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ABSTRACT 

Leaves in forests assimilate carbon from the atmosphere and woody components 

store the net production of that assimilation. Separate structure measurements of leaves 

and woody components advance the monitoring and modeling of forest ecosystem 

functions. This dissertation provides a method to determine, for the first time, the 3-D 

spatial arrangement and the amount of leafy and woody materials separately in a forest by 

classification of lidar returns from a new, innovative, lidar scanner, the Dual-Wavelength 

Echidna
®
 Lidar (DWEL). The DWEL uses two lasers pulsing simultaneously and 

coaxially at near-infrared (1064 nm) and shortwave-infrared (1548 nm) wavelengths to 

locate scattering targets in 3-D space, associated with their reflectance at the two 

wavelengths. The instrument produces 3-D bispectral “clouds” of scattering points that 

reveal new details of forest structure and open doors to three-dimensional mapping of 

biophysical and biochemical properties of forests.  

The three parts of this dissertation concern calibration of bispectral lidar returns; 

retrieval of height profiles of leafy and woody materials within a forest canopy; and 
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virtual reconstruction of forest trees from multiple scans to estimate their aboveground 

woody biomass. The test area was a midlatitude forest stand within the Harvard Forest, 

Petersham, Massachusetts, scanned at five locations in a 1-ha site in leaf-off and leaf-on 

conditions in 2014. The model for radiometric calibration assigned accurate values of 

spectral apparent reflectance, a range-independent and instrument-independent property, 

to scattering points derived from the scans. The classification of leafy and woody points, 

using both spectral and spatial context information, achieved an overall accuracy of 

79±1% and 75±2% for leaf-off and leaf-on scans, respectively. Between-scan variation in 

leaf profiles was larger than wood profiles in leaf-off seasons but relatively similar to 

wood profiles in leaf-on seasons, reflecting the changing spatial heterogeneity within the 

stand over seasons. A 3-D structure-fitting algorithm estimated wood volume by 

modeling stems and branches from point clouds of five individual trees with cylinders. 

The algorithm showed the least variance for leaf-off, woody-points-only data, validating 

the value of separating leafy and woody points to the direct biomass estimates through 

the structure modeling of individual trees.  
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CHAPTER 1.  INTRODUCTION 

Understanding the carbon cycle and energy balance of the Earth is critical to 

project the climate change impacts and devise proper mitigation policies. The role of 

terrestrial vegetation is especially important in the carbon cycle because of its active, 

large and continuous exchange of carbon, water and energy between the land and the 

atmosphere (Sellers et al., 1997). Forests, about one third of the Earth‟s land surface 

cover, sequester and store more carbon than any other terrestrial ecosystem (Bonan, 

2008; Gibbs et al., 2007). Forest structure interrelates with forest functioning and 

significantly affects carbon assimilation and storage of forest ecosystems (Baldocchi et 

al., 2002). The primary objective of the studies presented in this dissertation is to evaluate 

the quantification of forest structure using new dual-wavelength terrestrial lidar 

technology. This chapter (1) overviews the roles of two important forest structural 

measures, leaf area and aboveground biomass that will be retrieved by lidar; (2) discusses 

approaches to forest structure measurements and specifically those using terrestrial lidar 

for ground-based measurements; (3) introduces the Dual-Wavelength Echidna Lidar, a 

novel terrestrial lidar instrument we used in this study for forest structure measurements; 

and (4) presents the objectives and structure of the dissertation.  

1.1 Importance of Leaf Area and Aboveground Biomass 

Forest structure refers to the size (length, area, volume and mass) and spatial 

arrangement of vegetation elements (leaves, shoots, branches, stems and roots) in forests. 

Forest structures in aboveground (mainly leaves and stems/branches) and belowground 

(mainly roots) systems are often approached separately, due to the clear separation of 
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their medium (atmosphere and soil). For this work, we are only concerned with 

aboveground structure. Leaf area index (LAI) and aboveground biomass (AGB) are 

probably the two most important forest structure measures because leaf area determines 

the potential of carbon assimilation and evapotranspiration, and biomass measures the 

amount of carbon in storage and, over time, its change. 

Leaf area index (LAI), defined as half of leaf surface area (simply referred as „leaf 

area‟) per unit ground area (Chen & Black, 1992), is one of the primary forest structural 

parameters that governs the radiation interception in forest canopies and the capacity for 

photosynthesis. The LAI is used in the ecophysiological models to predict forest carbon 

uptake and also in the remote sensing approach to observe forest carbon uptake over large 

areas (Baldocchi et al., 2002; Bonan, 1993; Hanson et al., 2004; Medvigy et al., 2009; 

Running & Coughlan, 1988). Besides LAI, estimates of net ecosystem productivity 

(NEP) in ecophysiological modeling have also shown the importance of including the 

detailed three-dimensional distribution of leaf areas, e.g. the vertical foliage profile, 

especially for open canopies and multi-layered stands (Law et al., 2001). Measurements 

of the vertical foliage profile are strongly related to (Parker et al., 2004) and significantly 

correlated with (Stark et al., 2012) forest carbon dynamics, further demonstrating the 

importance of the three-dimensional distribution of leaf area. 

Vegetation biomass, particularly aboveground biomass (AGB), is exposed to 

natural and human-induced disturbance and thus controls the amount of carbon emission 

caused by disturbance to ecosystems (Houghton et al., 2009; Houghton, 2007). Moreover, 

biomass also affects ecosystem functioning through its control over the magnitude and 
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rate of autotrophic respiration (Houghton et al., 2009; Turner et al., 2005). About 70% - 

90% of terrestrial vegetation biomass is in forests, of which about 70% - 90% is in 

aboveground forest biomass (Cairns et al., 1997; Houghton et al., 2009). Therefore, 

measurement of forest aboveground biomass is critical information for monitoring and 

predicting carbon emission and uptake from forest ecosystems in the global carbon 

balance.  

1.2 Measurements of Forest Structure 

1.2.1 Measurement at coarser scales 

Over large areas from regional to global scales, LAI has been mainly derived 

from the inversion of radiative transfer models from optical remotely sensed imagery 

(Koetz et al., 2005; Myneni et al., 2002), and by using empirical relationships between 

field-measured LAI and various metrics from remote sensing data. The metrics have 

included vegetation indexes from optical imagery (Cohen et al., 2003); backscatter cross 

section and polarization ratio from synthetic aperture radar (Manninen et al., 2005); laser 

return energy and canopy heights  from airborne and spaceborne lidar (Korhonen et al., 

2011; Lefsky et al., 1999; Luo et al., 2013; Solberg et al., 2009); and combinations of the 

above (Ma et al., 2014). Airborne and spaceborne full-waveform lidar data have 

demonstrated the capability of deriving vertical foliage profiles over large areas, as either 

relative (Lefsky et al., 1999) or absolute quantities (Harding et al., 2001; Ni-Meister et 

al., 2001; Tang et al., 2014, 2012).  

Current approaches to large-scale AGB estimation and mapping mainly 

extrapolate plot-level AGB measurements on the ground over landscapes based on other 
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spatially explicit datasets, such as existing maps of environmental variables (e.g. 

geolocation, climate, soils, topography, land use, tree cover, etc.) (Brown et al., 1999; 

Houghton et al., 2001; Sales et al., 2007), and/or remotely sensed data and metrics (e.g. 

spectral reflectance, vegetation indexes, backscatter cross section, lidar waveform metrics 

and etc.) (Baccini et al., 2012; Saatchi et al., 2011, 2007).  

1.2.2 Measurements on the ground 

Most approaches to large-area measurements of both LAI and AGB require 

ground-based measurements for calibration and all approaches need ground-based 

measurement to validate their LAI and AGB estimates. Ground-based measurements of 

LAI and AGB are thus critically important.  

Ground-based LAI measurement techniques generally fall into two categories: 

direct, which involves destructive sampling or litter-fall collection, and indirect, which 

involves tree allometry, or gap probability measurements (Asner et al., 2003; Bréda, 

2003; Chen et al., 1997; Jonckheere et al., 2004). Direct destructive sampling and litter-

fall collection are time-consuming, laborious and sometimes impractical, e.g. in areas of 

preservation or scientific interest where destructive sampling is prohibited (Jonckheere et 

al., 2004). Also litter-fall collection only works for deciduous trees. The indirect 

allometry-based method requires site-specific allometric equations from detailed 

destructive sampling. Indirect gap-based methods invert gap probability in the canopy to 

LAI based on Beer‟s law of light transmission through an absorbing medium (Chen et al., 

1997; Lang, 1987; Welles & Cohen, 1996). The gap probability can be obtained by a 

point quadrat method using a thin probe that passes through the canopy (Wilson, 1960) or 
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noncontact optical techniques such as hemispherical photos (HP), radiation measurement 

devices (e.g. DEMON, ceptometers, LAI-2000 and TRAC), and ground-based laser 

technology (Bréda, 2003; Jonckheere et al., 2004; Jupp et al., 2009; Zhao et al., 2012). 

The point quadrat method is impractical in forest stands because of the tall stature of trees 

and the high density of leaves (Chen et al., 1997). Indirect noncontact optical methods are 

quick, low-cost and more commonly used. Direct inversion by Beer‟s law typically 

underestimates LAI due to clumping of leaves or overestimates LAI due to lack of 

differentiation between leaves and woody materials. Clumping effects can be corrected 

with an index derived from gap size theory with the TRAC instrument (Tracing Radiation 

and Architecture of Canopies) (Chen et al., 1997). The contribution of woody material to 

LAI measurements is usually removed with an empirical woody-to-total ratio. Kucharik 

et al. (1998) found the nonrandom positioning of branches/stems with regard to leaves 

causes inaccurate LAI with this simple ratio correction, especially when branches/stems 

are not preferentially shaded by leaves. They removed the woody contribution directly 

with a Multiband Vegetation Imager. But this approach cannot correct vertical foliage 

profiles to remove the woody contribution. The separation of leaves from woody 

materials in 3-D space is needed to remove the woody contribution to vertical foliage 

profiles derived from gap probability measurements. 

The most direct and accurate way to measure AGB is destructive sampling, which 

is prohibitively laborious, time-consuming, and sometimes impractical (Gibbs et al., 

2007). Another commonly used indirect approach to ground-based biomass 

measurements relates AGB of a tree with more easily measured quantities such as 
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diameter at breast height (DBH) and/or tree height, using allometric equations from 

destructive sampling. Although extensive compilations of allometric equations have 

covered many important species across several continents and biomes (Chave et al., 

2005; Jenkins et al., 2004; Zianis & Seura, 2005), allometric equations are still large 

sources of error in AGB estimation (Basuki et al., 2009; Chave et al., 2004; Keller et al., 

2001; Wang, 2006), due to inadequacies imposed by the time-consuming, laborious, and 

costly development and update of allometric equations through destructive sampling. The 

errors in AGB estimates using allometric equations may be particularly high for large 

trees, which have large amounts of biomass but are rare in destructive sampling (Basuki 

et al., 2009; Chave et al., 2004; Keller et al., 2001).  

1.2.3 Terrestrial Lidar for forest structure measurements 

Lidar, an active remote sensing technology, has been widely explored in forest 

structure measurements because of its accurate range measurements using lasers and 3-D 

imaging capability from laser scanning. Two technologies, pulsed and continuous-wave 

(CW), are used by lidar to measure ranges. Here we address only pulsed laser technology, 

which is more commonly used in forest applications (Lim et al., 2003).  

At coarser scales, airborne and spaceborne lidars have shown the ability to 

directly measure canopy height, subcanopy topography, and intercepted surface profile 

(Dubayah & Drake, 2000) and empirically or semi-empirically estimate forest structural 

parameters such as aboveground biomass, basal area, mean stem diameter, foliage cover, 

gap probability, projected foliage profile, and leaf area index (Armston et al., 2013; 
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Baccini et al., 2012; Drake et al., 2002; Harding et al., 2001; Korhonen et al., 2011; 

Lefsky et al., 1999; Tang et al., 2012).  

At  tree or plot scales, terrestrial lidar (or terrestrial laser scanning, TLS) has 

shown great ability to provide fast, accurate and detailed forest structure measurements 

that can be used in precision forestry, novel ecological applications, and ground truth data 

collection for the calibration and validation of large-area forest structure measurements 

(Dassot et al., 2011). Compared with airborne and spaceborne lidar, terrestrial lidar has a 

much higher sampling resolution and provides a direct and 3-D view of the lower canopy 

and shrub layer through its scanning capability. Thus, those parameters that are most 

directly related to aboveground biomass, such as DBH and stem count density can be 

estimated more easily and more accurately with TLS. Additionally, scanning at various 

zenith angles by terrestrial lidar provides multi-angle gap probabilities that are essential 

for LAI and vertical foliage profile estimates, but are not provided by current airborne 

and spaceborne lidar instruments. 

LAI and vertical foliage profile have been retrieved from terrestrial laser scanning 

data for plots and stands through gap probability inversion (Calders et al., 2015; Jupp et 

al., 2009; Zhao et al., 2011) or individual trees through voxel-based contact frequency 

methods (Béland et al., 2011; Hosoi & Omasa, 2006). Use of TLS data to estimate LAI 

from gap probability shares the same basic principle used with traditional passive optical 

method such as hemispherical photography and radiation-measuring devices (Chen et al., 

1997; Lang, 1987; Welles & Cohen, 1996). But the ranging information in TLS data 

enables easy retrieval of gap probability as a function of distance, or over range, and thus 
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provides a vertical foliage profile. There are currently two major techniques for retrieving 

gap probability over range from TLS scanning data. One technique uses the ratio of laser 

returns within a distance to total number of outgoing laser beams as gap probability 

(Calders et al., 2015; Danson et al., 2007). The other technique uses calibrated laser 

return signals to estimate gap probability from the basic physics of the lidar equation 

(Jupp et al., 2009; Zhao et al., 2011). For the correction of leaf area clumping, TLS data 

has also been used to estimate the clumping index at scales coarser than shoots or leaf 

clusters (Moorthy et al., 2008; Zhao et al., 2012). For the correction of the woody 

contribution to estimates of LAI and the vertical foliage profile, a few studies have tried 

to use TLS data to classify leaves and woody materials in 3-D space using calibrated 

laser return intensities at a single wavelength (Béland et al., 2014) or laser return pulse 

shapes (Yang et al., 2013; Zhao et al., 2011). However, the interacting effects of 

reflectance, size, and orientation of targets may generate similar return intensities or 

return pulse shapes from leaves and woody materials. 

A number of studies have used 3-D terrestrial lidar scanning to extract 

dendrometric parameters of forest stands, i.e. stem diameter at breast height (DBH), stem 

profile (stem diameter at different heights), tree height, stem density, basal area, and 

commercial wood volume (Dassot et al., 2011; Huang et al., 2011; Lovell et al., 2011; 

Strahler et al., 2008; Yang et al., 2013; Yao et al., 2011). These studies mainly 

demonstrated the potential of TLS to provide faster and more accurate forest inventory 

data.  
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For plot-scale AGB estimates, Yao et al. (2011) used DBH and stem count 

density extracted from TLS data with site-averaged allometric equations of dominant 

species and showed the resultant AGB estimates were in good agreement with estimates 

using species-specific allometric equations. Such species-specific allometric equations 

could not be used directly because identification of individual tree species from TLS data 

is quite difficult, if not impossible. Reulke & Haala (2005) explored a tree species 

classification method using the combination of geometric information from high 

resolution TLS and bark texture information from high resolution panoramic images, but 

did not put the method into practice. Further studies and developments of instruments and 

algorithms are needed to provide tree species identification that can be used with TLS 

data to fully automate forest inventory data collection and improve plot-scale biomass 

estimates.  

For individual-tree AGB estimates, some recent studies have developed new, 

nondestructive approaches using TLS data to estimate aboveground biomass, independent 

of allometric equations. These approaches combine a priori wood density information 

with wood volume that is directly calculated from tree models built from terrestrial laser 

scanning data (Calders, Newnham, et al., 2014; McHale et al., 2009; Vonderach et al., 

2012). Current tree model building approaches designed for wood volume estimates 

generally fall into two categories: geometric modeling and voxel modeling. Raumonen et 

al. (2013) used a geometric modeling approach called Quantitative Structure Modeling 

(QSM) to fit TLS data of stems and branches with collections of connected cylinders 

from which branching structure was derived and wood volumes of a whole tree was 
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calculated from the sum of cylinder volumes. QSM is quite automated with little manual 

editing, but needs a proper selection of input parameters. In an earlier study, Thies et al. 

(2004) modeled stems with cylinders and calculated only stem volumes, not including 

branches.  

Voxel modeling represents a tree using voxels. The voxel model of Vonderach et 

al. (2012) represented stem and all branches together with connected voxels. The voxel 

model of Hosoi et al. (2013) represented a tree with two components, a solid model 

composed of connected voxels that fill the outer surface and interior of stem and large 

branches, and a cloud of voxels equivalent to branches discretely scattered in the canopy. 

Voxel modeling needs a careful selection of voxel size (Hosoi et al., 2013), and currently 

requires leaf-off scans or explicit removal of leaf points for wood volume calculation by 

summing voxels. The branching structure is not directly available from voxel-based tree 

models. Lefsky & McHale (2008) combined geometric and voxel modeling in tree model 

building by using cylinders to represent main stems and large branches and voxels to 

represent small branches, but required significant manual editing for tree model 

correction.  

1.3 Dual-Wavelength Echidna Lidar 

The novel terrestrial lidar used in this dissertation, the Dual-Wavelength Echidna 

Lidar (DWEL) is designed to separate leaves and woody materials in forests in three-

dimensional space using their two spectral reflectance values. Based on the design of the 

Echidna
®
 Validation Instrument (EVI), built by Australia‟s Commonwealth Scientific 

and Industrial Research Organization (CSIRO) (Jupp et al., 2009; Parkin et al., 2001), 
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DWEL uses two coaxial pulsed lasers and acquires full-waveform scans at both near-

infrared (NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths with 

simultaneous laser pulses. At the SWIR wavelength, laser power returned from leaves is 

much lower than from woody materials, such as trunks and branches, due to absorption 

by liquid water in leaves. In contrast, returned power from leaves and woody materials is 

similar at the NIR wavelength.  

DWEL‟s two infrared lasers emit unpolarized pulses with a full-width half-

maximum (FWHM) of 5±0.1 ns; the two laser beams are aligned coaxially to within 1 

mrad (Figure 1-1). Although the pulse repetition frequency (PRF) of the lasers is 20 kHz, 

only one of every ten pulses is actually recorded, providing an effective PRF of 2 kHz. 

The collimated beam diameters of the two lasers are 6 mm; one of three pairs of 

interchangeable beam divergence optics of 1.25, 2.5 and 5 mrad is then used to expand 

each beam. The DWEL scanning step is set slightly smaller than the beam divergence, 

which ensures continuous coverage at the horizon (Douglas et al., 2015). A third 

continuous-wave green marker laser is also aligned with the two infrared signal lasers; 

since it is readily visible, it is used to position the triple beam or mark the scan path in the 

laboratory (Figure 1-1).  

Similar to EVI, DWEL uses a rapidly rotating zenithal scan mirror and a slowly 

rotating azimuth platform to provide full coverage of the angular scan space (Douglas et 

al., 2015). Each rotation of the scan mirror directs the beam through 360°; returns from 

the environment are acquired at zenith angles from –117° to +117° (234° extent), while 

returns from the instrument housing, used for calibration, are acquired as the beam passes 
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through angles of +117° to –117° (126° extent). For azimuth, the instrument platform 

rotates through 180°, thus providing a complete spherical scan. Angular measurement 

precision is assured by a Gurley Precision Instruments 12-bit optical shaft encoder wheel 

installed on each zenith and azimuth rotation shaft, with readout electronics providing 19 

bits of interpolated absolute angular resolution (Douglas et al., 2015). Measurement error 

is less than 2 mrad (one sigma), below the operational scanning resolution. 

 
Figure 1-1 DWEL instrument schematic (Douglas et al., 2015). Thin lines represent the outgoing, coaxial beams. 

Gray lines represent the field of view of the instrument and the path of observed returns. The green laser serves 

as a marker for laser alignment and is not recorded. 

 

1.4 Research Objective and Dissertation Structure 

The primary objective of this dissertation is to evaluate the use of dual-

wavelength spectral information, acquired by the DWEL, to separate leaves from woody 

and ground components of the forest in 3-D terrestrial lidar scans, and to explore how this 

new capability can improve the remote retrieval of forest structure. This evaluation has 

required three major steps: (1) calibration of lidar returns at the two wavelengths; (2) 

retrieval of the proportions of leafy and woody materials with height in a forest canopy; 
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and (3) estimation of woody aboveground biomass of forest trees through the virtual 

reconstruction of tree models from multiple DWEL scans. 

In Chapter 2, I establish the basis of the lidar calibration for studies of canopy 

structure. I formulate the lidar equation to describe the interaction of the laser beam with 

vegetative elements and identify the objective variable of the calibration (“apparent 

reflectance”) from the basic scattering lidar equation (Measures, 1991) using Ross‟s 

framework of radiation regime modeling of the vegetation canopy (Ross, 1981). I lay out 

the procedures to collect data and estimate parameters for radiometric calibration of dual-

wavelength lidar. I also assess the accuracy of radiometric calibration and analyze the 

sensitivity of calibration to range errors and noise in lidar intensities.  

In Chapter 3, I analyze DWEL scans of a midlatitude forest site (N 42° 31′ 

51.48″, W 72° 10′ 55.56″) at Harvard Forest in Central Massachusetts, USA, in both leaf-

off and leaf-on conditions. I develop a 3-D classification approach using both spectral 

and spatial context information from the dual-wavelength lidar data. I assess this 

classification in 3-D space with an indirect classification accuracy assessment procedure, 

and observe an average overall accuracy of 79±1% and 75±2% for leaf-off and leaf-on 

scans, respectively. Then I derive separate leaf and woody area profiles from both leaf-

off and leaf-on scans. 

In Chapter 4, I build virtual tree models from multiple scans of the study site at 

Harvard Forest with a state-of-the-art geometric fitting algorithm, Quantitative Structure 

Modeling (QSM) (Raumonen et al., 2013). I estimate the aboveground woody biomass of 

five individual trees by combining the wood volume from QSM tree models and a priori 
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wood density. I use a least-variance approach to select the best input parameter to QSM 

for DWEL scanning data. Finally, I show the improvement of wood volume estimates 

and resultant biomass estimates by the separation of leaves and woody materials in the 

DWEL point clouds.  

In Chapter 5, I present the overall conclusions and discussions. 
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CHAPTER 2.  RADIOMETRICALLY CALIBRATED POINT CLOUDS 

FROM A DUAL-WAVELENGTH FULL-WAVEFORM TERRESTRIAL LIDAR 

2.1 Introduction 

A new and important application of lidar is the quantification of vegetation 

structure, principally measures of the physical dimensions of trees, amount and location 

of leaves, and gaps between and within tree canopies, through airborne and terrestrial 

laser scanning. Early lidar scanners used for this purpose were developed primarily to 

detect and locate scattering events in three-dimensional space, for example providing 

canopy height from airborne systems or 3-D models of forests from terrestrial systems. 

However, more complete inference of vegetation structure requires using the intensity of 

the scattered return detected by the lidar scanner, which in turn requires calibration. In its 

most useful form, this calibration provides a signal expressed as a property of the 

scattering event itself, such as the apparent reflectance of the scattering surface. This 

measure, defined as the reflectance of a perfectly diffuse target orthogonal to the lidar 

beam and completely filling the field of view that returns the same energy from the same 

range as an actual target, is directly useful in retrieving vegetation properties such as leaf 

area index, foliage density with height, and separation of returns of leaves from those of 

trunks, branches and ground. For terrestrial lidars, it also provides additional value for 

measuring mean tree diameter, canopy height, stem count density, and indirectly, above-

ground biomass.  

While calibration of airborne lidars has been well documented in the literature, 

calibration of terrestrial lidar scanners has not. It faces unique challenges, including (1) a 
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very large variation in intensity with range that can induce saturation of the detector 

system by bright targets in the near field and reduced intensities that merge with the noise 

in the far range; and (2) strong telescopic effects, with defocusing producing weak signals 

at near range. This paper documents how these and other challenges have been addressed 

for a dual-wavelength, full-waveform terrestrial scanner, the Dual-Wavelength Echida
®
 

Lidar (DWEL). The simultaneous calibration of returns from DWEL‟s two lasers, pulsing 

at wavelengths of 1064 and 1548 nm, also demonstrates how calibration can ensure both 

radiometric and spectral fidelity in a unified process, thus providing a pathway for 

calibration of other dual and multiple wavelength terrestrial lidars now in various stages 

of development and application.  

