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Abstract

Iris Recognition:
Robust Processing, Synthesis, Performance Evaluation and Applications

by

Jinyu Zuo
Doctor of Philosophy in Electrical Engineering

West Virginia University

Natalia A. Schmid, Ph.D., Chair

The popularity of iris biometric has grown considerably over the past few years. It has
resulted in the development of a large number of new iris processing and encoding algorithms.
In this dissertation, we will discuss the following aspects of the iris recognition problem: iris
image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement
and two novel applications.

The specific claimed novelties of this dissertation include: (1) a method to generate a large
scale realistic database of iris images; (2) a crosspectral iris matching method for comparison
of images in color range against images in Near-Infrared (NIR) range; (3) a method to
evaluate iris image and video quality; (4) a robust quality-based iris segmentation method;
(5) several approaches to enhance recognition performance and security of traditional iris
encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on
the move from a distance and (7) a method to improve performance of biometric systems
due to available soft data in the form of links and connections in a relevant social network.
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Chapter 1

Introduction

In ancient Greek, “bios” means life and “metron” means measure. Two words combine

to form a portmanteau word, “biometrics”, which means measuring some body’s physical

or behavioral characteristics, such as face, gait or voice, to recognize a person. In general

sense, “biometrics” is related to “biometry” which is statistical method of processing any

biological data. It is in the past 30-40 years that the meaning of biometrics narrowed down

to few physiological or behavioral traits of subjects. These traits (or to be more precise,

measurements of the traits) are processed, encoded and matched against similar data in a

database. The system implementing this steps is called biometric system. Biometric systems

can identify or verify individuals depending on requirements to the system. Verification

systems confirm or reject identity of a single individual, while identification systems select

the best matching subject (based on his biometric measurements) among a long list of

subjects.

This dissertation is devoted to a single biometric known as iris. Iris biometric systems

use the “colored ring of tissue around the pupil” to identify a subject [2]. Fig. 1.1 shows an

iris image acquired using a NIR (Near-Infrared) illumination source and camera. The pupil

region generally appears darker than the iris area unless “red-eye” effect is observed. This

happens when the light source is too close to the sensor-pupil axis. The pupil area in this case

appears as a white circle. Under NIR illumination iris shows a rich pattern of ridges, which

we perceive as coming from projections of fibers and muscles. The central pupillary zone

normally contains a more complex texture pattern than the outer ciliary zone. The border
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Figure 1.1: Shown is an iris image captured using a Near-Infrared camera [1].

between these two regions is called collarette. The iris texture is developed at embryonic

stage of our development, and due to genetic and environmental influence it is believed to be

unique for each individual and each eye [3]. The appearance of the iris is relatively constant

during lifespan for most of individuals.

The idea of using iris pattern for recognition of individuals can be attributed to a promi-

nent eye surgeon from St. Paul, Frank Burch, who in 1936 promoted the idea that the

complex iris patterns could serve as a kind of optical fingerprint to recognize an individual.

In 1987, two other ophthalmologists, Aran Safir and Leonard Flom were awarded a patent

for using the iris as a means for human identification [4, 5]. However only after the success

of John Daugman’s automated iris recognition algorithm, which was awarded a patent in

1995, iris recognition gains acceptance among researchers.

Compared to other biometrics, iris has a number of advantages: (1) it is an internal organ

that is well protected against damage, and no contact is necessary when iris is scanned for a

usable sample; (2) good quality iris images can be easily segmented; (3) the unique feature

set extracted from irises is suitable for large-scale recognition.

Similar to other biometric systems, iris recognition systems can operate in two different
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Figure 1.2: Shown is the block diagram of a common iris recognition procedure [1].

modes: “verification” and “identification.” In a verification scenario, a person claims a

particular identity, and the system uses his/her iris pattern to verify or reject the claim.

Verification is performed by matching an iris sample acquired at the time of the claim

against the iris sample stored in a database during enrollment procedure. If the two samples

match well enough, the identity claim is verified, and if the two samples do not match well

enough, the claim will be rejected.

In an identification scenario, an iris sample is presented without any associated identity

claim. For example, a sample may be captured by a hidden camera. The task is to identify

the unknown iris sample by comparing it to each entry in a database of enrolled irises. The

set of previously enrolled samples with identity tags attached is often called a gallery, and

the unknown iris sample is often called a probe. The closest match is used to identify the

unknown identity.

Both modes of operation involve the same iris processing blocks shown in Fig. 1.2: (1)

iris is captured using a NIR iris scanner, (2) quality of iris image or video is evaluated using

a quality block, (3) iris area is then segmented from the background, (4) the segmentation

result and its corresponding quality and segmentation scores are passed to the encoder for

the generation of an informative and compact representation (called template), (5) finally,

the extracted representation is fed to the matcher for the evaluation of the matching score.
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1.1 Iris Acquisition

Iris acquisition set up determines quality of the iris data. Different choices of the camera

sensor, lens, illumination and capture distance will result in data of varying quality.

1.1.1 Successful Commercial Systems

Almost all commercial iris recognition systems are using NIR illumination sources and

NIR cameras. This is because color cameras are not as effective as NIR cameras in terms

of capturing the textural information in iris. Visually dark brown (almost black) irises

do not display much color variation and thus contain almost no information useful for iris

recognition.

Due to the requirement to be low cost iris recognition systems often involve inexpensive

and thus low quality sensors and optics. This considerably limits capture distances as well

as quality of captured data. A strong source of NIR illumination is another important

component. However, pupil does not respond on the NIR illumination the same way as

it responds on visible light. Therefore, safety issue becomes more restrictive in a system

operating in NIR range. To protect the eye from overheating and thus from damage, the

strength of the illumination is required not to exceed a predetermined threshold [6].

1.1.2 Visible Light

As was mentioned before, dark irises contain almost no useful information for iris recogni-

tion. However, a large number of surveillance systems rely on imaging in visible range. How

to use the color and texture information in color iris images is an important and relatively

new research topic [7].

1.1.3 Long Distance

Surveillance applications imply that iris information is captured from a distance longer

than 2-3 feet, which is a typical distance for personal and security applications. Under this

scenario, the quality of the iris image will be heavily degenerated because of the limitation of
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Figure 1.3: Shown is an iris image captured using a visible light camera [1].

(a) (b) (c)

Figure 1.4: Shown are iris images captured at (a) 6, (b) 8 and (c) 10 feet.

the capture device (its aperture, depth of field, etc.) and thus, getting acceptable recognition

performance will be very challenging.

1.1.4 Generated Data

Reliable testing of newly designed iris recognition algorithms requires a large amount of

relevant data. These data have to be diverse both in terms of subject’s presentation (distance,

angle of view, etc.) and in terms of environmental conditions. Since no a large dataset of

iris images exists, which encompasses all these requirements, generation of synthetic data

for testing could be a potential solution. A synthetic database is easy to access, avoids the

privacy concerns and can be easily scaled up. However, because of the limitation of the
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algorithm, synthetic data can not exactly mimic the real situations. Therefore, synthetic

data have to be used with caution.

1.2 Iris Quality

The performance of the system is always determined by the quality of the input data.

We propose a number of potential approaches on how to evaluate the quality, how to select

good quality data, and how to use the quality scores.

1.2.1 Selecting the Best Quality Iris Image

When the input of the system is a video sequence, frames with the best quality need to

be selected. While the precise segmentation is time consuming and some quality factors are

only available after the segmentation, only out-of-focus is used as the selecting criterion in

the current implementation.

1.2.2 Processing Iris Data

Whenever the input image is selected, it can be enhanced and fully processed. At this

stage, segmentation based quality factors, such as occlusion and dilation, can be evaluated.

These quality scores will be passed to the matching block of iris recognition system to improve

its recognition performance.

1.2.3 Adaptive Biometric Authentication

Some quality measurements can be also used as weak features in biometrics. Given

enough training data and well designed quality factors, not only the recognition performance

of the feature set but also the confidence of the matching score can be predicted. Therefore,

predicted quality of data as well as quality measures can be used to enhance performance of

biometric systems.
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1.3 Iris Segmentation

Iris segmentation is perhaps the most important processing step, since the precision of

segmentation effects recognition performance. The region of interest needs to be precisely

segmented from the background. In some cases it may not lead to a success. When the

capture condition is assumed non-ideal or it is unknown, such as a surveillance scenario, the

full set of enhancement technologies has to be involved to segment the iris. A series of image

processing procedures will be used to compensate all possible low quality factors. At last a

robust segmentation performance evaluation procedure is added to let the user know how

good the segmentation result is.

1.4 Encoding

Encoding is performed to extract salient features representing an iris. This step ensures

that data are compactly represented and also ensures that noise introduced by acquisition

system is suppressed or removed.

Many different filters have been suggested to extract features: Gabor filters [8], modi-

fied Log-Gabor filters [9], Gaussian filter [10], Laplacian-of-Gaussian filter [11] [12], dyadic

wavelet transform [13], discrete cosine transform [14] and wavelet packets [15] [16] [17]. Ex-

tracted features were quantized to two levels yielding binary codes. Techniques other than

filter-based approaches can also be used to generate binary iris codes, for example, local

histogram equalization and a quotient thresholding [18], [19], [20].

Instead of binary presentations, real-valued feature vectors can be generated using inde-

pendent component analysis (ICA), principal component analysis (PCA), linear discriminant

analysis (LDA), direct linear discriminant analysis (DLDA), local binary patterns (LBP) and

even histograms [21] [22] [23] [24] [25] [26] [27].

From log-Gabor filter based binary iris code, we developed an encoding scheme, which

incorporates ordinal information into the expended binary code. This expansion is especially

useful for low quality area where only one out of two bits matches. Another encoding

approach is based on median filters. Combinations of a series of median filters enhances iris
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texture and removes illumination variations at the same time.

The idea of “cancelable biometrics” originally proposed by Nalini Ratha and his col-

leagues was also applied to iris biometric. This is an approach to solve the privacy and

security problems simultaneously.

1.5 Performance

Since biometric systems are a case of more general pattern recognition systems, all meth-

ods to evaluate performance of pattern recognition systems directly apply to analyze per-

formance of biometric systems. The most common performance measures are summarized

below.

Similarity scores (distance measures) are used to express the similarity (difference) be-

tween iris patterns. If Hamming distance is used, then the lower the score is, the higher is

the similarity between two binary templates. Access to the system is granted only when the

distance is lower than a certain threshold. Under the optimal conditions, genuine distances

(scores of patterns from the same subject known by the system) should always be lower than

the distances of impostors. If this would be true, a single threshold, that separates the two

groups of distance metrics, could be used to differ between genuine users and impostors.

Due to clutter, noise and errors, this assumption may fail for real world biometric systems.

In some cases impostor patterns generate the values of the distance metric that are lower

than the values of the distance metric generated by genuine patterns. In this case, because

the threshold is already chosen as a system parameter, some classification errors may occur.

The “decidability” index is a single number performance measure, which tells how well

the two distributions are separated [8]. If the means of the genuine distribution and the

imposter distribution are µ1 and µ2, and their standard deviations are σ1 and σ2, then the

decidability index, d′, is defined as

d′ =
|µ1 − µ2|
√

σ2
1+σ2

2

2

. (1.1)

The fraction of the falsely accepted patterns divided by the number of all impostor

patterns is called False Acceptance Rate (FAR). The fraction of the number of rejected
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genuine patterns divided by the total number of genuine patterns is called False Rejection

Rate (FRR). For both FAR and FRR, their values lies in between zero and one. Receiver

operating characteristic (ROC) curve is defined as a plot of FRR versus FAR parameterized

by threshold values. If histograms of genuine and imposter distance metrics overlap, the

FAR and FRR curves plotted as functions of the threshold intersect at a certain point. The

point of intersection is called Equal Error Rate (EER). The area under the ROC curve is

another single point performance measure.

1.6 Applications

Iris recognition can be used in almost any biometric applications. However, the system

needs to be designed according to the unique property of the iris biometric. How biometric

systems can be combined with existing systems, and how a piece of additional information

other than biometrics can be used to boost the system performance, are also illustrated in

this dissertation.

1.7 Organization of this Dissertation

As illustrated in Fig. 1.5, the following chapters of this dissertation will be in the order

of data processing: from data acquisition, segmentation, encoding to designing a matcher

and applications. Ch. 2 - 7 of this dissertation have been externally published. Newly

developed and yet unpublished results are described in details in Ch. 8. Ch. 9 concludes

the dissertation with a summary of contributions.
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Figure 1.5: Shown is the organization of this dissertation and the relationship among its
chapters.
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Chapter 2

Synthetic Iris

The coverage strength of iris biometric (also known as scalability) is an important un-

solved problem. This is partially due to the lack of a large scale database of iris images, which

can be used to evaluate performance of existing iris recognition algorithms. Our approach

to solve the problem is summarized in the chapter below.

2.1 Introduction

Most existing iris biometric systems or algorithms claim to have exclusively high perfor-

mance. However, since there are no publicly available large scale and even medium size data

sets, neither of the algorithms has undergone extensive testing. There are several data sets

of frontal view iris images presently available for public use [28], [29], [7], [30], [31]. Table

2.1 provides a brief summary of those databases.

Finally all algorithms should be tested on large real iris data sets to verify their perfor-

mance. But the issues of security and privacy let both biometrics information providers and

biometrics researchers think twice before they provide or publish biometrics information to

the public, and then slow down the speed of collecting and publishing biometrics data, such

as iris images, from volunteer. While biometrics technologies become much maturer than

before, the probability that iris information is used in passport or credit card verification will

be very high in the future. Then iris information, especially high resolution pictures, will

become the most important personal information and should be safely protected. But it can
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Table 2.1: Public iris databases

Database Database # of # of Images Color or
Name Size Classes per Class Gray Scale

CASIA-I 756 108 7 gray
CASIA-III-device1 1200 60 20 gray
CASIA-III-device2 1200 60 20 gray
CASIA-III-Interval 2655 396 NA gray
CASIA-III-Lamp 16213 819 NA gray
CASIA-III-Twins 3183 400 NA gray

ICE2005 2953 244 NA gray
MMU1 450 90 5 gray
MMU2 995 199 5 gray

WVU-off-angle 560 140 4 gray
WVU 2453 359 NA gray
UBIRIS 1877 241 NA color
UPOL 384 128 3 color

BATH-free 1000 50 20 gray

not be anticipated that all iris images in public databases will be properly used, even they

are not tagged. Some people may use them to break into an iris biometric system by using

an iris picture of a person who already enrolled in that biometric system, or just enroll into

an iris biometric system as a new user for the purpose of hiding his or her own biometrics

information. Compared to credit card or social security number, iris or other biometrics

information also has a disadvantage: if you lose its privacy, you can not get a new one.

With the lack of data and the thirst for the performance evaluation, an optional solution

to the problem of extensive algorithm testing is possible: synthetically generating a large

scale data set of iris images. This chapter proposes a model based, anatomy based method

to synthesize iris images. The purpose of this work is not to provide a large database of

iris images that will replace the real world data, but rather provide an option to compare

efficiency, limitations, and capabilities of newly designed iris recognition algorithms through

their testing on this large scale synthetic iris data set.

We are aware of the advice by Mansfield and Wayman [32] to avoid adding synthetic

data to the test set, or adding artificial noise to data for scenario testing in order to avoid

the resulting bias that often makes the results difficult to interpret. Although controllable
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random parameters can be tuned to simulate a certain collected real iris database, the use

of our data set can only be viewed as an option to get a quick estimate of recognition

performance for a designed iris recognition system. Some synthetic data sets may provide

optimistic or pessimistic bounds on recognition performance because of their bias compared

to collected real iris images. Furthermore, the results of testing on synthetic data can always

be verified against the results predicted by performance extrapolation methods using a small

but real data set (see for example [33]).

The first methodology for generating synthetic iris images has been proposed by Cui

et al. [34], where a set of principle components from downsampled real iris images was

calculated using Principal Component Analysis (PCA) method. Principle components were

further combined with weights to determine the center of each class. Disturbances were added

to the center images to generate a number of low resolution iris images from the same iris

class. Low resolution results were enhanced using a super-resolution method to get the high

resolution iris images. Another method for the generation of synthetic iris images based on

application of Markov Random Field has been recently developed at WVU [35] and offered as

an alternative to the model based, anatomy based method described in this chapter. Lefohn

et al. [36] developed an ocularist’s approach using the computer vision technology for the

purpose of both the ocular prosthetics and entertainment industries. In their work a set of

textured layers was used to render each iris. Wecker et al. [37] combined characteristics of

real irises to augment existing real iris databases. In their work a multi-resolution technique

known as reverse subdivision was used to capture the necessary characteristics.

When generating synthetic iris images, the problem that one faces is to define a measure

of “realism” and make the database suitable for biometrics testing. What is the set of

requirements that a synthetic iris has to satisfy in order to be recognized and treated as

a physically collected iris image? The conclusion could be: (i) each iris image should look

like a real iris; (ii) the data set should have the similar statistical characteristics to those

of real irises. Real iris patterns are so anatomically complex that it is nearly impossible to

mathematically describe any particular one. Thus, standards of realism will be limited to

some degree. However, simplified mathematical models of iris anatomical structures may be

used for iris structure generation.
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In this work, an anatomy based model is adopted for the generation of iris images and the

performance of synthetic irises is evaluated in three different levels. Extensive anatomical

studies of the iris, including the study of ultra-structure images and high-resolution images

[38] [39], structure and classification of irises due to iridology [40], and models available for

the iris [34] [36] were conducted. As a result of observational study, a few common visual

characteristics of irises have been found:

• Most iris images used in biometrics research are infrared images, which emphasize on

structural texture more than color information and are more constant over time;

• Radial fibers constitute the basis for iris tissues, and dominate the structure informa-

tion;

• A part of iris is covered by a semitransparent layer with a bumpy look and a few

furrows which are caused by retractor muscles;

• Top layer’s irregular edge also contributes to the iris pattern.

• The collarette part is raised and not always at the same position as the edge of the top

layer;

Thus, the main frame of the iris pattern is formed by radial fibers, raised collarette, and

a partially covered semitransparent layer with an irregular edge. At the same time, the

difference of pixel values in an infrared iris image is not only the result of the iris structure

information. It is also related to the material that the iris is composed of, surface color, and

lighting conditions.

All those common features just can make each synthetic iris looks like a real iris. To

simulate the stochastic characters, this work models the generation of synthetic irises to a

image processing procedure controlled by random parameters. On one hand, each parameter

needs to be limited in a certain range to keep the common iris features. On the other hand,

each parameter should varies as much as it can to increase the randomness of the iris pattern.

We also try to model the quality factors that affect the performance of the iris recognition

system. Quality factors will change both genuine and imposter distributions, and are very
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important for testing the robustness and the performance of the system. The quality factors

that are simulated in the synthesis system include occlusion, shot noise, out-of-focus blur,

motion blur, rotation, contrast and lighting.

The remaining part of the chapter is organized as follows. Sec. 2.2 introduces our

methodology for generating iris images. Analysis and comparison of generated iris images

with real iris images is performed in Sec. 2.3 and 2.4. Three levels for comparison are

identified: (1) image level, (2) texture level, and (3) decision level. While Sec. 2.3 focuses

on the comparison at the first two levels, Sec. 2.4 provides detailed analysis of generated iris

images at the decision level. The work concludes with a summary in Sec. 2.5.

2.2 Methodology

In this work, the generation of an iris image can be subdivided into five major steps:

1. Generate continuous fibers in cylindrical coordinates (Z, R, and Θ), where the axis Z ∈
(−∞,∞) is the depth of the iris, R ∈ [0,∞) is the radial distance, and Θ ∈ [0, 2π) is

the clockwise rotational angle with a zero value corresponding to the 3 o’clock position.

Each fiber is a continuous 3D curve in this cylindrical coordinate system. Presently

the synthesis system uses seven random parameters, denote them as pi, i = 1, 2..., 7 to

generate the projection of each continuous fiber onto the two-dimensional plane (R,Θ)

and six random parameters, denote them as pi, i = 8, 9..., 13 to generate the projection

of each fiber onto (R,Z) half plane. The following equations (2.1) and (2.2) describe

the dependencies of fiber coordinates in (R,Θ) and (R,Z) planes:

Θ = p1 · sin(p2 · (R + p3)) + p4 · sin(p5 · (R + p6)) + p7 ·R2 (2.1)

Z = p8 + p9 · sin(p10 · (R + p11)) · sin(p12 · (R + p13)) (2.2)

The fiber curve is further sampled in R direction to obtain matrices of Θ and Z

coordinates. In order to simulate petal shape patterns, another strong dependence

between Θ and Z was added to the fibers in pairs.
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Figure 2.1: Shown is the cylindrical coordinate system.

Note that even with 13 random parameters, the generated fibers look smooth compared

to real fibers. An additional option that our iris generator has is to add a “zigzag”

disturbance to the original smooth functions (2.1) and (2.2). It is implemented by

adding a bandwidth filtered result of a Gaussian random sequence to the original Θ

and Z values. Because the width of different fibers, even different parts of the same

fiber, also should not be uniform, another same size matrix as Θ is added to provide

width information for all sample points in R direction. By this time, each fiber cannot

be presented simply by several parameters anymore because of those additional totally

random vibrations. It is believed that a more complex fiber model may provide a better

synthetic result in terms of shape similarity and pattern randomness. But it still needs

practical confirmation from anatomy aspect, such as fiber structure anatomy analysis.

2. Generated 3D fibers are then projected into a 2D polar space (R,Θ), and furthermore

transformed to Cartesian pixel coordinates (X, Y ) forming a 2D frontal view fiber

image. Since only top fibers can be seen in a 2D image, the gray value of each pixel

in this 2D space is determined by the highest fiber at that point and equals to its Z

value. A set of basic B-spline functions in the polar coordinate system (R, Θ) is used

to model the shapes of the pupil and the iris, that is, their deviation from a circular

shape.

3. Add a top layer with an irregular edge. The edge of the top layer is modeled using the

combination of cosine functions. The area where the basis images should be covered

by the top layer is blurred to make the effect of a semitransparent top layer. The area

of the collarette also is brightened to create the effect of a lifted portion of the iris.



CHAPTER 2. SYNTHETIC IRIS 17

Figure 2.2: Shown is the step 1 of iris image synthesis.

4. Blur the root of the iris to make that area look continuous. Then add a smoothed

Gaussian noise layer to make the top layer bumpy.

5. Based on a required degree of eyelid opening, draw two low frequency cosine curves

for the eyelids. Then randomly generate the eyelashes. This step is used to simulate

the occlusion which is coming from eyelids and eyelashes. Different open degrees of

eyelids and different directions and amounts of eyelashes will result in different degrees

of occlusion. Other simple quality factors, which effects both intra-class and inter-class

distance, including shot noise (directly use a MATLAB function in the image processing

toolbox), blur (simulate the out-of-focus blur or motion blur using a particular filter

in MATLAB), contrast (adjust the contrast globally by compressing the range of the

pixel values), specular reflections (adjust the brightness locally), can also be added

in this step. More effects, such as off-angle (projective or affine transforms), can be

incorporated in the final synthetic iris image.
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Figure 2.3: Shown are the step 2-4 of iris image synthesis.
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Fig. 2.2 and Fig. 2.3 demonstrate the whole generation procedure for a iris class. Iris

images generated by the synthetic system are composed of a large number of fibers. The

number may vary in the range from 500 to 2,500. This adds up to thousands of random

variables that are used in the calculation of the fiber shape shown in Fig. 2.2. Besides of

parameters used in the generation of fibers, the generation of the final iris image is also

based on other 40 controllable random parameters including the average fiber size, the size

of the pupil, the thickness of the iris, the thickness of the top layer, the cluster degree of

fibers, the blur range of the iris root, the location of the collarette, the amplitude of the

collarette, the span range of the collarette, the transparency parameter of the top layer, the

net structure parameter, the angle and the size of two eyelids, the horizontal location of the

eyeball compared to the eyelids, the number of crypts, and the direction and the amount of

eyelashes. Each parameter follows uniform or Gaussian distribution on a prescribed interval.

The range of each interval is tuned to ensure the appearance of synthetic irises close to the

appearance of real irises.

Although every parameter has its contribution in the final result, the degrees of influence

on the recognition performance are different for different parameters. To test the sensitivities

of the parameters, the following experiments was conducted. All parameters were divided

into three major groups: (i) parameters related to the fibers, labeled as “FIBER” (ii) pa-

rameters related to the collarette and the edge of the top layer, labeled as “COLLARETTE”

and (iii) parameters responsible for other visual effects, such as blur, transparency and the

bumpy texture of the top layer, labeled as “BASIC”. Although the locations of the edge and

the collarette are different, the parameters used to generate them are still assigned to the

same group for the convenience. In the first experiment, we fixed all parameters in group (ii)

and (iii) and varied parameters of the fiber structure. A set of 20 iris images was generated.

Fig. 2.4 displays two sample iris images generated following this procedure. The recognition

performance of those synthetic iris images was evaluated using Libor Masek’s code [41] that

is an implementation of the Gabor filter based method. Hamming Distance (HD) was calcu-

lated for each pair of generated iris images. The results of evaluation are shown in Fig. 2.7

(the rightmost histogram). In the second experiment, the parameters of fiber structure and

the parameters in group (iii) were fixed, while the parameters that influence the generation
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Figure 2.4: Iris images generated by varying “FIBER” parameters (crypts are associated
with fibers).

Figure 2.5: Iris images generated by varying “COLLARETTE” parameters.

of the collarette and the edge of the top layer were varied. Two sample iris images generated

following this procedure are shown in Fig. 2.5. The histogram plot of HDs for this case is

also displayed in Fig. 2.7 (the distribution histogram in the middle). In the last experiment,

the parameters in group (i) and group (ii) were fixed, while the basic parameters were varied.

A pair of generated iris images and the distribution of HDs for this case are shown in Fig.

2.6 and in Fig. 2.7 (the leftmost histogram), respectively.

From those experiments, it can be seen that the change of fibers dominate the change of

synthetic iris pattern in terms of the recognition performance. The variation of the collarette

and the edge of the top layer partially changes the iris pattern. However, these parameters do

not influence the recognition performance as much as the fiber structure does. The external
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Figure 2.6: Iris images generated by varying “BASIC” parameters.
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Figure 2.7: Shown are three histogram plots of HDs obtained by varying parameters in
one of three major parameter groups. The rightmost histogram (marked in the dark color)
was obtained when images generated by varying “FIBER” parameters were compared. The
histogram in the middle (marked in the gray color) was obtained by comparing images with
random “COLLARETTE” parameters. The leftmost histogram (marked in the light color)
was generated by involving images generated by varying a set of “BASIC” parameters.
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effect parameters influence recognition performance the least of all parameters. In conclusion,

our experimental results have shown that the recognition performance is extremely sensitive

to the variation in the fiber structure and less sensitive to the variation of other parameters.

2.3 Performance Analysis: Image and Texture Level

Three levels are identified at which the similarity of synthetic and real iris images can be

quantified. They are as follows: (i) global layout, (ii) features of fine iris texture, and (iii)

recognition performance.

