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Abstract 

The emerging field of silicon photonics offers solutions to designing CMOS-

compatible optical devices. By taking advantage of the immense fabrication infrastructure 

offered by the silicon industry, it would be possible to design optical structures that are 

smaller, faster, less-power consuming and cheaper than traditional, non-silicon-based 

optical devices. In this dissertation, the design and performance testing of two novel silicon 

photonic structures are presented: 1) Silicon nanowire ridge waveguide for sensing 

applications at the optical transmission frequency. 2) Doped silicon plasmonic structures 

for negative-index, epsilon-near-zero and sensing applications at the mid-infrared. 

For the first design, silicon nanowires are arranged in a ridge shape to act as a 

sensitive medium. Most conventional optical sensors rely on evanescent field detection, 

where only the tail of the incident wave contributes to the sensing process. Silicon 

nanowires, on the other hand, allow a large portion of the light wave to be present in the 

low-index-region, which is comprised of the gaps between the nanowires. This feature 

provides an opportunity for the optical wave to be vastly affected by the refractive index of 

the gaps between the nanowires. Thus, by introducing materials-under-test, or analytes, to 

the gaps, the optical signal response is heavily altered, hence, providing a much larger 

sensitivity than evanescent field sensors. Previous literature has reported on rib-shaped 

silicon nanowire sensors. We show that the proposed design is more superior in several 

areas. Firstly, simulations show that ridge-shaped sensors respond slightly more strongly 

to refractive-index changes than rib-shaped sensors. This could be due to their slightly 

larger optical overlap with their surroundings, provided by the inherently larger dimensions 

of the ridge shape.  They can also detect up to a 10-8 refractive-index-changes in the 

surrounding environment. Secondly and more importantly, single-mode operation, which 

is usually mandatory for most optical sensor configurations, can be guaranteed using more 

flexible dimensions for the ridge-shaped nanowire waveguide than for its rib-shaped 

counterpart. This provides a fabrication convenience, since devices with larger dimensions 

are generally cheaper and easier to manufacture. Additionally, since the ridge waveguide 

sports a wide low-thickness region, it can cover the substrate and safe-guard it against 

erosion during the fabrication process. To further characterize our design, the ridge-shaped 

silicon nanowire waveguide was put in a bimodal interferometer sensor configuration. The 

sensitivity obtained through FDTD simulations proved to be very high; its value was 

comparable to recently reported sensitivities using much larger footprints. This very high 

sensitivity-to-footprint ratio, along with the CMOS compatibility of the proposed design, 

deems it as a suitable candidate for on-chip integration.   



 
 

vii 

In the second portion of this dissertation, we aim to model and characterize high-

confinement plasmonic devices using doped silicon in the mid-infrared range. The mid-

infrared range is home to some important applications such as molecular sensing, 

environmental monitoring and security applications. Traditional plasmonic devices possess 

some much desired features that may be utilized in the mid-infrared. These include hosting 

a high surface sensitivity, and having the ability to guide and confine light through 

subwavelength structures, including sharp bends. However, much of these features are 

exclusive to the near-infrared and visible frequencies, where the plasma resonance of 

conventional plasmonic materials lie. This is because conventional materials tend to suffer 

from low confinement in the mid-infrared region, and are rendered inconvenient for 

applications that require high confinement such as sensing and on-chip communications. 

For this reason and for its CMOS compatibility, doped silicon plasmonics seems to be a 

viable solution. We demonstrate that plasma resonance tunability can be achieved through 

controlling the doping level. Moreover, the dispersion characteristics of doped silicon 

devices were analyzed for different applications at the mid-infrared region, and displayed 

valuable phenomenon such as negative dispersion, which can be utilized for slow light and 

metamaterial applications, and epsilon-near-zero characteristics, that can be used for 

extraordinary transmission. The mid-infrared dispersion was studied thoroughly for multiple 

structures, including the slot structure and the rectangular shell structure. The potential for 

biological and environmental sensing for the aforementioned structures, as well as for a 

doped silicon nanoparticle was investigated and very high sensitivity was achieved. In 

addition, the performance of the slot structure in the negative dispersion region was 

established through using the waveguide as a slow light medium. Moreover, plasmonic 

structures that can be used for on-chip light-guiding, such as bends and junctions were 

evaluated. FDTD simulations showed superior performance through successful light-

splitting in gaps as wide as 1μm. 
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Chapter 1: Introduction 

The persistent need to access the internet from everywhere is probably what 

inspired the use of optical solutions rather than electronic ones. Where the electronic 

systems based on copper failed at fulfilling the ever-expanding bandwidth and distance 

requirements, the optical systems flourished. High-speed computers also benefited from 

the enormous speeds of optical interconnects. Today, optical systems are paving their way 

into applications in the medical field, including diagnostics, therapeutics and imaging. 

However, optical devices are typically bulky, and made from non-standardized components 

such as III–V-based compounds such as indium phosphide (InP), gallium arsenide (GaAs) 

and lithium niobate (LiNbO3). There is hardly any automation in the fabrication of these 

devices, as they are usually custom-made, and assembled manually. Thus, optical devices 

are sometimes viewed as unpractical solutions due to the large expenses required in their 

production. This hurdle may be overcome by using an optical technology that can be batch 

fabricated, and made available at a low cost to the mass market. For this reason, a lot of 

effort has been put recently into realizing optical components that are based on silicon; this 

research field is commonly referred to as “silicon photonics.” Perhaps the main merit of 

working with silicon is to take advantage of the readily available knowledge gained from 

years of study done on this material by the microelectronics industry. This is a well-

understood material, and its fabrication infrastructure is immense.   

Many doors are unlocked when one contemplates the prospects of taking 

advantage of the manufacturability provided by the silicon technology, which includes the 

ease of miniaturization and integration. For instance, optical components could be easily 

integrated with one another on a single-chip to form compact optical systems that are 

eligible for batch fabrication. This could allow the production of low-cost, robust photonic 

devices. Mass producing such devices will greatly increase the commercial marketplace of 

optical components. Another possibility brought upon by the use of silicon photonics is the 

prospect of integrating optical components alongside electronic components using the 

CMOS technology. Such integration can provide new and endless possibilities for the 

optoelectronic industry [1].    

In this dissertation, we study the performance of novel silicon photonic devices in 

two spectral regions: the optical transmission wavelength centered around 1.55μm, as well 

as in the mid-infrared (mid-IR) region (2 - 20μm). Traditionally, optical devices guide the 
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light in the high-index medium. The proposed devices, alternatively, are designed with 

specific parameters that allow the light to propagate in the low-index medium, the purpose 

of that will be discussed later. Ultimately, the main goal for our devices is to provide high 

confinement so as to be eligible for use in on-chip applications. The performance of our 

devices in several of these applications, such as sensing and slow light applications, is 

studied.  

In the first spectral region—wavelength around 1.55μm—we designed a 

miniaturized photonic sensor based on silicon nanowires. The testing and characterization 

of the design was carried out through the use of finite-difference-time-domain (FDTD) 

simulation software. There were three primary challenges in this design: 1) to ensure that 

the nanowires are capable of transmitting light with minimum leakage. 2) To ensure that 

the device reacts greatly to changes in the surrounding environment (i.e., make sure it is 

highly sensitive). 3) To improve upon existing silicon photonic sensors.   In general, 

sensitivity is defined as the change in a certain parameter (e.g. phase or resonance shift) 

in the output signal per a change in a physical parameter (e.g. dimensions, surrounding 

refractive index, and temperature) in the sensing system. For our purposes, we define 

sensitivity as the change in the effective refractive index of the sensor per the change in 

the surrounding refractive index. As mentioned beforehand, our devices are meant to guide 

light in the low-index region. In the case of silicon nanowires, the spacing between the 

wires along with their diameters can allow the incident light to see them as an effective 

index medium. The effective index would have an average value between the refractive 

index of silicon and the surrounding environment, or the cladding (usually air by default). 

Thus, this effective medium will have an overall larger index than the air, and should be 

capable of guiding the light; this resolves our first design challenge. The main advantage, 

and purpose, of using nanowires is seen in sensing applications—specifically biosensing 

applications, where a complex fluid is detected. In these scenarios, the material being 

sensed, or the analyte, will be inserted in the gaps between the nanowires, thus, altering 

the refractive index of the cladding.  Hence, the light wave within the gaps amid the silicon 

nanowires will overlap completely with the analyte, and hence, the overall effective index 

of the waveguide will be altered accordingly. As will be seen in future chapters, optical 

sensing configurations rely upon measuring the effective index change induced upon the 

introduction of the analyte to the optical waveguide. The majority of optical sensors rely on 

evanescent field detection where only the tail of the light interacts with the analyte. Since 

our design provides a much larger overlap between the light and the analyte, it is expected 

to be far more sensitive than conventional devices; this addresses our second challenge.  
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Silicon nanowire sensors have been briefly investigated before [2], however, they 

were arranged in a small rib waveguide. The issue with such a waveguide is that it leaves 

a large area of the substrate exposed, and this could introduce fabrication challenges that 

could result in the erosion of the substrate surface during the etching process. Instead, we 

propose to use silicon nanowire ridge waveguides (SNRW), where the nanowires are 

arranged in the shape of a ridge. This design covers the entire substrate, and can dodge 

the fabrication inconvenience mentioned earlier. Moreover, as this device is physically 

bigger than the silicon nanowire rib waveguide (while still being miniature), the optical mode 

produced by this device is physically larger than that of the rib waveguide. This provides 

an even larger playfield for the light and analyte to interact and improving the sensitivity; 

this solves the third and final design challenge. 

After addressing our main design goals, we needed to put our device to the test; 

this was done by basing it upon an optical sensing configuration. We chose to use the 

bimodal sensor configuration. The bimodal waveguide is a type of interferometric 

waveguide, where a straight waveguide supports a single mode in a certain section, and 

two modes in another section. These modes interfere with one another and produce an 

interference pattern at the output. The bimodal waveguide was chosen mainly for its 

simplicity. It is a straight waveguide that does not involve bends or junctions, as do popular 

configurations, such as ring-resonators and Mach-Zehnder interferometers (MZI). The 

presence of bends introduces a fabrication difficulty, as well as bending losses. The 

bending losses are especially exaggerated when the device is miniaturized, since this 

would require the bends to be more severe.  Another advantage for using the bimodal 

waveguide is the fact that its compactness could allow for multiple sensing channels to co-

exist, which could facilitate either the parallelization of sensing multiple features on a 

single-chip, or enhance the sensing of a single feature. Because this device is miniature 

and silicon-based, it is eligible for integration with the ever-trending lab-on-a-chip devices 

[3].  

The second (and larger) focus of this dissertation is on photonic devices in the mid-

IR range. This spectral area is a minefield for sensing applications, chiefly because it 

contains the ‘vibrational fingerprints’ of many relevant molecules, as well as atmospheric 

transmission windows which could be used for imaging and security applications. However, 

the mid-IR range is an under-researched area, as there has been technical difficulties in 

creating sources and detectors that functioned in this area until the mid-nineties. We 

explore this area through the use of plasmonic slot structures. Plasmonic structures are 

known for their unique ability to confine light to sub-wavelength scales, as they are not 

limited by diffraction losses, as is the case with conventional photonic devices. They are 



Chapter 1. Introduction 
 

 

4 

also famous for their high-surface sensitivity, which is a prime reason for their appeal as 

mid-IR photonic devices. Not unlike silicon nanowires, slot waveguides allow the light to be 

confined to the low-index region, where it may interact with some analyte. It also 

“squeezes” the optical mode, which enhances the optical confinement, thus, improving the 

performance of on-chip applications in general. Hence, it is our main goal to design high-

confinement, silicon-based plasmonic slot devices in the mid-IR, which may be used for 

plasmonic on-chip applications. 

Conventional plasmonic devices are realized using conducting materials—

typically, noble metals such as silver and gold. However, noble-metal-plasmonics can only 

guarantee high field confinement when operated near their plasma resonance, which lies 

in the visible and near-infrared (NIR) frequencies. When operated in the mid-IR, the 

plasmonic modes of noble metals tends to leak into the cladding, and hence, noble metals 

are not suited for mid-IR applications. Additionally, conventional plasmonic devices are not 

CMOS-compatible, and require non-standard fabrication techniques. This discourages any 

attempt to engineer noble metals to work efficiently in the mid-IR. Hence, we may rephrase 

our design goal to: mapping (and improving) the performance of highly confined 

plasmonics in the NIR to the mid-IR through the use of doped silicon.  

In order to use silicon—a semiconductor—as a plasmonic medium, it is injected 

with dopants until it starts to behave as a metal. The doping concentration, which can be 

altered using well-known manufacturing techniques, is responsible for shifting the plasma 

resonance of the material to the mid-IR. Hence, the plasma resonance of the silicon can 

be tuned by adjusting the doping concentration. Operating doped silicon that has a plasma 

frequency in the mid-IR not only enhances confinement, but also shows the potential for 

being used in many novel applications. This was discovered by studying the dispersion 

relation of a finite-width doped silicon slot and an infinite-width doped silicon slot. The 

dispersion showed that our design has potential to work as a slow light medium, a negative-

dispersion medium, an epsilon-near-zero (ENZ) medium, and a highly-sensitive plasmonic 

medium. Of these, the potential of using the waveguide as a slow light medium and as a 

sensor were investigated. In addition, the performance of typical plasmonic gap structures 

used in on-chip devices, such as 90 degree bends, and t- and x-junctions, were studied in 

the mid-IR. Aside from slot waveguides, other structures based on highly-doped silicon 

were investigated, namely the rectangular shell waveguide and nanoparticles; both 

structures show great potential for sensing applications.  

Thus, the main message here is that silicon is highly flexible and can work 

efficiently as an optical waveguide in typical photonic settings, as well as plasmonic 
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settings, over a large bandwidth. Besides the obvious advantage of being CMOS-

compatible, silicon has good electrical and mechanical properties, including low surface 

scattering losses and high mobility. Perhaps, the main limitation of our work is that our 

results are based on computer simulations, which do not take into account certain real-

world problems, such as temperature fluctuations, and imperfections in material structure 

and dimensions.  

The remainder of this dissertation is divided between the two aforementioned 

designs: SNRW photonic sensors and highly doped mid-IR plasmonic devices. In Chapter 

2, the general optical (bio)sensing process is explained. Some of the most popular optical 

evanescent field sensing configurations are discussed; this includes the bimodal 

configuration, which is employed in our work. The theory of operation of novel waveguides, 

namely, slot waveguides and silicon nanowire waveguide is presented. Chapter 3 

discusses our SNRW photonic sensors, in terms of their performance against other 

structures, and their sensitivity limit. The dimensions of our SNRW were chosen based on 

a study on the specific dimensions that allow single-mode operation, which is mandatory 

for the bimodal interferometer to function properly. Finally, the performance and sensitivity 

of the bimodal interferometer is studied.  

Chapter 4 gives an overview on the basics of plasmonics, including the physics 

behind their operation, and their applications. The Drude model, which is used to model 

our doped silicon material, is discussed as well. Then, an overview on the applications in 

mid-IR regions is given. The confinement issue faced by conventional plasmonic devices 

in the mid-IR is explained; also, some of the efforts that address this issue are reviewed.   

In Chapter 5, we present a comprehensive study on doped silicon plasmonics. 