2.1.1 Lidar and its forest application 

Light detection and ranging (lidar) is an active remote sensing technique using an 

instrument that emits coherent laser light and records the travel time and intensity of that 

light as scattered by targets along the laser transmission path. The range to a target is 

determined as the product of the speed of light and the one-way travel time of light 

between the instrument and the target. The travel time can be measured using either pulse 

ranging or continuous wave ranging techniques (Lim et al., 2003). For lidar remote 

sensing of forests, which is the application of concern in this paper, pulse ranging lidar is 

much more commonly used (Lim et al., 2003), and thus we will confine our discussion 

here to pulsing lidar unless otherwise noted. Moreover, we will focus our discussion 

below on terrestrial lidar scanning (TLS) from ground-based instruments, although much 

of the discussion will also apply to airborne lidar scanning.  
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The intensity
1
 of light backscattered from a target is usually recorded in digital 

counts (DN), a measure provided by the optical and electronic system (detector-

amplifier-digitizer) of the lidar instrument. Here we will assume a linear system response; 

i.e., that the intensity measured for a given target at a specific distance is a linear function 

of the output energy of the laser pulse. For pulsing lidars, the intensity may be recorded 

either as a small number of discrete scattering events encountered by an outgoing pulse 

(discrete-return lidar), or as a continuous return waveform (full-waveform lidar) 

containing return pulses related to scattering events. Discrete-return lidar typically 

records only peak intensities of scattering events, detected on the fly by fast and simple 

algorithms, and saves them as points at particular locations in space. In contrast, full-

waveform lidar retains a complete record of the scattering of the pulse with range as it 

travels away from the instrument in a particular direction. The advantage of full-

waveform lidar is that the recorded waveform can be post-processed in different ways, 

particularly to yield more accurate representations of scattering events as points in space 

and to trace the continuous reduction in gap probability with range along the laser pulse 

path. 

Through accurate measurements of ranges to scattering targets and the directions 

of emitted laser beams, lidar directly generates three-dimensional representations of 

targets as seen from the viewpoint of the lidar instrument. This acquisition of 3-D 

information by lidar technology has been widely explored on different remote sensing 

                                                        
1
While the term “intensity,” as defined in optical physics, refers to the energy flow rate in W sr

-1
 from a 

point source of emission, we will use “intensity” here to refer to a measure, normally in digital counts, of 

the response of the detector-amplifier-digitizer system to the return of energy from a laser pulse or power of 

a continuous wave scattered by a target into the aperture of the telescope of the lidar instrument and 

reaching the detector system. 
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platforms (terrestrial, airborne, and spaceborne) and shown to facilitate research and 

management of forest ecosystems (Dubayah & Drake, 2000; Lefsky et al., 2002; Lim et 

al., 2003; Wulder et al., 2013) by describing the heterogeneity of forest structure in 3-D 

space and its relation to forest function (Baldocchi et al., 2002; Stark et al., 2012).  

2.1.2 Motivation and status of lidar calibration 

Of the two primary attributes of scattering events recorded by lidar, spatial 

location and intensity, location by range and angle (or as resolved into Cartesian 

coordinates) has found wide use in the retrieval of forest structural parameters (Strahler et 

al., 2008), such as diameter at breast height (DBH) (Lovell et al., 2011), tree and canopy 

height (Huang et al., 2011; Thies & Spiecker, 2004; Yao et al., 2011), timber volume 

(Murphy, 2008; Raumonen et al., 2013), leaf area index (LAI) (Béland et al., 2011; 

Hilker et al., 2010; Jupp et al., 2009; Korhonen et al., 2011; Zhao et al., 2012) and others 

(Dassot et al., 2011; Wulder et al., 2012).  

However, intensity, the other attribute of the return signal, does not provide 

straightforward interpretation and has been underutilized. Intensities in digital counts 

output by lidar instruments neither give actual backscattered energy from targets nor 

relate directly to target physical properties. Accordingly, they are usually processed to 

remove electronic effects and normalize the decrease of observed intensity with range. 

The processed intensities thus provide the relative distribution of target return energy 

from which forest structural parameters can be inferred directly or through empirical 

regressions, such as gap fraction (Hancock et al., 2014), canopy height profile (Lefsky et 

al., 1999), basal area and above-ground biomass (Drake et al., 2002) and others (Wulder 
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et al., 2012). Normalized intensity has also been used in target classification (Béland et 

al., 2011; Ramírez et al., 2013) and estimation of biochemical properties of vegetation 

(Eitel et al., 2014; Gaulton et al., 2013). Although these studies have documented the 

usefulness of lidar intensity values, their simple and empirical normalization limits inter-

comparison of instruments and makes merging data from two or more instruments 

difficult. Even comparisons between datasets of the same instrument from different 

scanning campaigns can be problematic because of inconsistent normalization ranges or 

approaches and different interpretations of normalized values.  

The need for a consistent definition of calibrated lidar intensity is also driven by 

recent design or fabrication of bi- or multispectral lidar instruments using lasers at 

different wavelengths or white lasers to exploit the spectral signatures of targets (Danson 

et al., 2014; Douglas et al., 2015, 2012; Eitel et al., 2010; Gong et al., 2012; Hakala et al., 

2012; Tan & Narayanan, 2004; Woodhouse et al., 2011). For example, the Dual-

Wavelength Echidna Lidar (DWEL) instrument, which is the focus of this paper, uses 

two coaxial lasers at 1064 nm and 1548 nm wavelengths to differentiate leaves from 

branches, trunks, and ground by taking advantage of the distinctive spectral response of 

leaves at the two wavelengths (Douglas et al., 2015).  

To compare lidar intensities from different scanning campaigns, instruments or 

wavelengths, a consistent and unified radiometric calibration is needed. For airborne lidar 

scanning (ALS), recent studies have reviewed the physical concepts of return intensity 

and radiometric calibration (Höfle & Pfeifer, 2007; Roncat, Morsdorf, et al., 2014; 

Wagner, 2010). Various calibration targets and procedures for ALS data have been 
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proposed and evaluated for several calibration scenarios, including different scanning 

campaigns with the same instrument (Kaasalainen, Hyyppä, et al., 2009; Roncat, Briese, 

et al., 2014; Wagner et al., 2006), different instruments at the same wavelength 

(Kaasalainen et al., 2011) or different wavelengths (Briese et al., 2012). Meanwhile, 

calibrated ALS intensities have been explored to improve key forest structure 

measurements, such as gap fraction (Armston et al., 2013), and even differentiate  tree 

species (Reitberger et al., 2008).  

In terrestrial lidar scanning (TLS), calibrated intensities have also been used to 

measure canopy structure. Examples include retrieval of multi-angle gap fraction and 

then LAI (Jupp et al., 2009); clumping index estimate (Zhao et al., 2012); and target 

classification with calibrated intensity alone (Béland et al., 2014) or along with pulse 

width from full-waveform data (Yang et al., 2013). However, with the exception of a few 

recent studies on both pulse-ranging TLS (Hartzell et al., 2015; Pfeifer et al., 2008; 

Pfennigbauer & Ullrich, 2010) and continuous-wave ranging TLS (Kaasalainen, Krooks, 

et al., 2009), radiometric calibrations of TLS data are currently scattered among various 

application studies and are poorly documented or rely on undocumented proprietary 

calibration algorithms from instrument manufacturers.  The DWEL instrument we use in 

this study is a pulse-ranging TLS with two coaxial lasers pulsing at different 

wavelengths. No evaluation of radiometric calibration of similar TLS data has yet been 

documented for different wavelengths.  

As a prerequisite to advance forest structure measurements by TLS with dual 

wavelengths, this study presents the procedure and evaluation of radiometric calibration 
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of dual-wavelength point clouds from the DWEL. We begin with the theoretical lidar 

equation for canopy structure study using TLS data, and then describe the preprocessing 

of the DWEL waveform data and point cloud generation from the waveforms. Our 

calibration model, based on a generalized logistic function for telescope efficiency and an 

inverse power fall-off with range, is fitted to stationary scans of panels with known 

reflectance values at different ranges. We conclude by evaluating the range uncertainty 

and the calibration accuracy of dual-wavelength point clouds from DWEL as well as the 

sensitivity of the calibration accuracy to errors in both range and intensity measurements.  

2.2 Physical Background 

2.2.1 Basic lidar equation for forest canopies 

The goal of our radiometric calibration is to obtain range-independent, 

instrument-independent, and physically well-defined measurements for canopy structure 

modeling and estimation from returned power as detected and recorded by the lidar 

instrument‟s optical and electronic systems. Previous studies (Ni-Meister et al., 2001; 

Sun & Ranson, 2000) formulated lidar equations as a function of canopy structure 

parameters to model large-footprint lidar waveforms but did not identify a realizable 

quantity for lidar radiometric calibration. To establish the basis of the lidar calibration for 

canopy structure study, we formulate the lidar equation to describe the interaction of the 

laser beam with vegetative elements and identify the objective variable of the calibration 

(“apparent reflectance”) from the basic scattering lidar equation (Measures, 1991) using 

Ross‟s framework of radiation regime modeling of the vegetation canopy (Ross, 1981). 
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Consider an angular voxel, an elemental volume enclosed by a laser beam 

between range   to      from the lidar instrument. Vegetative elements inside one such 

angular voxel are modeled as a turbid medium composed of tiny thin facets of different 

orientations in space. We shall not specify the size and thickness of these facets nor their 

location inside the angular voxel (Ross, 1981). Laser radiation incident into this angular 

voxel can be absorbed, reflected back toward the lidar instrument, or transmitted through 

it without interaction with vegetative facets. Simulations of lidar waveforms with Monte 

Carlo ray tracing have shown that multiple scattering by vegetative elements in the 

canopy largely has no effect on return waveform shapes and contributes little to return 

energy, especially for the small laser beam divergence as we use here (Hancock, 2010). 

Thus, it is reasonable to assume only single scattering in the interaction between laser 

beams and vegetative facets.  

The probability that a laser beam in a given direction reaches an angular voxel at 

range   without interaction with vegetative facets is given by the gap probability         

            ∫   ( 
 )    

  2-1 

where   is the Ross G-function, which describes the projection of a unit 

vegetative area in a given direction;       ( 
     ) is the total upper side surface area 

of all tiny facets (no mutual-shading between facets, i.e. no clumping is considered) 

within a unit volume at range   along the laser beam (Ross, 1981). Note that in 

expressions below, we will consider only a single laser beam and omit the laser beam 

direction in         and  .  
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Let    be the total outgoing laser radiation energy (units:  ) within an infinitesimal 

time, i.e. an impulse laser energy. The received energy   (units:  ) from the angular voxel 

at range   by the telescope of the lidar instrument is  

 

                            

  ∫
 

 
             

  

 ∫     
     

    

 

 

   
  

  
 

2-2 

In these equations,           ( ), is the laser radiant energy that reaches the 

angular voxel at range  ;   (dimensionless) is the effective backscatter ratio of the 

angular voxel, i.e., the proportion of the incident laser radiation energy that is scattered 

back from the angular voxel into the solid angle subtended by the telescope receiving 

area; the expression                 (  
  ) is the area scattering phase function at 

range  , i.e. the portion of the radiant energy received in direction    that is scattered by a 

unit area of vegetative facets in the direction    within a unit solid angle, a term which 

contains both the radiative and structural characteristics of the vegetative facets (Ross, 

1981);    (  ) is the solid angle subtended by the area of the telescope aperture (  ) of 

the lidar instrument from range  ;      (dimensionless) is telescope efficiency at range   

(see Section 2.2.1.3); and      and      (dimensionless) are transmission factors that 

account for energy loss due to the sensor system and atmosphere, respectively. 
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2.2.1.1 Apparent reflectance 

In the simplest case, (1) only one angular voxel along a laser beam is filled with 

vegetative elements at range  , that is          , and all laser radiation energy falls 

onto this voxel; (2) all the vegetative facets in the angular voxel are Lambertian with the 

same diffuse reflectance    (dimensionless) and all faces are orthogonal to the laser 

beam, that is                   ; and (3) all the vegetative facets together fill the 

whole laser beam, that is ∫     
         

 
    The return energy from such a voxel is 

then  

         
  

   
               2-3 

This simplest case is equivalent to that an extended Lambertian panel with 

reflectance    that fills the whole laser beam orthogonally at range  . The expression 

      
    in equation 2-3 is the proportion of the total hemispherical backscattering that 

is intercepted by the telescope aperture given this simplest case. Assuming      and      

are constant with the range of our instrument operation and the laser wavelength in 

consideration, we may simplify equation 2-3 by combining all constants into    (    ), 

i.e. 

 

     
       

  
 

     
  

 
         

2-4 

The reflectance   , describing the physical properties of targets in the simplest 

case, is computable from the received energy and also range-independent and instrument-
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independent. For the general case observed in reality, we may identify a variable called 

apparent reflectance,      (dimensionless), that is calculated in the same way as    for 

the simplest case, i.e. 

      
          

  
 2-5 

Comparing equation 2-5 with equation 2-2,  

             
 

          
 2-6 

Apparent reflectance, our range-independent and instrument-independent 

quantity, provides the objective variable for our lidar calibration for canopy structure 

study for two reasons. First,      can be modeled to derive canopy radiation and 

structural information. According equation 2-6,      includes         as determined by 

the structural characteristics of vegetative facets in the canopy, and   as determined by 

both the radiant and structural characteristics of the vegetative facets of the canopy. 

Second,      can be interpreted as the reflectance factor value for a diffusely-reflecting, 

partly-absorbing panel filling the laser beam orthogonally that would produce the same 

received laser return energy as the actual target at the same range. It can be realized as the 

ratio of (dark current corrected) lidar intensities from a target and a white Lambertian 

panel (orthogonal to the laser beam, reflectance of 1) at the same range, as shown in 

equation 2-7 
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2-7 

Thus,      is theoretically useful for canopy structure study as well as practically 

realizable for lidar calibration. It was introduced in Parkin et al. (2001) and used in data 

interpretation by Jupp et al. (Jupp et al., 2009). 

2.2.1.2 Physical interpretation of apparent reflectance 

When the thickness of the angular voxel     , we have the differential form of 

equation 2-2 as  

 

     
  

  
                              

     
  

  
 ∫

 

 
             

  

       

2-8 

where      (     ) is the received laser energy from range   per unit length of 

laser beam travel;      (   ) is the effective volume backscatter ratio at range  , i.e. the 

proportion of the incident laser radiation energy that is scattered back into the solid angle 

subtended by the telescope receiving area at range   per unit length of laser beam travel. 

The quantity                       (  
      ) is the volume scattering phase 

function, which defines the part of the radiant energy coming in the direction    that is 

scattered by a unit volume of vegetative facets in the direction    within the unit solid 

angle. The quantity      is the integral of the volume scattering phase function over the 
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solid angle subtended by the telescope aperture from range  . Accordingly, we have the 

differential apparent reflectance         ( 
  ) from equation 2-5 and 2-6 respectively. 

              
  

       
 2-9 

 

                
    

          
 2-10 

The equation 2-9 shows how to practically calculate and interpret apparent 

reflectance from the received laser energy. The equation 2-10 shows how to theoretically 

model apparent reflectance from the radiation and structural characteristics of the canopy. 

To separate the radiation and structural information about canopy from        , we 

assume Lambertian facets and the same diffuse reflectance    for all vegetative elements 

that contribute to the received laser energy from which         is calculated. Then 

                can be approximated by         (see Appendix A.1 for 

derivation). From equation 2-8 and 2-9, we have,  

                             2-11 

Applying equation 2-1,  

          
        

  
                 2-12 

 

          
        

  
      

2-13 
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Here,         ( 
  ) is the laser beam interception density (Ni-Meister et al., 

2001), i.e. the interception fraction by vegetative facets per unit length along the laser 

beam. Taking the integral over range on both sides of the equation 2-13,  

 ∫       
     

 

 

 (         )       2-14 

Thus we can estimate      over range from the integral of differential apparent 

reflectance over range calculated with equation 2-9 from received laser energy if G-

function and leaf diffuse reflectance are known. Gap probability with range is an 

important function for indirect measurement of canopy structure, such as leaf area index 

(LAI), clumping index, and foliage profile (Chen & Cihlar, 1995; Jupp et al., 2009; 

Welles & Cohen, 1996). Calibrating lidar return intensity to apparent reflectance enables 

better estimates of gap probability than just counting numbers of points returned from 

targets along a laser beam (Jupp et al., 2009). The relation between apparent reflectance 

and gap probability given by equation 2-14 has been used to estimate gap probability and 

foliage profile consistently with waveform data from the Echidna Validation Instrument, 

the predecessor of the DWEL (Jupp et al., 2009; Zhao et al., 2011).  

Note equation 2-14 omits the laser beam direction and implies two assumptions: 

(1) the G-function is constant over range; and (2) vegetative facets are all Lambertian 

with the same diffuse reflectance   . This might not be true for vegetative elements 

traversed by a single laser beam. In practice,         from multiple laser shots are often 

averaged together (e.g. over all azimuth angles within zenith angle ranges), which will 

reduce the variance in estimating         for the canopy as a whole. 
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2.2.1.3 Telescope efficiency 

The telescope efficiency function      is needed by geometric laser systems 

using a telescope to focus the return power (Halldórsson & Langerholc, 1978; Measures, 

1991). It is theoretically zero at zero range (the focal point of the telescope) and rises to 

unity at the range at which the focused return beam falls entirely within the detector. 

     is usually omitted in airborne lidar equation (Wagner, 2010) because almost all 

targets on the ground are far enough from the instrument for      to reach unity. For 

terrestrial lidar, many returns are from near-range targets, which requires including      

(Douglas et al., 2015; Pfennigbauer & Ullrich, 2010). 

2.2.2 Spatial and temporal description of return power 

The basic lidar equation above only describes return power from a single target at 

an instant time. For a pulsing laser, the description of actual return power over time 

involves both the spatial and temporal shape of the outgoing pulse and the spatial 

distribution of multiple targets in clusters intercepting laser beams.  

2.2.2.1 Beam cross section 

First, the energy is not uniformly distributed across the laser beam cross section. 

The laser beam profile is often Gaussian-shaped (Harding et al., 2001; Jutzi et al., 2003), 

thus eliminating the effect of diffraction at the beam aperture and maintaining the 

Gaussian beam cross section with range (Douglas et al., 2015). For an extended 

Lambertian target, the Gaussian laser beam profile theoretically has no effect on return 

power. For general targets as the vegetative facets in our canopy structure study here, the 
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modeling of the effects of a Gaussian beam profile on return power is not trivial (Jutzi et 

al., 2003). However, in processing terrestrial lidar data, returns from many laser shots are 

usually aggregated together, which greatly reduces any variance due to the beam cross 

section shape. 

2.2.2.2 Pulse shape 

Second, the setup of lidar equation in equation 2-2 uses an impulse laser energy as 

the total outgoing laser radiation energy   , i.e. laser energy within an infinitesimal time. 

In reality, outgoing laser energy is spread over a finite time which makes a pulse shape, 

     , (     ) i.e. laser energy per unit time. After converting the time to apparent range 

with    (    )    where    is the time at which the outgoing pulse peak occurs and   

is the speed of light, the outgoing pulse,       as a function of time becomes        

(     ) a function of range. Correspondingly, the term    in equation 2-4 becomes a 

function of range       and the return signal      is the convolution of      (equation 

2-9) and      : 

 

     ∫          
       

        

   
   

 

 

 

       
             

  
 

2-15 

To get        , we need to deconvolve       from received laser signal     . 

However deconvolution is very sensitive to noise. To reduce the effects of noise on data 

interpretation, we modeled         as a sequence of Dirac delta functions. In this so-

called delta-sequence model, vegetative facets are conceptually distributed inside 
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          very thin angular voxels (i.e.     ) at discrete ranges            ,  

that is,  

         ∑    (  )       

  

   

 2-16 

The apparent reflectance of the  -   voxel,      
 that is the integral of differential 

apparent reflectance over the infinitesimal interval at range    is given by the differential 

apparent reflectance at range    calculated from      

      
 ∫    (  ) (    )       (  ) 2-17 

Using the delta-sequence model,      is given by  

 

     ∑  (    )  
    (  )   (  )

  
 

  

   

 

 ∑  (    )  
     

  (  )

  
 

  

   

 

2-18 

Thus      
  the quantity that relates to gap probability (equation 2-14) can be 

calculated from received waveforms while avoiding deconvolution with this delta-

sequence model.  

2.2.2.3 System response 

Moreover, the actual shape of the recorded return signal is also changed by the 

characteristics of the detector-amplifier system of the instrument. For a system with 

impulse response function     , the system response is              where   is an 
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optical-to-digital conversion factor, i.e., the gain of the detector-amplifier-digitizer 

system in units of digital counts (DN) per unit of power received by the detector. The 

factor   is constant for detectors on many lidar instruments, such as the DWEL 

instrument used here (Douglas et al., 2015; Pfennigbauer et al., 2013). If the detector gain 

is not constant, the varying   function needs to be applied before relating recorded return 

intensities to apparent reflectance.  As       is altered by the detector-amplifier system, 

the       is changed accordingly. The corresponding outcome term is denoted as       

in the lidar equation for     , the recorded return signal in digital counts.  

            *
            

  
+ 2-19 

With vegetative facets modeled as a sequence of Dirac delta functions (equation 

2-16),  

      ∑  (    )  
    (  )   (  )

  
 

  

   

 2-20 

The pulse shape       is important for extracting the target signal from noise 

contaminating the recording of returns, since the actual target signal is the convolution of 

      and the target response                . The pulse shape       can be measured 

from targets with spatial extent of zero along the laser beam direction (Pfennigbauer et 

al., 2013), such as a single extended Lambertian target perpendicular to the laser beam. 
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2.3 The Dual-Wavelength Echidna Lidar (DWEL) 

2.3.1 Instrument description 

The scientific objective of DWEL instrument design is to separate leaves and 

woody materials in forests readily in three dimensional space using their different 

spectral reflectance values. Based on the design of the Echidna
®

 Validation Instrument 

(EVI), built by Australia‟s Commonwealth Scientific and Industrial Research 

Organization (CSIRO) (Jupp et al., 2009; Parkin et al., 2001), DWEL uses two coaxial 

pulsed lasers and acquires full-waveform scans at both near-infrared (NIR, 1064 nm) and 

shortwave infrared (SWIR, 1548 nm) wavelengths with simultaneous laser pulses. At the 

SWIR wavelength, laser power returned from leaves is much lower than from woody 

materials, such as trunks and branches, due to absorption by liquid water in leaves. In 

contrast, returned power from leaves and woody materials is similar at the NIR 

wavelength.  

2.3.1.1 Lasers and scanning 

DWEL‟s two infrared lasers emit unpolarized pulses with a full-width half-

maximum (FWHM) of 5±0.1 ns; the two laser beams are aligned coaxially to less than 1 

mrad. Although the pulse repetition rate (PRF) of the lasers is 20 kHz, only one of every 

ten pulses is actually recorded, providing an effective PRF of 2 kHz. The collimated 

beam diameters of the two lasers are 6 mm; one of three interchangeable beam 

divergence optics of 1.25, 2.5 and 5 mrad is then used to expand each beam. DWEL 

scans presented here were collected at the standard operational settings of 2.5 mrad beam 
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divergence optics and a scanning step of 2 mrad. This step setting, slightly smaller than 

the beam divergence, ensures continuous coverage of the hemispheres (Douglas et al., 

2015). A third continuous-wave green marker laser is also aligned with the two infrared 

signal lasers; since it is readily visible, it is used to position the triple beam or mark the 

scan path in the laboratory.  

Similar to EVI, DWEL uses a rapidly rotating zenithal scan mirror and a slowly 

rotating azimuth platform to provide full coverage of the angular scan space (Douglas et 

al., 2015). Each rotation of the scan mirror directs the beam through 360°; returns from 

the environment are acquired at zenith angles from –117° to +117° (234° extent), while 

returns from the instrument housing, used for calibration, are acquired as the beam passes 

through angles of +117° to –117° (126° extent). For azimuth, the instrument platform 

rotates through 180°, thus providing a complete spherical scan. Angular measurement 

precision is assured by a Gurley Precision Instruments 12-bit optical shaft encoder wheel 

installed on each zenith and azimuth rotation shaft, with readout electronics providing 19 

bits of interpolated absolute angular resolution (Douglas et al., 2015). Measurement error 

is less than 2 mrad (one sigma), below the operational scanning resolution. 

2.3.1.2 Internal calibration objects 

Two scattering objects are fixed to the instrument to calibrate range and outgoing 

laser intensity. First, a fine stainless steel (removable) wire crosses the edge of the 

outgoing beam before it hits the scan mirror, thus scattering a small fraction of each 

outgoing pulse into the telescope and detectors. This allows a small part of outgoing laser 

pulse be present in the recorded signal, which assures the temporal alignment of 
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individual waveforms and gives range precision values of one-sigma error of 2.59 cm at 

1064 nm and of 2.52 cm at 1548 nm. Second, a small circular Spectralon
®

 panel with 

nominal reflectance of 0.99 is affixed to the case so that each mirror rotation will acquire 

samples of outgoing pulses acquired from a fixed target at a fixed range. These sampled 

waveforms are used primarily to track drifts in laser output power that occur through the 

scan, but can also establish the mean outgoing pulse times of the lasers for each mirror 

rotation in the absence of a wire signal or refine the temporal alignment of waveforms by 

wire signal.  

2.3.1.3 Signal recording and system response function  

DWEL detects and digitizes the return signal at 2 GHz, i.e. every half 

nanosecond, and records the returns as full waveforms returning from a range up to 70 m. 

Figure 2-1 shows the mean of multiple samples of system response       at each 

wavelength after background noise is removed and the pulses are normalized by peak 

intensity. The “ringing” response after the maximum is produced by the modulation 

transfer function of the combined detector-amplifier. 
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Figure 2-1 DWEL system response pulse. The two pulse peaks at the two wavelengths are aligned. 

