuals by means of their distribution, as the density values are almost equal

on the basis of this estimation method.

The above difficulties would largely limit the application of existing grid-based

EMO algorithms to MaOPs. However, we argue that these difficulties should not be

insurmountable. Firstly, box-centred calculation can be replaced by individual-centred

calculation. In this case, grid is merely regarded as a “pointer” to depict the address of

individuals. Secondly, a selection criterion based on the difference of grid coordinates

can be introduced to strengthen the selection pressure. Finally, the failure of density

estimation may also be addressed if the density value of an individual relies on the

number of its neighbours not in a single hyperbox but rather in a region constructed

by a set of hyperboxes whose range increases with the number of objectives.

Bearing these in mind, we propose a grid-based evolutionary algorithm for MaOPs.

4.2 The Proposed Algorithm

In this section, we first introduce some definitions used in GrEA. Then, we present

the framework of the proposed algorithm. Next, we describe the fitness assignment

process. Finally, the strategies for mating and environmental selection processes are

presented.

4.2.1 Definitions and Concepts

In GrEA, grid is used as a frame to determine the location of individuals in the objective

space. Therefore, its adaptability with the evolutionary population is advisable. In

other words, when a new population is generated, the location and size of grid should

be adapted and adjustable so that it just envelops the population. Here, we adopt
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lbk ubk

mink(P) maxk(P)

k

dk

Figure 4.2: Setting of grid in the kth objective.

the adaptive construction of grid, borrowing ideas from the adaptive genetic algorithm

(AGA) presented by Knowles and Corne [151].

The grid setting in the kth objective is shown in Figure 4.2. First, the minimum

and maximum values regarding the kth objective among the individuals in a population

P are found and denoted as mink(P ) and maxk(P ), respectively. Then, the lower and

upper boundaries of the grid in the kth objective are determined according to the

following formulas:

lbk = mink(P )− (maxk(P )−mink(P ))/(2× div) (4.1)

ubk = maxk(P ) + (maxk(P )−mink(P ))/(2× div) (4.2)

where div denotes the number of the divisions of the objective space in each dimension

(e.g., in Figure 4.2, div = 5). Accordingly, the original m-dimensional objective space

will be divided into divm hyperboxes. Thus, the hyperbox width dk in the kth objective

can be formed as follows:

dk = (ubk − lbk)/div (4.3)

In this case, the grid location of an individual in the kth objective can be determined

by lbk and dk:

Gk(x) = b(fk(x)− lbk)/dk c (4.4)

where “b·c” denotes the floor function, Gk(x) is the grid coordinate of individual x in

the kth objective, and fk(x) is the actual objective value in the kth objective. For
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example, in Figure 4.2, the grid coordinate of individuals (from left to right) in the kth

objective is 0, 1, 2, 3, 4, and 4. In the following, two concepts used in the comparison

between individuals are defined on the basis of their grid coordinates.

Definition 4.2.1 (Grid dominance). Let x,y ∈ P,x ≺grid y: ⇔

∀i ∈ (1, 2, ...,m) : Gi(x) ≤ Gi(y) ∧

∃j ∈ (1, 2, ...,m) : Gj(x) < Gj(y)
(4.5)

where “x ≺grid y” denotes that “x grid-dominates y”, m is the number of objectives,

and the grid environment is constructed by the population P . Apparently, the concept

of grid dominance is the same as that of Pareto dominance if the grid coordinates of

individuals are replaced by their actual objective values. Their relation is as follows. If

one solution Pareto-dominates another solution, the latter will not grid-dominate the

former, and vice versa. On the other hand, the grid dominance relation permits one

solution to dominate another solution if the former is slightly inferior to the latter in

some objectives but largely superior to the latter in some other objectives, e.g., the

individuals B and C in Figure 4.1.

The grid dominance relation is similar to the ε-dominance relation, in view of that

both are the relaxed form of the Pareto dominance relation. But, one important differ-

ence is that the degree of relaxation of grid dominance is determined by the evolutionary

status of the population. The division number div in GrEA is a fixed parameter set by

the user beforehand, leading to the proximity and diversity requirements to be adjusted

adaptively with the evolution of the population. A widely-distributed population in

the objective space (often appearing at the initial stage of evolution) has a larger relax-

ation degree (i.e., a larger size of a cell in the grid), thereby providing a higher selection

pressure; as the population evolves toward the more concentrated Pareto front region,

the relaxation degree becomes lower, leading the diversity to be more emphasised.

In addition, the usage of grid dominance in our study is also different from that of ε-

dominance in the ε-dominance based algorithms. In the ε-dominance based algorithms,

ε-dominance is used to determine the survival of individuals. Only nondominated in-

dividuals can be preserved in the archive set. However, in GrEA, grid dominance is
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Algorithm 4.1 Grid-based Evolutionary Algorithm (GrEA)

Require: P (population), N (population size)
1: P ← Initialize(P )
2: while termination criterion not fulfilled do
3: Grid setting(P )
4: Fitness assignment(P )
5: P ′ ←Mating selection(P )
6: P ′′ ← V ariation(P ′)
7: P ← Environmental selection(P

⋃
P ′′)

8: end while

9: return P

mainly used to prevent individuals from being archived earlier than their competitors

that grid-dominate them (this will be explained later in the fitness adjustment strat-

egy part in Section 4.2.5). This means that grid-dominated individuals can also have

the chance to enter the archive set, which is useful for the maintenance of boundary

individuals in the population to some extent.

Definition 4.2.2 (Grid difference). Let x,y ∈ P , the grid difference between them is

denoted as:

GD(x,y) =
m∑
k=1

| Gk(x)−Gk(y) | (4.6)

Grid difference is influenced by the number of divisions div, ranging from 0 to

m(div − 1). The larger the div, the smaller the size of a cell and the higher the grid

difference value between individuals.

4.2.2 Basic Procedure

Algorithm 4.1 gives the basic framework of GrEA. The main procedure of the algorithm

is similar to most generational EMO algorithms like NSGA-II [55] and SPEA2 [292].

Firstly, N individuals are randomly generated to form an initial population P . Then,

the grid environment for the current population P is set as described in the previous

section, and the fitness of individuals in P is assigned according to their location in the

grid. Next, mating selection is performed to pick out promising solutions for variation.

Finally, the environmental selection procedure is implemented to keep a record of the

N best solutions (elitists) for survival.
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4.2.3 Fitness Assignment

In order to evolve the population towards the optimum as well as diversify the indi-

viduals uniformly along the obtained trade-off surface, the fitness of individuals should

contain the information in terms of both proximity and diversity. Here we take three

grid-based criteria into account to assign the fitness of individuals. They are grid rank-

ing (GR), grid crowding distance (GCD), and grid coordinate point distance (GCPD).

The first and last criteria are used to evaluate the proximity of individuals while the

middle one is concerned with the diversity of individuals in the population.

GR is a proximity estimator to rank individuals on the basis of their grid locations.

For each individual, GR is defined as the summation of its grid coordinate in each

objective:

GR(x) =

m∑
k=1

Gk(x) (4.7)

where Gk(x) denotes the grid coordinate of individual x in the kth objective, and m is

the number of objectives.

GR can be considered as a natural tradeoff between the number of objectives for

which one solution is better than another and the difference of values in a single objec-

tive between two solutions. On the one hand, if an individual performs better than its

competitors in the majority of objectives, it would have a higher likelihood of obtaining

a lower GR value. On the other hand, the difference in a single objective is also an

important part of influencing the GR value. For instance, considering individuals C

and A in Figure 4.3, C will obtain a worse GR value than A (6 against 4) since the

advantage in f2 is less than the disadvantage in f1.

Note that the behaviour of GR is closely related to the shape of the Pareto front of

a multi-objective problem; e.g., individuals around the centre of the Pareto front have

good evaluations when the shape is convex, and individuals located in the edges of the

Pareto front are preferable when the shape is concave. This may drive the population

towards part of the optimal front, like the knee of the Pareto front. In the proposed

algorithm, a GR adjustment strategy will be introduced to deal with this issue in the

environmental selection process (Section 4.2.5).
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f2

f1

A(4, 0)

B(5, 1)

C(6, 2)

D(5, 1)

E(3, 2)
F(4, 3)

G(4, 3)

GCPD

(GR, GCD)

Figure 4.3: Illustration of fitness assignment. The numbers in the brackets associated
with each solution correspond to GR and GCD, respectively.

Density estimation of solutions is an important issue in the fitness assignment pro-

cess since a set of well-distributed solutions will play a crucial role in driving the search

towards the entire Pareto front. However, the existing grid-based density estimators,

which consider the number of solutions occupying a single hyperbox, may fail to re-

flect their distribution because of the exponential increase of the number of hyperboxes

with the number of objectives. Here, we enlarge the range of regions considered and

introduce the concept of the neighbours of a solution.

A solution y is regarded as a neighbour of a solution x, if GD(x,y) < m, where

GD(x,y) denotes the grid difference between x and y, and m is the number of objec-

tives. GrEA considers the distribution of neighbours of a solution with respect to its

density estimation. Specifically, the density estimator, grid crowding distance (GCD),

of x is defined as:

GCD(x) =
∑

y∈N(y)

(m−GD(x,y)) (4.8)

where N(x) stands for the set of neighbours of x. For instance, in Figure 4.3, the

neighbours of individual G are E and F, and the GCD of G is 3, i.e., (2−1)+(2−0) = 3.

The GCD of a solution depends on both the range of neighbourhood (i.e., the region

in which other solutions are regarded as its neighbours) and the grid difference between
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it and other solutions. On the one hand, a larger neighbourhood range generally

contains more solutions, thus contributing to a higher GCD value. Note that the

neighbourhood range is determined by m. The number of considered hyperboxes will

gradually increase with the number of objectives, which would be consistent with the

total number of hyperboxes in the grid environment, hence providing a good distinction

of the crowding degree among individuals. On the other hand, GCD also indicates the

position information of solutions in the neighbourhood since the grid difference metric

is involved. The farther the neighbours are located, the smaller the contribution to

GCD is. For example, considering individuals C and F in Figure 4.3, the GCD of

C is smaller than that of F (2 against 3) although the number of their neighbours is

precisely equal.

Although GR and GCD have already provided a good measure of individuals in

terms of proximity and diversity, they may still fail to discriminate individuals. Since

their calculation is based on the grid coordinates of individuals, both GR and GCD

have an integral value, which means that some individuals may have the same GR and

GCD values, e.g., individuals B and D in Figure 4.3. Here, inspired by the strategy in

ε-MOEA [54], we calculate the normalised Euclidean distance between an individual

and the utopia point in its hyperbox (i.e., the best corner of its hyperbox), called grid

coordinate point distance (GCPD), as follows:

GCPD(x) =

√√√√ m∑
k=1

((Fk(x)− (lbk +Gk(x)× dk))/dk )2 (4.9)

where Gk(x) and fk(x) denote the grid coordinate and actual objective value of indi-

vidual x respectively in the kth objective, lbk and dk stand for the lower boundary of

the grid and the width of a hyperbox, respectively, for the kth objective, and m is the

number of objectives. A lower GCPD is preferable. Individuals F and G in Figure 4.3

also illustrate this criterion.

According to the three grid-based criteria GR, GCD, and GCPD, the evolutionary

status of individuals can be reflected effectively. In the following, we will employ these

criteria to compare individuals in the selection process.
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Algorithm 4.2 TournamentSelection
Require: individuals p, q randomly chosen from the population

1: if p ≺ q or p ≺grid q then
2: return p
3: else if q ≺ p or q ≺grid p then
4: return q
5: else if GCD(p) < GCD(q) then
6: return p
7: else if GCD(q) < GCD(p) then
8: return q
9: else if random(0, 1) < 0.5 then

10: return p
11: else
12: return q

13: end if

4.2.4 Mating Selection

Mating selection which aims to make a good preparation for exchanging the information

of individuals plays an important role in EMO algorithms. It is usually implemented

by selecting promising solutions from the current population to form a mating pool.

Here, we use a type of binary tournament selection strategy based on the dominance

relation and density information to pick out individuals for variation.

Algorithm 4.2 gives a detailed procedure of this strategy. First, two individuals are

randomly chosen from the population. If one Pareto-dominates or grid-dominates the

other, the former is chosen. Otherwise, it indicates that these two solutions are non-

dominated to each other in terms of both the Pareto dominance and grid dominance

relations. In this case, we prefer the solution with a lower density estimation value

(i.e., GCD). Finally, if GCD still fails to distinguish between the two solutions, the tie

will be split randomly.

4.2.5 Environmental Selection

Environmental selection which aims to obtain a well-converged and well-distributed

archive set is implemented by picking out the “best” solutions from the previous pop-

ulation and the newly created population. A straightforward way to do the selection

is based on the fitness of solutions. However, a shortcoming of this way is that it may

112



4.2. The Proposed Algorithm 4. A Grid-Based Evolutionary Algorithm

lead to the loss of diversity since adjacent solutions often have similar fitness values.

For example, solutions E, F, and G in Figure 4.3 have similar fitness values, and thus

a high likelihood of being eliminated or preserved simultaneously. Here, we design a

fitness adjustment mechanism to address this issue.

Fitness Adjustment

GrEA selects individuals by hierarchically comparing them according to the three

fitness criteria: GR, GCD, and GCPD. GR is the primary criterion, GCD is regarded

as the secondary one activated when the GR value of individuals is incomparable (i.e.

equal), and when the first two criteria fail to discriminate individuals, the third one

GCPD is used to break a tie. Here, we focus the adjustment on the primary criterion.

When an individual is selected into the archive, the GR value of its “related”

individuals will be punished. However, how to implement the GR punishment operation

(i.e., determine the “related” individuals and assign how much they would be punished)

is not a trivial task. Several crucial factors need to be considered in order to achieve a

good balance between proximity and diversity in the archive.

• A severe penalty should be imposed on individuals that have the same grid co-

ordinate as the picked individual.

• The individuals grid-dominated by the picked individual should be punished more

heavily than the individuals not grid-dominated by it. For instance, consider a

set of individuals A, B, and C which have the grid coordinate (0, 3), (0, 5), and

(5, 0), respectively. Obviously, C is preferable to B after A has already entered

the archive, because C is helpful to the evolution towards different directions.

• In order to further prevent crowding, the neighbours of the picked individual

should be penalised, and the punishment degree should decline with the distance

from them to the picked individual.

• When implementing penalty on the neighbours of the picked individual, the indi-

viduals grid-dominated by them may also need to be punished. For example, for

a set of four individuals A(0, 0, 1), B(0, 1, 0), C(1, 0, 0), and D(3, 0, 0), assume
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Algorithm 4.3 GR adjustment(P, q)

Require: P (candidate set), q (picked individual), m (number of objectives), PD(p) (maxi-
mum punishment degree of p), E(q) := {p ∈ P |GD(p, q) = 0}, G(q) := {p ∈ P |q ≺grid p},
NG(q) := {p ∈ P |q ⊀grid p}, N(q) := {p ∈ P |GD(p, q) < m}

1: for all p ∈ E(q) do
2: GR(p)← GR(p) + (m+ 2)
3: end for
4: for all p ∈ G(q) do
5: GR(p)← GR(p) +m
6: end for
7: for all p ∈ NG(q) ∧ p /∈ E(q) do
8: PD(p)← 0
9: end for

10: for all p ∈ N(q) ∩NG(q) ∧ p /∈ E(q) do
11: if PD(p) < m−GD(p, q) then
12: PD(p)← m−GD(p, q)
13: for all r ∈ G(p) ∧ r /∈ G(q) ∪ E(q) do
14: if PD(r) < PD(p) then
15: PD(r)← PD(p)
16: end if
17: end for
18: end if
19: end for
20: for all p ∈ NG(q) ∧ p /∈ E(q) do
21: GR(p)← GR(p) + PD(p)

22: end for

that three individuals need to be selected into the archive. Apparently, the best

choice is to eliminate the last individual D. However, individual C may fail to be

selected after A and B are in the archive, since punishments were imposed on C

as the neighbour of A and B, leading C to have a worse GR than D. Therefore,

a punishment on the individuals grid-dominated by the neighbours of the picked

individual is helpful, which can improve the proximity of the archive set largely.

Keeping the above factors in mind, a GR adjustment procedure is presented in Al-

gorithm 4.3. From the procedure, individuals can be classified into three groups in the

GR adjustment process: the individuals whose grid coordinate is equal to that of the

picked individual (lines 1–3), the ones who are grid-dominated by the picked individual

(lines 4–6), and the ones who are not grid-dominated by and have a different grid co-

ordinate from the picked individual (lines 7–22). They correspond to the punishment

degrees m+ 2, m, and within [0,m− 1], respectively, where m denotes the number of
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Algorithm 4.4 Environmental selection(P )

Require: N (archive size)
1: Generate an empty set Q for archive
2: (F1, F2, ..., Fi, ...)← Pareto nondominated sort(P )

/∗ Partition P into different fronts (F1, F2, ..., Fi, ...) by using the fast nondominated
sorting approach and find the critical front Fi (i.e., 0 ≤ N − |F1 ∪ F2 ∪ ... ∪ Fi−1| < Fi)

∗/
3: Q← F1 ∪ F2 ∪ ... ∪ Fi−1
4: if |Q| = N then
5: return Q
6: end if
7: Grid setting(Fi) /∗ Set grid environment for Fi

∗/
8: Initialisation(Fi)
9: while |Q| < N do

10: q ← Findout best(Fi)
11: Q← Q ∪ {q}
12: Fi ← Fi \ {q}
13: GCD calculation(Fi, q)
14: GR adjustment(Fi, q)
15: end while

16: return Q

objectives. For individuals in the last group, a neighbour p of the picked individual q

is imposed the punishment degree at least m − GD(p, q) (lines 11 and 12), and cor-

respondingly the individuals grid-dominated by p are imposed the punishment degree

more than or equal to that of p (lines 13–17). This can prevent the individuals from

being archived earlier than their better competitors in the sense of the grid dominance

relation.

To sum up, by the fitness adjustment operation, GR will not be viewed as a simple

proximity indicator, but rather a combination of information among proximity, density,

and evolution direction of individuals in the archive set.

Main Procedure

Algorithm 4.4 shows the main procedure of environmental selection. Similar to

NSGA-II [55], GrEA considers the critical Pareto nondominated front in the candidate

set. The candidate solutions are divided into different fronts (F1, F2, ..., Fi, ...) by using

the fast nondominated sorting approach. The critical front Fi (|F1∪F2∪ ...∪Fi−1| ≤ N

and |F1 ∪ F2 ∪ ... ∪ Fi−1 ∪ Fi| > N , where N denotes the archive size) is found, and

correspondingly the first (i− 1) nondominated fronts (F1, F2, ..., Fi−1) are moved into
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Algorithm 4.5 Initialization(P )

1: for all p ∈ P do
2: GR assignment(p) /∗ Assign GR according to equation (9) ∗/
3: GCPD assignment(p) /∗ Assign GCPD according to equation (11) ∗/
4: GCD(p)← 0 /∗ Assign zero to GCD ∗/

5: end for

Algorithm 4.6 GCD calculation(P, q)

Require: P (candidate set), q (picked individual), N(q) := {p ∈ P |GD(p, q) < m}
1: for all p ∈ N(q) do
2: GCD(p)← GCD(p) + (m−GD(p, q))

3: end for

the archive (lines 2–6). In fact, since the solutions in many-objective problems are

typically Pareto nondominated to each other, the critical front is often the first front,

namely i = 1.

In Algorithm 4.4, function Initialisation (line 8) is used to initialise the information

of individuals in the grid environment set in line 7. The fitness of individuals with

regard to proximity (i.e., GR and GCPD) is calculated by Eqs. (4.7) and (4.9). It

is necessary to point out that the initial density value of individuals (i.e., GCD) is

assigned to zero in the function. Unlike the proximity estimator, which can be directly

calculated by the own location of an individual, the diversity one has to be estimated

by the relation to other individuals. It may be meaningless to consider the crowding

relation among the individuals in the candidate set rather than in the archive set, since

the latter is precisely the population to be preserved. Here, GrEA estimates the density

of individuals by calculating their crowding degree in the archive (line 13). Algorithms

4.5 and 4.6 give the pseudocode of functions Initialisation and GCD calculation,

respectively.

Function Findout best (line 10) in Algorithm 4.4 is designed to find out the best

individual in the considered front. The pseudocode is shown in Algorithm 4.7. As

stated previously, the function hierarchically compares the three criteria GR, GCD,

and GCPD. A lower value is preferable in all the criteria.

The following example illustrates the working principle of the whole environmental

selection process.
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Algorithm 4.7 Findout best(P )

Require: q (best solution in P ), pi (the ith solution in P )
1: q ← p1
2: for i = 2 to |P | do
3: if GR(pi) < GR(q) then
4: q ← pi
5: else if GR(pi) = GR(q) then
6: if GCD(pi) < GCD(q) then
7: q ← pi
8: else if GCD(pi) = GCD(q) then
9: if GCPD(pi) < GCPD(q) then

10: q ← pi
11: end if
12: end if
13: end if
14: end for

15: return q

An Example of Environmental Selection

Consider a four-objective scenario where a set of 12 candidate solutions A–L is the

critical front to be archived. Their actual objective values are given in Figure 4.4.

Assume that the number of grid divisions is set to 6 and the archive size is 5. The

grid coordinates of the individuals are calculated according to Eqs. (4.1)–(4.4), and the

fitness is initialised by Algorithm 4.5. Figure 4.5 shows the environmental selection

process of the individuals, and the grid coordinates and fitness values (GR, GCD, and

GCPD) of individuals are also contained in the figure.

