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ABSTRACT 

The research work presented in this thesis introduces novel approaches for both visual 

region of interest extraction and visual feature extraction for use in audio-visual 

automatic speech recognition. In particular, the speaker‘s movement that occurs 

during speech is used to isolate the mouth region in video sequences and motion-

based features obtained from this region are used to provide new visual features for 

audio-visual automatic speech recognition. The mouth region extraction approach 

proposed in this work is shown to give superior performance compared with existing 

colour-based lip segmentation methods. The new features are obtained from three 

separate representations of motion in the region of interest, namely the difference in 

luminance between successive images, block matching based motion vectors and 

optical flow. The new visual features are found to improve visual-only and audio-

visual speech recognition performance when compared with the commonly-used 

appearance feature-based methods. 

In addition, a novel approach is proposed for visual feature extraction from either the 

discrete cosine transform or discrete wavelet transform representations of the mouth 

region of the speaker. In this work, the image transform is explored from a new 

viewpoint of data discrimination; in contrast to the more conventional data 

preservation viewpoint. The main findings of this work are that audio-visual 

automatic speech recognition systems using the new features extracted from the 

frequency bands selected according to their discriminatory abilities generally 

outperform those using features designed for data preservation. 

To establish the noise robustness of the new features proposed in this work, their 

performance has been studied in presence of a range of different types of noise and at 

various signal-to-noise ratios. In these experiments, the audio-visual automatic speech 

recognition systems based on the new approaches were found to give superior 

performance both to audio-visual systems using appearance based features and to 

audio-only speech recognition systems. 
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CHAPTER 1 

INTRODUCTION 

Computer usage has now become an integral part of our lives, having applications in 

commerce, industry and education, as well as in social and domestic spheres. 

However, many of our personal interfaces with computers are not natural, in the sense 

that they differ from how we interact with each other. Improving the ability of 

computers to interact using vision, touch and speech will provide more a natural 

communication with humans. This thesis makes contributions in the area of audio-

visual automatic speech recognition (AVASR) and in particular in extracting the 

mouth region and applying new speech recognition approaches that make use of both 

visual and audio information. 

This introductory chapter describes what is meant by automatic speech recognition 

(ASR) using machines, the purpose and scope of ASR and its relation to human 

communications. It also discusses the challenges of ASRs and the approaches that 

have been adopted by previous researchers in attempting to address these challenges. 

The use of the visual modality in human speech recognition and its potential for 

improving the performance of ASRs is also described. Also introduced are the series 

of operations that are carried out both by a typical ASR system and also by such a 

system when augmented by a visual modality. The objectives of the research 

presented in this thesis and the specific contributions of this research are also 

included. 

1.1 AUTOMATIC SPEECH RECOGNITION 

Speech, being the most effective way of directly communicating all but the simplest 

information between humans, is also frequently considered as a suitable candidate for 

human-computer interaction (HCI). With the ever-increasing interaction with 

computers for performing both business and personal tasks, developing machines that 

can speak and listen will make HCI more natural and increase productivity in many 

applications [1]. Speech recognition by machine, or ASR, is the process of translating 

speech signals into a set of words. The recognized speech transcript may be the 
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desired final output in applications such as data entry or word processing, while in 

other cases it could serve as an input for further processing by the machine, such as in 

multilingual communication, or the automatic ticketing of vehicles [2]. 

The practical implementation of ASR systems is made more difficult due to the 

differences in the speech signals that emanate from individual speakers, even when 

articulating the same word or phrase; this being known as inter-speaker variability. 

An example of this variability is the distinct pronunciation of words according to the 

speaker‘s geographical region of origin. Intra-speaker variability may also occur, in 

which the manner in which a word is pronounced is affected by conditions such as 

age or emotional state. A further major source of variation is co-articulation, where 

the pronunciation of a phoneme is influenced by the presence of neighboring 

phonemes [3]. 

