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ABSTRACT 
 
This thesis investigated the impact of differing sensor spatial resolutions on leaf area 

index (LAI) modelling. Airborne images along with ground measurements of LAI 

were acquired for riparian areas along the Oldman River in southern Alberta. 

Airborne images were spatially resampled to spatial resolutions between 18 cm and 

500 m, and the Modified Simple Ratio (MSR) was calculated from the imagery. LAI 

regression models were created at each spatial resolution, and changes in the 

relationship between MSR and LAI were observed at each spatial resolution, as well 

as changes in the modelled LAI estimates. The relationship between MSR and LAI 

was scale invariant at spatial resolutions as low as 10 m, and only moderately changed 

until 30 m. MSR and predicted LAI gradually reduced as resolution coarsened further, 

with large changes occurred beyond 100 m. No relationship was evident between 

MSR and LAI at spatial resolutions coarser than 300 m. 
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1. INTRODUCTION 

An estimated 40,000 large dams and 800,000 small dams have been 

constructed on the world’s rivers, intercepting almost two-thirds of the fresh water 

flowing to the oceans (Nilsson & Berggren, 2000). These dams provide a stable water 

supply for agricultural, municipal, and industrial use. An unfortunate consequence of 

river regulation is that river discharge patterns have been altered from those of the 

natural flow regime (Braatne et al., 2008; Nilsson & Berggren, 2000). Vegetation in 

riparian ecosystems have often been negatively impacted by these alterations, as these 

vegetation species are adapted to the natural river flow patterns (Brismar, 2002; 

Shafroth et al., 2002). 

Riparian areas are located adjacent to water courses, serving as the transition 

zone between aquatic and terrestrial ecosystems (Gregory et al., 1991). These 

ecosystems are among the most diverse on the planet, and their importance to the 

biosphere is very high relative to their small spatial extent (Naiman et al., 1993). 

Healthy riparian vegetation contributes to water filtration, flood mitigation, and river 

bank stabilization, among many other benefits (Anbumozhi et al., 2005; Patten, 1998). 

Cottonwood trees are found in many riparian areas, often acting as the 

cornerstone of the entire riparian ecosystem. Their roots help stabilize the river 

channel, allowing establishment of understory vegetation (Gom & Rood, 1999). The 

trees also provide shade and habitat for terrestrial and aquatic animals (Gom & Rood, 

1999). 

Riparian cottonwoods are in a state of decline along many major rivers, and 

alterations of the river flow regime by dams and other regulation mechanisms are 

implicated as the primary cause (Braatne et al., 2007; Howe & Knopf, 1991; Rood & 

Mahoney, 1990; Scott et al., 1999). These alterations include reductions in the amount 
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of annual river discharge, reductions in flooding, and alterations to the timing of river 

peak flows (Rood & Mahoney, 1990). The reduction of discharge has led to a 

lowering of the floodplain water table, causing moisture stress in the trees (Scott et 

al., 1999). Cottonwood seeds are released to coincide with high streamflow conditions 

in order to capitalize on moist sites scoured of vegetation (Rood et al., 2003). 

Reductions in flood events has resulted in fewer suitable sites available for seedling 

germination, while alterations of the timing of peak flows have led to cottonwood 

seedlings being released at suboptimal times, reducing their chances of survival (Rood 

et al., 2003). Climate change may exacerbate these problems in many areas, placing 

further strain on cottonwoods (Rood et al., 2008; Stromberg et al., 2010). 

1.1 Riparian Cottonwoods in Southern Alberta 

In the prairies of southern Alberta, Canada, agriculture dominates the 

landscape. The majority of crops in the region are irrigated to mitigate the risk of 

shortfalls in precipitation due to the semi-arid climate. Irrigation water is primarily 

drawn from a number of major rivers crossing the region, with much of it coming 

from the Oldman River, which flows through the city of Lethbridge, the main urban 

centre in the area.  

Water from the Oldman River is heavily allocated. In 2006 almost 70% of the 

mean annual natural streamflow was allocated to agricultural, municipal, and 

industrial purposes (AMEC, 2009). Actual water consumption was less than half the 

allocated amount at 29% of mean annual flow (AMEC, 2009). Agricultural irrigation 

accounted for 83% of water allocations, and 88% of actual water consumption 

(AMEC, 2009). Water use on the river is forecast to increase by 27% to 40% over the 

2006 amount by the year 2030, amounting to 36% to 40% of the mean annual river 

flow (AMEC, 2009). Irrigation is predicted to account for 75% of this increase. 
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 Aside from supporting agricultural and municipal activities, the Oldman River 

supports a diverse and vibrant riparian ecosystem. Cottonwood trees, of the Genus 

Populus, are the major vegetation type. Three main species are represented along the 

river (Populus deltoides, Populus augustifolia, and Populus balsamafera), along with 

numerous interspecific hybrids. The Oldman River is of unique ecological 

significance, representing the only known area where the ranges of these three 

cottonwood species overlap to produce a tri-specific hybrid swarm (Floate, 2004). 

Following the construction of a dam on the Saint Mary River, one of the 

Oldman River tributaries, a 48% reduction in cottonwoods was observed downstream 

of the dam  (Rood & Heinze-Milne, 1989). While the same dramatic decline was not 

seen on the Oldman River following construction of the Oldman Dam in 1992, efforts 

are being made to ensure continued cottonwood health through sustainable flow 

management practices (Rood et al., 2005). Positive results have been shown when 

alternative flow management practices were implemented, with high cottonwood 

seedling recruitment and survival (Rood et al., 1998); however, quantitative 

measurements of the ecosystem response are necessary (Rood et al., 2005).  

Riparian response can be assessed through monitoring vegetation biophysical 

parameters including the evapotranspiration (Nagler et al., 2005), leaf area index 

(Gray & Song, 2012), the concentration of foliage biochemicals including nitrogen 

and chlorophyll (Yoder & Pettigrew-Crosby, 1995), and the fractional cover of the 

vegetation (Xiao & Moody, 2005), among other measures. 

1.2 Leaf Area Index 

The leaf area index (LAI) is a key biophysical parameter and measure of 

foliage density. LAI is functionally linked to many key vegetation processes, and 

consequently, it is a necessary parameter for many climatic, vegetation, and 
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hydrologic models (Beck et al., 2006; Buermann et al., 2001; Moran et al., 1995; 

Sellers et al., 1997).  

The LAI is related to evapotranspiration (ET), the sum of water evaporation 

from water bodies and the soil as well as water transpiration through the leaves of 

plants. ET can provide a measure of the water requirements of riparian vegetation 

(O'Keeffe & Davies, 1991). Changes in the rate of ET can also indicate moisture 

stress in the vegetation (Landsberg & Sands, 2011). Thus, monitoring ET is critical 

for assessment of the riparian response to alternative flow management strategies. 

Due to its important influence over the rate of ET, LAI is a required input parameter 

for many ET models (Glenn et al., 2007). Therefore, measures of LAI are important 

for assessing the water use requirements of riparian vegetation. 

1.3 Remote Sensing for LAI Estimation 

Ground-based measurements of LAI are costly, have a low spatial coverage, 

and scaling them up to estimate LAI at the landscape or regional scale is problematic 

(Zheng & Moskal, 2009). Remote sensing is capable of providing estimates of LAI 

over large areas, allowing regional or global-scale assessments of LAI (Zheng & 

Moskal, 2009). 

Remote sensing is the derivation of information about the Earth’s surface 

through measurements of electromagnetic radiation (EMR) using terrestrial, airborne, 

or space-borne sensors (Jensen, 2007). Differences in LAI are correlated with 

differences in the EMR reflectance of vegetation in particular spectral regions 

(Jordan, 1969). This correlation allows models to be constructed based on remote 

sensing data which can be used to estimate LAI. The ability to estimate LAI using 

remote sensing in this way has been exploited for many years to obtain regional and 
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global-scale estimates of LAI (Asrar et al., 1984; Chen et al., 2002; Colombo et al., 

2003; Jordan, 1969; Myneni et al., 1997; Serbin et al., 2013; Turner et al., 1999). 

To assess the LAI for all riparian areas along a river through ground 

measurements alone would be very difficult, if not impossible. Providing timely LAI 

estimates over multiple years to inform dam managers on riparian health would not be 

feasible; therefore, it is necessary to use remote sensing to provide LAI estimates. For 

this reason, the research in this thesis examined the use of remote sensing to provide 

operational monitoring of riparian LAI.  

Implementation of a riparian LAI monitoring program requires selection of a 

remote sensor that possesses appropriate characteristics to satisfy the requirements of 

the project. Among the various sensor characteristics is the spatial resolution, which 

quantifies the amount of spatial detail in images acquired by the sensor. 

1.4 Spatial Scale in Remote Sensing 

Spatial scale refers to the amount of spatial detail in a measurement, map, or 

study. Depending on the scale of analysis, the objects, phenomena, and patterns under 

study can change (Gehlke & Biehl, 1934; Marceau, 1999; Openshaw & Taylor, 1979). 

Thus, determination of the appropriate spatial scale for measuring phenomena is a key 

issue in geographical studies. 

In remote sensing, the issue of scale is related to the sensor spatial resolution. 

The spatial resolution is usually quantified using the ground sampling distance (GSD), 

the ground distance between the centres of adjacent picture elements (pixels) in a 

remotely sensed image (Woodcock & Strahler, 1987). The smaller the GSD, the 

greater the amount of resolvable spatial detail. 

There are now many remote sensing systems available, offering a wide range 

of spatial resolutions. Satellite sensor spatial resolutions vary from sub-1 metre to 
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coarser than 1 kilometre. Airborne and unmanned aerial vehicle (UAV) platforms can 

also offer very high-spatial resolution data of just a few centimetres. 

High-spatial resolution data are often desirable, as high-spatial resolution 

imagery can be spatially resampled to coarser spatial resolutions if required, while the 

opposite is not possible. However, achieving a high-spatial resolution requires 

tradeoffs, such as decreasing the spatial coverage or decreasing the spectral 

information content (Landgrebe, 2005; Schott, 2007). Therefore, care must be taken 

to select an appropriate spatial resolution for a desired study. An excessively high-

spatial resolution may add no useful spatial detail, as the phenomena of interest are 

occurring at scales larger than the spatial resolution. In such cases, the use of a lower 

spatial resolution sensor is appropriate. However, use of a sensor with too low a 

spatial resolution risks sacrificing too much spatial detail, leading to inadequate 

characterization of the geographic phenomena being studied. 

Figure 1.1 visually demonstrates the scale issue in remote sensing. The figure 

shows a false-colour infrared image of the same scene at three progressively coarser 

spatial resolutions. At the highest spatial resolution (18 cm) it is possible to spatially 

resolve individual trees, vehicles in the parking lot, and pathways through the site. At 

a resolution of 30 m small details are not resolvable, but it is still possible to separate 

vegetation, water, gravel bars, and asphalt from each other. At a spatial resolution of 

250 m it is no longer possible to discern any spatial detail in the scene. However, a 

250 m spatial resolution may perform well for separation of large areal extent land-

cover types at a global scale, such as large lakes, cities, and forests. 
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Figure 1.1 – Comparison of the same scene at three different spatial resolutions. 

Resolutions shown are: (a) 18 cm, (b) 30 m, and (c) 250 m. 
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The impact of spatial resolution is often studied by performing sensitivity 

analyses, examining the variations in results which occur when spatial resolution 

changes (Marceau & Hay, 1999). Images are acquired at multiple spatial resolutions 

and a quantity of interest is calculated at each spatial resolution, with changes in the 

estimated parameter being observed at every spatial resolution. The multi-resolution 

images can be acquired directly from sensors or simulated by spatially resampling 

high-spatial resolution image data to lower spatial resolutions. 

Some spatial resolution sensitivity analyses have been carried out previously 

in the context of vegetation monitoring. Some studies have found that differences in 

spatial resolution produce differences in the products derived from a remotely sensed 

data, and consequently in biophysical parameter estimates (Chen, 1999; Teillet et al., 

1997). Other studies have found that differences in spatial resolution do not yield 

significant changes in the modelled results (Sprintsin et al., 2007).  

The issue of spatial scale has not been addressed in the context of riparian LAI 

modelling. Riparian areas are an interesting setting to examine the effects of spatial 

resolution due to their small spatial extent and their high-spatial heterogeneity. The 

author hypothesizes that these factors will result in substantial changes in LAI 

modelling results as the spatial resolution decreases. 

In this research, a sensitivity analysis was performed on the impact of spatial 

resolution on riparian LAI modelling using remote sensing. The sensitivity analysis 

was performed to help determine an appropriate spatial resolution for operational 

riparian LAI monitoring. 

1.5 Consumer Digital Cameras as Remote Sensing Instruments 

The use of inexpensive consumer digital cameras in airborne remote sensing 

has been a growing trend in recent years, attributable to the ever increasing quality of 
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digital camera systems which allows the user to obtain high quality results that were 

previously only achievable using professional-grade airborne and space-borne 

sensors. The proliferation of UAV platforms has also led to the growing use of digital 

cameras. Consequently, digital cameras have been used in a wide range of 

applications including mapping (Laliberte et al., 2008), crop monitoring (Hunt et al., 

2010), forestry (Wang et al., 2011), natural disaster assessment (Bendea et al., 2008), 

archaeology (Fallavollita et al., 2013) and more.  

Sensor characterization and calibration is an important aspect of traditional 

remote sensing. Satellite-based sensors are subject to rigorous characterization both 

before being put into orbit as well as ongoing checks during the lifespan of the sensor 

(Nagaraja Rao & Chen, 1996; Slater et al., 1995; Teillet et al., 1990; Thorne et al., 

1997). This characterization allows calibrations to be created and applied to convert 

raw sensor data into physical units of radiance or spectral reflectance. 

Digital camera characterization and calibration has been extensively explored 

in the field of computer vision (Ebner, 2007; Grossberg & Nayar, 2004; Vora et al., 

1997a, 1997b; Zhang, 2000). Unfortunately, the subject has not been treated with the 

same level of detail within the UAV and digital camera remote sensing fields. Often it 

is not addressed, or is given a cursory, incomplete treatment. Consequently much of 

the data being generated by digital cameras are afflicted by various aberrations which 

negatively impact the data quality. Furthermore, these studies often use raw digital 

numbers (DN) output by the camera rather than calibrating the data to some standard, 

such as units of radiance or spectral reflectance (Ide & Oguma, 2010; Jensen et al., 

2007; Richardson et al., 2007). Uncalibrated sensor data is of limited utility, as the 

raw DNs are not physically meaningful and are inconsistent, making it difficult to 

compare images between sites or over time (Jensen, 2005). 
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The research conducted in this thesis used consumer digital cameras to obtain 

airborne image data for riparian LAI modelling. Consequently, a substantial portion 

of the thesis deals with the issue of camera characterization and calibration. Sensor 

characteristics were assessed in laboratory-based experiments, and calibrations were 

applied to compensate for sensor aberrations and to convert the raw camera data to 

spectral reflectance units. The quality of the calibrated camera data was evaluated 

through comparison with professional-grade terrestrial and satellite sensors. 

1.6 Objectives 

The main objective of this research was to study the effects of differing spatial 

resolutions on modelling the LAI of riparian areas using optical remote sensing data. 

A secondary goal of this study was to evaluate the use of calibrated digital cameras in 

a quantitative remote sensing application. These objectives were broken down into the 

following sub-objectives: 

• Determine the spatial, spectral, and radiometric characteristics of consumer-

grade digital cameras and develop calibrations to compensate for detrimental 

sensor effects. 

• Obtain airborne image data over southern Alberta riparian areas and compare 

the calibrated airborne images with data from professional-grade sensors. 

• Simulate images of varying spatial resolutions from the airborne image data. 

• Create models for LAI prediction using the images at each spatial resolution 

and use the models to predict riparian LAI. 

• Evaluate the changes in both the LAI models and in the modelled LAI 

predictions as the spatial resolution changes. 
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1.7 Thesis Organization 

This thesis is divided into 5 chapters. Chapter 2 discusses background 

information relevant to the research performed in the subsequent chapters. 

Background is provided on riparian areas, LAI, and remote sensing. Chapter 3 details 

the camera characterization and calibration study. Chapter 4 presents the study of 

spatial resolution effects on modelling riparian LAI, as well as the comparison of the 

calibrated digital camera data with professional-grade sensors. Chapter 5 concludes 

the thesis, summarizing the major findings and providing potential directions for 

future research. 
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2. BACKGROUND 

2.1 Introduction 

This chapter presents the relevant background pertaining to the research in this 

thesis. Riparian areas are discussed first, as the threats facing these important 

ecosystems form the main motivation for the research. Leaf area index, the 

biophysical parameter of interest in this study, is discussed in the following section. 

As this was primarily a remote sensing study, the third and largest section 

discusses remote sensing, including how remote sensing is used to estimate LAI over 

landscapes and how the factor of scale, or spatial resolution, impacts the information 

derived from remote sensing data. This section also defines important remote sensor 

characteristics and preprocessing tasks pertaining to the camera characterization and 

calibration work performed in this thesis. 

2.2 Riparian Areas and Cottonwood Trees 

Riparian ecosystems are found on the floodplain adjacent to water courses. 

Riparian zones are transitional, acting as the interface between the terrestrial and 

aquatic ecosystems (Gregory et al., 1991). These areas are important for maintaining 

regional biodiversity, typically possessing a much higher species richness than their 

surroundings (Gregory et al., 1991; Naiman et al., 1993). This difference is 

particularly pronounced in arid and semi-arid climates, where the riparian ecosystem 

hosts many plant and animal species that are not found elsewhere in the region 

(Patten, 1998). The unique richness of the riparian zone is primarily due to abundant 

and readily available moisture caused by a shallow water table and regular flooding, 

along with the large volume of nutrients deposited by the river (Naiman et al., 1993). 

Consequently, riparian areas are able to support a wide variety of plant species, which 
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in turn provide food, habitat, breeding grounds, and migration corridors for various 

animal species (Naiman et al., 1993).  

 Aside from their ecological importance, healthy riparian zones confer many 

benefits. Riparian vegetation contributes to water filtration by intercepting sediments, 

pollutants, and nutrients from agricultural runoff (Anbumozhi et al., 2005). Their 

roots help to stabilize the river bank, which, along with increased interception of 

sediment runoff, reduces soil erosion and channel siltation that is harmful to fish and 

other marine species (Patten, 1998). During floods, riparian vegetation slow the river 

velocity and absorb some of the water, reducing the flood severity (Brismar, 2002). 

With each of the above there are associated economic advantages. Less severe floods 

reduce the damage to residences and infrastructure, a healthy fish stock aids the 

commercial and recreational fishing industries, and better water filtration reduces the 

cost and resource use associated with water treatment, to name but a few benefits. 

 Deciduous trees of the genus Populus, commonly called cottonwoods, are the 

dominant vegetation in many riparian areas, where the trees form the basis for the 

entire ecosystem (Gom & Rood, 1999). Their roots stabilize the river channel and 

develop the soil, allowing for other vegetation to become established (Rood et al., 

2003). The tree canopy also provides shade for understory vegetation and animals, as 

well as providing key animal habitat (Rood et al., 2003). 

2.2.1 Cottonwood Decline 

Riparian cottonwoods are in a state of decline along many North American 

rivers (Braatne et al., 2007; Howe & Knopf, 1991; Rood & Heinze-Milne, 1989; Scott 

et al., 1999). Flow regulation mechanisms including dams and other water diversions 

are implicated as a major contributor to this decline (Nilsson & Berggren, 2000; Rood 

& Mahoney, 1990; Williams & Cooper, 2005). Flow regulation has altered the natural 
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flow regimes by reducing annual stream discharge and reducing the occurrence of 

flood events, altering the timing of peak flows in the spring, and blocking the 

transport of sediments downstream (Rood & Mahoney, 1990; Williams & Cooper, 

2005).  

The reduction in discharge has led to a lowering of the floodplain water table, 

causing chronic moisture stress and increased mortality in the trees, with younger 

trees being particularly impacted due to their shallow roots (Scott et al., 1999).  

The reduction in flood events has negatively impacted seedling recruitment. 

Cottonwoods seedlings can only become established on bare sediment that has been 

scoured of other vegetation during floods (Rood et al., 2003). Reduced flooding has 

resulted in less scoured sites being available for seedlings to germinate. 

Cottonwoods seedling release occurs within a limited window corresponding 

with the end of the peak flows in the spring in order to capitalize on freshly scoured 

sites (Mahoney & Rood, 1998). Alterations in the timing of peak flows mean that 

cottonwood seeds are being released at sub-optimal times, further reducing their odds 

of survival. Finally, the blocking of sediments by dams has led to reduced deposition 

and increased down-cutting of the river channel downstream of the dam, reducing the 

amount of suitable sites for cottonwood establishment (Rood et al., 2003). 

Cottonwood forests are threatened by a number of other factors besides flow 

regulation. Climate change has caused similar effects to those of stream regulation by 

altering the timing and magnitude of spring flooding and reducing summer flows 

(Rood et al., 2008). The negative impacts of climate changes are predicted to become 

more pronounced in the future (Rood et al., 2008; Stromberg et al., 2010). The 

grazing of livestock, natural resource extraction, and urban development are other 

major contributors to riparian damage (Belsky et al., 1999; Patten, 1998).  
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 The decline of cottonwood forests on regulated rivers has led to the 

investigation of alternate water management practices to prevent further losses and 

rejuvenate the riparian zone. Some strategies are based upon maintaining minimum 

in-stream flows to support vegetation. These strategies are generally considered to be 

overly simplistic, as they ignore the patterns and dynamism of the natural flow regime 

(Poff et al., 1997). A better alternative involves the integration of minimum stream 

flows along with emulation of the natural flow patterns of the river by allowing higher 

peak flow during the spring followed by a more gradual decline in flow during the 

summer months (Poff et al., 1997; Rood et al., 2005). These so-called “ramped flow” 

regimes have been attempted on a number of regulated rivers, including the Oldman 

River and St. Mary River in Southern Alberta (Rood & Mahoney, 2000; Rood et al., 

1998). Following their implementation, a large increase in cottonwood recruitment 

and seedling survival was observed along both rivers.  

Despite the positive initial results, it is necessary to obtain more quantitative 

data to evaluate the effectiveness of these alternative dam management practices 

(Rood et al., 2005). This should include ongoing monitoring of the health status of 

riparian areas downstream of the dams. While monitoring the health status of a select 

number of riparian areas through ground measurements is possible, it is infeasible to 

monitor large stretches of a river in this way. Remote sensing can be used in 

conjunction with ground measurements to provide quantitative riparian monitoring 

along entire rivers. Remote sensing can estimate quantities related to cottonwood 

health and function including the evapotranspiration (Nagler et al., 2005), the leaf 

area index (Gray & Song, 2012), the fraction of absorbed photosynthetically active 

radiation (fAPAR) (Fensholt et al., 2004), the concentration of foliage biochemicals 
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such as nitrogen and chlorophyll (Yoder & Pettigrew-Crosby, 1995), and the density 

and percent cover of the trees (Xiao & Moody, 2005).  

This thesis used remote sensing to estimate the leaf area index for riparian 

zones. Within this context, remote sensing data were coupled with ground 

measurements to create empirical models for predicting the leaf area index of riparian 

zones along the Oldman River. 

2.3 Leaf Area Index 

Foliage density is a governing factor in many important vegetation processes 

including gas exchange, biomass production, photosynthesis, and water interception 

(Asner et al., 2003; Chen & Cihlar, 1996; Running & Coughlan, 1988). The leaf area 

index (LAI) is a biophysical parameter that quantifies foliage density, commonly 

defined as half of the total green leaf area per unit ground area (Chen & Black, 1992). 

It is a critical variable in many vegetation, climatic, and hydrologic models (Running 

& Coughlan, 1988; Sellers et al., 1997). These models are used in a range of 

applications including vegetation monitoring (Beck et al., 2006), climate forecasting 

(Buermann et al., 2001), water management (Duchemin et al., 2006), and biomass 

yield prediction (Moran et al., 1995). LAI has been recognized as an essential climate 

variable for the Global Climate Observing System – an international initiative for 

climate monitoring – due to its key role in vegetation-atmosphere interactions (GCOS, 

2010). 

Of particular importance for this thesis is how LAI relates to 

evapotranspiration (ET). ET is the sum of water lost to the atmosphere through 

evaporation from the land and water bodies and transpiration through vegetation 

foliage (Wilson et al., 2001). Transpiration occurs through stomata, tiny pores on the 

surface of leaves which also allow the exchange of carbon dioxide and oxygen 
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(Landsberg & Sands, 2011). When water is in short supply, plants narrow their 

stomata to conserve water, making the rate of ET a measure for detecting moisture 

stress in vegetation (Landsberg & Sands, 2011). The ET rate can also be used to 

assess the water requirements of vegetation, and thus the minimum instream flow 

needs for riparian vegetation (O'Keeffe & Davies, 1991).  

For these reasons, knowledge of riparian ET is important for assessing the 

vegetation response to alternative dam management strategies. LAI is a required input 

for many ET models (Glenn et al., 2007). Thus, being able to provide the LAI 

estimates needed for riparian ET modelling is the driving motivation for this research. 

2.3.1 Ground Measurement of LAI 

 LAI measurements may be obtained through a variety of ground-based 

methods. The most direct method involves destructive sampling, where entire plants 

are harvested and their leaves removed, dried, and weighed. This dry weight is then 

multiplied by the specific leaf area (SLA), the average leaf area per unit dry weight, 

and then divided by the plant footprint to determine the LAI (Gower et al., 1999). 

While it is considered the most accurate method, destructive sampling is very labour 

intensive, particularly within forests, making it difficult to obtain large sample sizes 

(Jonckheere et al., 2004). The technique also damages the ecosystem under study, 

which may prevent its use in environmentally protected areas (Jonckheere et al., 

2004). 

 Litter traps are an indirect measurement technique, using containers that 

collect leaves falling from the trees during senescence. As with destructive harvesting, 

the collected leaves are then dried and weighed, with the weight being multiplied by 

the SLA and divided by the trap footprint (Jonckheere et al., 2004). Litter traps have 

the advantage of being non-destructive and less labour intensive than destructive 
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harvests; however, the traps have a small measurement footprint, and the method is 

based on the assumption that the leaves caught in the traps are representative for the 

leaf-fall over the entire site (Jonckheere et al., 2004). The accuracy of litter traps also 

suffers in evergreen forests where the trees maintain much of their foliage year round 

(Jonckheere et al., 2004). 

 Allometric models are another indirect method for LAI estimation. Allometry 

is the study of proportional scaling relationships between the size of different 

components of an organism, or scaling between the size of an organism and 

physiological processes (Damuth, 2001). Allometric LAI models use relationships 

between canopy leaf area and other plant dimensions, such as the diameter at breast 

height (DBH), sapwood area, and tree height to estimate LAI (Gower et al., 1999). 

Allometric relationships must first be determined through destructive harvesting of a 

representative sample of plants (Gower et al., 1999). Once the model is calibrated, 

measurements of the proxy parameter can be used to estimate LAI. Often studies will 

use allometric models derived from other areas to avoid the use of destructive 

sampling. However, allometric relationships are often site-specific, and using a model 

outside the area it was calibrated for can result in large errors (Gower et al., 1999). 

It is also possible to estimate LAI indirectly through measurements of optical 

light transmission through the canopy. Such techniques have become popular in 

recent LAI studies (Arias et al., 2007; Chen et al., 2006; Cutini et al., 1998; Garrigues 

et al., 2008). The popularity of optical techniques is due to the fact that they are non-

destructive and much less labour intensive than other methods, allowing a greater 

number of samples to be collected more rapidly (Jonckheere et al., 2004).  Optical 

methods use upward facing sensors to measure the transmission of light passing 

through the canopy, which is quantified using canopy gap analysis (Weiss et al., 
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2004). Gaps are the areas in a canopy devoid of vegetation that allow the transmission 

of light. Gap analysis involves measuring either the fraction of gaps within the 

measured area (gap fraction analysis), or the size and distribution of gaps in the 

canopy (gap size distribution analysis) (Weiss et al., 2004). LAI is calculated from 

gap analysis using light extinction models based on the probability of a beam of 

radiation being able to pass unobstructed through a vegetated canopy (Gower et al., 

1999).  

One issue with optical measurements is that most instruments do not 

distinguish between leaves and other materials such as branches and stems; thus, the 

measured quantity includes these elements, and is often referred to as Effective LAI 

(eLAI) or as the Plant Area Index (PAI) to distinguish it from the true LAI 

(Jonckheere et al., 2004). In deciduous forests, LAI may be derived from PAI by 

taking measurements of the fully senesced trees, then correcting the leaf-on 

measurements using the woody-to-total area ratio (Chen, 1996). 

 The LAI-2000 Plant Canopy Analyzer (Li-Cor, Inc., Lincoln, NE, USA), 

shown in Figure 2.1, calculates LAI using gap fraction analysis, and has been 

employed in many studies (Arias et al., 2007; Cutini et al., 1998; Deblonde et al., 

1994; Garrigues et al., 2008). The instrument measures light transmittance using 5 

concentric detector rings below a fisheye lens with the following zenith angle ranges: 

0 – 13°, 16 – 28°, 32 – 43°, 47 – 58° and 61 – 74° (Figure 2.1) (Li-Cor, 1992). Gap 

fraction is calculated by comparing differential measurements of above and below 

canopy light transmission (Welles & Norman, 1991). 
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Figure 2.1 – LAI-2000 Plant Canopy Analyzer. The top shows the instrument, while 

the bottom depicts fisheye lens and 5 concentric detector rings (Li-Cor, 1992). 

The LAI-2000 calculation of LAI assumes a random foliage distribution, while 

in reality, foliage tends to be non-random and clumped, leading to the LAI being often 

underestimated (Chen & Cihlar, 1995). The clumping index is a correction factor 

which may be applied to LAI-2000 measurements in order to correct them for foliage 

clumping effects (Chen & Cihlar, 1995). This index quantifies the amount of 

clumping of foliage elements within a vegetated canopy. The index ranges from 0 to 
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1, with 0 being a perfectly clumped canopy and 1 being perfectly random (Chen & 

Cihlar, 1995). The Tracing Radiation and Architecture of Canopies (TRAC, 3rd Wave 

Engineering, Ottawa, ON, CA) instrument may be used to calculate the clumping 

index from the canopy gap size distribution. The TRAC measures the size and 

distribution of canopy gaps in the direction of the sun at a high frequency while a user 

walks at a steady pace along a transect (Figure 2.2) (Chen & Cihlar, 1995).  

 

 

Figure 2.2 – Diagram of TRAC function. Canopy gap size and distribution is 
measured along a transect using the upward facing TRAC sensors. The gap-size 

distribution is used to calculate the clumping index. 

In this research, both direct and indirect measurements of LAI were acquired 

on the ground. Destructive harvest methods were used to estimate the riparian 

understory LAI, while litter traps and optical measurements were used to estimate the 

tree canopy LAI. Optical LAI measurements were obtained using two LAI-2000 

instruments, while a TRAC was used to derive the clumping index which was used to 

correct the LAI-2000 measurements. 
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2.4 Remote Sensing 

Remote sensing, broadly defined, is the science of deriving information about 

an object or phenomenon without being in physical contact with it (Schott, 2007). 

Terrestrial remote sensing refers to the observation of the Earth’s surface, typically 

through the use of airborne or space-borne sensors. These sensors measure 

electromagnetic radiation (EMR) that is reflected, emitted, or transmitted by objects 

on the ground. The EMR is recorded in the form of a 2-dimensional image, allowing 

differences in EMR to be observed and quantified across a landscape. The discussion 

in this section is limited to terrestrial remote sensing. 

Electromagnetic radiation propagates through space as a wave in the form of 

photons, discrete packets of radiant energy which possess a spectrum of different 

wavelengths. Wavelengths are typically measured in units of micrometres (µm, 10-

6m), or nanometres (nm, 10-9m), and broad regions of the EMR spectrum are 

classified by wavelength. Table 2.1 shows the boundaries for some of the EMR 

wavelength regions commonly used in optical remote sensing. The exact wavelengths 

for these regions can differ, but are typically similar to those in the table. 