First, individual A is selected into the archive due to its best GCPD value (shown

in Figure 4.5(b)), given that the other two criteria fail to completely distinguish be-

tween individuals A–F. Accordingly, individuals C and H are punished because the

former has the same grid coordinate as A and the latter is grid-dominated by A. Their

punishment degree is m+ 2 and m, respectively (i.e., GR(C) = GR(C) + (m+ 2) and

A (5.0, 2.5, 0.0, 0.0) B (0.0, 5.0, 2.5, 0.0) C (4.8, 2.6, 0.0, 0.3)

D (0.0, 0.0, 5.0, 2.5) E (0.0, 3.2, 4.1, 0.0) F (2.5, 0.0, 0.0, 5.0)

G (1.2, 1.1, 0.0, 5.9) H (6.3, 1.9, 0.0, 0.3) I (0.8, 3.4, 3.2, 0.9)

J (0.8, 0.3, 6.1, 1.8) K (2.3, 2.3, 2.3, 2.3) L (0.4, 6.2, 1.7, 3.0)

Figure 4.4: A set of 4-objective individuals for archiving. The numbers in the brackets
correspond to their objective values.
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Grid Coordinate GR GCD GCPD

A (4, 2, 0, 0) (6) (0) (1.12)

B (0, 4, 2, 0) (6) (0) (1.19)

C (4, 2, 0, 0) (6) (0) (1.25)

D (0, 0, 4, 2) (6) (0) (1.27)

E (0, 3, 3, 0) (6) (0) (1.28)

F (2, 0, 0, 4) (6) (0) (1.29)

G (1, 1, 0, 5) (7) (0) (1.05)

H (5, 2, 0, 0) (7) (0) (1.29)

I (1, 3, 3, 1) (8) (0) (0.42)

J (1, 0, 5, 2) (8) (0) (1.07)

K (2, 2, 2, 2) (8) (0) (1.29)

L (0, 5, 1, 3) (9) (0) (1.54)

Grid Coordinate GR GCD GCPD

A (4, 2, 0, 0) (6) (0) (1.12)

B (0, 4, 2, 0) (6) (0) (1.19)

D (0, 0, 4, 2) (6) (0) (1.27)

E (0, 3, 3, 0) (6) (0) (1.28)

F (2, 0, 0, 4) (6) (0) (1.29)

G (1, 1, 0, 5) (7) (0) (1.05)

I (1, 3, 3, 1) (8) (0) (0.42)

J (1, 0, 5, 2) (8) (0) (1.07)

K (2, 2, 2, 2) (8) (0) (1.29)

L (0, 5, 1, 3) (9) (0) (1.54)

H (5, 2, 0, 0) (11) (3) (1.29)

C (4, 2, 0, 0) (12) (4) (1.25)

Grid Coordinate GR GCD GCPD

A (4, 2, 0, 0) (6) (0) (1.12)

B (0, 4, 2, 0) (6) (0) (1.19)

D (0, 0, 4, 2) (6) (0) (1.27)

F (2, 0, 0, 4) (6) (0) (1.29)

G (1, 1, 0, 5) (7) (0) (1.05)

J (1, 0, 5, 2) (8) (0) (1.07)

K (2, 2, 2, 2) (8) (0) (1.29)

E (0, 3, 3, 0) (8) (2) (1.28)

L (0, 5, 1, 3) (9) (0) (1.54)

I (1, 3, 3, 1) (10) (0) (0.42)

H (5, 2, 0, 0) (11) (3) (1.29)

C (4, 2, 0, 0) (12) (4) (1.25)

A (4, 2, 0, 0) (6) (0) (1.12)

B (0, 4, 2, 0) (6) (0) (1.19)

D (0, 0, 4, 2) (6) (0) (1.27)

F (2, 0, 0, 4) (6) (0) (1.29)

G (1, 1, 0, 5) (7) (0) (1.05)

K (2, 2, 2, 2) (8) (0) (1.29)

E (0, 3, 3, 0) (8) (2) (1.28)

L (0, 5, 1, 3) (9) (0) (1.54)

I (1, 3, 3, 1) (10) (0) (0.42)

H (5, 2, 0, 0) (11) (3) (1.29)

J (1, 0, 5, 2) (12) (2) (1.07)

C (4, 2, 0, 0) (12) (4) (1.25)

(a) (b) (c)

A (4, 2, 0, 0) (6) (0) (1.12)

B (0, 4, 2, 0) (6) (0) (1.19)

D (0, 0, 4, 2) (6) (0) (1.27)
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G (1, 1, 0, 5) (8) (1) (1.05)

E (0, 3, 3, 0) (8) (2) (1.28)

L (0, 5, 1, 3) (9) (0) (1.54)
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Figure 4.5: An illustration of the environmental selection process. Individuals are
arranged in the order of their fitness values for observation. The framed individuals
mean that they have entered the archive set. The archive size is set to 5.

GR(H) = GR(H) +m). In addition, their GCD is also updated by Algorithm 4.6.

Second, individual B is picked out (Figure 4.5(c)). As the only neighbour of B, E is

punished, and correspondingly I is also imposed a punishment since it is grid-dominated

by E. Their punishment values are the same (GR(E) = GR(E) + (m−GD(E,B)) and

GR(I) = GR(I) + (m−GD(E,B))). In addition, an update of GCD is made for E.

Then, individual D is chosen (Figure 4.5(d)). J is its neighbour and grid-dominated

by it. So, GR(J) = GR(J) +m and GCD(J) = GCD(J) + (m−GD(J,D)).

Next, individual F enters the archive set (Figure 4.5(e)). Accordingly, the GR and

GCD of individual G, the only neighbour of F, are adjusted by adding m−GD(G,F)

to each of them.

Finally, individual K is selected into the archive set (Figure 4.5(f)), and the fitness

of all individuals in the candidate set remains unchanged since none of them is a

neighbour of K or grid-dominated by it.
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Figure 4.6: Distribution of the solution set for the 4-objective example by parallel
coordinates.

In order to compare the results, we plot the original candidate set and the final

archive set of the above example using parallel coordinates in Figure 4.6. As can be

seen from the figure, after environmental selection a group of well-approximated and

well-distributed solutions is obtained out of the original candidate set.

4.3 Experimental Results

This section is devoted to the performance verification of the proposed algorithm. We

first introduce experimental settings in experimental studies. Then, we compare GrEA

with five well-established algorithms: ε-MOEA [54], POGA [59], HypE [10], MSOPS

[106] and MOEA/D [278], which are designed specially for many-objective problems or

have been demonstrated to be promising in many-objective optimisation [256, 88, 180].

Next, the effect of the grid division parameter in GrEA is investigated. Finally, we

analyse the time complexity of the proposed algorithm and show its computational

cost.

4.3.1 Experimental Settings

In the experimental studies, three well-defined test suites, the DTLZ [57], DTLZ5(I,m)

[234] and multi-objective travelling salesman problem (TSP) [45], are considered. All

these problems can be scaled to any number of objectives and decision variables. In
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Table 4.1: Settings of the test problems
Name Number of Objectives (m) Number of Variables (n) Parameter

DTLZ1 4, 5, 6, 8, 10 m− 1 + k k = 5

DTLZ2 4, 5, 6, 8, 10 m− 1 + k k = 10

DTLZ3 4, 5, 6, 8, 10 m− 1 + k k = 10

DTLZ4 4, 5, 6, 8, 10 m− 1 + k k = 10

DTLZ5 4, 5, 6, 8, 10 m− 1 + k k = 10

DTLZ6 4, 5, 6, 8, 10 m− 1 + k k = 10

DTLZ7 4, 5, 6, 8, 10 m− 1 + k k = 20

DTLZ5(I,m) 10 m− 1 + k k = 10, I = 3, 4, 5, 6, 7, 8, 9

TSP 5, 10 30 TSPcp = −0.4,−0.2, 0, 0.2, 0.4

this study, we divided them into four groups according to their characteristics of testing

different abilities of algorithms.

For the DTLZ suite, the problems DTLZ1 to DTLZ7 can be classified into two

groups. One group, consisting of DTLZ2, DTLZ4, DTLZ5 and DTLZ7, is used to test

the ability of an algorithm to cope with the MOPs with different shapes and locations.

The other group, consisting of DTLZ1, DTLZ3 and DTLZ6, creates more obstacles for

an algorithm to converge into the Pareto front [57].

The DTLZ5(I,m) suite, originating from DTLZ5, is a set of test problems where the

actual dimensionality I of the Pareto front against the original number m of objectives

in the problem can be controlled by the user. In these problems, all objectives within

{f1, ..., fm−I+1} are positively correlated, while the objectives in {fm−I+2, ..., fm} are

conflicting with each other.

The multi-objective TSP is a typical combinatorial optimisation problem (see Chap-

ter 2.2.4 for details). In multi-objective TSP, TSPcp ∈ (−1, 1) is a simple “correlation

parameter”. When TSPcp < 0, TSPcp = 0, or TSPcp > 0, it introduces negative,

zero, or positive interobjective correlations, respectively. In our study, TSPcp is as-

signed to −0.4, −0.2, 0, 0.2, and 0.4 respectively to represent different characteristics

of the problem.

The summary of settings for all the test problems is shown in Table 4.1.

In order to compare the performance of the peer algorithms, two widely-used indi-

cators, inverted generational distance (IGD) [19, 42] and hypervolume (HV) [294], are

considered. The former requires a reference set of representing the Pareto front and
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Table 4.2: Parameter settings in GrEA and ε-MOEA, where m is the number of objec-
tives

Problem
m = 4 m = 5 m = 6 m = 8 m = 10 Problem m = 10 Problem m = 5 m = 10

div ε div ε div ε div ε div ε (I, m) div ε (TSPcp) div ε div ε
DTLZ1 10 0.0520 10 0.0590 10 0.0554 10 0.0549 11 0.0565 DTLZ5(3,10) 9 0.06 TSP(–0.4) 12 2.4 11 6.5
DTLZ2 10 0.1312 9 0.1927 8 0.2340 7 0.2900 8 0.3080 DTLZ5(4,10) 10 0.12 TSP(–0.2) 11 1.9 10 4.8
DTLZ3 11 0.1385 11 0.2000 11 0.2270 10 0.1567 11 0.8500 DTLZ5(5,10) 10 0.16 TSP(0) 11 1.4 10 3.8
DTLZ4 10 0.1312 9 0.1927 8 0.2340 7 0.2900 8 0.3080 DTLZ5(6,10) 10 0.2 TSP(0.2) 11 0.95 10 2.6
DTLZ5 35 0.0420 29 0.0785 14 0.1100 11 0.1272 11 0.1288 DTLZ5(7,10) 8 0.24 TSP(0.4) 10 0.6 10 1.8
DTLZ6 36 0.1200 24 0.3552 50 0.7500 50 1.1500 50 1.4500 DTLZ5(8,10) 8 0.25
DTLZ7 9 0.1050 8 0.1580 6 0.1500 5 0.2250 4 0.5600 DTLZ5(9,10) 9 0.26

is used to evaluate algorithms on DTLZ and DTLZ5(I,m) since their optimal fronts

are known. The latter is used to assess the performance of algorithms on TSP whose

Pareto front is unknown.

A reference point is required in the HV calculation. Here, we regard the point with

the integer value 22 for each objective as the reference point, given that it is slightly

larger than the worst value of all the obtained solution sets. In addition, since the exact

calculation of the hypervolume metric is infeasible for a solution set with 10 objectives,

we approximately estimate the hypervolume result of a solution set by the Monte Carlo

sampling method used in HypE [10]. According to [10], 107 sampling points are used.

General parameter settings for all experiments are given as follows unless otherwise

mentioned.

• Parameter setting for crossover and mutation: A crossover probability

pc = 1.0 and a mutation probability pm = 1/n (where n denotes the number of

decision variables) were used. For DTLZ and DTLZ5(I,m), the operators for

crossover and mutation are simulated binary crossover (SBX) and polynomial

mutation with both distribution indexes 20 (i.e., ηc = 20 and ηm = 20) [50, 10].

As to the multi-objective TSP, the order crossover and inversion operator [194]

are chosen as crossover and mutation operators, respectively.

• Number of runs and stopping condition: We independently run each algo-

rithm 30 times on each test problem. The termination criterion of an algorithm is

a predefined number of evaluations. For the first problem group (DTLZ2, DTLZ4,

DTLZ5 and DTLZ7) and the third problem group (DTLZ5(I,m)), it was set to

30,000, and for the second group (DTLZ1, DTLZ3, and DTLZ6) and the fourth
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group (TSP), it was set to 100,000.

• Population and archive size: For general EMO algorithms, the population

size was set to 100, and the archive was also maintained with the same size if

required. Note that the population size in MOEA/D is the same as the number of

weight vectors. Due to the combinatorial nature of uniformly distributed weight

vectors, the population size cannot be arbitrarily specified. Here, we use the

closest integer to 100 among the possible values as the population size (i.e., 120,

126, 126, 120, and 55 for 4-, 5-, 6-, 8-, and 10-objective problems, respectively). In

ε-MOEA, the population size is determined by the ε value. In order to guarantee

a fair comparison, we set ε so that the archive of ε-MOEA is approximately of

the same size as that of the other algorithms (shown in Table 4.2).

• Parameter setting in MSOPS, MOEA/D, and GrEA: In MSOPS, the

number of weight vectors was set to 100 as suggested in [256]. Following the prac-

tice in [119], the Tchebycheff function in MOEA/D was selected as the scalarizing

function and the neighbourhood size was specified as 10% of the population size.

In GrEA, the setting of grid division div is shown in Table 4.2. A detailed study

of div will be given in Section V-B.

4.3.2 Performance Comparison

DTLZ2, DTLZ4, DTLZ5 and DTLZ7 Problems

Table 4.3 shows the IGD results of the six EMO algorithms on DTLZ2, DTLZ4,

DTLZ5, and DTLZ7. The values in the table are the mean and standard deviation.

The best mean for each problem is shown with a grey background.

Table 4.3 shows the IGD results in terms of the mean and standard deviation

over 30 runs of the six EMO algorithms on DTLZ2, DTLZ4, DTLZ5 and DTLZ7,

where the best mean for each problem is shown with a grey background. As can be

seen from the table, GrEA performs best on DTLZ2 and DTLZ7 with respect to all

the considered numbers of objectives. For the other problems, MSOPS and GrEA

have their own strengths. For DTLZ4, MSOPS obtains the best IGD value in the
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Figure 4.7: The final solution set of the six algorithms on the ten-objective DTLZ2,
shown by parallel coordinates.

low-dimension objective space, and GrEA outperforms the other algorithms when the

number of objectives is larger than four. For DTLZ5, GrEA performs well on the 4-

objective problem, and MSOPS obtains better results with the increase of the number

of objectives. For a visual comparison, Figure 4.7 shows the typical distribution of the

six algorithms on the 10-objective DTLZ2 by parallel coordinates.

Note that the MOEA/D algorithm, which has recently been found to be very suc-

cessful in the literature, obtains a worse IGD value than GrEA, MSOPS, and ε-MOEA

generally. In fact, the solution set obtained by MOEA/D is very close to the Pareto

front for some test problems, such as DTLZ2 and DTLZ4. Yet, it has a worse coverage

of the Pareto front than that obtained by GrEA, MSOPS, and ε-MOEA for most of

the problems, thereby resulting in a worse IGD value on these problems. This occur-

rence may be attributed to the decomposition-based selection operation in MOEA/D.

Although a set of uniformly-distributed weight vectors is selected to specify the search

targets (i.e., the points on the Pareto front), it cannot ensure that these points are lo-

cated uniformly, especially for some problems with irregular Pareto front. In addition,
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Figure 4.8: Evolutionary trajectories of IGD for the six algorithms on the ten-objective
DTLZ2.

the Tchebycheff-based scalarizing function may not be a good tool to maintain diversity

of solutions. Many weight vectors may correspond to only one Pareto optimal point by

this scalarizing function [52]. Similar observations have been reported in [119, 52].

Further studies with these algorithms have been conducted to exhibit their evolu-

tionary trajectories. Figure 4.8 plots the performance trajectories of IGD for the six

algorithms on the 10-objective DTLZ2. As shown, GrEA performs better than the

other five algorithms. Although ε-MOEA outperforms GrEA in the initial stage of

evolution, the latter exceeds the former at around 6,000 evaluations and keeps a clear

advantage until the end.

DTLZ1, DTLZ3 and DTLZ6 Problems

The IGD results of the six EMO algorithms on this problem group are shown

in Table 4.4. As shown, GrEA and MOEA/D generally outperform the other four

algorithms. They obtain the best IGD value in 6 and 7 out of 15 test instances,

respectively. Specifically, GrEA performs best on the 8-objective DTLZ3, 4-objective

DTLZ6, and DTLZ1 for all the considered numbers of objectives except 10. MOEA/D

performs best on the 10-objective DTLZ1, 6- and 10-objective DTLZ3, and DTLZ6

with the number of objectives larger than 4. For the rest of the problems (i.e. the 4-

and 5-objective DTLZ3), ε-MOEA obtains the best result.
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It is interesting to note that MOEA/D, unlike on the first group of test problems,

is very competitive on this group of test problems which provide more obstacles for an

algorithm to converge into the Pareto front. An important reason is that in contrast to

some of the other algorithms (such as POGA, HypE and MSOPS) whose solution set

fails to approximate the Pareto front, MOEA/D still works well in terms of proximity

for most of the problems in this group, thereby obtaining better IGD results.

DTLZ5(I,m) Problem

In this section, we concentrate on the DTLZ5(I,m) problem suite, which tests the

ability of an EMO algorithm to find a lower-dimensional Pareto front while working

with a higher-dimensional objective space. Table 4.5 shows the IGD results of the six

algorithms on DTLZ5(I, 10), where I ranges from 3 to 9.

As shown in Table 4.5, GrEA and ε-MOEA perform better than the other four

algorithms. Specifically, ε-MOEA outperforms the other algorithms when I is equal

to 3 or 4, and GrEA performs best for the rest of the problems. MOEA/D has poor

proximity of the Pareto front, leading to a worse IGD result than GrEA and ε-MOEA.

Figure 4.9 gives a typical distribution of the six algorithms on DTLZ5(6, 10) for obser-

vation. Although a few solutions of the set fail to reach the Pareto front, GrEA has a

good approximation and coverage of the Pareto front.

Multi-objective TSP Problem

One important property of the multi-objective TSP is that the conflict degree among

the objectives can be adjusted according to the parameter TSPcp ∈ (−1, 1), where a

lower value means a greater degree of conflict. From the HV results shown in Table 4.6,

it can be seen that GrEA significantly outperforms the other algorithms for all the cases.

In addition, for this combinatorial optimisation problem the peer algorithms show

some different behaviour from for the continuous ones. POGA, which generally per-

forms worst in the previous test problems, works well when a greater conflict degree

among the objectives of TSP is involved. ε-MOEA performs well for both the 5- and

10-objective problems, and HypE always obtains the worst HV value for all the 10

instances. MSOPS, which does not work very well in the 5-objective TSP, takes the
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Figure 4.9: The final solution set of the six algorithms on DTLZ5(6,10), shown by
parallel coordinates.

second place for most of the problems with 10 objectives. The result of MOEA/D for

the 10-objective TSP is not as good as that for the 5-objective problem, with a worse

HV value than MSOPS and ε-MOEA.

In order to demonstrate the evolutionary process of the six algorithms, Figure 4.10

plots their trajectories of HV during 100,000 evaluations on the 5-objective TSP with

TSPcp = −0.2. As can be seen from the figure, the HV trajectory of GrEA rapidly

increases in the initial stage of evolution, and keeps a clear advantage over the other

algorithms during the whole evolutionary process.

Overall, from the study on the problems with different characteristics, we can con-

clude that the proposed algorithm has been successful in providing a balance between

proximity and diversity in many-objective optimisation. GrEA outperforms the other

five state-of-the-art algorithms in 36 out of all 52 test instances.
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Figure 4.10: Evolutionary trajectories of HV for the six algorithms on the five-objective
TSP, where TSPcp = −0.2.

4.3.3 Study of Different Parameter Configurations

In GrEA, a parameter, grid division (div), is introduced to divide the grid environment.

This section investigates the effect of div and provides an appropriate setting for the

user. Here, we show the results for the DTLZ2 problem. Similar results can be obtained

for other test cases.

To study the sensitivity of the proposed algorithm to div, we repeat the experiments

carried out in the previous section for div ∈ [5, 50] with a step size 1. All other control

parameters are kept unchanged. In addition, we expand the number of objectives for

the problem to make a clearer observation of GrEA’s performance with the variation

of div. Figure 4.11 shows the results of IGD for different divisions on the problem with

3, 4, 5, 6, 8, 10, 12 and 15 objectives.

It is clear from the figure that the IGD value, in general, varies regularly with

the number of divisions. In most cases, the trajectory of performance ranging from

divisions 5 to around 9 rapidly descends and then gradually rises until the boundary.

Moreover, the sensitivity of the algorithm increases with the number of objectives.

For the number of objectives under eight, the performance trajectory remains smooth,

and the algorithm appears to perform well during a segment of the range of divisions.

When the number of objectives is larger than eight, the effect of division becomes
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Figure 4.11: IGD of GrEA with different number of divisions on DTLZ2.

more apparent. A slight variation of div may result in a big change of the algorithm’s

performance. This indicates that a more careful setting of divisions should be conducted

for a problem with a larger number of objectives.

On the other hand, considering the most suitable divisions for different numbers

of objectives, similar results are obtained in general. GrEA performs best at 16, 9, 9,

8, 7, 7, 8 and 9 divisions for the 3-, 4-, 5-, 6-, 8-, 10-, 12- and 15-objective DTLZ2

problems, respectively. This phenomenon may be due to the adaptability of the fitness

adjustment strategy in GrEA that tunes the GR of individuals adaptively according to

the number of objectives.