2.3.1 Visual Evaluation

A gallery of synthetic iris images generated using this anatomy based approach is shown

in Fig. 2.8. To ensure that generated irises look like real irises, a few eyelids from CASIA

data set were borrowed. Note that only one image in Fig. 2.8 is a real iris image, a sample

from CASIA data set. It is placed among synthetic irises for the purpose of comparison.

To further demonstrate that synthetic iris images look similar to real iris images, three

processed iris images which come from different data sets are displayed in Fig. 2.9. They are

unwrapped and enhanced to reduce the differences caused by different shapes or different

degrees of contrast. The samples on the upper and middle panels are normalized images from

CASIA and WVU non-ideal iris data sets. The sample on the lower panel is a normalized

image from our data set of synthetic irises. Although it looks slightly over smoothed on the

bottom portion of the image, the unwrapped synthetic iris image has all the major features

of real iris images.

2.3.2 Texture Analysis

For texture analysis, features should be efficiently selected and compared. The original

image is not robust enough for texture analysis. There are many filters that are suitable to

extract proper features which can are used in the texture classification. But for the purpose

of finding the similarity between synthetic and real irises, features can not be compared at
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Figure 2.8: A gallery of synthetic iris images generated using model based, anatomy based
approach. Iris 4 is a real iris image borrowed from the CASIA data set.

(a)

(b)

(c)

(a)

(b)

(c)

Figure 2.9: Shown are three unwrapped and enhanced iris images. The images are samples
from (a) CASIA data set, (b) WVU non-ideal iris data set, and (c) data set of synthetic
irises generated using our model based approach.
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the level of whole image any more. The locations of small features should be ignored. Even

two images that both come from real but different iris classes, can be total different if they

are compared pixel by pixel, or patch by patch. Because of this reason, the statistic model,

such as the empirical distribution of the filter results, was adopted to analyze the similarity

between synthetic and real irises at texture level.

Empirical probability density functions or empirical cumulative distribution functions

can be directly compared. But those nonparametric methods are not very convenient to get

the pairwise distance matrix. And as we know, filter results normally follow symmetric con-

tinuous distributions. If some parametric statistic models can be used to fit the distribution,

then the difference between two distributions can be mapped to the difference of parameters,

and even some closed forms, functions of parameters. Then the values of those close forms

can be directly used in the clustering as features.

Bessel K form is a stochastic model that can be used to measure the image variability.

As shown by Grenander and Srivastava [42], Bessel K forms parameterized by only two

parameters: (1) the shape parameter p, and (2) scale parameter c, can provide good statistical

fits to empirical distribution histograms of the filtered images. In this work, Bessel K forms

were used to compare real and synthetic iris images against natural images.

Given an image I and a filter F , a filtered image I = I ∗F is computed where ∗ denotes

the 2-D convolution operation. Under the conditions stated in [42], the probability density

function of the random variable I(·) is approximated by

fK(x; p, c) =
1

Z(p, c)
|x|p−0.5K(p−0.5)

(√

2
c
|x|
)

, (2.3)

where K is the modified Bessel function, and Z is the normalization given by

Z(p, c) =
√
πΓ(p)(2c)0.5p+0.25.

The corresponding cumulative distribution function also can be calculated using

FK(x; p, c) =

∫ x

−∞

fK(r; p, c)dr. (2.4)

Then each image I can be mapped to a point in the probability density space

D = {fK(x; p, c)|p > 0, c > 0}.
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Figure 2.10: Original images (left column) and their real components of log-Gabor filtered
results (right column).

The parameters p and c can be estimated from the observed data using

p̂ = 3/(SK(I)− 3) and ĉ = SV (I)/p̂,

where SK is the sample kurtosis and SV is the sample variance of the pixel values in I.
Since the moment-based estimator is suspect to outliers, observed quartiles can be used to

estimate p by

p̂ = 3/( ˆSK(I)− 3),

where

ˆSK(I) = q0.995(I)− q0.005(I)
q0.75(I)− q0.25(I)

and qx(·) is the quartile function that returns the x quartile of a set of samples.

A normalized iris image from synthetic database, a natural image [43]and a normalized

iris image from CASIA database are displayed in Fig. 2.10 left column. They were filtered

using a log-Gabor filter designed by Masek [41]. The real components of filtered images are

shown in the right column of Fig. 2.10. The distribution histograms and estimated Bessel K

forms of these filtered images are displayed in Fig. 2.11. The real and imaginary components

of each filtered image were mixed to get a single Bessel K form fit.

To compare real, synthetic iris images and natural images [43], initially 12 images were

selected from each group. Table 2.2 presents a summary of the estimated parameters of

Bessel K forms for all images that were filtered by log-Garbor filters. For parameter p, the

range of values in the case of synthetic data set is similar to that in the case of CASIA data

set, while is quite different from that in the case of natural images.
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Figure 2.11: The empirical histogram distributions (dashed lines) and their Bessel K form
approximations (solid lines).
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Table 2.2: The Bessel K parameters estimated from images filtered by log-Gabor filter

Image p c Image p c Image p c
CA1 1.40 2.43 SYN1 1.40 25.89 NA1 0.52 226.12
CA2 1.17 2.23 SYN2 0.88 24.77 NA2 2.16 79.66
CA3 0.64 13.80 SYN3 1.30 34.30 NA3 15.47 22.85
CA4 1.32 3.21 SYN4 1.05 29.07 NA4 8.04 48.85
CA5 0.79 9.63 SYN5 0.51 38.05 NA5 2.20 122.42
CA6 0.82 4.84 SYN6 0.70 33.57 NA6 3.19 38.22
CA7 0.53 20.80 SYN7 1.09 25.99 NA7 1.54 159.39
CA8 1.07 2.58 SYN8 0.65 46.46 NA8 0.93 30.24
CA9 0.91 7.92 SYN9 1.04 40.03 NA9 4.80 55.26
CA10 0.99 3.78 SYN10 1.69 13.68 NA10 0.86 247.17
CA11 1.34 2.76 SYN11 0.80 22.93 NA11 8.51 33.68
CA12 0.91 3.54 SYN12 1.18 53.66 NA12 4.84 96.66

To quantify the difference between two images according to their distributions of the

filtered results, Three kinds of distances, (1) a pseudo-metric introduced by Srivastava [42],

(2) the k-measure, between two Bessel K forms were used and (3) the integral of the difference

between two cumulative distribution functions. The first one is given by

dI(I1, I2) = d(I1, I2) =

√

∫

∞

−∞

(

fK(x; p1, c1)− fK(x; p2, c2)
)2
dx, (2.5)

The second distance is given by

dKL(I1, I2) = D(fK(x; p1, c1)||fK(x; p2, c2)) +D(fK(x; p2, c2)||fK(x; p1, c1)), (2.6)

where

D(fK(x; p1, c1)||fK(x; p2, c2)) =
∫

∞

−∞

log(
fK(x; p1, c1)

fK(x; p2, c2)
)fK(x; p1, c1)dx. (2.7)

And the last distance is given by

dCDF (I1, I2) =

∫

∞

−∞

|FK(x; p1, c1)− FK(x; p2, c2)|dx. (2.8)

fK(·) used in (2.5), (2.6) and (2.7) is the Bessel K probability density function introduced in

(2.3). And FK(·) used in (2.8) is the Bessel K cumulative distribution function introduced

in (2.4).

For N images {In, n = 1, 2, ...N} and a bank of filters {Fj, j = 1, 2, ...J}, a set of filtered

images {I(n,j) = In ∗ Fj, j = 1, 2, ...J} are computed. And after estimating the parameter
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p(n,j) and c(n,j), each image is mapped to J points in the density space. The corresponding

distances also need to be changed from (2.5), (2.6) and (2.8) to

dI(I1, I2) =
J
∑

j=1

d(I(1,j), I(2,j)),

dKL(I1, I2) =
J
∑

j=1

[D(fK(1,j)||fK(2,j)) +D(fK(2,j)||fK(1,j))],

and

dCDF (I1, I2) =
J
∑

j=1

∫

∞

−∞

|FK(x; p(1,j), c(1,j))− FK(x; p(2,j), c(2,j))|dx.

where

fK(n,j) = fK(x; p(n,j), c(n,j)),

and

FK(n,j) = FK(x; p(n,j), c(n,j)),

Distances dI also can be calculated by

dI(I1, I2) =

√

√

√

√

( J
∑

j=1

[d(I(1,j), I(2,j))]2
)

.

Thus the entire procedure resulting in classification of texture images can be subdivided

into five steps:

1. Convolve each image In with each filter Fj included in the Filter Bank.

2. Estimate the parameters of Bessel K forms for each filtered image {(p̂(n,j), ĉ(n,j)), n =

1, 2, ...N, j = 1, 2, ...J}.

3. Drop the filters which resulted in a estimated values p̂(n,j) < 0.25 (see [42] for details).

4. Calculate pairwise distance matrices dI , dKL and dCDF .

5. Use the distance matrices to perform the hierarchical clustering of the filtered images.
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Figure 2.12: Original images. I1 and I2 are synthetic iris images, I3 and I4 are natural images
and I5 and I6 are real iris images.
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Figure 2.13: The left and the right panels show the dendrogram clustering plot using the
distance matrices dI and dKL, respectively.

For the purpose of texture analysis using different features, the log-Gabor filter used by

Libor Masek [41], the Leung-Malik (LM) Filter Bank [44], the Maximum Response (MR)

Filter Bank [44] and the Schmid (S) Filter Bank [44] were used respectively in the experiment.

And 12 iris images from CASIA data set which have the least occlusion, total 111 natural

texture images from Brodatz textures database [43] and 30 synthetic iris images were selected

as the samples in the experiment.

To show the clear hierarchical clustering result, two images from each group were selected.

Fig. 2.12 shows all 6 images. Normalized iris images I1 and I2 were selected from the data

set of synthetic iris images. Images I3 and I4 were selected from the set of natural images

and cropped to the same size as unwrapped iris images. And normalized iris images I5 and

I6 were selected from CASIA data set. The left and the right panels in Fig. 2.13 display two

dendrogram plots that summarize the clustering results based on the matrices dI , dKL and

dCDF . Images are filtered by 42 valid filters selected from the LM Filter Bank.

Fig. 2.14 shows the clustering results using all 153 images with 4 different filter or filter

banks. For the convenience, two classes, “IRIS” and “NON-IRIS”, are used. The maximum
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Figure 2.14: The clustering results for all 153 images and 4 different filter or filter banks.

Figure 2.15: The relationships between different groups of images based on the texture
analysis.

number of clusters was adjusted to make all CASIA images and most synthetic iris images

clustered to the same “IRIS” class. From this graph, it can be seen that only a few of natural

images, are clustered to the same class as CASIA real iris images. Compared with the large

variety of the natural images, Both real irises and synthetic irises shows limited varieties,

and they have a certain degree of overlap which varies a little bit on the different features

extracted using different filters. The relationship between them can be explained by Fig.

2.15.
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2.4 Performance Analysis: Decision Level

2.4.1 Verification Performance

For biometrics system, the most important statistic character is the identification or

verification performance. To evaluate the performance of synthetic iris images from the

recognition perspective, the Gabor filter based encoding technique by Libor Masek [41]

[45] were used. The synthetic iris images characterizing 200 individuals, 2 iris classes per

individual, 6 iris images per iris class including an ideal image (no effects added), a noisy

image with additive shot noise, a rotated image (to simulate the roll movement), a out-of-

focus image, a smeared image (motion blur) and a low contrast image were generated. Those

images are shown in Fig. 2.16 in the order from left to right and from top to bottom. The

left panel in Fig. 2.17 shows the histograms of genuine and imposter HD distributions for

the generated data. The d-prime (d′), a measure of separation between genuine and imposter

matching score distributions (see [46] [8] for definition), is equal to 6.7493. The right panel

in Fig. 2.17 shows the corresponding Receiver Operating Characteristic (ROC) curve. Note

that both histogram plots and the ROC curve follow traditional shapes for iris recognition.

2.4.2 Analysis of Degrees of Freedom

False Accept Rate (FAR), one of the most important indicators of the security level for

biometrics systems, is completely determined by the imposter distribution. In this and the

following section the distributions of imposter HDs for synthesized and real iris data are

analyzed.

In his work Daugman suggested to use a Binomial distribution as the best fit of empirical

imposter data [46] [8], even when the bits in the binary iris code are not independent. The

Binomial distribution of HDs is parameterized by the probability for each independent bit

to be 1 p and the degrees of freedom N , and is given by the probability of each possible

value k

P (k) =
N !

k!(N − k)!
pk(1− p)N−k, k = 0, 2..., N.
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Figure 2.16: The original image and the other results when different quality factors are added
(1: the original image; 2: shot noise; 3: rotation; 4:out-of-focus blur; 5:motion blur; 6:low
contrast).
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Figure 2.17: The left panel shows the histograms of genuine and imposter HDs characterizing
the performance of synthetic iris images processed using the recognition system implemented
by Libor Masek. The right panel shows the corresponding ROC curve.
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If it is expressed in the format of stair curve, the function changes to

fB(n) = P (⌊n+ 0.5⌋), n ∈ [−0.5, N + 0.5]

The normalized HDs follow the compressed distribution

f0(x) = N×fB(x×N), x ∈ [− 1

2N
, 1 +

1

2N
], (2.9)

with the mean p and the variance p(1− p)/N . Scale N is added to keep the integral equals

to 1. In this case, as has been shown in [8], resulting Binomial distribution has reduced

degrees of freedom. Here the same strategy and Binomial distribution were adopted to

analyze the difference between synthetic and real iris data. Since the details of Daugman’s

system implementation are not available (the results of analysis are presented in [46] [8]),

Masek’s approach [41] [45] were used to processing iris image data. When the normalized

templates of size 20× 240 were used, each iris code has 9600 bits in total. No compensation

for rotation (the registration of two iris codes) is performed when the distribution of the

HDs is evaluated. The estimation of the degrees of freedom N̂ were calculated using

N̂ =
p̂(1− p̂)

σ̂2
,

where p̂ and σ̂2 were the sample mean and the sample variance for each set of imposter

scores obtained from synthetic or real iris data. Fig. 2.18 shows the distribution of HDs

for imposter scores obtained from synthetic data and its best Binomial distribution fit. The

estimated value of degrees of freedom for synthetic irises is 376.

The degrees of freedom for CASIA data set were further estimated using the same tem-

plate size and the same Gabor filter. CASIA data set yielded 507 degrees of freedom. Note a

very high number of degrees of freedom in templates from CASIA data set in this case. This

phenomenon that CASIA data set has a higher degrees of freedom can be best explained by

the presence of fine textures in the images from CASIA data set. Maybe it also partially

caused by the shot noise. Those fine textures add more randomness of bits for the large size

templates. Conversely, for the smaller template size, the effect of fine texture is removed

due to averaging over large image patches. The major role of the randomness was assigned

to the medium or large size features in this case. It appears that CASIA data set does not
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Figure 2.18: Shown are the empirical distribution of imposter HDs and the Binomial curve
(N=376) that provides the best fit. The HD scores were obtained without performing
compensation for rotation.

have as many large features as the images in synthetic data set. The results of our analysis

is summarized in Table 2.3.

Table 2.3: Degree of freedom

Template Size Synthetic Data Set CASIA Data Set
8-by-128 187 128
16-by-90 143 65
32-by-180 319 348
48-by-270 608 823
64-by-360 1154 1391
20-by-240 376 507

2.4.3 Performance Extrapolation

In this section, tails of imposter distributions is modeled using the theory of extremes,

and the similarity in the behavior of extrapolated tails for synthetic and real iris data in

a large scale identification system is demonstrated. As stated in Sec. 2.4.2, FAR is one

of the most important characterizations of an iris recognition system. In traditional iris

recognition systems the decision about the natures of two iris images is made based on
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comparing a test statistic (for example, a distance measured between two iris images) with

a threshold, where the threshold has to be selected such that it satisfies designed security

requirements. In Daugman’s system the normalized HD, denoted by DH(C1, I2), between

two binary iris codes C1 and C2 plays the role of the test statistic. Then the decision rule is

given by

if
(

DH(C1, C2) > γ
)

, decide Imposter,

if
(

DH(C1, C2) < γ
)

, decide Genuine,

where γ is a threshold. To obtain the complete characterization of the designed system, FAR

and False Rejection Rate (FRR) have to be evaluated for each value of γ on the interval

between two empirical means of the test statistics, the empirical mean under the Genuine

assumption and the empirical mean under the Imposter assumption. However, if the purpose

of performance evaluation is to estimate the probability of error and predict the error in a

large scale identification system, the focus has to be placed only on the tails of Genuine

and Imposter distributions. In terms of thresholds, it is a relatively narrow area. The

idea of performance extrapolation based on tail model has been previously studied. For

example, in his recent work [8] Daugman used Binomial Minimum Value distribution to

fit the angle compensated imposter curve, and predicted the performance of identification

system. Considering a simple verification scenario a one to one False Accept Rate FAR1:1

is gotten. For identification system with M independent templates in the database, the

expression for the total False Accept Rate FAR1:M is given by

F1:M(x) = 1− [1− F1:1(x)]
M , (2.10)

if each distinct comparison introduces a identical independent sample.

The rest of this section is organized as follows. In the first part of this section, a strategy

similar to Daugman’s was adopted for performance prediction of iris based identification sys-

tems and used the results of extrapolation as a measure of “realism” in comparing synthetic

and real iris data. In the second part of the section, the theory of extremes was invoked.
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Binomial Minimum Value Analysis

From the compressed Binomial density function f0(x) which fitted into the empirical

imposter distribution best under the condition that no rotation was compensated, the com-

pressed Binomial cumulative distribution function F0(x) can be calculated using

F0(x) =

∫ x

0

f0(r)dr, (2.11)

where f0(x) is introduced in (2.9). If it is assumed that each rotation compensation will

introduce an independent testament, the minimum value of the HDs will follow the distri-

bution

Fm(x) = 1− [1− F0(x)]
m, (2.12)

which is called Binomial Minimum Value distribution [8]. In verification scenario, False

Accept Rate FAR1:1 will be estimated using Fm(x).

All normalized images in our experiments were transformed to have the same template

size 20-by-240. Masek’s code was further used to generate binary iris codes and calculate

the imposter HDs. In our experiments, for each pair of iris templates, an alignment was

performed by fixing one of them and shifting the other one in the range from -20 pixels

to 20 pixels (corresponds to the rotation of the original iris image in the range of angles

from -30 degrees to 30 degrees provided that the templates of size 20-by-240 are used). It

is assumed that minimum HDs obtained using distinct pairs can be treated as independent

and identically distributed in (2.12). To find the Binomial Minimum Value distribution that

best fits an imposter distribution, two parameters, the degrees of freedom N and the degrees

of rotation compensation m, were adjusted, while another parameter the mean p was fixed

on 0.5.

The empirical imposter distribution of HDs for synthetic data is formed using 2,872,800

imposter HD scores which come from 200 users, 2 classes per user and 6 images per class. The

left panel in Fig. 2.19 shows the log scale plot of the Binomial Minimum Value distribution

parameterized by N=373 and m=11 that provided the best fit to the imposter HDs obtained

using synthetic data. The right panel in Fig. 2.19 shows the same plot but in linear scale.

For CASIA database, the Binomial Minimum Value distribution that provided the best

fit to the empirical imposter HDs is described by N=437 and m=14, while for synthetic iris



CHAPTER 2. SYNTHETIC IRIS 37

0 0.1 0.2 0.3 0.4 0.5

10
0

10
−1

10
−2

10
−3

10
−4

10
−5

HAMMING DISTANCE

R
E

L
A

T
IV

E
 F

R
E

Q
U

E
N

C
Y

 

 

IMPOSTER

BINOMIAL MIN

0 0.1 0.2 0.3 0.4 0.5

0.05

0.1

0.15

0.2

0.25

0.3

HAMMING DISTANCE

R
E

L
A

T
IV

E
 F

R
E

Q
U

E
N

C
Y

 

 

IMPOSTER

BINOMIAL MIN

Figure 2.19: The left panel shows the log scale Binomial Minimum Value density function
that provided the best fit to the distribution of imposter HDs generated from synthetic data.
The right panel compares the Binomial Minimum Value density function and the histogram
distribution of HDs obtained from synthetic data. The temples used to perform experiments
are of size 20-by-240.

with the same sample size, the distribution is described by N=381 and m=11. To obtain

these results, 108 classes, 6 images per class from CASIA and synthetic iris data set were

used. And this resulted in 208008 imposter comparisons for both of them. For synthetic

data, first 208008 from total 2,872,800 imposter comparisons were directly selected. This

subset of full data also resulted in a different parameter estimation as shown above. Table

2.4 summarizes the predicted results for the database size M in the range from 103 to 108.

The second column in this table displays the fixed values of FAR1:M for identification case.

The third column displays the values of the corresponding FAR1:1 in verification case. The

columns 4 and 5 show the extrapolated values of thresholds γ obtained using templates of

size 20-by-240 obtained using CASIA and Synthetic iris data set that resulted in 1% FAR1:M

for identification case. Using Binomial Minimum Value distribution, the threshold γ can be

directly calculated from FAR1:1 using

γ = F−1
m (FAR1:1),

where Fm(·) is introduced in (2.12).

Extreme Value Analysis

The results in Table 2.4 look encouraging. However, a careful analysis of the results

indicates that the data do not exactly follow the original Binomial Minimum Value distri-

bution. The assumption that different relative orientations used in the angle compensation
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Table 2.4: The threshold values and its effect on FAR. The results are obtained using
Binomial Minimum Value distribution (with 208008 imposter comparisons)

Database Estimated Estimated HD Threshold γ
Size (M) FAR1:M FAR1:1 CASIA Synthetic

103 1.0% 1.0050× 10−5 0.3844 0.3780
104 1.0% 1.0050× 10−6 0.3753 0.3675
105 1.0% 1.0050× 10−7 0.3661 0.3570
106 1.0% 1.0050× 10−8 0.3570 0.3465
107 1.0% 1.0050× 10−9 0.3478 0.3386
108 1.0% 1.0050× 10−10 0.3410 0.3307

are independent does not hold in practice. In fact, as seen in Sec. 2.4.3, a larger number

(almost doubled) of different relative rotation compensations were use to make sure finding

of the best match. Different degrees of occlusion also add some uncertain factors to the

normalization procedure of HDs. To obtain a better approximation of tails in the imposter

distributions, we appeal to the extrapolation method based on extreme values. This method

is often used to estimate tails of distributions from a few observed values. The theory of

extreme values assumes that the tail distribution can be approximated by an empirical dis-

tribution obtained from independent tail (the minimum value) samples. This distribution

is further approximated by a parametric extreme value distribution. The parameters of the

extreme value distribution that provide the best fit into empirical data are obtained using

the Maximum Likelihood (ML) estimation procedure.

The Type 1 (Gumbel) extreme value distribution [47] was used to approximate the empir-

ical distribution. A Gumbel extreme value distribution is parameterized by two parameters,

the location parameter µ and the scale parameter σ, and is given by

fE(x : µ, σ) = σ−1exp(
x− µ

σ
)exp(−exp(

x− µ

σ
)). (2.13)

Its corresponding cumulative distribution function is given by

FE(x : µ, σ) =

∫ x

∞

fE(r : µ, σ)dr, (2.14)

and used to estimate the False Accept Rate FAR1:1.

To find the distribution function that provides the best fit, the Maximum Likelihood

estimates of the parameters µ and σ were found by invoking the function “evfit” from
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Figure 2.20: The left panel shows the log scale Gumbel extreme value distribution function
that provided the best fit to the distribution of imposter HDs generated from synthetic data.
The right panel compares Gumbel extreme value distribution function and the histogram
distribution of HDs obtained from synthetic data. The temples used to perform experiments
are of size 20-by-240.

the Statistics Toolbox in MATLAB and using them in the equation (2.14). For 2,872,800

imposter HDs of synthetic data, the estimated parameters µ and σ are equal to 0.4643 and

0.0129, respectively. The left panel in Fig. 2.20 shows the plot of the Gumbel extreme value

distribution with ML estimates in it for the case of synthetic data. Its y-axis is plotted on

log scale. The right panel in Fig. 2.20 shows the same plot but in linear scale.

To evaluate the thresholds that result in 1% FAR1:M for identification performance, the

inverse of the function in the expression (2.14) for corresponding FAR1:1 were used. The

extrapolation results are displayed in Table 2.5, which is organized as same as Table 2.4

such that the data in Tables 2.4 and 2.5 can be easily compared.For CASIA database, the

Gumbel extreme value distribution that provided the best fit to the empirical imposter HDs

is described by µ=0.4641 and σ=0.0113, while for synthetic iris with the same sample size,

the distribution is described by µ=0.4645 and σ=0.0128.

2.5 Conclusion

This chapter proposed an anatomy based method for synthesizing iris images with the

major purpose to provide the academia and industry with a large database of generated

irises to test newly designed iris recognition algorithms. Since synthetic data are known to

introduce a bias that is impossible to predict, the data have to be used with caution. We
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Table 2.5: HD threshold and its effect on FARs. The results are obtained using Gumbel
extreme value distribution (with 208008 imposter comparisons)

Database Estimated Estimated HD Threshold γ
Size (M) FAR1:M FAR1:1 CASIA Synthetic

103 1.0% 1.0050× 10−5 0.3337 0.3169
104 1.0% 1.0050× 10−6 0.3077 0.2873
105 1.0% 1.0050× 10−7 0.2816 0.2577
106 1.0% 1.0050× 10−8 0.2555 0.2282
107 1.0% 1.0050× 10−9 0.2294 0.1986
108 1.0% 1.0050× 10−10 0.2033 0.1690

believe, however, that the generated data provide an option to compare efficiency, limitations,

and capabilities of newly designed iris recognition algorithms through their testing on a large

scale data set of generated irises.

The extensive performance comparison of iris images from real and synthetic data sets

were performed. The comparison was quantified at three different levels: (i) global layout,

(ii) features of fine iris textures, and (iii) recognition performance including performance

extrapolation capabilities.
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Chapter 3

Multi-spectral Iris

This chapter is devoted to a different problem in the area of iris recognition. Different

reflectivity properties of the iris tissue under different spectral illumination make the direct

encoding and matching of a color image vs. a NIR image of an iris challenging. In this chap-

ter, an adaptive method to predict NIR channel image from color iris images is introduced.

Both visual inspection of the predicted image and the verification performance indicate that

the adaptive mapping linking NIR image and color image is a potential solution to the

problem of matching NIR images vs. color images in practice. When matched against NIR

enrolled image the predicted NIR image achieves significantly high performance compared

to the case when the same NIR image is matched against R channel alone.

3.1 Introduction

Iris images captured in near infrared (NIR) band are traditional input to iris recognition

system [4]. In recent years, however, biometricians turned their attention to iris images

acquired in the visible band of electromagnetic spectrum [48]. This trend is supported by

a variety of factors: (1) optical cameras in visible range are cheap and characterized by a

very high resolution; (2) in terms of applications, most of security and surveillance camera

systems (installed for monitoring various human activities) are visible range cameras. Apart

from monitoring activities, these cameras may capture face or iris images, which further may

be used to authenticate a suspicious or violent individual. Thus iris images acquired by the
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cameras in visible spectrum are query images that have to be compared against enrolled

database of irises, which is traditionally formed from the iris images in the NIR range.