Much of the ASR research attempts to imitate human speech recognition by machine 

[4], yet very little is known about the exact mechanisms we use [5]. Humans can often 

continue to recognize speech in challenging environments, such as in the presence of 

audible noise from the environmental including that generated by other speakers, 

known as ‗cross talk‘ or, more colloquially, the ‗cocktail party effect‘. Human beings 

are able to isolate the wanted speech of one individual even though many others are 

speaking at the same time. Although many ASR solutions have performed well 

enough to be used in commercial products, none can yet achieve the level of 

performance of human speech recognition. Consequently, ASR has met success in 

relatively well-controlled environments, but to deliver acceptable performance in 

many real-world situations remains a considerable challenge [6]. 

1.2 CHALLENGES OF ASR 

The goal of ASR research is to develop machines that have near human recognition 

capabilities in natural environments. In practice, ASR research in recent decades has 

improved its capabilities to near human performance, but only in noise-free 

environments. Our abilities to distinguish between speakers and to isolate speech have 

proved a challenging task to replicate by machine and even in controlled 

environments the performance of current ASR systems still lags behind that of 

humans [7]. In terms of developing an ASR solution, the difficulties that need to be 
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overcome include inter-speaker and intra-speaker variability, co-articulation, cross 

talk and more generally, susceptibility to environmental noise [1]. In the current work, 

the main contribution is to reduce the susceptibility of ASR to influences arising from 

background noise and so this issue provides the main focus for discussion in the 

remainder of the thesis. 

1.3 APPROACHES TO SPEECH RECOGNITION UNDER NOISY 

CONDITIONS 

The speech recognition performance of ASR systems that process only audio signals 

deteriorate severely in the presence of even moderate levels of background noise [8]. 

Speech recognition under noisy conditions is recognized as a major hurdle to the 

deployment of ASR systems in real-world situations and has attracted the attention of 

many research groups in last three decades. To overcome the problem of ASR 

performance degradation in the presence of noise approaches based on robust feature 

extraction, compensation techniques, noise reduction and audio-visual feature 

extraction have been proposed. 

The techniques used in the extraction of the features inherently resistant to noise 

include RASTA (RelAtive SpecTrA) processing [9], one-sided auto-correlation [10] 

and auditory model processing of speech [11]. In the RASTA method, the features are 

extracted after filtering the components that represent both slow and rapid signal 

changes that lie beyond the normal speech range, thus attempting to mitigate the noise 

prior to feature extraction. In the one-sided auto-correlation approach, linear 

predictive coefficients (LPC) are extracted from the autocorrelation of the speech 

signal after noise filtering rather than being obtained directly from the original signal. 

As the autocorrelation of the noise component often remains constant, it can be 

removed in the correlation domain by high pass filtering of the resulting signal. These 

auditory model based methods extract features based explicitly on the knowledge of 

human auditory system and have generally shown to increase robustness to noise. 

The compensation model attempts to recover the original speech from a corrupted 

version either in the feature parameter domain or at the pattern-matching stage. 

Suitable methods reported include the cepstral normalization [12], probabilistic 

optimum filtering [13] and parallel model combination [14]. 
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To reduce noise content, spectral enhancement techniques such as spectral subtraction 

and Wiener filtering have been used and shown to improve recognition performance 

[15]. Other authors have developed speech signal ‗denoising‘ processes based on the 

soft and hard thresholding of wavelet coefficients [16]. 

It is well documented that visual information from a speaker‘s face, referred as ‗visual 

speech‘, is used by humans for speech recognition; particularly when audio noise is 

present and is widely used by people with hearing impairments [1]. The approach has 

been adopted to improve the performance of ASR systems in the presence of noise 

[17], [18], [19], [20] and the use of the video modality to augment the audio modality 

has become increasingly popular in recent years. 

1.4 THE BIMODAL NATURE OF SPEECH 

Human speech production and perception are bimodal in nature. The visual modality 

is particularly important in the understanding of speech for people with hearing 

impairments and for the deaf, who will use information obtained from observing lip 

movements and gestures [21]. The skill of using mouth shapes, and other visible 

articulators to estimate the underlying sound is known as lip-reading and can be 

refined through training [22]. For general communication between humans, facial 

expressions are a source of information about psychological state. Visual cues from 

the face of speakers and visible articulators such as lips, teeth, jaw and the tongue-tip 

of the talker are used as aids in human speech recognition. The accuracy and 

robustness of human speech recognition is generally improved when the 

complementary and supplementary information available from these multiple 

modalities is present [23]. 