Table 2.1 – Optical Regions of the Electromagnetic Spectrum. 
Spectral Region Name Wavelength Range 

Ultraviolet (UV) 0.01 – 0.4 µm 
Visible Light (VIS) 0.4 – 0.7 µm 
Near Infrared (NIR) 0.7 – 1.1 µm 

Shortwave Infrared (SWIR) 1.1 – 3.0 µm 
Midwave Infrared (MWIR) 3.0 – 5.0 µm 
Longwave Infrared (LWIR) 5.0 – 20.0 µm 

Far Infrared (FIR) 20.0 – 1000 µm 
 

EMR is quantified as irradiance and radiance. Irradiance is the radiant flux 

(radiation per unit time) being received by a surface per unit area (Schott, 2007). The 

main source of irradiance is usually the Sun, referred to as solar irradiance. Radiance 

is the radiant flux that is exiting the surface and being measured by the remote sensor 
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(Schott, 2007). Radiance and irradiance are typically expressed per unit wavelength, 

quantities referred to as spectral irradiance and spectral radiance, respectively. Objects 

on the ground can be characterized based on their spectral reflectance, calculated by 

dividing spectral radiance by spectral irradiance (Schott, 2007). 

Depending on the physical characteristics of objects, they will often reflect, 

absorb, emit, and transmit EMR differently from one other. These differences allow 

object characteristics to be inferred from spectral measurements. Differences in the 

spectral reflectance of vegetation, water, and pavement, for instance, can allow these 

land surface types to be spectrally distinguished and classified in a remotely sensed 

image (Landgrebe, 2005). Likewise, differences in the properties of the same type of 

object – the density or photosynthetic activity of vegetation, for example – are often 

correlated to differences in spectral reflectance, allowing these properties to be 

estimated using remotely sensed spectral data (Jensen, 2007). 

 The primary advantage of remote sensing over other measurement techniques 

is the ability to obtain a synoptic view of an area. While the information derived from 

remote sensing is more limited and is prone to higher uncertainty than ground 

measurements, remote sensing is the only feasible means to obtain data at the 

landscape, regional, and global scales required for many applications. Another key 

advantage is the ability to repetitively image an area, providing the ability to detect 

changes over time.  

Because of these advantages, remote sensing is widely used in vegetation 

monitoring. It has been used to detect changes in vegetation cover (Rogan et al., 2002; 

Stow et al., 1996), to estimate biophysical variables including LAI (Chen, 1996; Lee 

et al., 2004), chlorophyll content (Datt, 1998; Gitelson & Merzlyak, 1996), and 

evapotranspiration (Glenn et al., 2007; Nagler et al., 2005) for yield estimation in 
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agriculture and forestry (Doraiswamy et al., 2003; Goetz & Prince, 1996) among 

many other applications. 

2.4.1 Remote Sensing Estimates of Leaf Area Index 

Ground measurements of LAI are labour intensive and costly to carry out, 

limiting their ability to be employed for estimating LAI over large areas (Zheng & 

Moskal, 2009). In order to provide regional or global estimates of LAI it is necessary 

to use remote sensing data. 

LAI has been traditionally modelled using passive optical remote sensing. 

Optical remote sensing is not capable of directly measuring LAI; instead, 

measurements of EMR from the vegetation are used as a proxy to estimate it using 

models (Asner et al., 2003). These models are based on the fact that differences in 

vegetation spectral reflectance in various spectral regions are correlated with 

differences in LAI (Jordan, 1969).  

More recently, active remote sensing methods including RADAR and LiDAR 

have been used to model LAI (Manninen et al., 2005; Morsdorf et al., 2006; Riaño et 

al., 2004; Xu et al., 1996). Active sensors send out pulses of EMR and measure the 

timing and characteristics of the return signal. LAI modelling with active remote 

sensing has several advantages over passive optical methods. Active methods can 

provide additional information on vegetation structure and height (Zheng & Moskal, 

2009). Active remote sensing is also not reliant on clear skies or on sunlight, meaning 

measurements can be obtained at night and during overcast conditions (Manninen et 

al., 2005). 

There are a number of methods for estimating LAI using passive optical 

remote sensing. The oldest and most common approach is through the use of 

empirical models. These models are based on regression between ground-based 
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measurements of LAI and image spectral reflectance to create LAI prediction models 

(Propastin & Panferov, 2013). Empirical models are appealing due to their relative 

simplicity and low data requirements (Propastin & Panferov, 2013). They are usually 

based on spectral vegetation indices (SVIs), mathematical transformations of spectral 

reflectance data (Huete, 1988). These indices are often based on the relationship 

between reflected visible and infrared EMR, and are correlated to many aspects of 

vegetation function (Huete, 1988). SVIs have a positive correlation with LAI, with 

higher SVI values being correlated with higher LAI values. 

One of the main issues with the relationship between SVIs and LAI is the 

tendency for the SVI to saturate at moderate to high LAI values, becoming insensitive 

to further increases in LAI (Baret & Guyot, 1991). Another problem is that, due to the 

SVIs being correlated with many different vegetation properties, differing values for 

an SVI may not be strictly due to differences in LAI (Baret & Guyot, 1991). The 

relationships can also be sensitive to soil properties, sun-sensor geometry, 

atmospheric effects, and the spatial arrangement of the vegetation (Baret & Guyot, 

1991; Broge & Leblanc, 2001). Despite the issues associated with them, SVI-based 

empirical models have been implemented in many remote sensing studies of LAI 

(Asrar et al., 1984; Colombo et al., 2003; Gonsamo & Pellikka, 2012; Myneni et al., 

1997; Soudani et al., 2006; Turner et al., 1999).  

Hundreds of SVIs have been developed over the years, often for very specific 

applications. The most commonly used SVI is the Normalized Difference Vegetation 

Index (NDVI), which can be calculated as follows (Rouse et al., 1974): 

ܫܸܦܰ  = ܴܫܰ − ܴܫܴܰ݀݁ + ܴ݁݀ 
(2.1) 
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where NIR stands for spectral reflectance in near infrared wavelengths and Red stands 

for spectral reflectance in visible red wavelengths. 

While the NDVI is extensively used, it has been shown to be sensitive to soil 

brightness at low vegetation cover, as well as to atmospheric effects, introducing 

noise into its relationship with vegetation parameters (Baret & Guyot, 1991). Many 

different indices have been developed to improve on the deficiencies of the NDVI 

(Baret et al., 1989; Broge & Leblanc, 2001; Haboudane et al., 2004; Huete, 1988; Qi 

et al., 1994). The abundance of SVIs has led to many studies on the relative 

performance of different SVIs for modelling different vegetation parameters (Baret & 

Guyot, 1991; Broge & Leblanc, 2001; Colombo et al., 2003; Elvidge & Chen, 1995; 

Haboudane et al., 2004). What has been shown by these studies is that there is no 

overall best SVI; rather, SVI performance is variable depending on the vegetation 

type, the site conditions, the parameters of interest, and the range of values exhibited 

by the parameters (Broge & Leblanc, 2001). Therefore, it is prudent to test more than 

one SVI when attempting to model vegetation parameters. 

More complex methods for modelling LAI have been developed aside from 

simple SVI-based empirical models. One method makes use of canopy reflectance 

(CR) models, which simulate the spectral reflectance properties of a vegetated canopy 

using input biophysical, biochemical, and structural parameters, including LAI (Goel 

& Thompson, 1984; Jacquemoud et al., 2009; Peddle et al., 2004). When inverted 

these CR-based models can be used to estimate the parameters of interest based on the 

spectral reflectance of input imagery (Jacquemoud et al., 2009). CR-based models 

have the advantage of being physically based, as well as being capable of providing 

estimates for various key vegetation parameters in addition to LAI, such as the 

chlorophyll content, water content, and fAPAR (Jacquemoud et al., 2009). Despite 
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this advantage, CR models can be complex and difficult to parameterize, requiring, 

for instance, accurate knowledge of the vegetation structure, sun-sensor geometry, 

and atmospheric conditions (Jacquemoud et al., 1995; Propastin & Panferov, 2013). 

Spectral mixture analysis (SMA) is another method which has been employed 

in LAI estimation (Hu et al., 2004; Peddle & Johnson, 2000; Peddle et al., 1999). The 

theoretical basis for SMA is that the radiance measured in a given pixel is contributed 

by the individual “pure” surface components contained within that pixel, in amounts 

proportional to each component’s abundance (Adams et al., 1993). The “pure” 

spectral signature of a single component is known as an endmember. If the 

endmember spectra are known, SMA can be used to spectrally unmix image pixels, 

deriving the fraction of each endmember represented in each pixel (Adams et al., 

1993). In a forest canopy, the fundamental scene components are the sunlit canopy, 

the sunlit background, and shadow (Peddle et al., 1999). Through SMA, the fraction 

of each component can be estimated for each scene pixel, and the separate fractions 

can be used to estimate LAI through regression analysis (Peddle et al., 1999). SMA-

based models have demonstrated an improvement in LAI prediction over SVI-based 

empirical models; however, implementation of these models requires accurate 

measurements of the spectral signature of the scene endmembers (Peddle & Johnson, 

2000; Peddle et al., 1999) 

In this thesis, empirical models based on SVIs calculated from optical remote 

sensing data were created and used to estimate riparian LAI. While more complex CR 

or SMA-based models could possibly provide more robust and accurate LAI 

estimates, the simplicity and low data requirements of empirical models make them 

attractive for this research. 
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Few studies have implemented SVI-based empirical LAI models in riparian 

environments. Nagler et al. (2001) studied several SVIs as predictors of LAI and 

vegetation cover for riparian vegetation along the Colorado River in Mexico. The 

indices compared in the study were the NDVI, the Soil Adjusted Vegetation Index 

(SAVI), and the Enhanced Vegetation Index (EVI). They found that the NDVI 

performed slightly better than the SAVI and EVI, but all three were similar (R² = 

0.73, 0.65, and 0.64 respectively). 

2.4.2 Sensor Characteristics 

Sensors are the devices used in remote sensing to detect and record EMR. 

Traditionally, optical remote sensing was performed using film-based sensors; 

however, electro-optical sensors are much more commonly used today. An electro-

optical sensor is made up of several key components, namely the optics, the detectors 

and their associated electronics, and the analog-to-digital converter (ADC) 

(Landgrebe, 2005). The optics serve to direct and focus EMR onto the focal plane of 

the sensor, where the detectors reside. The detectors are made from photo-sensitive 

materials which, when struck by photons, emit electrons, producing a current and a 

buildup of electric charge. This charge is amplified and then passed to the ADC where 

it is converted from an analog to a digital signal, a process called quantization 

(Landgrebe, 2005). This digital signal is recorded in the form of a digital number 

(DN). The greater the radiance incident on the detector, the larger the electric charge 

generated, and the higher the resulting DN.  

The final output from the sensor is an image, a 2-dimensional array of picture 

elements (pixels). Pixels are discrete points (typically square) whose locations can be 

denoted by row and by column within the image, or by their physical location on the 
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ground. Each pixel contains the DNs recorded at different wavelengths over that 

particular area on the ground. 

Multiple detectors are typically used to record EMR at different wavelengths 

(referred to as spectral bands). Broadband EMR entering the sensor must be divided 

and sorted to pass only EMR of the desired wavelengths to specific detectors. This 

can be accomplished using several mechanisms including prisms and diffraction 

gratings to split the EMR, or bandpass filters which allow only specific wavelengths 

of EMR to pass through, as illustrated in Figure 2.3 (Landgrebe, 2005). 

 
Figure 2.3 – Illustration of light sorting mechanisms. (a) prism splitting; (b) 

diffraction grating splitting; (c) bandpass filtering. 

Sensor systems are classified by a number of metrics. One key metric is the 

signal-to-noise ratio (SNR) which is the ratio between the signal (the measured 

radiance) and the noise (random variations which cause uncertainty in the measured 

signal) (Landgrebe, 2005). Higher SNR sensors allow smaller differences in the signal 

to be more confidently measured.  

(a) 

(b) 

(c) 
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Another key metric is the spatial extent, the ground area covered in a single 

image (Jensen, 2007). A related term is the swath width, referring to the width of an 

image perpendicular to the travel direction of the sensor. Space-borne sensors, being 

much further from the ground, almost always have a much larger spatial extent and 

swath width than airborne sensors.  

Another important metric is the location and width of the spectral bands, 

which determine the portions of the EMR spectrum and range of wavelengths within 

each (Landgrebe, 2005). While some sensors only cover a narrow portion of the 

spectrum, such as only visible wavelengths, others like the Moderate-resolution 

Imaging Spectroradiometer (MODIS) sensor provide coverage from visible to 

longwave infrared wavelengths (Xiong et al., 2009).  

In addition to the above metrics, sensor systems are normally classified 

according to four fundamental resolutions. These are the spatial resolution, the 

spectral resolution, the radiometric resolution, and the temporal resolution. 

2.4.2.1 Spatial Resolution 

Spatial resolution refers to the level of spatial detail in an image. The spatial 

resolution of a sensor is related to the detector instantaneous field-of-view (IFOV). 

The IFOV is the angular field-of-view of a detector element over which radiance is 

integrated (Schott, 2007). Projecting the IFOV onto the ground yields the ground-

projected instantaneous field-of-view (GIFOV), the ground area over which the 

detector measures radiance (Schott, 2007). Thus, the GIFOV is a product of the IFOV 

and the height of the platform above the terrain. 

Another spatial resolution metric is the ground sampling distance (GSD), the 

ground distance between two adjacent pixel centres in an image (Warner et al., 2009). 

The GSD is related to the height of the platform above the ground and the sampling 
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interval, the distance between spectral samples measured by the sensor (Driggers, 

2003). The GSD is almost always approximately equivalent to the GIFOV (Driggers, 

2003). Because the GSD is variable depending on the terrain, a nominal value may be 

used to describe the average GSD within an image. 

The spatial resolution of a sensor depends on the distance between the sensor 

and the ground, the magnification of the optics, and the size of the detectors (Schott, 

2007). Spatial resolution may be increased by moving the sensor closer to the ground, 

by increasing the magnification of the optics, or by decreasing the size of the sensor 

detector elements. 

A higher spatial resolution allows more spatial detail to be recorded in an 

image. High-spatial resolution data can always be aggregated to simulate coarser 

spatial resolutions, while the opposite is not possible. Consequently, when the 

appropriate resolution for an application is unknown, it is likely better to obtain data 

with a high-spatial resolution and spatially resample it as needed. However, in 

practice, achieving a high-spatial resolution comes with some important trade-offs. If 

the detector element size is decreased, the ground area represented by each pixel is 

decreased; this decreases the irradiance being detected for each pixel, reducing the 

SNR (Chen et al., 2000). The amount of measured irradiance for each pixel can be 

increased by increasing the spectral bandwidth of the detectors; however, this lowers 

the spectral resolution of the sensor (Schott, 2007). Finally, increasing the optical 

magnification or moving the sensor closer to the ground reduces the spatial coverage 

of the imagery (Landgrebe, 2005).  

In an ideal sensor, each pixel in an image would contain spectral data from 

only within the pixel footprint. In reality, the signal recorded by a detector is partially 

influenced by areas surrounding the pixel. The spatial sensitivity of a detector is 
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represented by a point spread function (PSF), the response of the detector to a point 

source of radiance (Warner et al., 2009). The PSF can be described by a three-

dimensional function, with peak sensitivity in the centre and a gradual reduction in 

sensitivity with increasing distance from the centre. The full-width-at-half-maximum 

(FWHM) describes the distance from the centre of a detector element where 

sensitivity falls to 50% of maximum (Schott, 2007). The GSD of the sensor is most 

often set to be equivalent to the FWHM of the detector PSF; however, since some 

sensitivity remains beyond this threshold, some spectral bleeding occurs between 

adjacent pixels (Warner et al., 2009). Due to the influence of the PSF, low resolution 

sensor data cannot be accurately simulated by simple spatial resampling of higher 

resolution imagery. Accurate simulation requires modelling the sensor PSF as well. In 

cases where the PSF for the desired sensor is unknown, it can be approximated using 

a three-dimensional Gaussian function (Kavzoglu, 2004).  

2.4.2.2 Spectral Resolution 

The spectral resolution quantifies the wavelength region over which EMR is 

sampled. While EMR occurs along a continuous spectrum, sensors sample it over 

discrete ranges called spectral bands. The width of the band determines how many 

wavelengths of EMR are integrated in the measured signal (Warner et al., 2009).  

Spectral bands are described by their central wavelength and their bandwidth. 

The central wavelength is where the relative spectral response of the band is highest. 

Spectral sensitivity for the band declines to either side of the central wavelength 

(Jensen, 2007). The nominal bandwidth for a band is equal to the FWHM of the 

spectral sensitivity function, the spectral distance to either side of the peak where 

spectral response falls to half its maximum. Accordingly, the region of spectral 
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sensitivity for the band is often wider than the nominal bandwidth (Warner et al., 

2009). 

Optical sensors are characterized by the number of spectral bands they 

possess. Panchromatic sensors have only one spectral band. Panchromatic bands are 

usually very broad spectrally, integrating a large portion of the EMR spectrum 

(usually visible wavelengths) in order to achieve a high-spatial resolution (Warner et 

al., 2009). Multispectral sensors can possess between two to several dozen bands. 

Multispectral bands are often broad, being tens or hundreds of nanometres wide in the 

spectral dimension, and are usually non-contiguous, instead being located at key areas 

of interest along the EMR spectrum (Jensen, 2007). Hyperspectral sensors possess 

many narrow, contiguous bands, allowing a more detailed, continuous sampling of the 

EMR signal (Hu et al., 2009). 

As with spatial resolution, achieving a better spectral resolution comes with 

trade-offs. With narrow spectral bands, the spectral region being integrated by each is 

small; this means the total radiance per pixel is low, decreasing the SNR of the sensor 

(Landgrebe, 2005). To increase the amount of radiance per pixel, the spatial 

resolution must be decreased (Landgrebe, 2005). Consequently, hyperspectral sensors 

usually have lower spatial resolutions than multispectral sensors. They are also more 

complex, expensive, and tend to be more sensitive to calibration errors than 

multispectral sensors (Schott, 2007). 

It is important to know the spectral characteristics of a sensor to understand if 

it may be used for a particular application, or to facilitate comparisons between 

different sensors. The most common method for assessing a sensor’s spectral 

sensitivity is to image EMR passed through an EMR splitting device such as a 

monochromator (Vora et al., 1997b). By measuring narrow-band radiation across a 
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spectrum of different wavelengths, the spectral sensitivity of the sensor at those 

wavelengths can be assessed. Spectral response curves can be created by interpolation 

between the measurements (Vora et al., 1997b). 

2.4.2.3 Radiometric Resolution 

Radiometric resolution refers to the ability of a sensor to discriminate 

differences in EMR intensity. Sensors with a higher radiometric resolution can resolve 

smaller differences, increasing the number of separable signal levels (Jensen, 2007). 

The radiometric resolution of a sensor refers to the bit-level used to digitally 

quantify the measured radiometric signal into digital numbers (Jensen, 2007). Higher 

bit-levels have a greater number of possible DN values, allowing a more precise 

measurement of EMR intensity. Images are often quantized in 8 bits, with 256 DN 

values, allowing 256 levels of radiometric difference to be distinguished. Higher bit-

levels are often used by more sophisticated sensors including 12 bits (4096 DN levels) 

and 16 bits (65536 DN levels). 

While a higher radiometric resolution is preferable for achieving more precise 

measurements, it comes at a cost. A higher bit-level can greatly increase the file size 

of images, making downloading images from a satellite sensor more challenging, and 

increasing the time needed for image processing tasks (Schowengerdt, 2006). 

Furthermore, if the SNR of the sensor detectors are not sufficiently high, quantization 

at a higher bit-level may not yield a tangible increase in data precision 

(Schowengerdt, 2006). 

2.4.2.4 Temporal Resolution 

The temporal resolution, or revisit period of a sensor system, describes the 

time interval between successive images of the same area on the ground (Warner et 

al., 2009). It is typically only used in reference to satellite-based sensors, which have 
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a fixed orbit, as airborne platform revisit periods are flexible. Satellite revisit periods 

can vary from weeks, to days, to even hours. A higher temporal resolution allows 

better monitoring of an area, as well as increasing the chances of obtaining cloud-free 

imagery. 

For a single satellite sensor looking directly downwards (nadir), the revisit 

period is related to the swath width of the sensor system and its orbital period (Jensen, 

2007). Sensors with a wider swath have significant overlap between images acquired 

on adjacent passes, allowing them to repeatedly image the same area on multiple 

passes. Satellites with a shorter orbital period will orbit the globe faster, allowing 

them to image the same area on multiple orbits as the Earth will not have rotated as 

much between multiple satellite orbits. 

The temporal resolution of a sensor can be increased through off-nadir 

imaging (tilting the sensor to look at an angle rather than straight down) to view the 

same area on multiple passes (Jensen, 2007). The temporal resolution can also be 

increased by launching multiple satellites in a constellation. This allows multiple 

sensors to image an area sequentially, greatly increasing the temporal resolution 

(Warner et al., 2009). 

As with the other resolutions, there are trade-offs required to increase the 

sensor temporal resolution. Sensors with a wider swath generally have a lower spatial 

resolution (Jensen, 2007). Images acquired off-nadir can also suffer from lower 

spatial resolutions (Huete et al., 2002), geometric distortions (Schowengerdt, 2006), 

and changes in target reflectance due to bi-directional reflectance (Roy et al., 2002). 

Using a constellation of sensors has no inherent disadvantage, but it limits the pool of 

selectable sensors, as many are not part of a constellation. 
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2.4.2.5 Sensor Errors 

Sensors are often afflicted by a number of errors that can reduce the quality of 

the data output. These errors include both geometric and radiometric errors. 

Geometric errors are those which cause pixels to appear in different locations 

compared to their real ground locations. Radiometric errors are issues with the EMR 

signal measured by the sensor. 

Optical lens distortion is a common geometric error that is caused by the 

sensor optics, making straight lines appear curved in an image. Optical lens distortion 

has both a radial and tangential component. Radial distortions are symmetrical, 

radiating out evenly from the optical centre of the camera (Brown, 1966). Radial 

distortion manifests as either barrel distortion or pincushion distortion (Figure 2.4). 

Barrel distortion is an apparent shifting of points away from the centre of the image 

frame, while pincushion distortion is a shifting of points toward the centre of the 

image frame. Tangential distortions are asymmetrical, appearing as a displacement of 

the radial distortion component toward one part of the image frame. Tangential 

distortions occur due to imperfect alignment of the lens optical elements and the 

detectors (Brown, 1966).  

Both radial and tangential distortions can be characterized by imaging a planar 

calibration grid with known geometric characteristics (Zhang, 1999). The grid is 

imaged from multiple orientations and software is used to extract the grid 

intersections. Camera distortion coefficients are estimated by comparing the grid 

intersection locations extracted from the images to their expected locations in a 

distortion-free image (Zhang, 1999). Distortion coefficient estimates are optimized 

using iterative least-squares optimization, and a camera distortion model is created 

(Zhang, 1999). 
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Figure 2.4 – Illustration of optical lens distortion on an evenly spaced grid. Left 
shows the undistorted grid; centre shows the effects of barrel distortion; right shows 

the effects of pincushion distortion. 

Geometric errors can also be caused by variations in the exterior orientation of 

the sensor relative to the ground due to changes in the pitch, roll, and yaw of the 

imaging platform (Breuer & Albertz, 2000). These errors are less common with 

satellite sensors, which have a fixed orbit, but occur frequently with airborne sensors. 

These errors can be characterized if the sensor orientation parameters were recorded 

at the time of image acquisition. These data can be derived from gyroscope-based 

sensors like an inertial measurement unit (IMU) (Cramer et al., 2000). 

The main source of radiometric error is noise, random variations in the values 

recorded by a sensor which are not caused by actual variations in the EMR signal 

being measured (Schott, 2007). Noise is undesirable as it adds uncertainty to the 

remotely sensed data. Many factors contribute to image noise including random 

fluctuations in the number of photons striking the detectors (shot noise), thermal 

variations in the detectors (Johnson noise), atmospheric scattering of radiation into the 

sensor, variations in detector electric charge (dark noise), and errors in the conversion 

of the electric charge to a discrete DN (quantization noise) (Fiete & Tantalo, 2001).  

Sensor noise can be characterized by measuring a radiometrically uniform 

target such as a uniform light source. As the input signal is uniform, the standard 

deviation in the measured signal represents the image noise (Fiete & Tantalo, 2001). 
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The SNR of the sensor may then be calculated by dividing the average signal value by 

the standard deviation (Fiete & Tantalo, 2001). 

Another common radiometric error is a gradual diminishing of pixel values 

toward the edges of the image frame, making the edges appear darker than the centre 

of the image. This effect is caused by a number of factors, including light falloff and 

vignetting. Light falloff is a reduction in light intensity that occurs when light enters 

the lens at increasingly oblique angles. The falloff is proportional to the fourth power 

of the cosine of the angle at which the light strikes the sensor (Wüller & Gabele, 

2007). Vignetting occurs when light entering the lens is partially obstructed by lens 

elements (Yu, 2004). Another form of vignetting called pixel vignetting, occurs due to 

the fact that detectors are less efficient at converting incident radiation into freed 

electrons when the light strikes the detector at oblique angles (Catrysse et al., 2000).  

Because both light fall off and vignetting manifest as the same effect, it is very 

difficult to separate them. Thus, their cumulative effects are usually characterized 

together. The effects of vignetting and light falloff can be characterized by imaging a 

spectrally uniform target (flat field imaging) (Yu, 2004). As the light entering the 

camera is uniform, aside from noise, differences in pixel values between the centre 

and the periphery of the image are due to vignetting and light falloff. 

Consumer digital cameras often demonstrate another radiometric issue, 

namely a nonlinear response to changes in EMR intensity. While the digital sensors 

themselves respond linearly, the camera electronics quantize the signal in a nonlinear 

manner (Grossberg & Nayar, 2004). This is done for a number of reasons: firstly, both 

the human eye and camera film have a nonlinear response to light intensity 

(Grossberg & Nayar, 2004). For digital images to appear “correct” to the eye, the 

digital response is made nonlinear as well. Secondly, due to the often limited dynamic 
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range of camera sensors, introducing a nonlinear response can increase the range of 

scene brightness which can be recorded in an image (Kim & Pollefeys, 2008). As 

digital cameras are designed to create attractive pictures, both of these properties are 

more important to camera manufacturers than providing radiometrically accurate data. 

Sensor linearity can be evaluated by imaging light sources at various light intensities, 

and plotting the changes in sensor response against the changes in light intensity 

(Vora et al., 1997a). Radiometric response models can then be created by 

interpolation between the measured responses. 

2.4.3 Data Pre-processing 

In order to be properly used in information extraction, images acquired from a 

sensor must first be pre-processed. Common pre-processing tasks include correction 

of geometric and radiometric errors, geo-registration, and the conversion of raw DNs 

into physical units. For satellite sensors, many geometric and radiometric errors are 

often corrected prior to an end-user receiving the imagery. For airborne data gathered 

directly by the user, however, some or all of these errors should be addressed. 

To correct lens distortions, the distortion must first be characterized and a 

distortion model created. The model is then used to geometrically warp the imagery, 

adjusting the location of pixels to compensate for the distortion (Zhang, 1999).  

Geometric errors due to the exterior sensor orientation can be corrected if 

orientation parameters were recorded using an IMU (Cramer et al., 2000). The 

orientation data is used to warp the imagery to match a nadir perspective. If the 

orientation parameters were not recorded, the distortion can also be corrected or 

minimized during geo-registration (Jensen, 2005) 

While totally removing image noise is difficult due to its unpredictability, 

methods have been developed to reduce its impact. Spatial filters (Church et al., 2008) 
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and spectral filters (Tsai & Philpot, 1998) can be used to reduce the variability in the 

imagery. Another method involves transformation of the data using techniques like 

the minimum noise fraction (MNF) to de-correlate the dataset and isolate the image 

variability caused by noise (Lee et al., 1990). Noise is reduced by discarding the noise 

component, and the data is then transformed back to spectral space. Unfortunately, 

any method for reducing noise can also reduce the information content of the imagery 

by suppressing not only the variability due to noise but also variability caused by 

actual spatial and spectral features (Schott, 2007). 

The cumulative effects of light falloff and vignetting may also be corrected 

during pre-processing. If the effects have been characterized through flat-field 

imaging, digital filters can be constructed to apply a gain factor to each pixel, which 

increases the pixel value proportionally to the amount it is affected by light falloff and 

vignetting (Yu, 2004). 

Geo-registration is used to convert the coordinates within an image to a known 

geographical coordinate system, allowing objects in the imagery to be spatially 

located on the Earth surface. Geo-registration is usually performed using ground 

control points (GCPs), areas with known coordinates which can be identified in the 

image (Jensen, 2005). GCPs are derived from surveys, maps, or other geo-registered 

images. They are located within the image and the relationship between image 

coordinates and GCP coordinates is computed. The image is then rotated, resized, and 

warped to align with the GCP locations (Jensen, 2005). 

 If the sensor has a nonlinear radiometric response, it is possible to mitigate this 

issue through pre-processing. The camera radiometric response must first have been 

measured and radiometric response models created. Lookup tables (LUTs) can then 

be created from the response models and used to convert the DNs for every pixel in 
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the image into a corresponding linear value (Vora et al., 1997a). This method 

linearizes the images, although it cannot address the fact that the sensor will have 

different levels of radiometric sensitivity throughout its dynamic range. 

Preprocessing is also necessary to convert the DNs output from a sensor into 

units of radiance or reflectance. Assuming a sensor is radiometrically linear, DNs are 

computed from the radiation signal through applying a gain (signal amplification) and 

offset (fixed addition of DN) (Peddle et al., 2003). If the gain and offset values are 

known, it is possible to convert from a DN value to an at-sensor radiance value 

(Peddle et al., 2003). Division of the at-sensor radiance by the exo-atmospheric 

irradiance from the Sun allows the at-sensor spectral reflectance to be derived 

(Jensen, 2005).  

Unfortunately, at-sensor radiance and spectral reflectance are not the same 

quantities as the irradiance and spectral reflectance are from targets on the ground. 

This is because gas molecules and aerosols in the atmosphere attenuate both incoming 

radiation from the Sun and outgoing radiation from the Earth’s surface (Jensen, 2005). 

Atmospheric attenuation includes both scattering and absorption of radiation. Due to 

atmospheric attenuation, some target irradiance is scattered or absorbed before 

reaching the sensor (Jensen, 2005). Scattering can also cause irradiance from adjacent 

areas or from the atmosphere itself to be scattered into the sensor optics, contributing 

to signal noise (Jensen, 2005). Atmospheric effects are variable both spatially and 

temporally, and also depend on the wavelength of the EMR. These effects can thus 

introduce significant uncertainty to remotely sensed data when comparing between 

spectral bands and between images acquired on different dates or in different areas 

(Peddle et al., 2003).  
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Atmospheric correction allows removal or mitigation of atmospheric 

attenuation. A number of atmospheric correction methods exist, which can be 

characterized as relative and absolute corrections (Jensen, 2005). Relative corrections 

seek to radiometrically normalize the DNs between images acquired on different dates 

to facilitate comparisons between them (Jensen, 2005). Relative techniques use one 

image as a reference, with all other images being normalized to match the reference 

image (Peddle et al., 2003). One relative approach uses targets within the reference 

scene to develop an empirical relationship, which is then used to transform the DNs 

for all other images with the same targets present (Peddle et al., 2003). The targets 

should ideally be fairly large, cover a large amount of the scene dynamic range, and 

be spectrally invariant (Jensen, 2005). Unfortunately, while relative techniques can 

facilitate change detection between sets of images acquired from the same sensor, 

they do not allow proper comparison between images acquired from different sensors 

(Peddle et al., 2003). 

Unlike relative corrections, absolute corrections seek not only to remove 

atmospheric effects, but also to convert sensor DNs into physical units of surface 

radiance or reflectance (Peddle et al., 2003). A number of absolute corrections 

methods may be used. Most commonly, absolute corrections make use of radiative 

transfer models, which model the interactions between radiation and atmospheric 

particles (Peddle et al., 2003). Radiative transfer models are a robust and accurate 

method for retrieving surface parameters; however, the drawback of these models is 

they require information on atmospheric variables such as the aerosol optical depth 

and the water vapour content, which are not always available (Peddle et al., 2003). In 

the absence of measurements for these parameters they may be estimated; however, 

this can introduce error. 
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Another absolute correction method is the empirical line calibration (ELC). 

This method is similar to the relative empirical correction, making use of targets 

within the scene to create an empirical model to normalize all pixel values within an 

image (Smith & Milton, 1999). Unlike the relative correction, the ELC method uses 

targets with known reflectance characteristics, allowing the images to be converted to 

true ground reflectance (Smith & Milton, 1999). Consequently, it is possible to 

compare data corrected with the ELC method to data acquired from other sensors. As 

with the relative correction, the ELC method requires spectrally invariant targets 

which cover a large portion of the sensor dynamic range (Smith & Milton, 1999). 