Although some publications are available on the topic (for example, publications involv-

ing UBIRIS dataset and West Virginia University (WVU) multi-spectral iris dataset), the

investigation of matching NIR and visible range iris images has been very limited; and in

general the problem of cross spectral matching remains unsolved.

Extracting object reflectivity information across multiple spectral bands is a scope of

multi-spectral and hyper-spectral imaging [49, 50]. For example, both the surface of the

earth (a very general object category) [51] and human face or fingertip (a very specific

object category) have different reflectivity responses in different spectral bands [52–54]. This

spectral information (often called spectral signatures) can be used to solve many inference

problems. It can be used to perform precise segmentation of ground regions with different

reflectivity responses, to detect spectral anomalies, or perform classification based on object

reflectivity function.

Similar to the application of multi-spectral imaging in geoscience, in biometrics we can use

the spectral information to enhance cross spectral biometric matching. Spectral signatures of

different regions of the iris, face or fingertip can be estimated from multi-spectral data. This

estimate can further be used to predict the appearance of a given spectral representation of

a biometric modality in a different spectral band. That is, the estimated relationship is used

to map one spectral representation into another spectral representation.

To be more specific, a nonlinear adaptive model to predict the value of the NIR channel

from a visible range iris image is proposed. The predicted value of the NIR channel is

compared with real NIR iris images by using the classical log-Gabor filter-based algorithm

[45]. The results of the performance evaluation are promising. The proposed approach

outperforms NIR vs. R cross match comparison.

Recently, Burge and Monaco presented a model for approximating a NIR iris image

using features derived from the color and structure of a color iris image in [55, 56]. In their

approach, first, the cluster analysis in the L∗a∗b∗ color space on the visible light channels of

the multispectral iris images was employed to identify a set of representative color clusters.

Next, for each of the clusters, a set of tuples (L∗, a∗, b∗, NIR) was constructed. This set
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is used to establish a relationship between the L∗a∗b∗ values and NIR values of registered

images. The tuples are then augmented with local structural information derived from k

multiscale log-Gabor filters G(w), where w is the center frequency of filters. For each cluster,

a functional mapping relating (G(w1), G(w2), . . . , G(wk), L
∗, a∗, b∗) and NIR is constructed

using a supervised learning algorithm, which outputs an approximation to the NIR term

using the the first k + 3 terms as inputs.

In our approach, we use RGB color space (the traditional color space) as input to a

nonlinear multivariate adaptive mapping and NIR image as output. Furthermore, the camera

used for our experiments records three channels: R component, combined G/B component

and NIR component. Apart from this, Burge and Monaco have not demonstrated any

numerical results in their publications.

The remainder of the chapter is organized as follows. Sec. 3.2 describes our proposed

methodology. Sec. 3.3 presents numerical results. Conclusions and future work are discussed

in Sec. 3.4.

3.2 Methodology

Since our methodology for performing iris cross spectral matching requires that images

from different spectral bands be well registered, we will first introduce an existing database

of multispectral iris which satisfies this assumption. Then we will present the proposed

processing and matching methods.

3.2.1 Multi-spectral Iris Dataset and Data used in Simulations

Multi-spectral iris data collected at WVU (see [57] for detailed description of the dataset)

are used to demonstrate the performance of the proposed method. MS3100 camera manufac-

tured by Geospatial Systems, Inc. was employed for data acquisition. The MS3100 camera

is a 3-chip Multispectral digital camera with 1.4M+ pixels per sensor. The multispectral

iris dataset collected at WVU involves data of 35 users (68 classes, 232 images). Each iris

snapshot outputs data acquired by three different spectral channels: NIR, R and G/B. They

are perfectly registered and synchronized and can be used to form a false-color image if those
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three channels are treated as traditional R, G, and B channels. A sample image with falsely

mapped NIR into red, red into green and G/B into blue is provided in Fig. 3.1.

Figure 3.1: An illustration of false color image.

3.2.2 Proposed Predictive Model

The variations in human eye color are attributed to varying ratios of eumelanin produced

by melanocytes in the iris. Based on the iris color, all irises can be placed in three broad

groups: blue, brown, and green. Each group requires different predictive model. Thus, the

models for the blue irises, brown irises and green irises have to be designed and trained

separately. It has been empirically confirmed that a prediction model trained on a blue iris

performs really well only on blue irises. To ensure that the models are equally well trained,

sufficient amount of data for training and testing of each model has to be collected.

The predictive model is trained as follows. The problem of training predictive model

can be stated as a nonlinear multivariate regression problem, where the predictive model

establishes a relationship between input parameters and output parameters. As shown in

Fig. 3.2, for each pixel in a single iris snapshot (composed of three channels R, G/B, and

NIR) selected for training, the pair of parameters (value of R channel, value of G/B channel)
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form an input and a value of NIR channel form an output parameter. In our simulations

described in later sections the predictive model is estimated using a neural network (NN).

The type of NN and the number of hidden layers can be selected based on the amount

and type of data involved. Once the mapping is estimated, it is used to predict the output

parameter (NIR image) from the input parameters (R and G/B channels of a query image).

Figure 3.2: Pixel-based prediction.

To ensure reliable model for predictive mapping and robust matching, in place of using

only two intensity value as the input parameter (as it is illustrated in Fig. 3.2) we also involve

intensity values of the nearest 8-neighborhood. The new prediction strategy is illustrated in

Fig. 3.3.

3.2.3 Neural Network

Here the nonlinear mapping is estimated using Feed Forward Neural Network (FFNN).

The optimal selection of the number of hidden layers (here we selected two) was determined

by trading off the complexity of the network versus its predictive performance. For the

experiments cross matching multispectral iris images, the first hidden layer of the FFNN is

composed of 16 neurons while the second layer is composed of 3 neurons. The training data

are divided randomly in two subsets: a learning subset composed of 60% of training data

and a validation subset made of remaining 40% of data. The training process stops when the

mean square error drops below 10−5. The experimental results described below are obtained
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Figure 3.3: Neighborhood-based prediction.

using functions from Neural Network Toolbox in MATLABTM .

3.2.4 Training

Each training image is first segmented to guarantee that only iris region is selected for

training the proposed predictive model.

As shown in block-diagram in Fig. 3.4, training the predictive model requires a vector

of 18 input parameters and a single output parameter. In our implementation, first 9 input

parameters come from the G/B channel and the following 9 input parameter come from the

R channel.

Figure 3.4: Block-diagram of the training procedure.

Since estimation of predictive model depends on initial condition, we run the training
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experiment a number of times and select the model, which produces the minimum genuine

score. This score is formed by comparing predicted NIR data versus the true NIR data.

3.2.5 Testing

During testing the estimated mapping is used to predict NIR channel from the inputs (R

channel,G/B channel). The testing procedure is described in Fig. 3.5.

Figure 3.5: The block-diagram of the testing procedure.

3.2.6 Model Selection Criterion

Since different prediction models produce different results, the question of how to choose

the best model was raised. There is a variety of theoretical and practical model selection

criteria. In this work we used only data available to us, that is, information in G/B and R

channels. To select the best model the median intensity values of G/B and R channels can

be used. The medians are evaluated based on the entire available area within the images.

The optimal predictive model I is selected if it minimizes the following cost function:

(

(TestG/B − Traini
G/B)

2 + (TestR − Traini
R)

2
)

,

where TestG/B and TestR are the median values of G/B and R channels for the testing image

and Traini
G/B and Traini

R are the median values of G/B and R channels for the ith training

image.

An alternative solution would be to involve several prediction models (in place of one).

These models are then used separately to predict the output. The best predictive model is
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the one, which optimizes the verification performance. For example, in our implementation,

for each testing image, 10 different prediction results were generated by 10 different predictive

models. When a query visible light image is compared with NIR enrolled images, 10 different

matching scores (Hamming Distances) for each NIR enrollment are recorded. The minimum

score is selected as the best score. This approach is especially useful when dealing with a

set of images of the same iris acquired under different environmental conditions.

3.2.7 Illustration of Predicted Results

An example showing an iris snapshot (its original 3 channels: R, G/B, and NIR) and

a predicted NIR channel are shown in Fig. 3.6. From this example, it can be easily seen

that the predicted NIR channel visually is very similar to the original NIR channel and

substantially differs from the R and G/B channels. Note, however, due to the predictive

model, which involves neighbors, that the predicted NIR channel is slightly over-smoothed

compared to the original NIR channel.

(a) (b)

(c) (d)

Figure 3.6: (a) The original NIR channel; (b) the R channel; (c) the G/B channel; and (d)
the predicted NIR channel using (b) and (c) as the input to the predictive mapping function.
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For a close examination, the unwrapped iris patterns are displayed in Fig. 3.7 and 3.8.

(a)

(b)

(c)

Figure 3.7: Unwrapped iris templates: (a) R channel; (b) NIR channel; and (c) the predicted
NIR channel.

(a)

(b)

(c)

Figure 3.8: Unwrapped iris templates: (a) R channel; (b) NIR channel; and (c) the predicted
NIR channel.

3.3 Numerical Results

To evaluate recognition performance of predicted NIR iris images, all iris images from

the testing set were segmented using the robust iris segmentation algorithm developed by
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Zuo and Schmid [58]. The segmentation was applied to NIR channel data only. Then the

extracted segmentation parameters were used to segment the other spectral channels.

After segmentation, the data were encoded using an enhanced version of the Masek’s iris

encoding algorithm (the details are provided in [59]). Three similarity matrices were formed:

(1) the first matrix compared the true NIR imagery versus the true NIR imagery. This case

is treated as the best achieved performance; (2) the second matrix compares the true NIR

images versus predicted NIR data; and (3) the third matrix compares the true NIR versus

the R channel. Note that G and B channels were not involved in performance evaluation.

Compared to G and B channels, R iris image strongly resembles NIR iris image. When

involving simple fusion rules at the match score level, the matching performance of R channel

is much higher compared to the matching performance due to G and B channels. Therefore,

the match score of R channel strongly dominates the decision making process. Here the

comparison of NIR channel vs. R channel is treated as the baseline comparison. During

numerical evaluations, 5 out of 150 testing images were discarded due to poor segmentation.

The remaining data were used to plot receiver operating characteristic (ROC) curves.

The results of performance comparison are summarized in Fig. 3.9 and in Table 3.1.

Fig. 3.9 shows the ROC curves for the three comparisons above. The ROCs are displayed as

a plot of Genuine Acceptance Rate (GAR) versus False Acceptance Rate (FAR). Note the

performance improvement due to involvement of the predictive model compared to the direct

cross spectral matching of NIR data against R-channel data. The corresponding values of

the average genuine scores, the average impostor scores, d-prime (d′) and Equal Error Rate

(EER) are summarized in Table 3.1. It shows the improved average performance of the

predicted NIR data compared to performance of R-channel.

Table 3.1: The results of three cross comparisons

Mean of Mean of d′ EER
Genuine Scores Impostor Scores

NIR vs. NIR 0.0505 0.3986 10.3211 0
NIR vs. P NIR 0.0841 0.3825 8.7493 0.00034

NIR vs. R 0.1177 0.4012 6.3913 0.00051

Results in Table 3.1 indicate that the improved performance is due to the reduction of
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Figure 3.9: Performance improvement due to the proposed predictive model.

values of genuine scores. When comparing two cases (Predicted NIR, NIR) genuine com-

parison and (R, NIR) genuine comparison, in 267 out of 280 cases (Predicted NIR, NIR)

comparison outperforms (R, NIR) comparison. Similarly, when comparing two cases (NIR,

NIR) genuine comparison and (Predicted NIR, NIR) genuine comparison, in 271 out of 280

cases (NIR, NIR) comparison outperforms (Predicted NIR, NIR) comparison. However,

few outliers are observed in both cases. We introduce gain (loss) of the performance for

these genuine comparisons and define it as the difference between the matching scores of

one probe image and the matching score of another probe image compared to the same NIR

target image. The cumulative gain (loss) of performance can be visualized through plotting

histograms of performance gains on genuine comparisons (see Fig. 3.10).

The prediction also was proven to be robust with respect to imperfect segmentation. We

conducted the following experiment on all 150 images. All segmentations of R channel and

predicted NIR channel were slightly distorted in radial direction. The segmentation of NIR

iris images was not modified. The ROC curves for these experiments are displayed in Fig.

3.11. Few statistics for the same case are summarized in Table 3.2. Overall, the performance

dropped slightly, but the relative position of the ROC curve of predicted NIR versus the true

NIR remained unchanged.
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Table 3.2: The results of three cross comparisons with imperfect relative segmentation of R
and Predicted NIR channels

Mean of Mean of d′ EER
Genuine Scores Impostor Scores

NIR vs. NIR 0.0671 0.4093 7.9266 0.0069
NIR vs. P NIR 0.0967 0.3907 6.8603 0.0131

NIR vs. R 0.1300 0.4118 5.5570 0.0137

3.4 Conclusions and Future Work

We have demonstrated that a well designed predictive mapping, which is used to map

color image into Predicted NIR image, is a promising approach to improve cross spectral

iris recognition. Application of a well designed predictive mapping, as shown here, resulted

in 10% improvement when color image is mapped into NIR image first and then compared

against a NIR image. This improvement is measured with respect to R channel versus NIR

image comparison (which is treated as the worst possible comparison).

Similar experiment have been performed on multispectral face images. The results, un-

fortunately, are not as promising as the results for iris biometrics. Designing a new predictive

mapping to improve performance of cross spectral face recognition is ongoing work in our

lab.
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Figure 3.10: Performance gains on genuine scores: (a) (Predicted NIR, NIR) vs. (R, NIR);
(b) (NIR, NIR) vs. (Predicted NIR, NIR); and (c) (NIR, NIR) vs. (R, NIR).
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Figure 3.11: The performance improvement due to the proposed predictive model when
different segmentations for R and predicted NIR channels were used.
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Chapter 4

Iris Quality

This chapter focuses on measures of iris sample quality for iris video. In the field of iris

recognition, evaluation of quality of images has a number of important applications. These

include image acquisition, enhancement, and data fusion. Iris image quality metrics designed

for these applications are used as figures of merit to quantify degradations or improvements

in iris images due to various image processing operations.

4.1 Introduction

Iris image quality assessment is an important research thrust recently identified in the

field of iris biometrics [60], [61], [62]. This research is tightly related to the research on

nonideal iris. Its major role is to determine, at the stage of data acquisition or at the early

stage of processing, what amount of information for the purpose of processing, recognition,

and fusion an image contains. Is it useful enough for performing further processing steps or

should be discarded? Is it informative enough for being combined with other images and

result in improved recognition performance? The quality metrics play an important role in

automated biometric systems for three reason: (1) system performance (segmentation and

recognition), (2) interoperability, and (3) data enhancement.

Image quality assessment plays an important role in automated biometric systems. Low

quality images may have poor lighting, defocus blur, off-angle, and heavy occlusion, which

have a negative impact on even the best available segmentation algorithms. Even with perfect
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segmentation, information losses due to distortions of iris texture or iris image intensity may

cause serious problems for encoding and matching algorithms. At the same time, an image of

good quality (as it is predicted by an image quality measure or based on visual evaluation)

may not be a good iris biometric sample, as it may result in a low matching score when

the encoded iris image is compared against an enrolled iris sample from the same iris class.

Therefore, iris biometric quality should not be limited to iris image quality.

Previous work on iris image quality can be placed into two categories: local and global

analyses. Zhu et al. [63] evaluate quality by analyzing the coefficients of particular areas

of iris’s texture by employing discrete wavelet decomposition. Chen et al. [64] classify iris

quality by measuring the energy of concentric iris bands obtained from 2-D wavelets. Ma

et al. [65] analyze the Fourier spectra of local iris regions to characterize out-of-focus and

motion blur and occlusions. Zhang and Salganicaff [66] examine the sharpness of the region

between the pupil and the iris. Daugman [8] and Kang and Park [67] characterize quality

by quantifying the energy of high spatial frequencies over the entire image region. Belcher

and Du [68] propose a clarity measure by comparing the sharpness loss within various iris

image regions against the blurred version of the same regions. The major feature of these

approaches is that the evaluation of iris image quality is reduced to the estimation of a

single [8, 64, 66, 67] or a pair of factors [65], such as out-of-focus blur, motion blur, and

occlusion.

Iris quality should not be limited to one or two quality factors. All factors that will

affect recognition performance should be counted as iris quality factors. A broader range

of physical phenomena that can be observed in nonideal iris imagery was characterized by

Kalka et al. [69], [70]. The proposed factors include out-of-focus and motion blur, occlusion,

specular reflection, illumination, off-angle, and pixel count. The strength of the phenomena

and its influence was evaluated through modified or newly designed iris quality metrics.

Based on the extensive analysis carried out by the authors of [69] and [70], these factors

affect the segmentation and ultimately recognition performance of iris recognition systems.

This chapter elaborates on the factors in [70] and introduces new factors that can be

used to evaluate near-infrared (NIR) video and image quality. The main contributions of

this chapter are as follows. (1) A fast global quality evaluation procedure for selecting the
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best frames from a video or an image sequence is introduced. (2) A number of new local

quality measures for the iris biometrics are introduced. The performance of these quality

measures is carefully evaluated. Since performance of iris recognition systems is evaluated

in terms of the distributions of matching scores and recognition probability of error, from

a good iris image quality metric it is also expected that its performance is linked to the

recognition performance of the biometric recognition system.

4.2 Frame Selection

Modern iris capture devices are often equipped with an algorithm performing selection

of high quality frames. Each frame can be further segmented, and the final quality score can

be used to select the frame. However, complex segmentation procedure can not follow the

frame rate. Then a simple quality factor will be preferred for this purpose. For instance,

Daugman suggested using the focus measure to select the best iris frames [8]. For a single

value quality score, local maximum on the time axis can be used to select the best quality

frames from a NIR iris video.

However, for images captured at a distance, it will not be good to use the whole image

to evaluate the quality factor because of the short DOF (Depth of Field). The iris area is

just a small part of the frame and there may be two irises exist in a same image. The iris

detection and the quality analysis will be done at the same time.

4.2.1 MBGC Data

Building on the challenge problem and evaluation paradigm of ICE (Iris Challenge Eval-

uation) 2005 and ICE 2006 [71], the Multiple Biometric Grand Challenge (MBGC) for the

first time introduced middle distance near-infrared (NIR) face video (may have one or both

irises in each frame) [72]. A system which is similar to the system described in [6] was used

for the data collection. On a good quality frame, 8 clear specular reflections can be found

close to the center of the pupil. This feature can be used to detect the iris area and measure

the level of focus.

For a NIR iris video, first the iris region is detected and cropped. Then the best quality
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cropped area is selected by using the focus level. To deal with two irises in the same frame,

a quality map is used to find local quality maxima which may be attributed to left and right

irises or to a falsely detected iris.

Iris Detection

The iris detection is based on the assumption that a strong specular reflection exists inside

of the iris area (including pupil). Typically, the intensity value of the specular reflection is

very high compared to the intensity value of the iris area. Therefore, the gradient information

can be used to locate the eyes within a frame. This is accomplished as follows.

1. Two 2D-order statistic filter, one returning the maximum intensity value and the other

returning the minimum intensity value over a neighborhood of size 3 × 3, are applied

locally. The difference of the intensity values within each 3 × 3 neighborhood are

compared to a threshold, denote it as γ1.

2. A threshold γ2 corresponding to the value of iris intensity is evaluated based on the

histogram of the considered frame.

3. The areas of the frame simultaneously satisfying conditions in (1) and (2) are selected

as the potential candidates for being the iris area.

4. Since the previous steps may generate a large number of candidates, an additional

geometric information is involved to rule out false iris regions. We use the minimum

distance between the eyes as a means to deal with false iris regions.

An iris detection example is provided in Fig. 4.1.

Quality Map

Once the Iris Detector returns the coordinates of the iris location in a frame, a quick

evaluation of iris image quality is performed. Following the Daugman’s procedure for select-

ing the best iris frames [8], we evaluate the level of blur in detected iris region. Processing

and encoding every frame in a video is a time-intensive operation. An alternative solution

is to select few frames containing high quality iris regions and use them for iris recognition.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Iris detection for a single frame from the NIR face video: (a) the original frame
(from MBGC dataset), (b) clear edges (c) possible iris areas, (d) final candidates, (e) the
iris detection result, and (f) the cropped area.

We introduce a global quality map that provides relative information about the quality of

the iris regions in different frames.

When each frame is processed, the best quality iris area candidate for each location will

be updated. If the current frame have a better candidate than all frames before at that

location, then the corresponding quality value and frame number will be updated to the

values of the current frame. If the current frame is a worse candidate than the last frame at

that location for the first time, then the last frame may be a local maximum in time domain

for that location. Corresponding iris area from the last frame will be selected for further

examination. After the video is processed, a global quality map with the best quality iris

area marked at every location also is finished. At this time, a local maximum of the quality

map will be found (these are local maxima in the spatial domain and the global maxima in

the time domain), and corresponding iris areas will be selected for further processing.
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Figure 4.2: Shown is the quality map for the video sequence displayed in part in Fig. 4.1.

4.3 Quality Evaluation

After few video frames are selected based on the video quality map, the detected iris

regions are segmented and encoded. Simultaneously, local iris quality factors are evaluated.

These quality factors can be later used to enhance performance of an iris recognition system

alone or of a multimodal system with iris being one of the modalities. In the following sub-

section a set of new individual iris biometric quality factors are introduced and procedures to

evaluate them are described. The factors are segmentation scores, interlacing, illumination,

lighting, occlusion, pixel count, dilation, off-angle, and blur.

4.3.1 Segmentation Scores

Since the most of local iris quality measures are applied to segmented iris images, the

metrics evaluating the precision of the segmentation should be given a higher priority com-

pared to other factors. Two segmentation scores Qp seg and Qi seg introduced in [73] can be

used as two distinct quality metrics related to the segmentation itself. These metrics ana-

lyze the gradient values along the pupil and limbic boundaries. Larger value of the measures

indicate more precise segmentation.
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4.3.2 Interlacing

Poor interlacing is a disturbing artifact. Interestingly, a poorly interlaced image may

result in a high focus score in spite of strong defocus of either even or odd lines. These

artifacts should be detected. If there is a large difference between odd and even lines then

there must be a clear motion related interlacing effect. The image may be either discarded,

or divided to two sub-images: odd rows and even rows. The difference between odd rows

and even rows Inter1 can be calculated as

Inter1 =

∑

i=1:2:m−1

(

∑

j=1:n

∣

∣I(i,j) − I(i+1,j)

∣

∣

)

∗ 2

m ∗ n (4.1)

for an image I with m rows and n columns. The function must be normalized by subtracting

Inter2 calculated using odd or even rows only

Inter2 =

∑

i=1:m−2

(

∑

j=1:n

∣

∣I(i,j) − I(i+2,j)

∣

∣

)

(m− 2) ∗ n (4.2)

resulting in

Qinterlacing = Inter1 − Inter2. (4.3)

Note that the high values of Qinterlacing indicate poor interlacing.

4.3.3 Illumination

The contrast of the image is mainly determined by the level and strength of the illumi-

nation. The illumination level is the mean intensity value of the iris area:

Qillumination =

∑

unaffected iris area

I(i,j)

∑

unaffected iris area

1
. (4.4)

To get a more precise estimation of this factor, only unaffected (by occlusion or specular

reflections) area is considered. The value that Qillumination can take ranges from 0 to 255.

This factor can be affected by the color of the iris. Large values of the measure indicate high

illumination value.
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4.3.4 Lighting

Sided or uneven illumination of the iris often results in performance degradation. Illu-

mination pattern can be treated as a low frequency signal that distorts encoded iris images.

The variance of the mean intensity evaluated over small blocks is proposed as a measure of

the uneven illumination. The calculation of the lighting factor is similar to the procedure

described in [70], but without normalization to [0, 1]. Note that bad lighting condition is

characterized by a large value of the metric.

4.3.5 Occlusion

This attribute measure how much of the iris is occluded by other objects such as eyelid,

eyelashes and specular reflections. The proposed metric evaluates the percentage of the

unoccluded area in the final unwrapped template

Qocllusion =

∑

(i,j): M(i,j)==0

1

∑

(i,j): M(i,j)>=0

1
(4.5)

where M is the binary unwrapped noise mask of the unwrapped iris template where true

(1) means information at that location can not be used. The usage of the percentage can

reduce the correlation between this quality factor and the resolution factor. This quality

factor is similar to the pixel count factor in [70]. Large values of the metric indicate smaller

occlusions.

4.3.6 Pixel Count

To distinct it from the occlusion factor, pixel count finds the total iris area even it is

affected by occlusions, that is,

Qpixel count =
∑

iris area

1. (4.6)

Large values of the metric correspond to high pixel counts.
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4.3.7 Dilation

The dilation factor measures the degree of the pupil dilation. The high the dilation of

the pupil, the high the compression of the iris texture and the less information is available

for iris recognition. The value of the dilation factor is calculated by taking the ration of

Qpixel count and the total iris and pupil area

Qdilation =

∑

iris area

1

∑

iris area

1 +
∑

pupil area

1
. (4.7)

The value Qdilation takes is between 0 and 1. This factor also affects pixel count. Note that

small pupil dilations are characterized by large values of the metric.

4.3.8 Off-angle

This factor measures the relative orientation of the iris with respect to the camera.

Assuming that the frontal view iris has a circular shape, the off-angle view becomes an

ellipse. The off-angle quality factor is a ratio of the two main axes of the ellipse fitted into

the iris boundary. These values are obtained after the iris has been segmented.

Qoff−angle =
b

a
(4.8)

where b is the minor axis and a is the major axis of an ellipse. Note that the large values of

the metric indicate that that the image is close to frontal view.

4.3.9 Blur

Both motion and defocus blurs are treated simultaneously. The proposed method uses

spectral components of an iris image and involves a number of preprocessing steps.

First, the area of the interest is selected based on the segmentation result. After the

parameters of the ellipse such as the ellipse center (xi, yi), the major axis a and the minor

axis b fitted into the iris region are obtained, we set 250% length of the major axis a as the

size of the window and select the iris center (xi, yi) as the window center.
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Then a small median filter is applied to denoise the image. To compensate the resolution

difference, every area of the interest is normalized to 151 × 151. This size is approximately

selected based on the acceptable iris resolution: 120 pixels across the iris. Then a 2D FFT

transform is carried to this image in order to extract the frequency information P

P = log10 |FFT (Icrop)| , (4.9)

where Icrop is the cropped iris area after the denoising and the normalization.