2.3.2 Basic processing 

Before point cloud generation and radiometric calibration, the raw waveforms 

from DWEL are preprocessed to (1) remove background noise; (2) convert digitizer time 

to apparent range by aligning each waveform to the peak of the outgoing pulse using the 

signals from the scattering wire or internal Spectralon panel; (3) detect and correct 

saturated return pulses (see Section 2.3.2.1); (4) correct laser power drift, typically due to 

instrument temperature change, by scaling recorded intensities according to mean 

intensities observed from the internal Spectralon panel for each mirror rotation; and (5) 

calculate cross-covariance between waveforms and system response function. This cross-

covariance function changes the original asymmetric return pulses      seen in each 

DWEL waveform to symmetric pulses. The new waveform of symmetric return pulses 

      is written as (  denotes cross correlation) 
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      *
            

  
+ 

2-21 

where                  is a symmetric pulse after cross-covariance 

calculation. Multiple return pulses identified from a waveform are then treated as a 

sequence of multiple target returns, each of which is modeled as a Dirac delta function 

(equation 2-16). Comparing equations 2-19, 2-20 and 2-21, we have 

       ∑ (    )      (  )  
 (  )

  
 

  

   

 2-22 

The preprocessed waveform       then provides the input to point cloud 

generation, thus avoiding pulse peak shifts due to the asymmetry of the original DWEL 

return pulse (see Figure 2-3 and Section 2.4.1 for more information). An additional 

significant benefit of this operation is that it reduces uncorrelated noise and increases the 

signal-to-noise ratio prior to extraction of the signal in later processing. 

2.3.2.1 Saturation fix 

Terrestrial laser scanners, in contrast to airborne scanners, will provide returns 

from close targets, sometimes within one meter for a placement in a forest with a dense 

or patchy understory, while also detecting targets at ranges of 100 m or more. This large 

relative variation in range provides a wide variation in return power that can exceed the 

limits of detector-amplifier systems (linear or nonlinear) and/or digitizers available for 

terrestrial scanners, and as a result, close targets can produce saturated pulse waveforms. 

Moreover, direct solar irradiance or specular reflectance may also produce saturated 
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waveforms. The result may be either detector saturation, which produces an overloaded 

signal that persists through multiple digitizer bins or even multiple pulses, or digitizer 

saturation, which produces a flat-topped return pulse as the return signal exceeds the 

quantization range of the digitizer. In either case, the result is an unusual return pulse 

shape that cannot be used in calibration or to generate a scattering point with a correct 

apparent reflectance value.  

In the DWEL instrument, detector saturation occurs in the rare case of a pulse 

striking an orthogonal specular target or corner reflector; normal target returns are well 

within the incoming power bounds of the DWEL‟s detector-amplifier (Thorlabs 

PDA10CF) given the outgoing laser energy of DWEL. If the field of view of the 

telescope includes the sun or the sun‟s aureole, the pulse may be lost completely as the 

detector and/or digitizer saturates or records high levels of continuous noise through the 

entire waveform. This situation is easy to detect and such waveforms are identified as 

solar-saturated. 

Digitizer saturation, however, is commonly encountered in pulses returned from 

near objects. Here, a “saturation fix” is employed (Figure 2-2). Saturation creates a flat-

topped pulse as the digitizer reaches its limit; however, the side-lobe trough and 

secondary peak are recorded correctly. By comparing saturated and unsaturated 

waveforms acquired from targets with high and low reflectance at the same range, we 

determined empirical ratios between the magnitudes of the side lobes and the unsaturated 

peak. These ratios are used to generate a pulse peak that is located at the mean range of 

the saturated bins. This pulse is identified as a “desaturated” pulse for further processing.  
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Figure 2-2. Example of saturated pulse and saturation fix. 

 

2.4 Methods 

2.4.1 Point cloud generation 

The goal of basic processing of DWEL waveform data is to identify, quantify, and 

locate the scattering events encountered by each outgoing laser pulse from the recording 

of the return value by the instrument. In this way, the scattering events may be recorded 

as points in a cloud with attributes of intensity, or after radiometric calibration, of 

apparent reflectance.  

2.4.1.1 Normalized pulse shape 

For a theoretical return intensity pulse      (DN) of which peak intensity   is at 

range zero, i.e.       , the integral of the digital counts recorded by the instrument‟s 

digitizer is denoted as   ,  
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    ∫       
  

  

 2-23 

The equivalent width (  ) of the pulse      can be approximated by (Yang, 

2012) 

    
  

   [    ]
 

∫       
  

  

   [    ]
 2-24 

Equivalent width of a pulse is the width of a rectangular band with the same 

integral as the pulse and the same max value centered at the pulse peak. If       is the 

standard pulse from normalizing the pulse peak      to one, i.e.              and 

       ,  

    
 ∫        

  

  

 
 ∫        

  

  

  2-25 

A preprocessed DWEL return waveform of symmetric pulses (see Section 2.3.2) 

can be written as a sum of several return pulses from several targets,  

       ∑      
(    )

  

   

 2-26 

where   represents the j-th return pulse resolvable and decomposed from the 

return waveform,    is the number of pulses,    is the peak intensity of the symmetric 

DWEL return pulse,    is the range to the return pulse peak, and    
    is the j-th 

normalized pulse. The    and    will be assigned as two attributes, intensity and range to 

points extracted from return waveform decomposition. 
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2.4.1.2 Normalized system response and apparent reflectance 

The standard pulse of a single return from an extended target orthogonal to the 

laser beam, i. e.    
   , will be a copy of the system response (          , see 

Section 2.3.2) according to equation 2-21, that is normalized to a peak of 1; we refer to 

this function as the normalized system response,  

    
          

    

   [    ]
 2-27 

and  

           (  )  
 (  )

  
  2-28 

where       [    ]. With targets modeled as a sequence of Dirac delta 

functions (equation 2-16),      
     (  ) (equation 2-17). Thus, the peak intensity of 

a return pulse,   , is directly related to our calibration objective, apparent reflectance 

     
 of an angular voxel filled with vegetative facets. If the spatial extent of a target is 

not zero (violation of Dirac delta model),    
    will be an elongated version of       

and have a larger FWHM than       according to equation 2-21. Now the shape of 

   
    becomes unique to the scattering event. The solution to the unknown shape of  

   
    is addressed in the following section 2.4.1.3.  

2.4.1.3 Waveform decomposition strategy 

Many lidar studies model    
   , the shape of the return pulses, with a 

mathematical function, such as Gaussian, lognormal, or generalized Gaussian (Chauve et 
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al., 2008). Individual pulses can then be fitted to the model with one or two parameters. 

However, theoretical mathematical functions can never reconstruct the actual system 

response and may introduce extra uncertainties in waveform decomposition (Hartzell et 

al., 2015). Moreover, the system response of DWEL is not easily modeled with a simple 

function, which makes waveform decomposition by fitting pulses to mathematical 

functions unstable and potentially very sensitive to noise.  

A workable model for decomposition that we exploit here is to assume that all 

target returns have the shape      , but differ in peak intensity  . Thus, we ignore 

variation in FWHM pulse width at this stage of processing. We apply this model to the 

preprocessed waveform       (see Section 2.3.2) and write the preprocessed waveform as 

       ∑     (    )

  

   

 2-29 

where          

Suppose a waveform has    digitized bins and we denote the apparent range of 

the k-th bin as   . Equation 2-29 for all the waveform bins then provides a       

linear system if we know            
. However, to avoid uncertainty and instability in 

solving this linear system caused by bins containing only noise, we do not include all    

bins. Instead, we use the    peak bins of return pulses. That is, a       linear system 

as follows,  
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In addition, we add a second       linear system using convolution to stabilize 

the estimate of  
 

 with a linear least squares solution: 

 

                   ∑                 

  

   

 

        ∑                  
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where    is a normalized symmetric pulse, i.e.        . Usually we choose 

     . In matrix notation, 

 [
 
  

]  
 

 [

  
 

   
 

] 2-32 

We obtain   , locations of return pulse peaks, by searching waveform sections 

with shapes similar to    using cross-correlation. To be specific, we identify the peak 

bins of return pulses with zeros of derivatives and associated second derivatives from 
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       and obtain refined peak locations            
 by quadratic interpolation with 

three bins around the identified peak bin. The peaks identified from        are at the 

same locations as those of       because both    and    are symmetric. Finally, we 

solve the        linear system for  
 

 given by equation 2-32 using least squares: 

  
 
̂  [      

   ]
  [    

 

   
    

 

] 2-33 

Note that in the above linear system we have assumed that each pulse return in 

      follows the shape of the symmetric system response,      . If a target   has spatial 

extent greater than zero along the laser beam direction, its return pulse shape will have a 

larger EW than    and thus    (  ) will be larger than it would be if the return pulse had 

the shape of   . Then    ̂ will be larger, which will compensate for some but not all of 

the underestimate of return pulse energy due to the assumption of the return pulse shape 

as the system response shape. A more accurate model might vary the return pulse shape 

as          , where    is a scale factor to accommodate the EW. However, the estimate 

of this extra scale parameter    requires the solution of a nonlinear system and will be 

pursued at a later time.  

Figure 2-3 (left column) gives an example of extracted points from waveform 

decomposition in DN (dark dots) and in      (red diamonds) after radiometric calibration 

(see Section 2.4.2 in the following).  
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(A1) 

 
(A2) 

 
(B1) 

 
(B2) 

Figure 2-3. First row, 1064 nm. Second row, 1548 nm. First column, a waveform sample before filtering by cross 

covariance. Second column, the waveform sample after filtering as the input to point cloud generation. Black 

dots are extracted points from waveform decomposition and show the digital count before radiometric 

calibration. Red diamonds are points of apparent reflectance after radiometric calibration. 

2.4.2  Radiometric calibration 

2.4.2.1 Calibration model 

The purpose of calibration as it is pursued here is to convert the intensity (DN) 

associated with each pulse peak to apparent reflectance, a measure that removes the 

effects of telescope efficiency and fall-off with range. For the calibration model, we may 

choose between two alternatives: a physical model based on the optical design of the 

instrument and an empirical model designed to best fit the data. A physical model 
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describing the returned power    of the DWEL instrument, derived from first principles, 

is 

 

   
   

  
(     * 
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where   is the range,   is the reflectance of a diffuse target,    is the outgoing 

pulse power,    is the telescope receiving area,    is the initial beam half width (at    ), 

  is the beam divergence (half angle),   is the radius of the detector, and      is the focal 

length. However, initial tests of this model with the calibration data (see Section 2.4.2.2) 

were not satisfactory. While the general shape of the response function fit the 

observations, the model showed significant departures from the behavior actually 

observed for the instrument, especially at near range. We believe that second-order 

effects, such as imperfect alignment interacting with the Gaussian beam cross section, 

departure of divergence from nominal specifications, or un-modeled electronic effects, 

were responsible for this variance.  

Accordingly, we used a semi-empirical model to fit the data. According to 

equation 2-28, for each extracted point with range   and digital count intensity  , we 

need the constant    and the function      to calculate apparent reflectance     . To 

find these unknowns, we require a collection of data points of (           
) from targets 

of different reflectance values at multiple ranges. The quantities Rj and    are derived 

from point cloud generation; apparent reflectance      
 may be taken as the diffuse 
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reflectance    of an extended Lambertian target held perpendicular to the laser beam. 

The near-range effect,     , is a function theoretically rising from zero at the focal point 

of the lidar optical system to unity at a range at which divergence of the scattered beam 

entering the telescope aperture is negligible; it will be modeled with a generalized logistic 

function (Richards, 1959). The empirical calibration function for the DWEL is thus 
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where five parameters need to be estimated for the DWEL calibration, 

               . Of the three parameters for     ,    and    together determine the 

range at which the function approaches its asymptote of one;    controls the rate at which 

telescope efficiency rises from 0 to 1 in the near range.  

Note that the exponent of range is taken as a variable,    for two reasons. First, a 

calibration target surface, for example a manufactured Spectralon Lambertian panel, may 

not provide perfectly isotropic diffuse reflectance (Bhandari et al., 2011). The farther a 

calibration target is from the instrument, the smaller is the solid angle    subtended by 

the telescope area over which the integral is taken to give the effective backscatter ratio   

(equation 2-2). If the anisotropic target preferentially reflects radiation into a small solid 

angle in the direction of instrument‟s observation, the smaller    causes the integral over 

directions where the area scattering function has larger values and thus larger   and 

larger return energy   than it would be if the target were perfectly isotropic. However, the 

reflectance value of a calibration panel is typically taken as a constant, for example 
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measured by an integrating sphere, and assumed to be isotropic in the calibration model. 

From equation 2-5, if      is kept constant but   becomes larger, the exponent of range   

will be smaller to compensate. Second, previous studies have also suggested that the 

exponent may need to accommodate electronic effects (Yang et al., 2013). The exponent 

has therefore been treated as a variable in the calibration. Although the number of model 

parameters is large and they are not independent of each other, the calibration function 

can be fitted across its full range of application, thus avoiding issues of extrapolation 

beyond the limits of the fitting.  

2.4.2.2 Calibration experiment 

To acquire the calibration data, three panels of different reflectance values were 

scanned by the DWEL from a nearly perpendicular direction at 33 range locations from 

0.5 m to 70 m (Table 2-1). The range sampling intervals were based on a provisional 

calibration, made at the time of commissioning, that established the general shape of the 

     curve. The instrument was set in stationary mode, i.e. without scan mirror or 

azimuth platform rotation, and the green marker laser was used to manually point the 

lasers to the center of each panel at each placement. The panel sizes are large enough to 

intercept the whole laser beam at the 70 m. For each panel at each range, we collected 

around 150,000 waveform samples as candidates for calibration model fitting and 

evaluation.  
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Table 2-1 Range sample design 

Range (m) Range Interval (m) Measurement Positions 

[0.5, 10] 0.5 20 

(10, 15] 1 5 

(15, 40] 5 5 

(40, 70] 10 3 

 

The three panels included a white Spectralon panel and two foam boards painted 

with flat interior wall paint in light and dark gray tones derived by mixing black and 

white paints together. Panel reflectance values are shown in Table 2-2. The Spectralon 

panel reflectance is from the manufacturer‟s specification. The gray panel reflectance 

values were first measured using a FieldSpec Pro spectrometer (Analytical Spectral 

Devices) fitted with a self-illuminating spectral probe. However, this device measures 

reflectance at 0° incidence angle and 10° view angle rather than by retroreflection, and 

the values appeared to be underestimated slightly due to reflectance anisotropy (BRDF 

effect). Moreover, the reflectance of flat wall paint may have changed with time as the 

paint slowly cured between the spectrometer measurement and the acquisition of 

calibration data (about 20 weeks). We thus calculated the gray panel reflectance values 

using the manufacturer‟s Spectralon panel reflectance measurement and the ratio of 

return intensities between the Spectralon panel and gray panels at each range. We then 

used the mean of these calculated reflectance values as anisotropy-corrected gray panel 

reflectance values. The adjusted values were 28 – 34 percent higher than originally 

measured.  
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Table 2-2 Reflectance values of panels used in calibration.  

White panel: Manufacturer’s calibration value. Measured value: Spectrometer with illuminated probe.  

Adjusted value: Adjusted to provide consistent ratio with Spectralon panel. 

Target 

NIR Reflectance SWIR Reflectance 

Measured 

Value 

Adjusted 

Value 

Measured 

Value 

Adjusted 

Value 

White Spectralon 

panel 
0.99 0.98 

Gray painted panel 1 0.436 0.574 0.349 0.447 

Gray painted panel 2 0.320 0.431 0.245 0.329 

 

2.4.2.3 Calibration model fitting 

A primary objective of the DWEL instrument is to separate returns of leaves from 

those of other targets, such as trunks, branches, and ground, by taking advantage of the 

difference in spectral reflectance values of leaves and those of other targets at NIR and 

SWIR bands. As we try to minimize errors in      at individual wavelengths in 

calibration model fitting, we also try to ensure the two wavelengths have the same or 

similar relative errors in      in order to minimize artificial variations in spectral 

difference due to different errors in      at the two wavelengths. Thus, we estimate the 

calibration parameters of NIR and SWIR bands together in a joint calibration model that 

is fitted using an objective error function including relative errors in      from individual 

wavelengths and spectral constraints from both wavelengths as follows: 
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where  
 

 is the vector of 5 calibration parameters for NIR and 5 parameters for 

SWIR;  ( 
 
) is the objective error function as a sum of two components, the error   ( 

 
) 

from individual wavelengths, and the spectral constraints   ( 
 
) from both wavelengths; 

subscript   represents the i-th data point and subscript   and   represent NIR and SWIR; 

   is the total number of data points used in calibration fitting;  ̂ is the apparent 

reflectance of panels estimated from calibration model while   is the adjusted diffuse 

reflectance of panels;    ̂  is normalized difference index to identify the spectral 

difference of target reflectance between NIR and SWIR;        ̂   is the variance of 

NDI of data points in calibration fitting. In addition, we had the same calibration 

parameter    and    for NIR and SWIR to make      at the two wavelengths asymptote 

at the same range. The objective error function  ( 
 
) has many local minima due to the 

high nonlinearity of the DWEL calibration model brought about by the      function. 

We used the Genetic Algorithm implemented in MATLAB (MATLAB, 2015b) to search 
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for initial parameter values that will approach the global minimum before using the 

Nelder-Mead method (MATLAB, 2015a) to reach the global minimum.  

All the waveforms from stationary panel scans were processed to points with 

intensities and ranges. Saturated waveforms were excluded from calibration model fitting 

to avoid uncertainty from the saturation fix procedure. We randomly divided the 

remaining returns (about 24,000 samples for each range) into a training set (80 percent) 

and a validation set (20 percent). In the training set, return intensities were normalized by 

the corresponding panel reflectance to provide equivalent target reflectance values of 1.0 

and then averaged together for each range to reduce noise in the data. Mean normalized 

intensities and ranges at 1064 nm and 1548 nm were paired according to panel range 

locations. Thirty pairs of data points from 1064 nm and 1548 nm were used to estimate 

the calibration parameters of 1064 nm and 1548 nm jointly by minimizing the error 

function  ( 
 
).  

2.5 Results and Discussion 

2.5.1 Dual-wavelength point cloud 

We produced single point clouds with dual-wavelength apparent reflectance 

values by merging two point clouds generated separately from waveforms at the two 

wavelengths to examine and reduce the range bias between point clouds at the two 

wavelengths. To assess the variation in range between point clouds at the two 

wavelengths, we calculated the difference in ranges (1064-nm range – 1548-nm range) of 

unsaturated (see Section 2.5.1) single returns at the two wavelengths from stationary 
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scans of the Spectralon panel at different ranges (see Section 2.4.2.2 for more details). 

The histogram of range differences (Figure 2-4) presents a near-Gaussian shape, 

suggesting random variation. The mean difference of –6.861 cm indicates a bias, in 

which the range measured by the 1064-nm laser is shorter. This difference is within the 

nominal waveform sampling interval of 0.5 ns, i.e. 7.5 cm, and is thus within one 

digitizer bin.  

To reduce the effect of this bias in registering the two point clouds, the ranges of 

common points in the two point clouds are averaged, thus providing a single point cloud 

of dual calibrated apparent reflectance values. Common points from the two point clouds 

are identified if they share the same laser shot sequence number and their range 

difference is within three standard deviations (±12.24 cm) of the histogram value in 

Figure 2-4. 

 

Figure 2-4 Histogram of range difference between the two wavelengths. Range from 1064 nm minus that from 

1548 nm. Mean: -6.861 cm. Standard deviation: 4.081 cm. 

 



 

 

54 

2.5.2 Radiometric calibration 

2.5.2.1 Fitting of the empirical model 

Table 2-3 provides values for the model coefficients derived from the model and 

procedure described in Section 2.4.2; they may be taken as examples, since recalibration 

will be necessary during the lifetime of the instrument.  

Table 2-3 An example set of DWEL calibration parameters 

Parameter 1064 1548 

C0 5788.265818 22054.218342 

C1 0.000319 0.000319 

C2 0.808880 0.540762 

C3 25176.835032 25176.835032 

b 1.384297 1.585985 

 

Figure 2-5 and Figure 2-6, rows A and B, show the fits of the calibration 

functions (equation 2-35) for the two wavelengths to the training and validation data. The 

adjusted coefficient of determination (  ) of modeled intensity at both wavelengths for 

both training and validation data (Table 2-4) indicates the proposed calibration function 

and estimated parameters predict the return intensity well. The linear regressions between 

measured and modeled intensity for both training and validation data (Figure 2-5 and 

Figure 2-6, row B) yield values of slope very close to unity as well as very small 

intercepts, indicating very good fits.  

The calibration functions (Figure 2-5 and Figure 2-6, A1), which provide the 

return intensity of a target with unit reflectance, increase sharply and then fall 

exponentially. The normalized 1064-nm return intensity peaks at ~3.5 m (Figure 2-5, row 

A) and the 1548-nm peaks at ~5 m (Figure 2-6, row A). The curves of     , shown in 
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Figure 2-7, rise from zero and plateau at about unity at ~10 m for 1064-nm laser and ~15 

m for 1548-nm. The functions differ because of small differences in alignment, and 

because each laser beam uses individual wavelength-dependent optics in the divergence 

lens assembly and the detector focusing lens (see Section 2.5.3). 

  

(A1) (A2) 

 
 

(B1) (B2) 

Figure 2-5 Estimation and validation of calibration of 1064 nm data. In rows A and B, the left column shows the 

calibration function as fitted to training data, and the right column shows the fit to the validation data. Row A: 

Measured and modeled intensity normalized by reflectance. Row B: scatter plots of measured against modeled 

intensity. The vertical error bars in (A1) and horizontal error bars in (B1) are one standard deviation of 

measured intensities normalized by reflectance.  
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(A1) (A2) 

 
 

(B1) (B2) 

Figure 2-6 Estimation and validation of calibration of 1548 nm data. In rows A and B, the left column shows the 

calibration function as fitted to training data, and the right column shows the fit to the validation data. Row A: 

Measured and modeled intensity normalized by reflectance. Row B: scatter plots of measured against modeled 

intensity. The vertical error bars in (A1) and horizontal error bars in (B1) are one standard deviation of 

measured intensities normalized by reflectance.  
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Figure 2-7. Telescope efficiency      of the two wavelengths 

2.5.2.2 Apparent reflectance error 

Because all intensities in calibration fitting and validation were normalized by 

corresponding panel reflectance, the error in      hereinafter means relative error unless 

otherwise noted. The estimates of apparent reflectance      by the calibration model 

from validation data show root mean squared errors (RMSE) of 0.092 at 1064 nm and 

0.108 at 1548 nm (Table 2-4) (Figure 2-8). The histograms of errors (Figure 2-8, A3, B3) 

are centered around zero, which indicates no systematic offset in the apparent reflectance 

estimate.  

The plots of errors in estimated      against range for the validation dataset 

(Figure 2-8, A2, B2) show larger and dispersed errors at very near range (< ~3.5 m for 

1064 nm and < ~2 m for 1548 nm) and farther range (> ~10 m for 1064 nm and > ~20 m 

for 1548 nm), in contrast to smaller and less dispersed errors in between. This pattern of 

errors in      over range is a combination of errors from range uncertainty (  ) and 
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return intensity uncertainty (  ). We observed how    and    contribute to errors in 

     separately with our calibration model over the range of our calibration data, 0.5 m to 

70 m. We simulated    , the relative errors in      only due to different return intensity 

uncertainty levels (±15 DN) at different ranges by keeping range error at zero (Figure 

2-9, A1, B1). Then we simulated    , the relative errors in      only due to different 

range uncertainty levels (±15 cm) at different ranges by keeping return intensity error at 

zero (Figure 2-9, A2, B2). These relative error ranges in simulation of    and    are 

more than three times larger than the standard deviation of range measurements and root 

mean squared noise. 

Table 2-4 Assessment of calibration fitting and validation 

Wavelength 1064 nm 1548 nm 

Measured vs. Modeled Intensity,  

Adjusted    

Training 0.954 0.983 

Validation 0.948 0.964 

RMSE of Apparent Reflectance 
Training 0.108 0.092 

Validation 0.081 0.064 

 

 

 

 



 

 

59 

 

(A1) 

 

(A2) 

 

(A3) 

 

(B1) 

 

(B2) 

 

(B3) 

Figure 2-8. Errors in apparent reflectance. Row A shows 1064 nm and Row B shows 1548 nm. The left column is 

the deviation from calibration fitting with range. The middle column is the deviation of validation points with 

range. The right column is the histogram of deviations. 

2.5.2.3 Sensitivity of estimated apparent reflectance to intensity and range 

Figure 2-9 presents a graphical display of the estimated relative errors calculated 

using the above procedure. The total relative error in         , can be approximated by 

        (see Appendix A.2 for this derivation). Graphs A1 and B1 in Figure 2-9 show 

the relative error in apparent reflectance (   ) produced by changes in return intensity 

(  ) of ±15 digital counts (DN) (y-axis), as the error varies with range. At very near 

range (<~3 m), small changes in DN produce large errors in apparent reflectance; this 

effect arises because the telescope efficiency      is very low and the return signal is 

weak. At near range between about 2 and 10 m, the signal is much stronger and thus the 
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errors produced are fairly small (green colors). Between near and far range (10–70 m), 

the exponential decrease in signal provides a smooth transition from low sensitivity of 

apparent reflectance with DN error to high sensitivity. At far range (70 m), the signal is 

sufficiently diminished by fall-off with range that errors in apparent reflectance are large 

given a deviation of just a few counts from true values.  