Targets can be natural providing they are spectrally invariant, or man-made targets 

such as calibration tarps can be used (Smith & Milton, 1999). The advantage of the 

ELC method over radiative transfer methods is that additional information on 

atmospheric parameters are not required, making the method simpler to employ. The 

major disadvantage over using radiative transfer models is that it necessitates the 

placement of targets within the scene or the presence of natural targets. The ELC 

method can also result in substantial errors, if the targets do not adequately cover the 

sensor dynamic range or are not spectrally invariant (Smith & Milton, 1999). 

2.4.4 Spatial Scale in Remote Sensing 

Spatial scale is a fundamental property of key importance for geographical 

studies. The definition of “spatial scale” differs, but typically refers to either (or both) 

the level of spatial detail in a study, measurement, or map, or its geographic coverage 

(Quattrochi & Goodchild, 1997). These two properties are also referred to as “grain” 

and “extent”, respectively. 

The impact of spatial scale has been recognized for many years and has been 

extensively discussed in both the social and natural sciences (Clark, 1990; Gehlke & 
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Biehl, 1934; Greig-Smith, 1961; Marceau, 1999; Sheppard & McMaster, 2008). Far 

from a minor issue, spatial scale plays a fundamental role in the entities, processes, 

and patterns that are observed within a landscape (Marceau, 1999). Furthermore, 

because complex processes operate at multiple scales, to understand and model them 

it is necessary not only to study how they operate at each scale, but also to understand 

the linkages between them (Marceau, 1999). 

With the wide-spread use of remote sensing and geographic information 

systems (GIS) in modern spatial analysis, the scale issue has received newfound 

attention (Chen et al., 2004; Chen, 1999; Marceau & Hay, 1999; Quattrochi & 

Goodchild, 1997; Teillet et al., 1997). In remote sensing, the spatial resolution of an 

image is equivalent to the grain size of the data, while the image size is equivalent to 

the extent (Woodcock & Strahler, 1987). Depending on the spatial resolution, the 

fundamental entities of a study can change. At a very high-spatial resolution, 

individual trees may be observable, while at a very low spatial resolution, an entire 

forest stand may be represented by only a handful of pixels. With a plethora of 

different sensors now available with a wide variety of different spatial resolutions, the 

selection of a sensor or sensors for a study must be informed by the desired scale of 

analysis. This is especially true given the trade-offs in sensor design between spatial 

resolution and other characteristics, such as temporal or spectral resolution. 

A classic problem in spatial analysis is the modifiable areal unit problem 

(MAUP). The MAUP refers to the sensitivity of measurements to how a phenomenon 

of interest is partitioned into non-overlapping spatial units (Openshaw & Taylor, 

1979). It is characterized by two interrelated issues: the scale problem and the 

aggregation problem.  
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The scale problem refers to the variance in results when small spatial units are 

aggregated into larger, coarser units (Openshaw & Taylor, 1979). For instance, 

analysis of the same census data can yield different results depending if it is 

aggregated into census districts or standard regions (Openshaw & Taylor, 1979). The 

scale problem often manifests as a decline in the variance of the data as it is 

progressively aggregated, even if the mean value remains the same (Dark & Bram, 

2007)  

The aggregation problem refers to the variance in results when units of a 

similar size are used, but the size and/or placement of the units is varied (Openshaw & 

Taylor, 1979). A classic example of the aggregation problem is the fact that the 

outcome of voting systems based on majority rule can change depending on the 

boundaries of voting districts. This had led to the adjustment of voting district 

boundaries to yield more favourable outcomes for a political party, a practice known 

as Gerrymandering (Sauer, 1918). 

The MAUP has been widely studied, primarily in the social sciences, and has 

demonstrable effects in a variety of areas including multivariate statistical analysis 

(Fotheringham & Wong, 1991), location-allocation modelling (Goodchild, 1979), 

urban neighbourhood analysis (Mitra & Buliung, 2012), and spatial interaction 

modelling (Putman & Chung, 1989). 

Remote sensing is also impacted by the MAUP (Marceau & Hay, 1999). The 

pixels in a remotely sensed image arbitrarily divide the continuous surface of the 

Earth into discrete non-overlapping units. The larger the pixel size, the larger the area 

over which surface reflectance is aggregated. Depending on the placement of the 

pixels, different areas are aggregated within each pixel. Variance in results due to 

different pixels sizes or different pixel placements are thus analogous to the scale and 
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aggregation problems, respectively. The MAUP has been shown to cause variable 

results in image classification (Arbia & Espa, 1996; Marceau et al., 1994) and 

landscape structure analysis (Jelinski & Wu, 1996). Despite the demonstrated 

impacts, the MAUP has not often been directly studied in the context of remote 

sensing. 

The relationship between spatial resolution, SVIs, and LAI has been 

investigated in a number of studies. In Teillet et al. (1997), the effects of spatial 

resolution on NDVI were examined within forested settings. Images were simulated at 

a range of spatial resolutions between 20 m and 1100 m and NDVI was calculated. 

They found that the spatial resolution could have a large impact on NDVI; however, 

this was dependent on the land-cover type. In a mixed aspen and spruce forest stand, 

NDVI remained stable at 0.75 until a spatial resolution of 260 m, after which it 

steadily decreased to below 0.6 at an 1100 m spatial resolution. In a clear cut area, 

NDVI was found to remain essentially stable around 0.78 at every spatial resolution. 

In a mixed clear cut and forested stand, NDVI increased from 0.5 to 0.7 as spatial 

resolution decreased from 20 m to 260 m, after which it remained unchanged with 

further decreases in spatial resolution. 

In Chen (1999), the effects of spatial resolution on LAI prediction using SVIs 

were examined within a boreal forest ecosystem in Canada. A Landsat Thematic 

Mapper image was resampled to resolutions up to 1000 m, with LAI being calculated 

from both NDVI and the Simple Ratio (SR) using models developed at the native 30 

m resolution. The study found that predicted LAI decreased as resolution coarsened. 

By measuring the sub-pixel fractional land cover, they found that the change in 

predicted LAI depended on the heterogeneity of the land surface being aggregated 

within the coarse resolution pixels. The largest changes in predicted LAI occurred 
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when pixels contained contrasting surfaces, such as interfaces between vegetation and 

water. 

Spatial resolution was not found to have a large impact on LAI modelling in 

Sprintsin et al. (2007). In their study, LAI was modelled for a plantation forest in 

Israel located in a desert transition zone. LAI was modelled using NDVI calculated 

from a 4-m spatial resolution IKONOS image and a 250-m spatial resolution MODIS 

image. The study found that the average LAI declined with spatial resolution by 11% 

(2.53 m²/m² for IKONOS compared to 2.25 m²/m² for MODIS), and the coefficient of 

variation decreased marginally as well (0.57 for IKONOS compared to 0.52 for 

MODIS). However, the authors deemed that the MODIS spatial resolution was 

sufficient for retrieval of LAI within this context. 

2.5 Summary 

Riparian vegetation faces a number of challenges due to regulation 

mechanisms, which have altered the natural flow regime. Alternative dam 

management strategies are being attempted to simulate the natural flow patterns, but 

there is a need for quantitative monitoring to evaluate the impact of these strategies on 

riparian vegetation. The LAI is an important variable to monitor due to its functional 

linkages with vegetation health processes, particularly evapotranspiration. 

Ground measurements of LAI, while possible, are labour intensive and costly. 

To provide economical monitoring of riparian vegetation along entire rivers, remote 

sensing can be used to estimate LAI. The simplest method to provide operational LAI 

monitoring is to create empirical prediction models based on regression between 

ground measurements of LAI and spectral vegetation indices calculated from optical 

remote sensing data. 
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 In order to select a sensor for riparian LAI monitoring, it is necessary to 

determine an appropriate spatial resolution. The information derived from remote 

sensors has been previously shown to be sensitive to differences in spatial resolution. 

Accordingly, the selection of a sensor with an inappropriate spatial resolution may 

lead to poor quality data being generated. The spatial resolution required for riparian 

LAI monitoring must be high enough to provide reasonable LAI estimates for riparian 

areas along the river, but too high a spatial resolution will add no valuable 

information. Thus, the impact of spatial resolution should be investigated in order to 

help determine an appropriate sensor for use in operational riparian LAI monitoring. 

 Sensor systems require pre-processing to correct spatial, spectral, and 

radiometric errors, as well as calibration to some standard scale such as spectral 

radiance or spectral reflectance. Many pre-processing tasks are often carried out prior 

to a user receiving the image data. In cases where the data is gathered from the sensor 

directly by the user, these pre-processing tasks must be addressed. Sensor calibration 

methods require the spectral, spatial, and radiometric characteristics of the sensor to 

first be determined. These characteristics can be measured through laboratory 

experiments prior to field use of the sensor. 
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3. CHARACTERIZATION AND CALIBRATION OF DIGITAL CAMERAS 
FOR QUANTITATIVE REMOTE SENSING 

3.1 Introduction 

This chapter presents a study of the spatial, spectral, and radiometric 

characteristics of two consumer-grade digital cameras. Calibration procedures were 

also developed to compensate for some well-known spatial and radiometric effects. 

This work was carried out to prepare the cameras for use in the quantitative remote 

sensing research performed in the subsequent chapter. 

This research was also motivated by the proliferation of uncalibrated 

consumer-grade digital cameras being used in quantitative remote sensing 

applications. The explosion of unmanned aerial vehicle (UAV) technology in recent 

years has led to the widespread use of digital cameras for remote sensing in a variety 

of fields (Fallavollita et al., 2013; Hunt et al., 2010; Laliberte et al., 2010; Wang et al., 

2011; Zhang & Kovacs, 2012). Digital cameras and UAV remote sensing have proven 

especially attractive for users outside the traditional remote sensing community. Many 

users are not familiar with the importance of sensor characterization and calibration, 

and companies selling digital camera systems often make dubious claims about the 

nature and quality of the data produced by these systems. Consequently, calibration 

issues are often ignored to the detriment of the data that is being acquired. The current 

research can contribute to ameliorating this issue by highlighting methods for 

measuring key camera characteristics as well as calibration of the data to provide 

accurate, consistent measurements. 

Five major characteristics were investigated though laboratory-based 

experiments: geometric lens distortion, vignetting, noise, spectral response functions, 

and radiometric response functions. Based on the characterization experiments, 
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calibration procedures were created and implemented to correct camera images for 

geometric distortions and radiometric response nonlinearities. 

3.1.1 Term Definitions 

This section defines terms relating to digital cameras, which are important for 

the discussion in the remainder of this chapter. 

• Aperture: The size of the opening in a lens which light can pass through. Wide 

apertures allow in more light while narrower apertures allow in less light. Most 

modern lenses have a diaphragm that allows the size of the aperture to be adjusted. 

Aperture settings are denoted by F-numbers, which refer to the ratio of the lens 

focal length to the diameter of the aperture. Smaller F-numbers (e.g., F/1.8) 

correspond to a larger aperture opening, while larger F-numbers (e.g., F/11) 

correspond to a smaller aperture opening. 

• Bayer colour filter array: A mosaic of colour filters which is placed over digital 

sensors to allow colour imaging. The Bayer filter consists of a checkerboard 

pattern of filters for red, green, and blue light, respectively. Each filter corresponds 

to a single detector element on the sensor, allowing only light of the specified 

wavelengths to pass through and excite the detector. The Bayer pattern consists of 

25 % red, 50 % green, and 25 % blue filters, in order to mimick the light sensitivity 

of the human eye, which has a greater sensitivity to green light than to red and blue 

light. Due to the filter, each pixel in raw camera images only record measurements 

for a single spectral band. The camera processes the raw sensor data and 

interpolates the other two spectral band values to create the final image in a 

process called demosaicing. Bayer colour filter arrays are ubiquitously used in 

consumer digital cameras to produce colour using a single inexpensive sensor. 
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• CCD: Stands for charge-coupled device. A type of sensor used in consumer digital 

cameras, although in recent years complementary metal-oxide-semiconductor 

(CMOS) sensors have become more widely used due to lower production costs and 

higher pixel densities, although at the expense of sensor quality. CCD sensors 

contain an array of photoactive silicon detectors which, when struck by photons, 

emit electrons at a rate proportional to the light intensity and/or exposure duration. 

This electric charge is amplified and converted to a digital number (DN) by an 

analog-to-digital converter. Each photodetector element corresponds to a single 

pixel in the resulting image. 

• Exposure: The amount of light which strikes the camera sensor to create an image. 

Exposure is the product of the amount of light passing through the lens per unit 

time (controlled by the aperture) and the duration of the light exposure (controlled 

by the shutter speed). A greater exposure level results in a greater amount of light 

striking the sensor and, thus, higher values being recorded in an image. 

• Focal length: The distance between the lens node (optical centre) and the focal 

plane of a camera. In digital cameras, the sensor resides at the focal plane, and the 

lens focuses incident light upon it. Focal length affects the magnification and the 

field-of-view of an image. Shorter focal lengths have low magnification and a wide 

field-of-view. Increasing the focal length increases the image magnification and 

decreases the field-of-view. As differences in focal length can alter the pathway of 

light entering the sensor, focal length also impacts the lens geometric distortion. 

On lenses with variable focal length settings, the greatest amount of geometric 

distortion tends to occur at both the shortest and longest focal length settings. 

• ISO: Stands for International Standards Organization, and refers to the sensitivity 

of the camera sensor to light. The term was originally used to refer to the 
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sensitivity of different types of film, but is also used for digital sensors. Higher 

ISO values correspond to higher sensitivity, allowing images to be created from 

less gathered light (narrower apertures and faster shutter speeds). For digital 

sensors, the ISO controls the magnitude of the amplification applied to the analog 

signal prior to it being converted to a digital value. While higher ISO settings 

increase the sensor’s sensitivity to light, they also increase its sensitivity to noise. 

Therefore, to avoid high noise levels in the camera images, the lowest ISO setting 

should be used whenever possible. 

• Shutter speed: Refers to the duration of light exposure on the camera sensor. The 

camera shutter can be physical or electronic. Physical shutters allow light to pass 

through the lens and impact the sensor for a set duration before closing. Electronic 

shutters control the amount of time that the sensor is actively gathering light. The 

shutter speed is the amount of time that the shutter is held open (for physical 

shutters) or that the sensor is on and recording light (electronic shutter). Shutter 

speed is quantified in units of seconds. Shorter shutter speeds reduce the chances 

of image blurring, which is important when either the camera or the photographed 

subject is in motion. 

• White balance: Setting which controls how image colours are rendered in an 

image. Depending on the type of scene illumination, the apparent colour of objects 

can change, for example by making white objects appear slightly green (referred to 

as “colour casts”). This variation is based on the “colour temperature” of the scene 

illumination, which refers to the dominant colour of the light source, which varies 

from “cool” colours (those closer to blue) to “warm” colours (those closer to red). 

The white balance setting applies a scaling factor on the red, green, and blue 

camera bands in order to render white objects “correctly” (digitally represented by 
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balanced red, green, and blue DN values). Therefore, the white balance setting can 

significantly alter the apparent response of the camera bands to light. Most digital 

cameras have numerous preset white balance settings corresponding with common 

types of illumination (e.g. daylight, cloudy, tungsten, etc). The ability to create a 

custom white balance setting is also often available, as well as an auto white 

balance setting, which calculates an appropriate white balance based on the 

detected scene illumination. Due to the alteration of camera responses by white 

balance, a consistent setting should be used for quantitative remote sensing. 

Therefore, the automatic white balance setting should be avoided. 

3.2 Methods 

3.2.1 Camera Description 

This study was performed on two Canon Powershot S50 cameras (Canon Inc., 

Tokyo, Japan). These digital “point-and-shoot” cameras feature a 5 megapixel (2592 

x 1944 pixel) CCD sensor. The sensor dimensions are 7.2 mm x 5.3 mm. Each camera 

has a zoom lens allowing the focal length to be varied between 7 mm and 21 mm, 

with the selectable lens apertures varying between F/2.8 and F/8. The cameras have 

automatic, semi-automatic, and manual control modes. Images output from the 

camera are quantized in 8-bits with 256 DN levels (0 – 255).  

One of the cameras tested was modified for imaging near-infrared EMR. This 

modification was performed by removal of the infrared blocking filter fitted over the 

camera sensor, and its replacement with a filter to block visible light and transmit 

only near-infrared wavelengths. The second camera was left unmodified to image 

visible red, green, and blue light. The modified camera is hereafter referred to as the 

NIR camera, while the unmodified camera is referred to as the RGB camera. 
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Manual camera settings were used throughout these experiments. Unless 

otherwise stated, the following settings were used: camera white balance was set to 

“daylight”; ISO was set to its lowest setting (50); aperture was set to F/4; focal length 

was set to 10 mm; and shutter speed was variable depending on the experiment being 

performed and the desired exposure level. All images were acquired in the jpeg 

format. 

All image processing tasks were performed using either Matlab (Version 

R2012a, MathWorks Inc., Natick, MA), ENVI (Version 5.1, Exelis VIS, Boulder, 

CO, USA), or Adobe Photoshop (Version CS3, Adobe Systems Inc., San Jose, CA, 

USA). Calculations and statistics were performed using either Microsoft Excel 2013 

(Microsoft, Redmond, WA, USA) or SPSS Statistics (Version 22, IBM Corporation, 

Armonk, NY, USA). 

3.2.2 Distortion Characterization and Calibration 

Camera distortion was both characterized and corrected using the open source 

Camera Calibration Toolbox for Matlab from the Computational Vision lab at Caltech 

(available from http://www.vision.caltech.edu/). By imaging a planar checkerboard 

calibration grid taken from multiple angles, the program estimates the geometric and 

optical characteristics of the camera, creating a camera model which is used to correct 

both radial and tangential distortions (Zhang, 2000). Thirty images from each camera 

were taken of a checkerboard calibration grid at a variety of camera and grid 

orientations (Figure 3.1). All images were acquired at a fixed 10-mm focal length, as 

each change in focal length would require its own characterization. 

 Once the images were downloaded from the cameras, the four corners of the 

grid were manually selected for each image (Figure 3.1 top). With the corners 

selected, the program predicted the remaining grid intersections (Figure 3.1 bottom). 
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The extracted grid intersections were then manually inspected. In cases where the 

automatic extraction performed poorly – such as when the selected point was several 

pixels away from the correct location – a manual estimate for the distortion 

coefficient was input to aid in corner extraction. If corner extraction remained poor 

for an image, the image was removed and another image was substituted. 

 

 
Figure 3.1 – Calibration grid corner extraction. Top shows the 4 manually selected 
grid intersections, while bottom shows the remaining grid intersections predicted by 

the program. “X”, “Y”, “dX” and “dY” denote the x and y axes of the grid. “O” 
denotes the origin point, which is the first selected grid corner. 
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Following the automatic grid extraction, distortion parameters were estimated 

by the program and camera distortion models were created. These distortion models 

were applied to three images of the calibration grid from each camera, and the 

uncalibrated and calibrated images were compared. The comparison was performed in 

Photoshop, with lines being drawn from corner to corner along the edges of the grid in 

each pair of images (Figure 3.2). The distortion in the uncalibrated images was 

measured by measuring the perpendicular displacement of the edge of the grid from 

the drawn lines at the point where the distortion appeared to be the greatest (Figure 

3.3 top). This resulted in four measurements from each image, one for each grid edge. 

The displacement between the drawn lines and the grid was then measured at the 

same points in the calibrated images, and the values were compared between the two 

sets of images (Figure 3.3 bottom). 

 
Figure 3.2 – Illustration of distortion correction validation. Lines shown in red were 
drawn along the edges of the calibration grid in both the uncalibrated and calibrated 

images. 
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Figure 3.3 – Close-up of distortion correction validation. At the point of maximum 

apparent distortion in the uncalibrated image, pixel displacement between the red line 
and the edge of the calibration grid was measured (top). This measurement was 

repeated at the same location in the calibrated image (bottom). 

3.2.3 Vignetting Characterization 

The gradual reduction in pixel values with increasing distance from the optical 

centre of the camera can be caused by either light falloff or vignetting. Light falloff is 

the reduction in intensity when light strikes a sensor at progressively oblique angles 

(Wüller & Gabele, 2007). Vignetting is caused either by obstruction of light by the 

camera lens elements or by decreasing detector quantum efficiency (Catrysse et al., 

2000; Yu, 2004). As both light falloff and vignetting manifest as the same effect, it 

was not possible to decouple them and measure the contribution of each for this 

camera system. Consequently, only the cumulative impact of light falloff and 

vignetting were measured in this research, which is referred to as vignetting in the 

remainder of this chapter for simplicity. 
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Vignetting was measured by directly imaging a uniform light source. The light 

source used in this research was a USS-1200 Integrating Sphere (Labsphere Inc., 

North Sutton, NH, USA). The inside of the sphere is coated in Spectralon, a material 

made from a compressed polytetrafluoroethylene (PTFE) polymer resin, which 

demonstrates the highest diffuse reflectance of any known material (Bruegge et al., 

1993). The integrating sphere features four input lamps, with one lamp fitted with a 

variable attenuation aperture that allows light intensity to be precisely varied. 

Radiation from the lamps reflect through the interior of the sphere before leaving 

through an exit port, ensuring a uniform, diffuse output of light.  

To measure vignetting each camera was mounted on a calibration table facing 

the integrating sphere exit port (Figure 3.4). The integrating sphere was left at a 

constant light intensity setting throughout the experiment. Camera aperture and focal 

length settings were varied in order to measure the vignetting effects at each. Settings 

tested spanned the range from the widest to narrowest aperture (F/2.8 to F/8) and 

shortest to longest focal length (7 mm to 21 mm). At each combination of aperture 

and focal length an image was taken with the cameras. It should be noted that due to 

limitations of the camera lens, at longer focal lengths not every aperture setting was 

selectable. The camera shutter speed was varied at each aperture setting to ensure a 

balanced exposure, while the ISO was left at its lowest setting (ISO50). 
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Figure 3.4 – Experimental setup for the vignetting tests. 

 

Following the laboratory experiments the images were downloaded and 

processed. A 50 pixel x 50 pixel region was extracted from the centre of each image 

and the average DN was calculated from this subset. Next each pixel in the image was 

divided by the average central value (computed from the 50 pixel x 50 pixel subset) to 

determine the relative intensity of each pixel value compared to the image centre, 

creating a new set of relative intensity images. A 9 pixel x 9 pixel low-pass filter was 

applied to the relative intensity images to reduce noise and more clearly show the 

vignetting effects. Transects were then measured vertically, horizontally, and from 

corner to corner across each relative intensity image to observe the level of vignetting 

in the images (Figure 3.5). 
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Figure 3.5 – Illustration of vignetting characterization. The top presents the transects 
taken across the relative intensity camera images. The bottom shows an example of a 
relative intensity image, where white denotes high relative intensity and black denotes 

low relative intensity. 
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3.2.4 Noise Characterization 

 To measure sensor noise, images were acquired with the cameras pointed 

directly into the integrating sphere in the same manner as the vignetting experiment 

(Figure 3.6 top). 10 images were acquired at each of the four different camera ISO 

settings (50, 100, 200, and 400) to characterize how image noise changed with 

increasing ISO. To measure the dark noise, 10 images at each ISO setting were 

captured under a total lack of illumination with the camera lens covered (Figure 3.6 

bottom). 

 
Figure 3.6 – Experimental setup for camera noise tests. The top shows the 
illumination noise measurements, while the bottom shows the dark noise 

measurements. 

Images were downloaded following the laboratory experiment and each image 

was cropped by 40 % in the vertical and horizontal directions in order to mitigate 

vignetting issues. The standard deviation of the images was calculated and this was 
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taken to represent the image noise. Both the illumination noise and dark noise for 

each camera band were added together to get the total noise. From this the signal-to-

noise ratio (SNR) was calculated as follows: 

 ܴܵܰ(݆) = (݆)݁ݏ݅݋ܰ(݆)݈ܽ݊݃݅ܵ  
(3.1)

where SNR(j) is the signal-to-noise ratio for camera band j, Signal(j) is the average 

image signal (average DN response) for band j, and Noise(j) is the total image noise 

(illumination noise plus dark noise) in DN for band j. 

The image noise and SNR computed for each image were then averaged for 

the 10 images acquired at each ISO setting to obtain the average noise and SNR for 

each camera band at each ISO setting. 

3.2.5 Spectral Response Characterization 

 The procedures used in this section are adapted from those in Vora et al. 

(1997b). Equipment used to characterize the spectral response functions of the 

cameras included the integrating sphere light source, a monochromator, and a 

spectroradiometer. A monochromator uses a diffraction grating to split incident 

broadband EMR into narrowband EMR. The wavelength of EMR passed through is 

tunable by rotating the diffraction grating, with the bandwidth of the EMR being 

dependent on the quality of the diffraction grating and the size of the entry and exit 

ports. The monochromator used in this experiment was a SPEX 1681B (Horiba Ltd., 

Kyoto, Japan) fitted with a 1200 groove/mm diffraction grating, allowing wavelengths 

to be selected between 300 nm and 1300 nm.  

A spectroradiometer is a portable hyperspectral instrument which is used to 

measure radiation across a range of wavelengths using many narrow contiguous 

bands. The spectroradiometer used in this research was an ASD FieldSpec-3 
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(Analytical Spectral Devices Inc, Boulder, CO, USA). The ASD measures EMR 

between 350 nm and 2500 nm at 1 nm intervals. Note that this value is interpolated; 

the actual spectral resolution varies between 3 nm in the visible/near infrared to 10 nm 

in the short-wave infrared) (ASD Inc., 2010). 

The integrating sphere and monochromator were placed in series, with the 

ASD facing into the monochromator exit port (Figure 3.7 top). The integrating sphere 

was set to full intensity and the monochromator entry and exit ports were adjusted to 

yield a spectral bandpass of approximately 3 nm. EMR was passed from the 

integrating sphere through the monochromator and measured by the ASD, which was 

set to measure in units of radiance (W⋅m-2⋅s-1). Measurements were taken at 10 nm 

intervals between 350 and 1250 nm. Following the ASD measurements the procedure 

was repeated, this time with the cameras instead of the ASD. Each of the two cameras 

imaged the light passing through the monochromator at every wavelength (Figure 3.7 

bottom). 

To process the results, a 100 pixel x 100 pixel area was cropped from the 

centre of each image, and the average DN for each camera band was calculated from 

the cropped images. This subset was used as only the central portion of the image 

frame received light from the monochromator (Figure 3.8). To determine the absolute 

spectral responses for the cameras, the average DN from each image was plotted at 

the corresponding wavelength of light at which the image was acquired. 

A problem with examining only the absolute response of the cameras at every 

wavelength is that the amount of light output from the integrating sphere was not the 

same at every wavelength. To account for differences in light intensity between 

measurements, the camera responses were adjusted as follows: 
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,݆)ߪ݉ܽܥ  λ) = ,݆)݉ܽܥ λ)ܦܵܣ(λ)  
(3.2)

where Camߪ(j, λ) is the intensity-adjusted camera response for camera band j at 

wavelength λ, Cam(j, λ) is the camera DN for camera band j at wavelength λ, and 

ASD(λ) is the ASD radiance measurement at wavelength λ. 

The adjusted camera responses were then normalized to a relative scale 

between 0 and 1 by dividing each adjusted response by the overall highest adjusted 

response for that camera. These values were plotted at the corresponding wavelengths 

at which the images were acquired to derive the normalized spectral responses for 

each camera band.   

Spectral response curves were created for both the absolute and normalized 

camera responses using linear interpolation between the sampled camera responses. 

 

 
Figure 3.7 – Experimental setup for the spectral sensitivity tests. The top shows the 

ASD measurements, while the bottom shows the camera measurements. 
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Figure 3.8 – Camera image acquired during spectral response test. The green patch is 
light passed through the monochromator exit port, while the red square shows the 100 

pixel x 100 pixel area from which the average response was calculated.  

 

3.2.6 Radiometric Response Characterization and Linearization 

3.2.6.1 Radiometric Response Measurements 

 The procedures in this section were adapted from Vora et al. (1997a). The 

same experimental setup was used to characterize the camera radiometric responses as 

for the spectral responses; however, for this experiment instead of using the 

integrating sphere at full intensity with all four lamps on, only the lamp fitted with the 

variable attenuator was used in order to allow the light intensity to be varied (Figure 

3.9). 
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Figure 3.9 – Experimental setup for the radiometric sensitivity tests. Top shows the 

ASD measurements. Bottom shows the camera measurements. The variable attenuator 
aperture was used to vary the sphere light throughput from low to high intensity. 

Based on the results of the spectral response experiment, wavelengths 

corresponding to the peak absolute response for each camera band were selected, 

resulting in four different wavelengths (3 for the RGB camera, 1 for the NIR). For 

each wavelength the light output from the integrating sphere was varied from low to 

high intensity. For each intensity setting the light was measured using the ASD. Once 

the full range of stops from low to high intensity were measured with the ASD the 

procedure was repeated with the cameras. Camera exposure was set to have the 

images as close as possible to saturation (without actually saturating the sensor) at the 

maximum light intensity, providing adequate coverage of the camera dynamic range. 

To process the data, first the differences in light intensity between each 

intensity setting were assessed using the ASD data. Because the ASD radiometric 
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response is linear (ASD Inc., 2010), a change between ASD measurements was taken 

to indicate a change of the same magnitude in the sphere light intensity. Differences 

in light intensity were measured on a relative scale. While it was possible to measure 

absolute light intensity in units of radiance, this was deemed unnecessary for the 

current research, as the camera response at a given radiance level will vary depending 

on the camera settings used. The relative light intensity was computed from the ASD 

data at each intensity setting as follows: 

(λ)ݐ݊ܫ  = (3.3) (λ)ݔܽ݉ܦܵܣ(λ)ܦܵܣ

where Int(λ) is the relative intensity value at wavelength λ, ASD(λ) is the ASD 

response at wavelength λ (in radiance), and ASDMax(λ) is the ASD response (in 

radiance) for the maximum light intensity setting at wavelength λ. The maximum 

light intensity setting was assigned a value of 1. 

To process the data a 100 pixel x 100 pixel area was extracted from the centre 

of each camera image from which the average DN was calculated. Average camera 

DNs were plotted against relative light intensity, and radiometric response models 

were created for each band by fitting a curve to the sampled image-intensity pairs 

using a 3rd order polynomial function.  

As the radiometric response models did not include a relative intensity value 

associated with the maximum camera response of 255, the relative intensity value 

corresponding to this maximum camera DN was extrapolated from the models. All 

relative intensity values were then divided by the extrapolated maximum intensity 

value and the response curves were recreated using the adjusted intensity values, 

yielding radiometric response curves for the full camera dynamic range. 
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3.2.6.2 Radiometric Response Linearization 

To compensate for non-linear sensor responses to changes in EMR intensity, a 

method was used to convert non-linear image DNs to linearized values. Lookup tables 

were created for each camera band using the radiometric response models created in 

the previous section, which gave a corresponding linear intensity value between 0 and 

1 for each camera spectral band for every DN value between 0 and 255. A program 

was created which iterated through every pixel in an image, converting the DNs for 

each camera band to a corresponding linearized value derived from the lookup tables. 

The program then output the final linearized image. 

3.2.6.3 Radiometric Linearization Model Validation 

 An experiment was performed to evaluate the radiometric linearization 

models. The evaluation was done by comparison of linearized camera responses with 

ASD measurements. The change in the linearized camera values were compared to 

the changes in the ASD-measured values with changing light intensity. For this 

experiment, EMR from the integrating sphere was imaged by the cameras and 

measured with the ASD through the same range of intensities as before; however, this 

time the broad spectrum EMR from the integrating sphere was measured directly 

without using the monochromator to split it (Figure 3.10). 

Following the laboratory measurements, the camera images were linearized 

using the models developed for this procedure. A 100 pixel x 100 pixel area was then 

extracted from each linearized image and the average linear value was calculated 

corresponding to each sphere intensity setting. This subset was used in order to avoid 

vignetting and to be consistent with the method used to create the models, which were 

based on a 100 pixel x 100 pixel subset as well. 
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Figure 3.10 – Experimental setup for the linearization validation tests. The top shows 

the ASD measurements, while the bottom shows the camera measurements. The 
variable attenuator aperture was used to vary the sphere light throughput from low to 

high intensity. 