IGD is a combined performance indicator of proximity and diversity, but fails to

reflect them separately. In the following, we further investigate the grid division pa-

rameter via separately investigating its effect on proximity and diversity. In our study,

two widely-used quality indicators, convergence measure (CM) and diversity measure

(DM) [53], are selected. CM assesses the proximity of a solution set by calculating

the average normalised Euclidean distance from the set to the Pareto front. A low

value is preferable. DM measures the diversity of a solution set by comparing it with

a reference set representing the Pareto front. It takes the value between zero and one,

and a larger value means a better coverage of the Pareto front. Detailed descriptions of

these two metrics can be found in [53]. In addition, in some trials, we observed that the
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Table 4.7: Performance of GrEA with different number of divisions on the six-objective
DTLZ2
Division 5 7 8 9 10 12 15 20 30 50

GD
3.944E–3 3.643E–3 3.475E–3 2.724E–3 2.112E–3 1.823E–3 1.729E–3 1.516E–3 1.464E–3 1.110E–3
(1.0E–3) (7.5E–4) (8.0E–4) (7.0E–4) (6.6E–4) (6.1E–4) (6.1E–4) (4.5E–4) (4.6E–4) (4.4E–4)

DM
7.145E–1 8.812E–1 8.834E–1 8.363E–1 7.713E–1 6.886E–1 6.436E–1 4.654E–1 3.542E–1 1.852E–1
(3.7E–2) (2.8E–2) (3.2E–2) (2.5E–2) (2.8E–2) (3.6E–2) (4.2E–2) (4.4E–2) (7.6E–1) (1.4E–1)

IGD
3.509E–1 2.993E–1 2.985E–1 3.172E–1 3.357E–1 3.647E–1 4.115E–1 4.576E–1 5.820E–1 7.155E–1
(8.1E–3) (4.8E–3) (5.2E–3) (4.4E–3) (5.7E–3) (3.4E–3) (3.5E–3) (5.9E–3) (2.0E–2) (1.3E–1)
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(a) div = 5 (b) div = 8 (c) div = 20

Figure 4.12: The final solution set of GrEA with different divisions on the six-objective
DTLZ2, shown by parallel coordinates.

problems with different number of objectives have similar pattern with the variation of

divisions. Here, only results on the 6-objective DTLZ2 are demonstrated for brevity.

Table 4.7 shows the results of CM and DM for different division settings on the

6-objective DTLZ2. As can be seen, the number of divisions has a different influence

on proximity and diversity. For CM, the algorithm performs better with the increase

of the number of divisions, although the degree of variation is not remarkable – it

performs well even if the number of divisions decreases to five. The main influence is

the distribution results of the algorithm. GrEA has a good distribution of solutions

during a segment of the division settings, but when the number of divisions is smaller

than 7 or greater than 10, poor performance will be obtained.

Figure 4.12 plots the final solution sets of GrEA with divisions 5, 8, and 20 by

parallel coordinates on the 6-objective DTLZ2. In addition, for clearer understanding

of these distributions on parallel coordinates, Figure 4.13 shows the final solution sets

with different divisions by Cartesian coordinates on the 3-objective DTLZ2, which have
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(a) div = 9 (b) div = 16 (c) div = 20

Figure 4.13: The final solution set of GrEA with different divisions on the three-
objective DTLZ2, shown by Cartesian coordinates.

similar distributions to the sets in Figure 4.12.

As can be seen from the two figures, the main difference among the three sets is the

distribution of solutions. The final solutions with a moderate number of divisions (16

and 8 for 3- and 6-objective DTLZ2 respectively) are well distributed over the Pareto

front. However, the solutions with a too small number of divisions (9 and 5 for them)

concentrate (or even coincide) in some scattered regions of the Pareto front, and the

solutions with a too large number of divisions (20 for them) are located around the

boundary of the optimal front.

This occurrence is due to the fitness assignment and adjustment strategies in GrEA.

A large hyperbox size (i.e., a small division) would make many solutions located in a

single hyperbox and hence assigned the same GR and GCD values (i.e. the former two

criteria of fitness). In this case, the third criterion GCPD is activated to distinguish

between solutions and further guide them evolving and gathering around the utopia

point of a unit hyperbox. On the other hand, a small hyperbox size would lead to the

increase of the difference of solutions in terms of the criterion GR. This means that

the degree of the punishment for preventing crowding in the environmental selection

process is decreased relatively, thus resulting in the failure of solutions covering the

Pareto front.

Overall, although the performance varies with the number of grid divisions, GrEA

can achieve a good balance between proximity and diversity under a proper setting.
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Our experiments suggest that a division value around 9 may be reliable on an unknown

optimisation problem. Furthermore, a slightly larger div is recommended if the problem

in hand is found to be hard to converge, and a slightly lower value may be more suitable

if the coverage of the solutions to the Pareto front is more emphasised.

4.3.4 Computational Complexity

The computational cost of GrEA is mainly determined by four steps: grid setting,

fitness assignment, mating selection and environmental selection (we neglect the vari-

ation operation since it is not specific for the algorithm). The time complexity of the

grid setting and mating selection procedures is low. The former needs to identify the

maximum and minimum values in each objective for a population of size N , which re-

quires O(mN) comparisons, where m denotes the number of objectives. For the latter,

selecting one individual requires O(m) comparisons, so that the time complexity for

filling the whole mating pool is O(mN) as well.

The fitness of an individual in GrEA is formed by three criteria, GR, GCD and

GCPD. The time complexity of calculating GR and GCPD for all individuals in the

population are both O(mN) according to Eqs. (4.7) and (4.9). Since the calculation of

GCD for each individual needs to traverse the population for identifying its neighbours,

the time complexity for all individuals is O(mN2), which will govern the computational

cost of the fitness assignment procedure.

The computational cost of environmental selection can be divided into two parts

(see Algorithm 4.4). The first one corresponds to the operations before the main

loop (lines 1–8), including functions Pareto nondominated sort, Grid setting, and

Initialisation. The second one is related to the operations in the main loop (lines 9–

15), mainly including functions Findout best, GCD calculation, and GR adjustment.

The time complexity of the first part is governed by the Pareto nondominated sort

function, which requires O(mN2) comparisons.

As to the operations in the second part, functions Findout best andGCD calculation

require O(N) and O(mN) computations, respectively, according to Algorithms 4.7 and

4.6. For function GR adjustment (Algorithm 4.3), preconditioning (i.e., finding indi-
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viduals who are neighbours of, grid-dominated by, not grid-dominated by, or identical

with the picked individual) requires O(mN) comparisons. The computational cost of

the main procedure is governed by the punishment operation for preventing crowding

(lines 10–19). Since the implementation of the punishment of an individual not only

relates to itself but involves the individuals that it grid-dominates, the time complex-

ity of this operation is O(LN). Here, L denotes, for a set of Pareto nondominated

individuals, the average number of the individuals in the set that are grid-dominated

by one member of the set, where the grid environment is formed by the set. Obvi-

ously, O(1) ≤ O(L) ≤ O(N). The former occurs when all individuals in the set are

grid-nondominated to each other, and the latter occurs when a totally ordered relation

regarding grid dominance holds for all individuals in the set. In fact, it may be a hard

task to precisely determine L – it would be influenced not only by the population size

and the number of objectives, but by the number of divisions (a larger division number

would make more individuals grid-nondominated, and when div → ∞, L → 0). We

leave it for a future study. Overall, from the above analysis, the average time com-

plexity of the environmental selection procedure is bounded by O(mN2) or O(LN2),

whichever is greater.

To sum up, the total complexity of the proposed algorithm is generally governed

by the environmental selection procedure, thus bounded by O(mN2) or O(LN2) on

average, whichever is greater. Since O(1) ≤ O(L) ≤ O(N) and in most cases, m < N ,

the best and worst time complexity of the algorithm would be O(mN2) and O(N3),

respectively.

4.4 Summary

In this chapter, we exploited the potential of the grid to handle many-objective opti-

misation problems. The proposed algorithm, GrEA, can mainly be characterised as:

• executing individual-centred calculation instead of grid-centred calculation through-

out the algorithm;

• increasing the selection pressure towards the optimal front by introducing three
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grid-based relations, GR, GCPD and grid dominance;

• estimating the density of individuals by using adaptive neighbourhood whose

range varies with the number of objectives;

• adjusting the fitness of individuals in the environmental selection process by con-

sidering both neighbourhood and grid dominance relations.

Systematic experiments were carried out to make an extensive comparison of GrEA

with five well-established EMO algorithms. Several groups of widely used test problems

are chosen for challenging different capabilities of the algorithms. The results reveal

that GrEA is very competitive against the peer algorithms in terms of finding a well-

converged and well-distributed solution set in many-objective optimisation.

Furthermore, the effect of a key parameter in GrEA, the number of grid divisions,

has been experimentally investigated. The results show that although the performance

of GrEA varies with the number of grid divisions, GrEA can achieve a good tradeoff

among proximity and diversity under a proper setting. The division parameter nine

is recommended for an unknown MaOPs, and a slightly higher (or lower) value is

suggested when the problem has been found to be hard to achieve a good proximity (or

coverage) of the Pareto front. In addition, the study on the time complexity indicates

that GrEA is suited to many-objective optimisation, given its 1) linear increase with

objective dimensionality and 2) high independence of the number of hyperboxes in the

grid.
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Chapter 5

Bi-Goal Evolution

In this chapter, we present a new framework for evolutionary algorithms, called bi-

goal evolution (BiGE), to deal with MaOPs. In multi-objective optimisation, it is

generally observed that 1) the conflict between proximity and diversity requirements

is aggravated with the increase of the number of objectives [216, 81, 1] and 2) the

Pareto dominance loses its effectiveness for a high-dimensional space but works well

on a low-dimensional space [45, 256, 128]. Inspired by these two observations, BiGE

converts a given multi-objective optimisation problem into a bi-goal (objective) optimi-

sation problem regarding proximity and diversity, and then handles it using the Pareto

dominance relation in this bi-goal domain.

This chapter is organised as follows. In Section 5.1, the motivation of BiGE is given.

Section 5.2 is devoted to the presentation of the BiGE framework and its implemen-

tation. Empirical results of BiGE in comparison with five best-in-class algorithms are

shown in Section 5.3. Further investigation of the bi-goal evolution is carried out in

Section 5.4. Finally, Section 5.5 summaries this chapter.

5.1 Motivation

An EMO algorithm pursues two basic but often conflicting goals, proximity and diver-

sity. Such conflict has a detrimental impact on the algorithm’s optimisation process

and can be aggravated in many-objective optimisation. Figure 5.1 gives the comparison
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Figure 5.1: Evolutionary trajectories of the average convergence metric (CM) for 30
runs of the original NSGA-II (denoted as A) and the modified NSGA-II without the
diversity maintenance mechanism (denoted as A∗) on DTLZ2.

trajectories of the proximity results between the original NSGA-II [55] (involving both

proximity and diversity maintenance mechanisms) and its modified version in which

the diversity maintenance mechanism is removed, on the 2-, 5- and 10-objective DTLZ2

[57]. These results are evaluated by a convergence metric (CM) [53], which calculates

the average normalised Euclidean distance from the solution set to the Pareto front.

As can be seen in Figure 5.1, the interval between the CM trajectories of the two

algorithms becomes more visible with the increase of the number of objectives. For the

2-objective problem, both algorithms perform well, with their CM trajectories being

virtually overlapping. For the 5-objective problem, the NSGA-II without the diversity

maintenance mechanism achieves better CM results than the original NSGA-II during

the evolutionary process, which means that diversity maintenance has an unfavourable

impact on the proximity of the algorithm. For the 10-objective problem, the diversity

maintenance mechanism in NSGA-II even makes the evolving population gradually

move away from the Pareto front; the great interval between the two trajectories in

Figure 5.1 indicates a serious conflict between proximity and diversity obtained.

On the other hand, Pareto dominance, which is popular and effective to distinguish

between individuals in 2- or 3-objective MOPs, fails in many-objective optimisation.

In fact, the proportion of any two individuals being comparable in an m-dimensional
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Figure 5.2: An illustration of the conversion from the actual objective space to the bi-
goal space of proximity and crowding degree on a bi-objective minimisation problem.

objective space is η = 1/2m−1. For a 2- or 3-dimensional space, η is equal to 0.5 or 0.25,

respectively, but when m reaches 6, η is already as low as 0.03125. Such exponential

decrease of the portion leads to the dramatic decline of Pareto dominance’s effectiveness

with the number of objectives.

Given the above, it could then be viable to use Pareto dominance to only optimise

the two goals (objectives) of proximity and diversity rather than to cope with all the

objectives of an MOP. This way, sufficient selection pressure can be provided even in

a very high-dimensional space. Bearing this in mind, we propose a bi-goal evolution

framework, BiGE, to tackle many-objective optimisation problems.

5.2 The Proposed Approach

BiGE treats an MOP with many objectives as a bi-goal optimisation problem regarding

minimising the proximity of individuals towards the optimal direction and minimising

the crowding degree of individuals in the population. Figure 5.2 gives a bi-objective

scenario to illustrate the conversion from the actual objective space to the bi-goal space.

As can be seen from Figure 5.2, by conversion, some of the nondominated individ-

uals A–G in the objective space become comparable. In the bi-goal space, only three

individuals (C, A, and E) are Pareto nondominated (i.e., the best individuals in the

140



5.2. The Proposed Approach 5. Bi-Goal Evolution

Algorithm 5.1 Bi-Goal Evolution (BiGE)

Require: P (population), N (population size)
1: P ← initialize(P )
2: while termination criterion not fulfilled do
3: proximityEstimation(P )
4: crowdingDegreeEstimation(P )
5: P ′ ← matingSelection(P )
6: P ′′ ← variation(P ′)
7: P ← environmentalSelection(P

⋃
P ′′)

8: end while

9: return P

population), given that C and A perform best in terms of proximity and crowding

degree, respectively, and the performance of E can be regarded as the tradeoff between

that of C and A. In contrast, individual F, which performs poorly in both proximity

and crowding degree, is dominated by most of the individuals in the population.

Below, we introduce the main procedure of BiGE and its specific implementations.

5.2.1 Basic Procedure

The aim of BiGE is to deal with the ineffectiveness of the Pareto dominance rela-

tion in the high-dimensional objective space. BiGE only considers the individuals

when they are incomparable on the basis of Pareto dominance in the selection process.

Algorithm 5.1 gives the basic procedure of BiGE. Firstly, N individuals are randomly

generated to form an initial population P . Then, the proximity and crowding de-

gree of individuals in the current population are estimated. Next, mating selection

is performed to select promising solutions in the bi-goal space for variation. Finally,

the environmental selection procedure is implemented to keep a record of the N best

solutions with respect to the two goals for survival.

5.2.2 Proximity Estimation

Conversion from an MOP with a number of objectives to a bi-goal problem involves

an integration of the objectives. In order to make the integration feasible (i.e., to be

able to deal with an MOP with non-commensurable objective functions), in BiGE each

objective of individuals is normalised (with respect to its minimum and maximum val-
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ues in the current population) before estimating their proximity and crowding degree.

For convenience, in the description of the proposed algorithm, the objective value of

individuals refers to their normalised objective value in the range [0, 1].

BiGE estimates the proximity (denoted as fpr) of an individual p in the population

by summing its value in each objective:

fpr(p) =

m∑
k=1

fk(p) (5.1)

where fk(p) denotes the objective value of individual p in the kth objective, and m is

the number of objectives. This estimation function is determined by two factors: the

number of objectives and the performance in each objective. An individual with good

performance in the majority of objectives is likely to obtain a lower (better) fpr value.

It is worth pointing out that the proximity information of an individual with m

objectives (i.e., an m-dimensional vector) cannot be completely reflected and repre-

sented by the scalar value fpr. The accuracy of the estimation can be influenced by

the shape of an MOP’s Pareto front. For example, individuals around the knee of

the Pareto front often have better estimation result than those far away from the knee

even if they are non-dominated to each other. To solve this issue, we introduce the goal

of minimising the crowding degree of individuals in the population. We consider the

Pareto dominance relation of the two goals, preferring individuals with a good tradeoff

between them.

5.2.3 Crowding Degree Estimation

Niching techniques are a kind of popular density estimation methods in the EA field.

Bearing the idea of sharing resource in mind, niching techniques can effectively measure

the crowding degree of an individual in the population. Here, we consider the following

sharing function between two individuals p and q:

sh(p, q) =

(1− d(p,q)
r )2, if d(p, q) < r

0, otherwise
(5.2)
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where d(p, q) denotes the Euclidean distance between individuals p and q in the objec-

tive space, and r is the radius of a niche, determined by the population size N and the

number of objectives m of a given MOP:

r =
1

m
√
N

(5.3)

Note that the considered individuals are already normalised according to the range

of the current population. Thus, the niche radius here is actually adaptive, varying

with the evolutionary population. Using the sharing function in Eq. (5.2), the crowding

degree (denoted as fcd) of an individual p in a population P is defined as follows:

fcd(p) = (
∑

q∈P,q 6=p
sh(p, q))1/2 (5.4)

Up to now, the performance of an individual in the population has been reflected

by fpr and fcd. However, a problem may arise when applying these two estimation

functions in the conversion from the actual objective space into the bi-goal space.

Since the performance estimation of an individual depends on its position in comparison

with other individuals in the population, the individuals located closely in the objective

space may have similar behaviours regarding both proximity and crowding degree, thus

also being situated closely in the bi-goal space. For example, similar nondominated

individuals A and B in Figure 5.3(a), after conversion, are still located closely and

nondominated to each other (shown in Figure 5.3(b)). In this case, it is likely that such

individuals are preserved or eliminated simultaneously, which may result in congestion

in some regions yet vacancy in some other regions.

To overcome this problem, we make a modification to the sharing function in

Eq. (5.2) in order to distinguish between similar individuals. Two individuals will

be assigned different sharing function values according to their performance compar-

ison in terms of proximity. Specifically, we introduce a weight parameter (called the
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Figure 5.3: An illustration of the case that similar individuals in the objective space
may be located closely and nondominated to each other in the bi-goal space, and its
remedy. (a) The actual objective space; (b) The bi-goal space with respect to the
proximity and the original crowding degree; (c) The bi-goal space with respect to the
proximity and the modified crowding degree. The numerical values of the individuals
in these three spaces are given in Table 5.1.

Table 5.1: Individual values in the three spaces for the example of Figure 5.3.
(Objective No. 1, Objective No. 2) (Proximity, Original Crowding Degree) (Proximity, Modified Crowding Degree)

A (0.00, 1.00) (1.00, 0.68031) (1.00, 1.02047)
B (0.05, 0.89) (0.94, 0.70114) (0.94, 0.34663)
C (0.33, 0.72) (1.05, 0.29965) (1.05, 0.24422)
D (0.59, 0.64) (1.23, 0.33658) (1.23, 0.54256)
E (0.70, 0.37) (1.07, 0.26737) (1.07, 0.13369)
F (0.94, 0.15) (1.09, 0.56741) (1.09, 0.85112)
G (1.02, 0.00) (1.02, 0.55022) (1.02, 0.27511)

sharing discriminator) in the sharing function:

sh(p, q) =


(0.5(1− d(p,q)

r
))2, if d(p, q) < r, fpr(p) < fpr(q)

(1.5(1− d(p,q)
r

))2, if d(p, q) < r, fpr(p) > fpr(q)

rand(), if d(p, q) < r, fpr(p) = fpr(q)

0, otherwise

(5.5)

where the function rand() means to assign either sh(p, q) = (0.5(1 − d(p,q)
r ))2 and

sh(q, p)=(1.5(1− d(p,q)
r ))2 or sh(p, q)=(1.5(1− d(p,q)

r ))2 and sh(q, p)=(0.5(1− d(p,q)
r ))2

randomly.

The sharing function now contributes differently to the crowding degree of individ-

uals in the niche. An individual with better proximity than its neighbours will obtain

a lower crowding degree. For two individuals which are the sole neighbour to each
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Algorithm 5.2 Tournament selection
Require: individuals p, q

1: if p ≺ q in the bi-goal domain then
2: return p
3: else if q ≺ p in the bi-goal domain then
4: return q
5: else if random(0, 1) < 0.5 then
6: return p
7: else
8: return q

9: end if

other in a population, they had the same crowding degree before, but now the better

individual (in terms of proximity) will only have half of the original crowding degree

and the worse one will have one and a half of the original crowding degree.

In general, this modification enables adjacent individuals to be located distantly.

More importantly, it could lead to similar individuals comparable on the basis of the

Pareto dominance criterion of the proximity and diversity goals, which is well suited

to BiGE. Figure 5.3(c) gives an illustration to explain the effect of this modification.

As shown, individual A will become dominated by B when evaluated by the modified

crowding degree. Table 5.1 shows the values of individuals in the three spaces for the

example of Figure 5.3.

5.2.4 Mating Selection

Mating selection, which aims to make a good preparation for exchanging the informa-

tion of individuals, picks out promising solutions from the current population to form a

mating pool. BiGE uses a type of binary tournament selection strategy based on Pareto

dominance in the bi-goal domain, as given in Algorithm 5.2. For two candidates, if they

are Pareto-comparable in the two goal functions (e.g., fpr(p) < fpr(q)∧fcd(p) < fcd(q)),

then the better one will be selected; otherwise, the tie will be split randomly.

5.2.5 Environmental Selection

Environmental selection, which aims to obtain a well-approximated and well-distributed

new population, chooses the “best” solutions from the previous population and newly
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Algorithm 5.3 environmentalSelection(Q)

Require: N (population size)
1: Generate an empty population P
2: proximityEstimation(Q)
/∗ Compute proximity of each individual in Q by Eq. (5.1) ∗/

3: crowdingDegreeEstimation(Q)
/∗ Compute crowding degree of each individual in Q by Eqs. (5.4) and (5.5) ∗/

4: {L1, L2, ..., Li, ...} ← nondominatedSorting(Q)
/∗ Partition Q into different layers (L1, L2, ..., Li, ...) by using Pareto nondominated sorting
regarding proximity and crowding degree, and find the critical layer Li (i.e., 0 ≤ N −|L1 ∪
L2 ∪ ... ∪ Li−1| < |Li|) ∗/

5: P ← L1 ∪ L2 ∪ ... ∪ Li−1
6: if |P | < N then
7: randomSelection(P,Li, N − |P |)

/∗ Select N − |P | individuals from Li into P at random ∗/
8: end if

9: return P

created individuals. BiGE implements the environmental selection according to indi-

viduals’ Pareto dominance relation in the bi-goal domain. Here, we adopt a popular

Pareto-based rank strategy in the area: nondominated sorting [86]. Nondominated

sorting is an effective method to rank individuals in a low-dimensional space. First,

the nondominated individuals in the population are identified as the first layer. Then,

the remaining individuals are regarded as the current population, from which nondom-

inated individuals are selected to form the second layer. This process is continued until

the entire population is classified into different layers.