Speech production is the result of the movement of articulators, vibrations of the 

vocal cavity and changes in the geometry of the vocal tract. Vowels or consonants are 

produced as a result of stable or transient configurations of the vocal tract, 

respectively. Phones, defined as the smallest segments of sound, are characterized by 

attributes such as open-closed, front-back, oral-nasal, and rounded-unrounded. 

Audio and visual speech are mutually correlated and provide information whose 

complementary and supplementary natures have not yet been fully explored in the 

literature [1]. The two modalities provide continuous, independent streams of 
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information that contribute simultaneously to speech perception but whose integration 

is achieved in such a manner that the speech recognition performance is enhanced 

rather than compromised. Acoustically, easily confused sounds such as the unvoiced 

pair /k/ and /p/, the voiced pair /b/ and /d/, and the nasal /m/ and nasal alveolar /n/ can 

be potentially distinguished using information obtained from the place of articulation 

derived in the visual modality [23]. 

Summerfield [25] identified three main ways in which vision can aid speech 

perception. Firstly, it helps in localizing the audio source that provides the linguistic 

and paralinguistic information, so supporting the analysis of the signal and helping to 

distinguish it from noise. Secondly, it provides information not assessable in the audio 

stream, such as consonants of short duration that may be more easily masked by 

audible noise. Thirdly, it provides information about the place of articulation, such as 

labial, dental, palatal, alveolar or glottal. 

The understanding that speech perception is bimodal has motivated interest in 

acquiring visual information to improve automatic speech recognition quality, and a 

field known as audio-visual automatic speech recognition (AVASR) has emerged 

[26]. 

1.5 OVERVIEW OF ASR AND AVASR SYSTEMS 

A schematic diagram of a typical ASR system is depicted in Figure 1.1. ASR systems 

generally require a training stage, during which the signal processing front-end 

extracts features from speech utterances whose written interpretation are known and 

also presented to the system. During this stage, the training module configures the 

models of speech units, also known as acoustic models. In the decoding stage, 

unknown speech is applied and features are again extracted, but this time passed to 

the decoder for recognition purpose. The decoder normally classifies the unknown 

speech not only using the acoustic models developed at the training stage, but also 

using constraints imposed by the lexicon and language models [27]. The lexical 

model assesses the validity of alternative words proposed by the decoder and the 

language model generates probabilities according to how well candidate sequences of 

words match linguistic rules. Most modern ASR systems use statistical 

representations, the most popular being Hidden Markov Models (HMMs) [28]. 
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The main difference between audio-only and audio-visual ASR lies in the design of 

the front-end, as two input streams (the audio stream and the video stream) are now 

available. Additionally, at some stage in the recognition process, the streams of 

information from the audio and visual modalities need to be fused and this can occur 

either after the front end by amalgamating features or, if separate recognizers are used 

for each modality, the results from the two separate decoders can be combined [29]. 

The reported research on AVASR systems has mainly focused on the design of the 

visual front-end and the effective integration of audio and visual modalities for 

improved speech recognition performance. The visual front-end consists of subtasks 

such as visual signal pre-processing, region of interest (ROI) extraction and feature 

extraction as shown in Figure 1.2. The signal pre-processing tasks may concern 

illumination, distance compensation and audio-visual synchronization. ROI extraction 

may include the detection of the face and mouth region of the speaker and either the 

extraction of specific geometric parameters of the speaker‘s lips such as width, height 

and curvature, or a region from the speaker‘s face deemed informative about the 

visual speech. Where geometric parameters are obtained, feature extraction could be 

Classifier (HMM) 

Figure 1.1 Schematic diagram of a typical ASR system [27] 
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part of ROI identification, otherwise it could form a separate stage in which suitable 

transformation and dimensionality reduction techniques are applied to the ROI. 