In contrast, large relative error in apparent reflectance (   ) produced by changes 

in range (    of ±15 cm (Figure 2-9, A2, B2) (y-axis) is limited to the very near range 

(<~5 m). The weak signal in this range provides large errors, which decrease rapidly as 

the telescope efficiency function      increases the signal strength. Beyond this range, 

the relative error in apparent reflectance remains low.  

From this analysis, we see that the error in apparent reflectance due to error in 

range (     dominates at near ranges while the error due to return intensity (   ) 

dominates at far ranges. The exact range at which     surpasses     and becomes 

dominant depends on the uncertainty level of return intensity given the calibration model. 

Thus, we see larger and more dispersed errors at very near ranges in validation data 

(Figure 2-9, A2, B2) mainly due to range uncertainty, and at far ranges mainly due to 

return intensity uncertainty. The range accuracy is therefore more critical in the near 

range target calibration while the return intensity accuracy becomes more critical in the 

far range target calibration.  

The problem for calibration here is that returns from far ranges have a lower 

signal-to-noise ratio, but their calibration is highly sensitive to return intensity 

uncertainty. Thus, the noise level of lidar return intensity needs to be characterized to find 
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the range at which the reflectance uncertainty    exceeds a desirable level given the 

calibration model. For returns from far ranges, the apparent reflectance should be used 

carefully. For returns from near ranges,    could be very high if the range uncertainty is 

not low enough. However, lidar instruments generally give range measurements of high 

accuracy. 

 

(A1) 

 

(A2) 

 

(B1) 

 

(B2) 

Figure 2-9 Sensitivity of      estimate on errors in return intensity and range. The image color shows relative 

error in      estimate (estimate - measurement). The color map scale is unified for all images for comparison 

purpose but the actual error ranges of the four images are different and given here: (A1),     at 1064 nm, [-

0.928, 0.928]; (A2),     at 1064 nm, [-0.226, 0.290]; (B1),     at 1548 nm, [-0.574, 0.574]; (B2),     at 1548, [-

0.133, 0.154]. 
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2.5.3 Calibration comparison of the two wavelengths 

The two telescope efficiency functions      at the two wavelengths (Figure 2-7) 

suggest different optical characteristics of the two beam pathways through the DWEL 

instrument. As noted earlier, each pathway uses a separate wavelength-dependent 

divergence optic and focusing lens in the detector assembly, which can produce small 

differences in beam width and detector field of view. Moreover, the two laser beams may 

not be exactly coincident due to small errors in alignment. As a result, the two functions 

show different shapes.  

In addition, the range exponent values   for the two wavelengths are different, but 

both are smaller than the theoretical value of 2 that applies to scattering from a perfectly 

diffuse surface. The observed value may depart from 2 for a number of reasons, including 

slight misalignment of the optical path as it interacts with the Gaussian beam cross 

section and electronic effects in the detector-amplifier-digitizer systems. In addition, 

target surfaces may depart from diffuse reflectance and show partial specularity (i.e., 

bidirectional reflectance effects). In this case, the telescope aperture will see a narrower 

solid angle of scattering from the target with range, thus including a greater proportion of 

scattering from a retroreflection peak. Moreover, as a free parameter in the model 

inversion, the range exponent may be adjusted by the nonlinear fitting procedure to better 

shape the telescope efficiency function. While a more physical model grounded in 

instrument optics and first principles of scattering might be desirable, an empirical model 

will capture the data trend more accurately in the face of physical and electronic 

unknowns. As shown above, our calibration functions clearly fit the data well, predicting 
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observed intensities from calibration targets and retrieving reflectance from observed 

intensities with low errors.  

2.6 Conclusion 

Calibration of our full-waveform, dual-wavelength, terrestrial laser scanner 

presents a number of challenges relevant to the next generation of terrestrial laser 

scanners. The need to scan from near to far range requires characterizing both telescopic 

effects, which reduce the near-range signal with increasing proximity due to defocusing, 

and saturation effects, which alter the return pulse shape of near-range scattering events. 

Fortunately, digitizing the full return waveform allows the ready detection of saturation 

and accurate description of telescope efficiency in the near range, leading to mitigation of 

both effects.  

In addition, dual- or multiple-wavelength data must be consistent in spectral 

performance. By using an empirical calibration model fitted to data, it is not difficult to 

add a constraint that optimizes spectral “flatness” with range using a Spectralon target. 

This step is particularly useful for the DWEL, since the laser wavelengths are chosen 

specifically for their ability to separate hits of water-bearing leaves from hits of the dry 

bark of trunks and branches and dry ground surfaces.  

Our calibration procedure provides apparent reflectance, a physically-defined 

value related to the size, orientation, and reflectance of a target, independent of range and 

instrument optics and electronics. Because apparent reflectance provides gap fraction 

with range and height, it is used to retrieve plant and leaf area index as well as plant and 

foliage profiles. Apparent reflectance values also allow algorithms to find and count 
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trunks and measure their diameters at near and far ranges (Lovell et al., 2011; Strahler et 

al., 2008) without reference to range. These data can then be used in estimating above-

ground biomass with appropriate allometric equations (Yao et al., 2011). And, as an 

instrument-free measure, apparent reflectance facilitates merging point data from 

multiple instruments, allowing assessment of the effects of angular resolution and beam 

divergence on structure retrieval and even providing multiple wavelength information for 

scanners using different laser wavelengths.  

To obtain point clouds of apparent reflectance, we solve a linear system of 

equations established from an empirical system response model, rather than use 

waveform decomposition with analytical mathematical functions, such as the widely-used 

Gaussian distribution. This linear system approach to point cloud generation from lidar 

full waveforms overcomes the noise in the waveforms and accommodates the unique 

DWEL pulse shape, which is not easy to model with analytical mathematical functions. 

The DWEL calibration model explicitly includes the telescope efficiency function 

    , modeled by a generalized logistic function, to correct defocusing of return signals 

on the detector from near range targets. The calibration model is parameterized by 

nonlinear fitting to a calibration dataset of intensities returned by targets of known 

reflectance at known ranges. A sensitivity analysis shows that the apparent reflectance 

error from radiometric calibration is dominated by range errors at near ranges but by 

return intensity errors at far ranges. In spite of such errors, the RMSE values (relative 

errors) of apparent reflectance, 0.081 for 1064 nm and 0.064 for 1548 nm, obtained from 

separate training and test measurement datasets, show that the parameterized model quite 
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accurately converts lidar return intensities in digital counts to apparent reflectance. This 

calibration model can apply to almost any terrestrial lidar instrument using a telescope to 

focus the return power.  

While the calibration of a terrestrial lidar is by nature more difficult than that of 

an airborne lidar, one advantage is that controlled laboratory or field calibration 

measurements are readily designed and executed. If stationary operation is possible to fix 

the beam on the target panel, it is easy to acquire pulses at measured ranges in a long 

corridor or outdoor environment. If stationary operation is not possible, only short scan 

segments crossing the target need to be acquired. Calibration is also aided by having 

targets of different reflectance. While our painted panels functioned well, a set of 

Spectralon panels with well-characterized diffuse reflectance properties ranging from 

light to dark would be desirable.  

In summary, we show how to overcome the challenges posed in calibrating a 

dual-wavelength terrestrial laser scanner by formulating a flexible calibration model, 

acquiring appropriate calibration data, fitting the model with a constraint providing 

spectral consistency, and testing the results and the sensitivity of errors to uncertainties in 

range and intensity. We also provide solutions to the problems of saturated returns, slow 

change in laser output pulse energy, and variance in the timing of laser pulse emissions. 

The next step is to use calibrated data to retrieve forest structural parameters with the new 

dual-wavelength data, following the pathways pioneered with the heritage Echidna 

Validation Instrument, but extending them to new information from the Dual-Wavelength 

Echidna Lidar. This is the subject of the following two chapters. 
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CHAPTER 3.  SEASONAL CHANGE OF LEAF AND WOODY AREA 

PROFILES IN A MIDLATITUDE DECIDUOUS FOREST CANOPY FROM 

CLASSIFIED DUAL-WAVELENGTH POINT CLOUDS 

3.1 Introduction 

Forest canopy structure regulates radiation interception through the canopy, 

affects the canopy microclimate, and consequently influences the energy, water, and 

carbon fluxes between soil, vegetation and atmosphere through its interactions with leaf 

physiological functioning (Baldocchi et al., 2002). Leaf area index (LAI), defined as half 

of total leaf surface area (simply referred as „leaf area‟) per unit ground area (Chen & 

Black, 1992), is one of the primary canopy structural measures used in both 

ecophysiological and remote sensing models to govern the radiation interception through 

forest canopy and the capacity of canopy photosynthesis (Baldocchi et al., 2002; Bonan, 

1993; Hanson et al., 2004; Medvigy et al., 2009; Running & Coughlan, 1988). In addition 

to LAI, simulations of net ecosystem productivity (NEP) have also shown the necessity 

of including detailed two- and three-dimensional distribution of leaf areas, e.g. vertical 

foliage profile, in ecophysiological modeling especially for open canopies and multi-

layered stands (Law et al., 2001). Measurements of vertical foliage profile are closely 

related to (Parker et al., 2004) and significantly correlated with (Stark et al., 2012) forest 

functioning measures, which also demonstrates the importance of the three-dimensional 

distribution of leaf area. 

LAI and vertical foliage profile are typically measured across different spatial 

scales. LAI over large areas has been derived from the inversion of radiative transfer 
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modeling from optical remotely sensed imagery (Koetz et al., 2005; Myneni et al., 2002) 

and by using empirical relationships between field-measured LAI and various metrics 

from remotely sensing data. Examples include vegetation indexes from optical imagery 

(Cohen et al., 2003); backscatter cross section and polarization ratio from synthetic 

aperture radar (Manninen et al., 2005); laser return energy and canopy heights  from 

airborne and space-borne lidar (Korhonen et al., 2011; Lefsky et al., 1999; Luo et al., 

2013; Solberg et al., 2009); and combinations of above (Ma et al., 2014). Airborne and 

spaceborne full-waveform lidar data have demonstrated the capability to derive vertical 

foliage profiles over large areas, either relative (Lefsky et al., 1999) or absolute (Harding 

et al., 2001; Ni-Meister et al., 2001; Tang et al., 2014, 2012).  

All the above methods to derive LAI and vertical foliage profile over large areas 

need ground truth data to calibrate and validate their empirical and physical retrieval 

models. Thus, the quality and detail of the ground truth data are crucially important. 

Various ground-based LAI measurement techniques have been developed. The major 

methodologies for ground-based LAI measurements generally fall into two categories: 

direct, which involves destructive sampling or litter-fall collection, and indirect, which 

involves tree allometry, or gap probability measurements (Asner et al., 2003; Bréda, 

2003; Chen et al., 1997; Jonckheere et al., 2004). Direct destructive sampling and litter-

fall collection are time-consuming, laborious and sometimes impractical, e.g. in areas of 

preservation or scientific interest where destructive sampling is prohibited (Jonckheere et 

al., 2004). Also litter-fall collection only works for deciduous trees. The indirect 

allometry-based method requires site-specific allometric equations from detailed 
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destructive sampling. Indirect gap-based methods invert gap probability in the canopy to 

LAI based on Beer‟s law of light transmission through an absorbing medium (Chen et al., 

1997; Lang, 1987; Welles & Cohen, 1996). The gap probability can be obtained by a 

point quadrat method using a thin probe that passes through canopy (Wilson, 1960) or 

noncontact optical techniques such as hemispherical photos (HP), radiation measurement 

devices (e.g. DEMON, ceptometers, LAI-2000 and TRAC), and ground-based laser 

technology (Bréda, 2003; Jonckheere et al., 2004; Jupp et al., 2009; Zhao et al., 2012). 

The point quadrat method is impractical in forest stands because of the tall stature of trees 

and the high density of leaves (Chen et al., 1997). Indirect noncontact optical methods are 

quick, low-cost and more commonly used.  

Ground-based measurements of vertical foliage profiles date back to early work, 

including stratified clipping and inversion of leaf contact frequency measured by point 

quadrats or a camera with telephoto lens (Aber, 1979; MacArthur & Horn, 1969). 

Vertical foliage profile has also been obtained by taking LAI measurements using 

hemispherical photography acquired from a crane gondola with increasing canopy height 

(S. B. Weiss, 2000). All these early methods are time-consuming, inconvenient and 

sometimes impractical. Recent ground-based active optical methods with terrestrial laser 

scanners (TLS) have demonstrated great potential to measure gap probability with 

canopy height from lidar range in 3-D space, and thus can retrieve vertical foliage profile 

readily and accurately (Béland et al., 2011; Calders, Armston, et al., 2014; Jupp et al., 

2009; Zhao et al., 2011).  
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However, gap probability measurements by these optical methods to measure LAI 

or vertical foliage profile typically include both leaves and woody materials, and thus 

actually measure plant area index (PAI, leaves and woody materials) and its vertical 

profile. The contribution of woody material to LAI measurements is usually removed 

with an empirical woody-to-total ratio. Kucharik et al. (1998) found the nonrandom 

positioning of branches/stems with regard to leaves causes inaccurate LAI with this 

simple ratio correction, especially when branches/stems are not preferentially shaded by 

leaves. They removed the woody contribution directly with a Multiband Vegetation 

Imager. But this approach cannot correct vertical foliage profiles to remove the woody 

contribution. The separation of leaves from woody materials in 3-D space is needed to 

remove the woody contribution to vertical foliage profiles derived from gap probability 

measurements.  

Moreover, the separation between leaves and woody materials in 3-D will also 

improve the simulation and inversion of ecophysiological and 3-D radiative transfer 

models. Kobayashi et al. (2012) found the effect of woody elements on energy balance 

simulation in ecophysiological modeling is not negligible for a heterogeneous landscape 

because of the radiation absorption and heat storage by woody elements. Some studies 

have also shown that the explicit inclusion of woody elements in the 3-D radiative 

transfer models improves canopy reflectance modeling and thus model inversion to 

estimate both biophysical (Malenovský et al., 2008) and biochemical variables (Verrelst 

et al., 2010) at high resolution.  
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Three-dimensional scans of forests by terrestrial lidar capture provide the 

potential of separating leaves from woody materials. However, currently there are only a 

few studies on the classification of leaves and woody materials in 3-D space. Béland et 

al. (2014) separated leaves and woody materials using lidar return intensities from a 

discrete TLS operating in the shortwave infrared (1535 nm – 1550 nm), where leaf and 

woody reflectance are significantly different. Yang et al. (2013) used lidar return pulse 

shapes from a full-waveform TLS for classification. However, the compound effects of 

reflectance, size and orientation of targets may generate similar return intensities or 

return pulse shapes from different target classes. For example, a large leaf fully 

intercepting the laser beam orthogonally would give the same return intensity as a woody 

surface that is half the size of the leaf but twice as reflective, if intercepting the laser 

beam orthogonally at the same range. Also, a trunk edge intercepting a laser beam at an 

oblique angle can give a similar return pulse shape as a leaf cluster (Yang et al., 2013).  

To address the challenge to the classification of leaves and woody materials from 

3-D lidar scanning data posed by the compound effects of reflectance, size and, 

orientation of targets, we built the Dual-Wavelength Echidna Lidar (DWEL), a terrestrial 

lidar that acquires full-waveform scans at both near-infrared (NIR, 1064 nm) and 

shortwave infrared (SWIR, 1548 nm) wavelengths with simultaneous laser pulses 

(Douglas et al., 2015). The difference in return signals at the two wavelengths from a 

target is theoretically only affected by the difference in its reflectance at the two 

wavelengths and thus provides a way to resolve the classification challenge posed by 

optical and geometric properties of targets.  
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This study tested the ability to separate leaves from woody materials in 3-D space 

and derive separate leaf and woody area profiles using novel dual-wavelength scans of a 

midlatitude forest site by DWEL in both leaf-off and leaf-on conditions. To carry out this 

objective, we first developed a 3-D classification approach using both spectral and 

geometrical information from the dual-wavelength lidar data, and assessed our 

classification in 3-D space with an indirect classification accuracy assessment procedure. 

Next we derived separate leaf and woody area profiles from both leaf-off and leaf-on 

scans. Lastly, we assessed the error sources of the 3-D classification and the implications 

of the separation of leaf and woody profiles.  

3.2 The Dual-Wavelength Echidna Lidar 

The Dual-Wavelength Echidna Lidar (DWEL), based on the design of the 

Echidna Validation Instrument (EVI) built by Australia‟s Commonwealth Scientific and 

Industrial Research Organization (CSIRO) (Jupp et al., 2005; Parkin et al., 2001), uses 

two pulsed lasers and acquires full-waveform scans at both near-infrared (NIR, 1064 nm) 

and shortwave infrared (SWIR, 1548 nm) wavelengths with simultaneous laser pulses 

(Douglas et al., 2015). DWEL uses a rapidly rotating zenithal scan mirror and a slowly 

rotating azimuth platform to provide full coverage of the angular scan space. Each 

rotation of the scan mirror directs the laser beam through 360°; returns from the 

environment are acquired at zenith angles from –117° to +117° (234° extent), while 

returns from the instrument housing, used for calibration, are acquired as the laser beam 

passes through angles of +117° to –117° (126° extent). For azimuth, the instrument 

platform rotates through 180°, thus providing a complete spherical scan. The scanning 
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resolution was set 2 mrad with slightly larger beam divergence, 2.5 mrad to ensure 

continuous coverage of the hemispheres for the scans used in this study. DWEL detects 

and digitizes the return signal at 2 GHz, i.e. every half nanosecond, and records the 

returns as full waveforms from a range up to 70 m. It samples return waveforms at the 

pulse repetition rate (PRF) of 2 KHz. 

3.3 Study Area and Data 

For this study, we established a 100-m-by-100-m deciduous forest site (N 42° 31′ 

51.48″, W 72° 10′ 55.56″) at Harvard Forest in central Massachusetts, USA. This 

generally flat 1-ha site is dominated by red maple (Acer rubrum), red oak (Quercus 

rubra) and white birch (Betula papyrifera), with an understory of these species 

accompanied by American beech (Fagus grandifolia), American chestnut (Castanea 

dentata) and others. A few large white pines (Pinus strobus) and several hemlocks 

(Tsuga canadensis) are also present within the plot. At five circular plots of 20-m radius 

(Figure 3-1), we collected biometric data including diameter at breast height (DBH), 

species, location (range and compass azimuth from the circular plot center), and crown 

position. For a subsample of trees, we also acquired tree heights, crown diameters at two 

orthogonal dimensions, and crown heights. In data of September 2014, the average stem 

density at this site was 769 trees ha
-1 

and the basal area was around 38.5 m
2
 ha

-1
. The 

average tree height of sampled trees at this site was 20.3 m and the average crown 

diameter was 8.7 m.  

We scanned the forest site with the Dual-Wavelength Echidna Lidar (DWEL) at 

five scan locations (Figure 3-1) with the deciduous trees in both leaf-off (May 3rd 2014) 



 

 

73 

and leaf-on (Sept 19th 2014) conditions. The wind speed on both scanning days was low 

with some light leaf motion at the canopy top. DWEL waveform data of each collected 

scan were processed and calibrated to two point clouds of apparent reflectance (    ) at 

the two wavelengths (see Chapter 2).  

We measured effective plant area index and the clumping index with a TRAC 

instrument (Chen & Cihlar, 1995) along two 100-m transects through the site center in 

the leaf-off season, but on different days from the DWEL scanning dates due to the 

availability of the TRAC instrument. On the same dates as DWEL scanning, we also took 

hemispherical photos at the plot centers and scan locations, as well as at 10-m intervals 

along the two TRAC transects. The hemispherical photos provided plant area index 

measurements (including both leaves and woody materials) and indirect comparison with 

DWEL scanning images for classification accuracy assessments. In June 2014, between 

leaf-off and leaf-on scanning, we collected spectral measurements of green-leaf and bark 

samples of dominant tree species at the site with an ASD FieldSpec spectrometer and 

plant probe.  

 

Figure 3-1. DWEL scans were collected at the five solid triangles. Tree measurements were collected at circular 

plots centered at the four dots and the center triangle. The dashed circles represent the coverage of each tree 

measurement plot. 
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3.4 Methodology 

3.4.1 Classification of dual-wavelength point clouds 

3.4.1.1 Generation of dual-wavelength point clouds of forests 

Two point clouds of apparent reflectance (    ) at the two wavelengths from a 

single DWEL scan were merged together to provide dual-wavelength      values for 

each point. This procedure first identified two types of points: matched points between 

NIR and SWIR point clouds and unmatched points. Here, matched points have return 

signals at both NIR and SWIR wavelengths, while unmatched points only have return 

signals at one wavelength but not the other. Unmatched points may arise in four 

situations:  

1. A target has much lower reflectance at one wavelength than the other, and it 

generates a return signal that is not detected by the instrument at one wavelength 

but detected at the other. This is the most common cause of unmatched points.  

2. The return signal is lost in random transient electronic noise at one wavelength, 

but not at the other.  

3. The laser beam at one wavelength sees the edge of a target at far range but the 

other laser misses the edge due to a slight misalignment between the two laser 

beams.  

4. A noise signal at one wavelength is erroneously taken as a return signal, while the 

noise at the other wavelength is correctly removed or does not occur. Our 
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waveform preprocessing uses aggressive criteria to eliminate noise points in the 

generation of point clouds, and this cause is the least common.  

The reflectance information at a single wavelength from unmatched points is still 

helpful for the classification of leaves and woody materials and the sounding of the forest 

canopy, even though unmatched hits lack information from the second wavelength. To 

add this information and provide a point cloud with bispectral information for each point, 

we synthesize      in the missing wavelength based on the reflectance information from 

matched points in the same laser shot or neighboring laser shots. This synthesis of      at 

the signal-missing wavelength uses two assumptions: (1) all targets sensed by an 

individual laser beam are of the same material and therefore share similar reflectance 

values in the two wavelengths; and (2) laser shots close to each other see a similar 

composition of targets.  

The procedure for merging the two point clouds into a single, dual-wavelength 

point cloud utilizes the following steps.  

S1. Search for matching points in NIR and SWIR point clouds by comparing 

the laser shot numbers and ranges of points at the two wavelengths. If two 

points from the two wavelengths have the same laser shot number and 

their range difference is less than a given threshold, they are matched. 

Their coordinates are averaged and output as a single point with dual-

wavelength      values. Otherwise, points are identified as unmatched.  

S2. For unmatched points, synthesize the      value at the missing 

wavelength using the normalized difference index (NDI) value of the laser 



 

 

76 

shot containing the point. The NDI of the laser shot is defined by equation 

3-1, where     
    and     

     are average apparent reflectance values at NIR 

and SWIR wavelength of points in the laser shot. If the shot already 

contains one or more matched points between the two wavelengths, the 

NDI of the laser shot is calculated from average apparent reflectance 

values of those matched points. Otherwise, the NDI of the laser shot is 

interpolated from five closest neighboring shots. Given the NDI, equation 

3-1 is solved for the missing apparent reflectance. 

     
    
        

    

    
        

    
 3-1 

3.4.1.2 Synergistic use of spectral information and spatial context for classification 

We used both spectral information from NIR and SWIR apparent reflectance and 

spatial context information given by the 3-D spatial distribution pattern of each point and 

its neighbors to classify points into leaves and woody materials. Our unsupervised 

spectral classifier, the K-means clustering algorithm implemented in Scikit-learn package 

(Pedregosa et al., 2011), first divided all points into 100 clusters using three variables: 

apparent reflectance values at the two wavelengths and the normalized difference index 

value. Each cluster was viewed interactively with a 3-D display program and labeled as 

composed of leaf points, woody points, or mixed points including both leafy and woody 

hits. Points in mixed point clusters were further classified using the spatial context 

information of the point and surrounding points according to multiscale dimensionality 

criteria, described further below (Brodu & Lague, 2012).  
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While the spectral information has the capacity to classify many points of leaves 

and woody materials using the contrast in spectral reflectance between NIR and SWIR 

returns, leaves and woody materials may sometimes be confused for a number of reasons, 

of which four are identified below.  

1. Some leaves and woody materials may show an atypical contrast between 

NIR and SWIR apparent reflectance, depending on water content. For 

example, some young stems or newly-grown branches may have thin or 

green bark with a higher water content; or unhealthy or senescent leaves 

may have a lower water content.  

2. Many tree trunks at our study site exhibit lichens growing on bark 

surfaces. Arboreal lichens are typically moist, and their SWIR absorption 

can produce a leaf-like signal for a trunk point.  

3. Error in the calibration of raw lidar return intensities to apparent 

reflectance may reduce the contrast in NIR and SWIR apparent 

reflectance, leading to classification of a point into a mixed cluster.  

4. Laser beam misalignment can cause the two laser beams to have slightly 

different paths into the canopy and therefore interact with different 

mixtures of leafy and woody surfaces. Since leaves and wood have similar 

reflectance values in the NIR, this error will primarily affect SWIR 

apparent reflectance values and may lead to classification into a mixed 

cluster. As previously noted, misalignment at the edge of a leaf or branch 

may also produce a hit in one wavelength but not in the other. While the 
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alignment error is less than the scanning resolution (2 mrad for scans in 

this study), this type of confusion could happen for small targets at longer 

range.  