After the power distribution of P is analyzed, its central area is used to calculate the

proper threshold. Currently we select the average power of a centered 13 pixel diamond

shaped area (distance to the center of the power spectrum is less than 4) as the threshold γ

γ =

∑

((i−76)2+(j−76)2)<16

P(i,j)

13 ∗ 1.5 . (4.10)

Then the number of location with a higher power value than the threshold is counted. If

the number of locations is large, then the power distribution is flat. As the pupil area usually

contributes a large number of low frequency component, an adjustment part involving the

dilation information is added. Then the final expression for the Qblur becomes:

Qblur =





∑

P(i,j)>γ

1



 ∗ (1 +Q6
dilation). (4.11)

An example illustrating some steps in evaluation of the blur quality score is provided in Fig.

4.3. This image results in the final blur score 5953.6.

Larger values of the metric correspond to a smaller amount of blur.

4.3.10 Fusion

The quality factors (metrics) can be used individually or combined into a single score

through a simple static or an adaptive rule. Among static rules the simple sum rule is a com-

putationally efficient method. More complex (adaptive) rules such as Bayesian, Dempster-

Shafer, weighted Sum, or any previously designed fusion strategy to combine classifiers can

also be used to combine quality metrics into a single score. These rules are more fundamental

and flexible, but require intensive computations.

Our current task is to come up with a super-combination scheme.
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(a) (b) (c)

Figure 4.3: Example of blur estimation (a) the cropped area, (b) the power spectrum and
(c) the results of thresholding.

4.4 Results

All experiments were performed using ICE 2005 dataset [74]. The enhancement, encoding

and matching procedures followed Daugman’s implementation. Since performance of any

iris recognition system is evaluated in terms of the distributions of matching scores and

recognition probability of error, from a good iris quality measure it is also expected that its

performance is linked to the recognition performance of the recognition system.

We perform a number of experiments. For each individual factor, the ICE 2005 dataset

was used to form three subsets of images. The first subset was composed of the entire ICE

dataset. To form the second and the third subsets, we involved the distribution of values

of a selected quality factor. The second set included all images with the value of selected

quality factor exceeding 0.75th qauntile. The third set was composed of all images with the

value of selected quality factors exceeding 0.9th quantile.

The panes in Fig. 4.4 and Fig. 4.5 each displays three Receiver Operating Characteristic

sets obtained using data in subsets 1, 2, and 3. Note that all results can be placed into those

based on a relative quality score (in our case, it is the difference of two quality values for two

distinct images) and those based on an absolute measure. Examples of relative measures

include interlacing, illumination, pixel count and off-angle (Fig. 4.5). The other measures

were used as absolute.

From Fig. 4.4 and Fig. 4.5 regardless of the type of the measure, the difference between
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ROCs formed from the three subsets of ICE 2005 dataset are quite noticeable. This indicates

that each individual factor proposed in this work does influence recognition performance of

a Gabor filter-based system.
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Figure 4.4: ROC curves for ICE2005 dataset (a) selecting images using pupil segmentation
score; (b) selecting images using dilation measure; and (c) selecting images using minus blur
measure.
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Figure 4.5: ROC curves for ICE2005 dataset (a) selecting matching scores using interlacing
measure; (b) selecting matching scores using illumination measure; (c) selecting matching
scores using pixel count measure; and (d) selecting images using off-angle measure.

4.5 Conclusions

This work proposed a number of new absolute and relative (global and local) quality

measures for iris video. The performance of the proposed measures was evaluated by an-

alyzing the relationship between the quality of iris images and verification performance of

the system (in terms of ROC curves). These relationships indicate that proposed quality

measures, when evaluated individually, do substantially influence recognition performance.

The importance of each individual quality factor, evaluation of the degree of their corre-

lation and designing a super-combination rule for the proposed factors is the ongoing work

in our lab [75].
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Chapter 5

Iris Segmentation

Since segmentation of iris images is one of the most important preprocessing steps per-

formed by an iris recognition system, we devote this entire Chapter to the design and analysis

of a robust iris segmentation method. Iris biometric is one of the most reliable biometrics

with respect to performance. However, this reliability is a function of the ideality of the

data. One of the most important steps in processing non-ideal data is reliable and precise

segmentation of the iris pattern from remaining background. In this chapter, a segmentation

methodology that aims at compensating various nonidealities contained in iris images during

segmentation is proposed. The virtue of this methodology lies in its capability to reliably

segment non-ideal imagery that is simultaneously affected with such factors as specular reflec-

tion, blur, lighting variation, occlusion and off-angle images. We demonstrate the robustness

of our segmentation methodology by evaluating ideal and non-ideal datasets, namely Chi-

nese Academy of Sciences iris data version 3 Interval subdirectory (CASIA III INT) [76],

Iris Challenge Evaluation (ICE) data [74], West Virginia University (WVU) data [77], and

WVU Off-angle data [78]. Furthermore, we compare our performance to that of our im-

plementation of Camus and Wildes’s algorithm [79], and Libor Masek’s algorithm [41]. We

demonstrate considerable improvement in segmentation performance over the former men-

tioned algorithms.
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5.1 Introduction

Current iris recognition algorithms that have potential for high recognition performance

require highly constrained subject presentation. When this constraint is removed or unavail-

able, such as in surveillance applications or “iris at a distance”, the quality of the data may

be degraded by heterogenous factors [80]. These factors, such as specular reflection, light-

ing variation, blur, off-angle, and occlusion negatively impact segmentation and recognition

performance as verified by Kalka et al [70], [69] and Chen et al [64] in their works on iris

image quality.

Classically, pupil and iris regions have been localized using efficient integro-differential

operators as defined by Daugman [46]. This operator remains in use today for the majority

of commercial systems. Wildes [81] introduced pupil and iris localization by use of edge

detection which is followed by a circular Hough transform. A number of recent approaches,

based on variants of the former methodology that utilize the Hough transform have been

developed (for example, [74,82], [83]). Other algorithms employ morphological operators [84]

and ellipse fitting [85,86] to cope with the non-circular shape of the pupil/iris. One limitation

concerning these algorithms is that design and testing was developed for ideal data. This

may result in significant degradation of performance when the algorithms are applied to

non-ideal imagery.

There has been some work focusing on non-ideal iris, specifically off-angle [22, 87], or

less constrained environments [6]. However, these works mostly focus on bringing off-angle

iris images into frontal view in order to involve iris recognition algorithms designed for

frontal view ideas irises, rather than dealing with the segmentation aspects related to this

factor. Proença and Alexandre [80] identify a more noise tolerant feature set, consisting

of pixel location and intensity, which is then used to construct an edge map followed by a

circular Hough transform for localization. They demonstrate good results when evaluating

the UBIRIS dataset [7]. One disadvantage with this approach is that inexact localization can

result from off-angle images because of the circular fit. There are many other publications

that focus on particular aspects related to nonideal iris and processing of nonideal iris images.

We placed them in three broad categories: (1) unique approaches (for example, [88], [89]
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and [90]. The authors of the latter paper claim their optimal partitioning based algorithm

is robust to poor illumination, blur, occlusion and eye glasses; (2) papers dealing with

estimation of occlusions (for example, [91], [92], [93]); (3) papers that are dealing with

specular reflections (for example, [91], [93]). The most recent trend in designing robust

segmentation techniques is to apply nonparametric approaches such as active contours to

describe the iris and pupil boundaries [94, 95]. In [95], besides active contour fitting on the

boundaries and generalized coordinates, new off-angle image solution called “Fourier based

trigonometry”, a statistical eyelash detection method, and a score normalization method are

introduced.

In this work, we propose a methodology for automatic segmentation of iris images that

sequentially compensates non-ideal factors present in poor quality iris images. This work is

inspired by our previous (see [70] and [69]) and current work on iris image quality. Iris image

quality is determined by a set of quality factors including motion and defocus blur, contrast,

unbalanced illumination, occlusion, off-angle, and other factors. Factors are estimated for

each iris image individually. A separate procedure to evaluate a specific quality metric is

designed. The final result is presented both in the form of a vectors of individual quality

values and in the form of a single number obtained by applying Dempster-Shafer combination

criterion [96]. The fact that quality metrics can be estimated individually laid a foundation

for this work.

This chapter describes a sequence of procedures and steps that are intended to com-

pensate detected nonidealities in iris images in order to successfully segment nonideal iris

images. The following compensation steps are applied. Similar to many other segmentation

methods we first detect and eliminate specular reflections through the application of hard

thresholding and Partial Differential Equation (PDE)-based inpainting, respectively. Then

we localize the pupil by invoking diverse information available in the image involving pupil

location, intensity, and shape. We further propose a technique to eliminate occlusions re-

sulting from the overlap of long eyelashes with the area of the pupil. This step ultimately

influences segmentation of the pupil area, which is performed next. Both the pupil and iris

in an iris image are segmented by fitting a rotated ellipse, an ellipse parameterized by the

parameters of main axes, center point, and the angle of rotation. During the iris segmenta-
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tion, we apply a contrast balancing procedure to ensure correct segmentation of bright and

shadowed portions of the iris. Simultaneously with iris boundary we estimate the occlusion

mask by applying an edge detector and slightly smearing the mask to ensure connected

edges.

The rest of this chapter is organized as follows. Section 5.3 describes our segmentation

methodology for a pupil and iris localization. This section also lists preprocessing steps

required for successful segmentation in the presence of non-idealities. Section 5.4 illustrates

the performance of our segmentation algorithm using non-ideal data such as CASIA III INT

(CASIA for Institute of Automation, Chinese Academy of Sciences) [76], ICE [71,74], WVU

[77] and WVU off-angle datasets [78]. Finally, a summary and conclusions are presented in

Section 5.5.

5.2 Effects of Degradations on Iris Segmentation

In this section we empirically demonstrate how various degrading factors influence iris

image segmentation. We manually select a number of images with strong degradations due

to a single factor. Selected images are segmented using our robust segmentation technique

designed to deal with degraded iris images [58]. Fig. 5.1-5.8 provide examples of degraded

images and the results of their segmentation. Images are selected from four large public iris

datasets: Chinese Academy of Sciences iris dataset version 1, 2 and 3 (CASIA) [76], Iris

Challenge Evaluation (ICE) dataset [74], West Virginia University (WVU) dataset [77], and

WVU Off-angle dataset [78]. Each figure presents two iris images, a relatively clean (ideal)

image and a strongly degraded image, but mainly by a single degrading factor. Typically, an

image with no or light degeneration is segmented perfectly. The other image characterized

by strong degeneration due to a single factor cannot be well segmented. A subjectively

evaluated ground truth for fair or incorrect segmentation is provided using dotted line.
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(a) (b)

(c) (d)

Figure 5.1: Segmentation of occluded iris images: (a) the original image I1 (from WVU
dataset), (b) correct segmentation for I1, (c) the original image I2 (from WVU dataset), (d)
incorrect segmentation of I2. The occlusions are due to eyelids.

Fig. 5.1 illustrates the degradation due to eyelid occlusion. Note that the second image

I2 is not segmented well due to dominating occlusion of a large portion of pupil and limbic

boundaries.

In Fig. 5.2 through Fig. 5.8, pairwise examples are images of the same iris acquired under

different conditions. Fig. 5.2 demonstrates another type of occlusion caused by eyelashes.

In the second image I2, the contrast between iris and sclera is very low. In addition, very

long eyelashes form a “fake limbic boundary,” which results in incorrect segmentation.

As illustrated in Fig. 5.3, strong specular reflections may damage the line of the pupil

boundary. In this example, the damaged pupil area is relatively large compared to the size of

the pupil. Not only specular reflections but also low contrast (Fig. 5.4) and poor illumination

(Fig. 5.5) may contribute to the problem of estimating the pupil boundary.

In the examples illustrated in Fig. 5.4 and Fig. 5.5, careful visual evaluation of the images

may result in a carefully evaluated ground truth. In the following two examples presenting
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(a) (b)

(c) (d)

Figure 5.2: Segmentation of occluded iris images: (a) the original image I1 (from CASIA I
dataset), (b) correct segmentation of I1, (c) the original image I2 (from CASIA I dataset),
(d) incorrectly segmented I2. The occlusions are due to eyelashes.

the cases of strong out-of-focus (Fig. 5.6) and motion (Fig. 5.7) blurs, no segmentation

ground truth can be found. The subjective judgement in these cases does not allow to state

that the visually best choice is the best choice in recognition sense.

The last example presents the case of the off-angle images (Fig. 5.8). This example

illustrates that iris images with a strong off-angle may cause a large error in estimating the

angle of rotation, provided that an ellipse fitting procedure is adapted to find the limbic

boundary.

In the presence of strong degradations, the most robust segmentation algorithm will fail

to produce a correct result. Therefore, after the segmentation an automatic iris recognition

system has to perform evaluation of the quality of segmentation in order to rule out images

with failed segmentation. The examples above illustrate that incorrect segmentation leads to
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(a) (b)

(c) (d)

Figure 5.3: Segmentation of iris images containing strong specular reflections: (a) the original
image I1 (from CASIA III dataset), (b) correct segmentation of I1, (c) the original image I2
(from CASIA III dataset), (d) poor segmentation of I2 due to the presence of strong specular
reflections.

a certain offset between the true boundary and the estimation. In most cases, no continuous

clear edges exist that follow incorrectly estimated boundaries. If both the pupil boundary

and the limbic boundary are almost correctly estimated, then there must be long clear

edges observed along the unaffected boundaries. Therefore, the edges along the estimated

boundaries can be used to evaluate the precision (accuracy) of iris segmentation.

5.3 Segmentation Methodology

Traditionally, iris segmentation algorithms perform a number of steps. Ours includes:

(A) preprocessing; (B) pupil segmentation; (C) iris segmentation; (D) occlusion estimation

and (E) unwrapping. A general block-diagram of the steps in the proposed segmentation
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(a) (b)

(c) (d)

Figure 5.4: Segmentation of images with low contrast: (a) the original image I1 (from CASIA
II dataset), (b) correctly segmented I1, (c) the original image I2 (from CASIA II dataset),
(d) fair segmentation of I2.

algorithm is shown in Fig. 5.9. Although some of those steps appear to be similar to steps

in traditional iris segmentation algorithms, each step in Fig. 5.9 targets compensation of a

specific nonideality and includes a procedure for compensation of the nonideality in addition

to traditional processing. The sections below provide details of each step.

5.3.1 Preprocessing

The preprocessing of iris images consists of detection of specular reflections, their removal

and denoising of images.

Inpainting of Specular Reflections

Due to high intensities of specular reflections and large gradient values along their bound-

aries, if not successfully removed, specular reflections substantially degrade performance of

an intensity- and gradient-based segmentation algorithm. The details of preprocessing are
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(a) (b)

(c) (d)

Figure 5.5: Segmentation of unevenly illuminated images and images with low contrast: (a)
the original image I1 (from WVU dataset), (b) correct segmentation of I1, (c) the original
image I2 (from WVU dataset), (d) incorrect segmentation of I2.

provided below.

Let A(n1, n2) be an image intensity at a location (n1, n2). In our approach specular

reflections are localized through application of a thresholding function, γ(n1, n2). An in-

tensity value of a pixel (n1, n2) is considered as a specular reflection if the intensity value

A(n1, n2) ≥ γ(n1, n2). For specular reflections within the area of the pupil, a threshold of

value γ1 is used. The value of this threshold influences the result of inpainting, which is

important for the intensity-based pupil area selection described in the following subsection.

For specular reflections inside of the iris area, a threshold γ2 > γ1 is used to avoid attribut-

ing well illuminated iris areas to specular reflections. To identify a potential pupil area we

introduce another threshold τ. In our implementation, γ1 and τ are assigned the same value.
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(a) (b)

(c) (d)

Figure 5.6: Segmentation of out-of-focused images: (a) the original image I1 (from ICE
dataset), (b) segmentation results for I1, (c) the original image I2 (from ICE dataset), (d)
poor segmentation of I2.

Therefore, the final thresholding function γ(n1, n2) is described as:

γ(n1, n2) =















γ1, pixel (n1, n2) is located inside of

the potential pupil area determined by τ,

γ2, otherwise,

(5.1)

where parameters γ1, γ2 and the maximum pupil intensity value τ have to be preset. These

parameters depend on the type of the sensor used to acquire images and the environment.

The procedure results in a rough masking of the regions of specular reflections. Localized

specular reflections are further refined based on the shape and connectivity properties of

masked areas. Although a set of tuned parameters used to process data to demonstrate

performance of the proposed segmentation algorithm in Sec. 5.4 is suitable for a number of

iris capture devices operating in near-IR range, our specular reflection detector has to be

recalibrated, that is, γ1, γ2, τ have to be evaluated, if new capture devices or new environ-

mental set ups are used. The parameters can be easily estimated from a small set of sample

iris images when capture device or environmental setup change.
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(a) (b)

(c) (d)

Figure 5.7: Segmentation of motion blurred iris images: (a) the original image I1 (from WVU
dataset), (b) segmentation result for I1, (c) the original image I2 (from WVU dataset), (d)
fair segmentation result for I2.

Once specular reflections are detected, they have to be treated individually based on

their location in the image. A special care has to be taken of the specular reflections located

inside the pupil. For this purpose, the specular reflections located inside of the possible

pupil regions are inpainted first. To compensate for the missing data, a sparse partial

differential equation (PDE)-based inpainting procedure [97] is applied to refined localized

specular reflections. After inpainting, additional intensity adjustment needs to be integrated

to ensure that the inpainted areas have similar intensity values as unaffected pupil areas.

To adjust the intensity value, possible unaffected pupil regions have to be detected. It is

assumed that they are close to the specular reflections but have a relatively low average

intensity value. Once the unaffected pupil regions are detected, 0.1 quantile and 0.5 quantile

intensity values of various unaffected pupil regions are used to upper and lower bound the

intensity values of inpainted regions.

The complete inpainting procedure includes the following steps:
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(a) (b)

(c) (d)

Figure 5.8: Segmentation of the off-angle iris: (a) the original frontal view image I1 (from
WVU Off-angle dataset), (b) segmentation result for I1,, (c) the original 30 degree off-angle
image I2 (from WVU Off-angle dataset), (d) fair segmentation result for I2.

• A potential pupil area, maskp1, is identified using the maximum value of pupil intensity,

τ, as a threshold. An enlarged mask maskp2 is obtained after closing unfilled regions.

• Potential regions containing specular reflections, masks, are selected using the thresh-

olding procedure (6.1). The regions are further refined using relationship between

neighboring points. Specular reflection areas are selected using a threshold γ.

• The masks is dilated to include all possible affected regions.

• The intersection of maskp2 and masks is selected to be inpainted region inside of the

pupil denoted as maskp3.

• The area maskp3 is inpainted, and the intensity values in the region are adjusted using

the intensity information of the region maskp1
⋂

masks, the intersection of maskp1 and

masks.

• The region of potential specular reflections, masks1, is updated by applying the thresh-

olding procedure (6.1) to the inpainted image. The resulting mask is again refined using
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Figure 5.9: Block diagram of the iris segmentation procedure.
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the relationship between neighboring points.

• The masks1 is expanded to include all possible affected regions.

• The region selected by masks1 is inpainted.

An example of the inpainting process is shown in Fig. 5.10. The purpose of inpainting is

Figure 5.10: Inpainting steps: (a) the original image, (b) maskp1 of the potential pupil area,
(c) gaps in maskp1 are filled to obtain the mask maskp2, (d) rough specular reflection masks
is obtained using the threshold γ, (e) expanded specular reflection masks, (f) combination of
(c) and (e), (g) the intersection maskp2

⋂

masks of two masks, (h) result of initial inpainting,
(i) refined inpainting result after intensity adjustment, (j) rough specular reflection masks1
obtained using the threshold γ applied to (i), (k) refined and expanded specular reflection
masks1, (l) final result of inpainting, (m) final specular reflection mask used to generate the
template mask, (n) template mask.

not to make the image more pleasing, or to recover damaged information; it is intended to

simplify the pupil segmentation procedure and increase a success rate of segmentation.
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An additional factor that can be detected and removed during the initial stage of pre-

processing is the additive noise. Its influence on the iris boundary detection and estimation

of occlusions is due to high absolute gradient values present in noisy images.

Denoising

To eliminate the effect of noise we choose to work with a two-dimensional adaptive Wiener

filter. The values of the mean, µ, and variance, σ2, are estimated locally first for each pixel

(n1, n2) in the original image A :

µ =
1

NM

∑

n1,n2∈η

A(n1, n2),

σ2 =
1

NM

∑

n1,n2∈η

A2(n1, n2)− µ2,

where η is the N -by-M local neighborhood of each pixel in the image A. In our current

implementation N and M are set to 5. Then the denoised image B is given by:

B(n1, n2) = µ+
σ2 − v2

σ2
(A(n1, n2)− µ).

where v2 is the average of all locally estimated variances.

The result of noise removal is especially noticeable in low resolution images (for instance,

images from CASIA I dataset). The noise removal often improves quality of unwrapped

images.

After the preprocessing step is complete, the image is submitted for segmentation.

5.3.2 Pupil Segmentation

The pupil segmentation is composed of a number of steps. This includes (1) contrast

stretching, a step that ensures clarity of the boundary between the pupil and iris; (2) smooth-

ing step that removes extreme values without reducing sharpness of the image; (3) pupil

localization that finds a potential location of the pupil; (4) rough segmentation of the pupil;

(5) refinement of a roughly segmented pupil; (6) ellipse fitting into the pupil boundary; and

(7) evaluation of precision of pupil segmentation. The rest of the section provides details of

the steps above.
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Contrast Enhancement (Normalization)

Iris images acquired under nonideal experimental set up often have low contrast, espe-

cially along the boundary between pupil-iris and iris-sclera. To enhance the contrast we

implement the following procedure:

B(n1, n2) = min

(

255,
255 (A(n1, n2)−min(A))

max(128, q0.4(A))−min(A)

)

,

where A is the image before the contrast enhancement, B is the image after the contrast

enhancement, min() is the function that returns the minimum value, max() is the function

that returns the maximum value, and qx() is the function that returns the x quantile of

image intensities [98].

Contrast enhancement is a necessary procedure that ensures the correct pupil segmenta-

tion. The noise and the other strong disturbances caused by the near pupil sphincter muscle

and eyelashes are eliminated by performing a smoothing step described below.

Smoothing

To smooth the enhanced image we apply a median filter [99]. The value of an output pixel

is determined by the median of the pixels in the neighborhood, rather than the mean. The

median is much less sensitive to outliers compared to the mean. Median filtering removes

these outliers without reducing the sharpness of the image. The size of the median filter

depends on the resolution of the image to be smoothed. As the pupil segmentation procedure

is intensity and gradient based, the smoothing of the image is important for the images with

low contrast or with noisy pupil area. It also helps the detection of limbic boundary, since a

large window median filter can remove misleading edges that can be observed inside of the

iris area. This step may not be useful for good quality images, but does not alter performance

in this case.

Pupil Localization

After image is enhanced and denoised, it is further subjected to pupil localization proce-

dure. Two assumptions are made that are required to hold under both ideal and non-ideal

settings:
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• The pupil area has the smallest intensity values in the image. Note that this

assumption can be reversed in order to address the “red eye effect.”

• The shape of the pupil can be described relatively well by a circle or ellipse.

The first assumption is valid under condition that the amount of the light reflected back

from the pupil is relatively small. The light is typically reflected from the cornea’s convex

surface. This is valid under the ideal setting. The second assumption is valid both under

ideal and non-ideal settings.

To locate the pupil we use two steps: (1) pupil candidates are selected based on the

circular shape and (2) the best pupil candidate is selected based on intensity information

and location with respect to the image center.

Potential candidates are selected by applying a circular Hough transform. When eval-

uating non-ideal data, eyelashes and strong specular reflections can introduce “fake” pupil

candidates. A number of candidates can be removed by introducing a smoothing step prior

to applying the Hough transformation.

After candidates have been selected, intensity and location information is used to find

the optimal candidate. An adjusted intensity value for each candidate is generated based on

another justifiable but relatively weak assumption: the pupil is normally located near the

center of the iris images. The adjusted intensity value wi of a candidate i is calculated based

on convolved intensity value and its distance from the image center. Mathematically this is

described as follows:

wi =
I ′i

1 + 3d2i
,

where di is the distance between the candidate and the image center, and

I ′ = (255− I) ∗ 1n×n,

is the result of the convolution of the inverted image 255− I with a square matrix of all ones

of size n × n. The value of n is selected based on the size of the image. I ′i is the intensity

value of a candidate at the location i. The candidate with the largest adjusted intensity is

selected as the optimal candidate. Fig. 5.11 is an illustration of this process. Once the
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Figure 5.11: In this example, six pupil candidates are selected based on a circular shape of
bright regions. Then the intensity information is used to select the optimal candidate with
the largest intensity value.

optimal candidate is selected, the pupil can be roughly segmented using similarity of the

intensity values.

In some cases, the assumptions stated earlier may not hold. The method described above

will help to consistently select the true pupil candidate. When the true pupil candidate is

located near the boundary, the candidate can be correctly selected if no other pupil like

area exists (with low intensity and circular shape) within the image. In this case the true

candidate will return the highest adjusted value wi in spite of a higher value of penalty di.

The assumption that the shape of the pupil can be described relatively well by a circle or

ellipse, may not hold true for heavily occluded iris images or images with strong off-angle.

Again, the true pupil candidate can be correctly selected if no other pupil like area exists

(with low intensity and circular shape). Circular Hough transform is tolerant to partial

occlusions or imperfect circular boundaries. In this case the true pupil area will be among

candidates for pupil center and will return the highest adjusted value wi due to the lowest

average intensity of the surrounding area.

Rough Segmentation of the Pupil

A 5×5 neighborhood around the optimal candidate is used to identify the initial minimum

and maximum intensities used for searching the pupil area. This intensity range is refined

based on the rough estimation of the pupil shape and the gradient information along the

region boundary. The pupil area is assumed to be relatively well described by a circular
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shape and have a clear boundary. We further present a summary of the evaluation criteria:

• The size of the selected area should be larger than a threshold. In our experiments,

we use 100.

• The average gradient value along the boundary has to be evaluated. The true pupil

boundary returns the maximum gradient value.

• The difference between the original shape and the ellipse fitted into the area have to be

less than a threshold, we use 13%. This threshold may need tuning for some databases

to achieve the best performance.

After the rough evaluation of the pupil boundary we perform a few processing steps to

compensate for eyelash occlusion and specular reflections on the pupillary boundary.

Refinement of the Pupil Boundary

Eyelashes can introduce “spike” like shapes along the boundary region. These “spike” like

regions can be removed by analyzing the boundary locally. Fig. 5.12 is an illustration of this

procedure. The center of mass for the rough segmentation region is used as an approximation

to the pupil center. Then the boundary is scanned to find possible “spikes”. There are two

kind of “spikes”; we call them “valley” type and “longhorn” type. The first type can be

detected using the distance from the boundary points to the center. A valley is detected

whenever the distance as a function of the orientation angle achieves a local minimum. The

second type of “spikes” can be detected using angular information. Whenever the angle is

decreasing first, then increasing and then decreasing again, the spike observed in this case is

of “longhorn” type. Detected “spikes” are removed by using a large circle of radius equal to

the twice the distance from the cutting point to the center. An example of “spike” removal

is provided in Fig. 5.13. Note while the iris image in Fig. 5.13 is of relatively high quality

in terms of iris texture, the iris area is heavily occluded by eyelashes that cause problems

for an intensity based pupil segmentation.

