408 research outputs found

    Bimodal waveguide interferometer RI sensor fabricated on low-cost polymer platform

    Get PDF
    A refractive index sensor based on bimodal waveguide interferometer is demonstrated on the low-cost polymer platform for the first time. Different from conventional interferometers which make use of the interference between the light from two arms, bimodal waveguide interferometers utilize the interference between the two different internal modes in the waveguide. Since the utilized first higher mode has a wide evanescent tail which interacts with the external environment, the interferometer can reach a high sensitivity. Instead of vertical bimodal structure which is normally employed, the lateral bimodal waveguide is adopted in order to simplify the fabrication process. A unique offset between the centers of single mode waveguide and bimodal waveguide is designed to excite the two different modes with equal power which contributes to the maximum fringe visibility. The bimodal waveguide interferometer is finally fabricated on optical polymer (Ormocore) which is transparent at both infrared and visible wavelengths. It is fabricated using the UV-based soft imprint technique which is simple and reproductive. The bulk sensitivity of fabricated interferometer sensor with a 5 mm sensing length is characterized using different mass concentration sodium chloride solutions. The sensitivity is obtained as 316 pi rad/RIU and the extinction ratio can reach 18 dB

    NanoPhotonic structures for biosensing applications

    Get PDF
    Photonics -“ science of optics“ - has become one of the emerging sciences in many applications nowadays. The study of light interaction with matter has opened a lot of interesting phenomena that differ in their applications including sensing, modulation, demultiplexing, etc. Sensing applications represent a major part in the photonics field owing to their crucial role in the detecting and diagnosis of diseases in many medical applications. On the other hand, gas sensing is considered an important application in many industrial centers. During the manufacturing of several products, toxic gases may be generated and hence the ability to detect such types of gases becomes a necessity. The first part of this thesis is concerned with sensing applications using plasmonic and photonic structures. Several plasmonic and photonic structures are proposed that are characterized by their ultimate sensitivity and high performance. Other parameters are taken into consideration like the CMOS compatibility of our design and the possibility of being integrated with electronic chips. Beside optical sensing and their important role in biomedical and environmental applications, optical demultiplexers are considered from the main blocks in different communication systems that are based on wavelength division multiplexing (WDM). The need to highly select certain wavelength to carry the data during transmission is increasing. In the second part of the thesis, the design methodology of an optical filter is discussed. The optical filter can fit into many applications including demultiplexing and sensing. An optical demultiplexer is proposed and characterized by its high selectivity of wavelength in the near-infrared range to fit with the telecommunication systems. In addition, the transmission levels are of an acceptable range to ensure high signal to noise ratio. 9 The third and the last part of the thesis is concerned with optical coupling from free-space to guided structures. In the last part, an optical grating coupler is proposed that is characterized by its high transmission levels. The grating coupler couples the light from free-space to a shallow waveguide with a narrow lateral dimension. Such system can fit in many applications including sensing and modulation applications

    Study and manufacturing of biosensors based on plasmonic effects and built on silicon