Algorithm 5.3 gives the environmental selection procedure of BiGE. First, individ-

uals’ performance regarding the proximity and crowding degree is estimated (Steps 2

and 3). Then, the candidate set Q is divided into different layers by the nondominated

sorting procedure with respect to the two goals, and the first (i− 1) layers are moved

into the population P , where |L1∪L2∪ ...∪Li−1| ≤ N and |L1∪L2∪ ...∪Li−1∪Li| > N

(Steps 4 and 5). Finally, the slots in P are filled randomly by individuals in Li (Steps

6–8). Note that BiGE employs a randomly-selected mode on the layer Li, rather than a

density-based selection mode. This is because the density of individuals in this bi-goal

space does not reflect their own performance. An individual with high density in the bi-

goal space does not mean that it is worse than individuals with low density but rather

that there are some other individuals having similar proximity and crowding degree
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(a) Nondominated sorting of the two goals (b) Nondominated sorting of the actual objectives

Figure 5.4: The average number of solutions in all the nondominated layers under
(a) the bi-goal Pareto nondominated sorting and (b) the original Pareto nondominated
sorting, where the population size is 100, the number of runs is 30, and the test instance
is DTLZ2.

with it in the population (cf. individual C in the example of Figure 5.3). Therefore,

we randomly select individuals which are located in the same layer.

In order to investigate the effectiveness of the bi-goal nondominated sorting in pro-

viding the selection pressure, Figure 5.4 demonstrates the average number of solutions

in all the nondominated layers on the 2-, 3-, 5-, 10- and 15-objective DTLZ2, where,

for contrast, the average number of solutions in all the nondominated layers obtained

by nondominated sorting of the actual objectives is shown as well. As can be seen

from Figure 5.4(b), the number of individuals placed in the first layer (L1) increases

rapidly with the number of objectives, approximating 80% of the population size when

the number of objectives reaches 5. In contrast, the individuals in Figure 5.4(a) are

located in many different layers and distributed in a similar pattern. For example,

L1 is always small and has around 6 individuals. In all the instances, the number of

individuals in Li gradually increases until the total number of individuals in L1 to Li

reaches around half of the population size. This similar pattern means that the bi-goal

nondominated sorting can effectively distinguish between individuals, which is largely

independent of the number of objectives.
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Table 5.2: Properties of test problems in comparative studies
Problem Number of Objectives (m) Number of Variables (n) Properties
WFG1 5, 10, 15 2× (m− 1) + 20 Mixed, Flat Biased
WFG2 5, 10, 15 2× (m− 1) + 20 Convex, Disconnected, Nonseparable
WFG3 5, 10, 15 2× (m− 1) + 20 Linear, Degenerate, Nonseparable
WFG4 5, 10, 15 2× (m− 1) + 20 Concave, Multimodal
WFG5 5, 10, 15 2× (m− 1) + 20 Concave, Deceptive
WFG6 5, 10, 15 2× (m− 1) + 20 Concave, Nonseparable
WFG7 5, 10, 15 2× (m− 1) + 20 Concave, Parameter Dependant Biased
WFG8 5, 10, 15 2× (m− 1) + 20 Concave, Nonseparable, Parameter Dependant Biased
WFG9 5, 10, 15 2× (m− 1) + 20 Concave, Nonseparable, Deceptive, Parameter Dependant Biased
Knapsack 5, 10, 15 500 Convex, Constraint
TSP 5, 10, 15 30 Convex, Zero Correlation
Water 5 3 Convex, Degenerate, Constraint

5.3 Experimental Results

BiGE focuses on the comparison among the individuals which are nondominated to

each other in the objective space. For the individuals that can be differentiated by

Pareto dominance, any existing comparison strategy in the EMO area, such as the

nondominated sorting [86], nondominated ranking [74], and strength [294], can be

used. Here, the nondominated sorting strategy is chosen to cooperate with BiGE due

to its simplicity and popularity [55].

We compare BiGE with five state-of-the-art algorithms, MOEA/D (with the Tcheby-

cheff scalarizing function1), NSGA-III [52], HypE [10], FD-NSGA-II [96], and AGE-II

[255]. All these algorithms have been well verified in dealing with MaOPs [180, 52, 264,

96, 255, 260].

5.3.1 Experimental Settings

In the experimental studies, three well-known continuous and combinatorial benchmark

suites, the walking fish group (WFG) toolkit [105], the multi-objective 0–1 knapsack

problem [294], and the multi-objective travelling salesman problem (TSP) [45], are

included, with the objective number m = 5, 10, and 15. Also, a real-world constraint

problem, the water problem [202], is considered. Their characteristics are summarized

in Table 5.2.

1In order to obtain more uniform solutions, in the Tchebycheff scalarizing function, “multiplying
the weight vector wi” in the original MOEA/D [278] is replaced by “dividing wi”, as suggested and
practised in recent studies [52, 172].
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To compare the performance of the algorithms, the hypervolume (HV) metric [294]

is used. Here, we present a normalised HV value of each algorithm with respect to

the proportion of the optimal HV result achieved. This normalisation makes all of

the obtained results reside in the range [0, 1], with 1 representing the optimal value.

For some of the test problems (i.e., WFG4–WFG9), the optimal HV value can be

obtained by calculation; for the others, the optimal value is, as suggested in [89],

approximately estimated by the HV result of the nondominated set with respect to the

mixed population consisting of all the obtained solutions on a given problem.

In the calculation of HV, two crucial issues are the scaling of the search space

[77] and the choice of the reference point [9, 78]. Since the objectives in the WFG and

water problems take different ranges of values, we standardise the objective value of the

obtained solutions according to the range of the problem’s Pareto front. Following the

recommendation in [119], the reference point is set to 1.1 times the upper bound of the

Pareto front (i.e., r = 1.1m) to emphasise the balance between proximity and diversity

of the obtained solution set. For the two combinatorial optimisation problems, since the

range of their Pareto front is unknown, we set the reference point slightly worse than

the boundary values of the nondominated set with respect to the mixed population

consisting of all the obtained solutions; that is, the points with 13000 and 22 for each

objective (i.e., r = 13000m and r = 22m) are fixed for the knapsack and TSP problems,

respectively.

In addition, since the exact calculation of the HV indicator is generally infeasible

for a solution set with 10 or more objectives, we approximately estimate the HV result

of a solution set by the Monte Carlo sampling method used in [10]. Here, 107 sampling

points are used to ensure accuracy [10].

All the results presented in this chapter were obtained by executing 30 indepen-

dent runs of each algorithm on each problem. Following the practice in [81, 256], the

population size was set to 100 and the termination criterion of a run was 30,000 evalu-

ations (i.e., 300 generations) for the WFG, TSP and water problems. For the knapsack

problem, more evaluations are required for one generation of an algorithm due to the

repair method that deals with infeasible solutions, where we set 100,000 evaluations
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as the termination criterion. Note that the size of the population in MOEA/D and

NSGA-III is often the same as the number of weight vectors and it is impossible for the

algorithms to generate uniformly distributed weight vectors at an arbitrary number.

Here, we uniformly generate a set of around 5,000 weight vectors and then select 100

well-distributed weight vectors from the set by using the method in [279].

Parameters need to be set in some peer algorithms. According to the study in

MOEA/D [278], the neighbourhood size was specified as 10% of the population size.

For HypE, the number of sampling points in HypE was set to 10,000. Following the

practice in [264], the reference point for calculating the hypervolume contribution in

HypE was set to 2i+ 1 for all WFG problems, where i is the number of objectives; for

other problems, the reference point was set to be the same as in the HV indicator. In

FD-NSGA-II, parameter σ, which determines the spread of the Gaussian function, was

set to 0.5, as suggested in [96]. In AGE-II, parameter εgrid, which determines the size

of the archive, was set to 0.1 since it can provide a good tradeoff between performance

and runtime in many-objective problems [255].

A crossover probability pc = 1.0 and a mutation probability pm = 1/n (where n

denotes the number of decision variables) were used. For continuous problems, opera-

tors for crossover and mutation are SBX crossover and polynomial mutation with both

distribution indexes set to 20 [10, 278]. As to the combinatorial problems, following

the studies in [45, 118], the uniform crossover and bit-flip mutation were used for the

knapsack instance, and the order crossover and inversion mutation were used for the

TSP instance.

5.3.2 Experimental Comparison

In this section, we verify the performance of BiGE according to the experimental design

described previously. HV results in the tables are the mean and standard deviation

(SD) over 30 independent runs, and the best and second best mean values among the

algorithms for each problem instance are shown with dark and light grey background,

respectively. Moreover, in order to have statistically sound conclusions, we adopt the

Wilcoxon’s rank sum test [290] at a 0.05 significance level to examine the significance of
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Table 5.3: Normalised HV results (mean and SD) of the six algorithms on the WFG
problem. The best and the second mean among the algorithms for each problem in-
stance is shown with dark and light grey background, respectively

Problem Obj. MOEA/D NSGA-III HypE FD-NSGA-II AGE-II BiGE

WFG1
5 6.892E-1 (3.6E-2)† 6.773E-1 (6.3E-2)† 7.827E-1 (1.6E-2)† 2.194E-1 (7.2E-2)† 5.219E-1 (2.4E-2)† 6.151E-1 (3.9E-2)
10 6.421E-1 (3.2E-2)† 7.710E-1 (5.4E-2) 8.324E-1 (2.3E-2)† 4.294E-1 (6.9E-2)† 6.092E-1 (2.8E-2)† 7.786E-1 (4.7E-2)
15 5.913E-1 (2.2E-2)† 7.208E-1 (3.1E-2)† 8.138E-1 (3.1E-2)† 4.775E-1 (7.8E-2)† 5.735E-1 (2.2E-2)† 7.612E-1 (3.4E-2)

WFG2
5 7.999E-1 (9.0E-2)† 8.881E-1 (1.5E-1) 8.819E-1 (8.6E-2) 2.977E-1 (7.4E-2)† 9.180E-1 (7.2E-2) 9.014E-1 (8.2E-2)
10 7.576E-1 (8.4E-2)† 8.647E-1 (7.5E-2)† 8.864E-1 (8.0E-2)† 2.698E-1 (1.4E-1)† 9.168E-1 (7.1E-2) 9.475E-1 (5.3E-2)
15 6.454E-1 (7.7E-2)† 8.834E-1 (8.1E-2)† 9.247E-1 (8.3E-2) 2.841E-1 (1.2E-1)† 8.535E-1 (7.1E-2)† 9.402E-1 (6.1E-2)

WFG3
5 6.450E-1 (2.0E-2)† 9.139E-1 (1.7E-2) 9.137E-1 (7.4E-3) 1.330E-1 (1.9E-3)† 8.139E-1 (2.5E-2)† 9.092E-1 (1.1E-2)
10 4.553E-1 (3.2E-2)† 7.949E-1 (6.6E-2)† 9.149E-1 (1.2E-2)† 1.242E-1 (1.8E-3)† 6.673E-1 (3.4E-2)† 8.705E-1 (1.8E-2)
15 2.431E-1 (2.3E-2)† 8.136E-1 (7.7E-2)† 8.964E-1 (1.8E-2)† 1.213E-1 (2.4E-3)† 4.713E-1 (2.6E-2)† 8.545E-1 (2.6E-2)

WFG4
5 5.899E-1 (2.9E-2)† 7.269E-1 (6.5E-2)† 8.171E-1 (7.6E-3)† 2.770E-1 (8.2E-2)† 6.381E-1 (1.9E-2)† 8.117E-1 (8.4E-3)
10 4.359E-1 (4.4E-2)† 4.223E-1 (7.6E-2)† 8.049E-1 (2.9E-2)† 2.207E-1 (9.8E-2)† 3.248E-1 (2.3E-2)† 8.313E-1 (1.1E-2)
15 3.000E-1 (3.8E-2)† 5.332E-1 (4.8E-2)† 7.831E-1 (2.5E-2)† 1.223E-1 (5.2E-2)† 2.336E-1 (2.3E-2)† 8.073E-1 (1.9E-2)

WFG5
5 6.418E-1 (1.8E-2)† 7.607E-1 (5.8E-3)† 7.701E-1 (8.5E-3) 8.776E-2 (2.0E-4)† 6.301E-1 (1.5E-2)† 7.709E-1 (6.2E-3)
10 4.911E-1 (3.4E-2)† 5.235E-1 (6.5E-2)† 8.142E-1 (1.7E-2)† 7.930E-2 (2.6E-4)† 4.040E-1 (3.5E-2)† 7.990E-1 (1.9E-2)
15 3.170E-1 (6.4E-2)† 6.250E-1 (5.4E-2)† 7.628E-1 (1.9E-2)† 7.892E-2 (2.8E-4)† 2.735E-1 (6.5E-2)† 7.715E-1 (1.4E-2)

WFG6
5 5.753E-1 (2.6E-2)† 7.718E-1 (3.9E-2) 7.750E-1 (1.2E-2) 1.040E-1 (3.5E-2)† 6.577E-1 (1.8E-2)† 7.728E-1 (8.9E-3)
10 5.158E-1 (4.3E-2)† 5.389E-1 (5.1E-2)† 8.352E-1 (1.1E-2)† 8.434E-2 (1.3E-3)† 3.897E-1 (3.0E-2)† 8.270E-1 (1.3E-2)
15 2.845E-1 (4.5E-2)† 6.528E-1 (4.5E-2)† 8.139E-1 (2.3E-2)† 8.367E-2 (1.2E-3)† 3.402E-1 (7.1E-2)† 8.339E-1 (1.4E-2)

WFG7
5 6.413E-1 (4.3E-2)† 7.878E-1 (3.7E-2)† 8.262E-1 (8.7E-3)† 1.011E-1 (3.7E-5)† 6.770E-1 (2.0E-2)† 8.356E-1 (5.5E-3)
10 5.852E-1 (4.3E-2)† 5.637E-1 (6.7E-2)† 8.808E-1 (1.2E-2) 1.140E-1 (5.3E-2)† 3.869E-1 (5.6E-2)† 8.827E-1 (1.2E-2)
15 2.057E-1 (5.8E-2)† 6.919E-1 (5.2E-2)† 8.305E-1 (2.4E-2)† 9.381E-2 (1.7E-2)† 1.160E-1 (2.5E-2)† 8.787E-1 (1.3E-2)

WFG8
5 3.536E-1 (2.7E-2)† 5.609E-1 (9.7E-2)† 6.893E-1 (7.7E-3)† 1.529E-1 (8.6E-2)† 5.587E-1 (2.8E-2)† 6.822E-1 (9.1E-3)
10 3.756E-1 (3.1E-2)† 4.944E-1 (7.0E-2)† 7.628E-1 (1.2E-2)† 1.279E-1 (5.9E-2)† 2.976E-1 (7.1E-2)† 7.722E-1 (6.1E-3)
15 2.479E-1 (6.3E-2)† 6.112E-1 (8.8E-1)† 7.872E-1 (2.4E-2)† 1.116E-1 (5.2E-2)† 1.215E-1 (4.5E-2)† 8.179E-1 (1.0E-2)

WFG9
5 4.727E-1 (3.5E-2)† 7.253E-1 (1.6E-2)† 6.971E-1 (3.2E-2) 8.059E-2 (4.6E-5)† 5.963E-1 (2.9E-2)† 6.903E-1 (1.4E-2)
10 3.675E-1 (5.3E-2)† 6.127E-1 (3.6E-2)† 6.727E-1 (2.4E-2)† 7.417E-2 (2.3E-3)† 4.273E-1 (5.1E-2)† 6.824E-1 (1.3E-2)
15 2.044E-1 (5.3E-2)† 5.570E-1 (4.2E-2)† 6.677E-1 (1.2E-2)† 7.435E-2 (3.3E-3)† 3.408E-1 (5.2E-2)† 6.893E-1 (3.1E-2)

“†” indicates that the result of the peer algorithm is significantly different from that of BiGE at a 0.05
level by the Wilcoxon’s rank sum test.

the difference between the results obtained by BiGE and its competitors. The Wilcoxon

test is a non-parametric alternative to the two-sample t-test with two advantages: 1)

valid for data with a non-normal distribution and 2) much less sensitive to the outliers.

WFG Problems

Table 5.3 gives the comparative results of the six algorithms on the WFG problems

with 5, 10, and 15 objectives. As shown, BiGE and HypE perform best, having a clear

advantage over the other 4 algorithms on most of the test instances. Specifically, BiGE

obtains the best and second best HV results on 14 and 10 out of the 27 instances respec-

tively, and HypE on 10 and 15 respectively. NSGA-III performs best on the 5-objective

WFG3 and WFG9, and also generally outperforms the other three algorithms. AGE-II

and MOEA/D typically work fairly well on the 5-objective WFG, but struggle on the

10- and 15-objective instances. FD-NSGA-II, which fails to maintain the diversity of

individuals in the population, has the worst HV results on the WFG problem suite.
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(d) FD-NSGA-II (e) AGE-II (f) BiGE

Figure 5.5: The final solution set of the six algorithms on the ten-objective WFG9,
shown by parallel coordinates.

Concerning the statistical results, it can be observed that the difference between

BiGE and the peer algorithms is significant on most of the test instances. Specifically,

the proportion of the test instances where BiGE outperforms MOEA/D, NSGA-III,

HypE, FD-NSGA-II and AGE-II with statistical significance is 26/27, 21/27, 11/27,

27/27, and 25/27 respectively. Conversely, the proportion of the instances where BiGE

performs worse than MOEA/D, NSGA-III, HypE, FD-NSGA-II and AGE-II with sta-

tistical significance is 1/27, 2/27, 9/27, 0/27, and 0/27 respectively.

For a visual understanding of the solutions’ distribution, Figure 5.5 plots the final

solutions of one run with respect to the 10-objective WFG9 by parallel coordinates.

This particular run is associated with the result that is the closest to the mean HV

value. Although all considered solution sets appear to converge into the optimal front

(the upper and lower bounds of objective i in WFG’s Pareto front are 0 and 2 × i,

respectively), the six algorithms perform differently in terms of diversity maintenance.

The solutions obtained by FD-NSGA-II converge into one point of the Pareto front,

while the solutions of MOEA/D concentrate in the boundaries of the optimal front.
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Table 5.4: Normalised HV results (mean and SD) of the six algorithms on the Knap-
sack problem. The best and the second mean among the algorithms for each problem
instance is shown with dark and light grey background, respectively

Obj. MOEA/D NSGA-III HypE FD-NSGA-II AGE-II BiGE
5 5.412E-1 (3.2E-2)† 4.657E-1 (1.6E-2)† 5.467E-1 (2.1E-2)† 5.319E-1 (2.7E-2)† 5.436E-1 (2.4E-2)† 5.738E-1 (2.1E-2)

10 1.385E-1 (3.6E-2)† 1.017E-1 (2.6E-2)† 2.529E-2 (3.2E-2)† 3.224E-1 (5.4E-2)† 3.171E-1 (4.0E-2)† 3.507E-1 (5.3E-2)
15 1.396E-1 (2.9E-2)† 4.793E-2 (1.4E-2)† 2.100E-1 (3.0E-2) 2.299E-1 (3.3E-2) 2.183E-1 (2.8E-2) 2.268E-1 (3.7E-2)

“†” indicates that the result of the peer algorithm is significantly different from that of BiGE at a 0.05
level by the Wilcoxon’s rank sum test.

The solutions of AGE-II and NSGA-III seem to have a good uniformity, but fail to

reach some regions of the Pareto front. HypE and BiGE perform similarly. The only

difference between them is that the solutions of HypE struggle to cover the problem’s

boundary on some objectives, while the solutions of BiGE appear to have a good

coverage over the whole Pareto front.

Knapsack Problem

Table 5.4 gives the results of the six algorithms on the 0-1 knapsack problem. As can

be seen from the table, BiGE generally outperforms the five peer algorithms. Specif-

ically, for the 5- and 10-objective instances, BiGE has the best HV value, and also

the difference between BiGE and its competitors is statistically significant. For the

15-objective instance, BiGE ranks the second, only outperformed by FD-NSGA-II. In

addition, it is interesting to note that FD-NSGA-II, which performs worst in the WFG

problems, works quite well in the knapsack problem (also in the TSP problem, as

shown in Table 5.5 later). This indicates the different characteristics between continu-

ous and combinatorial optimisation problems. Some EMO algorithms may show better

behaviour on combinatorial optimisation problems if their fitness assignment strategy

is particularly suitable for the structure of the integral code in the problems.

TSP Problem

The normalised HV results of the six algorithms on the three TSP test instances are

shown in Table 5.5. It can be observed that BiGE performs better on the problem with

a larger number of objectives. For the 5-objective TSP, AGE-II has the highest HV

value, and BiGE outperforms the other four algorithms with statistical significance.
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Table 5.5: Normalised HV results (mean and SD) of the six algorithms on the TSP
problem. The best and the second mean among the algorithms for each problem in-
stance is shown with dark and light grey background, respectively

Obj. MOEA/D NSGA-III HypE FD-NSGA-II AGE-II BiGE
5 6.004E-1 (3.1E-2)† 4.173E-1 (3.9E-2)† 5.037E-1 (2.1E-2)† 5.636E-1 (3.8E-2)† 6.345E-1 (2.5E-2)† 6.186E-1 (2.1E-2)

10 2.246E-1 (3.9E-2)† 2.295E-2 (1.1E-2)† 3.000E-1 (1.8E-2)† 4.125E-1 (8.8E-2)† 3.477E-1 (2.8E-2)† 4.523E-1 (3.0E-2)
15 4.201E-2 (1.7E-2)† 8.876E-3 (6.4E-3)† 2.144E-1 (4.1E-2)† 2.446E-1 (6.3E-2)† 1.467E-1 (2.7E-2)† 2.860E-1 (4.7E-2)

“†” indicates that the result of the peer algorithm is significantly different from that of BiGE at a 0.05
level by the Wilcoxon’s rank sum test.

For the 10- and 15-objective instances, BiGE and FD-NSGA-II, like on the knapsack

problem, perform better than the other four algorithms. A difference from the results

on the knapsack problem is that here BiGE always obtains a higher HV value than

FD-NSGA-II on the instances. It is worth mentioning that HypE and NSGA-III, which

are competitive in the WFG problems, perform constantly worse than BiGE on all the

6 knapsack and TSP instances.

