1,565 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Line-based Intra Coding for High Quality Video Using H.264/AVC

    Get PDF

    Region-Based Template Matching Prediction for Intra Coding

    Get PDF
    Copy prediction is a renowned category of prediction techniques in video coding where the current block is predicted by copying the samples from a similar block that is present somewhere in the already decoded stream of samples. Motion-compensated prediction, intra block copy, template matching prediction etc. are examples. While the displacement information of the similar block is transmitted to the decoder in the bit-stream in the first two approaches, it is derived at the decoder in the last one by repeating the same search algorithm which was carried out at the encoder. Region-based template matching is a recently developed prediction algorithm that is an advanced form of standard template matching. In this method, the reference area is partitioned into multiple regions and the region to be searched for the similar block(s) is conveyed to the decoder in the bit-stream. Further, its final prediction signal is a linear combination of already decoded similar blocks from the given region. It was demonstrated in previous publications that region-based template matching is capable of achieving coding efficiency improvements for intra as well as inter-picture coding with considerably less decoder complexity than conventional template matching. In this paper, a theoretical justification for region-based template matching prediction subject to experimental data is presented. Additionally, the test results of the aforementioned method on the latest H.266/Versatile Video Coding (VVC) test model (version VTM-14.0) yield an average Bjøntegaard-Delta (BD) bit-rate savings of −0.75% using all intra (AI) configuration with 130% encoder run-time and 104% decoder run-time for a particular parameter selection

    Selected topics in video coding and computer vision

    Get PDF
    Video applications ranging from multimedia communication to computer vision have been extensively studied in the past decades. However, the emergence of new applications continues to raise questions that are only partially answered by existing techniques. This thesis studies three selected topics related to video: intra prediction in block-based video coding, pedestrian detection and tracking in infrared imagery, and multi-view video alignment.;In the state-of-art video coding standard H.264/AVC, intra prediction is defined on the hierarchical quad-tree based block partitioning structure which fails to exploit the geometric constraint of edges. We propose a geometry-adaptive block partitioning structure and a new intra prediction algorithm named geometry-adaptive intra prediction (GAIP). A new texture prediction algorithm named geometry-adaptive intra displacement prediction (GAIDP) is also developed by extending the original intra displacement prediction (IDP) algorithm with the geometry-adaptive block partitions. Simulations on various test sequences demonstrate that intra coding performance of H.264/AVC can be significantly improved by incorporating the proposed geometry adaptive algorithms.;In recent years, due to the decreasing cost of thermal sensors, pedestrian detection and tracking in infrared imagery has become a topic of interest for night vision and all weather surveillance applications. We propose a novel approach for detecting and tracking pedestrians in infrared imagery based on a layered representation of infrared images. Pedestrians are detected from the foreground layer by a Principle Component Analysis (PCA) based scheme using the appearance cue. To facilitate the task of pedestrian tracking, we formulate the problem of shot segmentation and present a graph matching-based tracking algorithm. Simulations with both OSU Infrared Image Database and WVU Infrared Video Database are reported to demonstrate the accuracy and robustness of our algorithms.;Multi-view video alignment is a process to facilitate the fusion of non-synchronized multi-view video sequences for various applications including automatic video based surveillance and video metrology. In this thesis, we propose an accurate multi-view video alignment algorithm that iteratively aligns two sequences in space and time. To achieve an accurate sub-frame temporal alignment, we generalize the existing phase-correlation algorithm to 3-D case. We also present a novel method to obtain the ground-truth of the temporal alignment by using supplementary audio signals sampled at a much higher rate. The accuracy of our algorithm is verified by simulations using real-world sequences

    Nouvelles méthodes de prédiction inter-images pour la compression d’images et de vidéos

