10 research outputs found

    Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors

    Get PDF
    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels

    Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data

    Get PDF
    A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (R-2) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.Peer reviewe

    Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data

    Get PDF
    A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (R-2) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.Peer reviewe

    Estimation of scots pine defoliation by the common pine sawfly (\u3ci\u3eDiprion pini\u3c/i\u3e L.) using multi-temporal radar data

    Get PDF
    In 1998-2001 Finland suffered the most severe insect outbreak ever recorded, over 500,000 hectares. The outbreak was caused by the common pine sawfly (Diprion pini L.). The outbreak has continued in the study area, Palokangas, ever since. To find a good method to monitor this type of outbreaks, the purpose of this study was to examine the efficacy of multi-temporal ERS-2 and ENVISAT SAR imagery for estimating Scots pine (Pinus sylvestris L.) defoliation. Three methods were tested: unsupervised k-means clustering, supervised linear discriminant analysis (LDA) and logistic regression. In addition, I assessed if harvested areas could be differentiated from the defoliated forest using the same methods. Two different speckle filters were used to determine the effect of filtering on the SAR imagery and subsequent results. The logistic regression performed best, producing a classification accuracy of 81.6% (kappa 0.62) with two classes (no defoliation, \u3e20% defoliation). LDA accuracy was with two classes at best 77.7% (kappa 0.54) and k-means 72.8 (0.46). In general, the largest speckle filter, 5 x 5 image window, performed best. When additional classes were added the accuracy was usually degraded on a step-by-step basis. The results were good, but because of the restrictions in the study they should be confirmed with independent data, before full conclusions can be made that results are reliable. The restrictions include the small size field data and, thus, the problems with accuracy assessment (no separate testing data) as well as the lack of meteorological data from the imaging dates

    Pilkkumäntypistiäisen (Diprion pini L.) aiheuttaman männyn neulaskadon estimointi multitemporaalisia tutkakuvia käyttäen

    Get PDF
    The intensity and frequency of insect outbreaks have increased in Finland in the last decades and they are expected to increase even further in the future due to global climate change. In 1998-2001 Finland suffered the most severe insect outbreak ever recorded, over 500,000 hectares. The outbreak was caused by the common pine sawfly (Diprion pini L.). The outbreak has continued in the study area, Palokangas, ever since. To find a good method to monitor this type of outbreaks, the purpose of this study was to examine the efficacy of multitemporal ERS-2 and ENVISAT SAR imagery for estimating Scots pine defoliation. The study area, Palokangas, is located in Ilomantsi district, Eastern-Finland and consists mainly even-aged Scots pine forests on relatively dry soils. Most of the forests in the area are young or middle-aged managed forests. The study material was comprised of multi-temporal ERS-2 and ENVISAT synthetic aperture radar (SAR) data. The images had been taken between the years 2001 and 2008. The field data consisted 16 sample plots which had been measured seven times between the years 2002 and 2009. In addition, eight sample plots were added afterwards to places which were known to have had cuttings during the study period. Three methods were tested to estimate Scots pine defoliation: unsupervised k-means clustering, supervised linear discriminant analysis (LDA) and logistic regression. In addition, it was assessed if harvested areas could be differentiated from the defoliated forest using the same methods. Two different speckle filters were used to determine the effect of filtering on the SAR imagery and subsequent results. The logistic regression performed best, producing a classification accuracy of 81.6% (kappa 0.62) with two classes (no defoliation, >20% defoliation). LDA accuracy was with two classes at best 77.7% (kappa 0.54) and k-means 72.8 (0.46). In general, the largest speckle filter, 5 x 5 image window, performed best. When additional classes were added the accuracy was usually degraded on a step-by-step basis. The results were good, but because of the restrictions in the study they should be confirmed with independent data, before full conclusions can be made that results are reliable. The restrictions include the small size field data and, thus, the problems with accuracy assessment (no separate testing data) as well as the lack of meteorological data from the imaging dates.Hyönteistuhojen intensiteetti ja toistumistiheys ovat kasvaneet viime vuosikymmeninä ja niiden uskotaan asvavan entisestään ilmastonmuutoksen seurauksena. Vuosina 1998-2001 Suomessa tapahtui suurin koskaan tallennettu hyönteistuho, jossa hyönteistuho koski yli 500 000 hehtaaria metsää. Hyönteistuho oli pilkkumäntypistiäisen (Diprion pini L.) aiheuttama. Hyonteistuho on jatkunut Palokankaan alueella siitä lähtien. Jotta tällaisten tapausten monitorointiin löytyisi hyvä tapa, tämän tutkimuksen tarkoituksena oli testata multitemporaalista ERS-2 ja ENVISAT aineistoa männyn neulaskadon estimoinnissa. Tutkimusalue, Palokangas, sijaitsi itäisessä Suomessa Ilomantsin kunnan alueella. Metsä koostui pääasiassa tasaikäisestä männystä, joka sijaitsi kuivalla kangasmaalla. Suurin osa alueen metsistä on joko nuorta tai keski-ikäistä hoidettua metsää. Tutkimusaineisto koostui multitemporaalisesta ERS-2 ja ENVISAT synteettisisestä apertuuri tutka (SAR) aineistosta. Tutkakuvat olivat otettu vuosien 2001 ja 2008 välillä. Maastoaineisto koostui 16 koealasta, jotka oli mitattu seitsemän kertaa vuosien 2002 ja 2009 välillä. Lisäksi kahdeksan koealaa lisättiin tutkakuville kohtiin, joissa tiedettiin olleen hakkuita tutkimusperiodin aikana. Tutkimuksessa testattiin kolme erilaista metodia estimoida männyn neulaskatoa: ohjaamaton k-means klusterointi, ohjattu lineaarinen diskriminantti analyysi (LDA) sekä logistinen regressio. Neulaskadon lisäksi tutkimuksessa testattiin, käyttäen samoja metodeja, miten harvennetut ja päätehakatut metsäalueet erottuvat neulaskadosta kärsivistä metsistä. Kaksi erilaista keskiarvoistavaa häilyntäsuodatinta käytettiin suodattamattomien kuvien lisäksi, jotta voitiin testata suodattamisen vaikutusta SAR kuviin ja tuloksiin. Logistinen regressio antoi parhaat tulokset antaen kahden luokan (ei neulaskatoa, >20% neulaskato) luokitustarkkuudeksi 81,6% (kappa 0,62). LDA luokitustarkkuus kahdella luokalla oli parhaimmillaan 77,7% (kappa 0,54) ja k-means 72,8% (kappa 0,46). Yleisesti ottaen suurin häilyntäsuodatin (5 x 5 pikseliä) tuotti parhaimmat tulokset. Kun useampia luokkia lisättiin luokitukseen luokitustarkkuus laski. Tulokset olivat yleisesti hyviä, mutta koska tutkimuksessa oli rajoittavia tekijöitä, tulokset tulisi vahvistaa itsenäiselllä aineistolla ennen kuin tulokset voidaan kokonaisuudessaan hyväksyä. Tutkimuksen rajoittavaia tekijöitä olivat muun muassa maastoaineiston pieni koko, jonka vuoksi tarkkuuden laskenta aiheutti ongelmia (ei erillistä testiaineistoa), sekä meteorologisen aineiston puuttuminen tutkakuvien kuvaus päiviltä