To facilitate visual comparison, Figure 5.6 plots the final solutions of a single run

of the six algorithms regarding the two-dimensional objective space f1 and f2 of the

15-objective TSP. Similar plots can be obtained for other objectives of the problem.

As shown, the solutions of BiGE have a good balance between proximity and diversity.

In contrast, the five peer algorithms struggle in terms of proximity, with their solutions

being generally distributed in the top-right region of the figures.

Water Problem

The water problem is a three-variable, five-objective, seven-constraint real-world

problem [202, 224], which was designed to optimise the planning for a storm drainage

system in an urban area. It is frequently used in the area to challenge EMO algorithms

in dealing with a problem with many objectives and constraints [50, 240, 234, 139].

Table 5.6 gives the HV results of the six algorithms on this problem. As shown, BiGE

outperforms the five peer algorithms with statistical significance. This indicates the

effectiveness of the proposed bi-goal evolution in dealing with a problem with many

objectives and constraints.

To sum up, BiGE generally outperforms the five state-of-the-art algorithms, with

the best and second best HV results in 19 and 12 out of all the 34 test instances,
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Figure 5.6: Result comparison between BiGE and each of the other five algorithms on
the 15-objective TSP. The final solutions of the algorithms are shown regarding the
two-dimensional objective space f1 and f2.

respectively. The five peer algorithms perform differently on problems with distinct

properties. HypE and NSGA-III perform well on continuous MOPs, while FD-NSGA-

II is competitive for combinatorial ones. AGE-II and MOEA/D work fairly well on 5-

objective instances, but perform poorly in a higher-dimensional objective space. Similar

observations have been reported in some recent studies [264, 180, 282, 260].

5.4 Further Investigations

The experimental results in the previous section have shown the effectiveness of BiGE

on diverse problems. Next, we will further examine BiGE by investigating the effect of

parameter setting on the algorithm performance and comparing it with some algorithms

that have similar components to the proposed algorithm.
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Table 5.6: Normalised HV results (mean and SD) of the six algorithms on the wa-
ter problem. The best and the second mean among the algorithms for each problem
instance is shown with dark and light grey background, respectively

MOEA/D NSGA-III HypE FD-NSGA-II AGE-II BiGE
8.589E-1 (9.1E-3)† 9.176E-1 (2.9E-3)† 9.133E-1 (3.8E-3)† 1.982E-1 (1.8E-3)† 8.960E-1 (1.5E-3)† 9.273E-1 (4.1E-3)

“†” indicates that the result of the peer algorithm is significantly different from that of BiGE at a 0.05
level by the Wilcoxon’s rank sum test.

5.4.1 Effect of the Population Size and Objective Dimensionality

In BiGE, two parameters, the population size and the number of objectives, play an

important role. They determine the niche radius in the crowding degree estimation

of the algorithm. In this section, we investigate the effect of these two parameters on

the algorithm performance. Here, we show experimental results on WFG9, one of the

most challenging test problems (this can be inferred from the HV values in Table 5.3).

Similar results can also be observed on other problems.

First, we consider the effect of the population size on the performance of the six

algorithms. The population size in the previous studies was fixed to 100. In this

study, we give a wide range of the population size (from 50 to 1000) to test how the

performance of the algorithm varies with it. Other parameters are kept unchanged in

this study, except the function evaluations which are changed accordingly in order to

keep the number of generations (300) fixed. Figure 5.7 shows the HV results on the

10-objective WFG9. Clearly, except FD-NSGA-II, the HV result of all the algorithms

increases with the population size, which means that a larger population size generally

leads to a better performance. This is shown more evidently in AGE-II, NSGA-III,

and MOEA/D. On the other hand, HypE and BiGE always outperform other four

algorithms under all the seven settings of the population size. More specifically, HypE

has the best HV when the population size is 50, while BiGE performs best for the

remaining cases. Overall, the above results indicate the insensitivity of the proposed

algorithm to the population size – BiGE can work well under various sizes of the

evolutionary population.

Next, we consider the effect of the objective dimensionality on the performance of

the six algorithms. In the previous studies, the algorithms have already been tested
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Figure 5.7: Normalised HV of the six algorithms with different settings of the popula-
tion size on the 10-objective WFG9.

under 5, 10, and 15 objectives. Here, we extend the range of the number of objec-

tives and investigate how the algorithms work in a lower- or higher-dimensional space.

Figure 5.8 shows the HV results of the six algorithms on the 3-, 4-, 5-, 7-, 10-, 15-,

and 20-objective WFG9. As shown, NSGA-III, HypE, and BiGE outperform the other

algorithms under all the seven settings of the number of objectives. Taking a closer

comparison among these three algorithms, NSGA-III and HypE perform best for the

problem with 3 to 5 objectives, while BiGE shows its advantage when the number of

objectives reaches 10. In addition, an interesting difference of BiGE from the other

algorithms is that its HV value remains quite steady (rather than degrades) with the

increase of the number of objectives. This occurrence could be attributed to the fact

that the bi-goal evolution can provide a good balance between proximity and diversity,

which is largely independent of a problem’s objective dimensionality.

5.4.2 Effect of the Sharing Discriminator in the Sharing Function

A feature in BiGE is that a sharing discriminator is introduced to differentiate individ-

uals in a niche. When calculating the sharing function of two neighbouring individuals,

one with better proximity is encouraged by multiplying 0.5, while the other is discour-

aged by multiplying 1.5 (here we denote this sharing discriminator as (sde, sdd)). This

adjustment can lead the individual with better proximity to have a lower crowding

degree and the individual with worse proximity to have a higher one. Now a straight-
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Figure 5.8: Normalised HV of the six algorithms with different settings of the number
of objectives on WFG9.

forward question is how much (sde, sdd) affects the performance of the algorithm. In

addition, one may also ask if we can only discourage the individual with worse proxim-

ity while remaining the other unchanged, such as (sde, sdd) being set to (1.0, 1.5). In

this case, two neighbouring individuals can also be well differentiated.

In this section, we investigate the effect of the sharing discriminator and attempt to

answer the above two questions. Here, we show the results on the 10-objective WFG9.

Similar results can be obtained for other problems. Here, we consider four representa-

tive settings of the discriminator: (0.0, 2.0), (0.25, 1.75), (0.75, 1.25), and (1.0, 1.0). The

setting (0.0, 2.0) is an extreme where the individual with better proximity is assigned

zero sharing function value, while (1.0, 1.0) is the other extreme where neither of the

individuals’ sharing function value is changed. The settings (0.25, 1.75) and (0.75, 1.25)

are two middle values between the extremes and the setting (0.5, 1.5) used in the ex-

periments. Table 5.7 gives the HV results of BiGE with the above four settings, along

with (0.5, 1.5), on the 10-objective WFG9. As shown, the algorithm with the three

settings (0.25, 1.75), (0.5, 1.5), and (0.75, 1.25) performs very similarly, and all signifi-

cantly outperform the algorithm with the two extreme settings (0.0, 2.0) and (1.0, 1.0).

This indicates the insensitivity of the algorithm to the discriminator parameter within

a certain range – BiGE can work well with different discriminator values, provided that

they are away from the two extremes.

Next, we consider the case that only the individual with worse proximity is dis-
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Table 5.7: Normalised HV of BiGE with different settings of the sharing discriminator
on the 10-objective WFG9.

(sde, sdd) Normalised HV
(0.00, 2.00) 6.211E–1 (1.5E–2)
(0.25, 1.75) 6.822E–1 (1.4E–2)
(0.50, 1.50) 6.824E–1 (1.3E–2)
(0.75, 1.75) 6.806E–1 (1.3E–2)
(1.00, 1.00) 5.650E–1 (1.5E–2)

Table 5.8: Normalised HV of BiGE with the settings of the sharing discriminator that
only discourage the individual with worse proximity on the 10-objective WFG9.

(sd1, sd2) Normalised HV
(1.00, 1.25) 6.720E–1 (1.3E–2)
(1.00, 1.50) 6.773E–1 (1.2E–2)
(1.00, 1.75) 6.758E–1 (1.3E–2)
(1.00, 2.00) 6.732E–1 (1.2E–2)
(0.50, 1.50) 6.824E–1 (1.3E–2)

couraged in the sharing function. That is, sde is set to 1.0 and sdd to larger than 1.0.

Here, we consider four settings of the discriminator: (1.0, 1.25), (1.0, 1.5), (1.0, 1.75),

and (1.0, 2.0). The HV results of BiGE with them are given in Table 5.8, where the

result of the algorithm with (0.5, 1.5) is repeated for comparison. As can be seen from

the table, the algorithm where the individual with better proximity is not encouraged

performs slightly worse than the original algorithm. A probable explanation for this is

as follow. In general, for a group of individuals in a niche, it is ideal to select a repre-

sentative individual (i.e., with the best proximity) from them into the next population.

However, with the discriminator setting that only discourages individuals with worse

proximity, all the individuals in the niche could have a high crowding degree (in com-

parison with those having no neighbour in their own niche). This may lead to none of

the individuals in this niche surviving in the next population. Thus, an encouragement

for the individual with better proximity in the niche is beneficial to the diversity of the

population – it further differentiates similar individuals and enables a representative

one to be preserved in the evolutionary process.
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5.4.3 Comparison with Average Ranking Methods

In BiGE, the proximity of an individual is estimated by the sum of its normalised values

across the objectives. This estimation could be viewed as a slightly more fine-grained

version of the well-known average ranking (AR) method [15]. AR estimates the prox-

imity of an individual by summing its ranks (in the population) across the objectives.

The difference between these two estimations is that AR considers individuals’ rank

in the population on each objective, while the BiGE proximity estimation considers

quantitative difference of individuals on each objective.

As an individual comparison criterion, AR is popular in many-objective optimisa-

tion. Corne and Knowles have demonstrated that AR can provide sufficient selection

pressure towards the optimal front in a high-dimensional objective space [45]. However,

due to the lack of a diversity maintenance scheme, AR may lead the evolutionary pop-

ulation to converge into a sub-area of the Pareto front [138]. Recently, some methods

have been proposed to enhance the diversity for AR. For example, Purshouse et al.

made a modification of the AR-based fitness by combining it with a sharing scheme

based on the Epanechnikov kernel [217]. Li et al. imposed a punishment on individuals

who are neighbours of the best-AR individual to prohibit or postpone their entry in the

next population [184]. Kong et al. repeatedly initialised the population by a chaotic

method after some generations, in order to enhance the diversity of individuals in the

decision space [154]. Instead of considering the objectives in the original AR, Yuan et

al. summed up the aggregation function values based on uniformly-distributed weight

vectors [274].

A clear difference of BiGE from these AR-based algorithms is that BiGE uses

the idea of Pareto dominance to deal with proximity and diversity. This could be

well suited to many-objective optimisation where the conflict between proximity and

diversity goals is more serious than that in bi- or tri-objective optimisation. Considering

the dominance relation of these two goals can provide a good balance between them and

lead the algorithm to be less affected by the increase of the objective dimensionality.

Next, we empirically investigate the difference between BiGE and some AR-based

algorithms. Specifically, we consider three peer algorithms: (1) the original AR [15],
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(2) AR combined with a fitness sharing scheme (called AR+sharing here) [217], and (3)

a new version of BiGE where AR is used as the proximity estimation method, denoted

as BiGE(AR). In [217], AR has been found to be competitive when combined with a

sharing scheme based on the Epanechnikov kernel [73]. From some initial experiments,

we found that replacing the Epanechnikov kernel with the proposed niching method, the

algorithm can obtain very similar results. Therefore, here the proposed niching method

is used in AR+sharing in order to investigate the difference of the algorithm framework.

That is, AR+sharing and BiGE(AR) have the same proximity and crowding degree

estimation methods and the only difference between them is the algorithm framework.

In addition, it is worth noting that BiGE(AR) and BiGE have the same algorithm

framework and the only difference between them is their proximity estimation.

Table 5.9 gives the HV results of the three algorithms on all the 34 test instances; for

comparison, the results of BiGE are also included in the table. As shown, the diversity

mechanism dramatically improves the HV results, with AR+sharing, BiGE(AR) and

BiGE outperforming the original AR on all the 34 test instances. This suggests the

importance of diversity maintenance in many-objective optimisation.

Regarding the two algorithms having same proximity and crowding degree estima-

tors, BiGE(AR) performs better than AR+sharing in 31 out of the 34 instances. This

clearly indicates the advantage of the bi-goal evolution framework for many-objective

problems. In addition, note that AR+sharing has the best HV result for the three

WFG2 instances, which have a disconnected Pareto front. This is because AR+sharing

can always find all the optimal regions of the Pareto front in all the 30 runs, while

BiGE(AR) and BiGE can only do so in around half of the 30 runs.

Finally, consider the comparison between two versions of the bi-goal evolution al-

gorithm. BiGE(AR) outperforms BiGE on 10 test instances (including 7 five-objective

instances), while BiGE has better HV results on the remaining 24 instances. An inter-

esting observation is that the less fine-grained algorithm BiGE(AR) generally performs

better on five-objective instances. One possible explanation for this is that BiGE(AR)

could prefer some boundary individuals in a population. These boundary solutions,

which perform rather poorly on one objective but best (or nearly best) on other ob-
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Table 5.9: Normalised HV results (mean and SD) of the four algorithms on all the 34
test instances. The best and the second mean among the algorithms for each problem
instance is shown with dark and light grey background, respectively

Problem Obj. AR AR+sharing BiGE(AR) BiGE

WFG1
5 1.553E–2 (6.9E–2)† 5.001E–1 (1.4E–2)† 5.530E–1 (2.8E–2)† 6.151E–1 (3.9E–2)
10 1.577E–1 (1.4E–1)† 4.842E–1 (2.9E–2)† 5.998E–1 (3.9E–2)† 7.786E–1 (4.7E–2)
15 4.961E–1 (2.9E–1)† 4.716E–1 (3.1E–2)† 6.001E–1 (3.7E–2)† 7.612E–1 (3.4E–2)

WFG2
5 1.714E–1 (7.6E–2)† 9.663E–1 (8.2E–3)† 9.255E–1 (8.4E–2) 9.014E–1 (8.2E–2)
10 2.276E–1 (9.0E–2)† 9.717E–1 (1.4E–2)† 9.715E–1 (5.2E–2) 9.475E–1 (5.3E–2)
15 2.442E–1 (9.9E–2)† 9.587E–1 (1.9E–2) 9.541E–1 (6.3E–2) 9.402E–1 (6.1E–2)

WFG3
5 2.274E–1 (2.9E–2)† 7.470E–1 (3.7E–2)† 8.975E–1 (1.4E–2)† 9.092E–1 (1.1E–2)
10 2.001E–1 (2.8E–2)† 7.486E–1 (5.5E–2)† 8.609E–1 (2.1E–2)† 8.705E–1 (1.8E–2)
15 1.868E–1 (3.9E–2)† 7.559E–1 (4.7E–2)† 8.349E–1 (2.3E–2)† 8.545E–1 (2.6E–2)

WFG4
5 1.351E–1 (1.7E–2)† 6.745E–1 (1.5E–2)† 8.340E–1 (6.5E–3)† 8.117E–1 (8.4E–3)
10 1.114E–1 (1.3E–2)† 6.455E–1 (2.3E–2)† 8.304E–1 (1.1E–2) 8.313E–1 (1.1E–2)
15 1.053E–1 (1.1E–2)† 5.448E–1 (3.6E–2)† 7.829E–1 (2.7E–2)† 8.073E–1 (1.9E–2)

WFG5
5 1.210E–1 (2.1E–2)† 6.634E–1 (1.4E–2)† 7.778E–1 (7.4E–3)† 7.709E–1 (6.2E–3)
10 9.355E–2 (1.1E–2)† 6.754E–1 (1.8E–2)† 7.909E–1 (1.1E–2)† 7.990E–1 (1.9E–2)
15 9.344E–2 (1.0E–2)† 6.224E–1 (2.4E–2)† 7.870E–1 (1.3E–2)† 7.715E–1 (1.4E–2)

WFG6
5 1.196E–1 (2.3E–2)† 6.283E–1 (1.9E–2)† 7.891E–1 (9.3E–3)† 7.728E–1 (8.9E–3)
10 9.997E–2 (2.4E–2)† 6.607E–1 (2.4E–2)† 8.190E–1 (1.0E–2)† 8.270E–1 (1.3E–2)
15 1.019E–1 (2.6E–2)† 6.673E–1 (3.0E–2)† 8.120E–1 (1.8E–2)† 8.339E–1 (1.4E–2)

WFG7
5 2.239E–1 (7.4E–2)† 6.876E–1 (1.5E–2)† 8.426E–1 (6.8E–3)† 8.356E–1 (5.5E–3)
10 2.166E–1 (6.0E–2)† 7.303E–1 (2.1E–2)† 8.489E–1 (1.2E–2)† 8.827E–1 (1.2E–2)
15 1.734E–1 (5.1E–2)† 6.858E–1 (3.5E–2)† 8.182E–1 (1.9E–2)† 8.787E–1 (1.3E–2)

WFG8
5 1.832E–1 (3.0E–2)† 5.064E–1 (1.4E–2)† 6.833E–1 (8.9E–3) 6.822E–1 (9.1E–3)
10 1.581E–1 (2.5E–2)† 5.769E–1 (2.7E–2)† 7.478E–1 (8.6E–3)† 7.722E–1 (6.1E–3)
15 1.449E–1 (3.0E–2)† 6.427E–1 (2.8E–2)† 7.843E–1 (1.4E–2)† 8.179E–1 (1.0E–2)

WFG9
5 1.218E–1 (4.4E–2)† 6.078E–1 (1.4E–2)† 6.910E–1 (8.7E–3) 6.903E–1 (1.4E–2)
10 9.933E–2 (3.7E–2)† 6.314E–1 (1.9E–2)† 6.742E–1 (2.1E–2)† 6.824E–1 (1.3E–2)
15 1.131E–1 (5.7E–2)† 6.122E–1 (2.6E–2)† 6.616E–1 (3.5E–2)† 6.893E–1 (3.1E–2)

Knapsack
5 4.199E–1 (3.2E–2)† 4.538E–1 (2.9E–2)† 5.652E–1 (2.1E–2) 5.738E–1 (2.1E–2)
10 1.409E–1 (3.6E–2)† 2.879E–1 (1.3E–2)† 3.126E–1 (3.9E–2)† 3.507E–1 (5.3E–2)
15 7.471E–2 (1.9E–2)† 1.403E–1 (3.9E–2)† 2.096E–1 (3.3E–2)† 2.268E–1 (3.7E–2)

TSP
5 2.850E–1 (3.0E–2)† 3.295E–1 (3.2E–2)† 5.788E–1 (2.9E–2)† 6.186E–1 (2.1E–2)
10 1.251E–1 (2.4E–2)† 1.837E–1 (2.4E–2)† 4.094E–1 (3.3E–2)† 4.523E–1 (3.0E–2)
15 5.187E–2 (2.7E–2)† 1.013E–1 (5.5E–2)† 2.367E–1 (4.8E–2)† 2.860E–1 (4.7E–2)

Water 5 7.904E–1 (7.7E–3)† 8.668E–1 (5.6E–3)† 9.213E–1 (8.0E–3)† 9.273E–1 (4.1E–3)

“†” indicates that the result of the peer algorithm is significantly different from that of BiGE at a 0.05
level by the Wilcoxon’s rank sum test.

jectives, play an important role in extending the search range. Due to having no

consideration of quantitative difference of individuals, BiGE(AR) would be in favour of

these solutions. Nevertheless, it is worth pointing out that a fine-grained estimation of

individual proximity can be more important in a high-dimensional space, where there

is more need of clear distinction between individuals.
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5.5 Summary

In this chapter, we presented a new framework of EAs, called BiGE, to deal with

many-objective optimisation problems. Converting many objectives of a given problem

into two objectives of proximity and crowding degree, BiGE creates an optimisation

problem in which the objectives are the goals of the search process itself.

Systematic experiments were carried out by providing extensive comparative studies

between BiGE and five state-of-the-art algorithms on four groups of well-defined con-

tinuous and combinatorial benchmark suites with 5, 10, and 15 objectives. Unlike some

peer algorithms, which work well on only a fraction of the test problems (e.g., AGE-II

and MOEA/D on the 5-objective instances, HypE and NSGA-III on the continuous

instances, and FD-NSGA-II on the combinatorial instances), BiGE can achieve a good

balance between solutions’ proximity and diversity on the test problems with different

properties. In addition, the effect of several parameters on the algorithm was investi-

gated. Experimental results have indicated the insensitivity of BiGE to the population

size and objective dimensionality as well as the effectiveness of BiGE under different

settings of the sharing discriminator within a certain range. Finally, a comparison with

three AR-based algorithms has shown the advantage of the proposed framework and

proximity estimation in dealing with MaOPs.

It is worth pointing out that the niche radius in the paper is a rough setting (esti-

mate) according to the population size and the number of objectives. A finely tuned

setting based on the characteristics of a given MOP, such as varying with the Pareto

front’s shape, may lead to a better performance of BiGE. Nevertheless, this fixed set-

ting can benefit the applicability of BiGE to real-world problems as it could be hard

(or even impossible) to know the problems’ characteristics beforehand.
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Chapter 6

A Performance Indicator

In this chapter, we present a performance comparison indicator (PCI) to assess the

performance of Pareto front approximations (i.e., solution sets obtained by stochastic

search algorithms) in multi-objective optimisation. PCI works for optimisation prob-

lems with any number of objectives and can be particularly practical in many-objective

optimisation.

This chapter is organised as follows. Section 6.1 introduces the performance assess-

ment in many-objective optimisation, with a particular focus on why there exists little

work in this area. Section 6.2 reviews related works in multi-objective optimisation

and further analyses their difficulties in many-objective optimisation. Section 6.3 is de-

voted to the description of the proposed indicator. Analytic and empirical studies are

carried out in Section 6.4 and Section 6.5, respectively. Finally, Section 6.6 concludes

the chapter.