    Get PDF
    Due to the large availability of video cameras and new social media practices, as well as the emergence of cloud services, images and videosconstitute today a significant amount of the total data that is transmitted over the internet. Video streaming applications account for more than 70% of the world internet bandwidth. Whereas billions of images are already stored in the cloud and millions are uploaded every day. The ever growing streaming and storage requirements of these media require the constant improvements of image and video coding tools. This thesis aims at exploring novel approaches for improving current inter-prediction methods. Such methods leverage redundancies between similar frames, and were originally developed in the context of video compression. In a first approach, novel global and local inter-prediction tools are associated to improve the efficiency of image sets compression schemes based on video codecs. By leveraging a global geometric and photometric compensation with a locally linear prediction, significant improvements can be obtained. A second approach is then proposed which introduces a region-based inter-prediction scheme. The proposed method is able to improve the coding performances compared to existing solutions by estimating and compensating geometric and photometric distortions on a semi-local level. This approach is then adapted and validated in the context of video compression. Bit-rate improvements are obtained, especially for sequences displaying complex real-world motions such as zooms and rotations. The last part of the thesis focuses on deep learning approaches for inter-prediction. Deep neural networks have shown striking results for a large number of computer vision tasks over the last years. Deep learning based methods proposed for frame interpolation applications are studied here in the context of video compression. Coding performance improvements over traditional motion estimation and compensation methods highlight the potential of these deep architectures.En raison de la grande disponibilité des dispositifs de capture vidéo et des nouvelles pratiques liées aux réseaux sociaux, ainsi qu’à l’émergence desservices en ligne, les images et les vidéos constituent aujourd’hui une partie importante de données transmises sur internet. Les applications de streaming vidéo représentent ainsi plus de 70% de la bande passante totale de l’internet. Des milliards d’images sont déjà stockées dans le cloud et des millions y sont téléchargés chaque jour. Les besoins toujours croissants en streaming et stockage nécessitent donc une amélioration constante des outils de compression d’image et de vidéo. Cette thèse vise à explorer des nouvelles approches pour améliorer les méthodes actuelles de prédiction inter-images. De telles méthodes tirent parti des redondances entre images similaires, et ont été développées à l’origine dans le contexte de la vidéo compression. Dans une première partie, de nouveaux outils de prédiction inter globaux et locaux sont associés pour améliorer l’efficacité des schémas de compression de bases de données d’image. En associant une compensation géométrique et photométrique globale avec une prédiction linéaire locale, des améliorations significatives peuvent être obtenues. Une seconde approche est ensuite proposée qui introduit un schéma deprédiction inter par régions. La méthode proposée est en mesure d’améliorer les performances de codage par rapport aux solutions existantes en estimant et en compensant les distorsions géométriques et photométriques à une échelle semi locale. Cette approche est ensuite adaptée et validée dans le cadre de la compression vidéo. Des améliorations en réduction de débit sont obtenues, en particulier pour les séquences présentant des mouvements complexes réels tels que des zooms et des rotations. La dernière partie de la thèse se concentre sur l’étude des méthodes d’apprentissage en profondeur dans le cadre de la prédiction inter. Ces dernières années, les réseaux de neurones profonds ont obtenu des résultats impressionnants pour un grand nombre de tâches de vision par ordinateur. Les méthodes basées sur l’apprentissage en profondeur proposéesà l’origine pour de l’interpolation d’images sont étudiées ici dans le contexte de la compression vidéo. Des améliorations en terme de performances de codage sont obtenues par rapport aux méthodes d’estimation et de compensation de mouvements traditionnelles. Ces résultats mettent en évidence le fort potentiel de ces architectures profondes dans le domaine de la compression vidéo

    Hierarchical motion estimation for side information creation in Wyner-Ziv video coding

    Full text link
    Recently, several video coding solutions based on the distributed source coding paradigm have appeared in the literature. Among them, Wyner-Ziv video coding schemes enable to achieve a flexible distribution of the computational complexity between the encoder and decoder, promising to fulfill requirements of emerging applications such as visual sensor networks and wireless surveillance. To achieve a performance comparable to the predictive video coding solutions, it is necessary to increase the quality of the side information, this means the estimation of the original frame created at the decoder. In this paper, a hierarchical motion estimation (HME) technique using different scales and increasingly smaller block sizes is proposed to generate a more reliable estimation of the motion field. The HME technique is integrated in a well known motion compensated frame interpolation framework responsible for the creation of the side information in a Wyner-Ziv video decoder. The proposed technique enables to achieve improvements in the rate-distortion (RD) performance up to 7 dB when compared to H.263+ Intra and 3 dB when compared to H.264/AVC Intra

    Iris Recognition: Robust Processing, Synthesis, Performance Evaluation and Applications

    Get PDF
    The popularity of iris biometric has grown considerably over the past few years. It has resulted in the development of a large number of new iris processing and encoding algorithms. In this dissertation, we will discuss the following aspects of the iris recognition problem: iris image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement and two novel applications.;The specific claimed novelties of this dissertation include: (1) a method to generate a large scale realistic database of iris images; (2) a crosspectral iris matching method for comparison of images in color range against images in Near-Infrared (NIR) range; (3) a method to evaluate iris image and video quality; (4) a robust quality-based iris segmentation method; (5) several approaches to enhance recognition performance and security of traditional iris encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on the move from a distance and (7) a method to improve performance of biometric systems due to available soft data in the form of links and connections in a relevant social network

    A motion-based approach for audio-visual automatic speech recognition

    Get PDF
    The research work presented in this thesis introduces novel approaches for both visual region of interest extraction and visual feature extraction for use in audio-visual automatic speech recognition. In particular, the speaker‘s movement that occurs during speech is used to isolate the mouth region in video sequences and motionbased features obtained from this region are used to provide new visual features for audio-visual automatic speech recognition. The mouth region extraction approach proposed in this work is shown to give superior performance compared with existing colour-based lip segmentation methods. The new features are obtained from three separate representations of motion in the region of interest, namely the difference in luminance between successive images, block matching based motion vectors and optical flow. The new visual features are found to improve visual-only and audiovisual speech recognition performance when compared with the commonly-used appearance feature-based methods. In addition, a novel approach is proposed for visual feature extraction from either the discrete cosine transform or discrete wavelet transform representations of the mouth region of the speaker. In this work, the image transform is explored from a new viewpoint of data discrimination; in contrast to the more conventional data preservation viewpoint. The main findings of this work are that audio-visual automatic speech recognition systems using the new features extracted from the frequency bands selected according to their discriminatory abilities generally outperform those using features designed for data preservation. To establish the noise robustness of the new features proposed in this work, their performance has been studied in presence of a range of different types of noise and at various signal-to-noise ratios. In these experiments, the audio-visual automatic speech recognition systems based on the new approaches were found to give superior performance both to audio-visual systems using appearance based features and to audio-only speech recognition systems
    • …
    corecore