    Get PDF
    Abstract: Lab-on-a-chip (or LOC) devices scale down the laboratory processes for detecting illnesses and monitoring sick patients without the need of medical laboratories. Well-known examples of LOC are pregnancy test kits or portable HIV sensors. To be useful, LOC devices must be sensitive, specific, compact, and affordable. These criteria are made possible with a transducer that can convert the biological presence of the target molecule into electrical information. Since the early 2000s, integrated photonics have offered a possible solution for a transducer compatible with LOC needs. In particular, silicon micro-ring resonators represent a compact and sensitive choice to use as a transducer in LOC devices. In agreement with the requirements of LOC devices, the objective of this project is to design and assess the performance of a compact photonic biosensor. The system will be based on integrated photonic transduction. The requirements are that it is compatible with an industrial fabrication platform and fluidic systems, with a sensitivity equal to or higher than the state-of-the-art and simple to functionalize in order to localize the target molecules in the sensitive regions of the sensor. This project details the design, fabrication, and characterization of such a biosensor. We found that ring resonators with a Hybrid Plasmonic Waveguide (HPWG) cross-section fulfill the LOC requirements and outperform the state-of-the-art biosensor. Furthermore, based on a principle called mode lift, we patented new geometry of HPWG, which will be the object of an article. We simulated the HPWG structure to understand the coupling mechanisms of the modes inside the structure (more specifically, the plasmonic and the ridge dielectric modes). The fabrication was possible thanks to the collaboration of the industrial and university cleanrooms. An advantage of industrial production is that we can reproducibly create the geometric components necessary for the LOC in a high-throughput manner, thus lowering the cost per unit cell. Once the 300 mm Si wafers were patterned, the university cleanroom fabrication process adds the metallic waveguides. The Au nanopatterning on the devices characterized in this project was created using the lift-off method. The preliminary measures define the optimal testing liquid (glucose monohydrate) and the uncertainty of the measures. The HPWG samples showed an experimental sensitivity lower than the simulations. After adjusting the fabrication parameters (mainly Au and Cr deposition rates and thicknesses), the second-generation HPWG devices suggest that the mode lift improves the sensitivity for waveguides below cutoff (the sensitivity increases from 210 nm/RIU to 320 nm/RIU when only 10% of the ring resonator has an HPWG section and the rest is a ridge waveguide). Even in the case where ridge waveguides are above the cutoff, the sensitivity increases by 40 nm/RIU when using mode lift. We also showed the compatibility of the fabricated devices’ surface with differential functionalization, by means of fluorescent nanoparticles. Due to time limitations, the presence of the nanoparticles will be measured with the fabricated devices in future experiments.Les dispositifs laboratoire sur puce (ou Lab-on-a-chip ou LOC) visent à miniaturiser les procédés de laboratoires pour la détection des maladies et la surveillance des patients malades, sans avoir besoin de laboratoires médicaux. Deux exemples bien connus de LOC sont les kits de test de grossesse ou les capteurs portables du VIH. Pour être efficaces, les appareils LOC doivent être sensibles, spécifiques à l’analyte concerné, compacts et abordables. Ces critères sont possibles grâce à un transducteur, qui peut convertir la présence biologique de la molécule cible en informations électriques. Depuis le début des années 2000, la photonique intégrée a offert une solution pour un système de transduction compatible avec les besoins du LOC. En particulier, les micro-résonateurs à anneaux en silicium représentent un transducteur compact et sensible adapté aux appareils LOC. En accord avec les exigences des dispositifs LOC, l’objectif de ce projet est de concevoir et d’évaluer les performances d’un biocapteur photonique compact. Le système sera basé sur une transduction photonique intégrée. Les exigences sont : une simple fonctionnalisation, la compatibilité avec une plateforme de fabrication industrielle et des systèmes fluidiques, avec une sensibilité égale ou supérieure à l’état de l’art. Ce projet détaille la conception, la fabrication et la caractérisation d’un tel biocapteur. Nous avons constaté que les résonateurs en anneau avec une section transversale de guide d’ondes hybrides plasmoniques (HPWG) remplissent les exigences LOC et sont compétitifs en comparaison avec l’état de l’art des biocapteurs photoniques. Par ailleurs, basée sur un principe appelé mode lift, une nouvelle géométrie de HPWG a été brevetée et fera l’objet d’un article. Nous avons simulé la structure HPWG pour comprendre les mécanismes de couplage des modes photoniques à l’intérieur de la structure (plus précisément les modes plasmoniques et les modes diélectriques du guide d’onde à ruban). La fabrication a été possible grâce à la collaboration de la salle blanche industrielle de STMicroelectronics et des salles blanches universitaires de l’université de Sherbrooke et de l’Institut de Nanotechnologies de Lyon. Un avantage de la production industrielle est que nous pouvons créer de manière reproductible la géométrie des composants nécessaires pour le LOC à haut débit, réduisant ainsi le coût par unité. Une fois que les wafers de 300 mm ont été structurés, le processus de fabrication en salle blanche universitaire permet d’ajouter le métal des guides d’ondes plasmoniques. La méthode du lift-off a été utilisée pour la nanostructuration Au sur les dispositifs caractérisés dans ce projet. Des mesures préliminaires ont permis de définir le liquide d’essai optimal (glucose monohydrate) ainsi que l’incertitude des mesures. Les échantillons HPWG ont montré une sensibilité expérimentale inférieure aux simulations. Après avoir ajusté les paramètres de fabrication (principalement les taux et les épaisseurs de dépôt d’Au et de Cr), les dispositifs HPWG de deuxième génération suggèrent que le mode lift améliore la sensibilité des guides d’ondes en dessous de la coupure (la sensibilité augmente de 210 nm/RIU à 320 nm/RIU lorsque seulement 10 % du résonateur en anneau a une section HPWG). Même par rapport aux guides d’ondes au-dessus de la coupure, la sensibilité augmente de 40 nm/RIU lors de l’utilisation du mode lift. Nous avons également montré la compatibilité de la surface des appareils fabriqués avec la fonctionnalisation différentielle en utilisant des nanoparticules fluorescentes. Pour des contraintes de temps, la présence des nanoparticules ne sera mesurée que dans des futures expériences

    Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Get PDF
    The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR) based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes) with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors

    On-Chip Nanoscale Plasmonic Optical Modulators

    Get PDF
    In this thesis work, techniques for downsizing Optical modulators to nanoscale for the purpose of utilization in on chip communication and sensing applications are explored. Nanoscale optical interconnects can solve the electronics speed limiting transmission lines, in addition to decrease the electronic chips heat dissipation. A major obstacle in the path of achieving this goal is to build optical modulators, which transforms data from the electrical form to the optical form, in a size comparable to the size of the electronics components, while also having low insertion loss, high extinction ratio and bandwidth. Also, lap-on-chip applications used for fast diagnostics, and which is based on photonic sensors and photonic circuitry, is in need for similar modulator specifications, while it loosens the spec on the modulator’s size. Silicon photonics is the most convenient photonics technology available for optical interconnects application, owing to its compatibility with the mature and cheap CMOS manufacturing process. Hence, building modulators which is exclusively compatible with this technology is a must, although, Plasmonics could be the right technology for downsizing the optical components, owing to its capability in squeezing light in subwavelength dimensions. Hence, our major goal is to build plasmonic modulators, that can be coupled directly to silicon waveguides. A Plasmonic Mach-Zehnder modulator was built, based on the orthogonal junction coupling technique. The footprint of the modulator is decreased to 0.6 4.7, extinction ratio of 15.8 dB and insertion loss of 3.38 dB at 10 volts was achieved in the 3D simulations. The voltage length product for the modulator is 47 V. The orthogonal junction coupler technique minimized the modulator’s footprint. On the other hand, photonic sensors favorably work in the mid-infrared region, owing to the presence of a lot of molecules absorption peaks in this region. Hence, III-V semiconductor media is used for this type of applications, owing to the availability of laser sources built of III-V media, and to the lower losses that these materials have in mid-infrared region. Hybrid plasmonic waveguide, formed of doped InAs, AlAs and GaAs is studied extensively. Based on this waveguide an electro-absorption modulator is built. The device showed an extinction ratio of 27 dB at 40 length, and 1.2 dB of insertion loss. The small device footprint predicts a much lower energy consumption

    Photonic Applications Based on Bimodal Interferometry in Periodic Integrated Waveguides