In the case when dark long eyelashes cross the pupil area, the estimation of pupil center

and the following boundary refinement will be incorrect. To remove the unwanted eyelashes,
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Figure 5.12: “Spike” removal: (a) scanning the boundary, (b) “valley” type “spike”, (c)
“longhorn” type “spike”. Dotted curves in (b) and (c) are the boundaries of the circles that
are used to remove “spikes.”

(a) (b) (c) (d)

Figure 5.13: “Spike” removal: (a) the original image, (b) the estimated pupil boundary, (c)
removing the “spike”, (d) the refined boundary after the “spike” removal.

we manipulate the mask implementing dilation and erosion. The erosion breaks thin con-

nections but it also affects other regions of the pupil. To compensate for the erosion, we

dilate the area around the estimated pupil location. The dilated pupil mask is combined

with the original mask to keep the original boundary instead of smoothed new boundary.

The procedure is illustrated in Fig. 5.14.

Strong specular reflections along the pupil boundary or light colored eyelashes may cause

the rough pupil boundary to become concave. We calculate the convex hull with respect

to the pupil boundary in order to reduce this problem. An illustration of this process is

provided in Fig. 5.15. As the pupil boundary affected by the specular reflections does not

contain reliable information about the boundary, the following ellipse fitting procedure uses

only unaffected pupil boundary. Unaffected pupil boundary can be easily selected using a

mask of specular reflections formed during the preprocessing stage.
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(a) (b) (c)

(d) (e) (f)

Figure 5.14: Breaking unwanted connections: (a) the original image, (b) the connected
mask, (c) the erosion result, (d) select the pupil region from the eroded result using the
location information of the optimal candidate, (e) the dilated pupil region, (f) the result of
intersecting (a) and (e).

Ellipse Fitting

Once the boundary (or partial boundary) is determined, we apply a contour fitting procedure.

There are several possible methods that can be used to accomplish the goal [46] [8], [81],

[94], [100]. A graphical description of few available methods is provided in Fig. 5.16.

Classical iris segmentation techniques, such as Daugman’s original segmentation algo-

rithm [46], [8], assume a circular model for the pupil. That model has the advantage of

being simple: only three parameters need to be estimated. The method provides relatively

good results when applied to frontal view images. However, circular models do not describe

the pupil boundary well if the iris is off-angle. In this case a more complex model is needed.

For instance, an ellipse [81] can be used in place of the circle. This results in an additional

parameter to evaluate. More complex models, such as b-spline-based or other nonparametric

models [94] can be used to describe the boundary between the pupil and the iris. Those mod-

els, however, are sensitive to noise and occlusion if contour evolution is not well controlled.
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(a) (b) (c) (d)

Figure 5.15: Concavity removal: (a) the original image, (b) the initial concave pupil mask,
(c) the convex hull result, (d) the result of ellipse fitting procedure using only unaffected
pupil boundary.

(a) (b) (c) (d)

Figure 5.16: Curve fitting: (a) the circle model, (b) the unrotated ellipse model, (c) the
control point based model, (d) the rotated and translated ellipse model.

Therefore correct b-spline-based shape can not be estimated using a partial boundary. Mod-

els based on rotated and translated ellipse work well both for frontal and non-frontal iris and

require only five parameters to estimate. Mathematically a rotated ellipse is described as:

((x− xp0) cosφ+ (y − yp0) sinφ)2

a2
+

(−(x− xp0) sinφ+ (y − yp0) cosφ)2

b2
= 1,

(5.2)

where (xp0, yp0) is the center of the pupil and φ is the angle of rotation. If the pupil boundary

is distorted by specular reflections, then a partial boundary is selected using only those points

which lie outside the specular reflection mask generated during the inpainting procedure.

Because of occlusions caused by the eyelids, top or/and bottom parts of boundary should be

avoided. The summary of the conditions for selection of the partial boundary are as follows:

• The part should not be located inside of specular reflection mask.
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• The part should have a clear edge (high gradient value).

• It should be continuous (not crossed by eyelashes).

• It should be verified that the edge is a pupil edge and not an occlusion related

edge.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.17: Ellipse fitting: (a) the original image, (b) refined pupil mask, (c) specular
reflection mask, (d) ellipse fitting result taking into account specular reflections, (e) the
error (the XOR between ellipse fitting with the original refined pupil mask), (f) the edges
detected near the refined pupil boundary, (g) selected partial boundary using 4 conditions
listed above, (h) the new ellipse fitting result using selected partial boundary, (i) the final
segmentation result.
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Evaluation of the Pupil Segmentation

The goodness of the pupil boundary estimation is verified using two criteria:

• The error between the refined pupil mask and the ellipse fitted into the boundary

should be small.

• If only a small part of the pupil remains unoccluded, sections of the pupil bound-

ary have to be well separated.

If the evaluation returns a low score value, then the algorithm uses a blind circle fitting

procedure. The initial pupil segmentation result is used to limit the search space by providing

an approximate center of the pupil and approximate radius of the circle. This approach works

well on frontal view iris images with heavily distorted pupil area.

5.3.3 Iris Segmentation

We assume that the shapes of the iris and the pupil are similar and apply the equation

(5.2) to segment the iris region. Other assumptions that reduce computational cost can be

made. They include the assumption of the same angle φ and the same ratio of the ellipse

parameters a and b. These assumptions are especially useful when the iris is heavily occluded

or it is strongly rotated.

Image Translation and Inpainting

To ensure that the search of the limbic boundary is performed over a broad range of

parameters describing the ellipse, the image of an iris is translated such that the center of

the pupil is aligned with the center of the image. The blank area formed due to the image

shift is inpanted to avoid introduction of new edges. An example of an image containing a

partial iris is shown in Fig. 5.18.
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(a) (b) (c) (d)

(e) (f)

Figure 5.18: Image translation procedure: (a) the original image, (b) new image after trans-
lation and impainting, (c) enhanced image, (d) segmented iris, (e) unwrapped template, (f)
unwrapped template mask.

Directional Edge Detector

We use a method similar to the Daugman’s edge detector based on integro-differential

operator [46]. Define a space of rotated ellipses as:
{

(r, φ, xi0, yi0) :
((x− xi0) cosφ+ (y − yi0) sinφ)

2

(ar)2
+

(−(x− xi0) sinφ+ (y − yi0) cosφ)
2

(br)2
= 1

}

,

(5.3)

where the center of the iris (xi0, yi0) is limited to the neighborhood of the center of the pupil

(xp0, yp0), a and b are the parameters of the ellipse fitted into the pupil, the scale factor r is

limited to be in the range [1.2, 3.5], and the parameter φ is set to be the angle of rotation of

the pupil.

Then the problem of finding the rotated ellipse providing the best fit is reduced to the

following optimization problem:

max
r,(xi0,yi0)







1

L(r, xi0, yi0)

∮

B(r,xi0,yi0)

F (∇ (I(x, y))) ds






, (5.4)

where B(r, xi0, yi0) is the partial boundary of the ellipse (5.3), L(r, xi0, yi0) is the length

of B(r, xi0, yi0), and F (∇ (I(x, y))) is a function of the image gradient ∇ (I(x, y)) detailed

below. The function L(r, xi0, yi0) is the normalization given by:

L(r, xi0, yi0) =

∮

B(r,xi0,yi0)

1ds.
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Function F (∇ (I(x, y))) returns adjusted gradient values in the normal direction to the iris

boundary between the sclera and the iris region. Use of this function results in reduction

of many spurious edges introduced by eyelids, eyelashes, and iris patterns while at the same

time retaining those edges caused by the true iris boundary.

The function F (∇ (I(x, y))) can be evaluated on an unwrapped image as shown in Fig.

5.20. The transformation of an elliptical coordinate system into a circular system is:

{

(x− xi0) cosφ+ (y − yi0) sinφ = ar cos θ′

−(x− xi0) sinφ+ (y − yi0) cosφ = br sin θ′,
(5.5)

where θ′ = (θ − φ′) and φ′ = arctan(a
b
tanφ). The angle φ′ is used to map the three o’clock

point on the ellipse in the three o’clock point on the circle assuming θ = 0. Fig. 5.19 is an

illustration of this procedure. Then the normal direction to the ellipse described by equation

Figure 5.19: A rotated ellipse (left) and its representation in a circular coordinate system.

(5.3) will approximately correspond to the vertical direction in the unwrapped image denoted

as U. The function F (∇ (I(x, y))) is then evaluated on the unwrapped image U displayed in

the polar coordinate system (r, θ) :

F ([Uθ, Ur]) =

{

Ur Ur > 0, |Ur| ≫ |Uθ|,
0 elsewhere,

(5.6)

where Uθ and Ur are the gradients of image U in θ and r directions, respectively.

The polar representation of the iris is further used to efficiently find the boundary of

the iris B(r, xi0, yi0). We do not search for a complete boundary that excludes eyelids, eye-

lashes and other occlusions. We are interested in finding the regions of the iris containing

the boundary between iris and sclera only. Once detected, this boundary determines the

parameters of the ellipse to be fitted into the iris boundary. Consider the following example.

The iris image in Fig. 5.20 is partitioned into 5 regions. The regions E1, E3, and E5 contain
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the boundary between iris and sclera. The other two regions contain boundaries between iris

and eyelids and eyelashes. The corresponding unwrapped iris is shown on the right panel in

Fig. 5.20. It is easy to see that the parameters of the ellipse to be fitted in the iris can be

found by detecting the edges in the regions E1, E3, and E5.

(a) (b)

Figure 5.20: (a) The original image showing an off-angle iris and (b) the same iris transformed
into the circular coordinate system and unwrapped. The regions E1, E3, and E5 contain the
true boundary between the iris and sclera and are used to find the parameters of the ellipse
to be fitted into the iris.

The Off Center Penalty

Although the center of the pupil and the center of the iris are known to be non-coaxial,

we assume that they are located close to one another. To compensate for this effect we

involve an off center penalty term ξ(xi0, yi0) defined as

ξ(xi0, yi0) =
1

1 + min(a,b)
max(a,b)

(xi0−xp0)2+(yi0−yp0)2

d2max

,

where the maximum off center distance dmax is a predetermined quantity. In our experiment

we set it to 0.4×max(a, b). The penalty term involves ellipse parameters a and b, since the

distance between pupil center and iris center increases as the off-angle value increases. After
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substituting ξ(xi0, yi0) into (5.4), the equation (5.4) becomes:

max
r,(xi0,yi0)






ξ(xi0, yi0)

1

L(r, xi0, yi0)

∮

B(r,xi0,yi0)

F (∇ (I(x, y))) ds






. (5.7)

Fig. 5.21 demonstrates the relationship between the off center distance and the off angle

value using an error bar plot. We used the WVU Off-angle dataset. Note that off center

penalty is smaller for off-angle cases compared with frontal view cases because of the scale

factor min(a,b)
max(a,b)

.

Figure 5.21: The relationship between the off center distance in pixels and the off angle in
degrees.

Contrast Compensation

Besides heavy occlusion, the uneven illumination of the iris may cause an “offset” during

the estimation of the iris boundary, since all points on the boundary are treated equally.

An example of the iris is shown in Fig. 5.22, where the gradient difference along the iris

boundary, resulting from an uneven illumination, caused the left edge of the iris to be more

pronounced compared to the right edge. This problem can be easily solved by normalizing

the gradients before fitting an ellipse. Note that at this stage, the pupil is segmented.

Therefore, the iris images can be unwrapped with respect to the pupil center. The right and

left portions of the unwrapped iris are then considered separately. The iris boundaries are

detected separately too. The summation of the gradient values along the boundary on each

side is used to calculate the weights to balance the segmentation. To achieve the correct
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segmentation of the iris we scale the right and left boundaries of the iris by estimated weights

that balance the contribution of the boundaries into the complete ellipse fitted into the iris.

The details of the contrast balancing procedure are illustrated in Fig. 5.23.

(a) (b)

Figure 5.22: The result of segmentation (a) before contrast balancing and (b) after applica-
tion of contrast balancing.

5.3.4 Occlusion Estimation

The variability of the eyelashes, not only in terms of their position, but also in terms of

the direction and intensity, makes occlusion estimation difficult. In this work we implement

an occlusion estimation method based on edge detection. This method may not work well on

heavily blurred eyelashes and eyelids. For eyelashes, it also can not ensure that all eyelashes

are included in the occlusion mask.

Prior to estimating occlusions we apply an adaptive illumination compensation technique.

Most of unclear edges due to eyelids are caused by an uneven illumination. An illumination

compensation procedure results in brightening shadowed areas and increasing the overall

contrast along edges [101]. We involve a Quotient Image-based method [102], [103] to achieve

invariance to illumination.

The process of estimating occlusions is further illustrated in Fig. 5.24. The main steps

include: detection of horizontal edges (Fig. 5.24-b), smearing of detected edges (Fig. 5.24-c),

selection of the iris area based on the earlier obtained segmentation result (Fig. 5.24-d and
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(a) (b)

(c) (d)

Figure 5.23: Contrast balancing procedure: (a) the original image with results of pupil
segmentation imposed onto the image, (b) the unwrapped image, (c) the iris boundaries
are detected separately for left and right portions of the iris, (d) the result of the final iris
detection with different contrast compensation weights added on the both sides.

5.24-e) and refinement of the estimated mask based on the connectivity information (Fig.

5.24-f).

To detect horizontal edges, we implement a few steps. We first convolve a horizontal Sobel

mask with the iris image. Let by be the result of the convolution. We further compare by
2 with

the square of the sensitivity threshold λ at every pixel location (n1, n2). If by(n1, n2)
2 > λ2

and if it is a local maximum, then a horizontal edge point is detected at position (n1, n2).

The parameter λ has to be adjusted for different datasets. The smaller the value of λ, the

higher sensitivity of the algorithm to low contrast edges.

Fig. 5.25 illustrates two cases. In the first case, the occlusion mask is estimated without

application of illumination compensation technique. The second case presents the results of

occlusion estimation after illumination invariance is achieved.
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(a) (b) (c)

(d) (e) (f)

Figure 5.24: The evolution of the occlusion mask: (a) the original image, (b) the result of the
initial edge detection, (c) the edge information after smearing, (d) the result of combination
of the mask and the outcome of iris segmentation, (e) the area selected based on connectivity
information, and (f) the final result.

5.3.5 Unwrapping

To unwrap the iris, we involve a technique similar to Camus and Wildes’s technique [79].

Both iris and pupil are described by ellipses. The boundaries are sampled and mapped into

circles as described in Section 5.3.3. The ellipse describing the pupil boundary is given by



























xp(θ) = ap cos(θ − φ′

p) cosφp

−bp sin(θ − φ′

p) sinφp + xp0

yp(θ) = ap cos(θ − φ′

p) sinφp

+bp sin(θ − φ′

p) cosφp + yp0

, (5.8)
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(a) (b) (c)

(d) (e) (f)

Figure 5.25: The evolution of the occlusion mask: (a) the original image, (b) the result of
the initial edge detection, (c) occlusion mask obtained without illumination preprocessing,
(d) image after illumination compensation, (e) the result of horizontal edge detector, (f)
occlusion mask obtained after application of illumination compensation.

where (xp0, yp0, ap, bp, φp) are the parameters of the ellipse. The iris boundary is described

by the ellipse with the parameters {xi0, yi0, ai, bi, φi} :



























xi(θ) = ai cos(θ − φ′

i) cosφi

−bi sin(θ − φ′

i) sinφi + xi0

yi(θ) = ai cos(θ − φ′

i) sinφi

+bi sin(θ − φ′

i) cosφi + yi0

. (5.9)

The mapping of the point (x′, y′) into (θ, r)-point in the pseudo-polar coordinate system is

described by:
{

x′(θ, r) = (1− r)xp(θ) + rxi(θ)

y′(θ, r) = (1− r)yp(θ) + ryi(θ)
, (5.10)

where 0 < r ≤ 1, (xp, yp) is a sample point on the pupil boundary, and (xi, yi) is a sam-

ple point on the iris boundary. Finally, the pixel intensity is interpolated using a cubic

interpolation method to generate the unwrapped iris.
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5.4 Performance Evaluation

The segmentation algorithm is applied to near-IR imagery from a number of public

databases. The performance of the algorithm is compared with the performance of two

other segmentation algorithms.

5.4.1 Databases and Parameters

To analyze the robustness of the proposed segmentation algorithm we evaluate four

datasets: CASIA III INT (INT stands for interval), ICE, WVU, and WVU Off-Angle.

CASIA III includes three subsets which are labeled as Interval, Lamp and Twins. It

contains 22,051 iris images from more than 700 subjects. The number of images per class

varies. As 8 bit gray-level Joint Photographic Experts Group (JPEG) format is used, some

compression artifacts in the images can be observed, especially for Interval subset. The

multiple specular reflections located inside of the pupil area is another characteristic feature

of Interval subset. The resolution of Interval subset images is 320 × 280. The resolution of

all other images is 640× 480. More information can be found from their website.

ICE dataset includes total 2953 images from 132 individuals. The number of images per

class varies. The images were saved using 640× 480 resolution gray-scale Tagged Image File

Format (TIFF).

The WVU data consists of 2453 images, representing 359 different classes captured by

an OKI-IrisPass hand-held device at a resolution of 640 × 480. The number of acquisitions

per eye ranged from 2 to 17.

The WVU Off-Angle (WVU-OA) data consists of 560 images, representing 140 different

classes captured at a resolution of 720 × 576. Each class has 2 frontal images, 1 image at

15◦, and 1 image at 30◦.

Iris databases used in our experiments have distinct resolution, optical characteristics,

and noise. Based on our observation, iris images from ICE dataset have relatively uniform

intensity values in the area of pupil excluding the regions of specular reflections. The bound-

aries between the regions of specular reflection and the pupil are relatively clear except a

few cases of heavily blurred images. Iris images from WVU dataset have a larger variance
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of the pixel intensities within the pupil area and a large number of images characterized

by low contrast. Iris images from WVU-OA dataset are generally of good quality. CASIA

III “interval” directory is characterized by complex specular reflections. Based on analyzed

characteristics of images from different datasets, we identified a number of parameters of

the segmentation algorithm that need to be adjusted for improved segmentation. The main

parameters include:

• Maximum pupil intensity value τ (introduced in section 5.3.1). This is the max-

imum value of pupil intensity around the area affected by specular reflections.

• A threshold γ1 (introduced in section 5.3.1). This is a threshold used to detect

regions of specular reflections within the area of pupil.

• A threshold γ2 (introduced in section 5.3.1). This is a threshold used to detect

specularities in the area outside the pupil.

• A parameter λ used to modify sensitivity of the horizontal edge detector (in-

troduced in section 5.3.4). This parameter is used in the process of occlusion

estimation. The parameter is adjusted based on the average image contrast of a

dataset.

Table 5.1 summarizes the estimated parameters τ, γ1, γ2, and λ for the imagery from

four databases.

Table 5.1: Parameter settings for different datasets

τ γ1 γ2 λ
CASIA III INT 100 100 240 4

ICE 50 50 240 4
WVU 50 50 240 4

WVU-OA 50 50 240 2.3

5.4.2 Visual Evaluation

Since the ground truth is not available, we appeal to a subjective (visual) evaluation as

shown in Fig. 5.26. We select two criteria as a measure of visual evaluation: the maximum
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offset of the pupil boundary, ǫp, and the maximum offset of the iris boundary ǫi. The two

offsets will be compared with the minimum distance between the iris boundary and pupil,

mind. All segmentation results will be placed in four categories:

Figure 5.26: Criteria used for visual evaluation of the proposed segmentation algorithm.

Good : ǫp/mind < 5% and ǫi/mind < 10%. There is no clear boundary offset between

segmentation curves and true iris or pupil boundary. The error of the occlusion

estimation is less than 12.5% of unmasked area.

Fair : (5% ≤ ǫp/mind < 10% and ǫi/mind < 20%) or (ǫp/mind < 10% and 10% ≤
ǫi/mind < 20%). The error of the occlusion estimation is less than 25% of

unmasked area.

Poor : (10% ≤ ǫp/mind < 20% and ǫi/mind < 35%) or (ǫp/mind < 20% and 20% ≤
ǫi/mind < 35%). The error of the occlusion estimation is larger than 25% of

unmasked area.

Bad : Everything else.

Examples of good, fair, poor, and bad segmentation are shown in Fig. 5.27. Fig. 5.28
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(a) (b)

(c) (d)

Figure 5.27: Examples of: (a) good, (b) fair, (c) poor, and (d) bad segmentations.

displays two examples of correctly segmented iris images from WVU and WVU-OA datasets.

We compare our segmentation method against two well established algorithms, Libor

Masek’s [45], [41] and Camus and Wildes’s [79] algorithms. Masek’s algorithm is publicly

available and its modified C++ version was used as a baseline for the ICE phase I (ICE 2005)

competition. We use our own implementation of Camus and Wildes’s algorithm described

in [79]. Table 5.2 compares the success rate in segmentation of the three algorithms. Overall,

the proposed algorithm significantly outperforms the other algorithms. Other algorithms

have some natural limitations, such as circle fitting for Masek’s implementation which does

not perform well on off-angle images. However, a few cases can be found when the algorithms

used for performance comparison outperform our algorithm. Fig. 5.29 presents an example,

where a simple edge-based circle fitting produces better results than our algorithm. This is

an example of heavily occluded iris region.
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Figure 5.28: Examples of correctly segmented iris images fromWVU and WVU-OA datasets.

Table 5.2: Success rate in segmentation

Masek Camus and Wildes Proposed
CASIA III INT 88.89% 92.39% 99.06 %

ICE 91.20 % 90.79 % 98.95%
WVU 64.77 % 85.24 % 97.92 %

WVU-OA 71.43 % 70.00 % 99.82%

Table 5.3 contains the results of manual evaluation of the segmentation performance of

the proposed algorithm. Note that combined “good” and “fair” results provide us with the

Table 5.3: The results of manual performance evaluation

Dataset Correct=Good+Fair Good Fair Poor Bad Poor+Bad
CASIA III INT 99.06% 96.31% 2.75% 0.49% 0.45% 0.94 %

ICE 98.95% 91.80% 7.15% 0.17% 0.88% 1.05%
WVU 97.92% 90.05% 7.87% 0.86% 1.22% 2.08%

WVU-OA 99.82% 93.39% 6.43% 0.18% 0% 0.18%

percentage of correctly segmented iris images.

5.4.3 Recognition Performance

Fig. 5.30 illustrates ROC performance of our segmentation algorithm compared with the

baseline algorithm used in the ICE 2005 competition. Both algorithms use Libor Masek’s

encoding algorithm. The difference is in segmentation. The baseline algorithm is described
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(a) (b)

Figure 5.29: Segmentation of occluded iris images: (a) the original image (from WVU
dataset), (b) circular fit due to a simple edge-based approach (dashed line) and elliptical
fit due to our algorithm (solid line).

in [45], [41]. The performance of other ICE 2005 participants is not shown, since we do not

analyze performance of encoding techniques. For the right eye test, our algorithm achieves

97.95% verification rate (VR) at 0.1% false accept rate (FAR), while the baseline algorithms

achieves 85.5%. For the left eye test, our algorithm achieves 96.85% VR at 0.1% FAR, while

the baseline algorithms achieves 85.45%. Note the substantial improvement in recognition

performance due to application of our segmentation algorithm adapted to deal with nonideal

iris imagery.

The speed of the three algorithms was evaluated using a personal computer equipped with

Intelr Pentiumr IV 3GHz processor and 2GB of RAM. All segmentation techniques were

implemented in Matlab. Implementation of our method relied on functions from Statistics

and Image Processing Toolboxes. Optimization of the proposed segmentation method was

not a focus of this work. Therefore, the results are provided for non-optimized version

of our method. On the contrary, implementation of Camus and Wildes’s algorithm relies

on multiresolution approach (we used functions from a multiresolution Toolbox in Matlab

[104] to reproduce Camus and Wildes’s algorithm). The running time of the methods and

algorithms is summarized in Table 5.4. Camus and Wildes’s algorithm is more efficient when

applied to high resolution (large in size) images. The proposed algorithm performs relatively

well, especially if we notice that our algorithm is not optimized.
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(a) (b)

Figure 5.30: ROC performance of (a) right and (b) left eye for ICE data. IrisBEE is a
version of Masek’s algorithm. IrisBEE composed of segmentation, encoding, and matching
algorithms was used as a baseline algorithm in ICE 2005. The solid ROC curves on the left
and right panels in the figure are obtained using the segmentation algorithm proposed in
this chapter and encoding and matching algorithms of the IrisBEE.

Table 5.4: Complexity (resolution vs. running time (in seconds))

Masek Camus and Wildes Proposed Proposed Proposed
(step size 1) (step size 2) (step size 3)

640× 480 439 69 138 108 101
480× 360 324 42 85 70 67
320× 240 89 27 34 30 30
160× 120 18 10 10 9 9

The proposed non-optimized segmentation procedure may appear to be slow when the

algorithm operates on high resolution images. This inefficiency is due to filtering operations

and is due to using an exhaustive search to select the best candidate for the iris center. In a

database such as ICE 2005 database the off-center distance can reach up to 11 pixels. For the

search over a circular area this results in about 380 iris center candidates to consider. The

distribution of the off-center distances for ICE 2005 can be found in Fig. 5.31. An example

of the image with a large off-center distance is shown in Fig. 5.32. This procedure can be

sped up considerably by involving multi-resolution analysis similar to the one adopted by

Camus and Wildes.

We made the first attempt to speed up our segmentation procedure by applying a hier-

archical search algorithm, where prospective centers are sampled roughly at first, then the



CHAPTER 5. IRIS SEGMENTATION 107

Figure 5.31: The distribution of the off-center distances for ICE dataset.

Figure 5.32: An example of large off-center distance image from ICE dataset (243265.tiff).

search is refined. The last three columns in Table 5.4 are the speed of exhaustive approach

and optimized approach due to simply changing the search step to two and three, respec-

tively. The reduction of running time due to the initial optimization is clearly observed.

Since our segmentation procedure relies on a large number of enhancement and image pro-

cessing procedures, changing the search step in searching the iris center may not be sufficient.

We believe that applying multi-resolution analysis similar to the one adopted by Camus and

Wildes will result in a better solution.

5.4.4 Automatic Algorithm for Evaluating the Precision

If segmentation is not performed at a certain precision, the error of segmentation will

further propagate and will be amplified during the proceeding processing, encoding, and
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matching steps. This emphasizes a critical need in designing robust iris segmentation algo-

rithms and together with it a need of automatic algorithms evaluating the precision (accu-

racy) of iris segmentation. Automatic algorithm evaluating the precision of segmentation

plays important role for two reasons: (1) it can be placed into a feedback loop to enforce

another run of segmentation algorithm that may include more sophisticated steps for high

precision segmentation and (2) the outcome of this evaluation can be treated as a quality

factor and thus can be used to design a quality driven adaptive iris recognition system.