When the spectral information is not sufficient to correctly classify some points in 

the cases mentioned above, spatial context information can augment the classification. 

The spatial context of a point, given by the multi-scale dimensionality of the local point 

cloud, characterizes the local 3-D organization of the points within spheres of different 

diameters (scales) centered on the point of concern; the spatial organization varies from 

1-D (points set along a line), to 2-D (points set on the surface of a plane), and 3-D (points 

located freely in a 3-D volume) (Brodu & Lague, 2012). Trunk, branch, and ground 

surfaces produce 1- and 2-D organizations, while leaves in the canopy show a 3-D 

organization.  

While this technique works well for true woody points with equivocal spectral 

values located on or near larger branches or trunks, it may also increase the number of 

leaf hits within the canopy. For example, a fine branch point high in the canopy with a 

weak woody signal may be surrounded by a 3-D pattern of leaf points and thus classified 

as a leaf point based on spatial context, and we may anticipate some commission errors in 

leaf hit counts. 

3.4.1.3 Classification accuracy assessment 

Classification accuracy assessment generally calls for a reference data source of 

higher quality than data used to create the classification (Olofsson et al., 2014). However, 

currently there is no reference classification of points in 3-D of higher quality for our 



 

 

79 

study site. Accordingly, we developed an indirect approach to accuracy assessment of our 

3-D point classification using color hemispherical photos and manual photointerpretation 

selected according to a random stratified sample design. 

We first projected 3-D point clouds of dual-wavelength apparent reflectance and 

classification into a 2-D hemispherical projection of 2043 by 2043 pixels. The class label 

of a projection pixel (leaf or wood) is assigned as the mode of class labels of points 

projected into the pixel. The apparent reflectance value of a projection pixel is assigned 

as the average apparent reflectance value of points projected into the pixel. We set the 

view point of each hemispherical projection at a standard height so that the projection 

images from different scans collected at slightly different heights are directly 

comparable
2
.  

As our reference data, we used the true-color hemispherical photos taken at the 

same scan locations and the false-color projection images from DWEL scans as the 

reference data sources. We registered the hemispherical photos to the hemispherical 

projection images of the points with the ENVI registration module using identifiable 

branch forks and crossings in images as tie points. However, due to slight distortions in 

the photographic hemispherical projections, the registered hemispherical photos and 

projection images of points could not be aligned exactly together. Thus, visual 

interpretation using image context was required to give a reference label to each selected 

validation pixel. To reduce any possible bias in the labeling, we chose primary and 

                                                        
2
 The side effect is the hemispherical projection image produced in this way could have some artificial gap 

pixels if the height of scanning is different from the chosen height of the view point of the hemispherical 

projection. 
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secondary reference labels for each validation pixel. The primary validation label 

generated the best possible accuracy, while the secondary label generated the worst 

possible accuracy. The primary reference labeling always tried to follow the mapped 

class label unless we were very confident in a change of label to the other class (our 

classification is two-class). The secondary reference labeling always tried to change the 

mapped class label unless we were very confident in retaining the class label.  

We selected validation sample pixels for each scan using stratified random 

sampling with the DWEL-labeled classes as strata, and then merged validation samples 

from the five scans of the site together to generate the classification error matrix. The 

total sample size for five scans together was determined according to Olofsson et al. 

(2014, 2013) with expected user‟s accuracy of the two classes and targeted standard error 

of overall accuracy estimates (Table 3-1). The allocation of samples to each strata of 

classes followed the recommendation by Olofsson et al. (2014) to balance the standard 

errors of user‟s accuracy estimates for rare classes and overall accuracy estimates. In this 

procedure, 75 samples of the total were allocated to the rare class in two-class 

classification. Here, leaf was considered the rare class in the leaf-off classification while 

wood was considered the rare class in the leaf-on classification.  

Table 3-1. Design of validation sample (projection pixel) size 

Scanning 

season 

Expected  ̂ 
1 Targeted 

 ( ̂)2 

Total 

sample size 

Sample allocation 

Leaf Wood Leaf Wood 

Leaf-off 0.6 0.8 0.02 416 75 341 

Leaf-on 0.8 0.6 0.02 454 379 75 

1: user‟s accuracy for the i-th class 

2: standard error of overall accuracy estimate 
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Our goal was to establish the accuracy of the label of each point; however, our 

validation label applied to each projection pixel, not to each point. To overcome this 

problem, we first obtained a classification error matrix by comparing the validation label 

to the modal value of the classified points within the projected pixel. We then converted 

it to an error matrix in number of points based on a simple enumeration approach 

considering all possible distributions of individual point labels that would provide a mode 

matching the observed label (see Appendix A.3 for a more detailed description). Finally, 

to establish the range of accuracies, we compared outcomes using primary and secondary 

validation labels.  

3.4.2 Estimation of leaf and woody area profiles 

Most indirect measurements of leaf area index (LAI) and leaf area volume density 

(LAVD) rely on gap probability with height or range, the probability that a light beam or 

a thin probe penetrating the canopy will have no contact with a vegetative element as 

height or range increases (M. Weiss et al., 2004). The LAI and LAVD are related to gap 

probability as (Jupp et al., 2009; Miller, 1967): 

 

                              

     ∫         
 

  

 

      ∫
    (         )
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In these equations,           is the gap probability in the direction of zenith 

angle   from height    where the measurements are taken (usually ground) up to canopy 

height  . The function      is the Ross G-function (Ross, 1981), which describes the 

mean projection of a unit area of vegetative elements in the direction  . The variable 

     is the clumping index, which is determined by the nonrandomness of leaf spatial 

distribution (Chen & Cihlar, 1995) and describes the extent to which LAI retrieved using 

a random model of leaf placement (usually termed effective LAI, LAIe) differs from the 

true LAI (Zhao et al., 2012). The variable      is the LAI up to the canopy height  . The 

function      is the vertical profile of LAVD, or the horizontally averaged LAVD as a 

function of canopy height  .  

Although the above equations are formulated in terms of leaf area index and leaf 

area volume density, most optical methods measure gap probability of all vegetative 

elements without differentiating leaves and woody materials; that is, plant area index 

(PAI), including both leaves and woody materials, is actually measured. LAI is then 

calculated from PAI using an empirical woody-to-total ratio usually obtained by 

destructive sampling, either for a given site or more generically for a particular vegetation 

type.  

Classification of leaves and woody materials in 3-D with dual-wavelength point 

clouds from DWEL enables measurements of the gap probabilities of leaves and woody 

materials separately, thus providing leaf area index and woody area index (WAI) directly 

without a woody-to-total ratio. Similar to the definition of LAI for cylindrical shaped 

leaves such as needles (Chen & Black, 1992), WAI is defined as one half the total surface 
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area (hemisurface area) of woody components per unit ground area (Kucharik et al., 

1998). Hereafter, we will use plant area index (PAI) to represent the total hemisurface 

area index of all vegetative elements including both leaf area index (LAI) and woody area 

index (WAI), i.e. PAI=LAI+WAI. We will use vegetation area index (VAI) to mean PAI, 

LAI, or WAI generally.  

3.4.2.1 Apparent reflectance and gap probability 

We calibrated DWEL lidar return intensities in digital counts at both wavelengths 

to apparent reflectance (    ) following the procedures in Chapter 2: 

         
       

       
 3-3 

In this equation,      is the lidar return intensity in digital counts from targets at 

range   and    is the instrument calibration constant. The telescope efficiency factor, 

    , is needed by geometric laser systems using a telescope to focus the return power 

(Halldórsson & Langerholc, 1978; Measures, 1991). It is theoretically zero at zero range 

(the focal point of the telescope) and rises to unity at the range at which the focused 

return beam falls entirely within the detector. The exponent of range, b, describes the 

decrease of return intensity over range. While b is theoretically 2 for a diffuse target, the 

exponent of range can deviate from 2 due to anisotropy of actual targets and electronic 

effects, and has been taken as a parameter that is estimated by our calibration procedure.  

The apparent reflectance,     , can be interpreted as the equivalent reflectance of 

a diffuse and partially-absorbing panel filling the laser beam perpendicularly that would 

return the same intensity as the actual target. For      averaged over all azimuths for a 
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small range of zenith angles (a zenith ring), we identified the following computable 

quantity         (Jupp et al., 2009): 

           
 

  
∫              

 

 

 3-4 

where    is the normal reflectance of a vegetative facet and    provides a range-

based measure of the stepwise reduction in the power of outgoing laser beam (Jupp et al., 

2009). The measure    will equal the      if all illuminated facets are diffuse and 

perpendicular to the laser beam. If not, which is the usual case,    needs to be scaled to 

remove the effect represented by the so-called canopy “phase function” (Jupp et al., 

2009) to give     . The canopy phase function describes the interaction between 

bidirectional reflectance and the angular distribution of vegetative facets. We scaled    so 

that        for targets that fully intercept a laser beam perpendicularly and        

for pure sky laser shots.  

Given two lasers and two types of hits, four different         functions were 

derivable from the point clouds (Figure 3-2).The four         functions estimated were  

    
     

 and     
      

 for leaves and      
     

 and     
      

 for woody materials. For the 

normal reflectance    at NIR and SWIR wavelengths, we used reflectance values 

measured by an ASD FieldSpec VNIR spectrometer with plant probe and averaged for 

the two dominant tree species at our site, red maple and red oak (Table 3-2). 
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Figure 3-2. Scheme of four estimates of gap probability brought by leaves and woody materials from apparent 

reflectance at the two wavelengths. 

 

Table 3-2. Normal reflectance of vegetative elements in      estimation. 

Vegetative 

element 

NIR reflectance SWIR reflectance 

Mean SD Mean SD 

Green leaf 0.413 0.036 0.284 0.023 

Trunk surface 0.541 0.126 0.540 0.033 

 

3.4.2.2 Leaf and woody area profiles 

The four         functions, estimated as above, provided four vegetation area 

profiles. However, we found that the profiles for the NIR and SWIR wavelengths were 

virtually identical (see Section 3.5.2) and thus averaged them to derive LAI and WAI 
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profiles independent of wavelength. To estimate effective LAI (LAIe) and WAIe, we 

used a linear regression method from gap probability out of the canopy top (height  ) in 

multiple view directions (zenith rings) (Jupp et al., 2009; Zhao et al., 2011). This method 

is derived using a simple model for the Ross G-function, and thus the LAI can be 

regarded as largely corrected for leaf angle effects. For simplicity, we use   for both leaf 

area and woody area in the equations below:  
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A solid-angle-weighted averaging approach was suggested by Jupp et al. (2009) 

to estimate the vertical profile of LAVD: 

 

    

   
 

         ̅   

         ̅   
 

        
 

  
(
         ̅   

         ̅   
) 
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In these equations, the notation  ̅ means the ratio of the logarithms has been 

averaged over zenith ranges weighted by solid angle size, rather than a mean angle.  

Because the ratio provides a means to obtain a profile largely independent of clumping 

(Jupp et al., 2009), a true LAI value applied to equation 3-6 gives true leaf area profile, 

while an effective LAI value gives an effective leaf area profile. Here we used an 

effective vegetation area index (LAIe or WAIe), so that our following investigation of 

mutual occlusion between leaves and woody materials avoids the complication brought 
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by potentially different clumping indexes for leaves, woody materials, and all vegetative 

elements considered together. 

Estimating LAIe and WAIe independently assumes no mutual occlusion between 

leaves and woody materials. However, a simple analysis can determine the possible 

extent of such occlusion, given leaf-off and leaf-on scans. For leaf-off scans, no mutual 

occlusion is a reasonable assumption; leaf hits are a small proportion of the total and 

most are hits of evergreen white pine branchlets that are clustered at twig tips. For leaf-on 

scans, leaves will occlude many branches and stems, while few stems and branches will 

occlude leaves. A reasonable assumption is thus that occlusion of leaves by woody 

materials is zero, but the woody materials will be significantly occluded. If we assume 

that the true woody plant area remains the same in leaf-on condition as in leaf-off 

condition, the difference in two observed woody areas will estimate the proportion of 

woody materials occluded by leaves in the leaf-on scan.  

For a robust linear regression between      and               to estimate    

and    (equation 3-5), gap probability to the canopy top,          , from a sufficient 

number of zenith rings is required. However, our current scans were not able to provide 

zenith rings of      to the canopy top beyond about a 35° zenith angle because of limited 

measurement range due to insufficient laser power and high signal noise. To overcome 

this shortage of current DWEL data while taking advantage of range-based leaf-woody 

separation, we extracted PAIe for the whole study site from the hemispherical photos 

using CAN-EYE software (M. Weiss & Baret, 2013) and split PAIe to LAIe and WAIe 
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according to a wood-to-leaf ratio   estimated from each DWEL scan in the following 

way: 

 

  
       

   ̅   

       
   ̅   
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 The notation  ̅ in the first equation here has the same meaning as that in the 

equation 3-6. Note that the calculation of wood-to-leaf ratio   assumes leaves and woody 

materials have the same G-function; while somewhat restrictive, this assumption is 

probably better than accepting a value from the literature in the absence of destructive 

sampling. We then substituted LAIe and WAIe in equation 3-6 to derive the vertical 

profiles of effective LAVD and WAVD from the corresponding gap probability 

functions,     
  and     

 , to obtain   
     and   

    . The sum of   
     and   

     gave 

  
    , the vertical profile of effective plant area volume density (PAVD).  

3.4.2.3 Variance of leaf, woody and plant area profiles 

We examined the variance of leaf, woody and plant area profiles,   
    ,   

     

and   
     from two sources: classification error and heterogeneity of canopy structure at 

the study site.  

For variance from the classification error, we generated 1000 resamples of the 

classification of dual-wavelength point clouds from five scans in each season (leaf-off, 

leaf-on) based on the classification user‟s accuracy (see Appendix A.4 about the 
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resampling procedure of a point cloud classification). These resamples of classification 

then resulted in 1000 profiles of   
    ,   

     and   
    . We calculated the variance of 

these profiles as the variance in the vegetation area profiles due to classification error.  

For variance from the heterogeneity of canopy structure at the study site, we 

calculated the variance of the five sets of vegetation area profiles from the five scan 

locations at the site for each season.  

3.5 Results 

3.5.1 Classification of dual-wavelength point clouds 

Figure 3-3 shows the color-composite images of apparent reflectance and 

classifications in hemispherical projections along with the registered hemispherical 

photos for both leaf-off (left column) and leaf-on (right column) seasons from the center 

plot. In the color composite images (first row of Figure 3-3), leaves show green colors, 

while trunks and big branches show a spectrum of greenish-yellow, yellow, and brown 

colors. Hemispherical photos are in true color; in the classified images, woody points are 

red, while leaf points are green.  

Five zoom-in areas (Figure 3-4) of the color composite, classification, and 

hemispherical photos demonstrate several classification challenges, as well as the 

strengths of our classification approach. Figure 3-4(A) demonstrates the ability of the 

spectral information to pick out the evergreen canopies of two white pine trees, which are 

clearly visible in the classification image.  
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Figure 3-3. Center plot in leaf-off (left column) and leaf-on (right column) seasons. First row: hemispherical 

projection of color-composite apparent reflectance from dual-wavelength point clouds, red by NIR     , green 

by SWIR      and blue by dark constant. Second row: hemispherical photos registered to DWEL hemispherical 

projection. Third row: hemispherical projection of classification of point clouds. 
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Figure 3-4(B) shows fine branches with dark green colors in the leaf-off color-

composite image. These dark-green branches appear at the far-range canopy top; they are 

most likely caused by laser beam misalignment, which reduces the SWIR return from 

their hits. The synergistic use of spectral and shape information classified some fine 

branches correctly, but left some fine branches labeled as leaves, especially in the area 

around the zenith point.  

In the leaf-on image, Figure 3-4(C) shows a dark yellowish leafy branch quite 

close to the lidar arcing across the image from upper left to lower right. The yellow color 

of the leafy branch, which probably arises from near-field calibration variance, produced 

leaf points that were first mixed in clusters with woody materials by K-means spectral 

clustering. These points were then separated from woody materials by shape information 

and nearly all were labeled correctly in the classification. Above and to the right of the 

branch is a dark virtual shadow, caused by the reprojection of the lidar image to match 

the height of the camera. In this dark region, the hemispherical photo may record leaves 

or branches which are unseen by the lidar. However, these pixels of virtual shadow were 

not included in the accuracy assessment.  

Figure 3-4(D) shows some branches cut into sections inside the canopy due to 

occlusion by leaves. They were identified by spectral information, but it was difficult to 

tell if they were all true branches in our accuracy assessment. Figure 3-4(E) shows some 

greenish small stems and branches, probably due higher water content than normal 

woody materials. These were mixed in clusters with leaves by K-means spectral 
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clustering, but were then separated out by shape information. However, a few fragments 

and edges of these stems and branches were misclassified as leaves. 

     

     

     

(A) leaf-off (B) leaf-off (C) leaf-on (D) leaf-on (E) leaf-on 

Figure 3-4. Five zoom-in areas of the color-composite, classification and hemispherical photos of center plot 

shown in Figure 3-3. 

Table 3-3 and Table 3-4 show the error matrices and accuracies (user‟s, 

producer‟s and overall) of the classifications of five scans together for leaf-off and leaf-

on seasons respectively. The first two error matrices in each table are from the primary 

and secondary reference labels, giving the best and worst accuracy estimates respectively. 

The third error matrix in each table gives the average accuracies. The leaf-off overall 

classification accuracy, ranging from 0.70 ± 0.02 to 0.88 ± 0.01 with the average 0.79 ± 

0.01, is slightly better than leaf-on, which ranges from 0.70 ± 0.02 to 0.81 ± 0.01 with the 

average 0.75 ± 0.02.  
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The leaf-off season classification shows both high user‟s and producer‟s accuracy 

for woody materials, but low values for leaves. The low user‟s accuracy suggests a large 

commission error in the leaf classification of leaf-off scans caused by misclassification of 

fine branches as leaves. The smaller omission error than commission error of leaf 

classification in leaf-off scans, suggested by the producer‟s accuracy being higher than 

the user‟s accuracy, implies that the classification of leaf-off scans overestimates the 

number of leaf points, or conversely underestimates the number of woody points. The 

main reason for misclassification of fine branches, particularly at far ranges at the canopy 

top, appears to be the misalignment of the two laser beams, even though the 

misalignment is smaller than scanning resolution.  

Table 3-3. Error matrix in number of points, classification of five leaf-off point clouds. 

Class Wood Leaf Total User‟s
1 

Producer‟s
1 

Overall
1 

Primary reference label: best possible accuracy 

Wood 428 20 448 0.96 ± 0.01 0.88 ± 0.01 0.88 ± 0.01 

Leaf 57 109 166 0.66 ± 0.04 0.85 ± 0.06  

Total 485 129 614    

Secondary reference label: worst possible accuracy 

Wood 385 63 448 0.86 ± 0.02 0.76 ± 0.01 0.70 ± 0.02 

Leaf 120 46 166 0.28 ± 0.04 0.42 ± 0.05  

Total 506 108 614    

Average error matrix from the primary and secondary 

Wood 407 41 448 0.91 ± 0.01 0.82 ± 0.01 0.79 ± 0.01 

Leaf 89 77 166 0.47 ± 0.04 0.65 ± 0.06  

Total 495 119 614    
1Standard error of classification accuracy was calculated according to (Olofsson et al., 2014) with the proportions of 

number of points in mapped leaves (0.120) and woody materials (0.880). 

The leaf-on season classification shows similar user‟s accuracy for woody 

materials and leaves (around 0.75). But woody materials show much lower producer‟s 

accuracy than user‟s accuracy, i.e. larger omission error and smaller commission error, 
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which implies the classification of leaf-on scans underestimates the number of woody 

points, or conversely overestimates the number of leaf points.  

The fine branches misclassified as leaves in leaf-off scans (Figure 3-4(B)) were 

rare in leaf-on scans because they were mostly occluded by leaves. However, the 

classification of leaf-off scans did not see as many parts of green stems and branches 

misclassified into leaves as seen by leaf-on scans (Figure 3-4(E)). There are two possible 

reasons for the change of classification of those stems and branches. First, higher water 

content in small stems and branches and moister lichens on trunk surfaces in leaf-on 

season than leaf-off season may lead to more misclassification of these woody materials 

by spectral information. Measurements of spectra of the same trunk/stem spots in leaf-off 

and leaf-on seasons are needed to confirm such changes in water content. Second, stems 

and branches are less obscured in the leaf-off scans and spatial context information may 

correct more of misclassified stems and branches in that point cloud. 

Table 3-4. Error matrix in number of points, classification of five leaf-on point clouds. 

Class Wood Leaf Total User‟s
1 

Producer‟s
1 

Overall
1 

Primary reference label: best possible accuracy 

Wood 91 29 120 0.76 ± 0.04 0.38 ± 0.02 0.81 ± 0.01 

Leaf 147 656 803 0.82 ± 0.01 0.96 ± 0.01  

Total 238 685 923    

Secondary reference label: worst possible accuracy 

Wood 85 35 120 0.71 ± 0.04 0.26 ± 0.02 0.70 ± 0.02 

Leaf 245 558 803 0.70 ± 0.02 0.94 ± 0.02  

Total 330 593 923    

Average error matrix from the primary and secondary 

Wood 88 32 120 0.73 ± 0.04 0.31 ± 0.02 0.75 ± 0.02 

Leaf 196 607 803 0.76 ± 0.02 0.95 ± 0.01  

Total 284 639 923    
1Standard error of classification accuracy was calculated according to (Olofsson et al., 2014) with the proportions of 

number of points in mapped leaves (0.770) and woody materials (0.230).  
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3.5.2 Estimation of leaf, woody and plant area profiles 

Figure 3-5 shows the equal-angle Andrieu projection images of the gap 

probability estimates at far range brought by leaves and woody materials separately in the 

center plot in leaf-off and leaf-on seasons. The separation between leaves and woody 

materials (also including ground and any non-leaf targets) is good by visual inspection. 

The change of gap probability brought about by leaves and woody materials from leaf-off 

season to leaf-on season is clear.  

Table 3-5 provides values for LAIe, WAIe, and PAIe. PAIe values are 1.11 for 

the leaf-off season and 3.42 for the leaf-on season. As noted previously, PAIe values are 

from hemispherical photos and applied to LAIe and WAIe proportions. Leaf-on PAIe is 

close to the estimates by a previous study at the same site using hemispherical photos 

(3.46±0.46) (Zhao et al., 2011), There are no prior estimates of leaf-off PAIe, but 

estimates from both hemispherical photos and the TRAC instrument are consistent with 

each other. 

The table also shows that band-averaged WAIe changed from 0.863 in the leaf-off 

season to 0.307 in the leaf-on season. As previously noted, leaf-on WAIe is an apparent 

value because branches and stems are occluded by leaves, while our estimate does not 

account for mutual occlusion. The difference in WAIe from leaf-off season cited above 

suggests that about 65 percent of the WAIe is occluded by leaves at our study site. 
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Figure 3-5. Gap probability at far range for woody materials (Part A) and leaves (Part B) separately from the 

scans at the center plot, in equal-angle Andrieu projection with X dimension as azimuth angles from 0° to 360° 

and Y dimension as zenith angles from 0° to 117°. Gap probability was calculated from NIR data. Row 1: Leaf-

off season. Row 2: Leaf-on season. Red:     
   , totally attenuated by woody materials. Green:     

   , 

totally attenuated by leaves. White:     
    or     

   , no attenuation by woody materials in pair A or leaves 

in pair B. Blue (scattered, sparse): partial gap by woody materials in pair A or leaves in pair B. Black: No data 

(largely solar aureole). 
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Table 3-5. LAIe, WAIe and PAIe from NIR and SWIR data in leaf-off and leaf-on seasons. 

Vegetation component NIR SWIR Band average 

Leaf-off season    

LAIe 0.249 0.245 0.247 

WAIe 0.861 0.865 0.863 

PAIe 1.11 1.11 1.11 

Leaf-on season    

LAIe 3.111 3.115 3.113 

WAIe 0.309 0.305 0.307 

PAIe 3.42 3.42 3.42 

 

The leaf, woody, and plant area profiles from NIR and SWIR data for leaf-off and 

leaf-on seasons are shown in Figure 3-6. For the leaf-off season, cumulative effective 

vegetation index area curves increase quite smoothly to about 20 m, where the canopy 

begins to thin as dominants emerge at the canopy top. The vegetation area volume 

density curves are also more-or-less uniform with height; the peaks between 5 and 10 m 

are largely due to some close large trunks at the north and south scan points. In the leaf-

on season graphs, the cumulative VAIe profiles show more variable structure and gently 

curve, indicating more variation with height and a slow decrease in the progressive 

accumulation of vegetation area. The woody area volume density curve is relatively 

constant with height, while the leaf area volume density peaks at about 5–7 m due to 

close leafy vegetation at the north site. With some variance, leaf and plant area volume 

density remain high through about 15 m, where LAVD and PAVD decreases steadily to 

the top of the canopy, at about 25 m. Some of this decrease may be due to weak or 

lacking returns at higher zenith angles produced by insufficient laser power.   
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Figure 3-6. Vertical profiles of vegetation area index (cumulative VAVD, Column A) and vegetation area volume 

density (VAVD, Column B) averaged from five scans. Row 1: Leaf-off season. Row 2: Leaf-on season. NIR and 

SWIR curves are very close and are not visibly separated in many lines. 