    Full text link
    Tesis por compendio[ES] La fotónica de silicio es una tecnología emergente clave en redes de comunicación e interconexiones de centros de datos de nueva generación, entre otros. Su éxito se basa en la utilización de plataformas compatibles con la tecnología CMOS para la integración de circuitos ópticos en dispositivos pequeños para una producción a gran escala a bajo coste. Dentro de este campo, los interferómetros integrados juegan un papel crucial en el desarrollo de diversas aplicaciones fotónicas en un chip como sensores biológicos, moduladores electro-ópticos, conmutadores totalmente ópticos, circuitos programables o sistemas LiDAR, entre otros. Sin embargo, es bien sabido que la interferometría óptica suele requerir caminos de interacción muy largos, lo que dificulta su integración en espacios muy compactos. Para mitigar algunas de estas limitaciones de tamaño, surgieron varios enfoques, incluyendo materiales sofisticados o estructuras más complejas, que, en principio, redujeron el área de diseño pero a expensas de aumentar los pasos del proceso de fabricación y el coste. Esta tesis tiene como objetivo proporcionar soluciones generales al problema de tamaño típico de los interferómetros ópticos integrados, con el fin de permitir la integración densa de dispositivos basados en silicio. Para ello, aunamos los beneficios tanto de las guías de onda bimodales como de las estructuras periódicas, en términos de la mejora del rendimiento y la posibilidad para diseñar interferómetros monocanal en áreas muy reducidas. Más específicamente, investigamos los efectos dispersivos que aparecen en estructuras menores a la longitud de onda y en las de cristal fotónico, para su implementación en diferentes configuraciones interferométricas bimodales. Además, demostramos varias aplicaciones potenciales como sensores, moduladores y conmutadores en tamaños ultra compactos de unas pocas micras cuadradas. En general, esta tesis propone un nuevo concepto de interferómetro integrado que aborda los requisitos de tamaño de la fotónica actual y abre nuevas vías para futuros dispositivos basados en funcionamiento bimodal.[CA] La fotònica de silici és una tecnologia emergent clau en xarxes de comunicació i interconnexions de centres de dades de nova generació, entre altres. El seu èxit es basa en la utilització de plataformes compatibles amb la tecnologia CMOS per a la integració de circuits òptics en dispositius diminuts per a una producció a gran escala a baix cost. Dins d'aquest camp, els interferòmetres integrats juguen un paper crucial en el desenvolupament de diverses aplicacions fotòniques en un xip com a sensors biològics, moduladors electro-òptics, commutadors totalment òptics, circuits programables o sistemes LiDAR, entre altres. No obstant això, és ben sabut que la interferometría òptica sol requerir camins d'interacció molt llargs, la qual cosa dificulta la seua integració en espais molt compactes. Per a mitigar algunes d'aquestes limitacions de grandària, van sorgir diversos enfocaments, incloent materials sofisticats o estructures més complexes, que, en principi, van reduir l'àrea de disseny però a costa d'augmentar els processos de fabricació i el cost. Aquesta tesi té com a objectiu proporcionar solucions generals al problema de grandària típica dels interferòmetres òptics integrats, amb la finalitat de permetre la integració densa de dispositius basats en silici. Per a això, combinem els beneficis tant de les guies d'ones bimodals com de les estructures periòdiques, en termes de funcionament d'alt rendiment per a dissenyar interferòmetres monocanal compactes en àrees molt reduïdes. Més específicament, investiguem els efectes dispersius que apareixen en estructures menors a la longitud d'ona i en les de cristall fotònic, per a la seua implementació en diferents configuracions interferomètriques bimodals. A més, vam demostrar diverses aplicacions potencials com a sensors, moduladors i commutadors en grandàries ultres compactes d'unes poques micres cuadrades. En general, aquesta tesi proposa un nou concepte d'interferòmetre integrat que aborda els requisits de grandària de la fotònica actual i obri noves vies per a futurs dispositius basats en funcionament bimodal.[EN] Silicon photonics is a key emerging technology in next-generation communication networks and data centers interconnects, among others. Its success relies on the ability of using CMOS-compatible platforms for the integration of optical circuits into small devices for a large-scale production at low-cost. Within this field, integrated interferometers play a crucial role in the development of several on-chip photonic applications such as biological sensors, electro-optic modulators, all-optical switches, programmable circuits or LiDAR systems, among others. However, it is well known that optical interferometry usually requires very long interaction paths, which hinders its integration in highly compact footprints. To mitigate some of these size limitations, several approaches emerged including sophisticated materials or more complex structures, which, in principle, reduced the design area but at the expense of increasing fabrication process steps and cost. This thesis aims at providing general solutions to the long-standing size problem typical of optical integrated interferometers, in order to enable the densely integration of silicon-based devices. To this end, we combine the benefits from both bimodal waveguides and periodic structures, in terms of high-performance operation and compactness to design single-channel interferometers in very reduced areas. More specifically, we investigate the dispersive effects that arise from subwavelength grating and photonic crystal structures for their implementation in different bimodal interferometric configurations. Furthermore, we demonstrate various potential applications such as sensors, modulators and switches in ultra-compact footprints of a few square microns. In general, this thesis proposes a new concept of integrated interferometer that addresses the size requirements of current photonics and open up new avenues for future bimodal-operation-based devices.Financial support is also gratefully acknowledged through postdoctoral FPI grants from Universitat Politècnica de València (PAID-01-18). European Commission through the Horizon 2020 Programme (PHC-634013 PHOCNOSIS project). The authors acknowledge funding from the Generalitat Valenciana through the AVANTI/2019/123, ACIF/2019/009 and PPC/2020/037 grants and from the European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencia Regional Government 2014–2020.Torrijos Morán, L. (2021). Photonic Applications Based on Bimodal Interferometry in Periodic Integrated Waveguides [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172163TESISCompendi