 

A more detailed discussion of the AVASR components and the approaches applied in 

AVASR literature can be found in Chapter 2. The classification of AVASR systems 

and the speech units commonly used in AVASR research are discussed in following 

sub-sections. 

1.5.1 Classification of AVASR systems 

AVASR systems can be categorized based on parameters such as vocabulary size, 

mode of speaking, style of speech and speaker enrolment. These classifications are 

summarized in Table 1.1. 

Table 1.1 Classification of AVASR systems 

Parameter Types 

Vocabulary size 

Small vocabulary 

Medium vocabulary 

Large vocabulary 

Mode of speaking 
Isolated word or digit 

Continuous speech 

Style of speech 
Spontaneous speech  

Read speech 

Speaker enrolment 
Speaker dependent 

Speaker-independent systems 

Into which categories a particular AVASR systems falls is related to the complexity 

of the speech recognition performed. For example, a large vocabulary, speaker-

independent continuous speech recognition system would be the most complex, 

Figure 1.2 Visual front-end 
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whereas isolated word recognition among a small vocabulary would pose a relatively 

simple task [2]. 

1.5.2 Speech units 

The audio-visual feature vector obtained as the output of the front-end processing is 

used to train the acoustic models of the speech units. Isolated word and digit 

recognition systems generally use a whole word (or digit) as a speech unit and the 

models are trained at this level of granularity. In continuous speech recognition tasks, 

small components of audio and visual speech, known as phonemes and visemes 

respectively, are used as speech units [30]. Models are normally developed for each of 

the phonemes, as well as their context-dependent combinations, bi-phones and tri-

phones, consisting of two and three phonemes respectively, and similarly for each of 

the visemes and their combinations, termed bi-visemes and tri-visemes. 

Audio speech units (Phonemes) 

Phonemes are the smallest segment of sound that conveys useful linguistic 

information. Phonologically, each language is made of these basic units and each 

language or dialect consists of a set of phonemes. For example, there are 45 phonemes 

in UK English, 46 in American English, 36 in Mandarin and 35 in French. These 

basic audio sounds are used in most speech recognition systems to provide a set of 

basic units for recognition; these can then be combined to form the words and 

sentences using the additional information stored in the lexicon and language models. 

Visual speech units (Visemes) 

Visemes are distinguishable segments obtained from videos of speakers. They 

represent particular oral or facial shapes, as well as the positions and movements 

adopted during speech utterances. They may coincide with the generation of one or 

more phonemes and are derived either manually by human observation of visual 

speech or automatically by the clustering of visual speech data. A number of 

phoneme-to-viseme mappings have been derived by researchers [29], but, unlike 

phonemes, there is no standard set of visemes for a given language. 



9 
 

1.6 RESEARCH MOTIVATION 

One of the major challenges currently facing ASR researchers is to improve system 

robustness in the face of audible noise. As the visual modality is not directly affected 

by audio noise, its use can potentially make ASR systems more robust. 

In the AVASR research reported in the literature, the feature extraction approaches 

taken are mainly borrowed from data compression and communication research in 

which the main aims are to achieve a compact representation with the aim to retain as 

much of the data as possible in a small number of dimensions. In these approaches, 

the focus is mainly to preserve the visual quality in the compressed domain with no 

attention to highlight the discriminative characteristics of the data classes. While low 

frequency coefficients in the discrete cosine transform (DCT) and discrete wavelet 

transform (DWT) representations of images of speakers may well capture the 

essentials of images for compression and communication purposes, this may not be 

the appropriate frequency band in which to find the bulk of the recorded information 

that relates to speech articulators and their movements. In this work, it is proposed 

that the extraction of such information be tackled from a pattern recognition 

viewpoint, and, in particular, a thorough investigation involving medium frequency 

coefficients is likely to prove fruitful. 

