62,702 research outputs found

    On the Correlations between Galaxy Properties and Supermassive Black Hole Mass

    Get PDF
    We use a large sample of upper limits and accurate estimates of supermassive black holes masses coupled with libraries of host galaxy velocity dispersions, rotational velocities and photometric parameters extracted from Sloan Digital Sky Survey i-band images to establish correlations between the SMBH and host galaxy parameters. We test whether the mass of the black hole, MBH, is fundamentally driven by either local or global galaxy properties. We explore correlations between MBH and stellar velocity dispersion sigma, bulge luminosity, bulge mass Sersic index, bulge mean effective surface brightness, luminosity of the galaxy, galaxy stellar mass, maximum circular velocity Vc, galaxy dynamical and effective masses. We verify the tightness of the MBH-sigma relation and find that correlations with other galaxy parameters do not yield tighter trends. We do not find differences in the MBH-sigma relation of barred and unbarred galaxies. The MBH-sigma relation of pseudo-bulges is also coarser and has a different slope than that involving classical bulges. The MBH-bulge mass is not as tight as the MBH-sigma relation, despite the bulge mass proving to be a better proxy of MBH than bulge luminosity. We find a rather poor correlation between MBH and Sersic index suggesting that MBH is not related to the bulge light concentration. The correlations between MBH and galaxy luminosity or mass are not a marked improvement over the MBH sigma relation. If Vc is a proxy for the dark matter halo mass, the large scatter of the MBH-Vc relation then suggests that MBH is more coupled to the baryonic rather than the dark matter. We have tested the need for a third parameter in the MBH scaling relations, through various linear correlations with bulge and galaxy parameters, only to confirm that the fundamental plane of the SMBH is mainly driven by sigma, with a small tilt due to the effective radius. (Abridged)Comment: 32 pages, 18 figures, 6 tables, accepted for publication in MNRA

    Black hole scaling relations of active and quiescent galaxies: Addressing selection effects and constraining virial factors

    Get PDF
    Local samples of quiescent galaxies with dynamically measured black hole masses (Mbh) may suffer from an angular resolution-related selection effect, which could bias the observed scaling relations between Mbh and host galaxy properties away from the intrinsic relations. In particular, previous work has shown that the observed Mbh-Mstar (stellar mass) relation is more strongly biased than the Mbh-sigma (velocity dispersion) relation. Local samples of active galactic nuclei (AGN) do not suffer from this selection effect, as in these samples Mbh is estimated from megamasers and/or reverberation mapping-based techniques. With the exception of megamasers, Mbh-estimates in these AGN samples are proportional to a virial coefficient fvir. Direct modelling of the broad line region suggests that fvir~3.5. However, this results in a Mbh-Mstar relation for AGN which lies below and is steeper than the one observed for quiescent black hole samples. A similar though milder trend is seen for the Mbh-sigma relation. Matching the high-mass end of the Mbh-Mstar and Mbh-sigma relations observed in quiescent samples requires fvir~15 and fvir~7, respectively. On the other hand, fvir~3.5 yields Mbh-sigma and Mbh-Mstar relations for AGN which are remarkably consistent with the expected `intrinsic' correlations for quiescent samples (i.e., once account has been made of the angular resolution-related selection effect), providing additional evidence that the sample of local quiescent black holes is biased. We also show that, as is the case for quiescent black holes, the Mbh-Mstar scaling relation of AGN is driven by velocity dispersion, thus providing additional key constraints to black hole-galaxy co-evolution models.Comment: 15 pages, 5 Figures. MNRAS, accepte

    Refining the M_BH-V_c scaling relation with HI rotation curves of water megamaser galaxies