First, we discuss how we modelled our doped silicon material for computational purposes; 

then, we discuss the effect of changing the doping concentration on the characteristics of 

silicon.  We also show, through simulations, that doped silicon can propagate for long-

distances in the mid-IR, whereas silver cannot. We then move on to studying the dispersion 

characteristics of doped silicon slot waveguide in the mid-IR. This is done for several 

dimensions, so as to provide a more comprehensive insight into the significance of certain 

architectural parameters. A similar study is performed for doped silicon rectangular shell 

waveguides. Some of the potential applications, such as sensing and slow light, are 

investigated and presented. The sensitivity of doped silicon nanoparticles is also explored. 

Finally, the ability of the waveguide to transmit light through sharp bends and junctions is 

demonstrated. A summary of our findings is presented in Chapter 6. Suggestions on how 

to improve upon this work are also presented.



 

 6 

 

Chapter 2: Overview on Photonic 

Biosensors 

The ideal on-chip diagnostic device integrates all processes from sample 

extraction to biosensing and detection to signal delivery. The dream of creating such a 

device was facilitated during the 1980s when several microfluidic structures, such as 

microvalves and micropumps, had been realized by silicon micromachining technologies. 

These structures provided a simple solution for guiding the sample across the chip [4]. This 

presented the dawn of the newly emerging field of “micro total analysis systems” (μTAS11), 

commonly referred to as “lab-on-a-chip” [5]. Biosensors are the main diagnostic component 

in the much sought-after lab-on-a-chip devices. A prerequisite to paving the way to on-chip 

detection is by designing highly sensitive and robust biosensors with label-free and real-

time detection. The purpose of this chapter is to give insight into the general operation 

principles of biosensors, as well as review some of the most common optical sensor 

configurations. 

2.1 What Is a Biosensor? 

A biosensor is essentially a transducer that converts a biorecognition event into a 

measurable signal. A characteristic component exclusive to biosensors is the bioreceptor. 

The bioreceptor is typically an enzyme that is capable of recognizing and binding to a 

desired target molecule: the analyte. The bioreceptor may also be an antibody, an aptamer, 

a DNA probe, a protein or even a microorganism [6]. The choice of bioreceptor depends 

on the physical quantity (e.g. virus, cancerous cell, etc.) that needs to be detected. This 

eliminates the need to use expensive reagents that are typically required in traditional 

laboratories. 

A critical process to creating a biosensor is the immobilization of bioreceptors. This 

process basically connects bioreceptors to transducers. If bioreceptors were just aimlessly 

floating around the vicinity of the transducers, their presence would not be very effective, 

and as a result, the transducer’s sensitivity would be greatly reduced. Thus, the purpose 

of the immobilization process is to attach the bioreceptors to a strategically chosen area in 
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the transducer. This area will be referred to as the “sensing surface” throughout this 

chapter.      

Hence, the physical properties of the transducers will be altered by the reactions 

occurring at the newly introduced sensing surface. This physical change may be depicted 

in various means, such as a change in the interference pattern, resonant frequency or 

coupling angle, as will be seen in future sections. In addition, the transducer/sensor 

configuration will determine the type of electrical measurement used to interpret the 

physical change. Once a change is sensed it will be mapped to a certain “diagnosis.” These 

mappings are based on prior experimentations of the device. A summary of the sensing 

procedure and the immobilization taking place in the biosensor is generalized in Figure 2.1. 

 

 

Figure 2.1. Simplified biosensor model 

 

2.2 Brief Overview of Immobilization  

This section is out of scope with our work but is provided nonetheless for the 

purpose of sketching a fuller picture of the biosensor operation. The choice of an 

appropriate immobilization procedure is a critical step in the biosensor design, and ought 

to be optimized according to the application. The immobilization process mandates an 

efficient coverage of the transducer surface with bioreceptors. However, a truly successful 

immobilization process is expected to minimize nonspecific adsorption, as well as preserve 

the original bioreceptor properties (e.g. biological activity, affinity, specificity, structure, 

etc.), ensure their stability for storage and regeneration, and have a short response time. 
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Additionally, the resolution and selectivity of any biosensor device is limited by the 

effectiveness of the bioreceptor layer. 

Among the immobilization strategies available are affinity, cross-linking, adsorption 

by deposition, covalence and entrapment. Figure 2.2 [7] depicts some of the several means 

that can be used to biofunctionalize the sensor surface: (1) chemical activation of plain 

surface, (2) bioreceptor immobilization (3) and final detection of the target molecule (4). 

The bioassays in (3) and (4) are: (a) Mixed self-assembled monolayer (SAM) with reactive 

and non-reactive silanes compounds with specific antibodies covalently immobilized for 

protein recognition; (b) hydrophilic and biocompatible reactive monolayer based on 

pegylated-silane or dextran compounds with proteins covalently immobilized for antibody 

recognition; (c) Affinity tags immobilized on the surface to achieve appropriate orientation 

of specific antibodies for protein recognition; (d) covalent immobilization of DNA or RNA 

probes for hybridization with complementary DNA/RNA strands.  

 

 

Figure 2.2. Common surface biofunctionalization strategies (adopted from [7]) 

 

Possibly the simplest immobilization strategy, physical adsorption is based on the 

deposition of the bioreceptor onto the transducer surface. The deposition occurs as a result 

of the hydrophobic and electrostatic interactions between the bioreceptor and the surface. 

However, this method suffers from weak bondage, which can lead to the easy desorption 

of the active receptors under flow conditions. In addition, the application of regeneration 

cocktails—chemicals responsible for breaking the interaction event—can also result in 
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desorption. Moreover, in this scheme, the folding of the bioreceptors onto the surface (e.g. 

orientation of bioreceptor with respect to the surface, which consequently affects the bind 

event) is not controllable. This makes physical adsorption generally a poor candidate for 

immobilization.  

In covalent binding, biomolecules are bound to the surface through the functional 

groups that they contain, and whose blocking will not greatly affect the biomolecule’s 

catalytic activity. First, the surface is activated using multifunctional reagents, then the 

biomolecule is coupled to the activated surface, afterwards, the excess biomolecules are 

removed. This process can occur on the transducer surface, or on a thin membrane fixed 

on the transducer.  As an example, proteins couple well to amino or carboxylic or thiol 

groups. On the other hand, for the immobilization of nucleic acids, DNA synthesis is used 

to combine reactive groups at the end of the sequence. 

Affinity binding involves orientation-controlled attachment of biomolecules; this 

prevents enzyme deactivation and ensures that the binding sites remain free. This can be 

achieved through the use affinity proteins, such as A or G Protein, or through the use of 

carbohydrate residue. Another popular approach is based on the biotin and (strept) avidin 

systems, where avidin is sandwiched between biotin and biotinylated bioreceptor [7].  

2.3 Photonic Biosensors 

Optical transduction methods reveal themselves as the most promising candidates 

for biosensing, providing the highest sensitivity. These devices also have the advantage of 

being label-free, meaning they do not require fluorescent tags. Traditionally, biosensors 

require a label attached to the target; this label is detected during readout. Labels can be 

fluorophores, magnetic beads, or active enzymes. However, labeling comes with a 

byproduct: the binding properties of a biomolecule may go under sever change, and the 

yield of the target-label coupling reaction is highly variable [8]. Thus, label-free sensing 

methods are encouraged and sought after. 

Optical sensors typically consist of a waveguide that has a refractive index higher 

than the surrounding environment, so that it can achieve optical power confinement. 

Conventionally, the sensing surface is located at the evanescent field. In this scenario, 

most of the light is confined inside the waveguide (typically made of silicon), while the “tail” 

of the light can remain on the outer edges of the waveguide, provided that the waveguide 

is small enough. Hence, the bioreceptors are typically arranged on the edges of the 

waveguide where they can interact with the evanescent field. The induced physical change 
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that occurs due to the biological event is represented as a change in the effective refractive 

index.  Such a change can be measured using many configurations such as resonators 

and gratings, but some claim [9], [10] that the winning technique is provided by 

interferometric devices. The following section contains a brief overview of some of the most 

popular sensing configurations that are based on evanescent field detection. In these 

cases, the width is designed to be small enough in order to allow the evanescent tail of the 

light to leak out of the waveguide. The bioreceptors are placed right outside the waveguide, 

in order to interact with the evanescent tail.  

2.3.1 Evanescent Field Sensors 

2.3.1.1 Mach-Zehnder Interferometers (MZI) 

Perhaps the most common configuration for interferometric waveguides is the MZI 

[11]-[14]. A typical optical integrated MZI sensor consists of an optical waveguide 

fabricated on top of a silicon substrate. The waveguide splits into a reference arm and a 

sensing arm, as shown in Figure 2.3. The reference arm is covered, while the sensing arms 

is exposed to the microfluidic channel, which lies on top of the MZI. The bioreceptors are 

placed on the sensing arm; thus, when the sample is injected, the overall effective index of 

the sensing arm is altered, causing some delay in the electromagnetic field travelling 

through the arm. The two arms are coupled into an output rib waveguide, where the overall 

interference pattern is altered by the delay in the sensing arm. The dimensions of the 

optical waveguides must ensure single-mode behavior and high surface sensitivity. Single-

mode operation is a must because light propagates at different velocities for different 

modes. Therefore, if multiple modes are propagating, each with a unique sensitivity, they 

will interfere with each other, resulting in a decrease in the output signal. During the read-

out, the output intensity is detected and refractive index change is transformed into a phase 

shift. The output light intensity, 𝐼, and output phase shift , ∆𝜑 , are given by: 

𝐼 =
𝐼0

2
[𝐸𝑆

2 + 𝐸𝑅
2 + 2𝐸𝑆𝐸𝑅𝑐𝑜𝑠∆𝜑] (2.1) 

∆𝜑 = 2𝜋
𝐿

𝜆
(𝑛𝑒𝑓𝑓

𝑆 − 𝑛𝑒𝑓𝑓
𝑅) (2.2) 

where 𝐼0 is the input light intensity, 𝐿 is the length of the sensor area, 𝜆 the wavelength and  

𝐸𝑆, 𝐸𝑅 are the electric fields at the sensor and reference arms, respectively; similarly, 

𝑛𝑒𝑓𝑓
𝑆, 𝑛𝑒𝑓𝑓

𝑅 are the effective refractive indices produced in the sensor arm and reference 

arm, respectively [11]. It can be seen that the length of the sensor area is directly 
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proportional to the sensitivity of the MZI. One of the main drawbacks of this configuration 

is the cosine dependency, which basically means that sensitivity is dependent on the 

position of the interferometric curve, with maximum sensitivity at quadrature points. A 

modulation system that can track the interferometric read-out is a possible solution to such 

an issue [15].   

 

Figure 2.3. Top view of Mach-Zehnder sensor 

2.3.1.2 Bimodal Waveguides 

Distinct from the aforementioned MZI, bimodal waveguides do not require a 

reference arm. However, their principle of operation is very similar to MZI waveguides in 

that the sensing is done by inducing a change in the output interference pattern. These 

devices employ a single ridge waveguide that supports an interference mode. First, light in 

transverse electric polarization is coupled into a ridge waveguide, which is configured to 

support a single transversal mode. As illustrated by Figure 2.4, after a certain distance, the 

height of the ridge waveguide is altered so that it supports two modes—fundamental and 

first order modes; this causes a known interference pattern at the output. The sensing 

surface is integrated on the dual-mode part of the waveguide. When the refractive index 

changes due to the biorecognition events occurring at the surface, the intensity distribution 

of the interference pattern changes accordingly.  Thus, in this case, the output of the 

bimodal waveguide with an air cladding can be thought of as the original interference 

pattern. The simplicity of this design is one of the main advantages; it can be easily 

fabricated as it does not require Y-junctions as the MZI. Furthermore, the compactness of 

the configurations can allow for the existence of parallel multiple sensing channels on a 

single chip [15], [16].  
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Figure 2.4. Structure of the bimodal waveguide (taken from [15]) 

 

2.3.1.3 Grating-Coupled Waveguide Sensors 

Another class of waveguides are grating-coupled waveguide sensors [17], [18]. 

This is one of the older structures, and it basically consists of periodic disturbances, or 

gratings on a single-mode high-index layer fixed on a low-index substrate, as shown in 

Figure 2.5. The gratings produce multiple diffractions. One of those diffractions has the 

same momentum as the supported waveguide mode, and therefore can couple to that 

mode. The guided mode has a certain angle of incidence when the in-coupling condition is 

fulfilled [19]: 

𝑛𝑒𝑓𝑓 =  𝑛𝑎𝑖𝑟 sin 𝜃 + 𝑙 (
𝜆

𝛬
) (2.3) 

where 𝑛𝑒𝑓𝑓 is the effective refractive index of the waveguide, 𝑛𝑎𝑖𝑟 is the refractive index of 

air, 𝜃 is the angle of incidence of the light, 𝑙 is the diffraction order, and 𝛬 is the grating 

period. Clearly, as the refractive index of the surroundings changes, the in-coupling angle 

changes accordingly. So in this scenario, the sensing is achieved by measuring the angle 

of incidence, 𝜃. 
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Figure 2.5. Grated optical waveguide 

 

2.3.1.4 Ring Resonator Waveguide 

One of the most popular optical sensing schemes is the ring resonator sensor [19]-

[25], shown in Figure 2.6. It consists of a circular waveguide and a rib waveguide with 

identical properties (material, thickness, width, etc.). Light is coupled to the rib waveguide, 

which is placed in high proximity with the circular waveguide. After that, light is coupled to 

the circular waveguide via the evanescent field emanating from the rib waveguide. The 

evanescent field continues to feed the circular waveguide in a constructive interference 

pattern. The material under test is placed in the center of the waveguide and interacts with 

the evanescent filed in the circular waveguide. Next, the output signal from the ring-

resonator is measured. In this scenario, the effective refractive index change occurring due 

to the presence of the analyte on the ring’s surface is translated to a change in the output 

resonant frequency of the ring, such that [24], 

𝜆 = 2 𝜋 𝑛𝑒𝑓𝑓 𝑟/𝑚 (2.4) 

where 𝑟 is the radius of the ring. Obviously, in this case, the reading is done by measuring 

the shift in the new resonant frequency with respect to the default resonant frequency (air 

cladding). The default resonant frequency can be measured theoretically, and 

experimentally, before the introduction of the analyte.  

One of the main advantages of ring resonators is that unlike the aforementioned 

biosensor configurations, the sensitivity is determined by the number of revolutions 
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performed by the light within the ring, rather than by the actual length. So one can say that 

the sensitivity depends on the effective length of the ring. This phenomenon is modeled as 

follows [24], 

𝐿𝑒𝑓𝑓 = 𝑄𝜆 2𝜋𝑛𝑒𝑓𝑓⁄  (2.5) 

where 𝑄 is the quality factor, and  𝐿𝑒𝑓𝑓 is the effective length equal to the circumference 

multiplied by the number of revolutions. However, a general disadvantage of ring-

resonators is that they suffer from optical losses due to the continuous bending in their 

structure. This disadvantage becomes more and more pronounced as the radius of the ring 

is reduced, making ring resonators non-ideal candidates for miniaturization.  

 

Figure 2.6. The ring resonator waveguide 

2.3.2 Novel waveguides for biosensing applications 

The previous configurations all relied upon evanescent field detection. Perhaps, 

the main disadvantage of this type of detection is that the majority of the light wave is buried 

within the bulk waveguide, and not contributing to the waveguide’s sensitivity. In this 

section, we will discuss two recent photonic waveguides, namely the slot waveguide and 

the silicon nanowire optical waveguide, that allow the light to be confined in low-index 

regions, where the analyte may be inserted. 