Table 3-5 and Figure 3-6 also show that NIR and SWIR curves are very close. 

Accordingly, we will present and interpret in the following only NIR data for simplicity; 

Appendix A.5 presents corresponding SWIR graphs and tables. 

The woody-to-total ratios along canopy heights from VAVD and VAI show 

variation in both leaf-off (Figure 3-7(A)) and leaf-on conditions (Figure 3-7(B)). In the 

leaf-off condition, woody-to-total ratios (WAVD to PAVD) are stable around 0.8 from 8 

m to 18 m with some variation. Above 18 m, the woody-to-total ratio of WAVD to 

PAVD decreases with canopy height. This is likely to be an artificial decrease due to 

misclassification of fine branches at far ranges in the high canopy either by laser 
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misalignment or by their volume-like spatial pattern similar to leaf clusters. In the leaf-on 

condition, the woody-to-total ratio stays stable around 0.1 above 5 m with some variation. 

 
(A) 

 
(B) 

Figure 3-7. Woody-to-total ratio profile along canopy heights. (A) ratios from leaf-off scans; (B) ratios from leaf-

on scans. Ratios from PAIe or PAVD smaller than 0.001 are removed to avoid extremely large values due to 

numerical errors in the ratio calculation.  

At heights below 5 m, the initial increase in woody-to-total ratios in the leaf-off 

scans and decrease in the leaf-on scans are effects of the field procedure for locating scan 

points. To avoid excessive occlusion from large trunks or shrub branches, the exact 

instrument position is moved away from such obstacles before scanning. This creates a 

bias in observations in which leaf points are reduced around and above the instrument. 

The profiles are thus obtained from points within an upward-opening cone of 35° half-

angle from which the 0–10° zenith ring is omitted. Just above the instrument, the small 

volume of this cone changes little with season and the few initial points there remain in 

the same proportion of wood, about 0.4. In the leaf-off season, the cone volume rapidly 

acquires additional woody hits with height, while in the leaf-on season, additional leaf 

hits are acquired. By about 5 m height, this initial bias disappears.  
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Resampling of classifications (see Section 3.4.2.3) shows that the variance in 

vegetation profiles at each scan location (within-scan variances) due to classification 

error is very small for both leaf-off scans (Figure 3-8) and leaf-on scans (Figure 3-9). In 

contrast, the variance in vegetation profiles between scan locations (between-scan 

variances) is much larger (Figure 3-10), which suggests that the heterogeneity of canopy 

structure across the site dominates the variance in estimating vegetation profiles of the 

site. Because we used a single averaged PAIe that was split into LAIe and WAIe for the 

five scans, the variance in vegetation profiles does not include the heterogeneity in the 

total leaf, woody and plant area at different locations across the site. Instead, the variance 

describes the heterogeneity in the proportions of leaves and woody materials and the 

distributions of leaf, woody, and plant area with canopy height across the site. More scan 

locations can help improve the estimates of separate leaf and woody area profiles and 

better characterize the heterogeneity of leaf-versus-wood proportions and distribution of 

leaves and woody materials along canopy heights across the site.  

To further describe the variance in vegetation profiles, we normalized the 

between-scan variances in the profiles by the corresponding average vegetation area 

indexes (LAIe, WAIe and PAIe) (Figure 3-11). The quartiles and estimated probability 

density (by kernel density estimation) of the relative between-scan variances in 

vegetation profiles in the leaf-off season (Figure 3-11 (A1) & (B1)) show larger relative 

variances in leaf area profiles than woody area profiles and plant area profiles. In 

contrast, in the leaf-on season (Figure 3-11 (A2) & (B2)), the relative variances in leaf, 

woody and plant area profiles have similar shapes. 
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(A1) 

 
(B1) 

 
(A2) 

 
(B2) 

 
Figure 3-8. Variance in profiles due to classification error from each of the five leaf-off scans. Shaded area shows 

three standard deviations; for LAIe and WAIe and some of the LAVDe and WAVDe curves, shaded area is 

indistinguishable from graphic line width.  
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(A1) 

 
(B1) 

 
(A2) 

 
(B2) 

 
Figure 3-9. Variance in profiles due to classification error from each of the five leaf-on scans. Shaded area shows 

three standard deviations; for LAIe and WAIe and some of the LAVDe and WAVDe curves, shaded area is 

indistinguishable from graphic line width.  
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(A1) 

 
(B1) 

 
(A2) 

 
(B2) 

Figure 3-10. Variance in profiles due to heterogeneity of canopy structure across the study site, from NIR data. 

First row: leaf-off season. Second row: leaf-on season. Shaded area shows one standard deviation. 
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(A1) (B1) 

 
(A2) (B2) 

Figure 3-11. Violin box plots of variance (one standard deviation) in vegetation profiles due to heterogeneity of 

the study site, normalized by average vegetation area indexes. First row: leaf-off season. Second row: leaf-on 

season. Left column: cumulative VAVD (VAI up to a canopy height). Right column: VAVD. The dash line is the 

median. The dotted lines are 25 and 75 percentiles. The ends of the violin boxes show the minimum and 

maximum values. The widths of violin boxes show the probability density of the data from kernel density 

estimate.  

 

3.6 Discussion 

3.6.1 Point classification 

The synergistic use of spectral and spatial information yields good overall 

accuracy of point classification of leaves and woody materials in 3-D space (Table 3-3 

and Table 3-4), demonstrating the value of integrating spectral information with 3-D 

spatial locations through spectral lidar instruments like the DWEL. While the spectral 

contrasts at the NIR and SWIR wavelengths given by NDI for leaves and woody 
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materials are theoretically distinctive, using NDI alone is not sufficient to discriminate 

leaves and woody materials in point clouds in practice. The spectral reflectance of 

individual leaves and woody materials at the two wavelengths may show less distinct 

difference or even similarity due to complex variation in the properties of leaves and 

woody materials. For example, higher water content in small stems or lichen spots on 

stems could result in atypical woody materials with the dual-wavelength spectral 

reflectance values similar to typical leaves (Figure 3-4(E), first row). Conversely, lower 

water content in unhealthy or senescent leaves could results in the spectral reflectance 

values similar to typical woody materials. In addition, the difference in the NDI between 

leaves and woody materials may be further reduced by uncertainties in terrestrial laser 

scanning data, such as radiometric calibration error and laser alignment error (Figure 3-4, 

(B) & (C), first row).  

Given such variance, we turned to the unsupervised K-Means classifier to cluster 

the points in spectral measurement space and thus separate those points that were clearly 

the result of leaf hits and woody hits from points that were less spectrally definitive. 

Clusters were labeled by manual interpretation using color-composite images and the 

geometric shapes of point clusters, with clusters of mixed leaf and woody points then 

further processed using the multiscale dimensionality algorithm discussed in Section 

3.4.1.2. A disadvantage to unsupervised classification is that it must be repeated for each 

scan, and thus is not practical for large numbers of scans. Supervised classification 

provides an alternative that could be explored for future work, but still requires 

identification of training data that could vary significantly from scan to scan. An 
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intermediate method might be to label unsupervised clusters automatically based on 

spectral means and variances to identify homogeneous clusters of leaf and woody points 

and then pool the points in remaining clusters for input to the spatial classification step.  

The spatial context information given by the 3-D spatial distribution pattern of 

each point and its neighbors provided a needed second step to classify the points of 

mixed clusters as identified by the K-Means classifier. Points of stems and large branches 

have distinct spatial distribution pattern from points of leaf clusters, which resulted in 

good classification using spatial context information. However, points of fine branches 

surrounded by leaves inside canopies have a spatial distribution pattern similar to leaf 

points (Figure 3-4(B)). Using spatial context information can thus label fine branch 

points as leaves. In future work, these fine branches need to be identified through their 

spectral information rather than the spatial context information after the laser beam 

alignment is improved. It should also be noted that the computational cost of calculating 

multiscale dimensionality for spatial context information is quite high for the whole point 

cloud; reducing the number of points to be examined by prior spectral classification 

significantly reduces the computational time and cost.  

3.6.2 Accuracy assessment 

The accuracy assessment of point classification in 3-D space is challenging 

without high accuracy reference data. Our indirect accuracy assessment approach using 

registered hemispherical photos suggests a range of reasonably good classification 

accuracy using spectral and spatial information. The misclassification of many fine 

branches, particularly at far ranges at the canopy top (Figure 3-4(B)) highlights the 
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importance of laser alignment accuracy for spectral lidar instrument built with multiple 

lasers. Our indirect approach can be limited by the registration error between 

hemispherical photos and the projection images of lidar point clouds. In future work, 

artificial targets on the trees, e.g. reflective crosses, visible in both hemispherical photos 

and the DWEL scans, may help the registration and thus reduce error in the classification 

accuracy assessment.  

Collecting “real truth” data of classification in 3-D for individual points is quite 

difficult, if not impossible. An alternative is simulation of lidar scanning data and point 

clouds from tree models to test classification algorithms, as the “truth” is known from the 

tree models (Burt et al., 2013; Disney et al., 2006). However, the simulation needs to 

incorporate the complexity and the error sources of the actual lidar scanning to assess the 

classification accuracy more realistically. For example, wet lichen spots could be placed 

on stems of tree models to change the woody surface reflectance. Some small stems 

could be assigned lower reflectance values at the SWIR wavelength. Leaf and woody 

reflectance could be varied randomly according to their reflectance variance from 

spectral measurements, and effects of leaf angle distribution models could be assessed. 

Two-laser alignment error could also be included in the simulated lidar data, allowing the 

sensitivity of classification accuracy to laser alignment error to be estimated. 

3.6.3 Foliage profiles 

 The separate profiles of leaf and woody area from leaf-off and leaf-on scans 

show the seasonal change of the amount of leaves and woody materials visible from 

under canopy. In the leaf-off season, the distribution of leaf and woody area volume 
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density with height in the middle canopy between 10 m to 20 m (Figure 3-6 (B1)) was 

relatively constant. In the leaf-on season, the leaf area profile shows a peak around 6 m 

and a more or less steadily decreasing trend, while woody area remains nearly constant 

(Figure 3-6 A2). 

 Our leaf-on leaf area profile is different from that derived by Zhao et al. (2011) 

using the Echidna Validation Instrument (EVI) at the same site in 2007; they observed a  

smoother profile that peaked around 21 m and had a slightly but steadily increasing trend 

of leaf area between 10 m to 20 m, rather than a steady decrease. This difference occurred 

even though our profile estimation method was similar to that used in the EVI scanning. 

The main reason for the different leaf profiles from the current DWEL data in 2014 and 

the heritage EVI data in 2007 is the limited measurement range of the DWEL. Only 

pulses at zenith angles of 35° or less were able to exit the 25-m canopy to provide a 

proper estimate of gap probability with height. As a result, we used only zenith rings 

between 10° to 35°, a much smaller zenith angle range than that used by Zhao et al. 

(2011) for EVI data. Even with this zenith range reduction, it appears that weak and 

partial hits, accentuated by misalignment errors, are being lost with distance, producing 

the gradual reduction in both leaf and woody area volume density noted in Figure 3-6 

(B2). The smoother profile of Zhao et al. is probably due to scanning a larger volume of 

the canopy (5–60° zenith angle) and thus averaging more points to reduce variance.  

This comparison shows the importance of an adequate measurement range and 

signal-to-noise ratio that is capable of measuring gap probability through the top of the 

canopy to zenith angles of 60° or greater. Considering the low reflectance of leaves at the 
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SWIR wavelength, this requirement is significantly more challenging for the DWEL than 

for an NIR instrument like the EVI.  

In retrieving foliage profiles, variation within the same stand from one location to 

the next can cause significant variance in profiles (Figure 3-8, Figure 3-9, and Figure 

3-10). The variance is probably higher than expected for more powerful scanners like the 

EVI, in which the volume of canopy effectively sampled by each scan is much larger. 

Given the present capabilities of the DWEL, more scans within a stand are likely to be 

needed to add precision to estimates of leaf and woody areas and foliage profiles.  

The change from the leaf-off season to the leaf-on season in the spatial 

heterogeneity of the distribution of leaves and woody materials with height is captured by 

the different variances in the leaf and woody profiles (Figure 3-11). Higher variance in 

the leaf-off leaf area profile than in the woody area profile (B1) reflects the spatial 

variance of leaves due to the chance occurrence of evergreen needleleaf canopies across 

the forest site. Relatively similar variance in the leaf and woody area profiles in the leaf-

on season (B2) suggests a similar distribution pattern of leaves and woody materials with 

canopy height across the site.  

While the classification errors cause small variances in leaf and woody area 

profiles, these variances can be further removed using the error-adjusting method in 

Olofsson et al. (2013). However the error-adjusting method was designed to eliminate 

bias attributable to map classification error on a 2-D surface. Further changes are needed 

to extend this error-adjusting method from 2-D surface to 3-D space in a future study. 
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3.6.4 Woody-to-total ratios and occlusion 

The height profiles of woody-to-total ratios suggest a generally stable value of 0.7 

– 0.8 for the leaf-off season and about 0.1 for the leaf-on season above about 5 – 8 m 

(Figure 3-7), indicating a constant ratio could be used to remove the woody contribution 

to vegetation profiles above a certain canopy height (5 – 8 m at this site). At lower 

canopy heights, woody-to-total ratio is more variable, and the removal of the woody 

contribution may depend on the scan location. For the profiles of understory leaf area at 

low canopy heights, it would be better to estimate the ratio from the direct discrimination 

of leaf and woody areas from the DWEL scanning data.  

The comparison of WAIe from leaf-off and leaf-on scans found that about 65 

percent of the WAIe is occluded by leaves in the leaf-on season at our study site. This 

occlusion ratio could be used as an empirical value to correct the apparent WAIe value 

for occlusion by leaves to give an actual WAIe for similar forest stands in leaf-on 

condition.  

3.7 Conclusions 

Explicit separation of leaves and woody materials directly in 3-D space of a forest 

improves the retrieval of LAI and vertical foliage profiles from gap probability 

measurements by removing the woody contribution without using a site-specific 

empirical woody-to-total ratio from destructive sampling or a typical value from the 

literature. The 3-D separation may also benefit ecophysiological and 3-D radiative 

transfer models by improving the simulation and inversion of biophysical and/or 

biochemical properties of a forest.  
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We obtained separate vertical profiles of leaf and woody areas through the 3-D 

classification of leaves and woody materials in dual-wavelength point clouds from the 

Dual-Wavelength Echidna Lidar (DWEL), a terrestrial laser scanner. The 3-D 

classification was created with an approach using both spectral information from NIR and 

SWIR apparent reflectance and spatial context information given by the 3-D spatial 

distribution pattern of each point and its near neighbors. The classification accuracy (in 

number of points) from an indirect assessment approach using registered hemispherical 

photos is 0.70 ± 0.02 to 0.88 ± 0.01 for leaf-off point clouds and 0.70 ± 0.02 to 0.81 ± 

0.01 for leaf-on point clouds, demonstrating the value of combining spectral information 

with 3-D spatial information. The misclassification of fine branches, especially at far 

ranges, emphasizes the importance of high alignment accuracy of laser beams in 

multispectral lidar instruments built with multiple lasers, like the DWEL. This challenge 

to multispectral lidar instruments built with multiple lasers may be eased by using super-

continuum (white) lasers but with extended laser measurement ranges (Hakala et al., 

2012; Kaasalainen et al., 2007; Puttonen et al., 2015).  

We obtained the gap probabilities by leaves and woody materials separately from 

classified point clouds and retrieved the separate vertical profiles of leaf and woody 

areas. The five-scan averaged woody-to-total ratios at different canopy heights are 

generally stable in the middle and upper canopy for the stand, but vary in the lower 

canopy as sampled by the instrument. The uncertainty in leaf and woody area profiles 

from classification errors was negligible based on a bootstrapping analysis. The variance 

in leaf and wood area profiles over this forest site was dominated by the heterogeneity of 
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canopy vertical structure as sampled at the five scan locations. More scan locations over 

the site are needed for a more complete characterization of the leaf and woody area 

profiles. The variance in leaf area profiles with canopy height was relatively larger than 

that of the woody area profile in the leaf-off season because of the presence of a few 

large white pine evergreen canopies scattered throughout the site, while the variances 

were relatively similar in leaf and woody area profiles with canopy height in the leaf-on 

season.  

Although the estimates of total leaf area index and woody area index were limited 

by the current restricted measurement range of the DWEL, due to insufficient laser power 

and signal-to-noise ratio, the relative proportions of leaf and woody areas were 

successfully retrieved with the dual-wavelength point clouds. An increase in laser power 

and reduction of electronic noise in the instrument should provide better dual-wavelength 

scans and better estimates of LAI, WAI and their vertical profiles. 
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CHAPTER 4.  A NONDESTRUCTIVE APPROACH TO ABOVEGROUND 

BIOMASS ESTIMATION OF INDIVIDUAL FOREST TREES USING 

CLASSIFIED THREE-DIMENSIONAL DWEL POINT CLOUDS 

4.1 Introduction 

The amounts of carbon uptake, storage and release in terrestrial ecosystems are 

among the largest uncertainty sources in the global carbon balance under a changing 

climate (Denman et al., 2007). Large spatial and temporal variations in terrestrial carbon 

storage come from the biomass of terrestrial vegetation (biomass, as dry weight, is about 

50% carbon) (Houghton et al., 2009). Vegetation biomass, particularly aboveground 

biomass, is exposed to natural and human-induced disturbances and determines the 

amount of carbon emission caused by disturbances to ecosystems (Houghton et al., 2009; 

Houghton, 2007). Moreover, biomass affects ecosystem functioning through its control 

over the magnitude and rate of autotrophic respiration (Houghton et al., 2009; Turner et 

al., 2005).  

About 70% - 90% of terrestrial vegetation biomass is in forests, of which about 

70% - 90% is in aboveground forest biomass (AGB) (Cairns et al., 1997; Houghton et al., 

2009). But estimates of aboveground biomass density (AGB per unit area) over large 

areas are uncertain and estimates by different approaches are not consistent (Hill et al., 

2013). Airborne and space-borne remote sensing data are useful in evaluating 

aboveground biomass because of their ability and potential to provide low cost, 

consistent, operational and wall-to-wall estimates at large scales (Gibbs et al., 2007). But 

no methods based on remote sensing data measure AGB across a landscape continuously. 
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Ground-based data are required to calibrate biomass-retrieval methods and validate AGB 

estimates at large scales. Improving the quality and detail of ground-based estimates of 

aboveground biomass is essential to reducing AGB estimate uncertainty and making 

consistent and comparable maps of aboveground biomass through time for AGB change 

detection.  

The direct and probably the most accurate way to measure aboveground biomass 

is destructive sampling (Picard et al., 2012). However, this approach is extremely labor 

intensive and sometimes impractical. Another commonly used indirect approach to 

ground-based biomass measurement relates AGB of a tree with more easily measured 

quantities such as diameter at breast height (DBH), and/or tree height, using allometric 

equations derived by destructive sampling (Gibbs et al., 2007). Although extensive 

compilations of allometric equations have covered many important species across several 

continents and biomes (Chave et al., 2005; Jenkins et al., 2004; Zianis & Seura, 2005), 

allometric equations are still large sources of error in AGB estimation (Basuki et al., 

2009; Chave et al., 2004; Keller et al., 2001; Wang, 2006), due to inadequacies imposed 

by the time-consuming, laborious, and costly development and update of allometric 

equations through destructive sampling. The errors in aboveground biomass estimates 

using allometric equations may be particularly large for large trees, as the destructive 

sampling of large trees is rare (Basuki et al., 2009; Chave et al., 2004; Keller et al., 2001) 

and large trees have large amounts of biomass.   

A ground-based active remote sensing instrument, the terrestrial laser scanner 

(TLS) or terrestrial lidar, emits laser light, detects its return from scattering surfaces and 
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records the time (or phase) and intensity of signals reflected back from objects at 

different distances along the laser transmission path. Terrestrial laser scans image forest 

trees in fine detail and scanners have shown great ability to estimate aboveground 

biomass in nondestructive way. However, most methods to estimate AGB by laser 

scanning still rely on allometric equations applied to stem diameters, tree heights, and 

stem count densities extracted from the laser scans (Strahler et al., 2008; Thies & 

Spiecker, 2004; Yao et al., 2011).  

A recent TLS-based nondestructive approach to aboveground biomass estimation 

combines a priori wood density information with wood volume that is directly calculated 

from cylinder tree models built from TLS point clouds using Quantitative Structure 

Modeling (QSM) (Burt et al., 2013; Calders, Newnham, et al., 2014; Kaasalainen et al., 

2014; Raumonen et al., 2013). This nondestructive approach is independent of allometric 

equations and has been validated against destructive sampling measurements in a 

eucalyptus forest, showing an overestimation error of 9.68% by QSM compared to an 

underestimation error of 36.57% - 29.85% by allometric equations (Calders, Newnham, 

et al., 2014). The key to accurate aboveground biomass estimates by this approach is 

correct tree models and thus accurate wood volume estimates, which depend on a proper 

selection of input parameters to the QSM algorithm. The selection of parameters for 

QSM is not trivial and requires tuning for different scanning resolutions and branch sizes 

to find a proper and objective criterion. Moreover, previous QSM trials on both simulated 

and real TLS point clouds have suggested that leaf points are an important error source in 
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modeling trunk and branch structure for wood volume estimates (Burt et al., 2013) and 

called for the removal of leaf points to improve the accuracy of structure modeling.  

In this study, we scanned a midlatitude forest site with deciduous trees in both 

leaf-off and leaf-on condition using the Dual-Wavelength Echidna Lidar (DWEL), a 

dual-wavelength terrestrial lidar that acquires full-waveform scans at both near-infrared 

(NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths with 

simultaneous laser pulses (Douglas et al., 2015). The dual-wavelength scanning was 

designed to distinguish leaves from woody materials and has shown its ability to classify 

leafy and woody points in 3-D space in the Chapter 3. This study applies quantitative 

structure modeling to the classified DWEL point clouds to answer the following 

questions pertaining to accurate aboveground biomass estimates using QSM:  

(1) Is the standard deviation of wood volume estimates by multiple QSM runs 

a good criterion for parameter selection? Which parameter settings seem 

to work best with DWEL point clouds of 2-mrad angular resolution?  

(2) Does the removal of leaf points from the point cloud of a tree improve the 

tree modeling and wood volume estimates? If so, how much will the 

estimate be improved? Are the improvements consistent between leaf-off 

and leaf-on scans?  

4.2 Study Area and Data 

For this study, we established a 100-m-by-100-m deciduous forest site (N 42° 31′ 

51.48″, W 72° 10′ 55.56″) at Harvard Forest in central Massachusetts, USA. This 

generally flat 1-ha site is dominated by red maple (Acer rubrum), red oak (Quercus 
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rubra) and white birch (Betula papyrifera), with an understory of these species 

accompanied by American beech (Fagus grandifolia), American chestnut (Castanea 

dentata) and others. A few conifers are also present, including several large white pines 

(Pinus strubus) and a few smaller eastern hemlocks (Tsuga canadensis). At five circular 

plots of 20-m radius (Figure 4-1), we collected biometric data including diameter at 

breast height (DBH), species, location (range and compass azimuth from the circular plot 

center), and crown position. For a subsample of trees, we also acquired tree heights, 

crown diameters at two orthogonal dimensions, and crown heights. In data of September 

2014, the average stem density at this site was 769 trees ha
-1 

and the basal area was 

around 38.5 m
2
 ha

-1
. The average tree height of sampled trees at this site was 20.3 m and 

the average crown diameter was 8.7 m. 

We scanned the forest site with the Dual-Wavelength Echidna Lidar (DWEL) at 

five scan locations (Figure 4-1) in both leaf-off (May 3rd 2014) and leaf-on (Sept 19th 

2014) conditions. The wind speed on both scanning days was low with occasional light 

leaf and branch motion at the canopy top. At the time of the leaf-off scan, tree leaf and 

flower buds were breaking, but little leaf area was visible except for conifers. The DWEL 

acquires full-waveform scans with two coaxial lasers at NIR (1064 nm) and SWIR (1548 

nm) wavelengths. It collects return waveforms at the pulse repetition rate (PRF) of 2 

KHz. The scanning resolution was set 2 mrad with slightly larger beam divergence, 2.5 

mrad to ensure continuous coverage of the hemispheres for the scans used in this study.  
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Figure 4-1. DWEL scans were collected at the five solid triangles. Tree measurements were collected at circular 

plots centered at the four dots and the center triangle. The dashed circles represent the coverage of each tree 

measurement plot.  

 

4.3 Methodology 

4.3.1 Preprocessing and classification of TLS scanning data 

We generated radiometrically calibrated dual-wavelength point clouds from 

DWEL waveform data at the two wavelengths through a chain of preprocessing steps 

including (1) background noise removal; (2) conversion of digitizer time to apparent 

range by aligning each waveform to the peak of the outgoing pulse; (3) detection and 

correction of saturated return pulses; (4) correction of laser power drift; (5) detection of 

return pulse peaks; (6) calibration of peak intensity from digital counts to apparent 

reflectance (    ); and (7) assignment of dual-wavelength intensity and apparent 

reflectance to each point by merging two point clouds at the two wavelengths.  