To design an automatic algorithm capable of evaluating the precision of iris segmentation

is not an easy task. Moreover, it is a questionable task, since no ground truth for correct

iris segmentation is available. While it is almost impossible to design a perfect automatic

algorithm for segmentation quality check, we can design an automatic algorithm which rules

out iris images with wrong segmentation.

The algorithm that we propose relies on the following tests: (1) The pupil (relative to the

image resolution) has to be of sufficient size (in pixels) for it to be well segmented. Therefore,

we can use a threshold-based test that checks the size of the pupil. (2) The second test

analyzes estimated boundaries of the iris and pupil. If boundaries are well estimated, then

the cumulative gradient along the boundary takes a large value. (3) The third test evaluates

the relationship among intensities of the pupil, iris, and sclera. Excluding occluded portions

of the iris, the average intensity value of the pupil is traditionally smaller then the average

intensity value of the iris. The average intensity value of the iris is traditionally smaller than

the average intensity value of the sclera.

These tests can be easily performed if the region of segmented iris is expanded beyond

its boundaries by 10% in the direction towards the center of the pupil and by 20% in the

direction of the sclera. Then both the edge information and intensity information can be

concluded on by using image regions adjacent to the pupil and iris boundaries.

To evaluate the cumulative intensity gradient along the estimated pupil and iris bound-

aries, we unwrap the image. First, a band covering the estimated pupil boundary (Fig. 5.33

(d)) is analyzed. For each horizontal pixel in unwrapped image we evaluate the intensity

gradient along the vertical direction. If a gradient value for one of vertical pixels exceeds

a specified threshold, we will say that at this location (horizontal location) the boundary
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is detected (Fig. 5.33 (e)). We further count the number of horizontal locations with the

gradient exceeding the threshold and divide by the total number of horizontal pixels in the

unwrapped iris. A similar evaluation is performed for the iris boundary (Fig. 5.33 (f)). Since

in majority of cases the limbic boundary is not sufficiently sharp, a vertically compressed

version is used in place of the original unwrapped image to detect the edge (Fig. 5.33 (g)).

Denote by Ωp and Ωi the percentage of horizontal pixels with the gradient exceeding the

prespecified threshold where Ωp is for the pupil boundary and Ωi is for the limbic bound-

ary. However, occluded parts will not be taken into account. The larger the values of these

parameters, the better are the estimates of the boundaries. The procedure is illustrated in

Fig. 5.33. The decisions made by the automatic test are summarized below:

(b)

(c)
(a)

(d)

(e)

(f)

(g)

Figure 5.33: The steps performed by the automatic algorithm for evaluation of precision of
iris segmentation: (a) the original image, (b) the unwrapped template, (c) the unwrapped
mask, (d) the extended portion of unwrapped iris on the pupil side, (e) the result of edge
detection on the pupil side, (f) the extended portion of unwrapped iris on the sclera side,
(g) the result of edge detection on the sclera side.
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• Correct : 1 ≥ Ωp > 0.8 and 1 ≥ Ωi > 0.7.

• Incorrect : Otherwise.

The two decisions can be further subdivided into four categories, good and fair (resulting in

correct segmentation) and poor and bad (resulting into incorrect segmentation), by refining

the criteria.

The parameter Ωi can also be used to evaluate the precision of occlusion estimation.

The occlusion estimation is labeled as “wrong” if Ωi < 0.85. For the example in Fig. 5.33,

Ωp = 0.9781 and Ωi = 0.9883. In this case, our automatic algorithm concludes that the

image in Fig. 5.33 is well segmented and has correctly estimated occlusion mask.

Table 5.5 summarizes the results of application of our automatic algorithm to evaluate

the precision of iris segmentation performed by our robust segmentation algorithm. Table

Table 5.5: Summary of decisions made by automatic algorithm

Dataset Correct Incorrect Occlusion
CASIA III INT 96.73% 3.27% 88.63%

ICE 92.31% 7.69% 90.25%
WVU 95.97% 4.03% 92.38%

WVU-OA 96.96% 3.04% 91.43%

5.6 presents the results of the manual evaluation. From Tables 5.5 and 5.6 we may conclude

Table 5.6: Summary of decisions made by manual evaluation

Dataset Correct Incorrect Occlusion
CASIA III INT 99.06% 0.94% 97.74%

ICE 98.95% 1.05% 92.79%
WVU 97.92% 2.08% 91.97%

WVU-OA 99.82% 0.18% 93.75%

that there are only a few images where the automatic and manual evaluations disagree.

Table 5.7 presents a summary of the percentages of false alarms and false positives. The

false alarms are percentages of all images that are classified as incorrectly segmented using

automatic algorithm and correctly segmented using manual evaluation. The false positives

are percentages of all images that are classified as correctly segmented by the automatic
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algorithm and classified as incorrectly segmented through the manual evaluation. Note

that the ICE dataset has a relatively large percentage of false positives compared to other

databases. This is due to a large number of blurred images. However, the overall performance

comparison is very satisfying. A more precise threshold setting for better segmentation will

result in a lower false positive rate, but will increase the false alarm rate.

Table 5.7: Automatic vs. manual

Dataset False Alarm False Positive False Alarm
on Occlusion

CASIA III INT 2.41% 0.23% 9.42%
ICE 6.64% 0% 5.72%
WVU 2.69% 0.73% 3.67%

WVU-OA 2.86% 0% 3.39%

With respect to occlusion, false alarm is defined as the percentage of images that are

classified through manual evaluation as images with good segmentation and classified by the

automatic algorithm as wrong occlusion. The occlusion false alarm is presented in the third

column of Table 5.7. The high percentage values on the dataset CASIA III INT are due to

iris images with partially low contrast between the iris and sclera.

5.5 Conclusions and Future Work

A methodology for robust iris segmentation designed specifically for non-ideal irises has

been proposed. This methodology utilizes shape, intensity, and location information for

pupil/iris localization. An ellipse based model is used to contour the estimated boundaries for

pupil and iris regions which demonstrates robustness to non-frontal iris images. A contrast

balancing technique is introduced to reliably detect iris boundary under the condition of

uneven illumination. The occlusion mask is carefully estimated using robust edge detector.

We have evaluated four distinct datasets, ideal and non-ideal, in order to demonstrate the

robustness of our algorithm. We have compared our results to that of Masek and Camus

and Wildes. Using all datasets, we achieve an average increase in segmentation performance

of 17.1% over the latter segmentation methodologies. Optimization of the speed of the
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algorithm was beyond the scope of this chapter.

An automatic algorithm evaluating the precision of segmentation is also proposed as a

necessary component of the iris segmentation algorithm. Since any automatic iris segmenta-

tion algorithm faces challenging images that result in poor or bad segmentation, the purpose

of an automatic algorithm evaluating the precision of segmentation is to block these images

from sending them for further processing and recognition.

In the future we plan to address a number of problems that we observed while performing

this work. We intend to address the issue of the speed of our algorithm. The goal is to make

implementation to perform online.

We would also like to explore new methods and processing tools described in the literature

on iris segmentation and iris recognition. For example, application of active contours as a

tool for a potentially more precise segmentation is a natural extension to our current work.

We will use ellipse fitting as an initial guess.
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Chapter 6

Iris Encoding

In majority of iris recognition systems, segmentation of an iris image is followed by

encoding. Daugman’s iris recognition algorithm introduced in early 90s and later undergoing

continuous refinements remains potentially the most efficient and scalable in iris field. In

this chapter, we present several extensions from the original iris encoding concept.

6.1 Local Ordinal Binary Extension

In this section, we design and test an algorithm that can be used both individually and

as a natural extension scheme to Gabor wavelet-based algorithm. It is based on the local

ordinal information extracted from original unfiltered images. This scheme holds a number

of promises: (1) it is robust with respect to a number of nonidealities in iris images and (2)

because of the binary nature of the local ordinal information this scheme can be flawlessly

integrated into the traditional filter-based recognition systems. The proposed scheme was

extensively tested individually and when combined with Gabor wavelet-based approach.

6.1.1 Introduction

Among existing iris recognition techniques, Daugman’s 2D Gabor wavelet-based encoding

algorithm [8,46,94] remains the most popular and efficient technique for a frontal view high

quality iris imagery. However, since introduction of new research directions such as iris at

a distance and non-ideal iris the capabilities of Daugman’s algorithms applied to non-ideal
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iris images were questioned. While most researchers focus on designing novel preprocessing,

iris unwrapping, and encoding procedures for non-ideal iris (including Daugman himself), in

this work we show that by combining Daugman’s approach with ordinal binary coding at

the matching score level leads to considerable recognition gain, efficiency and robustness of

a traditional Gabor wavelet-based algorithm.

Local Binary Pattern (LBP) technique [105, 106], a subcase of ordinal binary encoding,

was previously introduced as an iris encoding technique by Sun et al. [26]. While Sun et al.

propose to use LBP as an individual encoding technique, our work pursues different goals.

The primary goal of our work is to explore the possibility of use local information contained

in a neighborhood of a pixel in images to improve performance of Gabor wavelet-based

techniques. This information can be used to refine computation of Hamming Distances

between images and make the combined algorithm more noise resistant compared to the

traditional Gabor wavelet-based approaches.

6.1.2 Ordinal Binary Coding and Combining Methodology

Consider two iris templates I and I ′ encoded to provide two binary iris codes CI
Gabor and

CI′

Gabor. To evaluate match or non-match using a traditional Gabor wavelet-based approach,

the codes have to be initially aligned, and the total Hamming Distance (HD) normalized

by the number of unoccluded pixels common to two iris codes is calculated. The alignment

part as well as matching part can be easily refined. Since iris code contains information

about both real and imaginary parts, for a certain pixel pair, for example, the pixel p0 from

templates I and the pixel p′0 from templates I ′, HD can only take three possible values: 0,

1 and 2, since we have 2 bits to describe a value of each pixel. The two bits for pixel p0 are

ℜp0 and ℑp0 . The two bits for pixel p′0 are ℜp′0
and ℑp′0

. To provide an example we list all

possible combinations and values that HD can take in Table 6.1. From here the normalized

HD for each pixel pair can take only three values: 0, 0.5 and 1. It can be interpreted as

following:

0: Two pixels with their surroundings are similar.

0.5: The relation between two pixels is uncertain.
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1: Two pixels with their surroundings are different.

After analyzing this observation, we raised the following question. Would we benefit from

refining the value of HD further? Our experimental analysis that we will present further

has shown that using 3 bits or more by itself will not result in performance improvement.

However, combination of refined HD and binary code that uses ordinal information contained

in pixel values considerably improve the recognition performance of the Gabor wavelet-based

approach.

Table 6.1: All possible Hamming distance outcomes for a pair of pixels p0 and p′0 using
log-Gabor binary encoding scheme

HD ℜp0=0 ℜp0=0 ℜp0=1 ℜp0=1
Normalized HD ℑp0=0 ℑp0=1 ℑp0=0 ℑp0=1

ℜp′0
=0 0 1 1 2

ℑp′0
=0 0 0.5 0.5 1

ℜp′0
=0 1 0 2 1

ℑp′0
=1 0.5 0 1 0.5

ℜp′0
=1 1 2 0 1

ℑp′0
=0 0.5 1 0 0.5

ℜp′0
=1 2 1 1 0

ℑp′0
=1 1 0.5 0.5 0

Given an image, consider an eight neighborhood of a pixel. The idea behind ordinal

binary encoding is to make use of local information contained in neighboring pixel values.

The total ordinal information can be expressed either using relative rank information or

using pairwise ordinal relationship. We can represent relative relationship of pixels within

8-neighborhood using a 9× 9 binary matrix. We provide an example in Fig. 6.1. An entry

at ith row and jth column in the matrix will be set to one if the value of row head pi−1 is

larger than the column head pj−1 and it will be set to zero if pi−1 is equal to or smaller than

the column head pj−1. No values are usually assigned to the diagonal elements since the

rank relationship for the same pixel is meaningless. Because of the symmetry of the matrix,

the entire pixel relationship in 8-neighborhood is contained in the upper right (or lower left)

triangle. Now, given a rank matrix, we can associate a 36-bit binary code generated using

ordinal information with each pixel.
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(a) (b)

(c)

Figure 6.1: LBP vs. LFOBC: (a) the intensity values of pixel p0 and its neighbors, (b)
LBP code: 110 10 000, (c) LFOBC code: 11010000 1000000 000000 11010 0000 000 11 0, or
00101111 0111111 111111 00101 1111 111 00 1.
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The described above encoding procedure is called local full ordinal binary code (LFOBC)

in this work. It is similar to local binary pattern (LBP) when parameters are selected to be

P=8, R=1.0. Here P is the number of neighbors and R is the radius of the circle where the

neighbors are sampled. If the value of the center pixel is subtracted from the values of the

neighbors, the local binary pattern can be calculated by considering only the signs of the

differences [105,106]. The comparison of LBP and LFOBC methods is presented in Fig. 6.2.

From this specific example, it is clear that LBP code is presented by the first column of the

LFOBC code if the lower left triangle is considered, or the inverse (1 to 0 and 0 to 1) of the

first row of the LFOBC code if the upper right triangle is selected.

(a) (b) (c)

Figure 6.2: LBP vs. LFOBC: (a) the pixel p0 and its neighbors, (b) the calculation of LBP,
(c) the calculation of LFOBC.

As we mentioned earlier, LFOBC may be easily combined with Gabor wavelet-based en-

coding. We do this when we compute the normalized HD for each pixel pair after performing

the alignment of two iris codes. While we keep unchanged zeros and ones that normalized

HD per pixel can take, when HD takes value 0.5 (see Table 6.1 for illustration), we replace

it with a refined value of normalized HD. It provides us with a possibility to make a soft

decision. The normalized HD of LBP codes for a pair of pixels, Cp0
LBP , C

p′0
LBP , is calculated

as

DLBP =
XOR(Cp0

LBP ,C
p′0
LBP )

8
,

where XOR is the binary exclusive OR operation. The normalized HD of LFOBC codes for

a pair of pixels, Cp0
LFOBC , C

p′0
LFOBC , is calculated as

DLFOBC =
XOR(Cp0

LFOBC ,C
p′0
LFOBC)

36
.
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Table 6.2 provides details on calculation of the normalized HD.

Table 6.2: The new normalized Hamming distance calculation scheme for a pair of pixels p0
and p′0 seamlessly integrate the ordinal binary codes into the log-Gabor binary code

Normalized ℜp0=0 ℜp0=0 ℜp0=1 ℜp0=1
HD ℑp0=0 ℑp0=1 ℑp0=0 ℑp0=1

ℜp′0
=0

0
DLFOBC DLFOBC 1ℑp′0

=0 or DLBP or DLBP

ℜp′0
=0 DLFOBC 0 1

DLFOBC

ℑp′0
=1 or DLBP or DLBP

ℜp′0
=1 DLFOBC 1 0

DLFOBC

ℑp′0
=0 or DLBP or DLBP

ℜp′0
=1

1
DLFOBC DLFOBC 0ℑp′0

=1 or DLBP or DLBP

Since both a Gabor wavelet-based binary code and a local ordinal binary information-

based code relies on local information in iris images, the estimated occlusion mask can be

easily modified for use in the combined encoding scheme.

In this work, we rely on Libor Masek’s implementation [41, 45] of the log-Garbor filter

based iris algorithm. We use it as a basis for our developments, since there is no publicly

available version of Daugman’s algorithm.

To conclude on the performance of the proposed methods, we carry a number of experi-

ments.

6.1.3 Simulated Camera Effects

To evaluate the resistance of the proposed combined scheme to nonidealities in images,

we synthetically degrade images by adding simulated effects. The details on simulation of

camera and environmental effects that can be observed in iris images can be found in [58,70].

Three effects including noise, out-of-focus blur and motion blur are individually simu-

lated. We apply these effects to three types of patterns: random patterns, natural textures

and unwrapped iris templates. For consistency we normalize all images and templates to be

of size [20× 240]. The performance of different methods was evaluated using the “decidabil-
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ity” metric d′ [8] given by

d′ =
|µ1 − µ2|
√

σ2
1+σ2

2

2

,

where µ1 and µ2 are the mean of genuine and imposter HD distances, and σ1 and σ2 are the

variances of genuine and imposter HD distances. We generated 100 random noisy patterns

using uniform distributed intensity values from 0 to 255 with independent intensity values

from pixel to pixel. We selected 100 textures from Brodatz dataset of natural textures [43].

For each selected image, the top left corner of the size [20×240] is selected. We also selected

100 unwrapped iris templates obtained by processing images from CASIA database [76].

Examples of the images and templates are provided in Fig. 6.3.

(a)

(b)

(c)

Figure 6.3: Testing templates: (a) random pattern, (b) natural image, (c) iris template.

Noise

First, we evaluate the robustness of the proposed schemes to additive noise. We simulate

random noise that can be observed in images by adding a realization of a uniformly or

Gaussian distributed random variable at five distinct levels parameterized by five distinct

values of standard deviation (from 14.7 to 73.6 taken with the step 14.7). The intensities

in generated noisy images were truncated to lie in the range [0,255]. The results of the

experiments are summarized in Tables 6.3, 6.4 and 6.5. We can see that local ordinal

encoding methods are robust to the noise for local patterns with high variance, such as

random patterns, but relatively weak for smooth patterns, such as natural textures. Log-

Gabor-based methods perform well on natural patterns but, as observed, are not robust in

the presence of high level noise. It can be also observed that the proposed combined scheme
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including log-Gabor-based technique and the local ordinal code performs relatively well in

the presence of noise.

Table 6.3: Recognition capabilities of five encoding techniques in the presence of random
noise (case of uniform distributed noise and random textures

d′
Standard Deviation of the Noise
14.7 29.5 44.2 58.9 73.6
Uniform

log-Gabor only 50.4 33.5 28.0 17.0 12.6
LBP only 94.2 49.4 53.5 23.7 17.8

LFOBC only 105.8 52.2 60.6 24.5 18.4
log-Gabor+LBP 55.7 38.3 37.5 20.4 15.3

log-Gabor+LFOBC 54.9 38.0 37.3 20.4 15.3
Gaussian

log-Gabor only 50.2 37.7 28.4 21.5 16.4
LBP only 94.5 71.3 54.7 41.3 32.4

LFOBC only 105.7 80.5 61.2 45.9 35.7
log-Gabor+LBP 55.6 47.3 37.7 28.9 22.3

log-Gabor+LFOBC 54.9 46.9 37.5 29.0 22.3

Out-of-focus Blur

In this work, the out-of-focus blur is simulated using circular averaging filters [107]. We

involve five defocus levels, from 1 to 5, corresponding to the radius, r, measured in pixels

of the averaging filter. Including the original image, each class has total 6 blurred copies.

The results of performance evaluation for this case are presented in Table 6.6. It is easy to

see that out-of-focus blur reduces the contrast of the image. This effect substantially de-

grades the performance of individual ordinal information-based methods as the level of blur

increases. Natural images are less sensitive to out-of-focus blur compared to randomly gen-

erated images. The combined log-Gabor and LFOBC encoding do not result in substantial

improvement because of loss of the local ordinal information.

Motion Blur

In this work, we consider only linear motion blur. This effect is simulated by modeling

two parameters: direction of smear, denote it by θ, and pixel-smear length amount while
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Table 6.4: Recognition capabilities of five encoding techniques in the presence of random
noise (case of uniform distributed noise and Brodatz textures)

d′
Standard Deviation of the Noise
14.7 29.5 44.2 58.9 73.6
Uniform

log-Gabor only 4.92 3.64 3.04 2.67 2.40
LBP only 2.84 2.31 2.10 1.98 1.88

LFOBC only 2.99 2.45 2.25 2.15 2.09
log-Gabor+LBP 5.11 3.75 3.15 2.78 2.50

log-Gabor+LFOBC 5.17 3.78 3.17 2.80 2.52
Gaussian

log-Gabor only 4.94 3.69 3.09 2.75 2.52
LBP only 2.90 2.35 2.11 1.95 1.87

LFOBC only 3.06 2.48 2.26 2.12 2.07
log-Gabor+LBP 5.14 3.80 3.19 2.84 2.63

log-Gabor+LFOBC 5.20 3.84 3.21 2.86 2.64

the width of the Point Spread Function (PSF) is kept constant, 1 pixel wide [107]. In our

experiments, we fix the direction parameter θ at 45 degrees. Motion strength, from 1 to 5,

corresponds to the length of the blur in pixels. For each class we generated 5 blurred copied

of undistorted image. The dependence of the d-prime (d′) measure on the increased level of

motion blur for five distinct encoding techniques is summarized in Table 6.7. The effect of

motion blur on performance is not as pronounced as the effect of out-of focus blur.

6.1.4 Recognition Performance

To evaluate recognition capabilities of different encoding schemes we involve a subset of

CASIA-3 dataset [76]. A subset of 750 images from 75 classes (10 images per class) were

selected from “CASIA-IrisV3-Interval” subdirectory. This subdirectory contains images in

JPEG format. We used a broad range angles from +15 degree to -15 degree to compensate

for the head tilt. All iris templates are normalized to be of size [20× 240].

The ROC curves for different encoding schemes are shown in Fig. 6.4. To further compare

the performance of the encoding schemes we summarize the values of d′ and EER in Table

6.8. The results indicate that the performance can be considerably improved by introducing

additional bits for ambiguous pixel pairs by using local ordinal relationship information. For
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Table 6.5: Recognition capabilities of five encoding techniques in the presence of random
noise (case of uniform distributed noise and iris textures)

d′
Standard Deviation of the Noise
14.7 29.5 44.2 58.9 73.6
Uniform

log-Gabor only 3.85 1.77 0.82 0.33 0.05
LBP only 2.52 1.15 0.67 0.39 0.29

LFOBC only 2.59 1.31 0.81 0.52 0.41
log-Gabor+LBP 4.17 2.58 1.71 1.14 0.79

log-Gabor+LFOBC 4.17 2.59 1.73 1.16 0.82
Gaussian

log-Gabor only 3.87 1.86 0.89 0.40 0.12
LBP only 2.54 1.24 0.67 0.40 0.29

LFOBC only 2.61 1.38 0.82 0.54 0.41
log-Gabor+LBP 4.15 2.67 1.77 1.20 0.87

log-Gabor+LFOBC 4.16 2.68 1.79 1.23 0.90

Table 6.6: Performance comparison for out-of-focus blur

d′ 1 3 5
log-Gabor only 3.5457 6.4886 5.1957

LBP only 1.2150 2.7057 1.6291
LFOBC only 1.3735 2.8741 1.7449

log-Gabor+LBP 3.2299 6.3206 4.1057
log-Gabor+LFOBC 3.2258 6.3881 4.1549

stand alone scenario as well as in combination with the log-Gabor code, LFOBC slightly

outperforms LBP according to d′. However, as shown in the rows 4 and 5 in Table 6.8,

LFOBC has a larger d′ but also a larger value of EER compared to the LBP when they were

combined with the log-Gabor code. The complexity, both for the purpose of storage and for

the purpose of computational efficiency, 36 bits vs. 8 bits, may be a point of trade-off of

performance vs. complexity.

6.2 Median Filter Based Iris Encoding Technique

Iris-based human recognition is very attractive because of the high accuracy achievable.

However, existing encoding methods are unable to handle iris images acquired when the
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Table 6.7: Performance comparison for motion blur

d′ 1 3 5
log-Gabor only 5.1394 12.2236 9.5115

LBP only 3.1893 5.2554 3.5827
LFOBC only 3.7063 6.0333 3.8453

log-Gabor+LBP 6.1813 15.2305 6.7801
log-Gabor+LFOBC 6.5999 15.6932 6.7893

Figure 6.4: Performance comparison of different coding schemes for CASIA-3 dataset.

ambient lighting is non-uniform. In this section we propose a novel encoding technique

which can handle images acquired under such conditions. The method is based on 2D

median filters, which are commonly used as denoising tools in image processing domain, and

uses their nonlinear characteristics to generate binary codes from gray scale iris images.

6.2.1 Introduction

Both the 2D Gabor filter and the 1D log-Gabor filter are directional. For the 2D Gabor

filter the sinusoidal part determines the dominant direction. Different choices of the direction

will result in different recognition performance, although banks of different filters can solve
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Table 6.8: Performance comparison of five encoding schemes using d-prime (d′) and EER

d′ EER
log-Gabor only 7.7129 5.4× 10−4

LBP only 5.2041 0.0042
LFOBC only 5.3768 0.0037

log-Gabor+LBP 8.5204 3.0× 10−4

log-Gabor+LFOBC 8.6560 3.1× 10−4

this problem to some degree. Generally the filters are applied in a horizontal direction in

the unwrapped image (i.e. circumferentially in the original image).

Based on our observation Gabor filtering techniques are not very robust to uneven illumi-

nation since illumination change is treated largely as signal rather than noise. Ma et al. [13]

try to deal with non-uniform brightness by subtracting the local mean. But low illumination

will also cause low contrast in addition to low intensity values. Although they employ a

subsequent histogram equalization based image enhancement, this may amplify the noise at

the same time as it increases contrast. This is one of the main reasons why we propose a

median filter based encoding technique: the image enhancement and image encoding can be

performed at the same time.

There are a variety of other techniques which have been used to generate binary iris

codes. These include modified log-Gabor filters [9], non-local comparisons [10], dyadic

wavelet transforms [13], derivative-of-Gaussians [12], Laplacian-of-Gaussian filters [12], [11],

discrete cosine transforms [14], wavelet packets [15], [16], [17], and quotient thresholding

techniques [18]. Our method falls into the local ordinal measures category [10] and is simi-

lar to the thresholding approach of [18]. This method used local histogram equalization to

compensate non-uniform illumination, and adaptive quotient thresholding to keep the ratio

between the foreground and background constant. Based on experiments, they found that

the best decision ratio was 0.33. Yet we believe local histogram equalization is not necessary

if an adaptive threshold can be determined for each pixel. Thus in our approach a large

window median filter is used to compensate for non-uniform illumination instead, as will be

described below.
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6.2.2 Proposed Algorithm

The goal is to encode the unwrapped iris image so that the resulting binary pattern is

unique for each individual’s iris. Furthermore, because Hamming distance is used to measure

similarity, patterns with approximately half 0’s and half 1’s are preferred. This prompted

us to examine median filters since, statistically, the median is designed to separate the data

exactly in half.

2D Median Filters

2D median filtering is a nonlinear operation. Each pixel value in an image is replaced by

the median value computed in a local neighborhood around the pixel. In image processing

this is more effective than convolution in simultaneously reducing noise while preserving edges

[99]. For unwrapped iris images, the neighborhood should wrap around at the boundaries

(i.e. the right side is connected to the left side in a ring).

The block diagram of median filtering based encoding can be seen in Fig. 6.5. The

original image is shown at the top of the plot and results with different window sizes are

shown below. The size of the local neighborhood is identified in the lower right corner of

each image. It is clear that median filters with a larger window sizes capture the gross

illumination variations better than filters with a smaller window size.

Figure 6.5: The block diagram of median filtering based encoding: (a) the original iris
pattern; (b) 2D median filter results; and (c) the binary code generated from the filtered
results.