2.3.2.1 Slot Waveguides 

One of the more recent additions to the photonics industry are slot waveguides. 

This structure is able to guide light in the low refractive index region. This provides an 

amazing advantage in biosensing applications, as it presents the opportunity for the fluid 
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to be guided along with the full wave, rather than with the evanescent wave, thus improving 

the sensitivity. This waveguide, proposed by [26], consists of a nanometer-wide low-

refractive-index, nL, region, surrounded by two ribs of high-refractive-index regions, nH (see 

Figure 2.7). According to Maxwell’s theory, the continuity of the normal component of the 

electric flux density must be maintained through the sudden contrast between the high and 

low refractive index regions. This results in a strong discontuity in the electric field, which 

consecutively results in a much higher field amplitude in the low-index region. Since the 

refractive index is proportional to the square of the permittivity, the ratio between the values 

of the normal electric field component at both sides of the wall is equal to the square of the 

index ratio across the wall. Because the dimensions of the slot are designed to be smaller 

than the decay length of the field, the electric field remains constricted in the high-index 

region. Unlike the previous sensing configurations, which relied on evanescent field 

detection, this unique waveguide can confine the field in the same area as the analyte, 

which greatly enhances the sensitivity.  

Several sensing configurations have been based on the slot waveguide, and 

showed enhanced sensitivity, such as the slot ring-resonator sensor [27], [28], and the slot 

directional coupler [29]. Rather than using a single slot, Sun et al. [30] used multiple slots 

to enhance sensitivity. The combined slots act as a single medium to accommodate single-

mode propagation. To convert the output of the slots to a measurable signal, three slots 

were arranged in a ring resonator configuration. The sensitivity was determined by 

measuring the slope of the output signal, which represented the phase shift against the 

refractive index change. A recent review on the biosensing configurations based on slot 

waveguide is presented in [31]. 

 

Figure 2.7. Modal profile of a slot waveguide 
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2.3.2.2 Arrays of Silicon Nanowire Optical Waveguides 

Silicon Nanowire Optical Waveguides, or SNOWs, consist of a waveguide that is 

comprised of an array of silicon nanowires. In this configuration, the light guiding region is 

confined to the “effective” high-index region. In other words, since the silicon nanowires 

are placed in a high proximity, and have a diameter in the nanometer range, the light views 

them as a conventional bulk waveguide with an “effectively” higher index than the 

environment. When this structure is immersed in liquid, the effective refractive index 

change is much higher, due to the presence of voids within the structure, thus improving 

the sensitivity. A challenge in designing those structures is ensuring optical confinement, 

despite the presence of “voids” in the waveguide. Optical confinement can be enhanced if 

the effective index of the rib waveguide is higher than that of the surrounding. A simple way 

to approximate the effective index, 𝑛𝑒𝑓𝑓 , is by using the average index method given by [2]: 

𝑛𝑒𝑓𝑓 = √
𝑛𝑆𝑖

2 × 𝐴𝑆𝑖 + 𝑛𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑
2 × 𝐴𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑

𝐴𝑆𝑖 + 𝐴𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑

, (2.6) 

where 𝑛𝑆𝑖 and 𝑛𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑 are refractive index of silicon and surrounding medium 

respectively, and 𝐴𝑆𝑖 and 𝐴𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑 represent the area of silicon and surrounding medium, 

respectively.  

The height of the silicon nanowires plays a key role in confining light in the vertical 

direction. In addition, the refractive index difference between the silicon oxide layer and the 

substrate permits the transverse guidance of the optical signal. [2] demonstrated that for a 

single nanowire with a diameter below 100nm, the amplitude of the electric field within the 

nanowire is almost constant, and there is nearly zero distortion in the phase of the field. 

This implies that an array of nanowires with small diameters would be efficient in confining 

light. However, these desirable properties are only achieved when the electric field is 

polarized along the length of the nanowires.  

SNOW has a great potential as a sensor because it provides a medium where the 

majority of the field can interact with the material being tested. Hence, the corresponding 

change mirrored in the effective refractive index would be enhanced. [32] illustrated this by 

creating a ring resonator sensor based on SNOW, where a conventional single-mode rib 

waveguide was used as a convenient coupling method to the nanowire-based ring 

resonator waveguide. The percentage change in the effective index of the SNOW based 

structure was shown to be about 4 times larger than that of the conventional bulk silicon 

based structure.  
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2.4 The FDTD Method 

In order to characterize a sensor or any optical system numerically, some 

computational method is needed. The FDTD method is a well-established computational 

analysis technique for modelling electromagnetic systems. Commercial software that is 

based on the FDTD method is employed throughout this dissertation. Therefore, it is 

necessary to discuss this method briefly. This numerical method was first proposed by Yee 

in 1966 [33]. It is generally used to solve the time-dependent Maxwell curl equations. The 

FDTD method falls under the umbrella of finite difference (FD) methods, which are methods 

that approximate the solution to differential equations. In FD methods, the differential 

equation is described using Taylor’s expansion. The simulation area is divided into a grid. 

In the case of a 1D problem, the simulation area can be envisioned as a line that is divided 

by a number of points; the spacing between each point is ℎ. For instance, a simple 1D 

problem could have a differential equation in the form of 𝑓′(𝑥) = 3𝑥. This equation can be 

rewritten as 𝑓′(𝑥) = (𝑓(𝑥 + ℎ) − 𝑓(𝑥))/ℎ, where ℎ is the step size.  By manipulating the 

equation algebraically, an approximate solution to the differential equation can be reached.  

 

Figure 2.8. Displacement of the electric and magnetic field vector components in a cubic unit cell of 
the Yee space lattice. 

To elaborate, consider a typical 3D computational domain. Figure 2.8 shows the 

electric field and magnetic field components in a 3D space, which is also known as the Yee 

grid. The Maxwell curl equations can be broken up to six equations. One of those equations 

is written as, 
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𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
=  −𝜇

𝜕𝐻𝑥

𝜕𝑡
 (2.7) 

Equation (2.7) may be discretized using FD method as follows, 

𝜕𝐸𝑧

𝜕𝑦
=  

𝐸𝑧
𝑛(𝑖, 𝑗 + 1/2, 𝑘) − 𝐸𝑧

𝑛(𝑖, 𝑗 − 1/2, 𝑘)

∆𝑦
   (2.8a) 

𝜕𝐸𝑦

𝜕𝑧
=  

𝐸𝑦
𝑛(𝑖, 𝑗, 𝑘 + 1/2) − 𝐸𝑦

𝑛(𝑖, 𝑗, 𝑘 − 1/2)

∆𝑧
   (2.8b) 

𝜕𝐻𝑥

𝜕𝑡
=  

𝐻𝑥
𝑛+1/2(𝑖, 𝑗, 𝑘) − 𝐻𝑥

𝑛−1/2(𝑖, 𝑗, 𝑘)

∆𝑡
   (2.8c) 

where 𝑛 is the time-step, and 𝑖, 𝑗 and 𝑘 are the space steps in the 𝑥, 𝑦 and 𝑧 

directions, respectively.  The remaining five equations are discretized in a similar manner. 

Next, the discretized form is substituted into Maxwell’s equations and solved [34]. As can 

be deduced from observing the above equations, the step size in space should be small 

enough so as to take structural changes into account. Also, the time step must be small 

enough in order to ensure computational stability [35].   
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Chapter 3: Bimodal Optical 

Biosensor Based on Silicon 

Nanowire Ridge Waveguide 

In this chapter, we propose a novel ultra-sensitive waveguide. Our main goals is 

to design a waveguide that is: a) highly sensitive to changes in the surrounding 

environment. b) impervious to temperature changes. c) easy to fabricate. d) compact. e) 

eligible for integration with microfluidics and electronics. Our waveguide is based on silicon 

nanowires, as they have the inherent ability of improving the sensitivity as they introduce 

voids to the otherwise bulky structure, as discussed in the previous chapter. Unlike the rib-

shaped nanowire structure proposed by [2], our nanowires are arranged in ridge-shaped 

envelope, which has several advantages over the rib-shaped envelope in terms of design 

flexibility, performance and manufacturability, as will be discussed in this chapter. We shall 

refer to our ridge-shaped nanowire waveguide as silicon nanowire ridge waveguide, or 

more simply as SNRW. The inherent sensitivity provided by the SNRW make it eligible for 

label-free sensing. The performance of SNRW is characterized by modal and FDTD 

simulations. Also, to highlight the distinctiveness of the SNRW, it is compared to 

evanescent and non-evanescent field sensors.  But in order to truly evaluate the SNRW as 

a sensor, we needed to use it as a building block in a sensing configuration. The sensing 

configuration we chose to use is the bimodal configuration. That choice was made primarily 

due to the compactness and simplicity of the bimodal interferometer, and other details that 

will be discussed in this chapter.  

3.1 Silicon Nanowire Ridge Waveguide (SNRW) 

The proposed SNRW is a waveguide that is comprised of an array of silicon 

nanowires on an insulator substrate. The basic principle of operation is as follows: when a 

sample is injected into the biosensor, the voids within the SNRW adopt the refractive index 

of the newly introduced analyte. Hence, the strong contribution of the analyte to the overall 

effective index will greatly enhance the sensitivity—this is where the significance of the 

nanowires to the sensing process lies.  
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On the other hand, the ridge shape is characterized by having a higher-thickness 

region at the center of the waveguide. This structure is particularly useful for a multitude of 

reasons. For starters, single-mode operation is mandatory for several sensing 

configurations, as is the case for the MZI, the ring-resonator, and the bimodal waveguide. 

Since the number of modes in the ridge waveguide is mainly decided by the dimensions of 

the central high-thickness region, the dimensions of the lower-thickness region are 

designed in a very flexible manner. For instance, they can be extended over the entire 

substrate, while still allowing the SNRW to single-mode operation. This design flexibility 

offers another advantage: large dimensions are usually considered a fabrication 

convenience as they do not require extensive fabrication techniques. Also, because the 

manufacture of nanowires typically relies on etching, the substrate is always in danger of 

being eroded. Hence, the design of nanowires that fully cover the substrate is desired. 

Besides the design flexibility and the fabrication convenience, the larger size the SNRW 

offers a third advantage that has to do with performance. The larger physical dimensions 

induce a larger optical mode, which in turn magnifies the area where the light and analyte 

interact, thus, improving the sensitivity. Moreover, the presence of the low-thickness region 

in the SNRW ensures that no evanescent-tail is being leaked, and thus, safeguards a more 

efficient use of the light power.  

3.2 Design Consideration for the SNRW 

The proposed structure is shown in Figure 3.1. The silicon nanowires are placed 

on top of a silicon dioxide (SiO2) substrate. The nanowire diameter and pitch were chosen 

to be 100nm. This diameter is small enough to guarantee optical confinement, but still large 

enough to avoid resorting to expensive manufacturing techniques such as e-beam 

lithography. The width of the lower-thickness region of the SNRW was chosen to be 10μm 

with a thickness of 1μm. These dimensions are large enough to facilitate the manufacturing 

process, and allow for design flexibility.  
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Figure 3.1. The SNRW structure. The nanowires are arranged in a ridge shape and placed on top 
of a silicon dioxide substrate. (a) Front view. (b) 3D view. 

The rib height, ℎ, and rib width, 𝑤, of the higher-thickness region, seen in Figure 

3.2(a), had to be chosen carefully to ensure single-mode operation, and to qualify as the 

main building element in the bimodal waveguide. For this reason, using Optiwave software, 

2D modal simulations were conducted on the SNRW in order to discover the 

thickness/width combinations that allow for single-mode operation. The simulation window 

was 15μm wide, and had a 5μm-thick cladding and a 3μm-thick substrate layer. The 

cladding was assumed to be air. The waveguide was excited at the optical transmission 

frequency at 1.55μm. At this frequency, silicon has a 3.45 refractive index, and SiO2 has a 

1.45 refractive index [36]. As [2] mentioned in their work, only the modes along the length 

of the nanowires (y-polarized modes) can propagate. For this reason, only y-polarized 

modes were excited. A 2D map, shown in Figure 3.2(b), shows a single-mode (shading) 

region and a multi-mode region (white background) for rib heights ranging from 0.5 to 1μm, 

and rib widths ranging from 0 to 3.5μm. Since the silicon nanowires create a lower effective-

index-region than the bulk silicon, they contrast less with the surrounding refractive index. 

This causes them to permit single-mode (see Figure 3.2(c)) operation for larger dimensions 

than bulk silicon. For instance, according to our simulations, the bulk silicon ridge 

waveguide cannot support single-mode operation for rib dimensions as small as 1.5 x 

1.8μm (expressed in 𝑤 ×  ℎ format). Conversely, the SNRW can support single-mode 

operations for dimensions as large as 3.25 x 1.8μm. This dimension flexibility provided by 

the SNRW is an extra-advantage that could facilitate the fabrication process. By 

reexamining Figure 3.2(b), it is clear that the SNRW fails as a single-mode waveguide in 

two scenario: a) when the height is too small that the entire waveguide is effectively seen 

as a wide rib nanowire waveguide. In this case, the first-order mode splits into two adjacent 

fields, as shown in Figure 3.2(d). b) When the height is too large; in this case, the first-

order mode splits vertically rather than horizontally, as shown in Figure 3.2(e). So, before 

we return to our initial objective in this sub-section, which is designing the rib dimensions 

for single-mode operation, we need to contemplate future design considerations. First, we 
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intend to use the SNRW as a building block for the bimodal interferometer, which uses a 

single-mode section, and a higher-thickness dual-mode section that produces vertically-

split modes such as the one shown in Figure 3.2(e). Therefore, we need to choose 

dimensions that can be easily elongated to support dual-mode operation. A second 

consideration is the fabrication convenience; since smaller dimensions usually rely on more 

complex and expensive fabrication technologies, we will choose the largest dimensions 

that allow for single-mode operation. A third and final design consideration is 

acknowledging that this 2D map is only applicable for vacuum surroundings. Once the 

SNRW starts to function as a sensor, it is possible for it to interact with materials with large 

refractive indices. This will reduce the contrast between the silicon nanowires and the 

cladding, which in turn will shrink the single-mode area in the 2D map. Therefore, it would 

be wise to choose dimensions that are not too close to the single/multi-mode interface in 

our map, so as to give further protection from potential violations against single-mode 

behavior that could occur due to the presence of high-index analytes. So as a trade-off 

between the second and third consideration, the rib width and rib height were chosen to be 

2μm and 800nm, respectively. 

 

Figure 3.2. (a) Width, w, and height, h, of the rib (higher-thickness region in the ridge waveguide). 
(b) 2D map showing single-mode vs. multi-mode operation of various dimensions of the rib 

waveguide. (c) fundamental mode of single-mode SNRW. (d) first-order mode of SNRW with small 
height. (e) first-order mode of SNRW with large height.  
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3.3  The Relative Sensitivity of the SNRW 

In order to test the viability of the proposed design, modal sensitivity simulations 

were performed. The response of the sensor was tested by measuring the induced 

effective index change when the refractive index of the cladding is varied from 1 to 1.6. 