To compare with the linear camera responses, The ASD measurements were 

normalized to the same intensity scale as the linearized camera responses. This was 

done separately for each camera band as follows: 

,݅)ߪܦܵܣ  ݆) = (݅)ܦܵܣ ∗ ൬ݔܽܯܦܵܣ(݆)ݔܽܯ݉ܽܥ(݆)൰ 
(3.4)

where ASDߪ(i, j) is the ASD measurement normalized to the camera intensity scale 

of camera band j at light intensity i, ASD(i) is the ASD measurement (in radiance) at 

light intensity i, CamMax(j) is the maximum linearized camera response for camera 

band j, and ASDMax(j) is the ASD measurement corresponding to the maximum 

camera response for band j. 
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The normalized ASD measurements were compared with the linearized 

camera values for each band to assess how well the models were able to linearize the 

camera responses. To compare the measurements, the Root-Mean-Square-Error 

(RMSE) was calculated for each band as follows: 

ܧܵܯܴ  = ඩ1ܰ෍(݉ܽܥ(݅) − ଶே((݅)ߪܦܵܣ
௜ୀଵ  

(3.5)

where N is the number of corresponding camera and ASD responses, Cam(i) is the ith 

linear camera response, and ASDߪ(i) is the ith normalized ASD response. 

The difference between each corresponding set of measurements was also 

calculated according to Equation 3.6, and these differences were plotted and 

examined: 

ݎ݋ݎݎܧ  = ݉ܽܥ − (3.6) ߪܦܵܣ

Finally, the camera responses and corresponding normalized ASD responses 

were plotted against each other and linear regression lines were fitted. The regression 

line coefficients were compared with a perfect one-to-one relationship with slope of 1 

and intercept of 0 by examining the 95 % confidence interval calculated for each 

coefficient. 
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3.3 Results 

3.3.1 Distortion Characterization and Calibration 

 Figure 3.11 shows the distortion models created for both the RGB and NIR 

cameras. The models show total distortion, with both the radial and tangential 

distortion components combined. The figure shows the spatial displacement of image 

pixels from where they should be in a distortion-free image.  

The two cameras were found to be very similar in terms of the level of 

distortion and the shape of the distortion. For both cameras distortion increased with 

distance from the centre of the image frame, getting as high as a 30-pixel 

displacement toward the corners. The distortion for both cameras was asymmetrical, 

with more pixel displacement being evident toward the bottom and left of the frame 

than the top and right. The displacement of the calculated principal point from the 

centre of the frame reinforces this observation, as shown in the figure by the 

difference in location between the “x” symbols (camera frame centre) and the “o” 

symbols (calculated principal point). Because radial distortion is symmetrical around 

the principal point, the calculated principal point should be in the centre of the image 

frame if the distortion were symmetrical (Zhang, 1999). 
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Figure 3.11 – Distortion models for the RGB and NIR cameras. Both radial and 

tangential distortion components are included. The top graph shows the RGB model 
while bottom one shows the NIR model. Arrows indicate the direction and magnitude 
of displacement correction by the model. Concentric rings are isolines of equal pixel 

displacement. The camera frame centre is indicated by an “x” marker, while the 
calculated camera principal point is shown with an “o” marker. 

The distortion asymmetry was less pronounced with the NIR camera than the 

RGB camera. This was particularly notable in the horizontal direction. This is evident 

by the computed principal point for the RGB camera being displaced further to the 
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right of the image frame centre compared to the principal point computed for the NIR 

camera. The magnitude of this difference in displacement was approximately 16 

pixels. 

Using the distortion models to calibrate the camera imagery greatly reduced 

image distortion in most cases, but did not remove it entirely. Table 3.1 shows the 

results of the comparison of the distortion between the calibrated and uncalibrated 

images for the RGB camera, while Table 3.2 shows the results for the NIR camera. 

 In most cases applying the distortion models to the camera images removed 

most or all of the observed pixel displacement. Some figures were less impressive, 

such as only 57 - 67 % removal with several of the measurements in the RGB images, 

and 0 % and 50 % with the NIR. Nonetheless, in most cases the use of the distortion 

correction improved the geometric quality of the images, and was never found to 

negatively impact the quality. 

 Based on the comparisons performed, the NIR model appears to have done a 

better job overall of removing image distortion. The NIR model was able to 

completely remove image distortion more often than the RGB model; however, as 

noted before, in two cases distortion did not improve much or at all. Nonetheless, in 

both cases the initial pixel displacement in the uncalibrated images was low, 

representing only a few pixels each. 
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Table 3.1 – Comparison of pixel displacement between geometrically uncorrected 
and corrected images for the RGB camera. 

Uncalibrated 
Displacement 

(pixels) 

Calibrated Pixel 
Displacement 

(pixels) 

Displacement 
Reduction (pixels)

Displacement 
Reduction 
(percent) 

7 3 4 57 
7 2 5 72 
6 1 5 83 
12 1 11 92 
3 0 3 100 
7 2 5 71 
2 0 2 100 
9 1 8 89 
9 3 6 67 
3 1 2 67 
3 0 3 100 
4 0 4 100 

 
Table 3.2 – Comparison of pixel displacement between geometrically uncorrected 

and corrected images for the NIR camera. 
Uncalibrated 
Displacement 

(pixels) 

Calibrated Pixel 
Displacement 

(pixels) 

Displacement 
Reduction (pixels)

Displacement 
Reduction 
(percent) 

6 0 6 100 
7 0 7 100 
8 2 6 75 
10 0 10 100 
4 0 4 100 
5 0 5 100 
4 1 3 75 
16 3 13 81 
4 2 2 50 
2 2 2 0 
6 0 6 100 
3 0 3 100 

 
3.3.2 Vignetting Characterization 

3.3.2.1 RGB Camera 

Vignetting effects were evident in images obtained from the RGB camera at 

all focal length and aperture combinations. Figures 3.12 and 3.13 show some of the 

results from the transects measured across the relative intensity images. Not all results 

are presented in the figures; rather, they highlight the major trends in the data 

resulting from changes in the aperture and focal length. Furthermore, as it was 
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observed that the amount of vignetting did not differ between the red and green 

camera bands, the figures only present the results for the red band. The results for the 

blue band did differ markedly from the other two bands, and these results are 

presented subsequently. Figure 3.12 shows the results using a fixed focal length (7 

mm) and 4 different aperture settings. Figure 3.13 shows the results from using a 

fixed aperture (F/5.6) and 4 different focal length settings. 

The greatest amount of vignetting was found at the widest aperture (F/2.8) and 

shortest focal length (7 mm). This was most evident in the corners of the image, 

where DNs fell below 70 % of the mean central value, getting as low as 60 % in the 

far corners (Figure 3.12 c and d). Vignetting was consistently more pronounced along 

the diagonal transects than the horizontal and vertical transects. The vignetting was 

always lowest along the vertical transects. The pattern of the vignetting was found to 

be somewhat asymmetrical along the upper-left to lower-right diagonal transect, 

though largely symmetrical in the other transects. 

 Both increasing the focal length and narrowing the aperture reduced 

vignetting. The greatest improvement occurred when stopping down from an aperture 

of F/2.8 to F/4 at the 7 mm focal length (Figure 3.12). Further narrowing the aperture 

at this focal length only marginally reduced the vignetting, mainly in the corners of 

the frame. The next greatest decrease in vignetting occurred by increasing the focal 

length from 7 mm to 10 mm (Figure 3.13). Once again, increasing the focal length 

beyond this only marginally reduced vignetting. The least amount of vignetting was 

evident at a focal length of 21 mm and aperture of F/8, although focal lengths between 

15 mm and 21 mm as well as apertures between F/5.6 and F/8 were all very similar. 
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Figure 3.12 – Relative difference in pixel values for the RGB camera red band at a 
focal length of 7 mm and 4 different aperture settings. Apertures shown are: F/2.8 

(red), F/4 (green), F/5.6 (blue), and F/8 (violet). Transects shown are: (a) left to right, 
(b) top to bottom, (c) upper-left to lower-right, and (d) lower-left to upper-right. 
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Figure 3.13 – Relative difference in pixel values for the RGB camera red band at an 

aperture setting of F/5.6 and 4 different focal length settings. Focal lengths shown are: 
7 mm (red), 10 mm (green), 15 mm (blue), and 21 mm (violet). Transects shown are: 
(a) left to right, (b) top to bottom, (c) upper-left to lower-right, and (d) lower-left to 

upper-right. 

As previously mentioned, vignetting results for the blue camera band differed 

unexpectedly from those of the red and green bands. Figure 3.14 shows the results for 

the blue band using a fixed focal length and variable aperture, while Figure 3.15 

presents the results using a fixed aperture and variable focal length. At an aperture of 

F/2.8 the pattern was similar to the other two bands; pixel values gradually reduced as 

distance from the image centre increased (except in the case of the top-to-bottom 

transect, which did not change much across the image). As aperture was decreased the 

DNs for the blue band stayed the same or increased toward the edges of the images. 

This pattern differed from the other two bands, where pixel values decreased with 

increasing distance from the frame centre. The increase in pixel values became more 

pronounced as aperture was narrowed, with the greatest increases occurring at the 
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narrowest F/8 aperture, becoming as high as 120 % of the mean central value in the 

lower-right corner of the frame (Figure 3.14 c). 

There was also a pronounced asymmetry evident in the responses across the 

frame, most noticeable along the diagonal transects, although also present in the 

vertical transect. This asymmetry showed that the pixel values were higher in the 

bottom portion of the frame than the top (Figure 3.14 b, c and d). Finally, there were 

also much larger differences between adjacent pixel values (increased noise) across 

the image in comparison to the red and green bands. 

 
Figure 3.14 – Relative difference in pixel values for the RGB camera blue band at a 
focal length of 7 mm and 4 different aperture settings. Apertures shown are: F/2.8 

(red), F/4 (green), F/5.6 (blue), and F/8 (violet). Transects shown are: (a) left to right, 
(b) top to bottom, (c) upper-left to lower-right, and (d) lower-left to upper-right. 

Changes in focal length at a constant aperture did not lead to substantial 

changes in the relative pixel values across the images (Figure 3.15). In the upper-left 

to bottom-right transect, however, as focal length increased, the increase in pixel 

values observed in the bottom-right of the frame vanished and became a reduction in 
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pixel values at the 15 mm and 21 mm focal lengths (Figure 3.15 c). A marginal 

decrease in pixel values was also observed in the bottom-left of the frame (Figure 

3.15 d). 

 

 
Figure 3.15 – Relative difference in pixel values for the RGB camera blue band at an 
aperture of F/5.6 and 4 different focal length settings. Focal lengths shown are: 7 mm 
(red), 10 mm (green), 15 mm (blue), and 21 mm (violet). Transects shown are: (a) left 

to right, (b) top to bottom, (c) upper-left to lower-right, and (d) lower-left to upper-
right. 

3.3.2.2 NIR Camera 

As with the RGB camera, vignetting was evident for the NIR camera at all 

aperture and focal length combinations. Figure 3.16 shows results from the NIR 

camera at a fixed focal length with variable aperture settings, while Figure 3.17 shows 

the results using a fixed aperture and variable focal length. Results were substantially 

similar between the spectral bands; consequently, only the results for the red band are 

presented. 
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Vignetting was more pronounced than for the RGB camera, demonstrating a 

steeper falling off of pixel values to either side of the image centre. As with the RGB 

camera, a large amount of vignetting was seen in the far corners at 7 mm, especially at 

the widest F/2.8 aperture where values in the corners fell as low as 70 % of the mean 

central value (Figure 3.16 c and d). As with the RGB, the vignetting was somewhat 

asymmetrical, with values toward the left and top of the frame being lower than the 

bottom and right. Reducing the aperture size decreased vignetting in the far corners; 

however, unlike the RGB camera, narrowing the aperture also caused an increase in 

vignetting closer to the center. Thus, at the 7 mm focal length, aside from the far 

corners, the least vignetting occurred using an aperture of F/2.8. The most vignetting 

occurred with an aperture of F/8.  

 

 
Figure 3.16 – Relative difference in pixel values for the NIR camera red band at a 
focal length of 7 mm and 4 different aperture settings. Apertures shown are: F/2.8 

(red), F/4 (green), F/5.6 (blue), and F/8 (violet). Transects shown are: (a) left to right, 
(b) top to bottom, (c) upper-left to lower-right, and (d) lower-left to upper-right. 

80

85

90

95

100

105

-1400 -1000 -600 -200 200 600 1000 1400

Re
la

tiv
e 

Pi
xe

l V
al

ue
 (p

er
ce

nt
)

Distance from Image Centre (pixels)

80

85

90

95

100

105

-1000 -500 0 500 1000

Re
la

tiv
e 

Pi
xe

l V
al

ue
 (p

er
ce

nt
)

Distance from Image Centre (pixels)

60
65
70
75
80
85
90
95

100
105

-1400-1000 -600 -200 200 600 1000 1400

Re
la

tiv
e 

Pi
xe

l V
al

ue
 (p

er
ce

nt
)

Distance from Image Centre (pixels)

60
65
70
75
80
85
90
95

100
105

-1400-1000 -600 -200 200 600 1000 1400

Re
la

tiv
e 

Pi
xe

l V
al

ue
 (p

er
ce

nt
)

Distance from Image Centre (pixels)

(a) 

(c) (d)

(b)



81 
 

There was a distinctive peak in the data, where a sharp drop in pixel values 

occurred within a short distance of the centre of the frame, with the slope of the pixel 

value fall-off becoming shallower as distance further increased. This effect was 

noticed at the F/5.6 aperture and became more pronounced at the F/8 aperture. 

Increasing the focal length from 7 mm to 10 mm reduced the amount of 

vignetting, especially in the left portion of the image frame (Figure 3.17). Increasing 

to 15 mm slightly reduced vignetting further; however, increasing further to 21 mm 

actually increased vignetting. The peak effect was observed at all focal lengths, but 

became more pronounced at 21 mm, with pixel values falling more precipitously in 

the areas immediately adjacent to the image centre. 

 
Figure 3.17 – Relative difference in pixel values for the NIR camera red band at an 

aperture setting of F/5.6 and 4 different focal length settings. Focal lengths shown are: 
7 mm (red), 10 mm (green), 15 mm (blue), and 21 mm (violet). Transects shown are: 
(a) left to right, (b) top to bottom, (c) upper-left to lower-right, and (d) lower-left to 

upper-right. 
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3.3.3 Noise Characterization 

3.3.3.1 RGB Camera 

Tables 3.3 and 3.4 show the results of the noise characterization experiment 

for the RGB camera red band. Tables 3.5 and 3.6 present the results for the green 

band, and Tables 3.7 and 3.8 present the results for the blue band.  

Noise under both illumination and dark conditions was lowest at the ISO 50 

setting for all 3 bands, with both forms of noise gradually increasing as ISO was 

increased. Illumination noise greatly exceeded dark noise in all cases. The amount of 

noise was similar between the red and green bands, although the green band had 

consistently lower amounts of noise (Tables 3.3 and 3.5). The blue band had the 

highest amount of noise at all ISO settings under illuminated conditions, although the 

dark noise for the blue band was marginally lower than for the red band (Tables 3.3 

and 3.7). 

The SNR for the red band was higher than for the green and blue bands at all 

ISO settings, despite the green band demonstrating a lower amount of noise on 

average (Tables 3.3 and 3.5). This was owed to the higher signal of the red band 

under illumination conditions. Despite the difference, the SNR was similar between 

the two bands. The SNR of the blue band was much lower than those of the red and 

green bands, often less than half as high (Tables 3.3, 3.5, and 3.7). This was a result of 

the blue band having a somewhat higher amount of noise and a lower signal value 

than the other two bands. 

 At each ISO setting above the lowest (ISO 50), the noise for the red band 

increased by 40 % to 50 % over the previous ISO, and by 40 % to 98 % over the ISO 

50 value, resulting in noise at ISO 400 that exceeded the ISO 50 value by almost 200 

% (Table 3.4). The SNR of the red band decreased by approximately 30 % between 
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each ISO setting, or from 15 % to 30 % relative to the value at ISO 50, leading to an 

SNR that was 65 % lower at ISO 400 compared to ISO 50. 

Noise increased at a greater rate for the green band (Table 3.6). The increase 

in noise was between 46 % and 56 % higher than the previous ISO, and from 46 % to 

122 % higher than at ISO 50, resulting in noise at ISO 400 being 240% higher than 

the ISO 50 value. SNR decreased by 32 % to 34 % at each ISO setting, or by 15 % to 

32 % relative to ISO 50, with the SNR at ISO 400 being 70 % lower than at ISO 50. 

 The noise increase for the blue band was between 44% and 52% between ISO 

settings, and from 43 % to 107 % relative to the ISO 50 value (Table 3.8). The 

amount of noise at ISO 400 was 213 % greater than the value at ISO 50. SNR 

decreased by approximately 30 % between each ISO setting, or from 15 % to 30 % 

relative to the ISO 50 value. The SNR at ISO 400 was 65% reduced compared to the 

ISO 50 value. 

 For all bands, the smallest increase in noise occurred between ISO 50 and ISO 

100, while the largest increase was between ISO 200 and 400; however, the reduction 

in SNR was greatest between ISO 50 and 100, and lowest between ISO 200 and 400. 

Table 3.3 – Noise and SNR for the RGB camera red band at every ISO setting. 
ISO 

Setting 
Illuminated 
Signal (DN) 

Illuminated 
Noise (DN) 

Dark Noise 
(DN) 

Total Noise 
(DN) 

Signal-to-
Noise Ratio 

ISO 50 168.30 2.32 0.24 2.56 65.93 
ISO 100 167.56 3.23 0.33 3.56 47.10 
ISO 200 167.63 4.52 0.57 5.09 32.91 
ISO 400 172.54 6.41 1.18 7.59 22.73 

 
Table 3.4 – Changes in noise and SNR at each ISO for the RGB camera red band. 

ISO 
Setting 

Noise Increase 
over Previous 

ISO (%) 

Noise Increase 
over ISO 50 

(%) 

SNR Decrease 
over Previous 

ISO (%) 

SNR Decrease 
over ISO 50 

(%) 
ISO 100 39.4 39.4 28.6 28.6 
ISO 200 43.2 99.5 30.1 50.0 
ISO 400 49.0 197.3 30.9 65.5 
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Table 3.5 – Noise and SNR for the RGB camera green band at every ISO setting. 
ISO 

Setting 
Illuminated 
Signal (DN) 

Illuminated 
Noise (DN) 

Dark Noise 
(DN) 

Total Noise 
(DN) 

Signal-to-
Noise Ratio 

ISO 50 131.72 1.87 0.19 2.06 63.86 
ISO 100 131.42 2.80 0.21 3.01 43.64 
ISO 200 130.86 4.04 0.45 4.49 29.12 
ISO 400 135.51 5.90 1.11 7.01 19.32 

 
Table 3.6 – Changes in noise and SNR at each ISO for the RGB camera green band. 

ISO 
Setting 

Noise Increase 
over Previous 

ISO (%) 

Noise Increase 
over ISO 50 

(%) 

SNR Decrease 
over Previous 

ISO (%) 

SNR Decrease 
over ISO 50 

(%) 
ISO 100 46.0 46.0 31.7 31.7 
ISO 200 49.2 117.9 33.3 54.4 
ISO 400 56.0 239.9 33.6 69.7 

 
Table 3.7 – Noise and SNR for the RGB camera blue band at every ISO setting. 
ISO 

Setting 
Illuminated 
Signal (DN) 

Illuminated 
Noise (DN) 

Dark Noise 
(DN) 

Total Noise 
(DN) 

Signal-to-
Noise Ratio 

ISO 50 78.71 2.74 0.19 2.93 26.89 
ISO 100 79.36 4.00 0.22 4.22 18.82 
ISO 200 80.83 5.59 0.46 6.05 13.37 
ISO 400 86.72 8.05 1.12 9.16 9.46 

 
Table 3.8 – Changes in noise and SNR at each ISO for the RGB camera blue band. 

ISO 
Setting 

Noise Increase 
over Previous 

ISO (%) 

Noise Increase 
over ISO 50 

(%) 

SNR Decrease 
over Previous 

ISO (%) 

SNR Decrease 
over ISO 50 

(%) 
ISO 100 44.1 44.1 30.0 30.0 
ISO 200 43.4 106.6 29.0 50.3 
ISO 400 51.7 213.4 29.3 64.8 

 

3.3.3.2 NIR Camera 

Tables 3.9 and 3.10 show the results of the noise characterization experiment 

for the NIR camera red band. Tables 3.11 and 3.12 present the results for the green 

band, while Tables 3.13 and 3.14 list the results for the blue band. 

Noise results for the NIR camera were similar to the RGB camera, although 

overall the amount of noise was slightly higher. As with the RGB camera, noise was 

lowest at ISO 50, with both illuminated and dark noise increasing as ISO was 

increased. As with the RGB camera, illumination noise greatly exceeded dark noise at 
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every ISO setting. The amount of noise was similar between the three bands at all ISO 

settings. The red band demonstrated the highest amount of noise, closely followed by 

the blue band (Tables 3.9 and 3.13), while the green band had the lowest amount of 

noise at every ISO setting (Table 3.11). 

The SNR values for the red and blue bands were essentially identical, although 

the blue had a marginally higher SNR at every ISO setting besides ISO 50. The green 

SNR was much lower than the other two bands. This was because this band 

demonstrated a similar amount of noise to the other two bands, but had a much lower 

average signal level. Thus when the signal was divided by the noise using Equation 

3.1, the resulting SNR was lower than for the NIR camera red and blue bands. 

Noise in the red band increased at each ISO setting above ISO 50 by 28 % to 

44% over the previous setting, or from 28 % up to 78 % relative to the ISO 50 value 

(Table 3.10). Noise at ISO 400 was 156 % higher than the ISO 50 value. The SNR 

decreased by 2 4% to 31 % over the previous ISO, or by 17 % to 24 % relative to the 

SNR at ISO 50. The SNR at ISO 400 was 61 % lower than at ISO 50. 

For the green band, the noise increase at each ISO was from 33 % to 50 % 

relative to the previous ISO setting, or from 33 % to 99 % relative to the ISO 50 

value, resulting in noise at ISO 400 being almost 200 % greater than at ISO 50 (Table 

3.12). The SNR decrease at each ISO was between 26 % and 33 % relative to the 

previous ISO, or 17 % to 26 % relative to the ISO 50 value, with an SNR at ISO 400 

that was 66 % lower than at the ISO 50 setting. 

Noise in the blue band increased by 24 % to 44 % over each ISO setting, or by 

24 % to 76 % relative to ISO 50, leading to noise at ISO 400 being 151 % higher than 

at ISO 50 (Table 3.14). The SNR decreased between 20% and 30% over the previous 
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ISO, or by 18 % to 22 % compared to ISO 50, with the SNR at ISO 400 being 60 % 

lower than at ISO 50. 

As with the RGB camera, the smallest increase in noise for all bands occurred 

between ISO 50 and ISO 100, while the largest increase was between ISO 200 and 

ISO 400. Changes in SNR were smallest between ISO 200 and ISO 400 for all bands, 

and largest between ISO 50 and ISO 100 for the red and green bands; however, for 

the blue band, the reduction in SNR between ISO 100 and ISO 200 was marginally 

higher. 

Table 3.9 – Noise and SNR for the NIR camera red band at every ISO setting. 
ISO 

Setting 
Illuminated 
Signal (DN) 

Illuminated 
Noise (DN) 

Dark Noise 
(DN) 

Total Noise 
(DN) 

Signal-to-
Noise Ratio 

ISO 50 180.78 3.26 0.24 3.50 51.65 
ISO 100 177.49 4.03 0.47 4.5 39.50 
ISO 200 181.18 5.38 0.84 6.22 29.11 
ISO 400 180.95 7.33 1.65 8.98 20.16 

 
Table 3.10 – Changes in noise and SNR at each ISO for the NIR camera red band. 

ISO 
Setting 

Noise Increase 
over Previous 

ISO (%) 

Noise Increase 
over ISO 50 

(%) 

SNR Decrease 
over Previous 

ISO (%) 

SNR Decrease 
over ISO 50 

(%) 
ISO 100 28.4 28.4 23.5 23.5 
ISO 200 38.5 77.8 26.3 43.6 
ISO 400 44.2 156.4 30.7 61.0 

 
Table 3.11 – Noise and SNR for the NIR camera green band at every ISO setting. 
ISO 

Setting 
Illuminated 
Signal (DN) 

Illuminated 
Noise (DN) 

Dark Noise 
(DN) 

Total Noise 
(DN) 

Signal-to-
Noise Ratio 

ISO 50 113.54 2.76 0.10 2.86 39.71 
ISO 100 111.09 3.57 0.22 3.79 29.29 
ISO 200 114.61 5.01 0.63 5.64 20.35 
ISO 400 115.20 7.00 1.46 8.46 13.61 

 
Table 3.12 – Changes in noise and SNR at each ISO for the NIR camera green band. 

ISO 
Setting 

Noise Increase 
over Previous 

ISO (%) 

Noise Increase 
over ISO 50 

(%) 

SNR Decrease 
over Previous 

ISO (%) 

SNR Decrease 
over ISO 50 

(%) 
ISO 100 32.7 32.7 26.2 26.2 
ISO 200 48.5 97.0 30.5 48.8 
ISO 400 50.3 196.2 33.1 65.7 
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Table 3.13 – Noise and SNR for the NIR camera blue band at every ISO setting. 
ISO 

Setting 
Illuminated 
Signal (DN) 

Illuminated 
Noise (DN) 

Dark Noise 
(DN) 

Total Noise 
(DN) 

Signal-to-
Noise Ratio 

ISO 50 176.92 3.10 0.35 3.45 51.38 
ISO 100 173.90 3.80 0.46 4.26 40.84 
ISO 200 177.66 5.19 0.81 6.00 29.63 
ISO 400 177.75 7.07 1.58 8.65 20.56 

 
Table 3.14 – Changes in noise and SNR at each ISO for the NIR camera blue band. 

ISO 
Setting 

Noise Increase 
over Previous 

ISO (%) 

Noise Increase 
over ISO 50 

(%) 

SNR Decrease 
over Previous 

ISO (%) 

SNR Decrease 
over ISO 50 

(%) 
ISO 100 23.6 23.6 20.5 20.5 
ISO 200 40.8 74.1 27.5 42.3 
ISO 400 44.2 151.0 30.6 60.0 

 
3.3.4 Spectral Response Characterization 

3.3.4.1 RGB Camera 

Figure 3.18 shows the absolute spectral responses for the RGB camera bands. 

The red band demonstrated the highest response compared to the blue and green 

bands. Peak responses occurred at approximately 480 nm, 535 nm, and 600 nm for the 

blue, green, and red bands, respectively. 

 The bands of the RGB camera were quite broad, with significant overlap 

between them. Full-width-at-half-maximum (FWHM) values were 85 nm for the blue, 

95 nm for the green, and 90 nm for the red band. The total range for sensitivity was 

approximately 150 nm for the blue (380 to 530 nm), 190 nm for the green (460 to 650 

nm), and 140 nm for the red (560 to 700 nm). A slight amount of blue and green 

sensitivity continued until 700 nm, and a slight amount of sensitivity was found for 

the green and red bands between 375 nm and 405 nm. 

 The region of overlap between the blue and green bands was 65 nm wide, 

extending between 465 and 530 nm. Overlap between the green and red bands was 70 

nm wide (560 to 630 nm), although as mentioned before, slight green sensitivity 

continued until 700 nm. 
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The sensitivity curves for the blue and red channels were somewhat 

asymmetrical. For the blue band, sensitivity to the left of the peak (shorter 

wavelengths) declined quicker than sensitivity to the right of the peak (longer 

wavelengths). The opposite occurred with the red, with sensitivity tapering off more 

gradually on the left side of the peak. The green band response was mostly 

symmetrical. 

 
Figure 3.18 – Absolute spectral responses for the RGB camera. Markers indicate 

measurements while lines show the interpolated curves. 

Normalizing the camera responses to account for variations in EMR intensity 

changed the response curves somewhat, especially for the blue band (Figure 3.19). 

The blue band was found to have the highest peak sensitivity, with both the red and 

green bands around 65 % of the blue sensitivity at their respective peaks. The peak 

response for the blue band shifted to 455 nm, while the green peak became 515 nm. 

The red peak remained at 600 nm. The FWHM for the blue band widened slightly to 

approximately 105 nm, while the green and red bands remained the same (95 nm and 

90 nm respectively). 
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 The shape of the sensitivity curves changed as well. The blue band became 

more symmetrical, although now the sensitivity to the left of the peak initially fell off 

more gradually than to the right of the peak. The green band, which was mostly 

symmetrical in the absolute response curves, now had an asymmetry as well, with a 

more gradual decline seen to the right of the peak. The shape of the red curve 

remained substantially unchanged. 

 
Figure 3.19 – Normalized spectral responses for the RGB camera. Markers indicate 

measurements, while lines show the interpolated curves. 

3.3.4.2 NIR Camera 

 The absolute spectral responses for the NIR camera bands are presented in 

Figure 3.20. The shape, peak sensitivity, and band width for all three camera bands 

were found to be essentially identical. Peak sensitivity occurred at 865 nm, with a 

FWHM of 140 nm and total sensitivity range of 300 nm (800 nm to 1100 nm). The 

only notable difference was a difference in magnitude for the green band response 

compared to the red and blue bands. While the red and blue were virtually identical, 

the green channel response at peak was only 65 % as high. 
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Figure 3.20 – Absolute spectral responses for the NIR camera. Markers indicate 

measurements, while lines show the interpolated curves. 

 
Figure 3.21 – Normalized spectral responses for the NIR camera. Markers indicate 

measurements, while lines show the interpolated curves. 

The shape of the sensitivity curves were asymmetrical about the peak, with 

sensitivity reducing much more gradually on the right side of the peak (toward longer 

wavelengths) compared to the left side of the peak. Normalizing for EMR intensity 

left the spectral response curves for this camera unchanged (Figure 3.21). 
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3.3.5 Radiometric Response Characterization and Linearization 

3.3.5.1 Radiometric Response Characterization 

Figures 3.22, 3.23, and 3.24 show the radiometric response curves for the 

RGB camera red, green, and blue bands, respectively. Figure 3.25 presents the 

radiometric response curve for the NIR camera red band. Because all three NIR bands 

were found to be identical in spectral sensitivity and similar in performance in terms 

of vignetting and noise, it was decided to only analyze the radiometric response of the 

red band. This was done because in any potential application, using a single band 

would provide the same information content as the other two bands. Thus, there was 

no reason to further analyze all three bands. 

Each of the figures show the camera response along the y-axis and light 

intensity in the x-axis. Light intensity is relative, with an intensity value of 1 

corresponding to a peak camera response of 255. As shown in the figures, each 

camera band demonstrated a notably non-linear response to increasing light intensity, 

with a rapid response at lower intensities followed by a gradual flattening of the 

response at higher intensities. The response curves of each band were similar in shape 

to one another. 

With the RGB camera red band, there was a slight non-linear feature at very 

low DNs from 0 to approximately 15 (Figure 3.22). DNs between 15 and 100 had a 

linear response to changes in light intensity. This was followed by a nonlinear region 

extending approximately from 100 to 220 DN, where camera response increased at a 

progressively lower rate with increasing light intensity. From 220 DN onward, the red 

band response appeared to become mostly linear again. A similar pattern was seen 

with the RGB green and blue bands and the NIR red band (Figures 3.23, 3.24, and 

3.25), although the non-linearity at low DNs was not as pronounced with those bands. 
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In all cases the major region of non-linear response occurred with DNs from 

approximately 120 to 200. 

 

 
Figure 3.22 – Radiometric response of the RGB camera red band. Markers indicate 

measured responses, while the line shows the interpolated response curve. 
 

 
Figure 3.23 – Radiometric response of the RGB camera green band. Markers indicate 

measured responses, while the line shows the interpolated response curve. 
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Figure 3.24 – Radiometric response of the RGB camera blue band. Markers indicate 

measured responses, while the line shows the interpolated response curve. 

 
Figure 3.25 – Radiometric response of the NIR camera “red” band. Markers indicate 

measured responses, while the line shows the interpolated response curve. 
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1 % relative intensity. This was followed by the RGB camera red band, with an 

RMSE of just over 0.02 (2 %), while the RGB camera green band RMSE was higher 

still at 0.027 (2.7 %). The RGB camera blue band had the highest RMSE figure at 

0.042 (4.2 %).  

Table 3.15 – Root Mean Square Error of the difference between linearized camera 
responses and normalized ASD responses. 

Camera Band Root Mean Squared Error (RMSE) 
RGB-Red 0.0207 

RGB-Green 0.0272 
RGB-Blue 0.0422 
NIR-Red 0.0092 

 

Figures 3.26 to 3.29 show the camera and ASD responses plotted against each 

other for each of the camera bands. The dotted line shows the regression line plotted 

through the data, while the solid line shows a one-to-one relationship for comparison. 

The R2, slope, and intercept of the regression lines are listed, along with the 95 % 

confidence bounds for the slope and intercept. Figure 3.30 shows the difference 

between the ASD and camera responses for all camera bands. The x-axis shows the 

normalized ASD value, while the y-axis shows the difference between the 

measurements at a given ASD value. 