    Leaf area index estimation of boreal forest using ENVISAT ASAR

    No full text

    Integrating Remote Sensing and Machine Learning to Assess Forest Health and Susceptibility to Pest-induced Damage

    Get PDF
    Spruce budworm (Choristoneura fumiferana; SBW) outbreaks are cyclically occurring phenomena in the northeastern USA and neighboring Canadian provinces. These outbreaks are often of landscape level causing impaired growth and mortality of the host species namely spruce (Picea sp.) and balsam fir (Abies balsamea (L.) Mill.). Acknowledging the recent SBW outbreak in Canadian provinces like Quebec and New Brunswick neighboring the state of Maine, our study devised comprehensive techniques to assess the susceptibility of Maine forests to SBW attack. This study aims to harness the power of remote sensing data and machine learning algorithms to model and map the susceptibility of forest in terms of host species availability and abundance (basal area per hectare; BAPH, and leaf area index; LAI), their maturity and the defense mechanism prevalent. In terms of host species abundance mapping our study explores the integration of satellite remote sensing data to model BAPH and LAI of two economically vital SBW host species, red spruce (Picea rubens Sarg.) and balsam fir, in Maine USA. Combining Sentinel-1 synthetic aperture radar (SAR), Sentinel-2 multispectral, and site variables, we used Random Forest (RF) and Multi-Layer Perceptron (MLP) algorithms for modeling LAI and BAPH. The results demonstrated the superiority of RF over MLP, achieving smaller normalized root mean square error (nRMSE) by 0.01 and 0.06 for LAI and BAPH, respectively. Notably, Sentinel-2 variables, especially the red-edge spectral vegetation indices, played a significant role in both LAI and BAPH estimation, with the minor inclusion of site variables, particularly elevation. In addition, using various satellite remote sensing data such as Sentinel-1 C-band SAR, PALSAR L-band SAR and Sentinel-2 multispectral, along with site variables, the study developed large-scale SBW stand impact types and susceptibility maps for the entire state of Maine. The susceptibility of the forest was assessed based on the availability of SBW host species and their maturity. Integrating machine-learning algorithms, RF and MLP, the best model, utilizing site (elevation and aspect) and Sentinel-2 data achieved an overall accuracy of 83.4% to predict SBW host species. Furthermore, combining the host species data with age data from Land Change Monitoring, Assessment, and Projection (LCMAP) products we could produce the SBW susceptibility map based on stand impact types with an overall accuracy of 88.3%. Moreover, the work builds upon the assessment of susceptibility of SBW host species taking into account the concentration of several canopy traits using remote sensing and site data. The study focused on various foliar traits affecting insect herbivory, including nutritive such as nitrogen (N), phosphorous (P), potassium (K), and copper (Cu), non-nutritive such as iron (Fe) and calcium (Ca), and defensive parameters such as equivalent water thickness (EWT) and leaf mass per area (LMA). Using Sentinel-2 and site data, we developed trait estimation models using machine-learning algorithms like Random Forest (RF), Extreme Gradient Boosting (XGB), and Support Vector Machine (SVM). The accuracy of the developed model was evaluated based on the normalized root mean square error (nRMSE). Based on the model performances, we selected XGB algorithm to estimate Ca, EWT, Fe, and K whereas Cu, LMA, N, and P were estimated using RF algorithm. Regarding the variables used, almost all the best performing models included Sentinel-2 red-edge indices and depth to water table (DWT) as the most important variables. Ultimately, the study proposed a novel framework connecting the concentrations of foliar traits in SBW host foliage to tree susceptibility to the pest, enabling the assessment of host susceptibility on a landscape level. To sum up, this study highlights the advantages and effectiveness of integrating satellite remote sensing data for enhanced pest management, providing valuable insights into tree attributes and susceptibility to spruce budworm outbreaks in Northeast USA. The findings offer essential tools for forest stakeholders to improve management strategies and mitigate potential forthcoming SBW outbreaks in the region