6.1 Introduction

Performance indicators, which assess the performance of Pareto front approximations,

play an important role in multi-objective optimisation. They not only are used to

examine and compare EMO algorithms but also are capable of guiding the search

during the evolutionary process of an algorithm [291].

During the past two decades, a variety of performance indicators have been proposed
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in multi-objective optimisation [75, 92, 295, 207, 153, 290]. However, how to assess and

compare Pareto front approximations in the context of many-objective optimisation has

received scant concern [254]. Many performance indicators are designed in principle

for any number of objectives, but in practice are invalid or infeasible when dealing

with Pareto front approximations with high dimensions. In general, the difficulties of

comparing high-dimensional Pareto front approximations can be summarised as follows:

• Difficulties of visual comparison. When the number of objectives is larger than

three, visual and intuitive performance assessment becomes difficult or even mis-

leading, despite the fact that it is a prevailing comparison tool in multi-objective

optimisation.

• Ineffectiveness of Pareto dominance. Since the portion of the space that a solution

dominates decreases exponentially with the number of objectives, most solutions

in different approximation sets are likely to be incomparable under the criterion

of Pareto dominance. This can lead to the ineffectiveness of many performance

indicators based on the comparison of solutions’ Pareto dominance relation, such

as the coverage [294] and G-metric [189].

• Rapid increase of time or space requirement. The time or space required by some

performance indicators increases exponentially with the number of objectives,

such as the hypervolume [294], hyperarea radio [251] and diversity measure [53].

This can affect their application in many-objective optimisation.

• Difficulties of parameter setting. As shown in Purshouse and Fleming [216], the

sweet-spot of algorithm parameter setting that produces good results could shrink

markedly in many-objective optimisation. This could also apply to parameter

setting of performance indicators. In general, the sensitivity of assessment results

to an indicator’s parameter(s) increases with the number of objectives. Two high-

dimensional approximation sets could return completely contrary results when

assessed by an indicator with slightly different settings of its parameter(s) [174].

• Difficulties of the substitution of Pareto front. Many performance indicators re-
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quire a reference set as a substitution of the Pareto front, such as GD [251] and

IGD [19, 42]. However, to represent a higher-dimensional Pareto front, exponen-

tially more points are needed. As shown by Ishibuchi et al. [123], insufficient

points can easily lead to an inaccurate or even a misleading assessment result.

In this chapter, we propose a performance indicator to compare Pareto front ap-

proximations obtained by many-objective algorithms. The proposed indicator evaluates

the relative quality of approximation sets with the aid of a reference set constructed

by themselves. The points in the reference set are divided into many clusters, and

the indicator estimates the minimum moves of solutions in the approximation sets to

weakly Pareto dominate these clusters.

6.2 Related Work

Despite the difficulties in assessing high-dimensional Pareto front approximations, some

effort has been made. Jaimes and Coello [132] measured the Tchebycheff distance of

an approximation set to the “knee” of the Pareto front in many-objective optimisa-

tion. This measurement is based on the assumption that, in the absence of particular

preference information, the decision maker may have more interest in the knee of a

problem’s Pareto front. Recently, Li et al. [174] proposed an indicator to compare the

diversity of approximation sets. They put all approximation sets into a grid environ-

ment and calculated the contribution of each set to those non-empty hyperboxes. A

problem in these indicators is that they only focus on one particular aspect of the per-

formance of approximation sets, failing to provide a comprehensive evaluation of the

sets’ performance.

On the other hand, some classic performance indicators which measure the overall

quality of approximation sets have been frequently used to test and compare many-

objective optimisers [88, 180, 256]. Examples are the hypervolume [294], ε-indicator

[295], and IGD [19] (also its variation IGD+ [123]). Next, we will briefly discuss their

pros and cons, especially when assessing high-dimensional approximation sets.

The hypervolume (HV) indicator [294] calculates the volume of the objective space
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(a) MOEA/D (b) IBEA

Figure 6.1: An example that HV prefers the knee and boundary points on the Pareto
front, where two sets of Pareto optimal solutions on DTLZ2 are obtained by MOEA/D
and IBEA. The solution set with better distribution (obtained by MOEA/D) has a
worse (lower) HV result, as given in Table 6.1.

enclosed by an approximation set and a reference point. HV has good theoretical

properties and can give a general evaluation of the set, but its computational complexity

increases exponentially with the number of objectives. These lead to its dominant

application in the 2- or 3-objective problems. While the Monte Carlo method can

largely reduce the time cost [10, 25], how to choose a proper reference point in the HV

calculation is an important issue [151] and its difficulty also increases with the number

of objectives. In addition, the HV indicator generally prefers the knee and boundary

points of the Pareto front to well-distributed ones. Figure 6.1 gives such an example,

where we consider two sets of Pareto optimal solutions1 obtained by two well-known

EMO algorithms, MOEA/D [278] and IBEA [291], on problem DTLZ2 [57]. Table 6.1

gives the HV results of these two solution sets with various settings of the reference

point. As shown, the solution set with better distribution (obtained by MOEA/D) has

a worse (lower) HV evaluation value than its competitor, regardless of the choice of the

reference point.

The unary ε-indicator [295] measures the minimum factor ε for an approximation

set such that any point in a reference set is ε-dominated [165] (additively or multi-

1Here, the number of DTLZ2’s decision variables n is set to m− 1 (m is the number of objectives)
to ensure that all solutions produced by the algorithms are Pareto optimal.
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Table 6.1: HV results of the two sets in Figure 6.1 under different reference points.
The range of DTLZ2’s Pareto front is [0, 1] for all objectives.

Reference point MOEA/D IBEA

(1.0, 1.0, 1.0) 4.1413E–1 4.1525E–1

(1.1, 1.1, 1.1) 7.4484E–1 7.4596E–1

(1.2, 1.2, 1.2) 1.1418E+0 1.1430E+0

(1.4, 1.4, 1.4) 2.1578E+0 2.1590E+0

(1.7, 1.7, 1.7) 4.3268E+0 4.3280E+0

(2.0, 2.0, 2.0) 7.4138E+0 7.4150E+0

(2.5, 2.5, 2.5) 1.5039E+1 1.5040E+1

(3.0, 3.0, 3.0) 2.6414E+1 2.6415E+1

Figure 6.2: An example that the unary additive ε-indicator fails to distinguish between
two approximation sets. P and Q have the same evaluation result (ε = 2.5).

plicatively) by at least one solution in the approximation set. One weakness in the

ε-indicator is that its evaluation value is only related to one particular solution in

an approximation set, which could lead to an inaccurate estimation of the set’s per-

formance. Figure 6.2 gives an example that the unary additive ε-indicator fails to

distinguish between approximation sets (P and Q). As can be seen from the figure, P

clearly outperforms Q, but the two sets have the same evaluation result.

Zitzler et al. [295] also presented a binary ε-indicator and stated its desirable fea-

tures, such as being free from the limitations of unary performance indicators, having

a low computational cost, and representing natural extension to the evaluation of ap-

proximation schemes in theoretical computer science. However, the ε-indicator (both

unary and binary) only considers one particular objective of the problem (i.e., the ob-
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jective where the considered approximation sets have the biggest difference), ignoring

the difference on the others. This unavoidably leads to an information loss, especially

for optimisation problems with many objectives. Consider two 10-objective solutions,

p = (0, 0, 0, ..., 0, 1) and q = (1, 1, 1, ..., 1, 0). p performs better on nine objectives and q

does better only on the last objective, but they have the same evaluation result (ε = 1).

IGD [19] calculates the average Euclidean distance from each point in a reference set

(a substitution of the Pareto front) to its closest solution in an approximation set. This

overcomes the ε-indicator’s problem of only returning one particular objective value of

one particular solution. However, one weakness of IGD is its non-compliance with the

Pareto dominance relation. Ishibuchi et al. [123] presented several examples that an

approximation set P could obtain a worse IGD result than an approximation set Q

even if P Pareto-dominates Q. This even happens when the reference set is exactly the

Pareto front. In fact, a reference set with sufficient, well-distributed points can only

reduce the possibility of this misleading result, rather than eliminating it completely.

To solve this problem, Ishibuchi et al. [121, 123] proposed a modified IGD (IGD+),

only considering the superior objective values of the reference point to the solution of

the approximation set in their distance calculation. This can enable the indicator to

be weakly Pareto compliant2 [123]. However, like IGD, IGD+ also needs a reference

set specified by the user. While IGD+ alleviates the severe sensitivity of IGD to the

reference set, different reference sets can cause IGD+ to prefer different approximation

sets [120]. This may lead to inconsistent evaluation results among these sets. In fact,

how to specify a proper preference set in many-objective optimisation is a challenging

issue [121]; this also applies to artificial test functions with a known Pareto front,

given that exponentially increasing points are needed to accurately represent a higher-

dimensional Pareto front.

For an MOP with an unknown Pareto front, a practical method of constructing

a reference set is to use the nondominated solutions of all solutions in the consid-

ered approximation sets. This method is widely used in many-objective optimisation

[108, 121]. However, in this method, there is no information about the location and

2For a weakly Pareto compliant indicator I, if a set P weakly dominates a set Q, then I(P ) is not
worse than I(Q) [295].
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Figure 6.3: An example that IGD and IGD+ fails to reflect the performance difference
between approximation sets, where the reference set is constructed by the approxima-
tion sets themselves. P and Q have the same IGD and IGD+ evaluation results (0.884
and 0.625 respectively).

distribution of the points in the reference set. Some points could be far away from the

Pareto front, like the dominance resistant solutions3 [57, 113] which are preserved more

likely in a higher-dimensional objective space. Some points could be located closely

or even overlapping, and this will result in some areas overcrowded and some others

empty. Overall, such a reference set with an arbitrary distribution of nondominated

solutions can significantly decrease the accuracy of the evaluation result. Figure 6.3

gives an example that with the reference set constructed by the tested approximation

sets, IGD and IGD+ fail to reflect the performance difference between the sets. As

shown, the points of the reference set are not well distributed, which leads to the result

that P with uniformly-distributed solutions has the same evaluation value as Q whose

solutions concentrate in two small areas.

6.3 The Proposed Approach

As indicated before, the binary ε-indicator directly considers the performance difference

of approximation sets, but only returns one particular objective value of one particu-

3Dominance resistant solutions in a set are the solutions with a quite poor value in at least one of
the objectives but with (near) optimal values in some others, and thus are nondominated in the set.
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lar solution; IGD+ (or IGD) considers the whole approximation set and multiple (or

all) objectives, but requires a reference set which is hard to specify in many-objective

optimisation. So, an intuitive idea of developing an indicator is to consider their com-

bination, that is, using the calculation method of IGD+ to directly compare two ap-

proximation sets (i.e., two approximation sets are viewed as mutual reference sets in

the IGD+ calculation). This indicator, though, also suffers from the effect of a poorly-

distributed reference set, e.g., still failing to distinguish between the approximation sets

in Figure 6.3. In fact, since each point (regardless of its location) in the reference set

is equally treated in the evaluation, the areas with many similar (or duplicate) points

have more effect than the same-size ones with few points on the evaluation result.

This naturally leads such an indicator to prefer an approximation set having similar

distribution with the considered reference set. In addition, since a binary indicator

manipulates only two approximation sets, many comparisons are required when more

than two approximation sets are involved (
(
n
2

)
comparisons for n sets).

Given the above, this chapter presents a performance comparison indicator (PCI),

capable of assessing multiple approximation sets (any number) in a single run. PCI

constructs a reference set by using all the tested Pareto front approximations and

assesses each approximation on the basis of this reference set. Rather than dealing with

each point in the reference set, PCI divides all points into many clusters according to

their distribution (the method of the division will be explained later), and considers the

relationship between the clusters and solutions in the approximation set. Specifically,

PCI measures the minimum move distance of one solution to weakly dominate4 all

points in a cluster, as defined as follows.

Definition 6.3.1 (Dominance distance of a point to a point set). Let p be a point

and Q be a set of points {q1, q2, ..., qk} (k ≥ 1). The dominance distance D(p,Q) of

p to Q is defined as the minimum move of p in the objective space such that p weakly

dominates all points in Q.

4For two solutions p and q, p weakly dominates q (p � q) if and only if p is not worse than q in all
objectives.
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D(p,Q) can be calculated as:

D(p,Q) =

√√√√ m∑
i=1

(p(i) − d(p(i), Q))2 (6.1)

d(p(i), Q) =

{
min{q(i)1 , q

(i)
2 , ..., q

(i)
k }, if p(i) > min{q(i)1 , q

(i)
2 , ..., q

(i)
k }

p(i), otherwise

where p(i) denotes the objective value of point p in the ith objective and m is the

number of objectives.

Dominance distance D(p,Q) only considers the objectives where Q performs better

than p (i.e., the best value of the points in Q is better than that of p), regardless of the

advantage of p over Q. This can lead to the indicator free from the effect of poorly-

converged reference points, such as the dominance resistant solutions. The range of

D(p,Q) is from 0 to ∞; the smaller the better. If p performs slightly worse than Q in

only a few objectives, D(p,Q) will be small. Only when p weakly dominates all points

in Q, D(p,Q) = 0.

Note that when Q has only one point q, the dominance distance of p to Q becomes

D(p, q), i.e., the minimum move of p to weakly dominate q in the objective space.

This method has already been used in the area to measure the difference between two

solutions. For example, IGD+ used this measure to replace the Euclidean distance

in the IGD calculation, making the indicator compliant with weak Pareto dominance.

In fact, D(p,Q) can also be viewed as the dominance distance of p to a point, qideal,

constructed by the best value of each objective for all k points in Q.

In contrast to IGD and IGD+ which consider each point in the reference set, PCI

replaces a set of similar points with an imaginary (ideal) point constructed by them-

selves. This avoids the overlapping effect of similar points and also takes into account

the superiority of these points on each objective. In fact, the dominance distance of

a point to a set of points is larger than or equal to the maximum dominance dis-

tance of the point to all members in the set, but is smaller than their summation, i.e.,

max{D(p, q1), ..., D(p, qk)} ≤ D(p,Q) < D(p, q1) + ...+D(p, qk).

Given that the dominance distance of a point to a cluster reflects the advantage of
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the cluster over the point, one may think to use this dominance distance to consider all

clusters in the reference set to assess an approximation set. However, this evaluation

may lead to an inaccurate result when in a cluster there is more than one solution from

the assessed approximation set. To explain this, we introduce the following definition.

Definition 6.3.2 (Dominance Distance of a point set to another). Let P be a set of

points and Q be a set of points. The dominance distance D(P,Q) is defined as the

minimum total distance of the move of points of P in the objective space such that for

any point q ∈ Q, there is at least one point p ∈ P that weakly dominates q.

The dominance distance of two sets reflects their performance difference. If P

(weakly) dominates Q, then D(P,Q) = 0.

In the proposed indicator, since the reference set consists of all the approximation

sets, a cluster can contain points from different approximation sets. Let a cluster C be

comprised of P and Q, where P = {p1, ..., pi} is from the assessed approximation set

and Q = {q1, ..., qj} from other approximation sets. Apparently, D(P,C) = D(P,Q).

When i = 1, D(P,C) is the dominance distance of p1 to the ideal point of C. When

i ≥ 2, D(P,C) could be smaller than min{D(p1, C), ..., D(pi, C)}.

Figure 6.4 gives an example to illustrate this situation. Consider the dominance

distance of three solution sets P1 ,P2, and P3 to three clusters C1 ,C2, and C3, re-

spectively in the figure, where P1 ∈ C1, P2 ∈ C2, P3 ∈ C3, P = P1 ∪ P2 ∪ P3. For P1

which has only one solution, D(P1, C1) is the dominance distance of the solution to

the cluster (D(P1, C1) = (0.52 + 0.52)0.5 ≈ 0.707). For P2 which has two solutions,

D(P2, C2) is the dominance distance of the upper solution to the ideal point of the two

Q solutions, and this is smaller than the minimum of the dominance distance of the

two single P2 solutions to the cluster (0.559 < min{1.031, 1.25}). Cluster C3 gives an

extreme situation where no move of the P3 solutions is needed to weakly dominate all

solutions in the cluster (i.e., D(P3, C3) = 0), but the dominance distance of the two

single P3 solutions to the cluster is 1.0.

From the above, it is clear that for a cluster C = P ∪Q (P = {p1, ..., pi}, i ≥ 2, Q =

{q1, ..., qj}), the required move of P to weakly dominate C can be (much) smaller than

the minimum move of any one point in P to weakly dominate C. This is because
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Figure 6.4: An example that the dominance distance of a set of solutions to a cluster
can be smaller than the minimum of their single dominance distance to the cluster.
For three sets P1, P2, and P3 (P1 ∈ C1, P2 ∈ C2, P3 ∈ C3, P = P1 ∪ P2 ∪ P3), their
dominance distance to C1, C2 and C3 is 0.707, 0.559 and 0.0, respectively, while the
minimum of their single solution’s dominance distance to C1, C2 and C3 is 0.707, 1.031
and 1.0, respectively.

the points in C can be “divided and conquered” by multiple solutions in P . However,

how to determine D(P,C) (i.e., the minimum move of {p1, ..., pi} to weakly dominate

{q1, ..., qj}) could be quite time consuming; there are ij possibilities for p1, p2, ..., pi to

divide q1, q2, ..., qj . Here, we approximately measure it by

D′(P,C) = max{min{D(p1, q1), . . . , D(pi, q1)},

. . . ,min{D(p1, qj), . . . , D(pi, qj)}}
(6.2)

when i ≥ 2. This only requires i× j comparisons. Although D′(P,C) ≤ D(P,C), their

difference is generally slight when the size of C is small. In the example of Figure 6.4,

D′(P2, C2) = 0.5 < D(P2, C2) = 0.559 and D′(P3, C3) = D(P3, C3) = 0.

Algorithm 6.1 gives the main procedure of the proposed indicator. It is necessary to

mention here that we normalise approximation sets before the evaluation, in order to

enable PCI to deal with MOPs with non-commensurable objective functions. Specif-

ically, the range of an MOP’s Pareto front is used to implement the normalisation if

it is available; otherwise, the boundary of the constructed reference set is used. From

Algorithm 6.1, it can be seen that PCI treats the clusters differently. For a cluster
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Algorithm 6.1 Performance Comparison Indicator (PCI)

Require: P 1, P 2, . . . , P pn (tested approximation sets)
1: S ← NondominanceSelection(P 1, P 2, . . . , P pn) /∗ Finding out the non-

dominated solutions of the mixed set consisting of all the approximation sets ∗/
2: (C1, C2, ..., Ccn)← Clustering(S)
/∗ Clustering the points in S according to Algorithm 6.2 ∗/

3: for all P i ∈ {P 1, P 2, . . . , P pn} do
4: PCI(P i)← 0
5: for all Cj ∈ {C1, C2, . . . , Ccn} do
6: P ij ← P i ∩ Cj
7: if |P ij | < 2 then

8: PCI(P i)← PCI(P i) + min{D(pi1, Cj), ..., D(pin, Cj)} /∗ Finding out the
minimum dominance distance of one solution in P i = {pi1, ..., pin} to Cj

∗/
9: else

10: PCI(P i)← PCI(P i) +D′(P ij , Cj)

/∗ Estimating the dominance distance of P ij to Cj
∗/

11: end if
12: end for
13: PCI(P i)← PCI(P i)/cn
14: end for
15: return PCI(P 1),PCI(P 2), . . . ,PCI(P pn)

where the number of solutions from the assessed approximation set is less than two,

PCI takes account of the minimum move of one solution in the approximation set to

weakly dominate the cluster (step 8), on the basis of Eq. (6.1). Otherwise, PCI esti-

mates the minimum move of the set’s solutions in the cluster to weakly dominate the

cluster by Eq. (6.2) (step 10).

An important issue in the proposed indicator is to cluster the points in the reference

set before assessing approximation sets (step 2). Here, we use a greedy method to

stepwise merge points according to their dominance distance. Algorithm 6.2 gives the

details of clustering. A threshold σ is required in this clustering. We set σ to be

the interval (in the sense of the dominance distance) of two neighbouring points in the

normalised hyperplane with an ideal distribution of N points, where N is the size of the

reference set. Since we consider two neighbouring points in the normalised hyperplane

with an ideal distribution, they have an equal dominance distance to each other, also
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Algorithm 6.2 Clustering(S)

Require: S = {s1, s2, . . . , ssn}, σ (threshold)
1: (p1, p2, ..., ppn)← FindSortPair(S, σ)
/∗ Find all pairs of solutions in S satisfying that max{D(si, sj), D(sj , si)} ≤ σ
where si and sj are the two solution of a pair, and then sort the pairs in the
ascending order according to max{D(si, sj), D(sj , si)} ∗/

2: C1 ← s1, C2 ← s2, ..., Csn ← ssn /∗ Cluster initialization ∗/
3: for all p ∈ {p1, p2, . . . , ppn} do
4: (Cm, Cn)← Locate(p)

/∗ Let Cm and Cn be clusters which the two solutions of pair p fall into ∗/
5: if m 6= n then
6: if ∀si ∈ Cm, sj ∈ Cn : D(si, sj) < σ ∧D(sj , si) < σ then
7: Cm ← Cm ∪ Cn
8: Cn ← ∅ /∗ Merging two clusters if the dominance distance

of any two solutions in them is not larger than σ ∗/
9: end if

10: end if
11: end for
12: return {C1, C2, ..., Ccn} : |Ci| > 0

equal to their difference on one objective. In this case, we have

σ =
1

h
(6.3)

where h denotes the divisions on one objective. So now our aim is to determine h.

On the other hand, the total number of points over the hyperplane can be calculated

by N =
(
m−1+h
m−1

)
(m is the number of objectives), that is

N =

(
m− 1 + h

m− 1

)
=

(h+m− 1)× (h+m− 2)× ...× (h+ 1)

(m− 1)× (m− 2)× ...× (1)

(6.4)

Since it is hard to accurately determine h from the above expression, we make an

approximation by (h+m− 1)× (h+m− 2)× ...× (h+ 1) ≈ (h+m/2)m−1. Then h

can be approximately obtained by

h ≈ m−1
√
N(m− 1)!− (m/2) (6.5)
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Finally, from Eqs. (6.3) and (6.5), we have

σ ≈ 1
m−1
√
N(m− 1)!− (m/2)

(6.6)

6.4 Comparison with State of the Art

Table 6.2 summarises the properties of PCI and some popular performance indicators.