Research in AVASR is mainly carried out by researchers with background experience 

in either image analysis or audio ASR. As such, the reported AVASR investigations 

have largely been carried out on individual images extracted from videos of speakers 

and dynamic information that could be obtained from sequences of frames has been 

largely ignored. The dominant AVASR approaches in the visual feature extraction 

paradigm are appearance-based and shape-based methods. Although speech dynamics 

are incorporated in these methods to a limited extent through the use of temporal 

derivatives of extracted static features, to best of the author‘s knowledge, explicit use 

of motion information has not been explored in AVASR. Further, ROI extraction is 

currently performed either manually or by applying techniques borrowed mainly from 

image analysis research and, as such, operate on individual images without exploiting 

motion information present in the video sequences. Motion detection and estimation 

have become common techniques in video processing and the isolation of motion 

information is important in both video compression and communication applications. 
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Speech is a dynamic phenomenon and the effect on ASR performance that results 

following the incorporation of motion information obtained from videos of speakers 

would intuitively appear to be worthy of further investigation. Again, to the best of 

author‘s knowledge, explicit use of motion detection and estimation in a visual front-

end in an AVASR has not been previously reported. 

1.7 RESEARCH AIM AND OBJECTIVES 

The aim of the work in this thesis is to incorporate dynamic visual information in the 

front-end of an AVASR system in order to improve the overall speech recognition 

performance. The particular objectives of the work are as follows. 

1. Investigate methods that use dynamic information obtained from sequences of 

images in order to automatically and robustly extract visual ROIs. 

2. Provide additional speech-related information in the form of dynamic features 

obtained from the mouth region. 

3. Where these features are frequency-based, determine which frequency regions 

produce information that is best able to improve AVASR performance. 

1.8 ORIGINAL CONTRIBUTIONS 

This research investigates AVASR from the perspective of visual speech dynamics. A 

new approach is adopted for the visual front-end based on the motion information 

from the video of speech for both ROI extraction and visual feature extraction. In 

addition, the limitations of traditional image transform methods are addressed from 

the new perspective of discriminative feature extraction instead of the data reduction 

point of view where the main goal is the preservation of maximum data variance. 

This thesis reports novel contributions to the basic operations of AVASR, namely the 

automatic isolation of the visual ROI and the extraction of visual features for 

AVASR. The contributions of this work are as follows. 

1. New features obtained from specific frequency bands are proposed from the DCT 

and DWT representations of visual speech images. These features are shown to 
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yield better performance compared to those extracted from low frequency 

coefficients. 

2. A novel motion-based visual ROI extraction approach has been proposed for use 

with both appearance-based and shape-based feature extraction methods. The same 

ROI has also been used for feature extraction purposes, giving a completely 

automatic visual front-end. 

3. New visual features based on a motion-based approach have been proposed. These 

features extract dynamic information from the video stream of speakers and were 

found to improve speech recognition performance compared to that obtained using 

static features extracted from individual frames. 

1.9 ORGANISATION OF THE THESIS 

This thesis consists of seven chapters. Chapter 1 has provided an introduction to the 

ASR and AVASR, the challenges of current ASRs and an overview of the objectives 

and contributions of this thesis. 

Chapter 2 gives an overview of AVASR systems and reviews existing approaches 

described in the literature. 

In chapter 3, the pattern recognition research relevant to AVASR systems is covered 

in detail. A description of the commonly-used AVASR data transformation and 

dimensionality reduction techniques is given. 

Chapter 4 reviews the image transform based feature approach and its limitation in 

capturing speech information. New features derived from specific frequency bands of 

the discrete cosine transform (DCT) and discrete wavelet transform (DWT) 

representation of the images of speaker‘s mouth are proposed. The performance of the 

new features in their application to speech recognition is compared with existing low-

frequency features, both for clean speech and in the presence of background noise. 

Chapter 5 discusses the current approaches for automatic extraction of visual ROI, 

their limitations and the effect robust ROI extraction has on the overall performance 

of AVASR. A new method for ROI extraction based on motion detection in video 

frames is proposed and its performance assessed on a range of image sequences. 
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Chapter 6 reviews the use of motion compensation techniques in MPEG based video 

compression and discusses how the approach can be extended to the AVASR task. 

New motion-based features that use frame difference, block-matching and optical 

flow approaches are investigated and their performances are compared with the more 

commonly-used appearance based features. The recognition performance of the new 

features is studied in the presence of noise and compared with that of audio-only 

ASR. 