In general the camera responses for the RGB camera red and green bands and 

the NIR camera red band matched closely to the ASD responses and followed a linear 

progression. R2 values were very high for all 3 bands. The slope for each regression 

line was very close to 1, although the NIR red regression slope differed significantly 

from 1 (p < 0.05) (Figure 3.29). The slope for the RGB red and green bands did not 

differ significantly from 1 (Figures 3.26 and 3.27).  

The intercept for each of the 3 bands was also close to 0; however, the 

intercept was significantly above 0 (p < 0.05) for the RGB red and green bands. 
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Examining the data points for the two bands it can be seen that in most cases, the 

camera responses exceeded the ASD responses, indicating a positive bias in the 

linearizing for these two bands. The intercept for the NIR red band was not 

significantly different from 0. 

The linearization of the RGB blue band did not compare as favourably with 

the ASD responses. While the R2 value was high for the regression line and the 

intercept close to 0, the slope was significantly lower than 1 (p < 0.05) (Figure 3.28). 

The graph shows a clear departure from linearity, with camera responses 

progressively falling below the ASD responses before gradually recovering. 

 

Figure 3.26 – Regression of linearized camera responses for the RGB camera red 
band against normalized ASD responses. The dotted line shows the regression line 

through the data, while the solid line shows a one-to-one relationship for comparison. 
R2, slope, and intercept for the regression line are listed, along with the 95 % 

confidence intervals for the slope and intercept in brackets. 
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Figure 3.27 – Linearized camera responses for the RGB camera green band plotted 

against normalized ASD responses. The dotted line shows the regression line through 
the data, while the solid line shows a one-to-one relationship for comparison. R2, 

slope, and intercept for the regression line are listed, along with the 95 % confidence 
intervals for the slope and intercept in brackets. 

 
Figure 3.28 – Linearized camera responses for the RGB camera blue band plotted 

against normalized ASD responses. The dotted line shows the regression line through 
the data, while the solid line shows a one-to-one relationship for comparison. R2, 

slope, and intercept for the regression line are listed, along with the 95 % confidence 
intervals for the slope and intercept in brackets. 
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Figure 3.29 – Linearized camera responses for the NIR camera red band plotted 

against normalized ASD responses. The dotted line shows the regression line through 
the data, while the solid line shows a one-to-one relationship for comparison. R2, 

slope, and intercept for the regression line are listed, along with the 95 % confidence 
intervals for the slope and intercept in brackets. 
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at an ASD response of 0.93. As with the red band, the green camera values were 

higher than the ASD values in every comparison. 

The RGB camera blue band had the largest differences between camera and 

ASD responses. The differences at very low light intensities were similar to the red 

and green bands; however, as light intensity increased, the blue band values were 

progressively lower than the ASD, reaching a maximum underestimation of 0.11 at an 

ASD-value of 0.44. Following this trend, the blue band underestimation became 

progressively smaller until an ASD-value of 0.64, where the blue value was lower 

than the ASD by only 0.004. At higher light intensities the blue band values remained 

similar to the normalized ASD values. 

Compared to the RGB camera, the differences between the NIR camera red 

band and the ASD were smaller. Small differences of no more than 0.01 characterized 

the NIR response from ASD values of 0 to 0.32, with the differences alternating 

between being positive and negative. Beyond this point, the NIR response became 

progressively lower than the ASD, with a maximum negative difference of 0.027 

occurring at an ASD value of 0.6. Further increases in light intensity reduced the 

negative difference until the final data point, where the camera response was 

essentially equal to the ASD response at an ASD value of 0.76. 
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Figure 3.30 – Difference between linearized camera responses and normalized ASD 

responses across a range of EMR intensities. 

3.4 Discussion 

3.4.1 Geometric Distortion Characterization and Calibration 

Geometric distortions for both cameras were successfully characterized and 

calibrated in this research. Distortions for the cameras were found to be moderate, 

with high levels of distortion in the edges of the camera frame. The distortion was 
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occurring in the bottom and left portion of the camera images. The likely cause of this 

asymmetry is a misalignment between the sensor and the camera optics caused during 

the manufacturing of the cameras. Since radial distortion occurs symmetrically about 

the centre of the camera optics, a misalignment with the sensor would cause the 

distortion to be offset in the images, resulting in the observed asymmetry (Brown, 

1966). This is a common defect among mass produced consumer digital cameras 

(Sanz-Ablanedo et al., 2010). 

Using the distortion models from each camera to correct distortion resulted in 

pixel displacement being reduced by 50 % to 100 %. However, the fact that 100 % 
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was not always corrected (and in one case none of the distortion was corrected) shows 

that the distortion correction was not perfect. The correction for the NIR camera 

generally performed better than the RGB correction. It is possible that the NIR camera 

distortion was characterized more accurately, resulting in a better distortion model. 

While care was taken to acquire photos of the calibration grid from the same positions 

and angles for both cameras, the images obtained from the NIR camera may have 

been better suited for characterizing distortion. Another possibility is that the 

calibration grid corners were poorly selected in some images from the RGB camera, 

leading to a poor result during the automatic extraction of the grid intersections. 

While the validation demonstrated the effectiveness of the distortion 

corrections, the validation itself could be improved. Validation should be performed 

using more images for each camera and more points distributed throughout the image 

frame. A validation should also be performed on images outside the dataset used to 

create the distortion models. Another limitation was that it was not possible to 

measure distortion in the furthest corners of the frame, where it was predicted to be 

highest. This was because the edges of the calibration grid were not present in the far 

corners of any of the images. Validation of the models in the edges of the frame 

would be advisable, although potential issues can be mitigated either by cropping the 

edges out of images or by creating mosaics using multiple images with high overlap. 

Another important caveat is that the distortion characterization is only valid 

for the camera settings used. Changes in the focal length, and potentially changes in 

aperture will impact the image distortion. If other settings are desired, the experiment 

will need to be repeated using those settings. 

Finally, the corrections only compensate for internal camera distortion. 

Distortion can also be caused by the external orientation of the camera relative to the 
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ground. To compensate for this distortion it is necessary to know the position and 

orientation parameters at the time of image acquisition, which can be provided by an 

IMU (Cramer et al., 2000). 

3.4.2 Vignetting Characterization 

The results from the vignetting characterization experiment showed a notable 

falloff in pixel values outside the image centre for both cameras, with values falling 

by 5 % to almost 30 % at wide apertures and short focal lengths. Vignetting had a 

larger impact on the NIR camera than the RGB camera. 

Reductions in aperture and increases in focal length yielded decreases in 

vignetting for the RGB camera. This result was not surprising, as vignetting tends to 

be highest at wide apertures and short focal lengths (Yu, 2004). The best combination 

of settings for reducing vignetting was using the narrowest aperture (F/8) and longest 

focal length (21 mm). However, decreases in aperture beyond F/4 and increases in 

focal length beyond 10 mm yielded only marginal improvements. There are trade-offs 

associated with narrower apertures (necessitates slower shutter speeds) and longer 

focal lengths (lower areal coverage per image). Therefore, the best practical 

combination for reducing image vignetting is an aperture of F/4 and focal length of 10 

mm. 

For the NIR camera, narrowing the aperture from F/2.8 to F/4 yielded a 

decrease in vignetting, but further narrowing increased overall vignetting near the 

centre of the images. Likewise, increasing the focal length from 7 mm to 10 mm 

reduced vignetting, but further increases either yielded no improvement or increased 

vignetting near the image centre. As with the RGB camera, the best combination of 

settings to reduce vignetting was an aperture of F/4 and focal length of 10 mm. 
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The vignetting pattern was asymmetrical for both cameras, with a greater 

amount of falloff evident toward to left side of the image frame. This difference was 

more apparent at shorter focal lengths and wider apertures. This asymmetry reinforces 

the findings of the distortion characterization, suggesting the optics are not centred 

over the sensor. As vignetting generally occurs radially from the lens centre, a poor 

alignment of the lens over the sensor could lead to the asymmetrical patterns that were 

observed. 

A relatively typical vignetting pattern was demonstrated by all bands of the 

NIR camera, and the red and green bands of the RGB camera; however, vignetting for 

the RGB camera blue band followed a quite different and unusual pattern. For this 

band, pixel values remained the same or increased with increasing distance from the 

image centre. It was also characterized by a large asymmetry, with pixel values 

increasing toward the bottom portion of the frame, but remaining the same or 

decreasing toward the top of the frame. There was also a larger amount of noise 

evident in the pixel values compared to other bands tested.  

It is not clear why the blue band behaved in this way. The asymmetrical 

increase in pixel values could be a result of differential sensitivity or signal 

amplification for pixels toward the bottom of the frame compared to the centre and 

top. This could be a flaw with the camera, and an absence of these effects with the 

NIR camera blue band suggests the problem resides with the RGB camera 

specifically. The increase in noise is likely simply a result of the fact that less blue 

light was emitted from the integrating sphere, meaning blue pixel values were lower. 

Accordingly, the same amount of noise would yield a greater percentage difference 

from the mean pixel value. Returning to the original images confirmed that the mean 
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blue value in each image was indeed lower, while the standard deviations were 

comparable to those of the other 2 bands. 

While vignetting was characterized, no attempt was made to correct the issue. 

If desired, a digital anti-vignetting filter could be created to boost the values of image 

pixels proportionally based on the amount they are afflicted by light fall-off (Yu, 

2004). For the purposes of the subsequent research in this thesis, it was deemed 

unnecessary to correct the vignetting. Use of the recommended aperture and focal 

length settings along with high overlap between images to create mosaics should 

remove or minimize any issues due to vignetting. 

3.4.3 Noise Characterization 

Noise levels for all bands of the RGB and NIR cameras were similar. Overall 

noise was slightly higher with the NIR camera than the RGB camera. Noise under 

illumination conditions was always found to greatly exceed noise under dark 

conditions. 

The least amount of overall noise was found with the green band for each 

camera (Tables 3.5 and 3.11). For the RGB camera, the most noise occurred in the 

blue band, while for the NIR camera, the red band had the most noise (Tables 3.7 and 

3.9). The red band had the best SNR for the RGB camera, while the blue band had the 

best SNR for the NIR camera (Tables 3.3 and 3.13). The blue and green bands had the 

poorest SNR for the RGB and NIR cameras, respectively (Tables 3.7 and 3.11). The 

low SNR value of these bands, despite a similar or lower amount of noise compared 

to the other bands, is due to the lower signal recorded by each. 

 Noise increased and SNR decreased for both cameras as the ISO was 

increased. This was expected, as the greater amplification applied at higher ISO 

settings, amplifies both the measured signal as well as the noise (Rabie, 2004). The 
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increase in noise and decrease in SNR was similar between the bands of each camera, 

although the changes were smaller for the NIR camera. At each ISO the RGB camera 

suffered an increase in noise of 40 % to almost 60 %, and an SNR decrease of around 

30 % compared to the previous ISO setting (Tables 3.4, 3.6, and 3.8). The noise level 

at the highest ISO setting was around 200 % to 240 % higher, while the SNR was 65 

% to 70 % lower than at the lowest ISO setting.  

For the NIR camera, noise increased by 30 % to 50 % and SNR decreased by 

20 % to 30 % at each ISO setting (Tables 3.10, 3.12, and 3.14). This resulted in noise 

being 150 % to 200 % higher and SNR being 60 % to 65 % lower at the highest ISO 

setting compared to the lowest setting. These findings suggest that the lowest ISO 

setting should always be used unless it is absolutely necessary to have higher sensor 

sensitivity, for instance in order to allow the use of a faster shutter speed to avoid 

image blurring. At the very least, the higher ISO settings (ISO 200 and ISO 400) 

should be avoided. 

 Even at the lowest ISO settings, the SNR values obtained from the cameras 

were fairly poor compared to high quality satellite and airborne sensors. At the lowest 

ISO setting, SNR values were from 27:1 to 66:1 for the RGB camera, and from 40:1 

to 52:1 for the NIR camera. For comparison, the SNR for Landsat-8 bands range from 

150:1 to 350:1 under typical illumination conditions (Irons et al., 2012). The airborne 

Hymap hyperspectral sensor has a nominal SNR of 500:1 (Cocks et al., 1998). This 

disparity in performance is not surprising, as inexpensive digital cameras cannot be 

expected to match the performance of high quality sensors. Nonetheless, it is 

important to keep the noise performance of the cameras in mind as it impacts the level 

of confidence that can be placed in their data. 
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 While this study provided a measure of noise levels under moderate and no 

EMR intensity, more work should be done to provide a better idea of how noise and 

SNR change as a function of EMR intensity and camera exposure. Noise levels were 

found to remain similar between the bands despite differing signal levels, leading to 

some bands having greatly reduced SNR values. This may imply a relatively constant 

level of noise, which could greatly impact the SNR at lower light intensities. On the 

other hand, the very low dark noise results suggest that noise is greatly reduced at 

lower light levels. To better characterize noise it should be measured throughout the 

dynamic range for each camera. This could be performed by imaging the integrating 

sphere over a range of different light intensity settings. 

 While noise was characterized in this study, no attempt was made to reduce it. 

Future improvements to the study could involve investigation of noise reduction 

methods such as spectral filtering (Tsai & Philpot, 1998), spatial filtering (Church et 

al., 2008), or data transformations (Lee et al., 1990). For the purposes of this research, 

using area-averaged spectral signals instead of individual pixel values should reduce 

the impact of image noise. 

3.4.4 Spectral Response Characterization 

The spectral response functions for both cameras were able to be measured 

using the monochromator method. The bands for both cameras were found to be quite 

broad, with spectral FWHM values between 90 nm and 105 nm for the RGB camera 

and 140 nm for the NIR camera (Figures 3.18 to 3.21). A large amount of overlap was 

found between the bands of the RGB camera, while the bands of the NIR camera 

perfectly overlapped.  

The findings of broad bands and high band overlap for the RGB camera agrees 

to what has been found in other research on the spectral characteristics of digital 
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cameras (Barnard & Funt, 2002; Jun et al., 2013; Lauziere et al., 1999; Vora et al., 

1997b). The shape, bandwidth, central wavelengths, and relative sensitivity for the 

RGB camera bands were also similar to those found in a number of other studies 

(Barnard & Funt, 2002; Jun et al., 2013; Lauziere et al., 1999; Martinez-Verdu et al., 

2002). However, these results also differed somewhat from other studies. For 

instance, in Vora et al. (1997b) the relative response of the blue band was much lower 

than the red and green bands, unlike the results of the current study, which indicated 

the relative blue band response was higher than for the other two bands. The green 

and red band peak responses also occurred at longer wavelengths (550 nm and 630 

nm, respectively). Ebner (2007) found their camera bands were more symmetrical, 

while the blue band peaked at shorter wavelengths (430 nm) and the red band peaked 

at longer wavelengths (675 nm). 

Assessment of the NIR characterization using the literature was more difficult, 

as there were fewer studies available on infrared imaging digital cameras. Other 

studies have found NIR sensitivity extending further into shorter wavelengths and the 

peak sensitivity occurring at shorter wavelengths as well (Hunt et al., 2008; 

Verhoeven et al., 2009). However, this could be the result of the type of visible EMR 

blocking filter fitted to the camera. The lack of camera response at wavelengths 

shorter than 800 nm found in this research does not mean the sensor is not sensitive to 

these wavelengths, but simply that the filter fitted to the sensor is blocking all shorter 

wavelengths. 

Differences from other studies do not invalidate the results of this research, but 

emphasize the fact that cameras can and do differ in their spectral response. 

Consequently, if the spectral response of a camera is important for a particular 

application, it is important to characterize it. Knowledge of the spectral response of a 
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sensor is important when using or comparing data from multiple sensors, as 

differences in spectral response functions can lead to significant differences in the 

measurements from each (Trishchenko et al., 2002). Knowing the spectral sensitivity 

of a sensor can also allow assessment of its suitability for an application. For example, 

if the sensor is not sensitive within the desired spectral range, or if the bands are too 

broad to detect a narrow spectral feature of interest, then the sensor is not useful. 

The spectral sensitivity characterization performed in this research could be 

improved in a number of ways. Firstly, the issue of radiometric nonlinearity was not 

factored in to the response models. As seen in the radiometric response 

characterization, both cameras demonstrated nonlinear responses to light intensity 

changes. Consequently, the exact shape of the spectral response curves for each band 

would likely change, primarily by the shoulders to either side of the spectral peak 

becoming steeper. Linearization was not included in this experiment to avoid potential 

complication due to errors in the linearization models. Despite its omission, the width 

and wavelength of peak sensitivity for each band is not likely to be any different, and 

it is these features that were of primary interest. 

Another improvement would be to validate the spectral response curves. The 

use of a monochromator for assessing sensor spectral sensitivity is a common practice 

in spectral response studies and has been shown to be accurate (Farrell et al., 2008; 

Lauziere et al., 1999; Verhoeven et al., 2009; Vora et al., 1997b). Nonetheless, 

validation would increase confidence in the measured spectral response functions. 

Validation could involve using the measured spectral response functions from the 

cameras to create simulated images of targets with known reflectance properties (e.g., 

a Macbeth ColorChecker chart). The targets would also be imaged with the cameras, 
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and the values in the simulated and real images would be compared (Farrell et al., 

2008; Vora et al., 1997b). 

3.4.5 Radiometric Response Characterization and Linearization 

The radiometric responses for both cameras were found to be nonlinear. This 

was expected, as consumer digital cameras are commonly designed to be nonlinear 

(Grossberg & Nayar, 2004).  

 The lookup table linearization method was able to correct the nonlinearities 

for both cameras reasonably well. Linearized responses for the RGB camera red and 

green bands and the NIR camera red band compared well to ASD responses. The 

linearized responses for the RGB red and green bands were higher than the ASD 

responses; however, increases and decreases in light intensity yielded a mostly linear 

change in camera values. The difference between camera and ASD responses did vary 

somewhat with light intensity, suggesting that the correction was not perfect and that 

some nonlinearity remains.  

The NIR camera red band compared more favorably to the ASD, with the 

difference between camera and ASD responses being smaller than for the RGB red 

and green bands. As with the RGB camera, the difference between the linearized NIR 

red band values and ASD values did vary with light intensity, but the variations were 

smaller. However, the slope of the regression line fitted to the data was slightly under 

1, indicating that the corrected responses may remain somewhat nonlinear. 

 The linearization of the RGB camera blue band did not perform well 

compared to the other camera bands. Blue band responses remained strongly 

nonlinear relative to the ASD measurements. Large differences between the blue band 

response and ASD response were evident, with the blue band values being much 

lower than the ASD for much of its dynamic range. The poor quality of the 
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linearization model for the RGB camera blue band indicates that it should not be used 

for quantitative spectral measurements, as the assumption of a linear sensor response 

is not valid for this band. 

 The methods used in this study could be improved upon. The fact that light 

from the integrating sphere was used to both create and validate the linearization 

models is a potential issue, although the use of an integrating sphere is common and 

accepted practice (European Machine Vision Association, 2010). In future work the 

validation could be performed using other targets, including both natural and synthetic 

objects with varying reflectance properties under daylight illumination (Mitsunaga & 

Nayar, 1999; Shafique & Shah, 2004). 

 Another issue is that a differing number of data points were used to validate 

the linearization models for each band. Specifically, there were fewer data points used 

for the RGB camera red band than for the other bands. This was because a single set 

of images were used to validate the response models for all 3 bands. Red band 

saturation occurred at higher integrating sphere light intensities and, consequently, 

those images could not be used in the comparison. The green and blue channels did 

not saturate. Thus, all measurements for those bands could be used in the comparison.  

Another problem related to the above is that the dynamic range was not 

covered fully for every band. While the RGB camera green band highest response was 

94 % of the maximum, the highest red band response was only 86 % of the maximum, 

while for the blue band it was only 72 %. For the NIR camera red band, the highest 

response was only 76 % of the maximum. In order to better validate the response 

models, the experiment could be repeated for each camera band separately, taking 

care to ensure that most of the dynamic range is covered for each band. 
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It is important to note that while the linearization models were able to 

compensate for the nonlinear response of the cameras, the cameras are not equally 

sensitive to changes in light intensity throughout their dynamic range. Due to the 

flattening of the camera response near the top of its dynamic range, a larger change in 

light intensity is necessary to yield a corresponding change in DNs compared to the 

lower portion of the dynamic range; thus, the radiometric resolution at high DNs is 

worse than at low DNs. Linearization of the camera responses does not correct this 

issue, it merely allows the camera values to properly indicate the linear differences in 

light intensity between one DN value and the next. 

3.4.6 General Discussion 

Knowledge of the spectral, spatial, and radiometric characteristics of a sensor 

system is important when using it to derive quantitative data. For digital cameras, it is 

often difficult or impossible to obtain detailed information on these characteristics 

from the camera manufacturer. Furthermore, even if such data are available, the 

characteristics of cameras of the same make and model can differ from one another. 

Therefore, it is advantageous to independently validate the characteristics of each 

camera to be used in remote sensing applications. 

For several of the experiments performed here, the results may only be valid 

for the camera settings used. This is particularly true of the distortion characterization, 

where the created distortion models are only valid for the focal length settings that 

were used. 

An important factor that warrants mentioning is the impact of the white 

balance setting selected for the camera. The white balance differentially amplifies the 

responses for each camera band in order to render colours in a manner which appears 

correct to the eye. Consequently, varying the white balance could have a pronounced 
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effect upon some of the results achieved in this study, particularly for the spectral and 

radiometric responses for each band. Therefore, it is important to characterize the 

cameras using a consistent white balance, and to use the same white balance setting 

during any subsequent application of the cameras. Use of automatic white balance 

settings must be avoided to prevent undermining the quality of the data. 

It is also important to mention the impact of the Bayer colour filter array on 

data derived from the digital cameras. As a result of the filter, a given pixel only 

detects one wavelength range of EMR, with values for the other two bands being 

interpolated through demosaicing (Li et al., 2008). Consequently, it cannot be certain 

if the value for a band in a given pixel is due to an actual EMR stimulus if it has been 

computed. To minimize potential issues due to demosaicing, averaged camera 

responses were used in most of the characterization experiments performed in this 

research. However, this issue means that quantitative measurements based on 

individual pixel values should be treated with caution. It is likely better to calculate 

the average camera signal over a target of interest than to use individual pixel values. 

The use of averaged signals is also recommended on account of the relatively high-

noise characteristics of the cameras. 

3.5 Conclusions 

In this chapter some of the key spectral, spatial, and radiometric characteristics 

of two digital cameras were assessed using laboratory-based experiments. The 

characterization experiments found the cameras were afflicted by moderate amounts 

of geometric distortion, vignetting, and noise, and the radiometric response for each 

camera was found to be nonlinear. The spectral response functions for the cameras 

were also successfully measured, which will aid in comparisons of the camera data 

with data from other sensors.  
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Calibrations were implemented to compensate for geometric distortion effects 

and nonlinear radiometric responses. The calibrations were able to minimize 

geometric distortion and compensate for most of the radiometric nonlinearity 

encountered. These calibrations will help to improve the quality of the camera data for 

the quantitative remote sensing measurements acquired in the next chapter. 

Some unusual results were found for the RGB camera blue band. Vignetting 

results for this band did not adhere to the expected pattern, and, critically, the 

radiometric response calibration was unable to satisfactorily correct the band’s 

nonlinear response. Consequently the RGB camera blue band will be omitted from the 

research in the next chapter. 

Future research should examine compensating for other sensor effects such as 

vignetting and image noise. For the purposes of the subsequent research in this thesis, 

the use of high image overlap and appropriate camera settings should minimize 

vignetting, while aggregation of image pixels over larger areas should minimize the 

potential impacts from image noise. 
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4. THE IMPACT OF SPATIAL RESOLUTION ON RIPARIAN LAI 
MODELLING USING REMOTE SENSING 

4.1 Introduction 

This chapter examines the effects of differing sensor spatial resolutions on leaf 

area index (LAI) modelling within riparian zones using optical remote sensing. 

Throughout this chapter “spatial resolution” refers to the ground sampling distance 

(GSD), the ground distance between adjacent pixel centres in an image. The research 

was conducted to provide information on the appropriate sensor spatial resolutions for 

monitoring riparian LAI. This information will facilitate the selection of a sensor for 

operational riparian LAI monitoring, providing data for dam managers to assess the 

response of riparian vegetation to alternative water management regimes. 

As part of this research, digital cameras were evaluated for their ability to 

provide quantitative remote sensing data comparable to more costly professional-

grade sensors. This comparison was performed due to the prolific use of digital 

cameras in quantitative remote sensing applications in recent years (Hunt et al., 2010; 

Jensen et al., 2007; Sakamoto et al., 2011; Zhang & Kovacs, 2012). Therefore, it is 

appropriate to assess the quality of the data obtained from these inexpensive sensors. 

Using a digital camera imaging system mounted on a light aircraft, airborne 

imagery was acquired over riparian areas along the Oldman River in southern Alberta. 

Ground measurements of LAI for both the tree canopy and understory vegetation 

were acquired on dates contemporary with airborne image acquisition. Two methods 

were used to assess canopy LAI: measurements of optical light transmission, and litter 

fall traps. The litter trap data were used to evaluate the optical measurement accuracy. 

The understory LAI was measured using a destructive harvest method. 

The airborne image data were calibrated into units of spectral reflectance, and 

the data was then assessed through comparison with other sensors. The first 
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comparison was performed using an ASD spectroradiometer, a terrestrial 

hyperspectral sensor. The second comparison was performed using satellite image 

data from the Landsat-8 OLI sensor. Both the ASD and Landsat data were acquired 

on the same dates or within a few days of the airborne image acquisition dates. 

Spectral vegetation indices (SVIs) calculated from remote sensing data are 

highly correlated with vegetation biophysical parameters; consequently, SVIs are 

often used to empirically model LAI (Colombo et al., 2003; Gonsamo & Pellikka, 

2012; Soudani et al., 2006; Turner et al., 1999). In this research, SVIs were calculated 

from the airborne reflectance data, and these were used along with the ground LAI 

data to create regression models for predicting LAI.  

The ability of a given SVI to model biophysical parameters is variable 

depending on the vegetation type, site conditions, and parameter of interest (Broge & 

Leblanc, 2001). Due to this fact, it is common to test a variety of SVIs for their 

modelling performance (Baret & Guyot, 1991; Colombo et al., 2003; Elvidge & Chen, 

1995; Haboudane et al., 2004). In this research, eight different SVIs were calculated 

and evaluated for their ability to predict LAI. The SVI that demonstrated the highest 

model fit was selected for the subsequent analysis of spatial resolution effects on the 

estimation of riparian LAI. 

A common method for evaluating the effects of spatial resolution in remote 

sensing applications is to perform a sensitivity analysis, observing the changes in the 

quantity of interest as resolution changes (Chen, 1999; Friedl et al., 1995; Marceau & 

Hay, 1999; Teillet et al., 1997). In this study, airborne images were spatially 

resampled to a range of progressively coarser resolutions between 0.18 cm and 500 m. 

At each resampled resolution, the selected SVI was calculated and regressed against 

the ground-measured LAI data, and the differences between the regression models at 
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each resolution were compared. Using the regression models, LAI was calculated at 

every resolution using two methods: firstly, by using the different regression models 

derived at each resolution, and secondly, by using a single regression model to predict 

LAI at every resolution. For both methods, the changes in LAI prediction error as 

resolution coarsened were examined. 

4.2 Methods 

4.2.1 Study Area Description 

 This research was conducted on riparian cottonwood forests located along a 

stretch of the Oldman River in Southern Alberta (Figure 4.1). The Oldman River is a 

snowpack-fed river originating in the Rocky Mountains. The river flows east through 

the communities of Fort Macleod, Lethbridge, and Taber before joining with the Bow 

River near the hamlet of Grassy Lake to form the South Saskatchewan River, whose 

waters eventually discharge into the Hudson’s Bay. The river is regulated via the 

Oldman Dam, built in 1992, whose reservoir provides a reliable source of water for 

municipalities as well as for agricultural irrigation.  

The regional climate is classified as “cold semi-arid” (type BSk) according to 

the Köppen climate classification system. Cold semi-arid climates are characterized 

by cold dry winters and hot dry summers, with potential evapotranspiration exceeding 

precipitation for most of the year (Peel et al., 2007). From 1981 to 2010, the average 

temperatures within the city of Lethbridge ranged between 18.2 °C in July to -6.0 °C 

in January, with a mean annual temperature of 5.9°C (Environment Canada, 2013). 

For the same years, the average annual precipitation in Lethbridge was 380 

millimeters, with more than half (212 mm) falling as rain during the spring and 

summer months between May and August (Environment Canada, 2013). June had by 

far the largest amount of precipitation on average with 82 mm, with the next highest 
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month being May at 49.9 mm. February had the lowest average precipitation (12 

mm); however, both December and January have similarly low amounts (12.9 mm 

and 13.5 mm respectively) (Environment Canada, 2013). 

Strong chinook winds occur frequently in the area. These winds originate from 

the Pacific Ocean and pass through the Rocky Mountains, losing their moisture along 

the way in the form of orographic precipitation (Alberta Agriculture and Forestry, 

2003).  As the winds descend from the mountains they warm rapidly due to the 

greater adiabatic lapse rate of dry air compared to moist air. The warm chinook winds 

helps to moderate winter temperatures, frequently causing temperature increases of 

20°C or more (Alberta Agriculture and Forestry, 2003). Consequently, the Lethbridge 

area enjoys warmer winters on average than many other parts of the prairies. The dry 

winds rapidly absorb moisture from the air and soil, contributing to the aridity of the 

region.  

Soils in the region are dominated by Dark Brown Chernozems, developed 

from well drained lacustrine and fluvial deposits as well as glacial till parent material 

(Agriculture and Agrifood Canada, 1980). The high organic content in these soils 

make them excellent for agricultural use (Clayton et al., 1977). Regosolic soils are 

also commonly found on the river floodplain, developed from fluvial sediments 

deposited by the river and by glacial meltwater (Agriculture and Agrifood Canada, 

1980). These soils are poorly developed due to the instability of the floodplain 

(Clayton et al., 1977). 

The average height of terrain between the Oldman Dam and Lethbridge is 960 

m above sea level. Along this section of the river, the floodplain is entrenched in a 

deep valley which was carved by glacial floods during the Wisconsinan glaciation 

(Beaty, 1975). Consequently, the floodplain elevation is between 20 and 100 meters 
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lower than the surrounding terrain. The width of the riparian zone varies from 100 

meters to more than 1 kilometer on either side of the river, with most riparian areas 

being between 200 and 500 meters wide.  

While much of the land in the Lethbridge area has been converted for 

agricultural purposes, mixed grassland prairies formerly dominated the region 

(AMEC, 2009). Due to the regional aridity, native forests are only found on the river 

floodplain where there is sufficient moisture to support them (Gom & Rood, 1999). 

Cottonwood trees form the dominant vegetation type in the riparian zone, with three 

main species present, along with various hybrids between them. These species are 

plains cottonwood (Populus deltoids), narrowleaf cottonwood (Populus augustifolia), 

and balsam poplar (Populus balsamafera) (Gom & Rood, 1999). The stretch of the 

Oldman River from Fort Macleod to Taber is of unique ecological significance as it is 

considered to be the only area in the world where the ranges of these three 

cottonwood species naturally overlap to produce a trispecific hybrid swarm (Floate, 

2004; Rood et al., 1986).  

Data for this study were collected in the Helen Schuler Nature Centre park 

located within the city of Lethbridge (49°42’4”N, 112°51’47”W; Figure 4.2). This 

site was selected as it is a representative riparian area in terms of its vegetation 

composition and size. Both airborne imagery and ground data were acquired at the 

Helen Schuler site (hereafter referred to as the HSNC site) on multiple dates from 

May to October, 2014, providing data from the green-up to the senescence of the 

trees.  

Data were also acquired along an extended section of the river from the 

Oldman Dam (49°33’14”N, 113°51’18”W) to a location called Pearce Corner located 

north-west of Lethbridge (49°51’6.5”N, 113°15’9”W), covering approximately 100 
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kilometers of the river’s course (Figure 4.3). Airborne imagery was acquired once 

along this stretch of the river (hereafter referred to as the River Transect site) in July, 

2014 under peak LAI conditions. Note that no ground data were acquired within the 

River Transect site. 

 

 

 

 

 
Figure 4.1 – Map of the Oldman River watershed. 
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Figure 4.2 - Study area map of the Helen Schuler Nature Centre (HSNC) site within 

the city of Lethbridge, Alberta. 
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Figure 4.3 – Study area map of the River Transect site.The imaged section of the 

river is shown in red between the Oldman Dam and Pearce Corner. 