The results were then compared to a typical bulk silicon ridge waveguide (BSRW). The 

dimensions of the BSRW were kept identical to those of the SNRW, and were found to 

maintain single-mode operation. Figure 3.3 shows the comparison between the two 

structures; the percentage effective-index-change is plotted against the change in the 

surrounding environment. The response of the SNRW to the change in the surrounding 

environment is around 170 times greater than that of the bulk silicon ridge.  

 

Figure 3.3. Percentage change of effective index for the SNRW and the BSRW as a response to 
the change in the surrounding environment. 

The above results were expected as the BSRW has a very small portion of the 

evanescent field interacting with the environment. On the other hand, a good portion the 

optical mode created by the SNRW is overlapping with the surroundings. Perhaps, it is 

somewhat unfair to compare the SNRW with an evanescent-field sensor. So in another 

effort to demonstrate the value of the SNRW, we compare it to two similar non-evanescent-

field sensor structures that are capable of guiding light in a low-index medium, along with 

the analyte. The first structure, shown in Figure 3.4(a), is a rib-shaped silicon nanowire 

waveguide, similar to the one proposed by [2]. We shall refer to this structure as ‘rib 
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nanowires.’ Initially, the dimensions of the rib nanowires where exactly the same as the 

high-thickness region of our SNRW (2 x 1.8μm). However, this dimension did not allow 

single-mode operation. Hence, the width of the nanowire section needed to be reduced to 

1.75μm. The second structure, shown in Figure 3.4(b), is a silicon-on-insulator (SOI) 

waveguide with some gratings on top, which we will refer to as ‘SOI gratings’. In order to 

maintain single-mode operation, the width of the gratings was designed to be equal to 

1.75μm, similar to the rib nanowires. The height of the waveguide, on the other hand, 

needed to be reduced, not only to guarantee single-mode operation, but also to allow some 

of the field to leak into the cladding. For this purpose, the new height was designed to be 

700nm (500nm for the bulk section and an additional 200nm for the gratings). Needless to 

say, the diameter of the nanowires as well as the gap between them for both structures 

was maintained at 100nm for fair comparison. Note that the SOI gratings is not meant to 

function as a grating coupler sensor [18], but simply as a light-guiding medium.  

 

 

Figure 3.4. (a) Rib nanowire waveguide. (b) SOI grating waveguide. (c) optical mode for rib 
nanowires waveguide. (d) optical mode for SOI grating waveguide. 

A simulation similar to the one conducted for the comparison between the BSRW 

and the SNRW was carried on; the results are shown in Figure 3.5. The SNRW is shown 
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to be far superior to the SOI gratings, with about 16 times as much sensitivity to changes 

in the surrounding environment. This performance could have been deduced from 

observing the SOI grating mode, shown in Figure 3.4(d). The majority of the mode is in the 

bulk, while only a small portion is present between the gratings, where it can interact better 

with the surrounding medium, or the “hypothetical” analyte. On the other hand, the rib 

nanowire waveguide shows a response to the refractive index change in the surrounding 

environment that is comparable to that of the SNRW, but just slightly smaller. However, 

that was to be expected as the mode shown in Figure 3.4(c), which depicts the rib nanowire 

mode, is also very comparable to the SNRW mode shown in Figure 3.2(c), except for the 

slight deformation in the SNRW mode caused by the ridge shape.   

 

Figure 3.5. Percentage change in effective index for a refractive index change of the surrounding-
environment for SNRW, rib nanowires, and SOI gratings. 

In order to test the detection limits of the SNRW, very small refractive index 

changes were introduced to the surrounding environment, ranging from 10-9 to 10-1. Figure 

3.6 shows the percentage effective index change corresponding to minute refractive index 

changes in the surrounding environment. It is evident that the percentage effective index 

change is one order higher than that of the corresponding refractive index change in the 

surrounding environment (e.g. for 10-6 change in the environment, there is a percentage 

effective index change in the order of 10-5). The smallest detectable change occurs for a 

10-8 change in the surrounding medium.  



Chapter 3. Bimodal Optical Biosensor Based on Silicon Nanowire Ridge Waveguide 
 

 

24 

 

Figure 3.6. Percentage change of effective index for the SNRW as a response to minute changes 
in the surrounding environment. 

3.4 Bimodal Interferometric Waveguide based on 

SNRW 

In this section, we test our design using the bimodal sensing configuration, similar 

to the one proposed in [15]. The main appeal for this waveguide is its simplicity. It does not 

require              y-junctions, or bends of any sort, as do popular sensing configurations, 

such as the MZI and the ring-resonator. These elements may introduce unnecessary 

manufacturing challenges, as well as optical bending losses. In general, resonance based 

sensors, such as the ring-resonator, are highly sensitive to fabrication imperfections, as 

well as temperature fluctuations due to the nature of the resonance effect itself. They also 

require some kind of temperature compensation mechanism to function properly [25]. On 

the other hand, interferometric devices are known to be less sensitive to such variations, 

which makes them more suitable for sensing application. While the output intensity of the 

bimodal waveguide is sensitive to temperature changes, its interference pattern does not 

depend on the intensity. This makes it superior to other interferometric devices, such as 

the MZI, which can produce false positives due to temperature fluctuations [14]. Also, the 

compact nature of this waveguide make it eligible for use as an on-chip sensor. It may be 

cascaded in order to allow the use of multiple sensing channels on a single chip, or to 

enhance the sensitivity—a feature not present in other popular sensing configurations.  

The SNRW-based bimodal interferometer is designed as follows: the single-mode 

section feature the same SNRW dimensions described in Section 3.2. However, the width 
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of the lower-thickness region was reduced from 10μm to 6μm in order to allow the 

waveguide to be more compact. As for the dual-mode section, the rib height was increased 

from 0.8μm to 1.5μm in order to allow the fundamental and the vertically-split first-order 

mode to co-exist. A modal simulation was conducted for the dual-mode section to verify 

the presence of these modes. The results are shown in Figure 3.7(a) and Figure 3.7(b), 

which show the fundamental and first-order mode, respectively. The length of both the 

single and dual-mode sections was chosen to be 5μm. To clarify the vision of the structure, 

the SNRW bimodal interferometer is shown in Figure 3.8. 

 

Figure 3.7. (a) Fundamental mode and (b) first-order mode of dual-mode section in the SNRW 
bimodal configuration. 

 

 

Figure 3.8. 3D SNRW bimodal waveguide. 
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3D FDTD simulations were conducted to test the performance of the SNRW as a 

sensor. The cladding thickness was 5μm, while the substrate (SiO2) thickness was 3μm. 

The width of the nanowire section was 6μm. PML boundaries were invoked to minimize 

reflections from the boundaries. A mesh of 0.02μm was applied to the x and z directions. 

A mesh of 0.4 was applied to the y-direction. Two monitors were employed: one XZ monitor 

to observe the propagation, and one XY monitor at the output to observe the transmitted 

power spectrum. The simulation time was 8000 time steps with a time step of about 10-7. 

In order to test the sensitivity, it was assumed that the analyte is filling the entire cladding. 

The refractive index of the cladding was varied from 1 to 1.6 with a 0.1 resolution—similar 

to what we did in the modal simulations. The spectrum of the normalized transmitted power 

for each cladding is shown in Figure 3.10. The propagation profile of the real part of the y-

polarized electric-field component, 𝐸𝑦, in the z-direction is shown in Figure 3.9.  

 

Figure 3.9. Propagation profile of the y-component of the electric field through a 10μm-long SNRW 
bimodal sensor (top view) 

 

Figure 3.10. Normalized transmitted power spectrum for different refractive index surroundings 
(nsurr) with rib width = 2μm. 
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As can be seen from Figure 3.9, the optical signal is confined to the center of the 

SNRW for the 10μm-length of the bimodal waveguide. Figure 3.10 shows that for a 0.1 

refractive index change in the surrounding medium, the normalized transmission power 

spectrum is red-shifted about 30nm. If we define the sensitivity as a the ratio between the 

spectral shift of the normalized transmission and the refractive index change, then the 

SNRW bimodal sensor would give an average sensitivity of 250nm/RIU. This is a 

remarkable sensitivity considering the small footprint of the device (6 x 10μm). Previously 

reported sensitivities based on structures that allow light-confinement in the low-index 

region include a slot-based ring-resonator sensor with a 298nm/RIU sensitivity and a 10 x 

13μm footprint [28], and a silicon-nanowire ring-resonator with a sensitivity of 335nm/RIU 

and a footprint of approximately 10 x 10μm [32]. Hence, if we define a sensitivity-to-footprint 

ratio (SFR) as a performance factor for optical sensors, the SNRW bimodal sensor would 

have the highest SFR at 4.167/mmRIU, whereas the silicon-nanowire and the slot ring-

resonators would have a much smaller SFR at 3.35/mmRIU and 2.29/mmRIU, respectively. 

So ultimately, even though the SNRW employs a larger size as a single-element, once it 

is integrated with the bimodal waveguide, the entire configuration is relatively small. We 

attempted to slightly reduce the SNRW rib width from 2μm to 1.5μm. The idea is to allow 

the mode to be squeezed in more tightly, which would cause the electric fields to intensify 

and react more strongly to changes in the surrounding environment. By observing the 

transmission power spectra in Figure 3.11, the average sensitivity is increased to 

300nm/RIU for the same (6 x 10μm) footprint; this boosts the SFR to 5/mmRIU. 

Furthermore, the performance of ring-resonator-based structures in [28], [32] are limited 

by temperature fluctuations that can cause them to produce false positives, and may 

require a thermo-electric cooler to function properly [37]. 
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Figure 3.11. Normalized transmitted power spectrum for different refractive index surroundings 
(nsurr) with rib width = 1.5μm. 
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Chapter 4: Overview on Mid-

Infrared Plasmonics 

4.1 Plasmonics 

Optical devices are popular in several everyday applications such as optical 

communications, and field-specific applications such optical tomography; the impact and 

potential of photonic applications is unquestionably wide and varied. However, this 

potential is limited by the laws of diffraction, which make it impossible for light to be confined 

within structures that have dimensions that are smaller than the wavelength of the incident 

light. These structures are otherwise known as “subwavelength structures.” Manipulating 

light on a subwavelength scale can yet be achieved by using a subwavelength structure 

that has a plasma resonance close to that of the incoming light. Hence, the photons would 

couple to the free-electron plasma in the material, creating subwavelength confinement. 

This is easily achieved using conductive materials, most notably, noble metals. This 

behavior is often simply referred to as “plasmonics.” 

 

4.1.1 Surface Plasmon Polaritons 

When an electromagnetic field shines upon a material occupying the negative half-

space (z<0) that possesses a dielectric constant, 𝜀𝑚, with the opposite sign of the 

surrounding media, 𝜀𝑑, occupying the positive have space (z>0) (e.g. a metal with a 

dielectric surrounding), the free carriers within that material start to oscillate near the 

surface, forming a longitudinal wave. The cloud of electrons that get excited from the 

incident wave can be thought of as “plasmons”—in reference to electron plasma. The fact 

that the electron wave is confined to the surface, inspired the term, “surface plasmons.” 

The charges on this cloud are alternating at the metal/dielectric interface, as illustrated by 

Figure 4.1 (a); this polarization of charges inspired the name “polaritons.” Hence, to put it 

simply, “surface plasmon polaritons,” or SPPs, are oscillating charges that are localized at 

the metal/dielectric interface.  The electromagnetic field associated with the electron wave 

has a maximum concentration at the interface and decays evanescently into the 

surrounding media, as shown in Figure 4.1 (b).  
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Figure 4.1. (a) Propagation of surface plasmon polaritons on a metal/dielectric interface, illustrating 
the electric field lines and charge polarization on the surface. (b) Modal profile of surface plasmons. 

Since metal is a highly lossy material in nature, the SPP wave tends to decay 

rapidly within the metal while becoming more prominent in the dielectric. In order for SPPs 

to propagate, the resonance condition must be satisfied; this condition entails that the 

frequency of the incident wave be equal to the natural frequency of the electrons. It is 

instructive to look at the modal properties of this plasmonic wave to better understand its 

characteristics. This mode is a TM mode that can be obtained by solving Maxwell’s 

equations and is described by the following electric and magnetic field components, 

𝑓𝑜𝑟 𝑧 > 0 {
𝐸𝑧(𝑧) =  −𝐴1

𝛽

𝜔𝜀0𝜀𝑑

𝑒𝑖𝛽𝑥𝑒−𝑘2,𝑧

𝐻𝑦(𝑧) =  𝐴2𝑒𝑖𝛽𝑥𝑒−𝑘2,𝑧

 (4.1a) 

𝑓𝑜𝑟 𝑧 < 0 {
𝐸𝑧(𝑧) =  −𝐴1

𝛽

𝜔𝜀0𝜀𝑚

𝑒𝑖𝛽𝑥𝑒𝑘1,𝑧

𝐻𝑦(𝑧) =  𝐴1𝑒𝑖𝛽𝑥𝑒𝑘1,𝑧

 (4.1b) 

where  𝑘𝑖,𝑧 (where 𝑖 = 1, 2, 3, …) is the wavevector component perpendicular to the 

metal/dielectric interface, 𝜔 is the angular frequency, and 𝛽 is the propagation constant, 

which is the wavevector component in the direction of propagation. Maxwell’s boundary 

conditions dictate that 𝐻𝑦(𝑧)  and 𝜀𝑖𝐸𝑧(𝑧) be continuous along the z direction, this yields 

the relations, 

𝐴1 =  𝐴2 (4.2a) 
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𝑘2

𝑘1

=  −
𝜀𝑚

𝜀𝑑

 (4.2b) 

In order for the TM mode wave equation (
𝜕2𝐻𝑦

𝜕𝑧2 + (𝑘0
2𝜀 − 𝛽2)𝐻𝑦

2 =  0, where 𝑘0 is 

free-space wavevector and is defined as 𝑘0 =
2𝜋

𝜆
=

𝜔

𝑐
, where 𝜆 is the wavelength and 𝑐 is 

the speed of light) to be fulfilled, the wavevectors must yield,  

𝑘1
2 = 𝛽2 − 𝑘0

2𝜀𝑑 (4.3a) 

𝑘2
2 = 𝛽2 − 𝑘0

2𝜀𝑚 (4.3b) 

By substituting (4.3a) and (4.3b) into (4.2b), we arrive at the expression for the propagation 

constant: 

𝛽 = 𝑘0√
𝜀𝑑𝜀𝑚

𝜀𝑑 + 𝜀𝑚

 (4.4) 

The above relation describes the dispersive property of single-interface propagating SPPs. 

𝛽 must be positive for the mode to propagate; therefore, it can be deduced that since the 

nature of metals mandates that 𝜀𝑚 < 0, the plasmonic mode will survive only if 𝜀𝑑 < |𝜀𝑚|. 

Also, equation (4.4) notes that the dispersion is maximized when 𝜀𝑚 =  −𝜀𝑑; this denotes 

the location of the plasma resonance [38]. 

4.1.2 Drude Model 

The Drude model is an established way to describe the interaction between the 

light and the metal quantitatively.  First, we start by describing the motion of free electron 

plasma excited by an electric field, 𝐸, using the motion equation, 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑚𝛾

𝑑𝑥

𝑑𝑡
=  − 𝑞𝐸, (4.1) 

where 𝑞 is the electron charge, 𝑚 is the optical effective mass of the electrons, and 𝛾 is the 

collision frequency which describes the damping that occurs due to the oscillations of 

electrons, where 𝛾 =
1

𝜏
, and 𝜏 describes the relaxation time of the electron plasma. Note 

that the electron-electron interactions as well as the details of lattice structure are neglected 

in this scenario, and it is assumed that 𝑚 takes some lattice characteristics into account. 