    Get PDF
    Black hole - galaxy scaling relations provide information about the coevolution of supermassive black holes and their host galaxies. We compare the black hole mass - circular velocity (MBH - Vc) relation with the black hole mass - bulge stellar velocity dispersion (MBH - sigma) relation, to see whether the scaling relations can passively emerge from a large number of mergers, or require a physical mechanism, such as feedback from an active nucleus. We present VLA H I observations of five galaxies, including three water megamaser galaxies, to measure the circular velocity. Using twenty-two galaxies with dynamical MBH measurements and Vc measurements extending to large radius, our best-fit MBH - Vc relation, log MBH = alpha + beta log(Vc /200 km s^-1), yields alpha = 7.43+/-0.13, beta = 3.68+1.23/-1.20, and intrinsic scatter epsilon_int = 0.51+0.11/-0.09. The intrinsic scatter may well be higher than 0.51, as we take great care to ascribe conservatively large observational errors. We find comparable scatter in the MBH - sigma relations, epsilon_int = 0.48+0.10/-0.08, while pure merging scenarios would likely result in a tighter scaling with the dark halo (as traced by Vc) than baryonic (sigma) properties. Instead, feedback from the active nucleus may act on bulge scales to tighten the MBH - sigma relation with respect to the MBH - Vc relation, as observed.Comment: 27 pages, 15 figures, ApJ accepte

    The evolution of active galactic nuclei and their spins

    Full text link
    Massive black holes (MBHs) in contrast to stellar mass black holes are expected to substantially change their properties over their lifetime. MBH masses increase by several order of magnitude over the Hubble time, as illustrated by Soltan's argument. MBH spins also must evolve through the series of accretion and mergers events that grow the MBH's masses. We present a simple model that traces the joint evolution of MBH masses and spins across cosmic time. Our model includes MBH-MBH mergers, merger-driven gas accretion, stochastic fueling of MBHs through molecular cloud capture, and a basic implementation of accretion of recycled gas. This approach aims at improving the modeling of low-redshift MBHs and AGN, whose properties can be more easily estimated observationally. Despite the simplicity of the model, it captures well the global evolution of the MBH population from z\sim6 to today. Under our assumptions, we find that the typical spin and radiative efficiency of MBHs decrease with cosmic time because of the higher incidence of stochastic processes in gas-rich galaxies and MBH-MBH mergers in gas-poor galaxies. At z=0 the spin distribution in gas-poor galaxies peaks at spins 0.4-0.8, and it is not strongly mass dependent. MBHs in gas-rich galaxies have a more complex evolution, with low-mass MBHs at low redshift having low spins, and spins increasing at larger masses and redshifts. We also find that at z>1 MBH spins are on average highest in high luminosity AGN, while at lower redshifts these differences disappear.Comment: ApJ, in pres

    Supermassive Black Holes and Their Host Galaxies - II. The correlation with near-infrared luminosity revisited

    Full text link
    We present an investigation of the scaling relations between Supermassive Black Hole (SMBH) masses (Mbh), and their host galaxies' K-band bulge (Lbul) and total (Ltot) luminosities. The wide-field WIRCam imager at the Canada-France-Hawaii-Telescope (CFHT) was used to obtain the deepest and highest resolution near infrared images available for a sample of 35 galaxies with securely measured Mbh, selected irrespective of Hubble type. For each galaxy, we derive bulge and total magnitudes using a two-dimensional image decomposition code that allows us to account, if necessary, for large- and small-scale disks, cores, bars, nuclei, rings, envelopes and spiral arms. We find that the present-day Mbh-Lbul and Mbh-Ltot relations have consistent intrinsic scatter, suggesting that Mbh correlates equally well with bulge and total luminosity of the host. Our analysis provides only mild evidence of a decreased scatter if the fit is restricted to elliptical galaxies. The log-slopes of the Mbh-Lbul and Mbh-Ltot relations are 0.75+/-0.10 and 0.92+/-0.14, respectively. However, while the slope of the Mbh-Lbul relation depends on the detail of the image decomposition, the characterization of Mbh-Ltot does not. Given the difficulties and ambiguities of decomposing galaxy images into separate components, our results indicate that Ltot is more suitable as a tracer of SMBH mass than Lbul, and that the Mbh-Ltot relation should be used when studying the co-evolution of SMBHs and galaxies.Comment: 19 pages, 3 figures, 7 table