4.2.2 Data Acquisition 

Ground data collected at the HSNC site included optical measurements of 

canopy LAI, destructive sampling of understory LAI, and spectral reflectance 

measurements of natural and man-made objects. Litter traps were also deployed to 

provide a second measure of the tree canopy LAI. Airborne imagery was acquired 

over both the HSNC and the River Transect sites using a digital camera system 

mounted onboard a small single-engine aircraft. Landsat-8 satellite images were also 

obtained over both sites from the United States Geological Survey (USGS). Table 4.1 

summarizes the types of data collected, the number of acquisitions, and the dates on 

which they were collected. 

 

 



121 
 

Table 4.1 – Summary table of data acquired and acquisition dates. 

Data Type Number of 
Acquisitions 

Acquisition Date(s) 

LAI-2000 measurements 7 May 22, Jun 07, Jul 11, 
Jul 31, Aug 26, Oct 05, 

Nov 03 
 

TRAC measurements 3 Jul 31, Aug 26, Sept 17 
 

Understory LAI harvests 6 May 20, Jun 06, Jul 10, 
Jul 21, Aug 25, Oct 07 

 
Litter trap collections 3 Sept 26, Oct 07, Oct 21 

 
ASD spectral measurements 6 May 21, June 04, July 09, 

Aug 04, Aug 26, Oct 05 
 

Airborne imagery (HSNC 
site) 

6 May 22, Jun 07, Jul 09, 
Aug 01, Aug 27, Oct 05 

 
Airborne imagery (River 

Transect site) 
1 Jul 29 

 
Landsat-8 imagery (HSNC 

site) 
3 Jul 12, Aug 04, Oct 05 

Landsat-8 imagery (River 
Transect site) 

1 Jul 26 

 

4.2.2.1 Ground Data Collection 

4.2.2.1.1 Optical LAI Measurements 

 Optical measurements of tree canopy LAI were acquired using two 

intercalibrated LAI-2000 Plant Canopy Analyzers (Li-COR, Inc., Lincoln, NE, USA). 

One LAI-2000 was placed in a large forest clearing and programmed to measure 

“above canopy” radiation at 30 second intervals, while the second instrument was 

used to sample below canopy radiation (Figure 4.4). Below canopy measurements 

were taken along 5 transects running from south-east to north-west, with 62 individual 

sample locations in total (Figure 4.5). All measurements were taken while facing 

north-west, and a 90° view cap was attached to each instrument to limit the field-of-

view to this direction as well as to remove the possibility of shading of the instrument 
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by the operator. Measurements were taken at sunrise or sunset in order to provide the 

diffuse, indirect illumination conditions required for optimal measurement accuracy 

(Li-Cor, 1992).  

 
Figure 4.4 – Illustration of LAI-2000 field deployment. 

LAI-2000 measurements were acquired on 6 dates from late May to early 

October, 2014 (Table 4.1). As the LAI-2000 does not distinguish between leaves and 

other canopy elements (branches and stems), the measured quantity is often referred 

to as “Plant Area Index” (PAI) to distinguish it from LAI (Jonckheere et al., 2004). To 

remove the contribution of non-leaf canopy elements, a final set of measurements 

were acquired in late October when the trees were fully defoliated. These 

measurements were used to determine the woody-to-total area ratio, which is used to 

calculate LAI from the PAI measurements taken during the growing season. 
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Figure 4.5 – Ground data acquisition map for the HSNC site. 

 The LAI-2000 calculation of LAI is based on the assumption of a random 

distribution for leaves in the canopy. As no vegetated canopy is truly random, the 

LAI-2000 has been found to often underestimate LAI (Cutini et al., 1998; Deblonde et 

al., 1994; Smith et al., 1993). To correct the LAI-2000 estimates, a correction factor 

called the clumping index was used. This index quantifies foliage clumping within the 
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canopy. A Tracing Radiation and Architecture of Canopies (TRAC, 3rd Wave 

Engineering, Ottawa, ON, CA) instrument was used to obtain the clumping index.  

It was originally planned to acquire TRAC measurements along the 5 transects 

used for LAI-2000 measurements; however, this plan proved impractical as dense 

understory vegetation made maintaining the steady walking pace necessary for TRAC 

operation impossible. Consequently, TRAC measurements were conducted by 

walking the instrument at a slow, steady pace along a set of five different transects 

oriented approximately north to south through the HSNC site (Figure 4.5). The 

transects varied in length from 150 m to 300 m, and made use of walking paths and 

trails within the site.  

TRAC measurements were taken on clear sunny days either in the late 

morning or early evening within the recommended solar zenith angle range of 30° to 

60° (Leblanc et al., 2002). Data were acquired on the same date as LAI-2000 

measurements. Unfortunately, only three dates of TRAC data were acquired, and one 

measurement (in September) did not correspond with a set of LAI-2000 

measurements (Table 4.1). 

4.2.2.1.2 Understory Harvest LAI 

The understory LAI characterization in this thesis was carried out in Orchard 

(2015). A destructive harvest method was used to characterize the understory LAI. 

Four 1m² sample plots were selected within the HSNC site (Figure 4.5). At each 

sample plot all vegetation was clipped down to the soil and collected within a 20 cm x 

50 cm frame. Vegetation was harvested on dates as close as possible to those of the 

LAI-2000 measurements (Table 4.1), with a new 20 cm x 50 cm portion within the 

1m² plots being selected each time to avoid repeated sampling of the same areas. Note 
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that one harvest date was separated from its corresponding LAI-2000 capture date by 

10 days (July 21 for understory harvest vs July 31 for the LAI-2000). 

4.2.2.1.3 Litter Trap LAI 

 Litter traps were deployed throughout the HSNC site at the beginning of fall in 

order to characterize the peak canopy LAI and to validate the optical LAI data. These 

traps were made from two different kinds of laundry basket with ground footprints of 

0.195 m2 and 0.213 m2, respectively. Holes were drilled in the bottom of the traps to 

allow drainage and a brick was placed inside each to prevent wind movement. A total 

of 19 litter traps were placed at regular intervals throughout the site (Figure 4.5). The 

selected locations corresponded with optical LAI sampling points. Leaf litter fall was 

collected from the traps every two weeks from mid-September until late October 

when the trees were completely senesced (Table 4.1). 

4.2.2.1.4 Spectral Reflectance 

 Measurements of spectral reflectance were acquired using an ASD Fieldspec-3 

spectroradiometer (ASD Inc., Boulder, CO, USA). These measurements were taken 

within the HSNC site concurrently or within a few days of airborne imaging (Table 

4.1). A Spectralon reflectance panel was used as a white reflectance standard for 

calculating target reflectance. The instrument was set to average 20 spectral samples 

for each measurement in order to reduce noise, with 10 measurements in total being 

acquired from each target. Targets measured included asphalt, soil, grass, cottonwood 

trees, and two felt-topped tables placed within the site for airborne image reflectance 

calibration (Figure 4.6).  

As it was infeasible to measure the cottonwood canopy from above, branches 

were clipped from the trees and placed on top of the black felt table, being arranged in 

an optically thick stack ensuring that only plant materials were measured by the ASD. 
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This method is considered reasonable for assessing the spectral characteristics of a 

vegetated canopy; however, it does cause significant changes to the orientation and 

arrangement of the plants compared to measuring them in situ, which can result in 

alterations to their spectral responses (Goward et al., 1994; Peddle & Smith, 2005). 

 

 
Figure 4.6 – Images of spectral reflectance targets measured with the ASD. Targets 
shown are: (a) asphalt, (b) soil, (c) grass, (d) cottonwood leaves (in optically thick 

stack), (e) white felt calibration table, and (f) black felt calibration table. 

 

 

(a) (b)

(d)(c) 

(f)(e) 
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4.2.2.2 Remote Sensing Data Collection 

 The airborne imagery used in this research was obtained using two Canon 

Powershot S50 digital cameras (Canon, Inc., Tokyo, Japan). One camera was used to 

image in the visible red, green, and blue portions of the spectrum (hereafter called the 

RGB camera), while the second was modified to image in the near infrared portion of 

the spectrum (hereafter called the NIR camera). 

 Both cameras were attached in sequence to a custom camera mount (Figure 

4.7) which was mounted out the window of a Cessna 172 aircraft. Both cameras were 

triggered simultaneously to capture a matching RGB and NIR image at each imaging 

location. All images were acquired using fixed camera settings to ensure data 

consistency. 

Imagery was acquired over the HSNC site at 600 m above ground, resulting in 

a GSD of 18 cm. Two passes were used to cover the site, with approximately 50 % 

end-lap and side-lap between images. Two 1 m x 1 m felt-topped tables (one black, 

one white) were positioned in a clearing during the imaging overflights for use as 

reflectance calibration targets (Figure 4.6 e & f). Six dates of imagery were obtained 

over the HSNC site (Table 4.1). 

 Imagery of the River Transect site was captured once at mid-summer (Table 

4.1). The images were taken at a constant altitude of 2750 m above sea level, or an 

average of 1800 m above the terrain. Due to differences in the terrain height, the GSD 

of the images varied between 80 cm and 1.2 m. 50 % end-lap between images was 

used with no side-lap as a single pass was used to cover the entire floodplain. 

Satellite images were obtained from the Landsat-8 Operational Land Imager 

(OLI) sensor through the USGS data portal (http://earthexplorer.usgs.gov/). Images 

were selected on dates as close as possible to those of airborne image acquisition 
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(within 3 days). This resulted in a total of three images over the HSNC site and 1 

image of the River Transect site (Table 4.1). 

 

 
Figure 4.7 – Camera mount diagram. 
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4.2.3 Data Processing 

4.2.3.1 Ground Data 

4.2.3.1.1 Optical LAI Measurements 

 Each measurement from the below-canopy LAI-2000 was combined with the 

closest temporal measurement from the above-canopy instrument. The combined files 

were then used to calculate the average site PAI using the FV2000 (Li-COR, Inc., 

Lincoln, NE, USA) processing software. Only data from the first four sensor rings 

were used to calculate PAI, as the 5th sensor ring has been found to contribute to 

errors in the calculation (Cutini et al., 1998; Leblanc & Chen, 2001). The clumping 

index was calculated from the TRAC data using the TRACWin (3rd Wave 

Engineering, Ottawa, ON, CA) processing software. The clumping indices calculated 

from the three acquisition dates were averaged to obtain a seasonal-averaged 

clumping index. LAI was calculated from PAI as follows (Chen et al., 2006): 

ܫܣܮ  = [(1 − (ߙ ∗ ܫܣܲ ∗ [ߛ Ω⁄  (4.1)

where Ω is the seasonal-average clumping index, γ is the needle-to-shoot-area ratio 

(equal to 1 in deciduous forests), and α is the woody-to-total area ratio, which is 

calculated as follows (Serbin et al., 2013): 

ߙ  = ଴ܫܣܲ ଵܫܣܲ] ∗ ߛ) Ω)]⁄⁄  (4.2)

where PAI0 is the PAI value for the tree branches and stems measured under fully 

senesced conditions in late October, and PAI1 is the PAI from the date for which the 

LAI is being calculated. 

4.2.3.1.2 Understory Harvest LAI 

Understory harvest data were processed in Orchard (2015). The collections 

from each quadrat were sorted to remove dead material, with the remaining green 

biomass being weighed. The LAI of the green biomass was then measured using an 
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LI-3100C Leaf Area Meter (Li-Cor Inc., Lincoln, NE, USA). This procedure was 

repeated with each harvest sample for half the growing season until the peak biomass 

was observed. Based on the data from the first half of the season, a regression 

equation was created to relate green biomass to measured LAI. The regression model 

was derived from 16 samples, with a coefficient of determination (R²) of 0.96. The 

regression model was as follows: 

ܫܣܮ  = 0.004 ∗ ݏݏܽ݉݋ܾ݅ + 0.14 (4.3)

This equation was then used to calculate understory LAI for the remaining harvests 

for the second half of the growing season. The calculated LAI was averaged for the 

entire site for each measurement date. 

4.2.3.1.3 Calculation of Total Site LAI 

 The total LAI for the site on each measurement date was estimated by adding 

together the average tree canopy LAI determined through optical measurements with 

the average understory LAI determined through destructive harvest. 

4.2.3.1.4 Litter Trap LAI 

 The leaf fall collected from the litter traps was sorted into three categories: 

plains cottonwood, narrowleaf cottonwood, and understory shrub leaves. Balsam 

poplar leaves, where present, were grouped with the plains cottonwood leaves, as 

their similar leaf shapes made them difficult to separate. Cottonwood hybrid leaves 

were grouped with either the plains or narrowleaf categories based on the similarity of 

leaf shape. The sorted leaves were then dried and weighed. 

 In order to calculate LAI from the dried leaf mass, the specific leaf area (SLA) 

– the average leaf area per unit mass – had to be determined for each leaf type. To 

determine the SLA, a separate collection of leaves of each type were gathered in 
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September, with the average leaf area being measured for each. The leaves were then 

dried and weighed, and the average leaf area per unit mass was calculated. 

 The total cottonwood leaf area for each litter trap was calculated first by 

multiplying the dry biomass weight of the plains and narrowleaf cottonwood groups 

by their respective SLA values, then by adding the resultant leaf areas together. The 

LAI for each trap was calculated by dividing the total leaf area by the area of the 

traps. The LAI for all the litter traps was then averaged to estimate LAI for the entire 

HSNC site. 

4.2.3.1.5 Spectral Reflectance 

 The 10 spectral reflectance measurements for each target were averaged to 

create a representative spectral signature for each. The averaged spectral signatures 

were then converted to spectral library files in the image processing software ENVI 

(Version 5.1, Exelis VIS, Boulder, CO, USA). To allow comparison with the airborne 

image data, the hyperspectral spectral libraries were spectrally resampled to match the 

multispectral band profiles of the airborne digital cameras, measured in Chapter 3. 

4.2.3.2 Remote Sensing Data 

 The Landsat-8 OLI images were already geo-registered, atmospherically 

corrected and calibrated to reflectance. Thus, no further processing of the satellite 

imagery was undertaken. For the airborne imagery, a number of pre-processing steps 

were necessary, which are summarized in Figure 4.8: 

 
Figure 4.8 – Airborne image pre-processing workflow. 
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 Geometric distortions were corrected for each camera image using the 

distortion models developed in Chapter 3. To combine each matching set of NIR and 

RGB images to each other, a semi-automated method was implemented based on the 

Scale Invariant Feature Transform (SIFT) algorithm (Lowe, 2004). A modified 

version of the SIFT code (available from http://www.cs.ubc.ca/~lowe/keypoints/) was 

used in Matlab (Version R2012a, MathWorks Inc., Natick, MA) to automatically 

match key points between the sets of images. These points were recorded in text files 

and used as ground control points (GCPs) in ENVI, where an image-to-image 

registration was performed to warp the NIR image to match the RGB image.  

Next, the warped NIR and the RGB image were overlaid, aligned, and cropped 

to their common area in Adobe Photoshop (Version CS3, Adobe Systems Inc., San 

Jose, CA, USA). Finally, in Photoshop the red band from the NIR image was 

combined with the red and green bands from the RGB image to create a false-colour 

infrared composite image. When all the images from a given date had been combined, 

they were then mosaicked together using the Microsoft Image Compositing Editor 

(Microsoft, Redmond, WA, USA) program to create an image mosaic of the entire 

study site. For the River Transect site, the site was split into several mosaics due to 

variations in spatial resolution. 

 In Chapter 3 it was determined that the digital cameras used in this research 

had a non-linear response to changes in light intensity. Consequently, it was necessary 

to convert the DNs of the image mosaics to linearized values. This was done using the 

lookup table approach developed in Chapter 3, converting the DNs for each pixel to a 

corresponding linear value between 0 and 1.  

In the next step the image mosaics were geo-registered. Geo-registration was 

performed in ENVI by manual selection of identifiable GCPs between the photo-
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mosaics and geo-registered orthophotos taken over the HSNC and River Transect 

sites. Following geo-registration the River Transect image mosaics were combined 

and resampled to a nominal GSD of 1 m. 

In the next step the geo-registered images were calibrated to units of spectral 

reflectance. The empirical line calibration method was performed using two reference 

targets. For the HSNC images, the two felt-topped tables were used as high and low 

reflectance targets. The average value for the pixels in the centre of each table was 

matched to the corresponding table reflectance value measured by the ASD, and the 

calibration was then performed in ENVI. For the River Transect site there were no 

calibration targets present, necessitating the use of objects occurring within the image. 

A portion of deep river water and a large gravel bar were selected as the low and high 

reflectance calibration targets, respectively (Figure 4.9). The reflectances of these 

targets were determined from the contemporary Landsat image over the site.  

 In the last processing step, the image mosaics were spatially resampled to 

simulate a range of spatial resolutions from 1 m to 500 m. This process was 

performed in two steps: point spread function (PSF) simulation and spatial 

resampling. The PSF was simulated in order to more accurately model the optical 

performance of lower resolution sensors. Without this step, all the high-resolution 

pixels contained within a low resolution pixel would equally contribute to the low-

resolution pixel value. This is not physically valid, because with real sensors the EMR 

from the centre of the pixel contributes more greatly than the EMR from the 

periphery, and EMR from outside the pixel also contributes to the measured spectral 

signal (Pryor, 2012). 
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Figure 4.9 – Map of the River Transect site showing locations of bright and dark 

reflectance calibration targets. 

To simulate the PSF, a Gaussian low-pass filter was applied to the original 

high resolution images in ENVI. The filter uses a moving window to pass over the 

image, changing each pixel value to a weighted average of its surrounding pixel 

values. This filter places a lower weight on pixels further from the centre of the filter. 

For example, if a 21 pixel x 21 pixel filter were used, a pixel located 11 pixels away 

from the central pixel would contribute only 50 % as much to the weighted average 

value as a pixel that was located immediately adjacent to the central pixel. The size of 

the filter was set to be approximately twice the size of the desired spatial resolution, 

making the spatial full-width-at-half-maximum (FWHM) of the filter roughly equal to 

the spatial resolution.  

For the second step of the spatial convolution, the filtered image was 

resampled to the desired resolution using nearest-neighbour resampling. This assigned 
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each resampled low resolution pixel the value of the high resolution pixel closest to its 

centre, whose value was an area-weighed composite of the surrounding high 

resolution pixels. This method simulates an image derived from a sensor with a 

Gaussian spatial sensitivity function, which is considered a good approximation of a 

typical sensor PSF (Kavzoglu, 2004; Pryor, 2012). 

Figure 4.10 illustrates the process. Table 4.2 lists the different resampled 

resolutions used in this study, along with the filter sizes used during image 

resampling. Note that due to the very large size of the filters it was too 

computationally intensive to create filtered images from the 18-cm HSNC data for 

each resolution. Instead, the 18-cm images were filtered and resampled to a 1-m 

resolution, and the 1 m images were used to simulate all other spatial resolutions. 

Table 4.2 – Table of resampled image spatial resolutions along with the filter sizes 
used for image resampling.Note that for the HSNC site, the original 18-cm imagery 

was only used to resample to the 1-m spatial resolution. 

Image Spatial Resolution (metres) Gaussian Low-pass Filter Size 
(pixels) 

1 7 x 7 
2 5 x 5 
5 11 x 11 
10 21 x 21 
15 31 x 31 
20 41 x 41 
30 61 x 61 
40 81 x 81 
50 101 x 101 
60 121 x 121 
70 141 x 141 
80 161 x 161 
90 181 x 181 
100 201 x 201 
125 251 x 251 
150 301 x 301 
175 351 x 351 
200 401 x 401 
350 701 x 701 
400 801 x 801 
450 901 x 901 
500 1001 x 1001 
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Figure 4.10 – Example of spatial resolution resampling. (a) shows a 1 m resolution 
image, (b) shows the original image with a 61 pixel x 61 pixel low-pass Gaussian 

filter applied, and (c) shows the filtered image resampled to a 30 m resolution. 

(a) 

(b) 

(c) 
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4.2.4 Data Validation 

4.2.4.1 Optical LAI 

 The optical LAI estimate for the peak canopy LAI calculated from Equation 

4.1 was checked for accuracy through comparison with the LAI estimated from the 

litter fall traps. Only the peak optical LAI value could be compared with the litter 

traps, as the traps are only able to estimate the maximum canopy LAI.  

 The two mean LAI values were tested for a statistically significant difference 

using a two-sample Student’s T-test as follows:  

 ܶ = ଵܫܣܮ − ଶඨܵ௣ଶܰଵܫܣܮ + ܵ௣ଶܰଶ  
(4.4)

where ܫܣܮଵ and ܫܣܮଶ are the two mean LAI values, ଵܰ and ଶܰ are the sample sizes 

for each, and ܵ௣ is the pooled standard deviation, calculated as follows: 

 ܵ௣ = ඨ( ଵܰ − 1) ଵܵଶ + ( ଶܰ − 1)ܵଶଶଵܰ + ଶܰ − 2  

(4.5)

where ଵܵ and ܵଶ are the respective sample standard deviations. The degrees of 

freedom used for the T-test were equal to ଵܰ + ଶܰ − 2. Significant difference was 

tested at both 90 % and 95 % confidence intervals. 

 The Student’s T-test assumes equal variance for the populations the samples 

are taken from. This assumption was tested using an F-test as follows: 

ܨ  = ଵܵଶܵଶଶ  
(4.6)

The F-test resulted in a value of 0.908 (p = 0.62). Based on this test, the variances 

were not significantly different, and the assumption of equal variances was accepted. 
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4.2.4.2 Airborne Image Reflectance 

 The accuracy of the airborne image reflectance calibration over the HSNC site 

was assessed through comparisons with both the ASD and Landsat-8 OLI data. For 

the ASD comparison, areas in the image corresponding to the ASD-measured targets 

were outlined, and pixels within each target type were randomly selected. The 

reflectances of the pixels for each target were then averaged, and these values were 

compared with the ASD-derived reflectances for each target type. To quantify the 

difference between ASD and airborne reflectance, the root-mean-square error 

(RMSE) was calculated as follows: 

ܧܵܯܴ  = ඩ1ܰ෍(ܦܵܣ(݅) − ଶே((݅)ܩܯܫ
௜ୀଵ  

(4.7)

where N is the number of reflectance values being compared, ASD(i) is the ith ASD 

reflectance value, and IMG(i) is the ith airborne image reflectance value. 

RMSE was calculated for each band separately as well as for all bands 

together. Per-band and overall RMSE was calculated for each target separately, for 

each image date, and for all dates and targets. The two sets of reflectances were also 

regressed against each other in SPSS Statistics (Version 22, IBM Corporation, 

Armonk, NY, USA). In SPSS the R² was calculated, and the slope and intercept of the 

relationship was examined for statistical difference from a linear one-to-one 

relationship (slope = 1, intercept = 0) using the 95 % confidence intervals calculated 

for each parameter. 

To facilitate the comparison with the Landsat-8 OLI imagery, the airborne 

images were spatially resampled to match the 30-m spatial resolution of the OLI 

sensor using the procedure outlined in Section 4.2.3.2. During the spatial resampling 
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procedure the 30-m pixels between the two sensors were properly aligned by 

manually adjusting the location of the airborne images to match the OLI images.  

Unlike the ASD data, it was not possible to spectrally resample the OLI data, 

because it is a multispectral sensor with broad, non-contiguous bands. Thus, there 

were differences between the spectral characteristics of the two sensors which were 

unavoidable. Figure 4.11 shows the spectral band profiles for the digital camera bands 

and the Landsat-8 OLI bands used in the comparison. Table 4.3 lists the peak 

wavelengths and FWHM for the bands of the two sensors. As seen in the figure and 

table, the OLI red and green bands were not aligned with the camera bands, with their 

peaks shifted toward longer wavelengths. Both the red and green bands for the OLI 

sensor were also narrower than the camera bands. The peak for the OLI NIR band 

aligned almost perfectly with the camera NIR peak, but its bandwidth was much 

narrower. 

To perform the comparison, areas were outlined over different targets which 

included vegetation, water, man-made features (roads, parking lots, buildings), and 

gravel bars. A random sample of pixels was selected from each area and the 

reflectance for each corresponding Landsat and airborne pixel was recorded. As with 

the ASD comparison, the RMSE of the difference in reflectance was calculated. 

RMSE was calculated for each band and overall. These RMSE values were separated 

by target type and image date, as well as being calculated for all image dates and 

targets overall. As before, the reflectances were also regressed against each other and 

the R² was examined, along with the slope and intercept being tested for statistical 

difference from a perfect one-to-one relationship. 
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 Because there were no ASD measurements available for the River Transect 

site, the airborne reflectance was validated using Landsat-8 imagery only. The 

procedure used was identical to that used for the HSNC site. 

 

Figure 4.11 – Spectral band profiles of the digital cameras used in this research and 
the equivalent Landsat-8 OLI bands. 

Table 4.3 – Peak wavelengths and FWHM for the digital cameras and Landsat-8 OLI 
spectral bands. 

Band Characteristic Digital Camera Landsat-8 OLI 
Green band peak wavelength (nm) 

 
515 561 

Green band FWHM (nm) 
 

95 57 

Red band peak wavelength (nm) 
 

600 655 

Red band FWHM (nm) 
 

90 37 

NIR band peak wavelength (nm) 
 

865 865 

NIR band FWHM (nm) 
 

130 28 
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4.2.4.3 LAI-SVI Regression Modelling 

To assess the ability to predict riparian LAI using airborne reflectance data, 

regression models were created between image reflectance and total study site LAI 

(understory plus canopy). The average reflectance within the HSNC site was 

calculated within the study area boundary for each image date using the original, 

highest spatial resolution imagery. These averaged reflectance values were then used 

to calculate a variety of SVIs.  

SVIs were selected which have been previously used in the LAI modelling 

literature (e.g., Chen, 1996; Colombo et al., 2003; Gonsamo & Pellikka, 2012; 

Haboudane et al., 2004). SVIs were also selected based on the feasibility of their 

calculation, and if they were not functionally equivalent to each other. An SVI was 

feasible if it only required data from the red, green, and/or near-infrared portions of 

the spectrum and did not require any additional data. SVIs were considered to be 

functionally equivalent if they provided the same information content, and it was 

possible to easily convert from one to another using a linear transformation (Perry & 

Lautenschlager, 1984). Table 4.4 provides a list of the vegetation indices used in the 

regression analysis, along with their mathematical formulas. 

Each of the SVIs was calculated for each image and regressed against the total 

study site LAI, and the resulting models were observed. The SVI that demonstrated 

the highest R2 value was selected for the subsequent analysis of spatial resolution 

impacts on riparian LAI modelling. 
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Table 4.4 – List of spectral vegetation indices tested for regression modelling of 
HSNC site LAI. NIR stands for reflectance in the near infrared spectral band, R for 
the red band, and G for the green band. L is a soil adjustment factor used in the SAVI 
formula which is assigned a value of 0.5 for moderate vegetation cover.   

Vegetation Index 
 

Mathematical Formula Reference 

Normalized 
Difference Vegetation 

Index (NDVI) 
 

ܴܫܰ) − ܴܫܰ)(ܴ + ܴ) Rouse et al. 
(1974) 

Green Normalized 
Difference Vegetation 

Index (GNDVI) 
 

ܴܫܰ) − ܴܫܰ)(ܩ +  .Gitelson et al (ܩ
(1996) 

Modified Simple 
Ratio (MSR) ൬ܴܴܰܫ − 1൰ ඨ൬ܴܴܰܫ + 1൰൘  

Chen (1996) 

Renormalized 
Difference Vegetation 

Index (RDVI) 
 

ܴܫܰ) − ܴ)ඥ(ܴܰܫ + ܴ) Roujean and 
Breon (1995) 

Soil Adjusted 
Vegetation Index 

(SAVI) 
 

(1 + ܴܫܰ)(ܮ − ܴܫܰ)(ܴ + ܴ + (ܮ  
Huete (1988) 

Modified Soil 
Adjusted Vegetation 

Index (MSAVI) 
 

12 ቂ2ܴܰܫ + 1− ඥ(2ܴܰܫ + 1)ଶ − ܴܫܰ)8 − ܴ)ቃ Qi et al. (1994) 

Modified Chlorophyll 
Absorption Ratio 

Index 2 (MCARI2) 
 

ܴܫܰ)2.5]1.5 − ܴ) − ܴܫܰ)1.3 − ܴܫට(2ܰ[(ܩ + 1)ଶ − ൫6ܴܰܫ − 5√ܴ൯ − 0.5 Haboudane et 
al. (2004) 

Modified 
Transformed 

Vegetation Index 2 
(MTVI2) 

 

ܴܫܰ)1.2]1.5 − (ܩ − 2.5(ܴ − ܴܫට(2ܰ[(ܩ + 1)ଶ − ൫6ܴܰܫ − 5√ܴ൯ − 0.5 Haboudane et 
al. (2004) 

 
4.2.5 Spatial Resolution Impact on LAI Prediction 

 The SVI selected from the previous section was calculated for each of the 

simulated spatial resolution images for the HSNC site. Regression analysis between 

the SVI data and LAI was performed at every spatial resolution and the changes in the 

R2, slope, and intercept of the relationship as resolution decreased were observed. 
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Next, the regression models for each resolution were used to estimate LAI from the 

images at their respective spatial resolutions and the LAI prediction error for each was 

examined. This method for LAI estimation is hereafter referred to as “Method A”. 

The overall RMSE for all images combined was calculated at each resolution as 

follows: 

ܧܵܯܴ  = 	ඩ1ܰ ෍(݀݁ݎ݌ܫܣܮ(݅) − ଶே((݅)݈ܽݑݐܿܽܫܣܮ
௜ୀଵ  

(4.8)

where N is the number of airborne images, LAIpred(i) is the predicted LAI for the ith 

image, and LAIactual(i) is the ground-measured LAI corresponding to the ith image. 

In addition to the RMSE, the prediction error for each image was calculated 

separately as follows: 

,݅)ݎ݋ݎݎ݁ܫܣܮ  ݆) = ,݅)݀݁ݎ݌ܫܣܮ ݆) − (4.9) (i)݈ܽݑݐܿܽܫܣܮ

where LAIpred(i, j) is the LAI predicted for image date i at spatial resolution j, and 

LAIactual(i) is the ground-measured LAI values corresponding to that image. 

Another method (referred to as “Method B”) was also used to calculate LAI. 

In Method B, a single model was used to predict LAI at every spatial resolution. The 

selected model was created from the original 18 cm resolution images. Once again 

changes in LAI prediction at every spatial resolution were examined through the 

overall RMSE as well as the prediction error for each individual image. 

 For the River Transect site, riparian areas along the river were outlined, and 

the spectral reflectance was averaged within each riparian site at every spatial 

resolution. The selected SVI was then calculated from the average spectra for each 

riparian site, and both Methods A and B were applied to estimate the LAI for each site 
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at each spatial resolution (using the LAI models created from the HSNC images). An 

area-weighted average LAI value was then calculated for the entire site as follows: 

തതതതതܫܣܮ  = ∑ (݅)ܫܣܮ ∗ ∑ே௜ୀଵ(݅)ܽ݁ݎܣ ே௜ୀଵ(݅)ܽ݁ݎܣ  
(4.10)

where N is the number of riparian areas in the River Transect site, LAI(i) is the 

calculated LAI for the ith riparian area, Area(i) is the area of the ith riparian area. 

Because no ground reference data were acquired within this site, the LAI 

calculated using the original 1-m spatial resolution images was treated as the “true” 

LAI. Differences from this value were examined at every resolution and treated as 

LAI prediction error. The average absolute difference in predicted LAI caused by 

coarsening spatial resolution was calculated for each riparian site as follows: 

௦௜௧௘ݎ݋ݎݎ݁ܫܣܮ  = ∑ (݅)݀݁ݎ݌ܫܣܮ| − ே௜ୀଵ|݈ܽݑݐܿܽܫܣܮ ܰ  
(4.11)

where N is the number of different spatial resolutions, LAIpred(i) is the predicted LAI 

for the riparian site at resolution i, and LAIactual is the “true” LAI for that site 

modelled from the original, highest resolution (1-m) imagery. 

The average absolute prediction error for each site was examined for a 

relationship with two variables of interest: the area of the riparian site, and the initial 

SVI value calculated for that site using the original 1-m resolution imagery. The 

relationships were examined through regression of the average prediction errors 

against each of the two variables, then observing the fit of the resulting regression 

models. 
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4.3 Results 

4.3.1 HSNC Site LAI 

Figure 4.12 presents the ground measured LAI data for the HSNC site. The 

figure shows the canopy LAI calculated from optical measurements, the understory 

LAI measured through destructive harvesting, and the total site LAI from adding the 

two together. 