    Design of slow-light-enhanced bimodal interferometers using dimensionality reduction techniques

    Full text link
    [EN] Interferometers usually require long paths for the ever-increasing requirements of high-performance operation, which hinders the miniaturization and integration of photonic circuits into very compact devices. Slow-light based interferometers provide interesting advantages in terms of both compactness and sensitivity, although their optimization is computationally costly and inefficient, due to the large number of parameters to be simultaneously designed. Here we propose the design of slow-light-enhanced bimodal interferometers by using principal component analysis to reduce the high-dimensional design space. A low-dimensional hyperplane containing all optimized designs is provided and investigated for changes in the silicon core and cladding refractive index. As a result, all-dielectric single-channel interferometers as modulators of only 33 mu m(2) footprint and sensors with 19.2 x 10(3) 2 pi rad/RIU.cm sensitivity values are reported and validated by 2 different simulation methods. This work allows the design and optimization of slow light interferometers for different applications by considering several performance criteria, which can be extended to other photonic structures. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing AgreementEuropean Commission (FEDER Valencia Regional Government 2014-2020); Spanish Government (PID2019-106965RBC21-PHOLOW); Generalitat Valenciana (ACIF/2019/009, AVANTI/2019/123, PPC/2020/037)Torrijos-Morán, L.; García-Rupérez, J. (2021). Design of slow-light-enhanced bimodal interferometers using dimensionality reduction techniques. Optics Express. 29(21):33962-33975. https://doi.org/10.1364/OE.425865S3396233975292

    Integrated optical bimodal waveguide biosensors : principles and applications

    Get PDF
    Altres ajuts: the ICN2 is funded by the CERCA program/Generalitat de Catalunya.Integrated optical biosensors have become one of the most compelling technologies for the achievement of highly sensitive, multianalyte, portable and easy to use point-of-care (POC) devices with tremendous impact in healthcare and environmental protection, among other application fields. In this context, bimodal waveguide (BiMW) interferometers have emerged over the last years as a powerful biosensor technology providing the benefits of extreme sensitivity under a label-free scheme, reliability and robustness within a highly compact footprint that can be integrated and multiplexed in lab-on-a-chip (LOC) platforms. In this review, we provide an overview of the state-of-the-art about integrated optical BiMW biosensors from the theoretical fundamentals to their practical implementation. Furthermore, we explore recent advances such as novel designs, integration in specific LOC systems and its application in real biosensing scenarios. Final remarks and perspectives on the potential impact of these biosensor interferometric structures are also provided, as well as some limitations that must be addressed in next steps