We shall describe 𝑚 as the effective index and denote it as 𝑚∗. By assuming that 𝐸(𝑡) =
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𝐸0 𝑒
−𝑖𝜔𝑡 is a periodic wave with angular frequency, 𝜔, then the solution to the above 

differential equation would be in the form of 𝑥(𝑡) = 𝐴𝑒−𝑖𝜔𝑡, where,  

 

𝐴 =
𝑞

𝑚∗(𝜔2 + 𝑖𝛤𝜔)
, (4.2) 

By incorporating the electron displacement into the macroscopic polarization, 𝑃 = −𝑛𝑞𝑥, 

where n is the electron density, it will yield, 

𝑃 =  −
𝑛𝑞2

𝑚∗(𝜔2 + 𝑖𝛤𝜔)
𝐸 (4.3) 

 

Thus, the displacement field, 𝐷 =  𝜀0𝐸 + 𝑃, can be described by, 

𝐷 =  𝜀0  [1 −  
𝜔𝑝

2

(𝜔2 + 𝑖𝛤𝜔)
], (4.4) 

 

where 𝜔𝑝 =  𝑞√
𝑛

𝜀0𝑚∗  is the plasma frequency of the free electron plasma. Therefore, the 

dielectric function of the free electron plasma can be written as, 

𝜀(𝜔) =  1 − 
𝜔𝑝

2

(𝜔2 + 𝑖𝛤𝜔)
 (4.5) 

Note that we arrive at this relation while assuming an ideal free-electron metal, where 𝜀 

tends to 1 for higher frequencies (𝜔 > 𝜔𝑝). However, in practice, there is extra polarization 

due to the positive ions in the in the material; hence, the total polarization can be described 

by adding the term 𝑃∞ =  𝜀0(𝜀∞ − 1)𝐸 to equation 4.3. Thus, equation 4.5 can be modified 

to, 

𝜀(𝜔) =  𝜀∞ − 
𝜔𝑝

2

(𝜔2 + 𝑖𝛤𝜔)
 (4.6) 

The above relationship is known as the Drude permittivity model. This model will be used 

in the following chapter to describe our materials [38].  
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4.1.3 Surface Plasmons Applications 

4.1.3.1 Slow and Backwards Light 

The inherent speed of light is an attractive solution to transport problems in 

general, however, it comes with an unattractive drawback: the inability to control optical 

signals. Optical computer networks are becoming an increasingly hot trend. Multiple efforts 

are put into building all-optical systems to eliminate the need for optical-electronic 

conversion systems, which tend to be inefficient [38]-[42]. Hence, there is an increasing 

need for reliable optical switches [43]. This is where slow light enters the picture. The ability 

to tune the speed of light will enhance the amount of control imposed on the light path, 

which in turn will enable building faster, more reliable systems that use less power. In 

addition, slow light can elongate the light-matter interaction time and can hence be used to 

enhance sensors [44].  

When light propagates into a material, its speed is said to be reduced, as the phase 

velocity, 𝑣𝑝 = 𝑐 𝑛⁄ = 𝜔 𝛽⁄ , is reduced. However, technically speaking, the speed of light is 

not defined by the phase velocity, but rather the group velocity, as it takes into account the 

velocity of all the frequency components within the light pulse [45]. The group velocity of 

light is defined as 𝑣𝑔 = 𝑑𝜔 𝑑𝛽⁄ , which is the rate of change of the phase velocity. It can be 

deduced then that the group velocity depends on the change of refractive index for a given 

range of frequencies, rather than the value of the refractive index. In other words, the 

dispersion characteristic of the material are taken into account, and play a huge role in 

determining the overall light speed. For instance, in order for light to be slowed down, there 

needs to be a large variation in the refractive index for a small range of frequencies 

(∆𝑛 ∆𝜆⁄  ~  ↑↑); this is the very definition of a highly dispersive material.  

Plasmonic materials operating near their resonance tend to be highly dispersive, 

which makes them ideal contenders for implementing slow light. In addition, the effective 

refractive indices of plasmonic materials tend to be particularly high near the resonance 

(recall equation 4.4), which implies the presence of a significantly small phase velocity. To 

explain this in an intuitive manner, it can be stated that SPPs can be thought of as electrons 

coupled to electromagnetic waves. Hence, SPPs can be regarded as heavier particles than 

photons, and so it is sensible that the electromagnetic wave associated with them is a 

slower one.  
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The group velocity of light in plasmonic devices can be tuned using several 

mechanisms, such as controlling the device’s dimensions [46] which allows for a wide 

range of frequencies to excite slow waves. More so, it has been proved numerically that a 

metal-insulator-metal (MIM) plasmonic waveguide is capable of not only slowing light, but 

of stopping light; this occurs when the power flow of the supported plasmonic mode (𝑛𝑒𝑓𝑓 >

√𝜀𝑑) is going in the opposite direction as that of an identical the supported photonic mode 

(𝑛𝑒𝑓𝑓 < √𝜀𝑑) [47].  

The phenomenon where the optical power is flowing in the opposite direction as 

the phase velocity is referred to as backwards propagation, or backwards light. In this 

scenario, the plasmonic material is operated in a spectral region that possesses a negative 

slope. Hence, applications relying on backwards waves are sometimes referred to as 

negative-index or negative refraction applications [47]. Backwards light can be used in 

metamaterial-like applications [49], such as perfect lenses that provide an unlimited 

resolution [50] and as cloaking devices [50], [52].    

4.1.3.2 Extraordinary Transmission 

In 1944, Beth provided a formula that describes transmission through a circular 

subwavelength hole in a metal plane by solving Maxwell’s equations [53]; he showed that 

the normalized transmission is proportional to (𝑎 𝜆⁄ )4 where 𝑎 is the diameter of the hole; 

this contradicted Kirchhoff’s method, which showed an (𝑎 𝜆⁄ )2 dependency. Hence, it can 

be deduced from Beth’s theory that subwavelength holes are not an optimum medium for 

transmission. Therefore, it was surprising in 1998, when Ebbesen demonstrated that by 

using a subwavelength metallic cylindrical cavity, it is possible to get normalized 

transmission that is greater than unity [54]. This phenomenon has been referred to as 

extraordinary transmission (EOT). Ebbesen has attributed this unusual behavior to the 

presence of SPPs; this conclusion was reached on the premise that: 1) EOT did not exist 

for Germanium slits—marking the importance of metallic cavities. 2) The transmission 

spectra of metallic films showed a dependency on the angle of incidence, which is similar 

to the behavior of light that couples to SPPs through diffraction gratings [55]. In attempts 

to understand this phenomenon, it was discovered that the shape of the hole is not relevant, 

whereas the size of the hole is [56]. EOT is thought to occur due to the constructive 

coupling of two SP modes [56], [57]. In addition, EOT may be enhanced by using ENZ 

materials, or materials that have an almost zero permittivity [58], [58]. [60] demonstrated 

numerically the light in ENZ materials propagates along a thin shell, which aids in 

enhancing transmission. The unique properties of EOT allows it to be utilized in 
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applications such as subwavelength lithography, near-field scanning microscopy, optical 

modulators, and wavelength-tunable filters [54], [56]-[57].   

4.1.3.3 Plasmonic Sensors 

Being surface waves with decent evanescent fields, SPPs are an intuitive solution 

to surface sensing techniques, where the material under test is placed directly on the 

surface of the optical sensor. A surface plasmon sensor is essentially a transducer, which 

essentially translates changes in a material of interest into refractive index changes.  The 

sensor consists of a lasing device, an optical structure where the SPPs are interrogated, 

and an electronic read-out circuit to decipher the result of the SPP interrogation [61]. 

Certain characteristics of the sensor, such as sensitivity and stability, depend upon the 

properties of the transducer material, as well as its structure. 

Because a good portion of the SPP mode is decaying into the lossy metal, the 

SPPs are not expected to propagate for long distances. For this reason, the SPP 

interrogation is performed simultaneously with the coupling of the incident light to the 

plasmonic waveguide. The dispersive nature of SPPs implies that the momentum of an 

SPP at any given frequency would be larger than the momentum of a free-space photon 

(recall equation 4.4, where 𝛽 > 𝑘0); hence, momentum matching mechanisms are needed 

to couple light from free-space to plasmonics. There are two momentum matching main 

mechanisms: prism coupling and diffraction grating coupling [61], [62]. 

In prism coupling, the plasmonic material is sandwiched between air (or whatever 

surrounding media) and another dielectric material with a dielectric constant greater than 

that of the surrounding media. The dielectric material will exhibit the form of a prism. In this 

case, after the light is totally internally reflected within the prism, the in-plane momentum 

will be modified to 𝑘0𝑥 =  √𝜀 𝑘0𝑠𝑖𝑛𝜃, where 𝜀 is the prism permittivity. Thus, the momentum 

would have reached a value high enough to excite the surface plasmons [38]. 

The most appropriate configuration for sensing application is the Kretschmann 

configuration shown in Figure 4.2. The light is directed towards the prism, and then it is 

reflected within the prism, where the evanescent part of the field tunnels through the thin 

metal layer. The evanescent field then interacts with the analyte, or the material under test. 

Some of the detection methods that have been used with this configuration include 

measurement of resonant angle of incidence [63], measurement of the resonant 

wavelength of the incident wave [64], and measurement of the intensity of the reflected 

light wave [65].  
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Figure 4.2. The Kretschmann configuration 

Another way to resolve the momentum mismatch problem is by introducing 

periodic gratings to the surface as can be seen in Figure 2.5 (See Chapter 2, Section 

2.3.2.3). The incident wave will be reflected away from the surface at several angles, which 

will modify the in-plane momentum to be equal to 𝑘0𝑥  =  k sin θ ±  mΛ, where 𝑚 is an 

integer and 𝛬 is the periodicity, which is equal to 2𝜋 𝑎⁄ , where 𝑎 is the lattice constant of 

the gratings. Thus, 𝑎, 𝑚 and θ, need to be adjusted to equate the in-plane momentum of 

the incident wave to the momentum of the surface plasmon wave. Some of the grating-

based sensors work on measuring the light intensity variations at surface plasmon 

resonance [66]. Of these, a biosensor using gold gratings to measure biomolecular 

interaction in aqueous media has been reported [67].  

4.1.3.4 Nanoparticles 

Plasmonic nanoparticles are conductive spheres with dimensions smaller than that 

of the wavelength. In 1908, Mie solved Maxwell’s equations to reveal the extinction 

(scattering + absorption) properties of such particles [68], [69]. Nanoparticles are 

remarkable for having scattering cross-sections that are much larger than their diameter. 

Because of their attractive radiation properties, nanoparticles can be used as 

nanoantennas [70], [71], which are commonly used as near-field imaging devices [72]-[75]. 

Aside from imaging, nanoantennas based on nanoparticles can be used as therapeutic 

agents [75], [76].  

Nanoparticles are frequently utilized for chemical and biological sensing 

applications [77], [78]. They are inherently sensitive as their SPP radiation surpasses their 

physical dimensions, which allows for a large evanescent field to overlap and characterize 

the surrounding medium. Generally, the sensitivity of a nanoparticle, or a nanorod—an 
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elongated nanoparticle—is defined as a shift in the resonance frequency of the scattering 

or absorption cross-section due to changes occurring in the surrounding environment. Also, 

the sensitivity of nanoparticles, or nanorods, is directly proportional to their aspect ratio 

[79]. Furthermore, the aforementioned strong sensitivity, as well as the low toxicity of 

metals [80] has prompted biophysicists to use nanoparticles as optical labels [75], [80], and 

[81]. The nanoparticle is injected into a living cell of interest, and can then be easily tracked 

by its strong scattering field.  

 

4.2 The Mid-Infrared (Mid-IR) 

Most of the research work done in the area of plasmonics has been centered on 

the visible and NIR spectral range, as these regions guarantee strong localization of SPP 

modes of common metals, which is necessary for several nanophotonic applications. 

Lately, though, there has been an increased level of interest in creating plasmonic 

structures for mid-IR applications. In this section, we mention some of the applications and 

merits of working in the mid-IR region. We also discuss the means by which applying 

plasmonics to the mid-IR can be made possible. 

4.2.1 Mid-IR Applications 

Generally, the mid-IR range is not strictly defined, but it appears that most mid-IR 

applications lie within the 2 to 20μm range. The appeal of the mid-IR region is chiefly due 

to the fact that it contains the absorption resonances of many molecules of interest, such 

as ammonia, carbon monoxide, methane and acetone. Each of these molecules has a 

unique spectral pattern that is considered to be a “molecular fingerprint.”  These molecules 

are very diverse and prove to be critical in a variety of sensing applications ranging from 

chemical and biological sensing applications [83] to industrial sensing applications, such 

as food composition and analysis [84]. In addition, the mid-IR can be utilized for 

applications in environmental monitoring, as the absorption bands for most gases tend to 

lie in this spectral area [83], [85], [86] and [87].   Another feature unique to the mid-IR is 

that it contains hot body radiations. Thermal emissions are characterized by emissivity, 

where the peak emissivity for a perfect blackbody in temperatures ranging from 200 to 

1400K is located in the mid-IR [87]. Moreover, the mid-IR hosts atmospheric transparency 

windows, particularly, the 3-5μm and the 8-13μm transmission windows [88], which can be 

used as band filters for thermal detection and imaging applications. This feature nominates 

the mid-IR for security related applications such as countermeasures against heat-seeking 

missiles [89], [89] and trace gas detection [91], [92]. A great advantage for working in the 
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mid-IR is that semiconductor electronics are transparent in this range, which may facilitate 

the integration of electronic and plasmonic components. This may pave the way for 

creating true on-chip optoelectronic devices [87].  

In spite of its numerous benefits, the mid-IR region only started gaining attention 

somewhat recently, for the practical utilization of this range has been quite challenging. 

This is mainly due to the fact that an effective mid-IR laser has not been introduced until 

1994 [93] when the quantum cascade laser was invented [93]-[95]. Additionally, low-noise 

detectors were unavailable until the advent of quantum-well infrared detectors [96]-[101].   

4.2.2 Conventional Plasmonics at the Mid-IR 

Since the real part of the permittivity of common metals has a very large negative 

value at the mid-IR, the electric field to possess a small penetration depth within the metal. 

The problem with this scenario is that the majority of the field is located in the cladding, 

which essentially means that the SPP is poorly confined. To elaborate, the effective 

refractive index of the SPP mode, 𝑛𝑆𝑃𝑃, for common metals in mid-IR becomes comparable 

to the dielectric permittivity of the cladding. This causes the out-of-plane wavevector, 𝜅, 

which describes the rate of decay in the dielectric, to be very small, indicating the presence 

of poorly confined waves.  This relation is shown in equation (4.7) [87], [102]. 

𝜅 =  𝑘0√𝑛𝑆𝑃𝑃
2 − 𝜀𝑑 (4.7) 

Confinement is enhanced when 𝑛𝑆𝑃𝑃 ≫  𝜀𝑑; this is satisfied near the plasma resonance for 

metals, which lies in the visible and NIR range. This makes traditional plasmonic devices 

unpractical for applications that require high field localization such as sensing and on-chip 

transmission. 