Canopy LAI was found to follow a pattern typical of vegetation, with low LAI 

in May, increasing through June into July, before stabilizing in July and August as 

LAI peaked. This was followed by a reduction in LAI in early October as senescence 

occurred. The lowest LAI was 0.33 m²/m², measured on May 22, while the peak LAI 

was 1.03 m²/m² on July 31. 

Understory LAI followed a similar pattern, increasing from 0.24 m²/m² on 

May 20 up to a peak value of 1.12 m²/m² on July 21. While understory LAI increased 

at a similar rate as the canopy before reaching its peak, it had a more gradual 

senescence, decreasing only to 0.77 m²/m² on October 7 compared to 0.43 m²/m² for 

the canopy on October 5. 

When added together, the total LAI for the site ranged from a minimum of 

0.84 m²/m² to a peak value of 2.11 m²/m². Note that due to the July 21 understory LAI 

measurement being separated by 10 days from the July 31 canopy LAI, a linear 

interpolation was performed between the July 21 and August 05 understory LAI data 

points, resulting in a value of 1.08 m²/m² which was added to the July 31 canopy LAI. 
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Figure 4.12 – Ground measured LAI for the HSNC site. Canopy LAI, understory 
LAI, and the total LAI (canopy and understory LAI added together) are shown. 

 
4.3.2 Data Validation 

4.3.2.1 Optical LAI Measurements 

Table 4.5 lists summary statistics for the peak tree canopy LAI derived from 

the LAI-2000 optical measurements and the litter traps. The optical LAI estimated a 

value of 1.03 m²/m² for peak canopy LAI, while the litter traps estimated a value of 

1.31 m²/m², a difference of 0.28 m²/m². 

Table 4.5 – Statistics for peak canopy LAI estimates derived from optical and litter 
trap measurements. 

Statistic Optical Data Litter Traps 
Average LAI (m²/m²) 1.03 1.31 

Standard deviation (m²/m²) 0.914 0.959 
Number of samples 58 

 
19 

T-value 1.14  
Critical T-value (90 %) 1.684  
Critical T-value (95 %) 2.021  

 
The T-test between the two means resulted in a value of 1.14. This value was 

lower than the critical value for both the 90 % and 95 % confidence intervals, 
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showing that despite their apparent difference, the estimates of peak LAI from the two 

methods were not significantly different.  

4.3.2.2 Airborne Reflectance 

4.3.2.2.1 HSNC Site: ASD Comparison 

 Figure 4.13 shows ASD reflectance plotted against airborne reflectance for all 

image dates. All reflectance values are reported as decimals between 0 and 1, with 0 

corresponding to 0 % reflectance and 1 corresponding to 100 % reflectance. A strong 

positive relationship was found between the airborne and ASD data, with an R² of 

0.91 (Figure 4.13). Based on a 95 % confidence interval, the slope and intercept of the 

regression line between the two datasets did not differ significantly from a perfect 

linear relationship with slope of 1 and intercept of 0. The maximum differences in 

reflectance were 0.148 for the NIR, 0.114 for red, and 0.112 for the green band. 

 
Figure 4.13 – Airborne image reflectance plotted against ASD reflectance for all 

image dates and targets. A one-to-one relationship is shown by the solid line, while 
the dotted line shows the regression line through the data. The coefficient of 

determination, slope, and intercept for the regression line are listed, along with the 95 
% confidence intervals in brackets. 
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Figures 4.14 and 4.15 show the RMSE between ASD and airborne reflectance. Figure 

4.14 shows the RMSE overall, as well as separated by image date, while Figure 4.15 

shows the RMSE separated by target type. 

The May 22 image had the highest overall RMSE (0.062), while the October 

05 image had the lowest overall RMSE (0.011) (Figure 4.14). The NIR band had the 

highest RMSE (0.042), while the red band had the lowest (0.036). The NIR RMSE 

was highest in the July 09 image (0.076), with the highest RMSE for the red and 

green bands occurring in the May 22 image. 

Separated by target, asphalt demonstrated the highest overall RMSE, followed 

by cottonwoods, soil, and grass with the lowest RMSE (Figure 4.15). The NIR RMSE 

was highest for cottonwoods (0.068), with the highest RMSE for the red and green 

bands occurring for asphalt targets (0.058 and 0.06). 

 
Figure 4.14 – RMSE for the difference between the ASD and airborne image 

reflectance separated for each spectral band and image date. 
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Figure 4.15 – RMSE for the difference between ASD and airborne image reflectance 

separated for each spectral band and target type. 

4.3.2.2.2 HSNC Site: Landsat Comparison 

Figure 4.16 shows airborne image reflectance plotted against Landsat-8 OLI 

reflectance for the HSNC site. There was a strong linear relationship between airborne 

and Landsat reflectance; however, there was considerable scatter in the data. The 

maximum reflectance differences were 0.142 for the NIR, 0.165 for the red, and 0.135 

for the green band. It is also notable that the airborne images had negative reflectance 

values occurring in the NIR channel. These negative values occurred exclusively over 

water bodies.  

 The regression line through the data differed significantly from a one-to-one 

linear relationship (p < 0.05). The slope of the line was greater than 1, while the 

intercept was slightly below zero. 
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Figure 4.16 – Airborne reflectance plotted against Landsat reflectance for individual 
pixels over the HSNC site. A one-to-one relationship is shown by the solid line, while 

the dotted line shows the regression line through the data. The coefficient of 
determination, slope, and intercept for the regression line are listed, along with the 95 

% confidence intervals in brackets. 
 

Figures 4.17 and 4.18show the RMSE between airborne and Landsat 
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Figure 4.17 - RMSE for the difference between airborne and Landsat pixel 

reflectance over the HSNC site, separated for each spectral band and image date. 

 
 

 
Figure 4.18 – RMSE for the difference between airborne and Landsat pixel 

reflectance over the HSNC site, separated for each spectral band and target type. 
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4.3.2.2.3 River Transect Site: Landsat Comparison 

Figure 4.19 presents airborne image reflectance plotted against Landsat 

reflectance for pixels in the River Transect site. A strong linear relationship was found 

between the two sensors with an R² of 0.941. However, There were some large 

reflectance differences of 0.2 and higher. The maximum reflectance differences were 

0.29 for the NIR, 0.22 for the red, and 0.21 for the green band. The regression line 

through the data was found to be significantly different from a perfect one-to-one 

relationship (p < 0.05); however, when major outliers were removed, the regression 

line was found to no longer significantly differ from the 1:1 model. 

 
 

 
Figure 4.19 - Airborne reflectance plotted against Landsat reflectance for individual 
pixels over the River Transect site. A one-to-one relationship is shown by the solid 

line, while the dotted line shows the regression line through the data. The coefficient 
of determination, slope, and intercept for the regression line are listed, along with the 

95 % confidence intervals in brackets. 
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NIR band had the highest overall RMSE (0.0483), followed by red (0.0213), then 

green (0.0204). Of the different targets, the man-made class had the highest overall 

RMSE (0.0655), as well as the highest RMSE for each of the individual image bands. 

The fallow class had the lowest overall RMSE, followed closely by water (0.0162 

compared to 0.0195 for water). 

 

 
Figure 4.20 - RMSE of the difference between airborne and Landsat pixel reflectance 

over the River Transect site, separated for each spectral band and target type. 

4.3.3 LAI-SVI Regression Modelling 

Table 4.6 lists the R², slope, intercept, and standard error of the estimate for 

the 8 SVI models used to estimate LAI in the HSNC site. All SVI models were 

similar in their prediction power. The MSR model was the best predictor of LAI, with 

the highest R² (0.826) and lowest standard error (0.27). The MSAVI model had the 

lowest R² (0.74) and highest standard error (0.33). 

The MSR model was selected for use in the subsequent spatial resolution 

sensitivity analysis. MSR was selected because it had the highest fit compared to the 

other models. The relationship between the MSR and LAI is shown in Figure 4.21.  
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Table 4.6 – R², standard error of the estimate, slope, and intercept for regression 
models between SVIs and LAI for the HSNC site. 

SVI 
Model 

R² Standard Error of the 
Estimate (m²/m²) 

Slope Intercept 

NDVI 0.792 0.2953 2.568 -0.24 
GNDVI 0.792 0.2953 2.953 -0.432 

MSR 0.826 0.2700 0.605 0.303 
RDVI 0.755 0.3201 3.618 0.105 
SAVI 0.742 0.3290 3.306 0.182 

MSAVI 0.740 0.3301 3.032 0.331 
MCARI2 0.754 0.3211 2.240 0.409 
MTVI2 0.754 0.3210 3.072 0.405 

 

 
Figure 4.21 – Regression model for predicting LAI using the Modified Simple Ratio. 

4.3.4 Spatial Resolution Impact on LAI Modelling and Prediction 

The results from the analysis of the spatial resolution impact on LAI 

modelling are discussed in this section. In the first subsection, the effects of differing 

spatial resolutions on regression models between LAI and MSR are discussed. In the 
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MSR values were not able to be calculated for each image in the HSNC site at 

some very coarse spatial resolutions. This is because negative red reflectance values 

resulted in an error in the denominator term of the MSR formula. The affected images 

were the August 27 image at the 450-m resolution, as well as the May 22 and June 07 

images at the 500-m resolution.  

The negative reflectance values occurred because of spectral mixture with 

regions outside the image mosaic boundaries, which contained no spectral data. 

Despite the lack of spectral data, these areas outside the border were counted as part 

of the image mosaics and their spectral signal was aggregated within some of the 

coarse spatial resolution image pixels. The areas outside the image borders had been 

assigned a negative reflectance value for all bands as a result of the empirical line 

calibration and, thus, reduced the reflectance values of pixels within which they were 

aggregated, making the aggregate pixel reflectance negative in some cases. 

4.3.4.1 Spatial Resolution Impact on LAI Regression Models 

Figure 4.22 shows the changes in R² and standard error for the regression 

models created at every spatial resolution, while Figure 4.23 shows the changes in the 

slope and intercept of the models. As resolution coarsened, R² was found to slowly 

increase while standard error decreased. This trend continued until the 175 m 

resolution. At the 200-m resolution, R² declined sharply while standard error 

increased. However, following this at 250 m and 300 m, R² and standard error 

recovered. At the 300 m resolution the model R² was highest (0.896) and standard 

error lowest (0.209) compared to every other resolution. Immediately following the 

300-m resolution, the model performance plummeted, falling to a minimum R² of 

0.049 at 500 m. Standard error peaked at 0.62 at a resolution of 450 m, dropping to 

0.47 at 500 m. 
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Figure 4.22 – R² and standard error of regression models for predicting LAI from 

MSR at every simulated spatial resolution. 

 
Figure 4.23 – Slope and intercept of regression models for predicting LAI from MSR 

at every simulated spatial resolution. 
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Between 70 m and 125 m the slope increased at an even greater rate. A slight decrease 

occurred at 150 m, followed by erratic changes where slope greatly increased and 

decreased as resolution coarsened, hitting a maximum of 1.56 at 300 m before falling 

to 0.14 at 400 m, increasing slightly to 0.45 at 450 m, then dropping again to 0.15 at 

500 m.  

The intercept of the models remained fairly stable from 0.18 m to 70 m, 

increasing then levelling off between 80 m and 100 m. Beyond the 100-m resolution, 

the intercept began increasing rapidly, along with some moderate decreases at certain 

resolutions (175 m, 250 m, and 450 m). The model intercept reached a maximum 

value of 1.69 at the 500-m resolution. 

4.3.4.2 Spatial Resolution Impact on LAI Prediction 

4.3.4.2.1 HSNC Site 

Figure 4.24 shows the RMSE for LAI prediction using the different regression 

models created for every spatial resolution (Method A). Figure 4.25 breaks this error 

down by showing the LAI prediction error for each image separately. The results in 

Figure 4.24 follow essentially the same pattern (though inverted) as the R² shown in 

Figure 4.22. RMSE slowly decreased as resolution coarsened – with exceptions at 60 

m and 150 m – until 175 m, followed by a large increase at 200 m. It then began 

decreasing again, hitting a minimum of 0.17 at 300 m, 23% lower than the initial 

RMSE at 18 cm (0.22). Beyond 300 m, the RMSE greatly increased, hitting a 

maximum of 0.48 at 450 m, 117% higher than the initial value, before falling to 0.33 

at 500 m. 
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Figure 4.24 – RMSE of LAI prediction for every spatial resolution using Method A. 

 
Figure 4.25 – LAI prediction error for each image date at every spatial resolution 

using the Method A. 
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occurred for the May 22, July 09, and August 27 images. At 175 m, large decreases in 

prediction error occurred in the May 22, July 09, and October 05 images resulting in 

the low RMSE at this resolution. The large RMSE increase at the 200-m resolution is 

primarily attributable to the increases in prediction errors for May 22 and July 09, 

even though others decreased (June 07, August 01) or held constant (October 05, 

August 27).  

At 300 m, large decreases in prediction error for May 22 and July 09 along 

with more modest reductions for August 01 and August 27 resulted in the lowest 

RMSE for any resolution, despite marginal error increases for the June 07 and 

October 05 images. At 350 m and 400 m large increases in prediction error occurred 

for the May 22 and August 01 images, with error also increasing for the October 05 

and July 09 images at 350 m, leading to the large RMSE increases at these 

resolutions. At 450 m, despite the marginally higher RMSE, error appears to have 

decreased for every resolution, aside from May 22 and June 07. Note that no LAI 

value was present for August 27 at this resolution. At 500 m, the error greatly 

increased for the October 05 image but decreased for July 09 and August 01, while no 

data was present for June 07 and May 22, contributing to the decrease in RMSE seen 

at this resolution. 

The results from applying the same model at every spatial resolution (Method 

B) differed from those of Method A. Figure 4.26 shows the overall prediction RMSE 

at each spatial resolution, while Figure 4.27 shows the LAI prediction error for each 

image separately. RMSE remained stable until 20 m, after which it steady increased 

as resolution decreased. Between 30 m to 100 m the rate of increase was fairly 

constant. From 125 m to 200 m the RMSE increased at a greater rate. From 250 to 

400 m the RMSE continued to increase at a more variable rate. 
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The RMSE at 400 m was 1.09, almost 400% higher than the initial RMSE at 

the 18 cm resolution (0.22). At 450 m the RMSE fell to 0.94 before a large increase at 

500 m to a maximum RMSE of 1.25, 470% higher than the initial RMSE. 

 

 
Figure 4.26  – RMSE of LAI prediction for every spatial resolution using Method B. 

Examining Figure 4.27, prediction error held constant for all images up until 

the 10-m spatial resolution. Beyond 10 m, the predicted LAI began decreasing for all 

images. This decrease resulted in the LAI being under-predicted for every image at 70 

m and coarser resolutions. 

The rate of decrease was not the same for all image dates. While June 07, July 

09, August 01, and August 27 followed a similar rate of decrease in predicted LAI, 

both May 22 and October 05 were less affected, showing a shallower rate of decline 
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slow decrease in LAI prediction up to a resolution of 300 m, after which the predicted 

LAI actually began increasing as resolution decreased. 

 

 
Figure 4.27 – LAI prediction error for each image at every spatial resolution using 

Method B. 
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calculated for the August 27 image at 450 m; however, at 500 m predicted LAI fell to 

an LAI under-prediction of 1.81 m²/m². 

4.3.4.2.2 River Transect Site 

The results of the LAI spatial resolution analysis for the River Transect site 

are presented. Figure 4.28 shows the area-weighted average LAI calculated using 

Method A. The figure shows the area weighed LAI, as well as the percent difference 

between the LAI calculated at each resolution and the value calculated from the 

original 1-m resolution imagery. 

At the original 1-m spatial resolution, the modelled LAI was 1.79 m²/m². 

Predicted LAI remained relatively stable up to 10 m. Beyond 10 m, the predicted LAI 

began steadily increasing. Predicted LAI increased at a greater rate from 20 m to 90 

m, with a slight decrease at 70 m. From 80 m to 100 m LAI prediction increased at an 

even greater rate. Predicted LAI increased at 125 m, but then held steady until 150 m, 

with a predicted LAI of 2.41 m²/m², 0.63 (35%) higher than the value at 1 m.  

Beyond 150 m, the predicted LAI increased and decreased greatly and 

erratically. Predicted LAI increased up to 2.79 m²/m² at 175 m (1.01, or 56%  higher 

than at 1 m), decreasing at 200 m, and then increasing again from 250 to 300 m, 

where it peaked at 3.13 m²/m², 1.35 (75%) higher than the LAI value at the 1-m 

resolution. Between 300 m and 400 m the predicted LAI massively decreased, falling 

to a minimum of 1.51 m²/m², 0.27 (15%) lower than the 1-m resolution LAI. 

Modelled LAI increased at 450 m and 500 m to 1.89 m²/m² and 1.92 m²/m², 0.10 and 

0.13 (5.6% and 7.3%) higher, respectively, than the LAI at 1 m. 
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Figure 4.28 – Area-weighted average LAI for the River Transect site at each spatial 

resolution using Method A. 

 
Figure 4.29 – Area-weighted average LAI for the River Transect site at each spatial 

resolution using Method B. 
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Figure 4.29 shows the results for the River Transect site using Method B. 

Using this method, predicted LAI remained stable until a resolution of 10 m. Beyond 

this value, the predicted LAI consistently decreased as resolution decreased. Predicted 

LAI began decreasing at a greater rate from 20 m to 300 m. Two minor increases 

broke up the downward trend, occurring at 100 m and 350 m. At 400 m the lowest 

LAI prediction of 1.19 m²/m² occurred, 0.59 (33%) lower than the LAI predicted from 

the 1-m spatial resolution data. Predicted LAI then increased at 450 m to 1.28 m²/m² 

before falling again at 500 m to 1.23 m²/m². 

Figure 4.30 shows the average absolute LAI prediction error due to decreasing 

spatial resolution plotted against the areas for all riparian zones along the river. There 

was no discernable relationship between the area of a riparian zone and the amount of 

resolution-induced LAI prediction error it experienced for Method A. Likewise for 

Method B, while the fit was marginally better and a slight downward trend appears 

possible, there was no notable relationship. 

 Figure 4.31 shows the average absolute LAI prediction error plotted against 

the initial MSR value calculated from the original 1-m spatial resolution imagery. 

Here again there was no relationship evident for Method A. For Method B, on the 

other hand, there appeared to be a relationship between the two variables. There was 

an upward trend between higher LAI prediction errors and higher initial MSR values. 

Although there was considerable scatter, the model explained almost 44% of the 

variance in the LAI prediction error. When examined in closer detail it was found that 

the vast majority of LAI prediction errors were negative (not shown in Figure 4.31), 

indicating that for riparian areas with high initial MSR values, LAI predictions 

progressively decreased as resolution decreased. 
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Figure 4.30 – Relationship between the average absolute LAI prediction error and 

riparian zone area for the River Transect site. (a) shows results for Method A and (b) 
shows results for Method B. 
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Figure 4.31 – Relationship between the average absolute LAI prediction error and the 
initial MSR value calculated from the 1 metre spatial resolution for the River Transect 

site. (a) shows results for Method A and (b) shows results for Method B. 
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4.4 Discussion 

The main objectives of this study were to assess the effects of spatial 

resolution on riparian LAI modelling, and to evaluate the quality of calibrated digital 

camera imagery. In this section the study results are discussed in the context of these 

two objectives.  

The first subsection discusses the characterization of the HSNC site LAI using 

ground measurements. This section discusses how reasonable the LAI estimates were 

and the level of confidence in the measurements. 

The second subsection describes the comparison of the airborne image data 

with the ASD and Landsat-8 OLI data. The discussion focusses on how well the 

instruments compared, and attempts to explain some of the differences that were 

observed between them. 

The third subsection discusses the sensitivity analysis of the eight different 

SVIs used for predicting riparian LAI. The relative performance of the SVIs in LAI 

prediction is considered, along with the sources of error and uncertainty in the 

modelling performed in this study. 

The last subsection examines the results from the spatial resolution sensitivity 

analysis on LAI modelling. This section is further subdivided to discuss the results for 

HSNC site and River Transect site separately, with a final section providing an overall 

discussion of the findings. 

4.4.1 Riparian LAI Ground Measurements 

The peak LAI for the HSNC site was 2.11 m²/m². This value was split almost 

evenly between overstory and understory LAI. A lack of studies on riparian LAI 

makes it difficult to assess this estimate using the literature. Direct comparisons of 

LAI between studies are also complicated due to the use of differing methods, 
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differing definitions of LAI, differing climate regimes, and different species measured 

in each study, which can lead to greatly varying results (Asner et al., 2003). 

In a synthesis of more than 1000 published LAI estimates, Asner et al. (2003) 

calculated a global mean LAI of 4.5 m²/m². Unfortunately, riparian ecosystems were 

not included as a separate biome and are not mentioned in the paper. All forest biomes 

had mean LAI values higher than 2.1 m²/m², ranging from 2.6 m²/m² for boreal 

deciduous forests to 6.7 m²/m² for temperate evergreen broadleaf forests (Asner et al., 

2003). The mean LAI for Shrublands (2.1 m²/m²), Tundra (1.9 m²/m²), and Grasslands 

(1.7 m²/m²) were closer to the riparian LAI found in this research (Asner et al., 2003). 

In Nagler et al. (2004), LAI was estimated for a number of riparian vegetation 

species along the Colorado River using both biomass sampling and optical 

measurements. Among the species measured were cottonwoods, which themselves 

had an average LAI of 3.5 m²/m², notably higher than the estimate in the current 

study, despite not including the understory LAI (Nagler et al., 2004). A difference in 

methods could explain this difference. In their study, LAI was measured for 

individual trees, without measuring the open spaces between trees, while these gaps in 

the canopy were included in the measurements conducted in this study. Acquiring 

measurements in these open areas typically results in lower LAI values than when 

LAI is measured only under the tree canopy (Carlson & Ripley, 1997). Calculating 

LAI by measuring only under the vegetation canopy LAI has been termed “Local 

LAI”, while inclusion of the gaps in the canopy is referred to as “Global LAI” 

(Carlson & Ripley, 1997). In another study both Local and Global LAI were 

measured for riparian vegetation along the Colorado River. Most species were found 

to have a Local LAI of between 2.0 m²/m² and 3.0 m²/m², with cottonwoods around 

2.2 m²/m² (Nagler et al., 2001). Global LAI values were more comparable to the value 
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of 2.11 m²/m² measured in this thesis, ranging from just under   0.2 m²/m² to just over 

2.0 m²/m² over 63 different sites (Nagler et al., 2001). 

The agreement between the litter trap measurements and the optical LAI 

measurements increased the confidence in the optical data. While the peak optical 

LAI was lower than that calculated from the traps, it was not a statistically significant 

difference. The difference between the two methods was not altogether surprising. 

Optical measurements of LAI – particularly when using the LAI-2000 – have been 

found to underestimate LAI compared to direct methods such as litter traps 

(Jonckheere et al., 2004; White et al., 2000). Furthermore, considering the difference 

in the measurement footprint of the two techniques and the different number of 

sample points, differences between the two could be anticipated. Unfortunately the 

litter trap data could only be used to assess peak canopy LAI, leaving the possibility 

of errors in the optical LAI measured on other dates. 

It is unfortunate that there was not a separate method used to compare with the 

understory LAI measurements; however, direct harvest methods are generally 

considered more accurate and reliable than indirect methods (Jonckheere et al., 2004). 

What is potentially concerning is that only four sampling quadrats were used, and the 

locations were not varied for the different measurement dates. It is not clear if this 

limited sampling provided adequate characterization of the understory LAI. In studies 

on grasslands, differing numbers of harvest quadrats have been used to characterize 

LAI, from five (Fan et al., 2009), to twelve (Asrar et al., 1986), to upwards of twenty 

quadrats (Turner et al., 1999). Examples of the technique being applied in riparian 

areas were not forthcoming; nonetheless, given the variability of riparian areas, future 

studies would likely benefit from more extensive sampling of the understory LAI.  
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4.4.2 Airborne Image Reflectance Calibration 

The calibrated digital camera images from the HSNC site compared well with 

the ASD data, with a high R² and low overall RMSE. The performance did, however, 

vary between images, between spectral bands, and between targets (Figures 4.13, 

4.14, and 4.15). Differences between ASD and camera data were as high as 0.15 (15% 

reflectance). Unfortunately, in this comparison it was not possible to ensure the exact 

same targets were measured with both the ASD and the cameras. While it was 

attempted to find areas in the images which corresponded to the ASD measurement 

locations, the ASD measurement spatially locations were not recorded at the time they 

were acquired, and so it was impossible to ensure accurate registration. Consequently, 

some uncertainty exists for this comparison. 

In the comparison of the HSNC airborne images with Landsat-8 OLI images, a 

good overall agreement was evident, albeit with a high level of scatter and in some 

cases large differences in reflectance as high as 0.17 between individual pixels 

(Figure 4.16). Performance was more uniform across the different image dates 

compared to the ASD comparison, although only 3 images were used in this 

comparison, while all 6 were compared with the ASD (Figure 4.17). Here again 

differences in performance were evident over different target types (Figure 4.18). 

Based on the HSNC site comparisons, the felt topped tables functioned well as 

calibration targets using the empirical line method. However, it appears that the tables 

did not lead to the most consistent reflectance calibration. This is evidenced by the 

differing amount of error between image dates, although it is possible this is an issue 

with the raw imagery rather than the calibration.  The negative NIR reflectances over 

water also suggests an issue with the calibration (Figure 4.16).  
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The small size of the tables resulted in them appearing as only a handful of 

pixels in the images. Consequently only a small number of pixels could be aggregated 

for each table, increasing the impact of image noise. Additionally, the few selected 

pixels were possibly affected by the reflectance of their surroundings, a phenomenon 

known as the adjacency effect (Richter et al., 2006). This adjacency effect could have 

increased the dark table DN values and decreased the bright table values. The ASD-

measured reflectance for the dark table was very low (around 2% reflectance); 

therefore, an inflation of the dark table DN values in the images could have resulted in 

an empirical calibration which reduced low reflectance values and assigned negative 

reflectances to pixels with DNs lower than the dark table value. The presence of 

negative reflectance values is a common issue with this calibration technique (Smith 

& Milton, 1999). The calibration targets could be improved by making them larger, 

although this would reduce their ease of field deployment. Using additional 

calibration targets has also been shown to increase the accuracy of empirical 

calibrations substantially over using just two targets (Smith & Milton, 1999). 

The River Transect imagery compared very well with the Landsat-8 OLI 

imagery, with the highest R² of all the comparisons. This is not entirely surprising, as 

the targets used in the empirical line calibration were derived from the Landsat image 

used in the comparison. The targets were also very large, decreasing the issue of 

spectral mixing that may have affected the calibration tables used in the HSNC site. 

The drawback of using targets derived from Landsat scenes is that it requires a 

Landsat scene which is contemporary with the airborne imagery, as well as large, 

spectrally stable features being present in both images. 

Despite the strong relationship, this comparison had the greatest differences in 

reflectance for individual pixels (over 0.2 for the red and green, and up to 0.29 for the 
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NIR band) (Figure 4.19). It was found that most of these high error pixels were over 

man-made targets. This also explains the high RMSE in the man-made class that was 

double the overall RMSE for all classes (0.0655 for man-made compared to 0.0327 

overall) (Figure 4.20). 

Aside from the calibration targets, there are a number of factors that may have 

contributed to some of the differences observed between the OLI and airborne images 

for both the HSNC and River Transect sites. Firstly, the spectral sensitivity for the 

bands of each sensor are not the same (Figure 4.11 & Table 4.3). The Landsat bands 

are narrower than the airborne bands and, with the exception of the NIR band, they 

are centred at different wavelengths. Therefore, some differences between the data 

from the two sensors should be expected (Trishchenko et al., 2002). 

Different data capture geometry between the sensors could also account for 

some of the differences. While it was attempted to ensure alignment between the 

airborne and Landsat pixels, it is unlikely that the spectral information aggregated 

within each pixel was gathered from the exact same area on the ground. Depending on 

the scene heterogeneity, differences in the pixel spectral mixture may have produced 

different reflectance values. This issue relates to the modifiable areal unit problem 

(MAUP) in remote sensing, specifically the aggregation problem, where the 

reflectance recorded in an image is affected by the placement of the pixels within the 

scene (Marceau & Hay, 1999). This may explain the large differences found in the 

man-made class in the River Transect site. Most man-made objects used in the 

comparison were small and contrasted highly with the surrounding vegetation. As 

with the calibration tables, the small size of these areas relative to the pixel size means 

they likely suffered from the adjacency effect, especially given their high contrast 

with their surroundings (Richter et al., 2006). 
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Another issue is related to the difference between images simulated at a 

particular spatial resolution compared to images natively acquired by a sensor at that 

resolution. Simulation of low-resolution images through aggregating high-resolution 

pixels leads to noise being artificially low compared to images natively acquired at a 

low resolution (Börner et al., 2001). Thus, the impact of noise may have been greater 

in the Landsat images than the resampled airborne images, contributing to the 

differences in reflectance between them. 

Overall, the calibrated digital camera images were able to produce data that 

compared well to both terrestrial and satellite measurements of reflectance. While the 

reflectance accuracy of the ASD and the Landsat-8 OLI data was not assessed in this 

study, this research supports the notion that inexpensive cameras with proper 

radiometric and spectral calibration can produce data that is comparable to data from 

high-quality sensors. 

It should be noted the reflectance values derived from this study did not cover 

the full spectrum of reflectance values from 0 to 1. In the ASD comparison the 

maximum reflectance was just over 0.50 for the camera NIR band and around 0.3 for 

the red and green bands. In the HSNC Landsat comparison, the highest camera 

reflectance was 0.40 for the NIR, 0.33 for the red, and 0.29 for the green. For the 

Landsat River Transect comparison the maximum camera reflectance was 0.75 for the 

NIR band (a large outlier), 0.28 for the red band, and 0.24 for the green band.  

Unfortunately the sites being imaged did not contain many high reflectance 

targets. Consequently, the accuracy of the cameras at high reflectances could not be 

assessed in this study. In the future, imaging a scene with targets covering a wide 

range of reflectances from high to low would help to better assess the data quality of 

the cameras throughout their dynamic ranges. 
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Finally, while this research was able to show that calibrated camera imagery 

compared well to data from other sensors, it is not known how much the calibration 

improved the data over its raw, uncalibrated form. Future comparisons should include 

the raw images as well in order to show the differences between calibrated and 

uncalibrated data. 

4.4.3 LAI-SVI Regression Modelling 

The SVIs used in this research worked well for modelling LAI, with all eight 

SVIs resulting in strong, positive, linear relationships. This correlation between SVIs 

and LAI has been well established in many other studies (Broge & Leblanc, 2001; 

Chen, 1996; Colombo et al., 2003; Gonsamo & Pellikka, 2012; Haboudane et al., 

2004; Jordan, 1969; Turner et al., 1999). While some SVIs fit the LAI data better than 

others, each SVI performed similarly well. The lowest R² was 0.740 for MSAVI, 

while the highest was 0.826 for MSR, a difference of only 0.086 (Table 4.4). Thus 

despite the MSR model fitting the LAI data marginally better, any one of them would 

have performed almost equally well for LAI prediction. This differs from some other 

studies, which have found large differences in the prediction power of different SVIs 

(Broge & Leblanc, 2001; Colombo et al., 2003; Turner et al., 1999). 

A common issue with SVI-LAI empirical models is a tendency for the 

relationship to become nonlinear and saturate, with the SVI becoming insensitive to 

LAI differences (Baret & Guyot, 1991). The issue was not encountered in this 

research. All models demonstrated a linear relationship and maintained sensitivity 

throughout their range. This was not surprising, as the maximum LAI encountered 

was just over 2 m²/m². Non-linearity and saturation only typically become issues at 

moderate to high LAIs between 2 and 6 m²/m², depending on the vegetation type, the 

SVI being used, and experimental conditions (Baret & Guyot, 1991; Chen & Cihlar, 
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1996; Turner et al., 1999). Unfortunately this introduces the possibility of substantial 

underestimation of LAI if applying the SVI models in riparian areas with LAIs much 

higher than the values that were measured in the HSNC site. 

An important limitation of the regression models created in this research is a 

lack of data. With only 6 LAI measurements and corresponding images, it is difficult 

to have a high level of confidence in any of the models, despite their reasonably good 

fit. It is possible that the good fit can be at least partially attributed to the low number 

of data points, causing the models to over-fit the training data. Due to the limited 

dataset, it was also impossible to independently validate the models. The difficulty in 

obtaining sufficient data to both train and validate remote sensing vegetation models 

has led to the widespread use of canopy reflectance models to create simulated data 

for empirical model training (Carlson & Ripley, 1997; Gonsamo & Pellikka, 2012; 

Haboudane et al., 2004). An improvement for future research would be using 

simulated data to train the models, reserving the field collected data for model 

validation. Collecting data from more field plots and/or collecting data over several 

years would also allow for a better assessment of the SVI-LAI relationship. 