    Novel on-chip applications using silicon photonics

    Get PDF
    The emerging field of silicon photonics offers solutions to designing CMOScompatible optical devices. By taking advantage of the immense fabrication infrastructure offered by the silicon industry, it would be possible to design optical structures that are smaller, faster, less-power consuming and cheaper than traditional, non-silicon-based optical devices. In this dissertation, the design and performance testing of two novel silicon photonic structures are presented: 1) Silicon nanowire ridge waveguide for sensing applications at the optical transmission frequency. 2) Doped silicon plasmonic structures for negative-index, epsilon-near-zero and sensing applications at the mid-infrared. For the first design, silicon nanowires are arranged in a ridge shape to act as a sensitive medium. Most conventional optical sensors rely on evanescent field detection, where only the tail of the incident wave contributes to the sensing process. Silicon nanowires, on the other hand, allow a large portion of the light wave to be present in the low-index-region, which is comprised of the gaps between the nanowires. This feature provides an opportunity for the optical wave to be vastly affected by the refractive index of the gaps between the nanowires. Thus, by introducing materials-under-test, or analytes, to the gaps, the optical signal response is heavily altered, hence, providing a much larger sensitivity than evanescent field sensors. Previous literature has reported on rib-shaped silicon nanowire sensors. We show that the proposed design is more superior in several areas. Firstly, simulations show that ridge-shaped sensors respond slightly more strongly to refractive-index changes than rib-shaped sensors. This could be due to their slightly larger optical overlap with their surroundings, provided by the inherently larger dimensions of the ridge shape. They can also detect up to a 1e-8 refractive-index-changes in the surrounding environment. Secondly and more importantly, single-mode operation, which is usually mandatory for most optical sensor configurations, can be guaranteed using more flexible dimensions for the ridge-shaped nanowire waveguide than for its rib-shaped counterpart. This provides a fabrication convenience, since devices with larger dimensions are generally cheaper and easier to manufacture. Additionally, since the ridge waveguide sports a wide low-thickness region, it can cover the substrate and safe-guard it against erosion during the fabrication process. To further characterize our design, the ridge-shaped silicon nanowire waveguide was put in a bimodal interferometer sensor configuration. The sensitivity obtained through FDTD simulations proved to be very high; its value was comparable to recently reported sensitivities using much larger footprints. This very high sensitivity-to-footprint ratio, along with the CMOS compatibility of the proposed design, deems it as a suitable candidate for on-chip integration. In the second portion of this dissertation, we aim to model and characterize highconfinement plasmonic devices using doped silicon in the mid-infrared range. The midinfrared range is home to some important applications such as molecular sensing, environmental monitoring and security applications. Traditional plasmonic devices possess some much desired features that may be utilized in the mid-infrared. These include hosting a high surface sensitivity, and having the ability to guide and confine light through subwavelength structures, including sharp bends. However, much of these features are exclusive to the near-infrared and visible frequencies, where the plasma resonance of conventional plasmonic materials lie. This is because conventional materials tend to suffer from low confinement in the mid-infrared region, and are rendered inconvenient for applications that require high confinement such as sensing and on-chip communications. For this reason and for its CMOS compatibility, doped silicon plasmonics seems to be a viable solution. We demonstrate that plasma resonance tunability can be achieved through controlling the doping level. Moreover, the dispersion characteristics of doped silicon devices were analyzed for different applications at the mid-infrared region, and displayed valuable phenomenon such as negative dispersion, which can be utilized for slow light and metamaterial applications, and epsilon-near-zero characteristics, that can be used for extraordinary transmission. The mid-infrared dispersion was studied thoroughly for multiple structures, including the slot structure and the rectangular shell structure. The potential for biological and environmental sensing for the aforementioned structures, as well as for a doped silicon nanoparticle was investigated and very high sensitivity was achieved. In addition, the performance of the slot structure in the negative dispersion region was established through using the waveguide as a slow light medium. Moreover, plasmonic structures that can be used for on-chip light-guiding, such as bends and junctions were evaluated. FDTD simulations showed superior performance through successful lightsplitting in gaps as wide as 1μm

    Label-Free MicroRNA Optical Biosensors

    Get PDF
    MicroRNAs (miRNAs) play crucial roles in regulating gene expression. Many studies show that miRNAs have been linked to almost all kinds of disease. In addition, miRNAs are well preserved in a variety of specimens, thereby making them ideal biomarkers for biosensing applications when compared to traditional protein biomarkers. Conventional biosensors for miRNA require fluorescent labeling, which is complicated, time-consuming, laborious, costly, and exhibits low sensitivity. The detection of miRNA remains a big challenge due to their intrinsic properties such as small sizes, low abundance, and high sequence similarity. A label-free biosensor can simplify the assay and enable the direct detection of miRNA. The optical approach for a label-free miRNA sensor is very promising and many assays have demonstrated ultra-sensitivity (aM) with a fast response time. Here, we review the most relevant label-free microRNA optical biosensors and the nanomaterials used to enhance the performance of the optical biosensor
    • …
    corecore