The encoding method introduced here is fairy intuitive and simple. First a median filtered

result with a small window sizem×m is generated to capture small intensity variations. Next
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another one using bigger window size, n × n where n > m, is generated to compensate for

brightness differences. The difference between is a less noisy and highly distinctive feature.

Thus the comparison result between the two at each pixel can be used as binary code for

this image.

Scale Selection

For optimal performance we have selected three particular window sizes as mentioned in

Fig. 6.5. This choice comes mainly from visual inspection and experimentation. A variety

of settings may give similar results. For small window sizes (total pixel count less than 20),

even dimensions are recommended since otherwise a clearly unequal distribution of 0s and

1s may appear. When the resolution of unwrapped images is 64 × 360 we found that the

combination of [4 4] and [10 10] captured the smaller texture patterns (e.g. fibers), while

the combination of [10 10] and [20 20] captured the larger texture patterns (e.g. bundles,

crypts).

In many cases a smoothing procedure applied to the original image before encoding can

enhance the recognition performance by reducing the effects of noise. The unwrapped image

may optionally be smoothed using an averaging filter over a square block of 9 × 9 pixels

(applied with wraparound). Floating point rather than integer intensity values are preferred

for the smoothed image.

6.3 Cancelable Iris Biometric

A person only has two irises. If his pattern is stolen he quickly runs out of alternatives.

Thus methods that protect the true iris pattern need to be adopted in practical biometric

applications. In particular, it is desirable to have a system that can generate a new unique

pattern if the one being used is lost, or generate different unique patterns for different

applications to prevent cross-matching. For backwards compatibility, these patterns should

look like plausible irises so they can be handled with the same processing tools. However, they

should also non-invertibly hide the true biometric so it is never exposed, or even stored. In

this section four such cancelable biometric methods are proposed that work with conventional
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iris recognition systems, either at the unwrapped image level or at the binary iris code level.

6.3.1 Introduction

Iris is a strong biometric in term of recognition performance, both theoretically and

empirically. However, traditional iris biometric schemes are weak with respect to privacy

and certain aspects of security. Although the digital encoding of an iris pattern can be

encrypted, if the encryption is ever broken the true biometric is “lost” forever. Or, through

the use of a trojan horse type attack, the true biometric can be harvested at the matching

stage when the system has already decrypted it. If the true iris is disclosed, it can conceivably

used in a replay attack to break into the system. Even worse, the same true iris could possibly

be used to break into other, unrelated systems that were also keyed to the person’s iris. This

is a security problem, for sure, and may also be a liability problem in case of consequential

damages. In as much as the same iris can be used to illicitly gain access to multiple databases,

such database crossmatching may also be performed for gathering business intelligence or by

court order. The individual would have far more privacy if each of the databases was keyed

to incompatible “fake” irises derived from the true iris of the user.

In our new “cancelable” iris scheme, the user’s true pattern never has to leave the client

computer. After the necessary biometrics preprocessing, such as segmentation and encoding,

the unwrapped iris pattern image or iris code is intentionally distorted using a non-invertible

transform. These new versions of the iris are secure because the original iris pattern can not

be recovered even from the stored (or transmitted) representation. They are also cancelable

because another totally different pattern or code can be generated by the transform procedure

by simply supplying a different set of distortion parameters. In this way one or two irises

can be multiplied into thousands of different virtual irises.

Cancelable biometrics has been proposed by Ratha et al. [108] and has proved very

successful in fingerprint biometric [109]. There are other related bodies of work that try to

provide similar benefits for irises. Davida et al. used hash functions to protect sensitive user

information [110]. Juels et al. introduced a fuzzy commitment scheme that can be applied

to iris codes [111]. Chong et al. proposed two iris verification schemes which take cancelable
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biometrics into account [112] [113]. However in their work they emphasize the performance

improvement that can be achieved rather than the cancelability of the iris biometric. Hao

et al. tried to combine standard cryptographic techniques with iris codes to enhance the

total security level of the system [114]. But the actual iris biometric is still vulnerable if the

decoding is done at the server. If, instead, only the reproduced key K̂ will be sent to the

server, then the security is at a similar level to just the password key. If both the key and

the iris biometric are used, the false reject rate will increase since both the recovered key

and Hamming match distance are subject to noise from the iris pattern.

6.3.2 Methodology

New cancelable iris methods operate on the unwrapped image or the resulting binary

feature vector. The first two methods use only the information from the biometric itself,

while the second two methods use additional external random information for distortion. In

each case the transforms used are non-invertible and revocable. The first criterion is essential

to security, while the second guards against loss of identity and there can be more than one

biometrics application.

Registration-free Transforms

The first method, called GRAY-COMBO, involves shifting and combining rows in the

unwrapped iris image. This illustrated in Fig. 6.6. Note that this is just a sketch of the idea;

in real system more rows and columns would be used. First we shift rows circularly in the

horizontal direction using random offsets (part of the transform key). Then two randomly

selected rows (another part of the key) are combined together using an operator like addition

or multiplication. A single row can conceivably be used in more than one combination,

although in the example here (and in the later discussion of the performance) each row only

is used only once. A similar transform can alternatively be applied to the binary iris code.

This method, referred to as BIN-COMBO, is illustrated in Fig. 6.7. The row shifting is

similar, but the combination operation needs to be changed to XOR or XNOR. Both these

method are non-invertible: all original pixel intensities or bit strings are damaged. So the
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original rows cannot be recovered. Note that, like the addition or multiplication used in

GRAY-COMBO, XOR is also not invertible if one knows only the result (e.g. 0 can come

from 1 XOR 1 or from 0 XOR 0). Also note that neither of these methods requires the iris to

be put into some known canonical orientation as the row shifts will be the same no matter

how the captured iris image is rotated. This is why we call these transforms registration-free.

Furthermore these methods have the added advantage that the same back-end processing

and matching tools can continue to be used. The one problem with these two methods is

that the amount of valid iris area generally decreases. In an iris image, often a substantial

portion of the pattern is occluded by eyelids or eyelashes. When shifting the rows for these

two transforms the validity mask must also be shifted. The masks from two rows are then

combined so that the portion of the transformed image that is valid will be smaller than

the original. The invalid area can be doubled, or even worse, if a highly occluded row is

used several times. Smaller shift values will generally invalidate less of the image than larger

shifts, but this sacrifices some key strength. So these methods are most useful when good

quality (low occlusion) images are available.

Figure 6.6: The block diagram of GRAY-COMBO: (a) the original iris pattern; (b) random
shifting; (c) random split (in this case, just split to the top half and the bottom half); and
(d) combine together (using plus here).

Figure 6.7: The block diagram of BIN-COMBO: (a) the original iris pattern; (b) random
shifting; (c) random split (in this case, just split to the top half and the bottom half); and
(d) combine together (using XOR here).
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Salting Approach

Another way of generating a cancelable iris is by mixing in a totally artificial pattern.

This can be pure random noise, a randompattern with iris-like texture, or a synthetic iris

pattern [115]. For gray-scale unwrapped irises typically the two images are combined pixel-

wise using either addition or multiplication. This method, GRAY-SALT, is illustrated in Fig.

6.8. A similar technique can also be applied to the final binary iris code. This BIN-SALT

method has the advantage that, for legacy systems, the iris code is often more accessible than

the unwrapped image is. Typically it combines the original iris code with the key pattern

using XOR (again, non-invertible) as shown in Fig. 6.9. Unlike the COMBO methods, there

is no shrinking of the valid iris area since the key pattern that is being mixed in is valid

everywhere. However these methods suffer from an alignment problem. If the fixed pattern is

applied at the wrong rotation it will not generate a signature similar to what as was enrolled

(with a different orientation). Thus the matcher needs to try all plausible rotations of the

original iris before applying this transform. Note that, since the position of the key is fixed,

it is only the query image or code that needs to be aligned in order to find the best match.

Figure 6.8: The block diagram of GRAY-SALT: the original iris pattern and the random
noise pattern are combined together to generate the new cancelable iris pattern.

Figure 6.9: The block diagram of BIN-SALT: the original iris code and the random binary
noise pattern are combined together to generate the new cancelable iris code.

Although only a non-invertibly transformed version of the iris needs to be stored, the
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alignment condition means that the true iris (and the key) need to be submitted to the

matcher. This opens the possibility that one or both might be stolen over the network or,

assuming encrypted transmission, after decrypting at the server. Thus extra secure effort

needs to be taken.

6.4 Conclusions

Three different approaches to improve the performance of the iris biometric system from

the aspect of encoding were introduced in this chapter. They are a local ordinal binary

extension, median filter based binary iris code and “cancelable iris biometric” which can

protect the private iris information.
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Chapter 7

Adaptive Biometric Authentication

By combining quality measures (discussed in Ch. 4) and an encoding algorithm, we can

arrive to a number of methods to improve the performance of an iris biometric system. In this

chapter, three methods to improve the performance of biometric matchers based on vectors

of quality measures associated with biometric samples are described. The first two methods

select samples and matching scores based on predicted values of Quality of Sample (QS)

index (defined here as d-prime d′) and Confidence in matching Scores (CS), respectively. The

third method treats quality measures as weak but useful features for discrimination between

genuine and imposter matching scores. The unifying theme for the three methods consists

of a nonlinear mapping between quality measures and the predicted values of QS, CS, and

combined quality measures and matching scores, respectively. The proposed methodology

is generic and is suitable for any biometric modality. The experimental results reported

show significant performance improvements for all the three methods when applied to iris

biometrics.

7.1 Introduction

The most common definition of biometric sample quality is at the image or signal level.

A quality checking block is introduced into every biometric system to ensure that enrolled

image/signals have sufficient quality to be further processed.

Many recent biometric systems extract a vector of quality measures. The components of
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a vector of quality measures, however, rarely carry equal weight in terms of their relationship

to the performance of the matcher. In practical applications (such as US Visit program), it is

required to keep a single biometric quality measure in order to decide if biometric samples are

suitable for further processing and matching. Research questions should thus be concerned

with (i) what quality measures to use; (ii) how to combine multiple quality measures into

a single quality index without losing the information that the vector of quality measures

contains; and (iii) how to use this vector to improve performance of biometric systems? This

chapter addresses all those questions.

Most of the quality based matchers described in the literature involve biometric sample

quality at the matching stage by concatenating matching scores due to the original matcher

and quality measures. These matchers are known as Q-stack classifiers [116, 117]. In spite

of the fundamental theory presented in these works in support of Q-stack classifiers, the

improvement of performance is marginal, if at all (see [118], [116]). More noticeable im-

provements are reported for Q-stack classifiers operating on multiple algorithms or multiple

matchers [117,118].

This chapter suggests several methods on the use of biometric sample quality to improve

the performance of a single matcher. It targets two main applications for quality measures:

1) to improve performance of a matcher by predicting its QS index or CS score and using

them to decide if the underlying biometric sample should be retained or discarded 2) to

design a nonlinear matcher that treats a vector of quality measures as a set of weak features.

The remainder of the chapter is organized as follows. Sec. 7.2 describes the three

proposed methods. Sec. 7.3 describes the data sets used and presents experimental results.

Sec. 7.4 summarizes the contributions.

7.2 Methodology

This chapter advocates the use of predictive tools for the design of quality enhanced

matchers. The tools proposed predict a set of quality measures and scores. In each of

the three methods described below, the functional relationship between vectors of quality

measures and the predicted (estimated) measures is not known and has to be modeled. The
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modeling problem is stated as a multivariate regression problem:

Y = f(X1, . . . , XK), (7.1)

where f is a multivariate adaptive mapping, variable Y is the estimated output variable,

i.e. that characterizes the overall quality, confidence in matching score, or quality enhanced

decision, and X1, . . . , XK is a vector of K input (predictive) variables, such as a vector

of quality measures for a biometric sample or a concatenated vector of quality measures

and matching scores. Since the true relationship between the input and output variables is

not known, it is estimated using a set of labeled training data. The multivariate adaptive

mapping f( · ) can be implemented using a variety of multivariate functions and systems.

The results reported are obtained using a feed forward neural network (FFNN) (see Sec. 3).

7.2.1 Quality of Sample (QS)

Here we suggests a single quality index characterizing the overall quality of a biometric

sample. Consider a set of biometric samples. Associated with these data are vectors of

quality measures. For example, for iris biometrics a matcher may be designed to implement

Hamming Distance (HD), while the quality vector may be composed of ten quality measures:

1) iris segmentation score, 2) pupil segmentation score, 3) blur, 4) illumination, 5) dilation,

6) interlacing, 7) lighting, 8) occlusion, 9) off-angle and 10) pixel count (see [119] for details).

These data can be used to design a single quality index by fusing the entries of the vector.

The main design requirement is that the values of the single quality index must be related

to the performance of the original matcher.

We propose to use d-prime (d′) index as the combined quality index. This index is related

to the relative entropy, which is asymptotically related to the performance of the matcher.

Since the true distributions, means and variances of matching scores are not known, they

are estimated using available labeled data. All labeled data are subdivided into two non-

overlapping sets: training set and testing set. QSA, the overall quality index of sample A,

is

QSA =
|m(Imp. Scores)A −m(Gen. Scores)A|

√

var(Imp. Scores)A + var(Gen. Scores)A
, (7.2)
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where m(·)A and var(·)A are the sample mean and sample variance of genuine and imposter

scores formed by involving the sample A.

Using the labeled training set QS is estimated for every biometric sample. This requires

that a set of genuine matching scores and a set of imposter matching scores involving the

same biometric sample be formed. For unlabeled biometric samples this task becomes almost

impossible. However, having quality vectors associated with each biometric sample makes

it possible to predict the QS of unlabeled data. The QS can be obtained as the output

parameter of a nonlinear multivariate adaptive mapping applied to a vector of quality mea-

sures (input parameters). Let QA = [QA,1, . . . , QA,K ]
T be a vector of K quality measures

characterizing a biometric sample A. The superscript T indicates the transpose operation.

Let fQS( · ) be a nonlinear multivariate adaptive mapping that maps a vector of quality

measure QA into the quality index QSA. Let f̂QS( · ) be its estimated version. Then QSA is

predicted as QSA = f̂QS(QA). The predicted value of QS can be then used to decide if the

underlying biometric sample should be retained or discarded to improve the performance of

the original matcher.

7.2.2 Confidence in Scores (CS)

The second method evaluates the confidence level assigned to matching scores associated

with a pair of biometric samples. The confidence in genuine and imposter scores (CS) is

defined for an iris recognition system:

CSG =







0, HDG < Q(HDG)x,

− HDG−Q(HDG)x
Q(HDG)y−Q(HDG)x

, otherwise,
(7.3)

CSI =







0, HDI > Q(HDI)1−x,

− Q(HDI)1−x−HDI

Q(HDI)1−x−Q(HDI)1−y
, otherwise,

(7.4)

where Q(HDG)x and Q(HDI)y are the quantile points at the quantile x and y for genuine

and imposter scores, respectively. The levels of the quantiles were optimized empirically. The

values resulting in significantly improved verification performance are x = 0.7 and y = 0.9.

Fig. 7.1 illustrates genuine and imposter distributions typical for HDs.
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The CS of biometric samples is predicted using a nonlinear adaptive mapping and vectors

of quality measures (input parameters). The nonlinear adaptive mapping is trained using

a set of labeled data in the form of vectors of quality measures and the corresponding CS

values obtained using equations (7.3) and (7.4). At the testing stage the CS value is predicted

based on vectors of quality measures only. This information is used to keep or discard the

corresponding matching score in order to improve the performance of the original matcher.

The procedure of predicting the CS of matching scores between two biometric samples A

Figure 7.1: Illustration of the Confidence in Scores (CS).

and B is CSAB = f̂CS(QA,QB), where f̂CS( · ) is a multivariate adaptive mapping (FFNN

in our case) estimated using training data.

7.2.3 Quality Sample and Template Features (QST)

The third method suggests to treat quality vectors as weak features that can be combined

with biometric template features. Let QA and CA be a vector of K quality measures and a

template vector associated with a biometric sample A. Then the extended template, denote

it by FA, of the sample A is the vector FA = [QT
A,C

T
A]

T .

When two biometric samples A and B are compared, the distance (or similarity) between

CA and CB will be saved as a matching score MSAB, while the quality vectors QA and QB

will be treated as extra dimensions that may improve performance of the original matcher,

provided these dimensions contain sufficient discriminative information. As shown in Fig.

7.2 the input to the high dimensional classifier is a vector [QT
A,Q

T
B,MSAB]

T . The output of

the classifier is a decision made by the classifier. The decision is a binary valued variable
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Figure 7.2: Combining quality vectors and templates.

corresponding to {Genuine, Imposter}. The high dimensional classifier is implemented using

a nonlinear adaptive mapping. Denote ηA,B as the output variable predicted using vectors

of the quality measures and the matching score of the biometric samples A and B. Then

the prediction procedure is described as ηA,B = f̂QST

(

QT
A,Q

T
B,MSAB

)

, where f̂QST is an

estimated version of fQST .

7.3 Experimental Results

The results illustrate the feasibility and utility of our enhanced biometric matchers for

iris biometric. We briefly describe the data and experiments below.

All experiments were performed using ICE 2005 dataset [74]. The matching procedures

followed a modified log-Gabor implementation by Masek [41] refined by the authors. 26, 867

genuine matching scores and 4, 331, 761 imposter matching scores from 2, 953 samples were

generated.

7.3.1 Neural Network

The nonlinear mapping is implemented using Feed Forward Neural Network (FFNN).

Training data are assigned labels according to the functional use of the mapping and a set

of input and output parameters. The final design is achieved by trading off the complexity

and the performance of the network with two hidden layers. For the iris experiments, the

first hidden layer of the FFNN is composed of 16 neurons while the second layer is composed

of 2 neurons. The training data are divided randomly in two subsets: a learning subset

composed of 60% of training data and a validation subset made of remaining 40% of data.
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The training process stops when the mean square error drops below 10−4. The experimen-

tal results described below are obtained using codes from the Neural Network Toolbox in

MATLABTM .

7.3.2 QS evaluation

The performance of the QS method is evaluated by randomly selecting 1, 500 iris images

from the ICE 2005 dataset to form the training set. The remaining 1, 453 iris images are

used to form the testing set. The QS of unlabeled images from the testing set is predicted

based on the quality vector (quality factors 1 through 10) and by using a FFNN trained

on labeled samples. During performance evaluation, unlabeled images with the value of

predictedQS above a preset quantile are retained. Fig. 7.3 displays three Receiver Operating

Characteristic (ROC) curves parameterized by zero, 10% and 40% quantile levels. The ROC

curve marked as “original” is parameterized by zero quantile level, which means that no poor

quality biometric samples were discarded. Note that by discarding only 10% of iris images

with the low predicted QS index, a considerable performance improvement can be achieved.

Fig. 7.4 displays a box plot of the Equal Error Rate (EER) as a function of the quantile

used to select iris samples with high QS value. It is a summary of ten independent trials,

where training and testing data are sampled at random. It can be observed that regardless

of the composition of training and testing data, removing iris images characterized by low

predicted QS improves matching performance of the original matcher. The higher the value

of QS, the better the performance is.
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Figure 7.3: Performance improvement achieved by selecting only images with high QS values.
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Figure 7.4: Performance improvement by selecting only images with a quality value larger
than a certain quantile.

7.3.3 CS Evaluation

To assess the performance of the CS method, 20, 000 genuine matching scores, 200, 000

matching imposter scores and the vectors of quality measures associated with iris images

were used to train a FFNN. The remaining data were used for testing. The matcher was

designed to be symmetric with respect to quality vectors, that is, if QA and QB are two

vectors of quality measures associated with iris image A and B, training included both

the pair (QA,QB) and the pair (QB,QA) and the associated matching score. The testing

experiment is similar to the experiment of the previous subsection with the difference that

pairs of quality vectors are used to predict the CS values.

Fig. 7.5 shows three ROC curves: the original curve, the curve formed from iris data with

the predicted CS values exceeding 20% quantile and the curve formed from iris data with

the predicted CS values exceeding 50% quantile. Performance improves when low confidence

matching scores are discarded. Fig. 7.6 summarizes the results of ten trials. Again, training

set is formed by randomly sampling iris images from a larger set. The trends and results are

consistent.

7.3.4 QST Evaluation

The matcher is now a FFNN trained and tested as follows. During training the label “1”

is assigned to all genuine vectors on the input and the label “-1” is assigned to all imposter

vectors on the input to the neural network. During testing the output label is predicted
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Figure 7.5: Performance improvement achieved by selecting only matching scores with high
CS values.
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Figure 7.6: Performance improvement by selecting only matching scores with a confidence
level higher than a certain quantile.

based on the input vector of quality metrics and the original matching score. The output

label in this case is a real number. The high dimensional classifier makes decision in favor

of Genuine class if the output label is close to 1. It decides in favor of Imposter, if the

output label is closer to −1. When the decision threshold varies, the performance of the high

dimensional classifier is characterized by the ROC curve.

To assess the performance of the QST method 20, 000 genuine scores and 200, 000 im-

poster scores and associated quality vectors were involved in training. The remaining vector-

triplets were used for testing. The success of the QST method depends on the data selected

for training and testing. A single trial out of set of 20 trials resulted in a perfect separation of

genuine and imposter matching scores. In the other cases the % improvement was between

20% and 35%. The results of first five trials are shown in Table 7.1. In columns 2 and 3

it displays the values of EER without/with quality factors. In columns 4 and 5 the table
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displays the values of False Reject Rate (FRR) evaluated at 0.001 False Accept Rate (FAR).

Table 7.1: Performance with/without quality factors

Original New Original FRR New FRR
EER EER at 0.001 FAR at 0.001 FAR

Trial 1 0.0107 0.0065 0.0251 0.0197
Trial 2 0.0110 0.0076 0.0246 0.0186
Trial 3 0.0109 0.0072 0.0251 0.0192
Trial 4 0.0109 0.0068 0.0249 0.0193
Trial 5 0.0106 0.0086 0.0244 0.0229

7.4 Conclusions

Three new methods for matching iris biometrics using quality metrics are proposed.

The methods are adaptive and use nonlinear mappings for making predictions on quality

of the sample, confidence of the matching score and classification result of the combined

quality-template feature set. The experimental results reported illustrate the importance

of predictive and selective integration of quality measures for biometric authentication and

show significant advantages compared to existing methods. Our future research will focus

on (i) designing and analyzing quality based multi-modal fusion schemes; and (ii) developing

the concept of quality at different processing levels in biometric systems.
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Chapter 8

Future Directions and Preliminary

Work

While in the literature iris recognition systems are presented as complete systems (from

data collection to performance validation), practical applications require additional sub-

stantial tuning and adaption. In this chapter, we illustrate this with two examples. Two

applications will be studied and preliminary results will be reported.

8.1 Active Iris Recognition

In this section, a concept of active iris recognition is introduced and its feasibility is

demonstrated. By involving an industrial robotic arm in the process of iris image acquisition,

the iris capture device will have in total 6+ degrees of freedom to deal with moving subjects

at a distance. The subject will be in focus for most of time as the capture volume is increased.

Therefore high quality iris images are ensured. This concept can be adopted to applications

such as airport surveillance or security check point.

8.1.1 Introduction

Iris recognition from a distance and in unconstrained environment is a challenging prob-

lem. To ensure a sufficient resolution of an iris image, a high zoom lens must be used. The

main limitation of a high zoom lens is its small capture volume. The view angle is narrow

and the depth-of-field (in-focus range) is small. The object can quickly get out of view or
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out of focus. Motion blur can also be observed in these images.

Two companies have recently provided solutions to this complex problem: Sarnoff [6]

and GE [120]. Sarnoff uses a booth to keep the person in the view horizontally. Two or more

cameras are vertically aligned together to make the system suitable for different people with

different heights. Multiple shots are taken to make sure that at least one in-focus image is

acquired. GE uses stereo imaging to find the position of the target. As soon as the system lo-

cates the head, a PZT camera with IR illumination will track iris area and acquire iris images.

Both solutions are robust and reliable solutions. However, there is always room for im-

provement. For Sarnoff system, only one user can pass the booth at a time, even with

multiple cameras. A person who wants to pass needs to cooperate to ensure reliable iden-

tification. For the GE system, a person also needs to cooperate to ensure that the PTZ

camera is in the required position and is able to capture the iris. The PZT camera normally

has a small aperture, which is not suitable to capture clear images if the experimental envi-

ronment is not ideal. The ability to process two or more users at the same time is also limited.

The main idea of this R&D is to add extra degrees of freedom to the system. Therefore

the throughput of the system is expected to increase together with the quality of acquired iris

images. Those extra degrees of freedom are introduced by involving a robot in the system. A

high-end iris capture camera, which has a large aperture but a relatively small depth-of-field,

will be mounted on the tip of the robotic arm. The adaptively controlled movements of the

robotic arm will increase the capture volume of the system and will also compensate for the

distortions due to the relative motion introduced by the moving target. The motion blur and

the defocus blur are expected to be reduced to minimum. This system also puts minimal

constraints on users. A mother can hold hands of her children while they are passing the

hallway. They will keep moving and following the signs, and at the same time their iris

information will be captured.
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8.1.2 Scenarios

The implementation depends on an application, such as surveillance at airports or iris

recognition for the people in the car at the security check point. The hardware setup for

these two scenarios will be explained in detail. However, similar setups can be used for other

applications.

Airport Surveillance

The setup for this application is not very complex. A stereo camera, camera network or

a 3D scanner will be mounted on the ceiling to search for the possible subjects, walking or

standing individuals. Each detected subject will be marked for iris capture. Two or more

7-joint robotic arms will be placed side by side to form a cooperative pair or team, respec-

tively. The number of robotic arms will be equal to the number of subjects the system can

track. Each robotic arm will be equipped with a high zoom iris capture camera equipped

with IR illumination source. The focal length of the lens will be fixed. Each robotic arm will

follow its subject (the head of the user, for example). The camera will always be positioned

such that it faces the subject from the same distance. The subject will be always in focus

as it is inside of enlarged capture volume. Because the camera will move at the same speed

as the subject moves, the motion blur will be reduced to the minimum level.

To make the capture more user-friendly, a proper layout and equipment setup are re-

quired. An L-shaped corner is preferred. Cameras will be placed behind a one-way pass

glasses. There will be information signs (sounds can be used too) on the wall to attract the

view of the users. An illustration is provided in Fig. 8.1. The gray color box inside of the

figure shows the capture volume without using the robotic arm. And the larger blue box

marks the increased capture volume due to use of robotic arms.

Iris Recognition at a Security Check Point

To use the iris recognition technology at a security check point, such as the gate entrance

of a high security military facility during rush hours, is challenging, since every passenger
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Figure 8.1: The setup at an airport.

would be required to come out for an iris scan. This problem can be solved using active iris

recognition, which ensures increased processing throughput. The setup is illustrated in Fig.

8.2. Obviously, this application requires minimum subject’s cooperation.

Figure 8.2: A potential setup at a security check point.

8.1.3 Methodology

In this section, only the first scenario will be discussed. The second scenario is less

complex and its implementation is more straightforward because subjects are expected to
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cooperate.