4.2.3 Designer Plasmonics 

Due to the poor confinement of conventional plasmonic materials at the mid-IR, 

several directions have been taken in order to enhance the SPP localization in this range, 

and to create mid-IR plasmonic structures that can compete and even excel over the 

traditional NIR plasmonic structures. Amongst the approaches to realize this is by creating 

“spoof” SPPs [103]. This is generally done by introducing subwavelength corrugations to a 

perfect conductor; the incident wave excites some modes within each of the corrugations, 

with the fundamental mode being the most dominant. The multiple corrugations create a 

lossy effective medium, which essentially reduces the group velocity of light, hence shifting 

the dispersion curve towards the longer wavelengths. The new plasma resonance of the 
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structure will be determined by the cut-off frequency of the waveguide mode [87], [102], 

and [103]. The same scenario can be applied to metals, where the interaction of spoof 

SPPs and real SPPs will cause the plasma frequency of the metal to be reduced [103].   

Another means to induce plasmonics at the mid-IR is through the use of highly 

doped semiconductors [97]; this will be the focus of our work. The idea is very simple: by 

increasing the carrier count of the semiconductor, it will start to behave as a metal. 

Furthermore, the concentration of carriers will determine the plasma frequency of the “new” 

semiconductor metal. This is easily explained by the relation,  𝜔𝑝 =  𝑞√𝑛 𝜀0𝑚∗⁄ , presented 

in section 4.1.2. For a doped semiconductor material, the plasma resonance will be 

described as, 

𝜔𝑝 =  𝑞√
𝑁𝑑

𝜀0𝑚∗
 (4.8) 

where 𝑁𝑑 is the doping concentration in cm-3. Hence, plasma resonance tunability can be 

achieved through varying the doping concentration. Traditional semiconductors such as 

silicon [104] and germanium [105] were suggested to work as designer plasmonic 

materials.  Using a semiconductor to induce plasmonic characteristics is recommended for 

several reasons. Semiconductors, in general, have smoother surfaces, as well as higher 

motilities, in comparison with metals, which causes them to suffer from less scattering 

losses [106]. In addition to this, semiconductors are much easier to handle in terms of 

nanofabrication. 

We choose to focus on studying the plasmonic properties of doped silicon, seeing 

as silicon is the industry standard, and is the most established and understood between 

the two. The CMOS-compatibility of silicon is a great advantage, as it can aid in creating 

inexpensive devices that are eligible for batch fabrication. Moreover, these devices will also 

have the potential of bridging the gap between electronic devices and plasmonic devices 

and would allow for true chip-scale integration [107]. Such integration could mean smaller, 

faster, and cheaper devices. 
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Chapter 5: Mid-IR Doped Silicon 

Plasmonics 

By now, it is clear that merging the unique capabilities of plasmonic behavior with 

the fruitful mid-IR region, will open the door for many new applications. In this chapter, we 

inspect the capabilities of doped silicon as a plasmonic waveguide in the mid-IR spectral 

region, specifically the 2.5-12μm range. We start by constructing the material models that 

will be used in our simulations. Then in order to understand the spectral properties of doped 

silicon in the mid-IR, we study the dispersion characteristics of several structures, such as 

a slot structure, a rectangular-shell structure, and a silicon-insulator-silicon (SIS) structure. 

All these structures are capable of highly confining the light in the low-index-region, making 

them suitable for sensing applications, which are much sought-after in the mid-IR region. 

For this reason, we study the potential for sensitivity for several of our structures. We also 

study the sensing capabilities of a nanodisk, which unlike previous structures, relies on 

localized SPPs rather than propagating ones. Furthermore, we test our waveguide’s ability 

for inducing slow light.  

5.1 Material Modelling 

5.1.1 Determining the Doping Concentration 

Our main target is to tune the plasma resonance of doped silicon to a particular 

frequency of in the mid-IR region, and for that we need to find out the required doping 

concentration. We start by constructing a material model based on the Drude model for 

permittivity (Section 4.1.2, equation (4.6)). To obtain the parameters for our Drude model, 

we start by making the common assumption that 𝜀∞ is equal to the silicon permittivity. 

Given the targeted frequency (𝜔), the plasma frequency (𝜔𝑝) can be obtained by assuming 

that 𝛤 ≪ 𝜔; from there, (4.6) can be approximated to 𝜀𝑚(𝜔) − 𝜀∞ =  𝜔𝑝
2/𝜔2. The downfall 

of this approach is that the condition for the collision frequency, 𝛤 ≪ 𝜔, must be satisfied. 

The collision frequency can be highly variable since it is dependent on the mobility, which 

in turn is affected by a host of factors such as the choice of dopant(s), the operating 

temperature and the intensity of the incident field [108]. However, for simulation purposes 

that do not require a propagation constant, it is ok for it to be neglected. In general, it is 
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best to use an iterative algorithm to obtain the values for the plasma frequency and the 

collision frequency. This is mandatory when the value of the desired collision frequency is 

comparable to that of the operating frequency. Once the desired plasma frequency is 

obtained, the required doping concentration can be calculated from (4.8).  

5.1.2 Relationship between Doping Concentration and Plasma 

Resonance 

We examine the effect of varying the doping concentration on the modal effective 

index of a simple plasmonic slot waveguide. The generic structure of our slot waveguide 

as well as the mode are shown in Figure 5.1. The simulation was done using Lumerical 

software; PML boundaries are used and a mesh size of 0.1nm is employed. These 

parameters are used for modal simulations throughout Sections 5.1, 5.2 and 5.3. The 

doping concentration is varied from 1 × 1015𝑐𝑚−3 to 5 × 1020𝑐𝑚−3. For each doping 

concentration, the plasma frequency is calculated using (4.8). Then, by assuming that the 

doping is done with phosphorus, the mobility may be computed using the tool provided by 

[109].  

 

Figure 5.1. Slot structure; inset shows slot mode with gap width, 𝑊𝑔𝑎𝑝, rib width, 𝑊𝑟𝑖𝑏, and height, 

𝐻. 

 

Figure 5.2. Doping concentration vs. modal effective index for 𝜆 = 3μm, 5μm and 10μm for a slot 

waveguide with 𝑊𝑔𝑎𝑝 =  5nm and 𝑊𝑟𝑖𝑏 = 50nm. 
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Figure 5.3.  Doping concentration vs. modal effective index for 𝜆 = 3μm, 5μm and 10μm for a slot 

waveguide with a 𝑊𝑔𝑎𝑝 = 100nm and 𝑊𝑟𝑖𝑏 =  50nm. 

Accordingly, the damping frequency is computed using Г =  𝑞 𝑚∗𝜇⁄  . Two slot 

dimensions are studied. The first slot has a rib width of 50nm and an extremely small gap 

width at 5nm; the modal effective indices for different doping levels are depicted in Figure 

5.2. The wavelengths are fixed at 3μm, 5μm, and 10μm. The same scenario is applied for 

the second slot, which has the same rib width, but a much larger gap width at 100nm. The 

results for this slot are shown in Figure 5.3. 

It is clear that for each wavelength, the effective index tends to shoot for a certain 

frequency. The gap size has no bearing on the location of the effective index peak, but a 

smaller gap size seems to generally correspond to a higher effective refractive index, 

indicating higher confinement. A high effective refractive index implies not only optical 

confinement, but also a proximity to the plasma resonance of the material. For higher 

wavelengths, plasma resonance is achieved at lower doping concentrations; this can be 

deduced from (4.8). To understand this phenomenon better, let us take a closer look at the 

10μm curve in Figure 5.3. By observing the 1D and 2D modes at various doping 

concentrations, as shown in Table 5.1, it becomes clear that by increasing the doping, the 

optical confinement is enhanced. Note that the height of the waveguides was set to 300nm 

for the 2D modes. The optical confinement factor (OCF) is defined as, 

𝑂𝐶𝐹 =  
∫ |𝐸|2𝑤/2

−𝑤/2
𝑑𝑥

∫ |𝐸|2∞

−∞
𝑑𝑥

 (5.1) 

where 𝐸 is the electric field of the 1D mode, and 𝑤 is the gap width. The optical confinement 

for each doping concentration is shown in Table 5.1. 
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Table 5.1. Optical confinement factors (OCFs) for different doping concentrations and the 

associated modes. 

𝑁𝑑  (cm-3) 𝑂𝐶𝐹 1D Mode 2D Mode 

0 (Si) 0.49 

  

2  x 1019 0.57 

  

4  x 1019 0.61 

  

 

 

6  x 1019 

 

 

 

 

0.75 
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Table 5.1 (Contd.) 

𝑁𝑑  (cm-3) 𝑂𝐶𝐹 1D Mode 2D Mode 

8  x 1019 0.83 

  

2.1  x 1020 0.94 

  

3.6  x 1020 0.96 

  

5  x 1020 0.97 
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When the doping is increased, the mode appears to be transitioning from an unconfined 

state to a confined one. At 𝑁𝑑  = 6.00 x 1019cm-3, the plasmonic condition (𝜔 < 𝜔𝑝) appears 

to have been achieved, and the mode appears to be localized. The higher doping 

concentrations have higher OCFs, indicating that they satisfy the plasmonic condition for 

the 10μm wavelength. Higher concentrations also tend to have a lower effective index, as 

they are farther away from the plasma resonance. 

5.1.3 Material Modeling 

To study the dispersion characteristics of highly doped silicon in the mid-IR region, 

we constructed three material models with resonances in the 2 - 10μm range. First, we 

were curious as to how much we can reduce the resonant plasma wavelength of doped 

silicon. For this purpose, we needed to use a doping concentration that is extremely high, 

yet feasible. So for our first material, we assumed that 𝑁𝑑 ≈ 5 x 1020cm-3; the plasma 

frequency and the collision frequency is obtained as explained previously. For simplicity 

purposes, we shall refer to this material as material A. The propagation constant, 𝛽, is 

maximized when the metal permittivity is equal to the negative of the dielectric permittivity 

(𝜀𝑑 = −𝜀𝑚(𝜔)), marking the location of the plasma resonance (refer to equation (4.4)). 

Hence, according to Figure 5.4, which shows the plot of the real permittivity of the doped 

silicon against the wavelength, the material dispersion should be maximum around 3µm 

(at 2.7µm to be exact), if we assume that the surrounding material is air (𝜀𝑑 = 1).  

 

 

Figure 5.4. The real permittivity of doped silicon with Nd ≈ 5 x 1020cm-3 versus the wavelength. 

Assuming that the surrounding dielectric material is air, the dispersion will be maximum near 3µm. 
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We then attempted to create dispersive material models based on the Drude model 

for permittivity for plasma resonances at slightly longer wavelengths, namely, 5µm and 

10µm. We shall refer to the doped silicon with resonances at 5µm and 10µm as material B 

and material C, respectively. The Drude parameters were obtained using the technique 

described in Section 2.1. The doping concentration for material B and material C were 

found to be around 1.5 x 1020 cm-3 and 3.6 x 1019 cm-3, respectively. This is in good 

agreement with the results depicted in Figure 5.2 and Figure 5.3. 

 

5.1.4 Single-Interface Propagation 

As discussed in Section 4.2.2, conventional plasmonics based on noble metals 

face some confinement issues at the mid-IR. On the other hand, plasmonics based on 

doped silicon are expected to resolve this issue, seeing as their plasma resonance was 

designed to be in the mid-IR range. To verify this, we tested the SPP propagation of a 

400nm-thick slab over a SiO2 substrate using doped silicon, and compared it to that of a 

400nm-thick silver slab in the mid-IR. Using Optiwave software, PML boundary conditions 

were used and a mesh size of 0.44µm was used in all directions. The simulation time was 

4x10-4s. The waveguides were excited at 3μm and the wave was propagated for 10μm. 

Figure 5.5 shows the FDTD results for the single-interface propagation. As shown in Figure 

5.5(a), the wave is confined near the surface for doped silicon and is able to propagate 

successfully for 10µm. This is unlike the SPP propagation in silver, which shows very little 

transmission beyond the 4µm mark, and depicts a very leaky wave, as shown in Figure 

5.5(b). 

 

Figure 5.5. Single-interface propagation of a 400nm (a) doped silicon slab, (b) silver slab on an 
SiO2 substrate. 
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5.2 The Finite-Width Slot Waveguide 

In this section, we perform detailed dispersion calculations for various dimensions 

of the doped silicon slot waveguide, shown in Figure 5.1. We also investigate its 

performance as a mid-IR sensor, as well as a slow light medium. 

5.2.1 Modal and Dispersion Simulations for Slot Waveguide 

We examine the dispersion relations for the slot waveguide, with a 5nm gap and 

50nm rib width, using the materials we constructed in Section 5.1. We also study the 

dispersion relations of a similar slot waveguide with a 100nm gap and 50nm rib width. 

However, before we move on to studying the dispersion of doped silicon, we perform a 

brief study on the dispersion of undoped silicon. Figure 5.6 shows the silicon dispersion 

curve in the mid-IR region, from 1nm to 12nm, for a slot waveguide with a 5nm gap and 

another one with a 50nm gap. The modal effective index for the 5nm gap slot is generally 

higher than that of the 100nm gap slot. This is due to the higher localization of the mode of 

the 5nm gap, as evidenced by inset b. There are two main regions in this dispersion graph. 

Region 1 is the dielectric region, which is exhibited by a conventional dielectric mode, 

shown in insets a and b, for the 100nm and 5nm gap, respectively. Region 2 starts around 

3μm, and is characterized by having an extremely leaky mode, as made apparent by insets 

c and d, 100nm and 5nm, respectively.  

 

Figure 5.6. The dispersion relation for the silicon slot structure with a 5nm gap and a 100nm gap. 
Insets a and b belong in Region 1 and describe the dielectric mode for the 100nm gap slot 
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waveguide and the 5nm gap slot waveguide, respectively. Insets c and d belong in Region 2 and 
depict a leaky mode for the 100nm gap slot waveguide and the 5nm gap slot waveguide, 

respectively. 

We now study the dispersion of the 5nm gap slot waveguide with a 50nm rib width 

using material A. Figure 5.7 confirms that the plasma resonance indeed occurs around 

2.7µm. As implied by (5), the modal effective index should reach infinity around the plasma 

resonance; and indeed the simulation showed a very high modal effective index at order 

of 105. There are three regions characterized with different behaviors in the dispersion 

curve. Region 1 (1nm < λ < 2.7µm) represents dielectric operation where the mode is 

guided by total internal reflection. Region 2 (2.7µm < λ < 2.8µm) is represented by a steep 

negative slope between the peak and Region 1; this indicates a negative group velocity. 

The negative dispersion paired with the high modal effective index in Region 2 conveys 

that this spectrum area is very valuable for slow and fast light applications. Region 3 (λ < 

2.8µm) depicts the plasmonic region and shows a highly confined slot mode.  

 

Figure 5.7. The dispersion relation for the slot structure showing the 3 main regions: Region 1: 
dielectric region, Region 2: negative dispersion, Region 3: plasmonic region. 

 

Materials B and C were designed to resonate at specific wavelengths. The curves 

in Figure 5.8 confirm that the dispersion curves were effectively tuned to resonate at the 

desired wavelengths, which are 5µm and 10µm. It is clear that by lowering the doping 

concentration, the dispersion curve is red-shifted. The general trend—behavior of the three 
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regions—of the curves seems to be the same regardless of the doping amount. Also, 

similar to material A, the simulation was able to compute extremely high effective indices 

at the plasma resonance with the order of 105 for material B and material C. 