    The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity

    Get PDF
    We present new accurate near-infrared (NIR) spheroid (bulge) structural parameters obtained by two-dimensional image analysis for all galaxies with a direct black hole (BH) mass determination. As expected, NIR bulge luminosities Lbul and BH masses are tightly correlated, and if we consider only those galaxies with secure BH mass measurement and accurate Lbul (27 objects), the spread of MBH-Lbul is similar to MBH-sigma, where sigma is the effective stellar velocity dispersion. We find an intrinsic rms scatter of ~0.3 dex in log MBH. By combining the bulge effective radii R_e measured in our analysis with sigma, we find a tight linear correlation (rms ~ 0.25 dex) between MBH and the virial bulge mass (propto R_e sigma^2), with ~ 0.002. A partial correlation analysis shows that MBH depends on both sigma and R_e, and that both variables are necessary to drive the correlations between MBH and other bulge properties.Comment: Astrophysical Journal Letters, in pres

    Growing Massive Black Hole Pairs in Minor Mergers of Disk Galaxies

    Full text link
    We perform a suite of high-resolution smoothed particle hydrodynamics simulations to investigate the orbital decay and mass evolution of massive black hole (MBH) pairs down to scales of ~30 pc during minor mergers of disk galaxies. Our simulation set includes star formation and accretion onto the MBHs, as well as feedback from both processes. We consider 1:10 merger events starting at z~3, with MBH masses in the sensitivity window of the Laser Interferometer Space Antenna, and we follow the coupling between the merger dynamics and the evolution of the MBH mass ratio until the satellite galaxy is tidally disrupted. While the more massive MBH accretes in most cases as if the galaxy were in isolation, the satellite MBH may undergo distinct episodes of enhanced accretion, owing to strong tidal torques acting on its host galaxy and to orbital circularization inside the disk of the primary galaxy. As a consequence, the initial 1:10 mass ratio of the MBHs changes by the time the satellite is disrupted. Depending on the initial fraction of cold gas in the galactic disks and the geometry of the encounter, the mass ratios of the MBH pairs at the time of satellite disruption can stay unchanged or become as large as 1:2. Remarkably, the efficiency of MBH orbital decay correlates with the final mass ratio of the pair itself: MBH pairs that increase significantly their mass ratio are also expected to inspiral more promptly down to nuclear-scale separations. These findings indicate that the mass ratios of MBH pairs in galactic nuclei do not necessarily trace the mass ratios of their merging host galaxies, but are determined by the complex interplay between gas accretion and merger dynamics.Comment: 5 pages, 4 figures, replaced to match accepted version on Ap

    Gravitational recoil: effects on massive black hole occupation fraction over cosmic time

    Full text link
    We assess the influence of massive black hole (MBH) ejections from galaxy centres, due to the gravitational radiation recoil, along the cosmic merger history of the MBH population. We discuss the 'danger' of the recoil for MBHs as a function of different MBH spin/orbit configurations and of the host halo cosmic bias, and on how that reflects on the 'occupation fraction' of MBHs. We assess ejection probabilities for mergers occurring in a gas-poor environment, where the MBH binary coalescence is driven by stellar dynamical processes, and the spin/orbit configuration is expected to be isotropically distributed. We contrast this case with the 'aligned' case. The latter is the most realistic situation for 'wet', gas-rich mergers, which are the expectation for high-redshift galaxies. We find that if all halos at z>5-7 host a MBH, the probability of the Milky Way (or similar size galaxy) to host a MBH today is less than 50%, unless MBHs form continuously in galaxies. The 'occupation fraction' of MBHs, intimately related to halo bias and MBH formation efficiency, plays a crucial role in increasing the retention fraction. Small halos, with shallow potential wells and low escape velocities, have a high ejection probability, but the MBH merger rate is very low along their galaxy formation merger hierarchy: MBH formation processes are likely inefficient in such shallow potential wells. Recoils can decrease the overall frequency of MBHs in small galaxies to ~60%, while they have little effect on the frequency of MBHs in large galaxies (at most a 20% effect).Comment: Accepted for publication in MNRA
    corecore