3D Scanner

The first step is to take a 3D measurement of a subject. There are a lot of existing

technologies for extracting 3D information. For example, a 3D laser scanner can be used to

acquire a 3D point cloud. Some models also can capture color intensity information at the

same time. High speed 3D laser scanner, however, is very expensive. A much cheaper solu-

tion is to involve stereo imaging. There are some existing commercial stereo vision products,

such as Bumblebeer series from Point Grey [121], which are calibrated at high precision. A

single camera solution using structured light is also fast and cheap. However, the strobe light

can be very irritating for subjects. It may also damage the collected Near-Infrared (NIR)

data.

For current prototype development, we involved Kinectr fromMicrosoft which is designed

for the game console XBOX 360 [122]. Kinect relies on a 3D scan technology called “Light

CodingTM” which extracts 3D information with the aid of a continuously-projected NIR

structured light [123]. A monochrome CMOS sensor reads the coded light back, and then a

processor calculates the depth image of the scene. The functionality of Kinectr is illustrated

in Fig. 8.3.

Figure 8.3: The technology used in the Kinectr.

Background Estimation

Background estimation is the first step to track subjects. In our implementation, 3D

scanner is mounted on stable platforms. No registration or alignment is necessary between
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frames. 100 frames are used to estimate the background. For a 3D depth map, each pixel

intensity value corresponds to a distance measurement in a certain direction. Median values

along the time axis for 100 frames are regarded as the “true” distance measurement of the

background. The color image of the scene, and the estimated background are provided in

Fig. 8.4.

Figure 8.4: The background (a) and its corresponding depth map (b).

Background Subtraction

The calculated depth map is noisy and so is the foreground mask. To get the clear

outline of the subject, the binary foreground mask is further refined: 1) several “erode”

morphological operations are applied to remove isolated noisy areas; 2) while true subject

areas are also affected, remained “1”s are used as seeds to find the original subject boundary.

The procedure is illustrated in Fig. 8.5.

Head Detection

Single Subject For a standing person, the head is the highest part of the body. And it is

one end of vertical body axis: an imaginary longitudinal line through the center of the body.

Now, mass center of each foreground subject will be detected. Then from this mass center,

all candidates of “head location” will be evaluated based on the height and the horizontal

location. The one with the highest score will be treated as the true head. The procedure is

illustrated in Fig. 8.6. Once the location of the head is determined on the 2D image plane,
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(a) (b) (c)

(d) (e) (f)

Figure 8.5: Noise removal: (a) the color scene image, (b) the original depth map, (c) differ-
ences from the trained background, (d) the original foreground mask, (e) eroded mask where
only parts of true subject are left and (f) the final foreground mask.

the real world coordinates of the head can be calculated based on system parameters of the

3D scanner.

Separable Subjects It is possible that two subjects walk along together. However, in

most cases, they are still separable. The weak (narrow) connections between them can

be easily detected. Based on the experiment, the length of 200 pixels was selected as the

threshold to identify narrow connections. When a column has less foreground pixels than

the threshold, the whole vertical line will be cleared. Once subjects are separated at the

weak connection point, they will be treated as different subjects by the algorithm. Then the

head location will be detected separately for each subject using the algorithm introduced in

8.1.3. The foreground mask before and after the separation are illustrated in Fig. 8.7 (c)

and (d).

Overlaps It is possible that one subject is heavily occluded by others. They are not

separable in the 2D binary foreground mask because the overlapped area is thicker than the

cutting threshold. However, in this case, the distance difference between those two subjects

must be thicker than a body and is obvious enough to be detected. The outline of subjects
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(a) (b) (c)

(d) (e) (f)

Figure 8.6: Head detection: (a) the initial score based on the height, (b) the center of mass,
(c) the penalty for the off-center, (d) the combination of (a) and (c), (e) the penalty for the
edges and (f) the final head(forehead) candidate.

(a) (b)

(c) (d)

Figure 8.7: Head detection when there are connections: (a) the color scene image, (b) the
original depth map, (c) the narrow connection between two subjects and (d) separating
subjects using vertical cuts.
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(a) (b) (c)

(d) (e) (f)

Figure 8.8: Head detection when there are overlaps: (a) the color scene image, (b) the
original depth map, (c) all clear distance changes in the scene, (d) the expanded selection,
(e) the “skeleton” and (f) the final successful head detection result.

can be estimated using “edge” detection algorithms on the depth map. While those edges

may not be continuous because of noise (Fig. 8.7 (c)). The binary edge mask is expanded

to make separated edges connected to each other. However, it is now too thick to be used.

Instead of expanded edge mask (Fig. 8.7 (d)), the “skeleton” of it (Fig. 8.7 (e)) is used. The

final detection result is provided in (Fig. 8.7 (f)).

Face Detection For more complex situations, face detection can be used to ensure that

all heads will be detected. Just like how Kinect is build, a color camera can be aligned with

the 3D scanner. With the color image sequence, face detection algorithms can be used to

detect the location of the head. To extract the 3D location of the head, the color camera

can be perfectly aligned with the 3D scanner to make the registration between the color

view and the depth map straightforward. A public available face detection code is tested on

the color image captured by the Kinect [124]. The face detection result is presented in Fig.

8.9 where face candidates are marked out using green boxes. The false alarm (the wrong

candidate) in this image can be easily eliminated using the foreground mask extracted from

the depth map in Sec. 8.1.3.
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Figure 8.9: The face detection result.

Model for the Robotic Arm

A 6-link Puma robot model and corresponding control algorithm available online are used

for the demonstration of the proposed concept [125]. In real implementations, if a high zoom

NIR camera needs to be mounted at the end of the robotic arm for the iris data collection,

then an extra degree of freedom needs to be added at the end of the arm for the camera angle

adjustment. Not just Puma, most other 6 or 7 joints industrial robots with an advanced

controller can fulfil requirements of active iris recognition applications.

Control of the Robot

All robotic arms have to finish their own tracking task based on the real world coordinates

calculated by the 3D scanner. While multiple independent robotic arms attempt to perform

concurrent operations in a limited working space, advanced collision avoidance algorithms,

such as dynamic interference zones, are needed to protect robotic arms.

The data collection site is well designed to make sure the subject faces the camera most

of the time. As the distance between the camera and the subject is relatively long for the

size of the robot, all what robot can do is to keep the relative position between the camera

and the head same. The compensation of the head pitch or yaw is impossible when the

subject is far away because the robot is fixed to the base. Two irises of the same subject

will be captured at the same time.
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To make sure the robot can follow the movement of the head smoothly, the moving speed

of the head needs to be calculated and predicted. This compensation can reduce the motion

blur to the minimum level in the captured iris image.

Live Demo

The live demo is a simple implementation of active iris recognition. As illustrated in Fig.

8.10, in this demo, a Kinectr will be used to capture the 3D scene depth video. The 3D

depth map will be processed using MATLAB to extract the subject. The x, y, z coordinate

information of the head will be further detected and sent to the robot control subsystem for

a motion planning. The robotic arm will then start to execute the actions according to the

plan and follow the move of the head. A snapshot of the interface is provided in Fig. 8.11

where blue dots indicates the trajectory of the camera.

Figure 8.10: The diagram of the demo.

8.1.4 Discussions and Future Work

The main concept here is using a robot to follow the subject for high quality image

acquisition. Kinect is just one of many methods to track the person. Compared with PZT

(Pan Zoom Tilt) cameras, for a short distance, the camera at the end of robot arm not only

can keep the subject in focus, but also keep the subject in front-view position in most of
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Figure 8.11: The robotic arm is following the position of the head in the live demo.

time. The cost is high, but is still reasonable for the benefit the system can achieve. As the

concern of the vibration, it is true that moving cameras will not be suitable for long distance

image capturing. This project is designed for a working distance of 1.5-3 Meters. While the

subject is closer, under the same illumination condition, a faster shutter speed can be used.

Furthermore, a heavy robot and a light camera will be used to reduce the level of the sway.

All those assumptions from the preliminary result will be verified in the next stage when the

real robot arm is used.

It is proposed that an active iris recognition system can be implemented at a reasonable

cost with a gain of better quality images than existing “iris on the move” implementations.

In the future, a more complex prototype system with real robots will be built for a real

scenario demonstration.
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8.2 Social Connections for Improved Performance of

Biometric Systems

For security applications and for recognition in close proximity, iris biometric is the

most promising biometric technology demonstrating extremely high recognition capabilities.

However, its coverage and scalability is limited resulting in inability to cover billions of people.

A traditional approach to tackle this problem is to involve a multi-biometric system. An

alternative and also complimentary approach to involving multiple modalities for very large

population coverage is to take into account social connections of involved individuals. In this

section, social connections for improved performance of biometric systems are discussed in

both identification and verification scenarios. Experimental results involving novel models

and applications demonstrate substantial performance improvements.

8.2.1 Introduction

Iris biometric is the most promising biometric technology for security and personal ap-

plications due to its extremely high recognition capabilities. However, it is still not good

enough to cover billions of people. One of possible solutions proposed in the literature in

the past is multibiometrics [126] [127]. It can improve the performance of biometric systems

and therefore increase the population coverage.

Multibiometric systems need multiple sources, and they can be multi-sensor, multi-

algorithm, multi-instance, multi-sample, multimodal and hybrid [127]. Multiple sources can

be fused at five different levels: sensor, feature, score, rank and decision [128]. However, the

total complexity of the system and overall computational and processing cost will be high,

and it is not easy to expand the existing unibiometric system to a multibiometric system.

An alternative and also complimentary approach to involving multiple instances, even

with multiple modalities or hybrid for very large population coverage, is to take into account

a social network. For example, local police officers never have problems to identify or verify

a local person because of a local social network, which they take into account to recognize a

person. A small scale network is illustrated in Fig. 8.12. If two or more trustworthy persons

or witnesses provide the same information that can be used to identify a suspect, then it
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Figure 8.12: The visualization of a small social network.

will be highly probable that the suspect is the person they believe he is.

Another example where local social network could be useful is the Department of Motor

Vehicles (DMV). When a local resident applies for a driver license, he/she has to provide

a proof of residency. If he/she fails to do this because he/she just shares apartment with

another person, and the other person paid all bills in the past 6 months, then he/she can ask

his/her roommate for a referral to prove the residency. Actually, in some cases, social network

itself can identify individuals [129]. In this work, no manual (subject-based) identification is

performed. However, the idea how DMV uses the local social network will be adopted.

The most similar work exist is “Facial Recognition With Social Network Aiding” from

Google [130]. When they try to identify a person in a picture, they select the rank 1 candidate

based on not only facial recognition metrics of visual similarity but also the social connection

metrics. Basically, information obtained from other pictures of the identified person, will

help to identify persons in an image query. In this work, both identification and verification

scenarios are considered. In addition, performance is evaluated using a large scale realistic

dataset. Note that the idea introduced in this chapter is not limited to iris biometric only.

It also can be applied to face, fingerprint, and other biometric modalities.
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Figure 8.13: The social network match will support the results of biometric identification.

Identification

In Europe iris biometric is used for an accelerated check in of the passengers at the air-

ports. Iris surveillance application can be easily added for searching suspects or fugitives.

This databases with millions of iris images are viewed as large databases. The performance

of involved identification algorithms may drop if the size of the database continues increas-

ing. Normally once a threshold is set, only individuals who passed that threshold will be

considered as candidates for an unknown identity. If we have a social network map, we

may have verified connections between passengers. Just like how Google patent uses social

connections, we can reduce the number of candidates further down because the passengers

who fly on the same day or take the same air plane are possibly related. The rough idea is

illustrated in Fig. 8.13.

Verification

To explain how a local social network can be used for a biometric verification application,

let’s consider procedure of creating a account at a bank. A person A wants to apply for a

credit card, and the bank wants to verify the identity of the person. Based on the personal

information which A provides, the bank extracts the biometric information and makes a

comparison. However the single verification result may not be reliable due to a low quality

of the query image or due to the presence of many similar patterns in the database. If the

iris image is captured at the client’s home via a web camera, poor or unconstrained image
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capturing environment may result in a false negative. Even with a constrained capture

environment, for a large population application, a high matching score can not represent a

genuine match since there may be too many similar irises in the database. For example,

a lot of Asian people have clear distinct iris pattern around the pupil area.The remaining

80 percent of iris area is covered by a flat low frequency pattern. This flat area has low

uniqueness, and influences the False Accept Rate. Therefore, for this type of irises, even

with a pretty high matching score, there is still a high possibility that it is an imposter.

Then a potential solution, just like it is used by DMV, is to ask for referrals. Individual A

can mention individual B to the bank as a referral. B can be one of family members, or one

of his best friends. If A can get enough referrals to provide a sufficient support via biometrics

verifications, then the credit card application can be processed. Unlike identification scenario,

there are no need to save those connections in the database because the social connections

are provided by the user or the client. The privacy concern is reduced to minimum.

8.2.2 Methodology

All social connection information has to be saved in a database together with biometric

information in identification scenario. However it is not necessary in verification scenario.

Two kinds of applications are introduced separately in this section.

Identification

Large scale identification of a person using biometrics can be a challenging problem

because there may be too many similar enrolments. Therefore, soft data related to the

query biometrics may be very helpful at this point. Information may be in the form of

records about location, time, and biometrics which are collected at the same time. If an

extra biometric, such as full face or an image of the other eye, is collected from the same

person, then a muti-biometric approach can be used for identification. If data are from

another person, then the possible social connection between them may be useful.

In a biometric database with records about social connections in it, a number of query

entries is submitted to identify a person. The first step of the identification process is to

check if there are social connections between those candidates. Initially the candidates for
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Figure 8.14: The flow chart of a biometric verification system relying on a social network.

each query image will be sorted based on their matching scores, which are used as initial

data. A matched social connection from two different query entries will put a little bit more

weight to two corresponding candidates. Their ranks in their groups may change because of

these extra weights. Multiple connections will give more weights to the related candidates.

All matching scores between the query biometrics and the candidates will be updated based

on the newly assigned weights. Finally the decision will be made based on the updated

scores. Note that this procedure will identify a group of people in place of a single person.

The flow chart summarizing the whole identification procedure is provided in Fig. 8.14.

The theoretical motivation behind this approach is that the possibility of an imposter

score passing the verification threshold is much lower than those of genuine scores. Then the

possibility where a person A’s imposter, which successfully passed the verification threshold,

also knows A’s friend B is even smaller. Even more, for a large population, the possibility

where two “good” imposters know each other is negligible.
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Figure 8.15: The credit card application procedure.

Verification

When a user attempts to get verified using the expanded biometric system described in

Sec. 8.2.1, an assistance and support may be needed from his family members or friends if

his/her biometric features are not strong enough. Just as shown in Fig. 8.15, his/her support

group will provide their personal ID and biometric information to support the applicant.

The support from family members and friends will result in an improved matching score

in the extended biometric system. The performance, uniqueness and the social “credit score”

will determine how much support each person can give. A flow chart outlining this idea is

presented in Fig. 8.16.

8.2.3 Experiments

As mentioned earlier, the method introduced in Sec. 8.2.2 is applicable to all biometric

modalities, iris used in this chapter is only an example. A large database of synthetic iris

codes is generated, and matching scores in the form of Hamming Distance(HD) for the

synthetic data are evaluated.
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Figure 8.16: The flow chart of a social network assisted biometric verification.

Simulated Data

Based on the statistic data from Daugman’s work [8], a 37000 user database with one

enrolled iris code and one query iris code per iris class, was build using Matlab. The iris

code has 256 independent bits. The degree of freedom is slightly higher than 249, which

is estimated from real data. The variation of genuine score is simulated using Gamma

distributed noise. From an original 256 bit iris code, certain number of bits will be flipped to

generate a “noisy” code as the enrolment. Query code is generated in the same way. In our

experiment, the parameters of gamma distribution are obtained experimentally to achieve

the desired genuine distribution. Every query code is compared with every enrolment code.

Therefore a 37000*37000 similarity matrix is calculated from this dataset of synthetic iris-

codes. Experimental mean and standard deviation of genuine scores are: 0.1131 and 0.0702.

Experimental mean and standard deviation of imposter scores are: 0.4579 and 0.0196. The

single point measure d′ equals to 6.6874.

Identification

For a large dataset, matching query and enrolment images may not result in the first

rank matching performance. An imposter image which happens to have a “correct” noise
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Figure 8.17: The distribution of genuine and imposter scores obtained using 20,000 classes.
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Figure 8.18: The Receiver Operating Characteristic(ROC) curve based on 20,000 classes.

pattern, for example, a heavy occlusion, may result in the rank 1 match. When identities

are unknown, there are 3 possible outcomes for a certain verification threshold: 1) no one

passed the threshold, 2) only one class passed the threshold, and 3) there are more than

one classes passed the threshold. Those 3 cases can be divided further to 7 different cases

when identities are discovered. They are illustrated in Fig. 8.19. In case 3, because more

than one candidate passed the threshold there will be a ambiguity to solve. To find the

true candidate, extra information is needed. When a set of anonymous biometrics collected

at the same time need to be identified, it is highly possible that they are connected. The

connections are provided or proved by other information sources, such as Federal Bureau of

Investigation. With the social network information, a simple solution will be boosting the

scores with one or more “connection” matches.

As an example, email communication network from Enron will be used to simulate the

network connections [131]. Each node (person) in this network will be assigned a random

iris code. Then the performance improvement can be demonstrated by the number of solved

ambiguities.

For 36,692 classes, we find that 36,261 classes have genuine scores below the threshold
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Figure 8.19: The 3 possible outcomes in the identification scenario.

set at 0.32. Within the set of imposters, only 21 imposter scores exceed the same threshold

along with genuine scores. Luckily all passed imposter scores are larger than corresponding

genuine ones. However, other than that, totally, 179 classes has a larger genuine score

than imposter scores. The performance is summarized in Table 8.1. While the size of the

database is increasing, it is possible that at certain point, there are smaller imposter scores

than corresponding genuine ones and also smaller than the identification system threshold,

such as 0.32. Here, clear relations among the query images can be used to select the true

genuine identity.

Table 8.1: Number of classes for each case

Threshold 1-A 1-B 2-A 2-B 3-A 3-B 3-C
0.32 252 179 36240 0 21 0 0

Intuitively, if we want to prove that involvement of a social network improves the perfor-

mance, we need to show that involvement of a social network corrects wrong matches and

resolves ambiguities. More specificity, when both genuine and imposter scores are smaller

than the threshold, it should be high possibility that genuine one still will be selected does

not matter if it is larger or smaller than the imposter one. Here we assume that the im-

posters are uniformly distributed. It means, for a certain class, the possibilities to be its

imposter are same for all other classes. In this chapter, only pairwise relations (P1-P2) will

be analyzed. More complex models can be designed and verified in a similar way.



CHAPTER 8. FUTURE DIRECTIONS AND PRELIMINARY WORK 163

Case 2-A (P1) vs. Case 3-A or 3-B (P2) In this case, if a class P1 can be identified

correctly without any ambiguity, then the ambiguity will not be solved only if one of P2’s

imposter is also related to P1.

Case 2-B or 3-C (P1) vs. Case 3-A or 3-B (P2) If a class P1 is identified incorrectly,

then the possible error will be caused by small imposter scores which nothing can be done,

or one of P2’s imposter also has a relation with wrong P1. In this case, proposed method will

degrade the performance. However, the possible damage caused by the proposed method is

extremely small because of the low possibility.

Case 3-A or 3-B (P1) vs. Case 3-A or 3-B (P2) In this case, the additional error will

be caused by that one of P1’s imposter P
′

1 also has a relation with P2’s imposter P
′

2.

As stated earlier, each node of the network will be assigned an iris code. Then the fre-

quency of each scenario can be counted. To evaluate the average performance, node-iriscode

mapping was re-arranged 100 times. The frequency of their occurrence are summarized in

Table 8.2. When social connections get involved, totally 48,168 ambiguities are correctly

solved.

Table 8.2: The average frequencies for different scenarios (threshold: 0.32)

Case 1-A 1-B 2-A 2-B 3-A 3-B 3-C
3-A 0 0 481.54 0 0.14 0 0
3-B 0 0 0 0 0 0 0

Verification

Biometric systems can operate at different security level depending on applications. For

example,s credit card application needs a more stringent verification threshold than a check-

ing account balance check. In this chapter, it is assumed that all files in the company were

broadly partitioned into 8 classes. Each class has a iris biometric verification threshold to

protect the files. Higher security requests a more stringent threshold. A set of well designed

thresholds are provided in Table 8.3.
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Table 8.3: Thresholds for different classes

Class 1 2 3 4 5 6 7 8
Threshold 0.32 0.2 0.1 0.075 0.05 1/40 1/80 1/160

Mesh Network To simplify the selection, mesh structure network will be considered first.

In a mesh network, all nodes will be treated similarly.In a company, the president of the

company has the same security status as all regular employees. When a person A needs

a referral to boost his/her verification performance, A can ask his/her colleges or friends

for help. The boosting power provided by a referral is determined based on his/her 1)

performance and 2) uniqueness. The performance Ith index here is the clearance level which

the referral can directly reach. The uniqueness R is evaluated in a closed system using

the ordering rank of the claimed genuine score when the query image is compared with all

enrolments. The boosting power P will be multiplied with the original matching score, and

is calculated using formula (8.1):

P = αIth ∗ β1/R (8.1)

where α and β are constants. For iris biometrics, α = 0.97 and β = 0.9.

The performance is tested on a simulated community structure. Any selected person may

randomly select friends as referrals. With more and more referrals, how low the adjusted

matching score can reach is analyzed and the result is presented in Fig. 8.20.
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Figure 8.20: The trend of decreasing matching scores when the number of referrals increases.

How many friends they need to reach a certain security level is plotted in Fig. 8.21.
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Figure 8.21: The trend of increasing number of referrals when the verification threshold is
decreasing.

Hierarchy Network In a 1099 people company, all employees have a grade. Top ranked

level E(5) President have two level D(4) Directors. Each Director has four level C(3) Senior

Managers. All Senior Managers supervise eight level B(2) Managers. Every 16 level A(1)

normal employees form an office, and it is supervised by a Manager. The hierarchical struc-

ture is illustrated in Fig. 8.22, and a visualization of the whole network can be found in Fig.

8.23.
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Figure 8.22: The hierarchical structure in the company.

Table 8.4: Number of people at each level

Grade Levels E D C B A
# 1 2 2*4=8 8*8=64 64*16=1024

When a person A asking for a referral, A’s direct supervisor B, and all lower level em-

ployees under B’s supervision are the only people to ask for referral. The boosting power

provided by a referral now is determined based on his/her 1) performance; 2) uniqueness
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Figure 8.23: The plot of the hierarchy network.

and 3) grade level G. The performance and the uniqueness are the same as before. Higher

grade level officers will provide larger boosting power because they have a little bit more

rank advantage. They can be regarded as having a higher “credit score”. Of course the

direct supervisor is the best choice when someone is looking for a referral. In this kind of

network, the boosting power P is calculated using formula (8.2):

P = αIth ∗ β1/R ∗ γG (8.2)

where α, β and γ are constants. For iris biometrics, γ = 0.97.

The average performance on 1,000 trails for 1,099 classes is summarized in Table 8.5.

And for Class 5, the symmetric error bars that are two standard deviation units in length is

illustrated in Fig. 8.24. As we can see, Level D achieved the best performance when they are

able to find referrals because presidents can not find a higher level referrals than themselves.



CHAPTER 8. FUTURE DIRECTIONS AND PRELIMINARY WORK 167

Table 8.5: The average number of referrals needed for each scenario

Class Level E Level D Level C Level B Level A
1 0.0130 0.0100 0.0107 0.0097 0.0100
2 0.1370 0.1045 0.1206 0.1239 0.1445
3 0.8250 0.7075 0.8194 0.9513 1.2203
4 1.2190 1.0820 1.2703 1.5264 2.0345
5 1.9750 1.7870 2.0871 2.5745 3.5343
6 3.5160 3.2555 3.8207 4.7015 6.6081(0.0%)
7 5.2310 4.9835 5.8869 7.1557 9.8393(1.8%)
8 7.0020 6.9705 8.1457 10.0482 12.1028(22.6%)
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Figure 8.24: The number of referrals needed for each grade level to access class 5 files.

8.2.4 Discussions

The social information is used differently in identification and verification scenarios. Iden-

tification: FBI (Federal Bureau of Investigation) may already have the social connection

information available when they try to identify a fugitive, and they just want a precise iden-

tification. Verification: it is not necessary to save the social connection information into the

system at anytime.

It is demonstrated that social information can be used to increase the population coverage

of the existing biometrics systems. More precise identification performance can be achieved

and more complex verification settings can be adopted. Iris biometrics is used to demonstrate

the proposed model.
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Chapter 9

Conclusion

In this dissertation, various components of iris recognition system are studied in depth.

The problems of iris quality evaluation, cross spectral iris recognition, non-ideal iris seg-

mentation, iris encoding, performance prediction and iris image generations are formulated.

Novel solutions to these problems are designed, and the performance of developed algorithms

is analyzed.

9.1 Contributions

The main novelties and contributions of this dissertation are:

• A novel method to generate a large scale realistic database of iris images is

developed. It provides an option to compare efficiency, limitations, and capabilities

of newly designed iris recognition algorithms through their testing on a large scale data

set of generated irises (Ch. 2) [115].

• A cross-spectral iris matching method for comparison of iris images in color

range with iris images in Near-Infrared (NIR) range is proposed. Both visual

inspection of the predicted image and the verification performance indicate that the

adaptive mapping linking NIR image and color image is a potential solution to the

problem of matching NIR images vs. color images in practice (Ch. 3) [132].

• A number of iris quality measures are designed to evaluate quality of iris

images and iris video frames. This set of newly developed quality measures can be



CHAPTER 9. CONCLUSION 169

used to improve the matching performance of iris recognition systems (Ch. 4) [119].

• A robust quality-based iris segmentation method is developed. It has the

capability to reliably segment non-ideal imagery that is simultaneously affected with

such factors as specular reflection, blur, lighting variation, occlusion and off-angle of

images (Ch. 5) [133].

• An encoding technique using local ordinal information is introduced. It is

robust with respect to a number of nonidealities in iris images and it can be flawlessly

integrated into the traditional filter-based recognition systems for a better performance

(Ch. 6) [59].

• An encoding technique using 2D median filter is designed. It can handle iris

images acquired under non-uniform ambient lighting, and can be used as an useful

complementary encoding technique in hierarchical iris recognition systems (Ch. 6)

[134].

• An unique “cancelable iris biometric” solution is proposed. Both registration-

free transforms and salting procedures can solve the privacy and security issues at the

same time (Ch. 6) [135].

• Three methods to improve the performance of biometric matchers based

on vectors of quality measures associated with biometric samples are de-

veloped. Significant performance improvements can be achieved from three different

ways when a good set of quality measures is available (Ch. 7) [136].

• A method to increase iris capture volume for acquisition of iris on the move

from a distance is introduced. This concept can be adopted to applications such

as airport surveillance or security check point (Ch. 8).

• A method to improve performance of biometric systems due to available

soft data in the form of links and connections in a relevant social network is

proposed. It is an alternative and also complimentary approach to involving multiple

modalities for very large population coverage applications (Ch. 8).
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