As can be seen, PCI and the ε-indicator perform similarly in terms of many aspects, such

as neither specifying a reference set nor requiring parameter setting in the evaluation.

The only difference between them shown in the table is that PCI is capable of dealing

with more than two approximation sets in a single run. In fact, one significant weakness

of the ε-indicator to other performance indicators, as indicated before, is its return

only being the difference on one particular objective of one particular solution for two

approximation sets.

Like IGD+, PCI only considers the inferiority of solutions in the evaluation. How-

ever, one difference is that PCI considers the comparison between a point to a point

set (or two point sets), which could be viewed as a more general case of two-points

comparison in IGD+. In addition, since the reference set in PCI consists of the tested

approximation sets, the evaluation result of one approximation set depends entirely on

its performance difference with other sets. In contrast, in IGD+ the reference set is

specified, and the evaluation result of the approximation sets not only depends on their

performance difference but also could be largely affected by the reference set (such as

its distribution).

Finally, Table 6.3 gives the evaluation results of PCI and the peer indicators on the

approximation sets in Figures 6.1–6.3. As shown, compared with HV, ε-indicator and

IGD+, the proposed indicator can accurately reflect the difference of solution sets in

terms of uniformity, proximity and diversity, respectively.
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Table 6.3: Evaluation results of PCI and the peer indicator (HV, ε-indicator, or IGD+)
on the approximation set instances in Figures 6.1–6.3. The reference point 1.1 is used in
the HV calculation of Figure 6.1’s instance. A better result is highlighted in boldface.

Two sets Peer indicator PCI

Figure 6.1(a) vs Figure 6.1(b) 0.7448 vs 0.7460 (HV) 0.0159 vs 0.0170

P vs Q in Figure 6.2 2.5 vs 2.5 (ε-indicator) 0.0000 vs 0.1204

P vs Q in Figure 6.3 0.625 vs 0.625 (IGD+) 0.0648 vs 0.0926

6.5 Experimental Results

In this section, we verify the proposed indicator by assessing Pareto front approxima-

tions obtained by six well-established EMO algorithms, NSGA-II [55], AR [45], IBEA

[291], MOEA/D-TCH [278], MOEA/D-PBI [278] and SPEA2+SDE (proposed in Chap-

ter 3). These algorithms are representative in terms of both proximity and diversity in

dealing with many-objective optimisation problems.

A crossover probability pc = 1.0 and a mutation probability pm = 1/n (where n

is the number of decision variables) are used. The crossover and mutation operators

are simulated binary crossover (SBX) and polynomial mutation with both distribution

indexes 20. The population size is set to 100 (or approximately 100 for MOEA/D due

to its property [278]) and the termination criterion is 30, 000 evaluations.

To start with, we consider a tri-objective MOP, DTLZ1 [57], whose Pareto front

is the positive part of a hyperplane satisfying f1 + f2 + f3 = 0.5. Here, we ease the

difficulty of the problem by using g =
∑n

i=m(xi − 0.5) in DTLZ1 [57] in order to focus

on the diversity verification of the indicator.

Figure 6.5 shows the approximation sets of the six algorithms as well as the corre-

sponding PCI result. As can be seen from the figure, the solutions of MOEA/D-PBI

are perfectly distributed over the whole Pareto front, thus having the best evaluation

result. Although the solution sets of SPEA2+SDE, IBEA, and NSGA-II cover the

triangle, their uniformity is different, which is consistent with the PCI results. The

solution set of MOEA/D-TCH is of great regularity, but fails to cover the boundary

region of the Pareto front, thus leading to a worse PCI than the above four sets. The
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(a) NSGA-II (PCI = 0.0417) (b) AR (PCI = 0.1619) (c) IBEA (PCI = 0.0305)

(d) MOEA/D-TCH (PCI = 0.0434) (e) MOEA/D-PBI (PCI = 0.0270) (f) SPEA2+SDE (PCI = 0.0291)

Figure 6.5: Approximation sets of the six algorithms and their PCI result on the
modified tri-objective DTLZ1.

solutions of AR only concentrate around three extreme points and obtain the worst

PCI value.

To examine the proposed indicator on MOPs with an irregular Pareto front, we in-

troduce the test problem DTLZ7 [57]. The tri-objective DTLZ7 has a disconnect Pareto

front consisting of four regions with both convex and concave shapes. Figure 6.6 gives

the approximation sets and the evaluation results. As shown, the set of SPEA2+SDE

and NSGA-II is located in the four optimal regions, with a nearly equal number of

solutions. The solutions of the two MOEA/D algorithms are mainly distributed in the

bottom region of the Pareto front, and IBEA and AR fail to find all the four regions.

It is clear that the PCI results confirm the observations. The solution set with a lower

PCI value means that it performs better regarding the combined performance in finding

multiple Pareto optimal regions and in maintaining solutions’ uniformity and diversity

in each region.
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(a) NSGA-II (PCI = 0.0346) (b) AR (PCI = 0.2564) (c) IBEA (PCI = 0.1045)

(d) MOEA/D-TCH (PCI = 0.0638) (e) MOEA/D-PBI (PCI = 0.0483) (f) SPEA2+SDE (PCI = 0.0163)

Figure 6.6: Approximation sets of the six algorithms and their PCI result on the tri-
objective DTLZ7.

Next, we consider a four-objective MOP, Rectangle problem5 [176]. The Rectangle

problem has two features: 1) its Pareto optimal solutions lie in a rectangle in the two-

variable decision space and 2) they are similar (in the sense of Euclidean geometry)

to their images in the four-dimensional objective space. These make the visual ex-

amination of Pareto front approximations feasible by observing their behaviour in the

decision space. Figure 6.7 shows the approximation sets and the evaluation results on

an instance of the Rectangle problem where the search range and Pareto optimal range

of x1 and x2 are [−0.2, 1.2] and [0, 1], respectively. As can be seen, the performance of

these approximation sets is consistent with the PCI results. SPEA2+SDE and IBEA

have a set of well-converged and well-distributed solutions, thus having better PCI

results than the other four algorithms. IBEA obtains a slightly worse PCI value than

5This test problem is also part of our work and will be presented in Chapter 7
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(a) NSGA-II (PCI = 0.0692) (b) AR (PCI = 0.4147) (c) IBEA (PCI = 0.0506)

(d) MOEA/D-TCH (PCI = 0.0666) (e) MOEA/D-PBI (PCI = 0.0798) (f) SPEA2+SDE (PCI = 0.0498)

Figure 6.7: Approximation sets of the six algorithms in the two-variable decision space
and their PCI result on the four-objective Rectangle problem, where the Pareto optimal
solutions in the decision space are similar to their images in the objective space in the
sense of Euclidean geometry.

SPEA2+SDE, with more solutions being located onto the boundary of the optimal

region. MOEA/D-TCH, NSGA-II and MOEA/D-PBI perform similarly in terms of

proximity and diversity. Among them, MOEA/D-TCH has fewer solutions out of the

optimal rectangle and MOEA/D-PBI has many solutions concentrated into the center

of the rectangle. This leads to the difference of their PCI results. All solutions of

AR are located around the lower left corner of the rectangle and thus have the worst

evaluation result.

Finally, the 10-objective DTLZ3 is used to verify PCI in assessing approxima-

tion sets for high-dimensional challenging MOPs. DTLZ3 has a vast number of lo-

cal optimal fronts and a global one satisfying f2
1 + f2

2 + ... + f2
m = 1 in the range

f1, f2, ..., fm ∈ [0, 1]. Figure 6.8 shows the approximation sets by parallel coordinates

as well as the corresponding evaluation results. As shown, the solutions of only three

algorithms SPEA2+SDE, MOEA/D-PBI, and MOEA/D-TCH can converge into the

optimal front. SPEA2+SDE and MOEA/D-PBI achieve a good balance between prox-
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(a) NSGA-II (PCI = 236.07) (b) AR (PCI = 11.820) (c) IBEA (PCI = 1.0058)

(d) MOEA/D-TCH (PCI = 0.2218) (e) MOEA/D-PBI (PCI = 0.0936) (f) SPEA2+SDE (PCI = 0.0845)

Figure 6.8: Parallel coordinate plot of approximation sets of the six algorithms and
their PCI result on the ten-objective DTLZ3.

imity and diversity, while MOEA/D-TCH fails to cover the whole Pareto front. Almost

all solutions of IBEA converge into the boundary of a local optimum (f2
1 + ...+f2

10 = 2),

and most of AR’s solutions concentrate around two boundary points of a local optimum

(f2
1 + ...+ f2

10 = 20). NSGA-II completely fails to approach the optimal front, with the

upper boundary of its solutions exceeding 2,000 on each objective. The PCI results

reflect the performance of the approximation sets. A set with a lower PCI value means

that it performs better with respect to the tradeoff between proximity and diversity.

6.6 Summary

In this chapter, we present a performance comparison indicator (PCI) to compare

Pareto front approximations of population-based search algorithms. PCI evaluates the

quality of approximation sets to a reference set which is constructed by themselves.

The points in the reference set are clustered according to their distribution, and PCI

estimates the minimum moves of one solution (or a set of solutions) in one approxi-

mation set to weakly dominate these clusters. The proposed indicator can be practical
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in many-objective optimisation, given its characteristics such as a combined evaluation

of proximity and diversity, (weak) compliance with Pareto dominance, applicability

for any number of approximation sets, no need of a specified reference set, and no

requirement of parameter setting in the assessment.

A weakness of the proposed indicator is that we approximately measure the domi-

nance distance of a point set to another, which can affect the accuracy of the indicator.

Now, the question is whether there exists an efficient method to accurately measure the

dominance distance of two point sets. If the answer is yes, we could directly compare

two Pareto front approximations by their dominance distance to each other, rather

than dividing solutions into many clusters.
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Chapter 7

A Test Problem for Visual

Investigation

In this chapter, we present a test problem, called the Rectangle problem, to aid the

visual investigation of multi-objective search. The Rectangle problem has two key fea-

tures: 1) the Pareto optimal solutions lie in a rectangle in a two-dimensional decision

space, and 2) the Pareto optimal solutions are similar (in the sense of Euclidean geom-

etry) to their images in a four-dimensional objective space. In this case, it is capable of

visually examining the behaviour of objective vectors in terms of both proximity and

diversity, by observing their closeness to the optimal rectangle and their distribution

in the rectangle, respectively, in the decision space.

This chapter is organised as follows. Section 7.1 is devoted to the introduction of this

work. Section 7.2 details the proposed test problem. Section 7.3 presents experimental

results of visual investigation of 15 algorithms on three problem instances. Finally,

Section 7.4 draws some conclusions.

7.1 Introduction

An inherent problem in multi-objective optimisation is that a direct observation of

solution vectors with four or more objectives is infeasible, which brings a difficulty

for a visual investigation of EMO algorithms. In contrast to two- or three-objective
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problems where it is straightforward to track objective vectors during the evolutionary

process, for problems with four or more objectives we cannot visually monitor how a

set of objective vectors evolve nor visually understand their distribution in the space

and their proximity to the Pareto front.

A natural way of dealing with this issue is to map high-dimensional objective vectors

to a two- or three-dimensional space. Key concerns under such mapping include the

maintenance of the Pareto dominance relation between vectors and the reflection of

their location information in the population. Inevitable information loss associated

with the dimension reduction will influence the observation and understanding of these

vectors.

Recently, some researchers ease this visualisation challenge from another perspec-

tive. They constructed a particular class of test problems to help the visual investiga-

tion of multi-objective search [156, 226, 119, 239]. Specifically, Köppen and Yoshida

[156] presented a class of many-objective test problems whose Pareto optimal set is in

a regular polygon in a two-dimensional decision space. This allows easy visualisation

and examination of the proximity of the obtained solutions to the optimal region and

their distribution in the decision space. Later, Ishibuchi et al. [119, 130] extended and

generalised this class of problems (called distance minimisation problems), introduc-

ing multiple Pareto optimal polygons with same [119] or different shapes [115] as well

as making decision variables’ dimensionality scalable [130]. Overall, these problems

provide a good alternative to help understand the behaviour of multi-objective evolu-

tionary search, and have been used to compare many-objective algorithms in recent

studies [241, 175, 180].

However, one weakness of such a class of test problems is that from the decision

space aspect it fails to exactly reflect the behaviour and performance of objective vec-

tors, i.e., their proximity and distribution with respect to the Pareto front. Even if a

set of objective vectors are distributed perfectly over the optimal front, we cannot know

this fact via the observation of the corresponding decision variables in the polygon(s).

In this chapter, we construct a four-objective test problem with its Pareto optimal

region being a rectangle in a two-dimensional decision space, called the Rectangle
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problem. The key feature in this problem is that the Pareto optimal solutions in

the decision space and their images in the objective space are similar (in the sense

of Euclidean geometry). In other words, the ratio of the distance between any two

Pareto optimal solutions to the distance between their corresponding objective vectors

in the Pareto front is a constant. This way, we can easily understand the behaviour

and performance of the objective vector set (e.g., its uniformity and coverage over the

Pareto front) by observing the solution set in the two-dimensional decision space.

Using three instances of the proposed problem, we investigate the behaviour of

15 EMO algorithms, including well-known multi-objective algorithms and recently-

developed many-objective ones. Interesting observations indicate that the Rectangle

problem not only is a good tool to help visually understand the behaviour of multi-

objective search in a high-dimensional objective space but also can be used as a chal-

lenging benchmark function to test algorithms’ ability in balancing the proximity and

diversity of solutions.

7.2 The Proposed Test Problem

The distance minimisation problems, proposed by Köppen and Yoshida [156] and gen-

eralised by Ishibuchi et al. [119], are a class of many-objective optimisation problems

that minimise the Euclidean distance from a solution to a given set of points in the

two- or three- dimensional Euclidean space, where the distance to any of these points

is treated as an independent objective. Figure 7.1 gives a four-objective example of the

distance minimisation problem with a set of points A, B, C, and D.

A significant feature of the distance minimisation problems is that their Pareto op-

timal region is a convex polygon determined by the given point set [156]. This allows a

clear observation of whether the considered solution set has converged into the Pareto

optimal region or not. However, a weakness of such problems is that they are unavail-

able for the distribution investigation of a solution set in the objective space. There

is no explicit distribution relation between decision variables and their corresponding

objective images in the problems.
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o2

o1

Figure 7.1: An illustration of a four-objective distance minimisation problem whose
Pareto optimal region is determined by the four points.

Motivated by the above, we construct a test problem whose Pareto optimal solutions

lie in a rectangle in the decision space and more importantly are similar (in the sense

of Euclidean geometry) to their images in the objective space. Unlike the distance

minimisation problems which consider the distance to a set of points, the proposed

Rectangle problem takes into account the distance to a set of lines parallel to the

coordinate axes. Figure 7.2 gives an example of the Rectangle problem where the

Pareto optimal solutions are in the region enclosed by four lines A, B, C, and D

(including the boundary).

Formally, the Rectangle problem minimises the Euclidean distance from a solution,

x = (x1, x2), to four lines parallel to the coordinate axes (x1 = a1, x1 = a2, x2 = b1,

and x2 = b1):

min

f1(x) = |x1 − a1|

f2(x) = |x1 − a2|

f3(x) = |x2 − b1|

f4(x) = |x2 − b2|

(7.1)

Next, we explain the geometric similarity of the Rectangle problem between the

Pareto optimal solutions and their images in the objective space. Let x1 = (x1
1, x

1
2)

and x2 = (x2
1, x

2
2) be two Pareto optimal solutions for the problem given in Eq. (7.1)
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o2

o1

x

Figure 7.2: An illustration of a Rectangle problem whose Pareto optimal region is
determined by the four lines.

(here, without loss of generality, assuming a1 < a2 and b1 < b2). Then, their Euclidean

distance in the decision space is as follows:

D(x1,x2) =
[
(x1

1 − x2
1)2 + (x1

2 − x2
2)2
]0.5

(7.2)

Also, the distance of their images in the objective space is

D
(
f(x1), f(x2)

)
=
[(
f1(x1)− f1(x2)

)2
+
(
f2(x1)− f2(x2)

)2
+(

f3(x1)− f3(x2)
)2

+
(
f4(x1)− f4(x2)

)2]0.5
=
[
(|x1

1 − a1| − |x2
1 − a1|)2 + (|x1

1 − a2| − |x2
1 − a2|)2 +

(|x1
2 − b1| − |x2

2 − b1|)2 + (|x1
2 − b2| − |x2

2 − b2|)2
]0.5

(7.3)

Since x1 and x2 are two Pareto optimal solutions of the problem, it holds that a1 ≤
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x1
1, x

2
1 ≤ a2 and b1 ≤ x1

2, x
2
2 ≤ b2. So Eq. (7.3) can be further expressed as:

D
(
f(x1), f(x2)

)
=
[
(x1

1 − x2
1)2 + (x1

1 − x2
1)2 + (x1

2 − x2
2)2 + (x1

2 − x2
2)2
]0.5

=
√

2
[
(x1

1 − x2
1)2 + (x1

2 − x2
2)2
]0.5

=
√

2D(x1,x2)

(7.4)

The above equation indicates that the ratio of the distance between any two Pareto

optimal solutions to the distance between their corresponding objective vectors is a

constant. As such, it is easy to understand the distribution of the objective vectors in

a Pareto front approximation by observing their position and crowding degree in the

rectangle in the two-dimensional decision space.

Note that this two-dimensional problem with respect to decision variables can be

extended to the three-dimensional scenario. In this way, the proposed problem will

minimise the Euclidean distance from a solution (i.e., x = (x1, x2, x3)) to six lines par-

allel to the three coordinate axes, and the Pareto optimal region will become a cuboid

enclosed by these six lines. In addition, it is necessary to point out that unlike in the

distance minimisation problems where the objective dimensionality can be set freely,

in the Rectangle problem the number of objectives (i.e., the considered lines) is deter-

mined by the number of decision variables (two lines corresponding to one coordinate

axis). It might not be easy to add new lines while keeping the dimensionality of decision

space unchanged, because the geometric similarity between the Pareto optimal solu-

tions and their objective images will be violated when one coordinate axis corresponds

to more than two lines.

7.3 Experimental Results

In this section, we investigate the behaviour of EMO algorithms on the Rectangle

problem. In all, 15 algorithms are investigated, including those well-known and de-

veloped specially for many-objective optimisation. They are NSGA-II [55], SPEA2

[292], MSOPS [106], IBEA [291], ε-MOEA, SMS-EMOA [17], MOEA/D [278], AR
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Table 7.1: The parameter setting and the source of the tested algorithms

Algorithm Parameter(s) Source

NSGA-II [55] http://www.iitk.ac.in/kangal

SPEA2 [292] http://www.tik.ee.ethz.ch/pisa

MSOPS [106] weight vectors 200 http://code.evanhughes.org/

IBEA [291] κ = 0.05 http://www.tik.ee.ethz.ch/pisa

ε-MOEA [54] ε = 0.85 http://www.iitk.ac.in/kangal

SMS-EMOA [17] http://jmetal.sourceforge.net/index.html

MOEA/D-TCH [278] neighborhood size 10% http://dces.essex.ac.uk/staff/qzhang/

MOEA/D-PBI [278] neighborhood size 10%, penalty 2.0 http://dces.essex.ac.uk/staff/qzhang/

AR [15] written by ourselves
AR+Grid [184] grid division 30 http://www.brunel.ac.uk/~cspgmml1/

HypE [10] sampling point 10, 000 http://www.tik.ee.ethz.ch/pisa

DMO [1] written by ourselves
GrEA [271] grid division 25 http://www.brunel.ac.uk/~cspgmml1/

FD-NSGA-II [96] σ = 0.5 provided by its authors
SPEA2+SDE [181] http://www.brunel.ac.uk/~cspgmml1/

[15], AR+Grid [184], HypE [10], DMO [1], GrEA [271] (also Chapter 4), FD-NSGA-II

[96], and SPEA2+SDE [181] (also Chapter 3). Readers seeking more details on these

algorithms may refer to their original literature.

A crossover probability pc = 1.0 and a mutation probability pm = 1/n (where

n denotes the number of decision variables) were used. The operators for crossover

and mutation are simulated binary crossover (SBX) and polynomial mutation with

both distribution indexes 20. The population size was set to 120 (also the archive set

maintained with the same if required) and the termination criterion of a run was 30,000

evaluations (i.e., 250 generations) for all the algorithms. In ε-MOEA, the size of the

archive set is determined by the ε value. For a fair comparison, we set ε so that the

archive set is approximately of the same size as that of the other algorithms. Table 7.1

summarizes parameter settings as well as the source of all the algorithms. The setting

of these parameters in our experimental studies either follows the suggestion in their

original papers or has been found to make the algorithm perform well on the tested

problem.

To investigate the proximity and diversity of the algorithms, we introduce three

instances of the Rectangle problem. These instances have same objective lines (x1 = 0,

x1 = 100, x2 = 0, and x2 = 100), and the only difference lies in the range of their

search (decision) space, thus providing different challenges for an algorithm to balance
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proximity and diversity.

7.3.1 Instance I

Figure 7.3 shows the final solution sets obtained by one typical run of the 15 algorithms

on a problem instance where the search range of both x1 and x2 is [−20, 120]. From

different behaviours of their solutions in the figure, these algorithms can be divided

into four groups.

The first group corresponds to the algorithms which fail to converge, including

NSGA-II, SPEA2, and MSOPS. Among them, SPEA2 performs better than the other

two algorithms in terms of diversity, although its solutions seem to cover the whole

search space rather than the optimal region. Two algorithms, AR and FD-NSGA-II,

belong to the second group where the obtained solutions concentrate in a small part

of the Pareto optimal region. The algorithms in the third group struggle to maintain

uniformity although most of their solutions can converge into the optimal region. SMS-

EMOA, MOEA/D-TCH, MOEA/D-PBI, HypE, and DMO fall into this group: their

solutions overcrowded in some regions of the rectangle, thus leading to vacancy in

other ones. It is worth noting that the solutions of SMS-EMOA here concentrate

on the middle part of the Pareto optimal region. This observation is interesting, given

that SMS-EMOA has been reported to perform well in maintaining solutions’ extensity

[17, 256].