Chapter 7 concludes the findings of this research and also proposes directions for 

future research. 
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CHAPTER 2 

AN OVERVIEW OF AUDIO-VISUAL 

AUTOMATIC SPEECH RECOGNITION 

SYSTEMS 

2.1 INTRODUCTION 

Chapter 1 discussed the challenges of traditional audio-only ASR systems and the 

various approaches taken in ASR research to make these systems robust in the 

presence of noise. In addition, it discussed how audio-visual automatic speech 

recognition (AVASR) systems can potentially improve the performance of audio-only 

ASRs when affected by audio noise by incorporating additional speech information 

from videos of speakers. 

This chapter gives an overview of AVASR systems and its constituent parts. 

Following a general introduction to AVASR systems, the remainder of the chapter 

discusses these components in detail as well as reviewing the approaches adopted in 

the AVASR literature to achieve their implementation. 

The use of visual speech information has introduced new challenges in the field of 

automatic speech recognition (ASR). These are robust face and mouth detection, 

extraction and tracking of a visual region of interest (ROI), extraction of informative 

visual features from the ROI, the integration of audio and visual modalities and the 

provision of suitable classifiers [1]. 

The AVASR process is depicted in Figure 2.1. In contrast to audio-only speech 

recognition systems, where only the audio stream of information is available, here 

there are two streams of speech information, namely the audio stream and the video 

stream. The process of AVASR system implementation consists of two stages: design 

of the front-end processing system and the training of the recognizer. Front-end 

processing transforms speech into a parameter vector suitable for subsequent 

processing and consists of the pre-processing of audio and video sources, followed by 
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feature extraction from each of the two sources [2]. The audio and visual features thus 

extracted can either be combined directly at the feature level (termed early 

integration) or could be used to train two separate audio and video recognizers and 

their results integrated at some later stage (known as decision integration). In Figure 

2.1, the early integration method is represented by the solid lines and the alternative 

decision integration approach by the broken line. Between these two extremes there is 

a third possibility of intermediate integration, where the two modalities are combined 

at some point in the processing between the feature integration and decision 

integration [3]. Depending on the application, the recognition task could be as simple 

as isolated word or digit recognition or as complex as conversational speech 

recognition. The choice of classifier depends on the complexity of the recognition 

task and the integration strategy used. For example, for small vocabulary tasks 

involving isolated word or digit recognition, the features are normally passed directly 

to the classifier along with the corresponding features obtained from the unknown 

speech. The classifier performs the matching of the feature vector of unknown speech 

to those of the known speech units and assigns a symbol to the unknown speech 

corresponding to its matching pattern in the known speech. For large vocabulary 

continuous speech recognition tasks, acoustic models are developed for each phonetic 

symbol using these features. Features extracted from unknown speech are then passed 

to the recognizer which uses the acoustic model along with lexical and syntactic 

information to identify the unknown speech. Hidden Markov models (HMMs) are 

popular tools for such modelling [4], [5]. Depending on the application, the output 

from the recognizer is commonly either in the form of recognized text or is subjected 

to further processing. 
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The AVASR systems available to date are mainly the products of work carried out by 

individual researchers or small research groups in universities and vary greatly in the 

approach taken. Due to the unavailability of standard audio-visual databases, testing is 

normally carried out using databases developed by the researches themselves. As the 

feature extraction approaches are often unique to the research investigation, this may 

also dictate the requirement to develop task specific databases, particularly in those 

methods based on lip and mouth geometric parameters. Generally, the comparison of 

results between the research carried out by different authors is made difficult as there 

is no consistent use of speech or video databases, with each likely to involve different 

number of speakers and some containing only isolated words or digits [6], while 

others may contain large vocabularies of continuous speech [7]. 