The dispersion curves were studied in a similar approach for a slot with a 100nm 

gap and 50nm rib width. The 100nm gap is of interest not only because it is easier to 

fabricate, but also because it is large enough to confine fluids, making it eligible for 

biological and chemical sensing applications. Figure 5.9 shows the dispersion curves for 

material A, B and C for the 100nm gap. It is apparent that the main difference between the 

curves for the 5nm gap and the 100nm gap is that the 100nm gap seems to host smaller 

effective modal indices. This indicates that confinement is lower for larger gaps. This is 

intuitive, since the gap, which is responsible for squeezing the mode, is physically larger. 

However, the simulation shows a modal effective index of 105 at the plasma resonance for 

each one of the materials, conveying the possibility that the plasmonic gap width renders 

itself irrelevant when the structure is excited at its plasma resonance. 

 

Figure 5.8. Dispersion curves for the 5nm gap slot structure for three different doping 
concentrations. The plasma resonance exists around 3, 5, and 10µm. 
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Figure 5.9. Dispersion curves for the 100nm gap slot structure for three different doping 
concentrations. The plasma resonance exists around 3, 5, and 10µm. 

We expand to the previous studies by studying the general effect of varying the 

slot dimensions. We start by examining the effect of varying the rib width on the effective 

index at the plasma resonance for the three materials with a fixed gap width of 5nm. The 

rib width is varied from 50nm to 10mm. The modal effective index has not been affected in 

the least bit by this variation, and remained constant for each of the materials. The same 

simulations have been repeated for the 100nm gap slot, and still, the modal effective index 

remained the same. Theoretically, the modal effective index should be infinite at the plasma 

resonance regardless of the dimensions, so these results are acceptable. However, 

changing the dimensions affects the modal effective index near the resonance. For that 

reason, we test the effect of varying the gap width from 5nm to 100nm by exciting all three 

materials near their resonances. The results are shown in Figure 5.10. As expected, the 

highest modal effective index is corresponding to the 5nm gap, owing to the extreme 

localization of the slot mode created by the small gap. The effective index variation is 

almost exponential with the gap width. Also, the material with least amount of doping—

material C—has a consistently higher modal effective index than the other materials.  
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Figure 5.10. Plot of the effective modal index near resonance against the gap width. The plot 
shows the curves for a doped silicon slot with three doping concentrations with their resonances 

indicated in the legend; the rib width is fixed at 50nm.  

It is also important to observe the effect of the rib width on the modal effective 

index. For this purpose, three rib widths—50nm, 100nm, 250nm—were employed using 

material A, while varying the gap width from 5nm to 100nm, as described by Figure 5.11. 

Altering the rib width does not have the same drastic effect on the effective index as altering 

the gap width. It is also clear that for very small gap widths (5-20nm), there is a complete 

overlap between the curves, indicating that the gap width is far more dominant than the rib 

width. The effect of the rib width becomes more pronounced for larger gap widths. The 

general trend appears to be that larger rib widths have smaller effective indices. It is also 

apparent that the difference between a 50nm and 100nm rib width is much more obvious 

than the difference between 100nm and 250 nm, which is very minute. 
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Figure 5.11. Plot of the effective modal index near resonance against the gap width for the doped 
silicon slot. The rib widths are set at 50, 100 and 250nm, and the doping concentration is fixed at 

5x1020cm-3, while the gap width is varied from 5nm to 100nm.  

5.2.2 Applications for the Plasmonic Slot Waveguide 

5.2.2.1  Chemical and Biological Sensing Applications 

As mentioned in the previous section, the 100nm gap slot makes for a good 

candidate for chemical and biological sensing. Slot structures are ideal for sensing since 

they are capable of confining the light in the same area where the fluid-under-test is guided. 

This aids in creating a large overlap between the two, and maximizing the sensitivity. To 

demonstrate this, we excite a material C slot waveguide with a 100nm gap width and a 

50nm rib width near its cut-off, and study the sensitivity by changing the surrounding 

refractive index to 1.25 and 1.5. We perform another study where only the refractive index 

of the gap is changed. Figure 5.12 shows that for an increase in the surrounding refractive 

index, the curve is red-shifted in a considerable amount. We investigate the potential for 

sensing by measuring the effect of changing the refractive index of the surrounding 

environment on the effective index of the waveguide. We quantify this by measuring the 

wavelength shift per refractive index change in the surroundings. This gives an average of 

920nm per refractive index unit (RIU) when the refractive index of the entire surrounding is 

changed, and 1050nm/RIU when the refractive index of the gap is changed. The two 

sensitivities are fairly close, indicating that the placement of the material under test only 

mildly affects its sensitivity. Moreover, since the material’s response to its surroundings is 

high, then it is expected that once this material is put into a sensor configuration—such as 
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the Mach-Zehnder interferometer, or the ring-resonator—the sensitivity should be boosted 

considerably.   

 

Figure 5.12. The solid curves depict the dispersion of a 100nm gap width, 50nm rib width doped 
silicon slot waveguide immersed in a dielectric medium. The dashed curves depict the dispersion of 

a slot waveguide with a dielectric filling in the gap only. 

 

5.2.2.2 Slow Light and Negative-Index Applications 

The presence of a negative slope in the dispersion relation indicates that the phase 

velocity and group velocity have opposite signs, which implies the presence of a backwards 

wave or fast light [110], [45]. Viewed from another perspective, the negative slope means 

that the material has a negative refractive index, which makes it suitable for building 

metamaterials [111]. 

On the other hand, the highest modal effective index that was found during our 

simulations was 307530; this was achieved for the 5nm gap slot waveguide based on 

material C. The very high effective index signifies a very low phase velocity, which makes 

this design an excellent candidate for slow light operation [110]. The group velocity of light 

can also be further tuned by adjusting the dimensions of the waveguide—smaller 

dimensions for slower light, as implied by Figure 5.10 and Figure 5.11.  

To demonstrate the capability of the slot waveguide for light slowing, 3D FDTD 

simulations are used. Using Lumerical software, PML conditions were invoked, and a mesh 

size of 0.1nm was used. A signal is near the material C resonance (10μm) of a 5nm gap, 
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50nm-wide, 50nm-thick, and 2μm-long plasmonic slot waveguide. These results are then 

compared with a silicon waveguide with the exact configuration as the plasmonic slot. 

Figure 5.13 shows the time simulation versus the real part of the electric field component 

in the propagation direction. The delay is defined as the time difference between the peaks 

of the two signals. There is a delay of about 200fs between the output of the plasmonic slot 

and the silicon slot. The amplitude of the wave propagated through doped silicon wave is 

smaller than the one propagated through silicon. This is because of the higher losses of 

doped silicon, owing to the larger penetration depth. 

 

Figure 5.13. The time plot of the output electric field pulse from a plasmonic doped silicon slot 
waveguide and a dielectric silicon slot waveguide. 

 

5.3 Rectangular Shell Waveguide 

Following a similar approach as the one employed in Section 5.2, we study the 

dispersion curves for a rectangular shell structure, similar to the structure proposed in 

[112]. A major benefit for using this structure is that it provides 2D confinement, and hence, 

has the potential for providing higher localization than the slot structure. Another advantage 

for this structure is that it provides an intuitive solution for confining gases, making it 

excellent for environmental and chemical sensing applications, as will be demonstrated. 

Also, the discontinuity between the metal-dielectric interfaces exists vertically and 

horizontally, which allows the invariable propagation of both TE and TM waves; this is 

discussed in detail in [112].  
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Using material A, the dispersion curves for a 30 x 50nm rectangular gap waveguide 

(shown in Figure 5.14(a)) are studied. The modes are evaluated for three thicknesses: 

25nm, 35nm and 45nm. The biggest difference between this waveguide and the slot 

waveguide is the presence of a very narrow operational bandwidth (~2.6 – 3.3µm). Outside 

of this band, the mode is cut-off. This suggests that this structure creates a natural mid-IR 

resonator filter. It may also be operated near the cut-off frequencies for ENZ applications 

such as extraordinary transmission. There are two main regions in the dispersion curve as 

shown in Figure 5.14(b). Region 1 represents the negative dispersion region, while Region 

2 represents the plasmonic region. Region 2 features a slot mode as depicted in the inset 

in Figure 5.14(b). Similar to the plasmonic slot mode, this mode will be of great use in 

sensing applications as it ensures a large overlap between the material under test and the 

incident light wave. Region 1, on the other hand, features a very steep negative slope, 

which indicates a negative group velocity around these wavelengths, nominating this 

waveguide for slow and fast light applications. As expected, the doping has allowed this 

structure to resonate at 2.7µm. At the resonance, the effective modal index obtained 

through the simulation is very high and has reached a value in the order of 106. The 

variation in the thickness showed almost no change in the dispersion of the curve.  

 

Figure 5.14. Performance of a rectangular shell sensor. (a) The rectangular shell structure with gap 
width, Wx, equal to 30nm, and gap height, Wy, equal to 50nm and variable thickness, t. (b) The 

dispersion relation for a doped silicon rectangular shell waveguide with plasma resonance around 
3µm for t = 25, 35 and 45nm.   

Similar to what has been done with the slot waveguide, the ability to engineer the 

dispersion curve through varying the doping concentration is demonstrated. Accordingly, 
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the dispersion curves for materials A, B and C are studied, as illustrated by Figure 5.15. 

Each material appears to be appropriately tuned to its resonant frequency. The effective 

modal index found by the simulation at the plasma resonance is in the order of 106. On the 

whole, the material with the least amount of doping hosts the largest modal effective indices 

throughout the mid-IR spectrum. This is evidenced by material C which has the highest 

effective index values, followed by material B, then material A. 

 

Figure 5.15. Dispersion relations for the 30 x 50nm rectangular shell waveguide for three different 
doping concentrations. 

 

As mentioned previously, the 2D confinement that is intrinsic to the rectangular 

shell waveguide is ideal for confining gases under test while maximizing its overlap with 

the incident light. We tested this by filling the center of a 25nm-thick, 30 x 50nm rectangular 

shell waveguide, based on material C, with hypothetical substances that have effective 

indices equal to 1.25 and 1.5, as shown in Figure 5.16. The dispersion of the rectangular 

shell waveguide filled with a material that has a 1.25 refractive index is red-shifted by 

260nm from the air-filled rectangular shell. Alternatively, the dispersion of the waveguide 

filled with a material that has a 1.5 refractive index is red-shifted by 530nm from the air-

filled rectangular shell. Hence, we can quantify the potential for using the rectangular 

waveguide for sensing as we have in Section III, which would give an average response to 

the change in the surrounding environment of 1040nm/RIU. This inherent sensitivity 

property eliminates the need for using expensive fluorescent markers, and allows for label-

free sensing mechanisms [28]. The small dimensions of the inner shell also imply that only 
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a small volume of the sample is needed to perform an effective analysis, hence, reducing 

the cost of the sensing procedure.  

 

Figure 5.16. The dispersion relations for the rectangular shell waveguide using doped silicon with 
plasma resonance around 10µm with fillings of n = 1, 1.25 and 1.5. 

5.4 Doped Silicon SIS Waveguide 

*Portions of this section were done in collaboration with Ms. Sarah Shafaay. 

The dispersion properties of an infinitely wide plasmonic gap, or an SIS waveguide 

is studied and interrogated for potential applications. The SIS waveguide will be based on 

material A. The general architecture of the structure of interest is shown in Figure 5.17, 

which illustrates a doped silicon slot waveguide on a substrate layer. 

 

Figure 5.17. SIS structure using doped silicon, where 𝐻 is the slot height and 𝑊𝑔𝑎𝑝 is the gap width 

of the slot. 

We used 2D modal simulations to draw the dispersion curves. It is assumed that 

the rib width extends to infinity, so for that reason, PML conditions are enforced on the 

waveguide. The step size of the mesh was set to 1nm. These parameters are used for all 

modal simulations in section 5.4. Figure 5.18 shows the dispersion of a doped silicon SIS 
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waveguide with a 200nm gap, and a 20nm thickness. The real part of the effective refractive 

index is plotted against the wavelength, λ. Details of the dispersion curve are provided in 

Figure 5.19, which shows a zoomed-in version of the dispersion of the plasmonic region.  

As expected the plasma resonance is around 2.7μm. Moreover, the dispersion shows four 

regions: Region 1 (𝜆 < 2.2𝜇𝑚) a radiative region; Region 2 (2.2𝜇𝑚 < 𝜆 < 2.5𝜇𝑚) is a cut-

off region; Region 3 (2.5𝜇𝑚 < 𝜆 < 2.7𝜇𝑚) is the negative-dispersion region; Region 4 (𝜆 >

2.7𝜇𝑚) is the plasmonic region. The modal profile for regions 3 and 4 is depicted in the 

insets of Figure 5.18. Region 1 cannot be utilized as it only supports radiative modes. 

Region 2 be used for epsilon-near-zero applications such as extraordinary transmission 

[54], [58]. Region 3 can be used for metamaterial applications, or negative-dispersion 

applications such as fast and backwards light [113], [114]. Region 4 is the where the 

plasmonic regimen takes place; we are going to focus on this region throughout the 

remainder of this paper. In addition, the region around the plasma resonance exhibits a 

very high effective refractive index, and can therefore be used for slow light applications 

[46]. 

 

Figure 5.18. Dispersion of SIS doped silicon waveguide showing the real part of the effective 
refractive index against the wavelength. There are 4 regions: 1. Radiative region. 2. Cut-off region. 
3. Negative-dispersion region. 4. Plasmonic region. The modal profile for each region is shown in 

the insets. 
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Figure 5.19. Dispersion of an SIS doped silicon waveguide showing the plasmonic region. 

The effect of varying the height, 𝐻, and the slot gap width, 𝑊𝑔𝑎𝑝, is studied. Figure 

5.20 shows the dispersion of a doped silicon SIS waveguide with a gap width equal to 

100nm, and three different heights, namely, 20, 50 and 100nm. Figure 5.21, on the other 

hand, shows the dispersion of a 200nm-wide doped silicon SIS waveguide. Figure 5.22, 

shows the dispersion of a 1μm-gap doped silicon SIS waveguide. Both figures employ the 

same heights as Figure 5.20. It can be seen that the effective refractive index is significantly 

higher for a smaller gap width. Alternatively, a smaller height results in a mildly larger 

effective refractive index, and also a generally less steep curve. These results are intuitive 

as it is expected of smaller gaps to confine the light better, hence, resulting in a larger 

effective refractive index.   

 

Figure 5.20. Dispersion of  SIS doped silicon waveguide showing the real part of the effective 
refractive index against the wavelength for a 100nm gap and heights of 20, 50, and 100nm.  
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Figure 5.21. Dispersion of an SIS doped silicon waveguide showing the real part of the effective 
refractive index against the wavelength for a 200nm gap and heights of 20, 50, and 100nm. 

 

Figure 5.22. Dispersion of an SIS doped silicon waveguide showing the real part of the effective 
refractive index against the wavelength for a 1μm gap and heights of 20, 50, and 100nm. 