There are other confounding factors, which cause uncertainty in the SVI 

models. It is well known that SVIs are correlated not just with LAI, but with other 

vegetation properties including fractional vegetation cover and photosynthetic activity 

(Baret & Guyot, 1991; Glenn et al., 2008). In this research, the largest outlier in the 

models was for the data collected on June 07, with the LAI measured on this date 

being much lower than would be suggested based on the SVI values from the 

imagery. A difference in photosynthetic activity could possibly account for the 

disparity between the ground-measured LAI and the SVI value on this date. 
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Other confounding factors include differences in soil background effects, sun-

sensor geometry, atmospheric conditions, and leaf inclination angle. SVIs have been 

shown to be sensitive to variations in all of these properties, further contributing to 

uncertainty in the models created in this research (Baret & Guyot, 1991; Broge & 

Leblanc, 2001). 

A final issue is the fact that a single regression model was developed to predict 

total riparian vegetation LAI. This could impact the accuracy of the models, as the 

relationship between SVIs and LAI can vary depending on the vegetation type (Chen 

et al., 2002; Colombo et al., 2003). A potential improvement for future efforts would 

be to stratify the site by vegetation type, developing separate LAI models for each. 

However, such an approach would complicate the implementation of the model, and 

is not as practical for coarse-spatial resolution imagery where it is more difficult to 

separate out different vegetation types. 

4.4.4 Spatial Resolution Impact on LAI Modelling and Prediction 

4.4.4.1 HSNC Site 

The results of the regression of LAI and MSR over the HSNC site 

demonstrated that it was possible to obtain models with good fit from spatial 

resolutions as coarse as 300 metres (Figure 4.22). However, the models were found to 

change along with the resolution. The slope of the regression models remained fairly 

constant until a resolution of 20 m where it began steadily increasing up to 150 m, 

followed by large increases and decreases with further changes in spatial resolution 

(Figure 4.23). The intercept remained stable until 70 m, followed by a gradual 

increase until 150 m. After 150 m the intercept experienced large increases and 

decreases. Thus, while the models created at 18 cm and 300 m had a similarly good fit 

to the data, the models themselves were very different, suggesting that caution should 
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be used when applying a model developed at one resolution to imagery at another 

resolution. Beyond the 300 m spatial resolution the model fit collapsed, with no 

discernable relationship between MSR and LAI being evident. 

When the models created from each resolution were used to predict LAI 

(Method A), the LAI prediction RMSE followed the inverse pattern as the R² for the 

models (Figure 4.24). This was not surprising given the models were used to predict 

the training data. Thus, when the model fit the LAI data well, the LAI prediction 

RMSE was low, and when the model fit was poor, RMSE was high. 

Examining the prediction error of the individual images, it was shown that 

beyond a spatial resolution of 125 m the changes in LAI prediction error with 

decreasing resolution became large and unpredictable, increasing and decreasing 

seemingly at random (Figure 4.25). This indicates that large changes in the models 

and/or the MSR data were occurring as resolution decreased beyond this point. 

Beyond the 300-m spatial resolution predicted LAI changed greatly and erratically, 

corresponding with the large increase in model RMSE for these spatial resolutions. 

The results using a single SVI model to predict LAI at every spatial resolution 

(Method B) gave more insight into what is occurring with the underlying MSR data. 

Since the model was held constant, changed in predicted LAI with decreasing 

resolution are exclusively due changes in the MSR values. With Method B, LAI 

prediction RMSE remained stable until the 20 m resolution, beyond which it 

increased more or less consistently (Figure 4.26). The prediction error trend was 

negative for all images, showing that as spatial resolution decreased, MSR also 

decreased (Figure 4.27). The decrease in predicted LAI occurred at different rates for 

the different images, with the rate of decrease being lower for both the May 22 and 

October 05 images. As both these dates had the lowest LAI and MSR values, this 
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result shows that the coarsening of spatial resolution seems to have had a greater 

impact when LAI/MSR was high. This difference in the rate of MSR decrease also 

explains why the slope of the models increased as resolution decreased. As the higher 

MSR values decreased, they became closer in value to the lower MSR values, which 

had not decreased by the same amount. This compressed the MSR dynamic range, 

and consequently increased the slope of the models. 

Beyond the 125-m resolution, the pattern changed somewhat, with predicted 

LAI increasing for certain images while still decreasing for others (Figure 4.27). For 

example, when resolution decreased from 175 m to 200 m, predicted LAI decreased 

for the July 09 image, but increased for the August 01 image. Beyond 300 m, the 

pattern destabilized further, with large increases in predicted LAI for certain images 

(August 27, October 05). The large changes in MSR for certain dates at these coarse 

resolutions resulted in very different regression models being created, thus, 

accounting for the large differences in predicted LAI when Method A was used. 

The reduction in MSR as resolution decreased was likely due to increased 

mixing of the riparian spectral signal with those of adjacent areas. At coarse 

resolutions, pixels on the border of the HSNC study area became progressively more 

mixed with spectra from the river, the north and south parking lots, and at very coarse 

resolutions, with the area outside the image borders. Because these areas had lower 

MSR values than the riparian vegetation, the aggregate MSR value for the site would 

be lowered as mixing increased. Figure 4.32 demonstrates this effect. It shows MSR 

calculated from the July 09 image, with the HSNC study site boundary, and the pixel 

grids from four different spatial resolutions. Note that as resolution coarsened the 

pixels along the border of the study site became increasingly mixed with neighbouring 

areas.  
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Figure 4.32 – MSR image from July 09 over the HSNC site with resampled image 

pixel grids of varying spatial resolutions overlaid. The HSNC study area boundary is 
shown in green. White indicates a high MSR value, while black indicates low MSR. 
Pixel grids (shown in red) are for the following resolutions: (a) 50-m pixels, (b) 100-

m pixels, (c) 150 m pixels, and (d) 200 m pixels. 

Spectral mixtures can also explain why the changes in LAI prediction tended 

to be greater for images with higher MSR values. When the MSR value for the 

riparian area was low, the spectral mixing impact was lower, because the MSR of the 

(a) (b)

(c) (d)
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adjacent areas was similar to that of the riparian area itself. When MSR for the site 

was high, the mixing had a more pronounced impact, because the MSR of the 

surrounding areas was lower than that of the study site. 

The changing patterns in LAI prediction for each image at resolutions beyond 

125 m does suggest that something else besides increasing spectral mixing is 

occurring at these low-spatial resolutions. A possible cause involves the placement of 

the image pixels. The image mosaics from the different dates were all different sizes, 

leading to varying locations for the pixels when the images were resampled. At coarse 

resolutions beyond 100 m, the HSNC site was composed of very few pixels, and the 

influence of the border pixels on the aggregate spectra for the site was large. 

Depending on where the border pixels were located, they would have mixed with the 

spectra of adjacent areas to differing degrees, leading to the unpredictable patterns 

observed at these coarse resolutions. 

Figure 4.33 shows this effect. The figure shows MSR calculated from the July 

09 and August 01 HSNC images. Overlaid is the HSNC study area outline and the 

pixel grids for the 175 m and 200 m resolutions. As the resolution decreased from  

175 m to 200 m, the predicted LAI for the July 09 image decreased (Figures 4.25 and 

4.27). On the other hand, for the August 01 image, predicted LAI increased between 

these two resolutions. Examining the July 09 images, it can be seen that between    

175 m and 200 m, there was an increase in the number of pixels partially mixed with 

the water and the area outside the image border that were aggregated within the study 

area. Conversely, because of the placement of the pixels, the opposite is true of the 

August 01 image; the number of pixels mixed with the water and outside the image 

border that were being aggregated within the study area polygon decreased as the 
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resolution decreased. Thus, while the average MSR value decreased between the 

resolutions for July 09, it increased for August 01. 

 
Figure 4.33 – MSR images from July 09 and August 01 over the HSNC site with 
resampled image pixel grids overlaid. The HSNC study area boundary is shown in 

green. White indicates a high MSR value, while black indicates low MSR. Images and 
pixel grids (shown in red) are: (a) July 09 (175-m pixels), (b) July 09 (200-m pixels), 

(c) August 01 (175-m pixels), and (d) August 01 (200 m pixels). 

(a) (b)

(c) (d)
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The large outlier for the August 27 image at the 400-m resolution should be 

addressed (Figure 4.27). Between 350 m and 400 m, the MSR, and thus predicted LAI 

massively increased. Figure 4.34 shows the August 27 MSR image with the 350-m 

and 400-m pixel grids overlaid. 

 
Figure 4.34 – MSR image from August 27 over the HSNC site with pixel grids from 

two different spatial resolutions overlaid. The HSNC study boundary is shown in 
green. White indicates a high MSR value, while black indicates low MSR. Pixel grids 

(shown in red) are: (a) 350-m pixels, and (b) 400-m pixels. 

 Based on the figure it does not seem that differences in the pixel spectral 

mixture would have led to the observed changes in predicted LAI. It appears that a 

greater amount of mixing with the water and outside the image border is occurring 

within the 400-m pixels. Thus, it should be expected that the resulting MSR value 

would be lower. Examination of the reflectance data used to calculate MSR shows 

that between 350 m and 400 m, both NIR and red reflectance aggregated within the 

study area decreased due to the increased mixture with the water and area outside the 

image border. Both NIR and red reflectance decreased by a similar amount (2% 

reflectance for the NIR and 2.4% for red). For the NIR band this resulted in a decrease 

(a) (b)
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from 10.3% reflectance to 8.3%. For the red band, which was much lower than the 

NIR reflectance at 2.7%, reflectance decreased to 0.003%. These values resulted in an 

MSR of 1.27 at 350 m, and 4.90 at 400 m. One issue with SVIs like MSR is that the 

range of possible values is not normalized to a maximum possible value like the 

NDVI, which can reach a maximum of 1. Thus, as the red band reflectance 

approaches 0, the MSR value will exponentially increase. Figure 4.35 demonstrates 

this effect. In the figure, NIR reflectance is held constant at 10%, with red reflectance 

starting at 3% and decreasing steadily, approaching 0%. Because of this issue, the 

MSR index should not be used for estimating LAI when red reflectance is very low. 

 
Figure 4.35 – Modified Simple Ratio values with decreasing red band reflectance. In 

this example NIR reflectance is held constant at 10%. 

4.4.4.2 River Transect Site 

The use of Method A for the River Transect site delivered different results 

compared to when it was used for the HSNC site. Rather than the average LAI 

remaining essentially unchanged until resolutions beyond 100 m, LAI began steadily 
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increasing when resolution decreased beyond 10 m (Figure 4.28). The largest over-

prediction of LAI occurred at 300 m, the same resolution that had the lowest 

prediction error for all images at the HSNC site. While these results differed from the 

LAI prediction error in HSNC, the pattern is similar to the increase in the regression 

model slope as spatial resolution decreased (Figure 4.23). The largest departure from 

the pattern occurred at 500 m, where modelled LAI increased even as the model slope 

decreased; however, this difference may be accounted for by the increase in the 

intercept of the model. Based on these results, it appears that the changes in the 

predicted LAI from using Method A in the River Transect site were mostly due to the 

changing slope and intercept of the models, rather than changes in the underlying 

MSR data. The difference of these results from those of the HSNC site also shows 

that the models created in the HSNC site, while capable of fitting to the training LAI 

data, may not be valid and transferable to other riparian areas. 

Using Method B in this site shows that the underlying MSR data did indeed 

change as spatial resolution decreased (Figure 4.29). Once again the average predicted 

LAI remained stable until 10 m, followed by a steady decrease, with this trend 

bottoming out around 300 m. These findings were similar to when Method B was 

applied at the HSNC site. Once again, the major factor behind the changes in MSR 

and thus changes in LAI prediction appears to have been spectral mixing of the 

riparian signal with adjacent areas, including water, gravel bars, roads and buildings, 

prairie grass, agricultural fields, and the areas outside the border of the image 

mosaics. Figure 4.36 shows an MSR image of a section of the River Transect site with 

the riparian area boundaries and pixel grids from four different resolutions overlaid. 

As with the HSNC site, as spatial resolution decreased, the pixels being aggregated 
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within the riparian polygons were increasingly mixed with the river, the prairie, and to 

a lesser degree, the area outside the image boundary. 

 

 
Figure 4.36 – MSR image from a portion of the River Transect site with resampled 
image pixel grids overlaid. White indicates a high MSR value, while black indicates 

low MSR. The green borders show 3 riparian areas within which spectra were 
averaged to calculate LAI. Pixel grids (shown in red) are: (a) 50-m pixels, (b) 100-m 

pixels, (c) 200-m pixels, and (d) 300-m pixels. 

(a) (b) 

(c) (d)
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For individual riparian areas along the river, there was no relationship noted 

between the area of a riparian zone and the sensitivity of predicted LAI to spatial 

resolution (Figure 4.30). Therefore, it appears that the size of a riparian area has little 

impact on how greatly LAI prediction is affected by changes in spatial resolution.  

The relationship between the initial MSR value calculated for a riparian area 

and the average change in LAI due to changing spatial resolution was also 

insignificant when Method A was used; however, there was a moderate correlation 

evident between the two variables when Method B was used (Figure 4.31). As with 

the HSNC site, this relationship shows that the impact of decreasing spatial resolution 

on modelled LAI was typically greater when the initial MSR value is high. As noted 

with the HSNC site, this effect could be due to the large spectral difference between 

high MSR riparian areas and their surroundings, with spectral mixing having a more 

pronounced impact if the reflectance of the riparian area contrasts greatly with the 

surrounding targets. It is important to note that the correlation was not very strong, 

with an R² of only 0.44, showing that other factors are contributing to the changes in 

MSR with decreasing spatial resolution. 

4.4.4.3 General Discussion of Spatial Resolution 

The findings from both the HSNC and River Transect sites demonstrated that 

the relationship between MSR and riparian LAI was not scale invariant. As spatial 

resolution decreased, MSR values were progressively reduced, leading to lower LAI 

predictions as resolution coarsened. This reduction in MSR tended to be larger when 

the initial MSR value was high. Consequently, LAI regression models developed 

using coarser spatial resolution data had steeper slopes as the MSR dynamic range 

was compressed. The reduction in MSR also meant that using a model developed at a 

higher spatial resolution resulted in lower LAI predictions when applied at a lower 
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resolution. Minor differences were evident at spatial resolutions as high as 10 m or 15 

m, although moderate differences did not generally manifest until spatial resolution 

coarsened beyond 30 m.  

By using models which were developed at each resolution, the effect of MSR 

reduction could be compensated for, and reasonable LAI predictions were possible at 

fairly coarse spatial resolutions in the HSNC site. However, when applied to the River 

Transect images, the models developed at each resolution overcompensated for the 

reduction in MSR and led to LAI being over-predicted at lower spatial resolutions. 

Thus, while it may be possible to accurately model LAI at coarse spatial resolutions 

by using a resolution-appropriate LAI model, the evidence provided from this 

research is inconclusive.  

The results of this study suggest that low-spatial resolution sensors such as 

MODIS (250-m spatial resolution), MERIS (300-m spatial resolution), AVHRR (1.1-

km spatial resolution), and SPOT Vegetation (1.15-km spatial resolution) should be 

avoided when modelling riparian LAI. However, it appears that sensors with spatial 

resolutions of 30 m or better can be used for riparian LAI modelling with minimal 

negative scale issues. There are many satellite sensors offering spatial resolutions of 

30 m or better, including Landsat-8 OLI (30-m spatial resolution), Rapideye (5-m 

spatial resolution), IKONOS (4-m spatial resolution), and SPOT 6 and 7 (6-m spatial 

resolution). Therefore, satellite imagery is well suited for operational riparian LAI 

monitoring, and the very high sub-metre spatial resolutions offered by airborne or 

UAV imaging are not needed. Higher resolution data may be needed if it is desired to 

map the spatial distribution of LAI within a given riparian area; however, for the 

landscape scale estimates used in this study, lower spatial resolution data are 

sufficient.  
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Future research should examine the impact of other sensor attributes on 

riparian LAI modelling. Other characteristics of interest include the spectral 

resolution, number of spectral bands, band placement, and more. Research on spectral 

bands could be performed using a hyperspectral sensor, which would allow a variety 

of different spectral band characteristics to be simulated. Studying other sensor 

characteristics will allow an optimal sensor to be selected for riparian LAI 

monitoring. 

The results of this thesis were similar to the findings of some other studies, 

which have found that decreasing spatial resolution can have significant impacts on 

both SVIs (Teillet et al., 1997) and biophysical parameter modelling (Chen, 1999). In 

Teillet et al. (1997) large changes in NDVI were found to occur with decreasing 

spatial resolution, depending on the land-cover type. However, unlike the current 

study, NDVI did not always decrease along with resolution, and was often found to 

increase instead (Teillet et al., 1997). Similar to the results of the current study, Chen 

(1999) found that LAI estimates were progressively lower when an SVI model 

derived at a fine spatial resolution was used to predict LAI at coarser resolutions. 

Differences in SVIs and LAI prediction seem to be influenced by the 

heterogeneity of the scene, especially when there is a large contrast between different 

land-cover types. In Teillet et al. (1997) large changes in NDVI of more than 0.2 were 

observed at relatively high-spatial resolutions in an image with a mixture of clear cuts 

and forested areas, two contrasting surfaces. Other more homogeneous areas either 

experienced no changes, or only changed at very coarse resolutions. In Chen (1999), 

large changes in predicted LAI of greater than 40% were observed when the coarse 

resolution pixels contained mixtures of high contrast features, such as the interfaces 

between forests and water. Given that the riparian areas in our study were almost 
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always adjacent to contrasting surfaces including water and gravel bars, this may 

explain the large differences in predicted LAI that occurred when resolution 

decreased. Future research could attempt to quantify the effects of spatial 

heterogeneity. This could be done by using geostatistical measures of image texture 

(Coburn & Roberts, 2004; Hu & Islam, 1997), or by measuring the sub-pixel 

fractional land cover within low-resolution images pixels (Chen, 1999). 

The results of this thesis differed from Sprintsin et al. (2007), which used both 

high-spatial resolution IKONOS data (4-m spatial resolution) and low resolution 

MODIS data (250-m spatial resolution) to model LAI for a forest plantation in a 

desert transition zone. The average LAI and distribution of LAI values within the 

study area were compared between the two sensors, finding only a moderate decrease 

in the mean LAI (11%) and the coefficient of determination (9.6%) when MODIS 

imagery was used. The authors, however, mention that further decreases in spatial 

resolution is not desirable due to too much spectral mixture causing a loss of land-

surface information. The forest plantation site they used, while somewhat 

heterogeneous, covered a large area (~3000 hectares) and was not narrow like the 

riparian areas measured in the current study. Furthermore, they compared only the 

mean LAI and the shape of the distribution of LAI values for all pixels within the 

study area rather than comparing the LAI predictions for specific areas within the site. 

Thus, the issue of spectral mixing may not have been as much of an issue due to the 

scale of comparison used in their study. These differences in methods and results 

reinforce the importance of selecting an appropriate spatial resolution for the size of 

the landscape being studied. 

This research demonstrated how remotely sensed data are impacted by the 

MAUP, as has been observed in other studies (Arbia & Espa, 1996; Jelinski & Wu, 
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1996; Marceau et al., 1994). The changes in MSR and, thus, predicted LAI as spatial 

resolution coarsened provide evidence of the scale problem, one of the two aspects of 

the MAUP. At low-spatial resolutions, the placement of the image pixels and how 

they were aggregated within the borders of the riparian area polygons also appears to 

have led to differences in LAI prediction between different images at the same spatial 

resolution. This effect demonstrated the aggregation problem, the other aspect of the 

MAUP. Unfortunately, both these effects occurred simultaneously, and it is not 

possible to separate them based on the current research. In future work the effect of 

the scale problem could be better isolated by examining the differences in modelled 

LAI at different resolutions while holding the area constant over which high-spatial 

resolution pixels are aggregated into low-spatial resolution pixels. The effects of the 

aggregation problem could be better analyzed through controlled experiments where a 

variety of alternative pixel placements are tested at the same resolution. 

It is important to note that the changes in riparian MSR and, consequently, the 

changes in modelled LAI are related to the method that was used for aggregating the 

data within each riparian area. In this study, a polygon was drawn around each 

riparian area using the highest resolution imagery. These polygons were used to 

average the spectral data from the images at every resolution, and these averaged 

spectra were used for modelling LAI.  

The riparian polygons themselves are in fact another manifestation of the 

MAUP. If a different method was used to average the image spectra, different results 

could be expected. For instance, by selecting rectangular subsets located within the 

centre of each riparian polygon and averaging the spectra within each subset, it is 

possible that the impact of spectral mixture with adjacent areas would be mitigated, at 

least until the image spatial resolution came close to equalling or exceeding the size of 



191 
 

the riparian area itself. Training the SVI-LAI models using such rectangular subsets 

may also result in better models being created at low-spatial resolutions, allowing LAI 

to be modelled accurately even at these low spatial resolutions. 

Using subsets for estimating LAI would not give a full assessment of riparian 

LAI along the river, because significant portions of the total riparian area would be 

excluded from the analysis. Such omissions may result in substantial errors if LAI 

was not spatially uniform within each riparian zone. Therefore, the method used in 

this study is appropriate when it is desired to characterize riparian LAI for the entire 

river as opposed to sampling it. Nonetheless, future research could examine the 

potential for this alternative approach, as it may allow riparian LAI to be reasonably 

estimated using lower spatial resolutions than the findings from this study suggest. 

The results of this research should be interpreted with caution for a number of 

reasons. As previously mentioned, the confidence in the LAI regression models is low 

due to the small training dataset and limited dynamic range of the ground LAI 

measurements. The lack of data was particularly pronounced at the 450 m and 500 m 

resolutions, as some images were not able to be used. The lack of data also meant that 

there was no independent dataset to validate the models. For the River Transect site 

there were no ground data at all; therefore, only the differences in LAI prediction 

could be compared, while the accuracy of the predictions could not be assessed. 

Another issue is the impact that the borders of the image mosaics had on the 

results. The raw pixel values for the areas beyond the border were necessarily zero, as 

no data was recorded there. Due to the empirical reflectance calibration, these areas 

were assigned a negative reflectance value. The pixels outside the borders were in 

many cases aggregated within the riparian area polygons, contributing to the spectral 

mixing occurring at low-spatial resolutions. Therefore, the changes of the riparian 
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MSR values were greater than if data were present in these areas. Thus, the changes 

observed in this study are likely more pronounced than they would be if, for instance, 

a satellite image of the area were used without the problem of image borders being 

adjacent to the riparian zone. At the same time, the presence of these borders 

emphasize the impact of the spectral mixing that is occurring with adjacent areas, 

which is valuable even if it limits the real world applicability of the results. In future 

research, satellite imagery could be used to avoid the impact of image borders. 

A final point of caution is the fact that images of differing resolutions were 

simulated rather than acquired from real sensors. The aggregation of high-spatial 

resolution image pixels to create a lower-spatial resolution image suppresses the 

effects of noise, leading to unrealistic signal-to-noise ratios in the simulated images 

(Börner et al., 2001). To mitigate this issue, simulated noise can be added back into 

the resampled images (Guanter et al., 2009). 

4.5 Conclusions 

In this chapter the impact of image spatial resolution on estimating riparian LAI 

using remote sensing was investigated. Both airborne and ground data were acquired 

within riparian areas along the Oldman River in Southern Alberta and LAI was 

empirically modelled using eight different SVIs calculated from the remotely sensed 

data. Of the SVIs tested, the MSR resulted in the most accurate LAI model, and it was 

selected for further analysis. 

Different spatial resolutions were simulated through spatial resampling of the 

airborne images. The spatial resolutions examined in this study ranged from 0.18 m to 

500 m. LAI was modelled at every simulated resolution using the MSR index using 

two methods: firstly, separate regression models were created and applied at each 
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spatial resolution separately. Secondly, LAI was modelled at each resolution using the 

same model, which was derived from the original high-spatial resolution imagery. 

The results of this study indicate that the empirical relationship between MSR 

and LAI is not scale invariant. Decreasing image spatial resolution was found to result 

in a progressive reduction of MSR values within the riparian areas examined. The 

reduction in MSR values with decreasing spatial resolution is likely the result of 

increased mixing of the riparian spectral signal with adjacent areas, most of which 

have a lower MSR value than the riparian areas. The reduction in MSR was more 

pronounced in areas with a high initial MSR value, because there was a greater 

contrast between the riparian area and that of the surrounding areas, exacerbating the 

impact of spectral mixing. 

Despite the changing relationship, differences in modelled LAI were only 

evident beyond resolutions of approximately 10 m, while moderate changes only 

manifested beyond 30 m. Consequently, it does not appear necessary to use very   

high-spatial resolution data for operational monitoring of riparian LAI. Many modern 

satellite sensors have spatial resolutions of 30 m or higher, providing plenty of 

choices. Furthermore, by using subsets within each riparian area for training LAI 

models and for LAI prediction, it may be possible to avoid some spectral mixture 

effects, allowing LAI to be predicted at coarser spatial resolutions than suggested by 

the results in this thesis. 

While the findings in this study suggest that low-spatial resolution sensors 

should be avoided in riparian LAI monitoring, for larger more homogeneous areas it 

is likely acceptable to select a sensor with a lower spatial resolution. Thus, it is 

important to select a spatial resolution which is suitable for the size of the landscape 

being studied.  
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Several improvements are suggested for future research on this topic. First of 

all, more sets of LAI measurements and corresponding images should be used to 

create the LAI models, and the models should be validated using a separate set of LAI 

measurements. Secondly, the influence of the image borders on the results should be 

removed. Potential causal factors for the observed changed in the LAI modelling 

results, such as spatial heterogeneity, should be quantitatively investigated. Finally, 

the spatial resolution simulation should be made more robust and realistic. 

The secondary objective of this research was to assess the ability of consumer 

digital cameras to provide data which are comparable to professional-grade sensors. 

To assess the camera data quality, camera images were calibrated reflectance units 

and compared to data from an ASD spectroradiometer as well as the Landsat-8 OLI 

satellite sensor. The camera data compared reasonably well to both sensors. There 

were, however, some large discrepancies in reflectance values, suggesting that direct 

comparison between them may lead to errors in some cases. 

Future research should investigate whether these errors are a result of the 

camera data, differences between the sensors, or due to the methods used to calibrate 

the image data. Future comparisons should also ensure that the full dynamic range of 

the cameras from low to high spectral reflectance is validated. A final improvement 

would be to include uncalibrated sensor data in the comparison in order to assess to 

what extent the calibrations improved the camera images. 
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5. CONCLUSIONS 

This thesis was motivated by the need for the monitoring of riparian areas on 

dam-regulated rivers to assess the health response of riparian vegetation to alternative 

water management strategies. The leaf area index (LAI) was targeted as the variable 

of interest due to its key role in vegetation biophysical processes. Remote sensing is 

capable of estimating LAI for an entire river basin; however, in order to record the 

spatial variation in LAI along the river, it is important to select a sensor system with 

an appropriate spatial resolution. Thus, the research in this thesis examined the 

sensitivity of modelled riparian LAI results to differences in the sensor spatial 

resolution. 

In order to accomplish this goal, high-spatial resolution image data were 

obtained using inexpensive digital cameras. The cameras were first spatially, 

radiometrically, and spectrally characterized and calibrated. This was done to 

compensate for common aberrations associated with digital camera imagery, allowing 

them to be properly used in the same way as quantitative sensors. In addition to 

facilitating the main objective of the thesis, this work was motivated by a lack of 

detailed methods outlined in the remote sensing literature for performing digital 

camera characterization and calibration. The need for such methods are made more 

important given the proliferation of digital cameras being used now for remote 

sensing, especially by non-experts who may not be aware of the issues, let alone how 

to correct them. 

 What follows is a discussion of the major findings from this thesis. Directions 

for possible future research are also suggested. 
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5.1 Key Research Findings and Future Research 

5.1.1 Digital Camera Use in Quantitative Remote Sensing 

Following spectral and radiometric calibration, the data from the Canon 

Powershot S50 digital cameras used in this research compared quite well to terrestrial 

and satellite measurements of spectral reflectance. Some large differences in spectral 

reflectance were found in some cases (as high as 20% differences in reflectance), 

indicating potential issues remain even after calibration; however, these discrepancies 

may also be the result of differences in the ground areas being compared or 

differences in the spectral characteristics of the sensors. 

Despite the favourable comparison, the digital cameras were not of the same 

quality as professional-grade remote sensors. Signal-to-noise ratios were mediocre, 

and the cameras were afflicted by a number of other issues, including optical lens 

distortion, vignetting, and nonlinear radiometric responses to changes in light 

intensity. Calibrations were developed and implemented, which successfully 

compensated for the image distortion and nonlinear radiometric responses. Despite 

the camera responses being made linear, the radiometric resolution of the cameras 

remains poor at high-signal levels. 

Future work should examine further calibration of the cameras to compensate 

for some of the other measured effects such as vignetting and image noise. Further 

validation of the calibrated images should also be performed, which ensures that the 

full dynamic range of the cameras is validated, rather than the limited coverage of low 

spectral reflectances found in this thesis. Finally, future comparisons should include 

the uncalibrated camera imagery as well to show to what extent the calibrations 

improve the images over their raw form. 
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 This thesis contributed to the remote sensing literature by demonstrating 

methods for measuring key camera characteristics, as well as methods to calibrate 

camera data to be used in quantitative remote sensing applications. The research was 

also able to show that following calibration, digital cameras are capable of providing 

data which are comparable to commonly used professional-grade sensors. 

5.1.2 Spatial Resolution Impact on Riparian LAI Modelling 

This research demonstrated that the relationship between LAI and spectral 

vegetation indices was not scale invariant. SVI values calculated from the remotely 

sensed images became gradually diminished as resolution decreased. Consequently, 

LAI was progressively under predicted when the same model was applied at every 

spatial resolution. 

While the relationship was found to change, differences in predicted LAI did 

not become evident until spatial resolution coarsened beyond 10 m, and moderate 

differences only manifested beyond 30 m. Based on these results, using any sensor 

with a spatial resolution of 30 m or higher would likely be appropriate. As there is an 

abundance of satellite sensors with resolutions of 30 m or higher, the selection of a 

sensor for riparian LAI monitoring should not be greatly limited by spatial resolution 

requirements. However, sensors with a very low spatial resolution should not be used 

for this application. 

It may be possible to compensate for the reduction in MSR values at coarse 

spatial resolutions by using models which are developed at the same spatial resolution 

they are applied at, but the evidence for this is inconclusive based on the results from 

this thesis. Accurate LAI predictions were possible when models developed at       

low-spatial resolutions were used to predict LAI within the HSNC site; however, 

when the models were used in the River Transect site, LAI predictions progressively 
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increased as spatial resolution decreased. Taking care to train the models using 

rectangular training subsets taken from within larger riparian areas may lead to better 

models being created, allowing accurate LAI predictions using low-spatial resolution 

sensors. This possibility should be investigated in the future. 

Several issues cast doubts on the results from this study. Firstly, the use of 

only six LAI measurements and corresponding image spectral measurements to create 

the LAI prediction models does not inspire great confidence in the model accuracy. 

The lack of data also prevented any validation of the models. Ground measurements 

of LAI were completely lacking in the River Transect site, preventing the LAI 

estimates in this site from being assessed for accuracy. Future studies would benefit 

from more robust model training and validation. 

Another limiting factor was the presence of image boundaries, which 

contributed to the spectral mixture of pixels in some cases. This effect likely 

exacerbated the changes in predicted LAI that were observed with coarsening spatial 

resolution. This issue could be avoided by using satellite imagery offering full 

coverage of the river floodplain as well as adjacent areas. 

This thesis contributed to the geographical and remote sensing literature in a 

number of ways. Firstly, there have been few studies which have attempted to 

estimate riparian LAI using remote sensing, a literature gap which this thesis has 

helped fill. The research also further demonstrated how remote sensing data are 

impacted by the modifiable areal unit problem by showing its effects within a specific 

application. Lastly, this research provides a framework for selecting an appropriate 

sensor spatial resolution for subsequent studies of riparian LAI. 

Future studies should investigate the sensitivity of LAI modelling results to 

other sensor characteristics, such as the spectral resolution, number of spectral bands, 
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or the portions of the electromagnetic spectrum sampled by the sensor. If further 

investigation of spatial resolution are carried out, the causes of the variations in 

modelled LAI with decreasing spatial resolution should be investigated in greater 

detail. One possible avenue of investigation is quantifying the impact of spatial 

heterogeneity on LAI estimates as resolution decreases. 
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