    Advances in measuring forest structure by terrestrial laser scanning with the Dual Wavelength ECHIDNA® LIDAR (DWEL)

    Get PDF
    Leaves in forests assimilate carbon from the atmosphere and woody components store the net production of that assimilation. Separate structure measurements of leaves and woody components advance the monitoring and modeling of forest ecosystem functions. This dissertation provides a method to determine, for the first time, the 3-D spatial arrangement and the amount of leafy and woody materials separately in a forest by classification of lidar returns from a new, innovative, lidar scanner, the Dual-Wavelength Echidna® Lidar (DWEL). The DWEL uses two lasers pulsing simultaneously and coaxially at near-infrared (1064 nm) and shortwave-infrared (1548 nm) wavelengths to locate scattering targets in 3-D space, associated with their reflectance at the two wavelengths. The instrument produces 3-D bispectral "clouds" of scattering points that reveal new details of forest structure and open doors to three-dimensional mapping of biophysical and biochemical properties of forests. The three parts of this dissertation concern calibration of bispectral lidar returns; retrieval of height profiles of leafy and woody materials within a forest canopy; and virtual reconstruction of forest trees from multiple scans to estimate their aboveground woody biomass. The test area was a midlatitude forest stand within the Harvard Forest, Petersham, Massachusetts, scanned at five locations in a 1-ha site in leaf-off and leaf-on conditions in 2014. The model for radiometric calibration assigned accurate values of spectral apparent reflectance, a range-independent and instrument-independent property, to scattering points derived from the scans. The classification of leafy and woody points, using both spectral and spatial context information, achieved an overall accuracy of 79±1% and 75±2% for leaf-off and leaf-on scans, respectively. Between-scan variation in leaf profiles was larger than wood profiles in leaf-off seasons but relatively similar to wood profiles in leaf-on seasons, reflecting the changing spatial heterogeneity within the stand over seasons. A 3-D structure-fitting algorithm estimated wood volume by modeling stems and branches from point clouds of five individual trees with cylinders. The algorithm showed the least variance for leaf-off, woody-points-only data, validating the value of separating leafy and woody points to the direct biomass estimates through the structure modeling of individual trees

    The impact of spatial resolution on riparian leaf area index modelling using remote sensing

    Get PDF
    This thesis investigated the impact of differing sensor spatial resolutions on leaf area index (LAI) modelling. Airborne images along with ground measurements of LAI were acquired for riparian areas along the Oldman River in southern Alberta. Airborne images were spatially resampled to spatial resolutions between 18 cm and 500 m, and the Modified Simple Ratio (MSR) was calculated from the imagery. LAI regression models were created at each spatial resolution, and changes in the relationship between MSR and LAI were observed at each spatial resolution, as well as changes in the modelled LAI estimates. The relationship between MSR and LAI was scale invariant at spatial resolutions as low as 10 m, and only moderately changed until 30 m. MSR and predicted LAI gradually reduced as resolution coarsened further, with large changes occurred beyond 100 m. No relationship was evident between MSR and LAI at spatial resolutions coarser than 300 m
    corecore