The SIS structure can be used to create sharp bends, junctions or splitters. In the 

following sub-sections, we will study the behavior of 90 degree bends, as well as T-junction 

and X-junction splitters using material A doped silicon. However, we first need to confirm 

that the light can survive for long distances within an infinitely wide SIS structure. Hence, 

using the 2D FDTD engine provided by Optiwave, we were able to confirm the modal 

confinement in a material AN SIS waveguide as shown in Figure 5.23. PML boundary 
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conditions were used. The mesh size was 0.1nm in the x- directions, and 0.4μm in the y 

and z-directions. The simulations time was 16000 time steps, with each time step equal to 

approximately 10-7. The mode was excited at 3µm and is shown to propagate for 10µm for 

the 5nm gap, 25nm gap, 50nm gap, and 100nm gap SIS waveguide and displayed very 

high localization.   

 

 
 

Figure 5.23. 2D FDTD simulation showing the propagation of 5µm signal through 10µm long slot 
waveguides with: (a) 5nm gap, (b) 25nm gap, (c) 50nm gap and (d) 100nm gap. 

5.4.1 90 Degree Bends 

Sharp bends are highly desirable in CMOS integrated circuits; however, due to 

diffraction limits, it is nearly impossible to confine light in 90 degree bends based on pure 

silicon. Plasmonic devices are known for their excellent ability to transmit light through 

sharp bends, but are challenging to integrate with CMOS devices. Since it possesses 

plasmonic behavior, and can also be fabricated using standard technology, doped silicon 

may be a solution for creating sharp bends in the mid-IR frequencies. Using 2D FDTD 

simulations, we tested the transmission through a 100nm-wide 90 degree bend (modal 

profile of the bend is shown in the inset of Figure 5.24) using doped silicon for the 3 to 

10μm range. The Lumerical software was used for this purpose. The mesh size was 1nm 

for all directions. PML boundary conditions were invoked. These simulation parameters 

were used for all the subsequent 2D and 3D FDTD simulations in this section. In order to 

separate the effect of introducing the bend to the waveguide from the effect of propagation 

losses, the reflection and transmission monitors where placed fairly close to the source. As 

shown in Figure 5.24, the transmission is perfect at 100%, and there is no reflection. 
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Figure 5.24. Transmission through a 100nm gap 90 degree bend. Inset shows the propagation 
profile within the bend. 

5.4.2 T-Junction Splitters 

Following the same mindset, we tested the performance of a T-junction splitter with a 

100nm gap, the modal profile of which is shown in Figure 5.25(b). As shown in Figure 

5.25(a), the transmission in the two arms is identical and is around 40%. This is in good 

agreement with the performance of silver in the NIR frequencies as demonstrated by [115].  

 

Figure 5.25.  (a) Transmission spectrum of a 100nm doped Si t-junction splitter. (b) Propagation 
profile of a doped Si t-junction splitter. 
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It was also shown in [115] that it is possible to eliminate reflection by matching the 

impedance between the input and output arms. This is done by setting the width of the 

input arm to be around twice the width of the output arms. We tried testing this using doped 

silicon in the 3 to 10μm range, with the width of the input arm at 200nm, while the output 

arms where kept at 100nm. The transmission spectrum is shown in Figure 5.26; as 

expected, there is nearly no reflection, and the transmission from the two arms is around 

50%. 

 

Figure 5.26. Transmission spectrum of a doped Si t-junction splitter with a 200nm wide input arm 
and 100nm wide output arms. 

5.4.3 X-Junction Splitters 

We studied the performance of an x-junction splitter, the modal profile of which is 

shown in Figure 5.27(b). First, we studied the performance of a 100nm X-junction splitter. 

The results, shown in Figure 5.27(a), depict around 25% transmission for all output arms, 

and 25% reflection. The deviation between the vertical (1, 2) and horizontal (3) output arms 

is less than 1%.  
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Figure 5.27. (a) Transmission spectrum of a 100nm gap doped Si x-junction splitter. (b) 
Propagation profile of a doped Si x-junction splitter. 

Similar to what has been done with the T-junction, we optimized the X-junction by 

tripling the width of the width of the input waveguide, so that the reflection is minimized. As 

shown in Figure 5.28, the transmission was increased to 34% in two arms (Out 1, Out 2) 

and to 28.5% in the third arm (Out 3). 

We were also interested in studying the effect of increasing the width of all arms, 

to see when the power splitting ratio would fail. We define a deviation of more than 15% in 

the transmitted power between the vertical and horizontal arms as a failure in power 

splitting. Such deviation was not visible until the arms were increased to 2μm. Figure 5.29 

shows that for a gap width as large as 1μm, the deviation between vertical (Out 1, Out 2) 

and horizontal (Out 3) arms is just below 1%. On the other hand, when the width was 

increased to 2μm, the transmission spectrum, shown in Figure 5.30, showed a deviation of 

at least 15% between the vertical and horizontal arms in the 3 to 5μm range. This is a vast 

improvement over the performance of traditional plasmonics in the visible and NIR range, 

which can maintain a good ratio of power splitting between the arms for gap widths of only 

200nm and below. 
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Figure 5.28. Transmission spectrum of a 100nm gap doped Si x-junction splitter with a 300nm-wide 
input arm and 100nm-wide output arms. 

 

Figure 5.29. Transmission spectrum of an x-junction splitter with a 1μm-wide gap. 

 

Figure 5.30. Transmission spectrum of an x-junction splitter with a 2μm-wide gap. 
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5.4.4 Propagation Losses in SIS Waveguides 

As mentioned before, the monitors for the previous simulations were placed quite 

close to the bends, so as to not account for propagation losses, however it is necessary to 

understand how losses affect the performance of the waveguide. That said, the purpose of 

this section is to study the propagation losses in a straight SIS waveguide using 3D FDTD 

simulations. Ten pulses with wavelengths from 1 to 10μm were propagated separately 

along a 1μm-long doped silicon SIS waveguide. The simulations were conducted once for 

an SIS waveguide with a 100nm-wide gap, and again for a waveguide with a 200nm-wide 

gap. The waveguide was 600nm-thick, and was placed on top of an infinitely thick sapphire 

substrate. Sapphire was used instead of silicon dioxide for its transparency in the mid-IR 

range [116]. The losses are plotted in dB/cm for each wavelength in Figure 5.31. The losses 

generally appear to be quite high, but are maximum at 3μm, which is near the plasma 

resonance of our doped silicon material. Interestingly, the losses for the 200nm-wide gap 

are steadily smaller than those for the 100nm-wide gap, except near the resonance at 3μm. 

This may be because the effective refractive index of smaller gaps tends to be larger than 

that of larger gaps near the resonance (see Figure 5.20 - Figure 5.22). A high effective 

refractive index could imply high confinement, which implies a high penetration depth within 

the doped silicon, indicating the possibility of high losses.  

 

Figure 5.31. Propagation losses for a 1μm-long SIS waveguide with a 100nm-wide gap and a 
200nm-wide gap. 
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5.5 Doped Silicon Nanoparticles 

As discussed in Section 4.1.3.4, plasmonic nanoparticles are viable candidates for 

chemical and biological sensing applications due to their large scattering and absorption 

cross-sections when excited by an electromagnetic source at their plasma resonance [68]. 

Their enhanced absorption and scattering has landed them applications in biomedical 

imaging [74], [75], therapeutics [75], [76], and sensing [77], [78]. Generally, the sensitivity 

of a nanoparticle or nanorod is defined as a shift in the peak of the scattering or absorption 

cross-section due to changes in the surrounding environment [79]. Here, we devise a mid-

IR sensor using doped silicon in the form of a nanodisk with a 100nm radius. Using 2D 

FDTD simulations, a total-field scattered-field source with a wavelength centered around 

3μm (near the plasma resonance) is used to excite the nanoparticle. The mesh size was 

1nm. The sensitivity of the nanodisk was evaluated by changing the refractive index of the 

surrounding environment while calculating the extinction cross-section (absorption + 

scattering). The refractive index change introduced to the environment was made in 0.25 

increments as shown in Figure 5.32. When the nanodisk is surrounded by air, the 

resonance of the extinction cross-section is around 2.7μm, which is the plasma resonance. 

The extinction cross-section appears to increase by approximately 300nm for a 0.25 

increase in the surrounding refractive index. The sensitivity, on the other hand, appears to 

be around 310nm/RIU. Note that nanospheres inherently have higher sensitivities than 

nanodisks due to their larger area. Consequently high-aspect-ratio nanorods have an even 

higher sensitivity than both, as the sensitivity has been shown to be directly proportional to 

the nanorod aspect ratio [79]. Keeping that in mind, the value we obtained for sensitivity in 

comparison to the sensitivities of some nanospheres from recent literature [117], [118] is 

quiet decent. Note that 3D FDTD nanospheres simulations were not conducted due to the 

lack of availability of the necessary computational resources. 

 

Figure 5.32. Nanodisk sensor based on doped silicon with plasma resonance at 3μm, with 
surrounding refractive index, n = 1, 1.25 and 1.5. Inset shows the mode profile at 3μm.
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Chapter 6: Conclusion 

Two novel waveguides based on silicon photonics were carefully studied and 

analyzed. With regards to the viability of silicon photonics, the verdict is simple: silicon 

photonics are excellent light-guiding mediums. Besides the obvious CMOS compatibility 

privileges it offers, silicon proved to be an excellent manipulator of light over a wide range 

of frequencies, while being able to operate using the photonic and the plasmonic regimen. 

Perhaps no other material is as flexible in terms of design as is silicon. This flexibility 

allowed us to design nanometer materials and highly-doped materials that can provide new 

and unusual functionalities, such as ENZ operation and non-evanescent field sensing.  

In our first work—the SNRW bimodal sensor—we were able to design a robust, 

label-free optical biosensor. The SNRW is generally provided as a basic element that can 

be used to build different sensing configurations. Recall the introduction of this dissertation: 

there were 3 design challenges/goals for the SNRW. Using our simulations, we showed 

that: 1) light can be confined and propagated for distances as long as 10μm, with hardly 

any losses, using the SNRW. Also, the low-thickness region in the SNRW confines the 

evanescent tail and ensures that none of the light power is wasted. 2) Modal simulations 

demonstrated that the SNRW could detect changes in the surrounding environment as 

small as 10-8. Furthermore, the SNRW structure is about 170 times more sensitive to 

changes in the surrounding environment than the conventional BSRW. More importantly, 

it displayed a sensitivity higher than that of similar non-evanescent field sensors (structures 

that are capable of guiding light in low-index media), such as SOI gratings and rib 

nanowires waveguides—even though the latter demonstrated very competitive 

performance.  However, the edge of the SNRW is not limited to its reaction to its 

surroundings. This brings us to our third design goal: c) the SNRW demonstrated a much-

desired spatial flexibility in that it allows single-mode operation using relatively large 

dimensions. This high spatial tolerance for single-mode operation is not found in rib 

nanowires. Also, the inherently larger dimensions of the SNRW makes it easier to fabricate.  

The effectiveness of the SNRW was verified when it was tested as a sensor using 

the bimodal configuration. The bimodal configuration is extremely elegant in that it has a 

simple, straight-forward design that does not call for bends, junctions, or complex coupling 

mechanisms. Such complications usually cause power leakage and are more challenging 

to fabricate. The compact nature of the bimodal waveguide makes it an excellent candidate 

for on-chip integration. By applying the SNRW to the bimodal waveguide, a very high 
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sensitivity at 300nm/RIU was achieved. The sensitivity itself is comparable to previously 

reported sensitivities, but the SFR is much larger for the SNRW bimodal sensor, thanks to 

the small-footprint of the bimodal waveguide. 

Many directions could be taken with the bimodal SNRW. Perhaps, as a long-term 

goal, the SNRW could be used as a sensor in a truly portable lab-on-a-chip device. 

Creating such a device would require collaborations with VLSI engineers, who may design 

the electronic read-out circuitry, and nanotechnology experts, who can design the 

microfluidic channels needed for sample extraction and delivery, and the device packaging. 

A suitable micro-fluidic channel could be perpendicular to the SNRW, so that it injects the 

sample across the width of the nanowires. Aside from the electronics and microfluidics, it 

would also be necessary to collaborate with biochemists/biophysicists who can provide 

insight into suitable immobilization mechanisms. However, these are the long-term goals. 

Much more modest, but nonetheless, urgent and necessary goals, include the fabrication 

and testing of the bimodal SNRWs. For instance, in our simulations, we performed the 

sensing characterization by varying the refractive index of the surrounding medium. In a 

real-life scenario, there would never be a single-refractive index around the waveguide, but 

rather, a much more complex anisotropic fluid. Taking these real-world imperfections into 

account will direct us on how to improve and optimize our device.  

In our second design, we show that through the doping of silicon, it is transformed 

from a dielectric material to a plasmonic material with resonance in the mid-infrared region. 

We were able to design highly confined plasmonic modes through the use of several 

structures, such as slots, SIS waveguides and rectangular-shell waveguides. The 

properties of our doped silicon waveguide can be heavily manipulated, as the dispersion 

curves may be engineered to resonate at a wavelength of our choice by selecting the 

appropriate doping concentration. It was also shown that the gap width, rather than the rib 

width, of slot structures is primarily responsible for modal effective index fluctuations. 

Therefore, making it a crucial design tool for applications that require a very high effective 

index such as slow light. The spectral vicinity of the plasma resonance of the doped silicon 

in the mid-infrared provides the opportunity for a host of important applications such as 

negative-index applications, epsilon-near-zero applications such as extraordinary 

transmission, and slow and backwards light applications. For instance, we proved through 

simulations that our doped silicon slot waveguide can work as a slow-light medium. Up 

until recently, most of these innovative applications were only possible through the use of 

meta-materials which are very challenging to design and fabricate.  
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With regards to the prospect of building mid-IR sensors based on doped silicon 

waveguide, it was discovered that the slot and rectangular structure show great promise 

for sensing applications in the mid-IR. Their dispersion curves respond strongly to changes 

in the environment with wavelength shifts as high as 1050nm/RIU. In addition, the 1D and 

2D analyte confinement provided by the slot waveguide and the rectangular waveguide, 

respectively, make these structures ideal for sensing applications. The nanodisk can also 

be an effective mid-IR sensor, with sensitivity averaging values as high as 300nm/RIU. The 

sensitivity for the doped silicon nanodisk is superior to the recently reported sensitivities of 

nanospheres. This is a good implication that the sensitivity for the doped silicon 

nanosphere would be much larger than prior art nanospheres. 

Aside from sensing, using the SIS waveguide, we were able to map plasmonic 

characteristics depicted by noble metals in the NIR to the mid-IR. This was one of our 

primary goals, as it opens the door to CMOS-compatible, on-chip plasmonic devices. We 

tested some common light-manipulating sub-wavelength plasmonic structures that may be 

used in mid-IR optoelectronic circuits. These structures included 90-degree bends, T-

splitters and X-splitters. As a result, we were able to obtain transmission spectra that were 

very much like the ones produced by noble-metals in the NIR. The only difference, perhaps, 

is that the doped silicon SIS waveguide can operate with a higher efficiency for much larger 

plasmonic gaps.  

As is the case with highly-confined plasmonics, our doped silicon waveguide tends 

to suffer from a lot of losses near its plasma resonance as was shown by our 3D 

simulations. In order to fully understand the scale of the losses, it is important to fabricate 

and characterize the waveguide based on experimental facts. But perhaps the main 

contribution of our work is that we provided fellow scientists and engineers a detailed 

operational profile on a doped silicon waveguide that has the potential for being used in all 

sorts of mid-IR applications. 
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