We used both spectral information from NIR and SWIR apparent reflectance and 

spatial context information given by the 3-D spatial distribution pattern of each point and 

its neighbors to classify points into leaves and woody materials. First, an unsupervised 

classifier, the K-means clustering algorithm implemented in Scikit-learn package 

(Pedregosa et al., 2011), divided all points in one scan into 100 clusters using three 
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variables: apparent reflectance values at the two wavelengths and a normalized difference 

index (NDI) value given by equation 4-1. Each cluster was inspected by visual inspection 

of the 3-D point cloud and labeled as being dominated by leaf or woody hits.  

Where clusters included both leafy and woody hits, a supervised classification 

method based on multiscale dimensionality criteria (Brodu & Lague, 2012) labeled each 

cluster point into a canopy point (taken as a leaf hit) or a trunks/coarse branches/ground 

hit using shape information of points. The shape information of a point, given by the 

point cloud multiscale dimensionality, characterizes the local 3-D organization of the 

point cloud within spheres of different diameters (scales) centered on the measured point 

and varies from being 1-D (points set along a line), 2-D (points set along a plane) to the 

full 3-D volume (Brodu & Lague, 2012). Points of trunks/branches or ground shape lines 

or planes while points of canopies shape 3-D volumes.   

     
    
        

    

    
        

    
 4-1 

4.3.2 Marker-free registration of multiple scans 

The merging of the five leaf-off/leaf-on scans using a marker-free registration 

approach generated full 360° views of trees in point clouds, which are required by the 

quantitative structure models for AGB estimates from TLS scanning data (see next 

section 4.3.3). This semi-automatic registration approach does not require reflective 

marker targets, which are often deployed to provide common registration points within 

multiple scans (Béland et al., 2011; Blanchette et al., 2015; Pueschel, 2013). Although we 

deployed eight reflective spheres on the site between scan locations, not enough targets 
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were captured by or clearly identifiable from multiple scans for registration, due to the 

high density of occluding trees and understory at our study site, coupled with low laser 

power and low signal-to-noise ratios. To solve this problem, we developed a marker-free, 

semi-automatic registration approach. It is a pair-wise registration, i.e. all the scans are 

aligned to the center scan to merge together, and has two steps: (1) coarse registration 

with trunk centers as homologous markers; and (2) fine registration using an iterative 

closest point (ICP) algorithm (Besl & McKay, 1992).  

For coarse registration, trunk centers extracted from single-scan point clouds were 

manually matched and aligned on the XY plane for translation along X- and Y- axis and 

rotation around the Z-axis. An approximate translation along Z-axis was further manually 

performed by aligning ground points if necessary. The extraction of trunk centers at 

breast height above ground used an automatic detection method by Huang et al. (2011) 

with some changes to adapt to single-scan point clouds (Figure 4-2). To first locate 

ground points, the variable scale and threshold filtering algorithm in this method grids 

points on the XY plane and finds potential ground points with a threshold of distance 

between points and the lowest height in a grid cell. It repeats this procedure with 

decreasing grid size and decreasing distance thresholds to extract final ground points. 

These points are then connected in a triangulated irregular network to fashion a digital 

elevation model (DEM). To find trunk centers, a slice of points from a trunk at breast 

height is modeled as an arc from a circle. Circle detection uses a circular Hough 

transform (Ioannou et al., 1999) and removes noise points. Circle fitting uses a simple 

least squares algorithm.  
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However, in single-scan point clouds, occlusion will increase with range. As a 

result, both ground and trunk points were often sparse in the overlapping area between 

adjacent scans, where homologous trunks area sought. To increase the number of 

extracted homologous trunk centers for coarse registration, we added two steps. First, the 

digital elevation model was extrapolated to a larger area (bounding box of points on XY 

plane) with a plane fitted to the DEM by the random sample consensus (RANSAC) 

algorithm (Fischler & Bolles, 1981), allowing identification of more trunk points at breast 

height. Second, if circle detection and fitting failed in a point cluster, a simple average of 

point coordinates the point clusters was generated as a possible extra trunk center. 

For a fine registration after each pair of point clouds were approximately aligned 

together, we first extracted points in the general overlapping area and then performed a 

fine registration using the ICP function in CloudCompare (Girardeau-Montaut, 2015). 
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Figure 4-2. Flow chart of trunk center extraction from a single-scan point cloud. 

4.3.3 AGB estimate by quantitative structure models 

4.3.3.1 Description of the Quantitative Structure Model (QSM) 

A newly developed technique (Raumonen et al., 2013), referred to as quantitative 

structure modeling (QSM), provides a method of estimating the woody volume of a 

single tree from a lidar point cloud by developing a 3-D model for the structure of the 

trunk and branches. With that estimate, and given the proper wood density, the 
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aboveground biomass (AGB) of the tree can then be determined. Previous validations of 

QSM-based wood volume with simulated TLS point clouds from model trees show a 

relative error within 2% – 10.8% (Burt et al., 2013; Disney et al., 2012), although the 

result is quite sensitive to registration errors in the scans comprising the point cloud (Burt 

et al., 2013). A recent validation of QSM-based AGB from lidar scans of eucalyptus trees 

in Australia against destructive sampling shows an overestimation error of 9.68% 

compared to an underestimation error of 36.57% – 29.85% by allometric equations 

(Calders, Newnham, et al., 2014).  

The QSM algorithm constructs a collection of cylinders of varying sizes for each 

single-tree point cloud to represent tree stems and branches for wood volume calculation. 

After filtering isolated noise points, QSM builds the cylindrical tree models using two 

steps to (1) segment a point cloud into parts of stems and branches, and (2) fit cylinders 

to the segments of points and fill the possible gaps between cylinders.  

In the first step, point cloud segmentation, a point cloud is partitioned into small 

cover sets that correspond to connected surface patches of points on the tree surface. 

These cover sets are then grouped together to form segments of stems and branches 

according to their neighbor relations (connectivity between patches) and geometrical 

characterizations (direction of connected patches as stem and branches). One important 

parameter in this step, the patch size  , controls the partitioning and subsequent 

segmentation, and thus strongly affects the final cylindrical tree model. The larger the 

patch size, the coarser is the detail of stem and branches that can be modeled.  
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The above segmentation procedure is carried out twice in QSM first with a 

constant patch size, and then with varying patch sizes. The first segmentation uses a 

larger user-defined patch size to quickly but roughly construct segments of stem and 

branches. These segments generate information about branching structure and local sizes 

of stem and branches. The second segmentation then uses varying patch sizes so that the 

maximum size is at the base of the stem (trunk) and given by a smaller user-defined value 

than the first segmentation. The patch size then decreases linearly from the base of 

stem/branches to the tip of stem/branches. At the same time, the patch size at the base of 

branches also decreases linearly with branching order.  

In the second step, cylinder fitting and gap filling, cylinders are first fit to 

subregions of segments. The approximate length of a subregion is controlled by a 

parameter  , the relative length of a cylinder defined as the ratio of cylinder length to its 

base radius. After fitting cylinders to segments, small gaps between cylinders due to 

occlusions are identified and filled with cylinders that are fitted to the previously fitted 

cylinders as data. The complete cylindrical tree model is reconstructed and wood volume 

can be calculated.  

Because the segmentation step in QSM starts from random locations in the point 

cloud, cylindrical tree models and resultant wood volume estimates from multiple QSM 

will vary. Multiple runs of QSM are usually carried out for a point cloud using the same 

input parameters to output a mean and standard deviation of wood volume estimates.  
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4.3.3.2 Use of QSM on Harvard Forest scanning data for AGB estimates 

We extracted five individual trees from both the leaf-off and leaf-on registered 

point clouds to estimate their AGB with QSM. The five trees were matched with the field 

measurement records to identify their species (Table 4-1). The species type is used to 

determine the wood densities for the AGB estimates of the five trees. Wood density here 

is defined as oven-dried weight divided by fresh volume including bark. Within-tree and 

within-species variations in wood density are not considered here as they are usually 

small or negligible for trees with similar climatic and geographic conditions (Baker et al., 

2004; Chave et al., 2006; Gominho et al., 2001; Knapic et al., 2008). Two datasets of 

wood density (Chave et al., 2009; Jenkins et al., 2004) provide the same wood densities 

for the three species in this study (Table 4-1).  

The standard deviation or variance of multiple QSM runs is an indicator of the 

robustness and accuracy of the reconstructed tree model given a set of model parameters. 

The patch size parameter   is the most critical parameter in the QSM. To find an optimal 

  for the DWEL point cloud and its 2-mrad angular resolution, we examined the change 

of standard deviations observed in 30 QSM runs with a series of   values from 4 cm to 

20 cm in 2-cm increments for each tree point cloud.  

Leaf points in a single-tree point cloud have been suggested as an error source for 

QSM (Burt et al., 2013). Leaf points thicken branches and increase the variance of 

segmentations, both of which can lead to larger standard deviations of multiple model 

runs. To examine the effects of separating leaf points from woody points by our point 

classification for QSM-based AGB estimates, we ran QSM with all points in each point 
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cloud and then with only those classified as woody material, and repeated this procedure 

for the five leaf-off single-tree point clouds and the five leaf-on single-tree point clouds. 

Then we compared the standard deviation of QSM runs with all points and with those 

classified as woody material.  

Table 4-1. List of five trees for QSM. 

Tree ID Species Common name DBH
1
, cm Wood density

2
, g/cm

3 

1 Pinus strobus White pine 70.0 0.34 

2 Quercus rubra Red oak 60.4 0.56 

3 Quercus rubra Red oak 61.2 0.56 

4 Acer rubrum Red maple 26.1 0.49 

5 Quercus rubra Red oak 59.1 0.56 

1from field measurements 

2oven-dried weight / fresh volume, including barks, from published literature and data (Chave et al., 2009; Jenkins et 

al., 2004) 

4.3.4 Aboveground biomass estimated by allometric equations 

As a benchmark for comparison with our application of QSM, we selected 

species-specific allometric equations to estimate the aboveground woody biomass (stem 

and branches) of each tree from a widely-used database of equations for trees in the 

United Stated compiled by Jenkins et al. (2004). We selected equations that were 

developed from tree samples covering the DBHs of the studied trees here; however, the 

white pine was larger than the white pine sampled for all the allometric equation 

developments compiled by Jenkins et al. (2004), which adds some unknown uncertainty 

to its biomass estimate (Table 4-2). The table also shows a correction factor, which is 

applied to correct for potential underestimation resulting from a back-transformation of 
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logarithmic predictions to arithmetic units (Jenkins et al., 2004). If multiple equations 

were available, their average was used and standard deviation was calculated. 

Table 4-2. Allometric equations for the species in the study. 

Species 
Allometric Equation 

( : biomass,  : DBH) 

Correction 

factor 

DBH of tree samples to 

develop the equation, cm 

Minimum Maximum 

White 

pine 

                  

 : cm,  : g 
1 1.70 25.70 

     

Red 

oak 

                     

 : in.,  : lb. 
1 28.19 62.74 

     

Red 

maple 

                

 : in.,  : lb. 
1 5.08 50.80 

                   

 : in.,  : lb. 
1 12.70 40.64 

                           

 : cm,  : kg 
1.003 6.30 52.40 

 

4.4 Results and Discussion 

4.4.1 Sensitivity of QSM to the main input parameter for DWEL point clouds 

Figure 4-3 and Figure 4-4 show two examples of original point clouds from tree 

#1 (white pine) and tree 3 (red oak) and fitted cylindrical tree models from one 

realization of QSM using four types of inputs: (1) all points from leaf-off scans, (2) 

woody points from leaf-off scans, (3) all points from leaf-on scans and (4) woody points 

from leaf-on scans. Here, “leaf-off” refers to the deciduous canopy; the evergreen white 
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pine still possessed needles during the leaf-off scans. The first three columns in each 

figure show the point clouds for leaf-off and leaf-on acquisitions. Points in the three 

columns are displayed according to the scan position from which they were acquired; as a 

color-composite; and as classified into wood and leaf hits (see Chapter 3). There are 

clearly fewer points in the upper crowns of each tree in the leaf-on scans, which result 

from occlusion by leaves and loss of points by weak partial returns. The last two columns 

compare the results using all points and only woody points (see the discussion in the 

section 4.4.2). The different branching structures of the two species are clearly shown. 

The white pine (Figure 4-3) displays branches from near the base to the top; irregular 

branching at the canopy top could result from the old damage to the top of the tree or just 

the missing view of upper crowns due to occlusions by leaves and loss of points by weak 

partial returns. The red oak shows a much cleaner main stem and two prominent upper-

canopy branches arching out to either side. 

 Figure 4-5 shows the mean and standard deviation of tree wood volume estimates 

of QSM structures for different patch size values using the four types of input point 

clouds for each of the five trees. The wood volume estimates increase with the QSM 

parameter  , point patch size for all the four types of input point clouds to QSM (Figure 

4-5, left column). This steady increase was also observed in the QSM results in a 

Eucalyptus forest (Calders, Newnham, et al., 2014). Although some of the wood volume 

estimates seem to show a possible asymptote as the QSM point patch size goes even 

larger, the optimal patch size value is not expected to be at the asymptote. Larger patch 

size leads to coarser segmentation of point clouds. Points of several nearby branches are 
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more likely to be aggregated together as one coarse segment under a large QSM point 

patch size, resulting in one large cylinder that gives a greater volume than the total 

volume of several smaller cylinders correctly fitted to those branches. Thus, the wood 

volume estimate by QSM will increase with the patch size until almost all the branching 

structure details are lost. Calders et al. (2014, fig. 8) also showed that the patch size that 

gave the closest AGB estimate by QSM to the destructive measurement is not a value that 

provides a possible asymptote volume but a value that models the stem well without 

over-fitting to the point cloud.  

If a patch size captures stem and branches well with correct and sufficient details 

but without over-fitting with too many small cylinders, the cylindrical tree model will be 

stable and the variance of multiple wood volume estimates is expected to be small. Thus, 

the standard deviation of wood volume estimates is used to select the optimal QSM point 

patch size. Generally, the standard deviation in wood volume estimates decreases with 

increasing point patch size and then increases (Figure 4-5, right column). When the point 

patch size is too small, the points of a branch are segmented into multiple smaller parts 

and over-fitted with multiple smaller cylinders, especially when the branch is not fully 

covered by points due to some occlusion. As noted above, the variation of tree model 

building and wood volume estimates comes from the random start locations of 

segmentation. As the point patch size goes even smaller than the optimal value, more but 

smaller segments and resultant cylinders that are over-fitted to the points of branches will 

have higher chance to vary from different start locations of segmentation, which therefore 

results in more variation in tree models and larger standard deviation in wood volume 
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estimates. On the other hand, when the QSM point patch is too large, points of multiple 

branches will be aggregated together as one coarse segment. As point patch size goes 

even larger than the optimal value, more different aggregations of multiple branches are 

possible and therefore different start locations of segmentation will also cause more 

variation in tree models and larger standard deviation in wood volume estimates. 

 
(A1) 

 
(A2) 

 
(A3) 

 
(A4) 

 
(A5) 

 
(B1) 

 
(B2) 

 
(B3) 

 
(B4) 

 
(B5) 

Figure 4-3. Point clouds of the white pine (Tree ID = 1) and cylindrical tree model from one sample QSM 

realization using a patch size of 0.11 m. First row: leaf-off; Second row: leaf-on. First column: point colors show 

different scan locations; Second column: color-composite points, red (1548 nm), green (1064 nm) and blue 

(dark); Third column: point colors show classification, red as woody materials and green as leaves; Fourth 

column: tree model with all points; Fifth column: tree model with only woody points.  
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The general trend of standard deviation against QSM point patch size for our five 

trees (Figure 4-5, right column) suggests the optimal patch size for the DWEL point 

clouds here was 0.10 – 0.12 m when the standard deviation is low. We chose the middle 

value 0.11 m as the optimal patch size for QSM with the 2-mrad DWEL point cloud here.   
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Figure 4-4. Point clouds of the red oak (Tree ID = 3) and cylindrical tree model from one sample QSM 

realization using a patch size of 0.11 m. First row: leaf-off; Second row: leaf-on. First column: point colors show 

different scan locations; Second column: color-composite points, red (1548 nm), green (1064 nm) and blue 

(dark); Third column: point colors show classification, red as woody materials and green as leaves; Fourth 

column: tree model with all points; Fifth column: tree model with only woody points. 
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(A4) 

 
(B4) 

 
(A5) 

 
(B5) 

 
Figure 4-5. Mean (left column) and standard deviation (right column) of tree wood volume from multiple QSM 

runs against patch size parameter. Each row is for one tree. Red dot: QSM with all points in leaf-off point 

clouds. Red square: QSM with woody points in leaf-off point clouds. Green dot: QSM with all points in leaf-on 

point clouds. Green square: QSM with woody points in leaf-on point clouds. 

4.4.2 Effects on QSM results by the separation of leaf and woody points 

More leaf hits in point clouds tend to increase the variance of cover set generation 

by QSM and thus the variance of wood volume estimates. For the deciduous trees (Figure 

4-5, 2
nd

 to 5
th

 row), the difference in both the means and standard deviations between 

using all points and using only woody points from leaf-on scans is larger than those from 
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the leaf-off scans because increased leaf hits in the leaf-on scans add more variance to the 

tree model reconstruction by QSM.  

For the evergreen white pine (Figure 4-5, 1
st
 row), the differences in the means 

and standard deviations between using all points and using only woody points from leaf-

on scans are closer to those from leaf-off scans. This is because all leaf points exist in the 

point clouds of the white pine from both leaf-off and leaf-on scans. We also note that for 

the white pine, the difference between using all points and only woody points from leaf-

off scans is slightly larger than that from leaf-on scans. This is probably because less 

occlusion by broadleaf deciduous trees and shrubs in leaf-off scans causes a larger 

proportion of leaf points in the point cloud derived from leaf-off scans than from leaf-on 

scans. That is, the decrease of leaf point numbers from leaf-off to leaf-on scans is larger 

than that of woody point numbers for the white pine.  

To quantitatively examine whether and how much the separation of woody points 

from leaf points in the point cloud can reduce the variance of wood volume estimates by 

QSM, we plotted standard deviations of the wood volume estimates of all deciduous trees 

for all the test QSM point patch size values using all points against those using only 

woody points. Figure 4-6 shows the scatter plot and the linear fitting with fixed intercept 

at zero for leaf-off scans (left panel) and leaf-on scans (right panel). The slope of the 

linear fitting is a „mean‟ ratio (denoted as  ) of the standard deviation of wood volume 

estimate using only woody points to those using all points. The lower the ratio, the more 

the separation of woody point from leaf points reduces the variance of wood volume 

estimates by QSM.  Both leaf-off and leaf-on scans show   ratio less than 1, indicating 
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the reduction of variance of wood volume estimates by separating woody point from leaf 

points. The scatter plot of leaf-on scans shows more data points under the one-to-one line 

and a lower   ratio, which suggests more improvement of wood volume estimates by 

only using the woody points in a leaf-on point cloud.  

The stronger effect by leaf point removal, i.e. lower   ratio, for leaf-on wood 

volume estimates is expected because leaf-on scans have many more leaf points that will 

add variance to the fitted tree models and wood volume estimates. Indeed, visual 

inspection of the fitted tree models from all points versus woody points revealed more 

erroneous cylinders caused by leaf points. For example, comparing the tree models of 

tree 3 in Figure 4-4 (B4) and (B5), the model from the all-points situation (Figure 4-4 

(B4)) has many tiny cylinders in the middle and right side of the canopy that cause fuzzy 

edges of large branches, while the model from only the woody points (Figure 4-4 (B4)) 

does not. The tree models from the leaf-off scans (Figure 4-4 (A4) & (A5)) can serve a 

relative benchmark of tree branching structure, as they have clearer views and less 

occlusion of branches inside the canopy. By comparing tree models from the leaf-on 

scans to the leaf-off scans and the point cloud (Figure 4-4 (B3)), it is evident that these 

tiny cylinders in Figure 4-4 (B4) are mostly errors caused by leaf points.  

The extent of occlusion also affects the variance in the wood volume estimates. 

The forest was much more open in the leaf-off season than the leaf-on, and thus less 

occlusion occurs in the point clouds. For the deciduous trees (trees #2 – #5), using either 

all points in a point cloud or only the woody points, the standard deviations in wood 
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volume estimates from the leaf-off scans are generally lower than those from leaf-on 

scans (Figure 4-5, right column, 2
nd

 row to 5
th

 row).  

For the evergreen white pine tree (tree #1), the standard deviations in wood 

volume estimates from the leaf-off scans are not as different (Figure 4-5(B1)) because all 

leaf points exist in the point clouds of the white pine from both leaf-off and leaf-on scans. 

But the standard deviations using all points from leaf-off scans (red solid line in Figure 

4-5(B1)) is larger than using the other types of point cloud inputs for the QSM. This is 

caused by the larger proportion of leaf points in the point cloud from the „leaf-off‟ scans 

of the white pine than from the leaf-on scans. The increase of variation in tree models 

from the increase of leaf points in the „leaf-off‟ point cloud of the white pine outranges 

the decrease of variation from the decrease of the occlusion of woody components in 

leaf-off scans.  

The increase of standard deviations in wood volume estimates caused by the 

increase of occlusion is likely from two reasons. First, more occlusion reduces the 

number of points covering the surfaces of stem and branches. The cylinder fitting thus 

becomes more sensitive to the segmentation. Second, the more complete and clearer 

views of the woody components of the trees, especially of the branches in the canopy, in 

the leaf-off point clouds cause fewer gaps between fitted cylinders that QSM has to 

identify and fill. The identification and filling of gaps adds less accurate cylinders to tree 

models than those directly fitted to points and can result in incorrect branching structure 

if too many gaps exist. Figure 4-3 (B4 & B5) shows an example of incorrect branching 

structure resulting from incorrect gap filling by the QSM at the canopy top because of the 
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large occlusion and insufficiency of points. Thus, more gaps in the cylinder fitting 

procedure for the leaf-on point clouds add more variance or errors to the tree models and 

wood volume estimates. 

 

(A) 

 

(B) 

Figure 4-6. Scatter plots of standard deviations of tree wood volume (unit: liter) between using all points (Y axis) 

and using only woody points (X axis). Dot colors are for different trees, purple (tree 2, red oak), cyan (tree 3, red 

oak), yellow (tree 4, red maple), red (tree 5, red oak). Black solid line is linear fit with intercept fixed at zero. 

Black dash line is one-to-one line. (A): leaf-off scans; (B): leaf-on scans. 

4.4.3 Comparison between AGB estimates by QSM and allometric equations 

Figure 4-7 shows the AGB estimates of the five trees using allometric equations 

and field measured DBH alongside the AGB estimates with QSM when using the chosen 

optimal patch size (0.11 m) for the four types of input point clouds to QSM. Of the four 

types of QSM-based estimates, woody points only from leaf-off scans gives the lowest 

variance, which suggests it is the most credible estimate by QSM. Indeed, leaf-off scans 

have less occlusion and thus provide better views of stem and trunks, and removal of leaf 

points further reduces variances in cylinder fitting. For all the deciduous trees (tree #2 – 

#5), using all points from both leaf-off scans and leaf-on scans gives larger AGB 

𝑦        𝑥 
𝑟        

𝑦        𝑥 
𝑟        
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estimates than woody points only from leaf-off scans. The larger estimates are probably 

due to the thickening of branches by leaf points and addition of erroneously fitted 

cylinders from leaf points. In contrast, the woody points only from leaf-on scans gives 

smaller AGB estimates than woody points only from leaf-off scans. Using woody points 

only from leaf-on scans removes positive errors caused by leaf points, but also increases 

negative errors caused by the greater number of gaps and their larger size, produced by 

strong leaf occlusion in the tree point clouds, that cannot be filled by QSM.  

The comparison between the four types of QSM-based AGB estimates for the 

evergreen needleleaf white pine (tree 1) is somewhat different from the deciduous trees. 

Using all points from leaf-off scans still gives a larger AGB estimate than using woody 

points only from leaf-off scans. But all points from leaf-on scans gives a smaller AGB 

estimate than woody points only from leaf-off scans. Comparing the point clouds of the 

white pine from leaf-off and leaf-on scans (Figure 4-3, A-B), a large part of the white 

pine canopy top in the leaf-on scans is missing due to strong occlusion, which causes the 

lower wood volume.  

As the comparison between QSM-based AGB estimates using the four types of 

input point clouds suggests, different degrees of occlusion and different amounts of leaf 

points in input point clouds not only result in different variances in AGB estimates, but 

may also lead to different AGB estimate values. Small gaps caused by small occlusions 

can be identified and filled by QSM, and probably will not cause significantly different 

wood volume estimates. However, large and numerous gaps caused by large occlusions 

cannot be filled by QSM and also can result in incorrect branching structure, as we have 
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seen in Figure 4-3 (B4 & B5). Thus, strong occlusion will produce different wood 

volume estimates, which are usually underestimates because of lost stems and branches 

in point clouds. Leaf points will increase wood volume estimates by thickening branches 

and causing more erroneously fitted cylinders. Therefore, different amounts of leaf points 

in point clouds may result in different wood volume estimates as well.  

In general, we may conclude that it is better to use leaf-off scanning data in QSM 

for AGB estimates to avoid errors caused by leaf points. But leaf-off scanning is not 

always an option, e.g. for evergreen conifers or broadleaf evergreen tropical trees. In such 

cases, separation of woody points from leaf points can produce a better estimate. 