The last group includes the remaining algorithms (i.e., IBEA, ε-MOEA, AR+Grid,

GrEA and SPEA2+SDE) which perform well in terms of proximity and diversity. More

specifically, the solutions obtained by ε-MOEA tend to be perfectly uniform, but fail to

cover the boundary of the optimal region. Although the solutions of IBEA, AR+Grid,

and GrEA can reach the boundary of the optimal region, they are not so uniform as

those of ε-MOEA and SPEA2+SDE. SPEA2+SDE appears to be the only algorithm

with excellent performance in terms of both extensity and uniformity, and its solutions

are distributed uniformly over the whole Pareto optimal region.

In addition, it is worth mentioning that among different implementations of MOEA/D

regarding decomposition functions, MOEA/D-PBI with the penalty parameter value 2
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(a) NSGA-II (b) SPEA2 (c) MSOPS
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(d) IBEA (e) ε-MOEA (f) SMS-EMOA
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(g) MOEA/D-TCH (h) MOEA/D-PBI (i) AR
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(j) AR+Grid (k) HypE (l) DMO
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(m) GrEA (n) FD-NSGA-II (o) SPEA2+SDE

Figure 7.3: The final solution set of the 15 algorithms on the Rectangle problem where
x1, x2 ∈ [−20, 120].
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(a) MOEA/D-PBI(0.1) (b) MOEA/D-PBI(1.5) (c) MOEA/D-PBI(2.0)
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(d) MOEA/D-PBI(2.5) (e) MOEA/D-PBI(5.0)

Figure 7.4: The final solution set of the five implementations of MOEA/D-PBI with
different penalty parameter values on the Rectangle problem where x1, x2 ∈ [−20, 120].
The number in the bracket denotes the penalty parameter value of the algorithm.

(i.e., the setting considered here) performs best on the rectangle problem; this is not

the case for the distance minimisation problem where MOEA/D-TCH and MOEA/D-

PBI with the penalty parameter value 0.1 (denoted as MOEA/D-PBI(0.1)) have been

found to work well [117, 181]. Figure 7.4 shows the result of five implementations of

MOEA/D-PBI with different penalty parameter values on the tested instance. Clearly,

MOEA/D-PBI(0.1) fails to maintain diversity, while MOEA/D-PBI(5.0) struggles to

have all of its solutions into the optimal region. Despite having similar distribution with

MOEA/D-PBI(1.5) and MOEA/D-PBI(2.5), MOEA/D-PBI(2.0) seems to achieve a

better balance between proximity and diversity, some of its solutions located exactly

in the boundary of the rectangle.

7.3.2 Instance II

The Rectangle problem instance considered in this section greatly enlarges the search

space of Instance I, with x1, x2 ∈ [−10000, 10000]. Figure 7.5 shows the final solution
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(d) IBEA (e) ε-MOEA (f) SMS-EMOA
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(g) MOEA/D-TCH (h) MOEA/D-PBI (i) AR
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(j) AR+Grid (k) HypE (l) DMO
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(m) GrEA (n) FD-NSGA-II (o) SPEA2+SDE

Figure 7.5: The final solution set of the 15 algorithms on the Rectangle problem where
x1, x2 ∈ [−10000, 10000].
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sets obtained by one typical run of the 15 algorithms on this instance.

It is clear from the figure that most of the algorithms face big challenges in balancing

proximity and diversity on this problem instance. The solution sets obtained by NSGA-

II, SPEA2, AR, AR+Grid, DMO, and FD-NSGA-II fail to approach the Pareto optimal

region. The first five sets are distributed in the form of a cross and the last one is located

in a rhombic region. All solutions of MSOPS overlap in six points near the rectangle.

MOEA/D-TCH and GrEA perform similarly – most of their solutions can converge

into the Pareto optimal region, but there still exist several solutions far away from the

optimal rectangle. Although all the solutions obtained by IBEA and HypE are the

Pareto optimal solutions, the two algorithms struggle to maintain uniformity, leading

their solutions to concentrate (or even coincide) in some areas of the rectangle.

The remaining algorithms, ε-MOEA, SMS-EMOA, MOEA/D-PBI and SPEA2+SDE,

perform significantly better than the previous ones. The solutions of ε-MOEA have al-

most perfect uniformity. Despite some downsides in terms of extensity or uniformity,

the solution set obtained by SMS-EMOA and MOEA/D-PBI largely covers the whole

optimal region. SPEA2+SDE, like the case on the problem Instance I, achieves the

best performance in balancing solutions’ uniformity and extensity.

Contrast the results on Instance II with those on Instance I – only the four algo-

rithms (i.e., ε-MOEA, SMS-EMOA, MOEA/D-PBI and SPEA2+SDE) perform sim-

ilarly; some algorithms’ solution set, like NSGA-II’s and SPEA2’s, is far away from

the optimal region and distributed crosswise. This is not the case for the distance

minimisation problem where the solution set obtained by Pareto-based algorithms can

easily approach the Pareto optimal region even when the number of objectives reaches

10 [119]. Figure 7.6 gives an illustration to explain why this happens. Let x1 and x2

be two solutions for the Rectangle problem in the figure. x1 is located in the middle

of the two objective lines parallel to coordinate axis o2, and x2 in the right upper area

to the four objective lines. The region that Pareto-dominates x1 is a line segment, far

smaller than that dominating x2, although x2 is closer to the optimal region than x1.

In fact, any solution located between two parallel objective lines (except the Pareto

optimal solutions) is dominated only by a line segment parallel to the two objective
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o2

o1

1x

2x

Figure 7.6: An illustration of the difficulty for algorithms to converge on the Rectangle
problem. The shadows are the regions that dominate x1 and x2, respectively.

lines, given that any improvement of the solution’s distance to the one objective line

will lead to the degradation to the other. This characteristic of the Rectangle problem

(i.e., some non-Pareto optimal solutions dominated by only a linear region) will bring

a great challenge for algorithms which use Pareto dominance as the sole selection cri-

terion in terms of proximity, usually leading their solutions to be distributed crisscross

in the space.

In addition, it is necessary to mention that on Instance II the optimal setting of the

algorithms’ parameter(s), if existing, is likely to be different from that on Instance I. The

characteristic of the Rectangle problem explained above can make the optimal setting

of the parameter(s) vary for the search space with different ranges. For instance, a

significantly large grid division of GrEA (say 500) can make the algorithm’s solutions

converge into the optimal rectangle as well as having good diversity on Instance II.

Similar cases occur for the algorithms IBEA, AR+Grid, and FD-NSGA-II.

7.3.3 Instance III

From the result comparison on Instance I and Instance II, the four algorithms, ε-MOEA,

SMS-EMOA, MOEA/D-PBI, and SPEA2+SDE, have been found to perform steadily

with the change of the search space. In this section, we significantly enlarge the search
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Figure 7.7: The final solution set of the four algorithms on the Rectangle problem
where x1, x2 ∈ [−1012, 1012].

range of solutions in order to further test the algorithms’ ability of leading solutions to

converge towards the Pareto optimal region when working in a huge space. Figure 7.7

shows the final solution sets obtained by one typical run of the four algorithms on the

problem instance with x1, x2 ∈ [−1012, 1012].

Clearly, only SPEA2+SDE works well on this instance, with its solutions located

in the rectangle as well as having good coverage. The archive set of ε-MOEA has only

one individual far from the optimal region. In fact, no matter how to set the ε value of

the algorithm, there is only one solution left in the final archive set when the problem’s

search space becomes huge. Likewise, SMS-EMOA and MOEA/D-PBI fail to lead

their solution set to approach the optimal region. The solutions of SMS-EMOA have

a crisscross distribution and the solutions of MOEA/D-PBI gather into two clusters

parallel to the horizontal axis.
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7.4 Summary

Visual investigation of evolutionary search in a high-dimensional space is an important

issue in the EMO area, which can help understand the behaviour of the existing EMO

algorithms, facilitate their modification, and further develop new algorithms for many-

objective optimisation problems. Unlike the existing studies which mainly focus on

the mapping of high-dimensional objective vectors to two- or three-dimensional ones

for visualisation, this chapter constructs a test function, called the Rectangle problem,

where the Pareto optimal solutions in the two-variable decision space have similar

distribution to their images in the four-dimensional objective space. In this case, it

is feasible to visually investigate high-dimensional objective vectors of the problem by

observing their behaviour in the decision space.

Fifteen EMO algorithms have been investigated on three instances of the proposed

problem with varying range of search spaces which present different challenges for

an algorithm to converge. Different behaviours of the tested algorithms have been

demonstrated. The Pareto-based algorithms (i.e., NSGA-II and SPEA2) fail to guide

their solutions evolving towards the Pareto optimal region even if the optimal region

accounts for a large proportion of the whole search space. IBEA, AR+Grid, and

GrEA can achieve a good balance between proximity and diversity on Instance I, but

struggle when the search space becomes larger. Although ε-MOEA, SMS-EMOA, and

MOEA/D-PBI work well on Instances I and II, their solutions fail to approach the

optimal rectangle when a huge problem’s search space is introduced. SPEA2+SDE is

the only algorithm with good performance on all three test instances, with its solutions

distributed uniformly over the whole Pareto optimal region all along.

A weakness of the proposed problem is its fixed dimensionality (four) in the objec-

tive space. Despite this, the Rectangle problem poses big challenges to many-objective

algorithms. This is different from the case that on most existing four-objective prob-

lems (e.g., the DTLZ problem suite [57]), the algorithms designed specifically for many-

objective optimisation (or even only based on Pareto selection criterion) perform fairly

well [256]. This indicates that the Rectangle problem could be used as an effective
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benchmark function to challenge the search ability of optimisation algorithms in the

area.
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Chapter 8

Conclusion

In this chapter, we present a global view on the contributions of this thesis. First, we

summarise the research carried out within each chapter in Section 8.1. In so doing,

we explain how we deal with the challenges of many-objective optimisation that were

stated at the beginning of the thesis. Then, we outline some directions for further

research in Section 8.2.

8.1 Summary of Results

Many-objective optimisation poses great challenges to evolutionary algorithms. The

ineffectiveness of the Pareto dominance relation leads to the underperformance of tra-

ditional Pareto-based algorithms. The aggravation of the conflict between proximity

and diversity, along with increasing time or space requirement as well as parameter sen-

sitivity, has become key barriers to the design of new algorithms. The infeasibility of

solutions’ direct observation can result in serious difficulty of algorithms’ performance

investigation and assessment.

In this thesis, we have proposed a series of approaches to these challenges, aiming

to make evolutionary algorithms as effective in many-objective optimisation as in low-

dimensional multi-objective (i.e. two- or three-objective) optimisation. Specifically, a

shift-based density estimation strategy (Chapter 3) has been proposed to make tra-

ditional Pareto-based algorithms suitable for many-objective problems; a grid-based
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algorithm (Chapter 4) and a bi-goal evolution framework (Chapter 5) have been de-

veloped, as an independent algorithm and a general framework, respectively, to deal

with many-objective problems; a performance indicator (Chapter 6) and a test prob-

lem (Chapter 7) have also been introduced for algorithm comparison and visualisation

investigation, respectively, in the high-dimensional objective space. In the following,

we provide a summary of the research results for each of these chapters.

Chapter 3 presented a general enhancement of Pareto-based algorithms to make

them suitable for many-objective problems. Unlike most of the current work which re-

laxes the Pareto dominance relation to make more individuals comparable, the proposed

approach acts on the density estimation operation in Pareto-based algorithms (thus no

need of the parameter(s) of determining relaxation degree). The proposed shift-based

density estimation (SDE) was applied to three well-known Pareto-based algorithms,

NSGA-II, SPEA2 and PESA-II. It has been observed that after the implementation of

SDE all three algorithms achieve a performance improvement. A further comparative

study among NSGA-II+SDE, SPEA2+SDE and PESA-II+SDE has revealed that SDE

is well suited for the density estimator which can accurately measure individuals’ den-

sity in the population. Moreover, a comprehensive comparison with five state-of-the-art

algorithms which tackle many-objective problems from different perspectives has shown

that SPEA2+SDE is very promising in providing a good balance between proximity

and diversity. Overall, the proposed approach is highly practical in many-objective op-

timisation, in view of its competitiveness against well-established indicator-based and

decomposition-based approaches, applicability for any Pareto-based algorithm, simple

implementation, negligible additional computational cost, and no need of additional

parameters.

Chapter 4 presented a grid-based evolutionary algorithm (GrEA), which exploits

the potential of the grid to address many-objective optimisation problems. In GrEA,

three grid-based criteria were introduced to guide the search towards the optimal front

and a fitness adjustment strategy was developed to maintain an extensive and uniform

distribution among individuals. In particular, to measure the crowding of individu-

als, GrEA considers the distribution of their neighbours in a set of hyperboxes whose
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size increases with the number of objectives (rather than a single hyperbox, typically

used in existing grid-based approaches), thus providing a clear distinction of individ-

uals’ crowding degree. Systematic experiments were carried out to make an extensive

comparison of GrEA with five well-established algorithms on 52 test instances. The

comparative results have demonstrated the competitiveness of the proposed algorithm

in finding a well-converged and well-distributed solution set. Moreover, an appeal-

ing property of GrEA is that its computational cost is almost independent on the

number of hyperboxes in the grid and only increases linearly with the number of objec-

tives. This is against the common belief that grid-based approaches are not suitable in

many-objective optimisation in view of their operation relying on the hyperboxes that

exponentially grow in size with the number of objectives [45].

In Chapter 5, we presented a bi-goal evolution (BiGE) framework for many-objective

optimisation. BiGE converts a many-objective problem into a bi-goal (objective) op-

timisation problem regarding proximity and diversity, and then handles it using the

Pareto dominance relation in this bi-goal domain. This idea was motivated by two

difficulties of EAs facing in many-objective optimisation: 1) the conflict between prox-

imity and diversity goals is aggravated with the increase of the number of objectives and

2) Pareto dominance which works well on bi-objective problems loses its effectiveness

in a high-dimensional space. To verify BiGE, we carried out systematic experiments

by comparison with five state-of-the-art algorithms on three groups of continuous and

combinatorial benchmark suites with 5, 10 and 15 objectives as well as on a real-world

problem. The experimental results have shown that unlike the peer algorithms which

work well on only a fraction of the test problems, BiGE can achieve a good balance be-

tween solutions’ proximity and diversity on the test problems with various properties.

This indicates the promise of bi-goal evolution as a new way of addressing many-

objective problems, which may open up many possibilities for further development in

the future.

Having begun with a detailed analysis of the difficulties of popular performance

indicators encountering in many-objective optimisation, Chapter 6 proposed a perfor-

mance comparison indicator (PCI) to assess Pareto front approximations obtained by
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stochastic search algorithms. In contrast to current state of the art, PCI has several

strengths, including no need of a specified reference set (this is against IGD [42] and

IGD+ [121]), no requirement of parameter setting (against hypervolume [294]), a com-

prehensive consideration of all solutions in the approximation set (against ε-indicator

[295]), (weak) compliance with Pareto dominance (against IGD), and quadratic time

complexity (against hypervolume). These strengths enable PCI to be well suited for

performance assessment of Pareto front approximations in many-objective optimisa-

tion.

Finally, Chapter 7 proposed a test problem (Rectangle problem) to aid the visual

investigation of high-dimensional multi-objective search. Key features of the Rectangle

problem are that the Pareto optimal solutions 1) lie in a rectangle in the two-variable

decision space and 2) are similar (in the sense of Euclidean geometry) to their im-

ages in the four-dimensional objective space. In this case, it is easy to examine the

behaviour of objective vectors in terms of both proximity and diversity, by observing

their closeness to the optimal rectangle and their distribution in the rectangle, respec-

tively, in the decision space. Fifteen algorithms were investigated on three instances

of the Rectangle problem. Unlike on many existing four-objective problems (e.g., the

DTLZ problem suite [57]) where modern many-objective algorithms (or even classic

Pareto-based algorithms) perform fairly well, on the proposed problem most of the

tested algorithms struggled, either in leading solutions into the optimal region or in

maintaining solutions’ diversity. This indicates that the Rectangle problem can also be

used as a challenging benchmark function to test algorithms’ ability in many-objective

optimisation. Finally, it is worth mentioning that among all the 15 algorithms, only

SPEA2+SDE obtained a well-converged and well-distributed solution set on all the

three Rectangle problem instances. This, in turn, verifies the effectiveness of our SDE

strategy (Chapter 3) in achieving good performance in terms of both proximity and

diversity.

Thus, when taken together, these contributions presented in this thesis represent a

significant advance in the state of the art of evolutionary many-objective optimisation,

which provides considerable help for researchers and practitioners in both algorithm de-
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velopment and problem solving. When designing a Pareto-based algorithm, researchers

only need to focus on tackling two- or three-objective problems; for a problem with

many objectives, SDE (Chapter 3) could be easily used. When working out a many-

objective algorithm, the developer can use the Rectangle problem (Chapter 7) to inves-

tigate the behaviour of the algorithm or/and the PCI indicator (Chapter 6) to assess

the performance of the algorithm. When facing a many-objective problem in hand, the

user can directly adopt the algorithm GrEA (Chapter 4) or design new proximity and

diversity estimation methods under the bi-goal evolution framework (Chapter 5).

Finally, it is worth mentioning that some of the approaches presented in this thesis

have already been taken up by researchers and practitioners recently. This includes

them being investigated in various test problems [282, 141, 283, 275], examined by

different performance metrics [93, 95], integrated with other techniques [262, 167], used

as benchmark algorithms in experimental studies [171, 6, 276, 36, 34], and applied to

some real-world problems [222, 223].

8.2 Future work

Average time complexity of GrEA. We have presented the time complexity of

GrEA to be bounded by O(mN2) or O(LN2) on average, whichever is greater (Sec-

tion 4.3.4). There, m and N are the number of objectives and the population size,

respectively, and L denotes, for a set of Pareto nondominated solutions, the average

number of the solutions in the set that are grid-dominated by one member of the set,

where the grid environment is formed by the set. We have O(1) ≤ O(L) ≤ O(N). The

former occurs when all solutions in the set are grid-nondominated to each other, and

the latter occurs when a totally ordered relation regarding grid dominance holds for all

solutions in the set. However, it would be interesting to know the specific relationship

between L and N as well as other parameters like the number of objectives and grid

divisions.

Instantiation of different performance estimation and selection operations

in BiGE. In Chapter 5, we have presented a bi-goal evolution framework and imple-
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mented two specific estimation methods of individuals’ performance (i.e. proximity and

crowding degree). One area of further research is to explore (or introduce) other prox-

imity and crowding degree estimation methods. Also, in the environmental selection,

BiGE used the nondominated sorting of the proximity and diversity goals to rank indi-

viduals. Other classic comparison strategies could also be used, such as nondominated

ranking [74] and strength [294]. All of these allow us to have a deeper understanding

of the behaviour of the presented bi-goal evolution mechanism.

Accurate calulation of dominance distance in PCI. In PCI, we approximately

measured the dominance distance of a point set to another (which only requires quadratic

time complexity), since there are exponentially increasing possibilities for points in one

set to divide another (Section 6.3). Now, the question is whether there exists an ef-

ficient method to accurately measure the dominance distance of a set to another. If

the answer is yes, we could directly compare two Pareto front approximations by their

dominance distance of each other, rather than dividing solutions into many clusters.

Changeability of objective dimensionality in the Rectangle problem. In

Chapter 7, we have presented a test problem with two variables and four objectives.

Despite such a “low” objective dimensionality, the Rectangle problem poses big chal-

lenges to many-objective algorithms. Nevertheless, it is naturally desirable to construct

new problems (or to improve the proposed problem) whose number of objectives is

changeable, i.e., can be set by the user freely.

Recombination operation. A difficulty in evolutionary many-objective optimisation

is the inefficiency of recombination operation. In a high-dimensional space, individuals

are likely to be widely distant from each other. Thus, two distant parent individuals

are more likely to produce offspring that are also distant from the parents, which can

slow down the search process [52]. A straightforward way to deal with this difficulty

is to select neighbouring solutions to perform the recombination operation [116, 118].

None of the presented works in this thesis involves this. However, the grid environment

can be a good tool to identify neighbouring individuals in a population. Thus, such a

neighbouring-solutions based recombination operation could be directly implemented
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in the grid-based evolutionary algorithm GrEA.

Incorporation of decision-maker preferences. A major purpose of EMO algo-

rithms is to assist the decision maker to select a single solution (or a few solutions)

that fits her/his preferences [38, 20, 214]. However, since EMO algorithms usually

equip the decision-maker with an approximation of the whole Pareto front, it might be

difficult for the decision maker to choose her/his preferred one(s), especially in many-

objective optimisation. One focus of our future research is to work with the preferences

supplied by the decision maker. This includes the incorporation of preference informa-

tion into the presented many-objective evolutionary approaches and the design of new

performance indicators for preference-based search.

Real-world application. In this thesis, all the presented evolutionary many-objective

approaches (GrEA, SDE and BiGE) were investigated mainly on well-defined continu-

ous and combinatorial benchmark suites. These test problems, despite their diversity,

cannot always match precisely the characteristics of real-world ones. Recently, we have

made an attempt of using SDE to conduct the optimal product selection in the soft-

ware product line (SPL) [101]. In the future, we will apply and adapt the proposed

many-objective optimisation approaches to more real-world problems.
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[157] M. Köppen and K. Yoshida. Visualization of Pareto-sets in evolutionary multi-

objective optimization. In International Conference on Hybrid Intelligent Systems

(HIS), pages 156–161, 2007.

[158] N. Kowatari, A. Oyama, H. E. Aguirre, and K. Tanaka. A study on large popula-

tion MOEA using adaptive ε-box dominance and neighborhood recombination for

many-objective optimization. In Proceedings of the 6th Learning and Intelligent

Optimization Conference (LION), pages 86–100. 2012.

[159] J. W. Kruisselbrink, M. T. Emmerich, T. Bäck, A. Bender, A. P. Ijzerman,
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