However, more leaf points usually indicate stronger occlusion due to more leaves, which 

may cause underestimation of wood volume due to large and numerous gaps. To fill these 

gaps in leaf-on canopies, the solution lies in improving scanning data collection, 

including a better design of scan location layout, longer lidar measurement range, finer 

scanning resolution, and stronger capability of detecting multiple returns.  

The effects of occlusion in the current DWEL point clouds, especially of branches 

in upper canopies, are worsened by the instrument‟s limited measurement range due to 

low laser power and high noise levels, which causes distant and partial hits to be lost. 

Even leaf-off point clouds lose small branches and some parts of big branches in the 

upper canopy at far range. As a result, AGB estimates here by QSM are likely to be 

underestimated. This underestimate seems to partly explain the generally lower AGB 

values by QSM as compared to the results from allometric equations (Figure 4-7). But it 
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is not possible to say which estimate is more accurate without direct destructive 

sampling. 

Calders et al. (2014) compared both AGB values obtained by QSM and values 

obtained from allometry with biomass measured by destructive sampling in Australian 

eucalypt woodlands and reported a slight overestimate of AGB by QSM and significant 

underestimate by allometric equations. However, no destructive sampling has yet been 

reported for direct comparisons of QSM-based estimates against allometric equations of 

North American species. Moreover, allometric equations are best applied to large sizes of 

tree samples rather than individuals. Only five well-reconstructed trees are selected here 

due to limited lidar measurement range, which is a very small sample size. Clearly, we 

need destructive sampling and a larger sample size to directly validate the accuracy of 

AGB estimates by QSM and allometric equations. 

Point cloud registration error is another source that contributes to the AGB 

estimate uncertainty and to the difference in AGB estimates between leaf-off and leaf-on 

scans. Trunks and branches are the main targets for our registration procedure. The more 

open view of trunks and branches in the leaf-off scans likely gives higher registration 

accuracy than leaf-on scans, which may lead to more accurate wood volume estimates 

from leaf-off scans. The AGB estimates can be further improved by taking into account 

within-tree variations in wood density. Wood densities of many species show radial 

variations from pith to bark (Espinoza, 2004; Henry et al., 2010; Woodcock & Shier, 

2002). Stems and branches of different sizes will thus have different wood densities. The 
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detailed branch sizes from cylinder models can be utilized to include the variation in 

wood density into the AGB biomass to reduce estimate errors.  

 

Figure 4-7. AGB estimates (unit: kg) of five trees from allometric equations and QSM with all points or woody 

points from leaf-off and leaf-on point clouds. Error bars are one standard deviation.  

 

4.5 Conclusions 

This study has shown that the DWEL‟s dual-wavelength data has the capability to 

improve nondestructive estimates of aboveground biomass of individual trees using 

Quantitative Structure Modeling (QSM). This new technique builds tree models from 

virtual cylinders using registered multiscan terrestrial lidar point clouds, determines the 
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volume of each tree structure, applies a wood density factor, and then estimates the 

biomass of the tree. We used the standard deviation of wood volume estimates from 

multiple QSM runs as a criterion for the selection of point patch size, a critical input 

parameter to QSM. We reduced the variance in QSM-based estimates through the 

separation of leaves and woody materials with DWEL scanner data, exploring the use of 

all points and only woody points as applied to a sample of forest trees scanned in both 

leaf-off and leaf-on seasons.  

In our data analysis, we found that leaf points in point clouds of individual trees 

increase the variance in the wood volume estimate by QSM; leafless point clouds are 

better for QSM to build tree models and estimate wood volumes and resultant AGB. 

Scanning leaf-off trees is a way to obtain leafless point clouds. But this is not always an 

option, e.g. for conifer or tropical trees or when the field campaign is carried out in leaf-

on seasons. In that case, DWEL‟s classification of leaf and woody points in three-

dimensional space data can be used to remove leaf points, leaving only woody points for 

the QSM procedure. 

Occlusions in point clouds also increase the variance in QSM-based estimates. 

First, occlusions increase the variance in cylinder fitting by reducing the points covering 

stem and branches. Occlusions also increase the gaps that QSM has to identify and fill 

and can result in incorrect branching structure in tree cylinder models, which increases 

the variance in wood volume estimates.  

The point cloud registration error is another source that contributes to the 

variances and errors in AGB estimates, and more work is needed to assess the registration 
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accuracy quantitatively and check differences in AGB estimates caused by registration 

errors. For example, brighter marker targets need to be placed in scan areas where they 

are visible from different scan views to assess the registration accuracy. Alignment 

between scans could then be varied to create different registration accuracies and observe 

the sensitivity of AGB estimates to registration accuracy change. This procedure would 

thus estimate the difference in AGB estimates that is caused by the difference in the 

registration accuracy between leaf-off and leaf-on scans. 

Proper parameter selection criterion and removal of leaf points based on point 

classification improve the QSM-based AGB estimates by reducing the estimate variance. 

This facilitates the application of the QSM-based approach, which helps the calibration 

and validation of large-scale AGB mapping by providing fast and accurate ground-based 

AGB estimates directly. Moreover, the QSM approach is independent of allometric 

equations, which are known as a source of biases in biomass estimation, and can help 

establish and update allometric equations fast and accurately for more forest sites, more 

species, and more trees, especially large ones. However, destructive sampling remains the 

best method to further validate AGB estimates by QSM and quantitatively check the 

sensitivity of QSM to point patch size, leaf point labeling and registration error. 
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CHAPTER 5.  CONCLUSION 

Forest structure is critical information for monitoring and modeling carbon 

sequestration, emission, and storage of forests to balance the global carbon budget and 

manage the forest carbon cycle for climate change mitigation. Almost all current 

approaches to forest structure retrieval at coarse scales (landscape, regional and global) 

require ground measurements for calibration; moreover, all methods require ground 

measurements for validation. This dissertation uses bispectral information from a novel 

terrestrial laser scanner, the Dual-Wavelength Echidna Lidar (DWEL), to evaluate how 

dual-wavelength lidar data can improve ground-based measurements of forest structure. 

For this task, I addressed the technical challenges and scientific implications that relate to 

the extraction and interpretation of separate structure measurements of leaves and woody 

materials from the scans of a midlatitude forest site at Harvard Forest, Petersham, 

Massachusetts, USA, using this full-waveform dual-wavelength terrestrial lidar. The 

integration of spectral and 3-D spatial information by the DWEL and the resultant 

differentiation of leaves and woody materials, for the first time in three-dimensional 

space reveal new details of forest structure, improve forest structure measurements, and 

open possibilities of collecting more detailed biophysical and biochemical properties of 

forest ecosystems in three-dimensional space to broaden and deepen our understanding of 

forest ecosystems. 

5.1 Radiometric Calibration of the Dual-wavelength Terrestrial Lidar 

Measurements of intensities returned to a lidar instrument by scattering of lidar 

pulses, coupled with much more commonly used 3-D spatial locations of scattering 
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events from terrestrial laser scanners, have demonstrated great value in forest structure 

measurements, including leaf area index (LAI), vertical foliage profile, diameter at breast 

height (DBH), and stem count density, (Jupp et al., 2009; Lovell et al., 2011), as well as 

in target classification (Béland et al., 2014) and estimation of plant physiological 

properties (Eitel et al., 2010; Gaulton et al., 2013; Magney et al., 2013). Radiometric 

calibration allows for generalized and deterministic uses of lidar intensities in space and 

time. It is a prerequisite to use lidar intensities synergistically from different instruments, 

different scanning campaigns, and different wavelengths from emerging spectral lidar 

instruments such as the DWEL.  

Calibration of our full-waveform, dual-wavelength, terrestrial laser scanner 

presents a number of challenges relevant to the next generation of terrestrial laser 

scanners. The need to scan from near to far range requires characterizing both telescopic 

effects, which reduce the near-range signal with increasing proximity due to defocusing, 

and saturation effects, which alter the return pulse shape of near-range scattering events. 

In addition, dual- or multiple-wavelength lidar data must be consistent in spectral 

performance to avoid instrument optics and electronics from causing artifacts in derived 

spectral contrasts for further data processing and information extraction, such as 

classification of vegetation components and estimation of plant physiological properties 

(Eitel et al., 2014; Gaulton et al., 2013; Morsdorf et al., 2009). 

In Chapter 2, the formulation of the lidar equation using Ross‟s framework of 

radiation regime modeling of vegetation canopies (Ross, 1981) allows us to connect the 

lidar return signal explicitly to forest canopy structural parameters. This lidar equation 
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identifies the objective variable of lidar calibration, i.e. apparent reflectance, a physically-

defined value related to the size, orientation, and reflectance of a target, independent of 

range and instrument optics and electronics. Apparent reflectance is theoretically useful 

because of its connection with forest structural parameters and practically realizable for 

interpreting it as a reflectance factor.  

Apparent reflectance is a function of size, orientation, and reflectance 

characteristics of a target. Further extraction of biophysical and biochemical information 

about forests usually requires disentangling these three components of apparent 

reflectance, which is not easy. Spectral lidar instruments, such as the DWEL, have the 

potential to solve the problem by canceling out size and orientation by comparing lidar 

return signals at different wavelengths from the same target.  

However, when comparing these apparent reflectance values, errors in the 

calibration at individual wavelengths can be offsetting or amplified, causing a larger 

range of uncertainty in spectral contrast measurements from spectral lidar instruments, 

thus requiring high calibration accuracy. The RMSE values (relative errors) of apparent 

reflectance achieved here, 0.081 for 1064 nm and 0.064 for 1548 nm from the DWEL 

calibration, show that the calibration model and parameter fitting procedure accurately 

convert lidar return intensities in digital counts to apparent reflectance.  

The methodology for DWEL calibration includes three unique features: (1) 

explicit inclusion of telescopic effects in a semi-empirical calibration model; (2) a joint 

calibration model fitting that estimates calibration parameters for both wavelengths 

together; and (3) a spectral constraint using the normalized difference index in this joint 
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calibration model fitting. This calibration methodology can apply to almost any terrestrial 

lidar instrument using a telescope to focus the return power, and thus it is of potentially 

wider use for calibration of other terrestrial lidar systems, particularly spectral lidar ones.  

5.2 Separate Height Profiles of Leaf and Woody Areas 

Leaf area index and vertical foliage profile regulate the radiation interception of 

the forest canopy and thus the canopy photosynthetic capacity and carbon assimilation of 

a forest stand. Direct removal of nonphotosynthetic elements, mainly woody materials in 

the 3-D space of a forest canopy, improves the measurement of LAI and the vertical 

foliage profile. Separate height profiles of leaf and woody areas, explicitly in 3-D space, 

may also improve the simulation and inversion of ecophysiological and 3-D radiative 

transfer models of forest ecosystems. 

In Chapter 3, the differentiation of leaves and woody materials in three-

dimensional space was improved by the synergistic use of spectral information from 

dual-wavelength apparent reflectance and spatial context information given by the 3-D 

spatial distribution pattern of each point and its neighbors in the bispectral lidar point 

cloud. Given the lack of reference leaf-versus-wood classification of higher quality in 

three-dimensional space, I proposed an indirect approach to accuracy assessment of our 

3-D point classification using color hemispherical photos and manual photointerpretation 

selected according to a random stratified sample design. The classification accuracy 

observed (in number of points), 0.70 ± 0.02 to 0.88 ± 0.01 for leaf-off point clouds and 

0.70 ± 0.02 to 0.81 ± 0.01 for leaf-on point clouds, proved the value of combining the 

spectral and 3-D spatial information from the two scanning lasers. The examination of 
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classification error sources highlighted the importance of radiometric calibration 

accuracy and laser beam alignment accuracy in using the added spectral information of 

multiple lasers at different wavelengths.  

Separate height profiles of leaf and woody areas were retrieved from separate gap 

probabilities over range brought by leaves and woody materials through their 

classification in 3-D space. The variance in leaf and wood area profiles over the test 

forest site from different scan locations revealed the large and changing spatial 

heterogeneity of vertical structures of leaves and woody materials at this 1-ha forest site 

over the seasons. In the leaf-off season, the variance in the leaf area profile at different 

canopy heights was relatively larger than that of the woody area profile, reflecting the 

presence of needleleaf crowns of several white pines at different locations in this site. In 

the leaf-on season, the variances were relatively similar in leaf and woody area profiles at 

different canopy heights, reflecting the similar spatial distribution of leaves and woody 

materials with canopy height over the forest site. 

The separate height profiles of leaf and woody areas also revealed the vertical 

pattern of woody-to-total ratios (woody area to total vegetation area including both leaf 

and woody areas), a commonly-used empirical parameter for the correction of woody 

contributions to LAI retrievals using optical methods. The woody-to-total ratios were 

generally stable in the middle and upper canopy but varied in the lower canopy with 

height due to the varying distributions of leaf area from the understory trees and woody 

areas from stems of large trees in the scanned volume above each scan location. 
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5.3 Improvement of a Nondestructive Biomass Measurement Approach 

Allometric equations are commonly used in ground measurements of forest 

aboveground biomass for the calibration and validation of large-area measurements. 

However, inaccuracies in, and inappropriate applications of, allometric equations are still 

large sources of error in AGB estimation (Basuki et al., 2009; Chave et al., 2004; Keller 

et al., 2001; Wang, 2006).  

Chapter 4 introduced a state-of-the-art, nondestructive approach to AGB 

estimation that is independent of allometric equations. It combines a priori wood density 

information with wood volume that is directly calculated from cylinder tree models, built 

from TLS point clouds using Quantitative Structure Modeling (QSM) (Burt et al., 2013; 

Calders, Newnham, et al., 2014; Kaasalainen et al., 2014; Raumonen et al., 2013). The 

removal of leaf points in a single-tree point cloud through the classification of leaves and 

woody materials in 3-D space reduced the variance in the QSM-based wood volume 

estimate and thus improved the biomass estimate. This improvement shows another 

advantage of differentiating leaves and woody materials in 3-D space and further 

supports the addition of spectral information to the 3-D spatial domain with dual-

wavelength scanning. The reduction of variance in QSM estimates on the removal of leaf 

points calls for more accurate 3-D classifications of points in lidar point clouds.  

The examination of variance sources of QSM-based AGB estimates and the 

comparison with AGB estimates by allometric equations also highlighted the importance 

of reducing occlusion in DWEL multiscan point clouds for more complete 3-D 

reconstruction of forests. The improvement of 3-D reconstructions with the DWEL will 
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require a longer measurement range and a better ability to detect the weaker signals of 

partial hits in the leaf-on canopy, as well as more scan locations or a more adaptive 

design of scan location layout.   

5.4 Future Research 

To map and monitor the spatial and temporal variations of forest structure in 

support of understanding, modeling and managing the carbon cycle under a changing 

climate, ground measurements of forest structure need to be collected extensively, 

accurately, and routinely for the calibration and validation of large-area measurements. 

This need is quite challenging to traditional ground measurement approaches, but can be 

achieved through emerging and innovative technologies, such as terrestrial laser 

scanning, as many studies and this dissertation have demonstrated. However, terrestrial 

laser scanning cannot fully fulfill its promise to provide rapid and accurate forest 

structure measurements without further efforts in instrument building and a collaborative 

framework of data collection and processing. 

For the DWEL instrument, we need to increase measurement range through 

higher laser power and a higher signal-to-noise ratio to overcome current limitations on 

LAI retrieval from gap probability inversion and wood volume estimates from 

quantitative structure modeling. The DWEL scanning reported here demonstrated the 

value of the integration of spectral and 3-D spatial information from spectral lidar 

instruments. However, to obtain a stable spectral contrast from multispectral lidar return 

signals in further data processing, a rigorous requirement of laser alignment accuracy 

must be met for spectral lidar instruments using multiple lasers. This laser alignment is 
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not trivial but quite challenging and needs improvement in engineering techniques. A 

different approach is to build a spectral lidar using a single supercontinuum laser, i.e. a 

white laser, without having to align multiple lasers (Kaasalainen et al., 2007). To bring 

this type of spectral lidar instrument into safe and operational use in forests, however the 

laser power needs to be reduced while the signal detection ability of each wavelength will 

need to be enhanced. Also, the cost of white lasers will need to fall through technology 

development.  

Occlusion of upper canopy is one challenge to forest structure measurements by 

terrestrial laser scanning, especially for tall and/or dense forests, such as old-growth 

forests, tropical forests and etc. Combining under-canopy scans from terrestrial lidars and 

above-canopy scans from airborne lidars is a way to reduce the occlusion. Deploying 

terrestrial lidar instruments at different heights is also a viable approach, but requires 

solving the technical problem of moving lidar instruments to different canopy heights. 

The vertical movement of lidar instruments can be simply achieved through a permanent 

or movable (quick and temporary setup) tower or mast inside forests, if available. Flying 

a lidar instrument with a multicopter unmanned aerial vehicle (UAV) along the canopy 

height is also possible, but needs further technology development to navigate UAVs 

through complex forest canopy environments.  

In addition, both tower and UAV approaches prefer and/or require light lidar 

instruments. Further technology development is required to reduce the payload of lidar 

instruments while maintaining good scanning quality and as much information as regular 

lidar instruments provide for forest structure measurements. Moreover, lighter terrestrial 
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lidars are easier to carry into rugged forest areas at more geolocations, which reduces the 

bias in the collection of ground measurements towards more easily-accessed forest areas.  

Terrestrial lidar data processing for forest structure measurement is advancing 

rapidly and extensively for different forest types and geographic conditions through 

various studies. These studies focus on their own unique challenges and problems and 

therefore may use different instruments, different scanning setups, different scan location 

layouts, and/or different processing approaches even for the estimation of the same 

structural parameter. However, in support of operational monitoring of forest structure, a 

collaborative framework of TLS data collection and processing needs to be set up after 

intercomparison of instruments, scanning protocols, and processing algorithms. A 

guideline for data collection at different forest environments is needed, including 

minimum and recommended requirements of TLS instruments, scan location layouts, 

scanning condition (wind, temperature, and etc.), and scanning data quality (measurement 

range, scanning resolution, intensity noise level and etc.).  

In addition, a top-level processing scheme is needed to specify several essential 

and basic modules in the retrieval of forest structure from low-level lidar scanning data. 

Data processing modules can be implemented according to different forest environments 

and specific objectives. An open source library of data processing tools needs to be 

collaboratively developed and maintained.  

Moreover, we need to set up a collaborative framework to facilitate the 

conversion of the many TLS scans collected by forest research and management 

communities around the world to consistent and comparable ground measurements of 
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forest structure across different forest types and geographic conditions. These ground 

measurements from terrestrial laser scanning, acquired through this collaborative 

framework, will result in progress in understanding and projecting the carbon cycle 

forward and greatly benefit human management of the carbon cycle and resulting climate 

change. 
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APPENDIX 

A.1 Area scattering phase function for Lambertian facets of the same 

diffuse reflectance 

Let          (  
  ) be the probability function of leaf angle distribution at 

location designated by range   along a laser beam of interest, the Ross G-function is 

(Ross, 1981),  

        
 

  
∫         |   〈    〉|   
  

 A 1 

where the integral interval    defines all the possible leaf normal directions 

within an elemental volume at range  . Let                   be the leaf scattering 

phase function that defines the part of irradiance in the direction    which is scattered 

from the leaf unit area perpendicular to the direction    to the unit solid angle around the 

direction    (Ross, 1981). The area scattering phase function is derived as,  
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A 2 

If all vegetative facets are Lambertian and have the same diffuse reflectance   , 

since lidar instruments make observations at backscattering direction, i.e.         

 , then we have,  
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A 3 

The two G-functions in the area scattering phase function correspond to the two 

cosine terms in the integral. One cosine term (|   〈     〉|) accounts for the projected 

area that intercepts incoming irradiance per unit vegetative facet area. The other cosine 

term (|   〈     〉|) accounts for the decrease of radiant intensity (      ) with the 

cosine, i.e. projected area for a Lambertian surface. Also we assume the leaf angle 

distribution is constant within the canopy and so is G-function and area scattering 

function.  
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A.2 Error in apparent reflectance from two sources: range and return 

intensity 

According to equation 2-35, at a given range  ,  

 

  
      

  
      

     
  

      
   

A 5 

We omit the subscript   here for clarity. If the absolute errors in range   and 

return intensity   are    and    respectively 
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A 7 

where     and     are errors in apparent reflectance estimate due to    and    

separately. Notice     and     both change with range. Now the total absolute error in 

apparent reflectance,    due to     and     together is  

    
       

         
             A 8 

Also according to equation A 6 and A 7, we have  

 

       

         
 

        

 
 

     
   

    
 

A 9 

Combining equation A 8 and A 9,  
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A 10 

The relative errors in estimated apparent reflectance due to    and    separately 

are denoted as              and             . Then the total relative error in 

apparent reflectance estimate due to    and    together is, 
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A 11 

According to Figure 2-9, at near range     is large while     is very small. At far 

range, it is the opposite. Thus         is small for any given range and we can have,  

            A 12 

A.3 Estimation of error matrix in number of points for a projection pixel 

The reference labels of points in a projection pixel are unknown but the mode of 

the point reference labels is assumed to be same as the pixel reference label because the 

class of a pixel is determined from the mode of all the point classes in a pixel. For 

example, suppose one projection pixel has 11 points, 3 of which were classified as leaves 

and 8 were classified as woody materials. The reference label for this pixel is woody 

materials. First we enumerate all possible combinations of leaf and woody point counts in 

the reference labeling that result in the mode of point reference labels to be the pixel 

reference label (woody materials in the example here as shown by Figure A. 1(1)). Next, 

for one combination of leaf and woody point counts in the reference labeling, we 

enumerate all possible error matrices in number of points that result in the leaf and 

woody point counts in both reference and classification labeling. Figure A. 1(2) shows 

this enumeration of error matrices for one combination, 9 woody points and 2 leaf points 

in reference labeling, along with 8 woody points and 3 leaf points in classification. In this 

way, we enumerate all error matrices in number of points for all the combinations of leaf 
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and woody point counts in reference labeling. The probability of each error matrix is the 

same. The average of these error matrices gives an estimate of error matrix in number of 

points for this projection pixel, given the pixel reference label and classification of points.  

 

Figure A. 1. Diagram of error matrix estimation in number of points for a projection pixel. W(r): woody 

materials for reference label; L(r): leaves for reference label; W(c): woody materials for classification; L(c): 

leaves for classification. Numbers in the tables are point counts.  

A.4 Resample of a point cloud classification based on classification 

accuracy 

In a point cloud classification, the number of leaf points is   
  and the number of 

woody points is   
 . The classification accuracy assessment in number of points gives 

the user‟s accuracies for leaves and woody materials as   ̂ and   ̂. To generate a 

resample of a point cloud classification, we first randomly select   
    ̂ leaf points and 

  
    ̂ woody points as confidently classified points and remain the class labels of 
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these point unchanged in the resample. For all the remaining unconfident points including 

both leaf and woody points, we randomly shuffle their classification labels but remain the 

proportion of points in each class. To be specific, we randomly select   
  (    ̂) 

points from the unconfident points and assign them as leaf points while assigning the rest 

as woody points.  
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A.5 Results from SWIR data for estimation of leaf, woody and plant 

profiles 

A 

1 

 

2 

 

B 

1 

 

2 

 

Figure A. 2. Gap probability at far range for woody materials (Part A) and leaves (Part B) separately from the 

scans at the center plot, in equal-angle Andrieu projection with X dimension as azimuth angles from 0° to 

360° and Y dimension as zenith angles from 0° to 117°. Gap probability was calculated from SWIR data. Row 
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1: Leaf-off season. Row 2: Leaf-on season. Red:     
   , totally attenuated by woody materials. Green: 

    
   , totally attenuated by leaves. White:     

    or     
   , no attenuation by woody materials in 

pair A or leaves in pair B. Blue (scattered, sparse): partial gap by woody materials in pair A or leaves in pair 

B. Black: No data (largely solar aureole). 

 

 
(A1) 

 
(B1) 

 
(A2) 

 
(B2) 

 
Figure A. 3. Variance in profiles due to classification error from each of the five leaf-off scans. Shaded area 

shows three standard deviations; for LAIe and WAIe and some of the LAVDe and WAVDe curves, shaded area 

is indistinguishable from graphic line width. 
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(A1) 

 
(B1) 

 
(A2) 

 
(B2) 

 
Figure A. 4. Variance in profiles due to classification error from each of the five leaf-on scans. Shaded area 

shows three standard deviations; for LAIe and WAIe and some of the LAVDe and WAVDe curves, shaded area 

is indistinguishable from graphic line width. 
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(A1) 

 
(B1) 

 
(A2) 

 
(B2) 

Figure A. 5. Variance in profiles due to heterogeneity of canopy structure across the study site, from SWIR data. 

First row: leaf-off season. Second row: leaf-on season. Shaded area shows one standard deviation. 
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(A1) (B1) 

 
(A2) (B2) 

Figure A. 6. Violin box plots of variance (one standard deviation) in vegetation profiles due to heterogeneity of 

the study site, normalized by average vegetation area indexes. First row: leaf-off season. Second row: leaf-on 

season. Left column: cumulative VAVD (VAI up to a canopy height). Right column: VAVD. The dash line is the 

median. The dotted lines are 25 and 75 percentiles. The ends of the violin boxes show the minimum and 

maximum values. The widths of violin boxes show the probability density of the data from kernel density 

estimate.   
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