This chapter is organised largely according to the processing stages identified in 

Figure 2.1. Section 2.2 provides an introduction to the front-end design while audio 

and visual front-ends are described in further detail in sections 2.3 and 2.4 

respectively. Section 2.5 presents the approaches to audio-visual integration reported 

in literature and the range of classifiers that have been used for AVASR is outlined in 

section 2.6. Section 2.7 introduces the audio-visual databases that have been used in 

Figure 2.1 Block diagram of an AVASR system 

Audio-Visual 

features 

 

 

Audio Pre-

processing 

 

Audio 

features 

 

 

Audio 

recognizer 

 

Recognized 

speech 

Language 

information 

Lexical 

information 

Unknown 

speech 

Audio-Visual 

recognizer 

(Classifier) 

) 

 
Video input 

Audio input 

Visual 

recognizer 

 

Video Pre-

processing 

 

Video 

features 

 

ROI 

extraction 

 

 

 

Audio front end 

Visual front end 

 Audio-visual integration 



19 
 

AVASR research and the summary describes how the direction chosen for the current 

research has been influenced by the literature surveyed. 

2.2 FRONT END DESIGN 

Before being applied to the recognizer for training or recognition purposes, audio and 

visual streams need to be pre-processed to remove data irrelevant to speech and to 

enhance certain characteristics that help to improve speech recognition performance. 

These pre-processing stages of the audio and video data are known as the audio front-

end and visual front-end respectively. ‗Front-end‘ encompasses the pre-processing of 

the speech signal before the feature extraction phase, as well as the feature extraction 

itself. The design of the front-end, and particularly the feature extraction phase, plays 

an important role in maximizing the overall performance of a speech recognition 

system and is a core area of research in both audio-only and AVASR research. In the 

audio part of the front-end pre-processing, a number of techniques are available to 

enhance the speech signal and to reduce the effects of background and channel noise 

[7]. The design of video front-end is a rather more challenging task, as the video 

signal will contain substantial information about the speaker and background that are 

not relevant to the speech itself. This needs to be filtered out and a region of interest 

(ROI) around the mouth of the speaker defined and extracted [2], thereby greatly 

reducing both the dimensionality of the required feature vector and the computation 

cost of later processing. In comparison with the audio front-end, the visual front-end 

will also include the additional steps of speaker face and mouth detection and the 

extraction of a speech information region from the face of the speaker, collectively 

known as ROI extraction. The effects of variations in lighting conditions in both the 

spatial and temporal dimensions may also be addressed as part of the visual front-end, 

as well as distance and orientation normalization where relevant. Audio and visual 

front-end processing are performed separately on the two streams and the extracted 

feature vectors integrated to form a single feature vector or used to train two separate 

recognizers depending upon the modality fusion approach adopted. 

As the original audio and visual speech signals have high dimensionality, then, to use 

them directly for training and recognition, the classifier will need computational time 

and resources that are not commonly found even in modern computer systems. 

Therefore, a more compact set of parameters representing the significant 
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characteristics of speech are extracted from both the audio and video signals. The 

compact sets of parameters extracted from the two streams are generally referred to as 

the audio and video features respectively. The performance of a speech recognition 

system is greatly dependent on the extraction of features which are robust, stable, and 

ideally retain all the speech information contained in the original source signal [8]. 

The main purpose of feature extraction is to capture speech information in a 

reasonably small number of dimensions with the aim of generating features with the 

following properties. 

 A maximum variance between classes (here phonemes and visemes for the audio and 

visual modalities, respectively), while minimizing the variance between members of same 

class. 

 Capture of the salient properties of speech in terms of both its spectral characteristics and 

its temporal variations. 

 Robust against the effects of environmental changes in their respective streams, such as 

lighting conditions and image background in video and audible noise in audio. 

 Independent of the speaker and of the speakers‘ displayed emotions. Note that the 

performance of a video recognizer may be affected more by certain factors than audio. 

For example, video feature extraction may well greatly be affected by a speaker having a 

beard, but this will have little or no effect on the audio modality. 

The frequency at which these features are extracted depends upon the nature of 

recognition task. For digit and isolated word recognition task, usually the same 

number of features is extracted for each digit or word, irrespective of duration, while 

in the case of the continuous speech recognition task, features are generally extracted 

at a rate of 100 times a second. Features extracted from individual frames carrying the 

static speech characteristics are generally combined with first and second temporal 

derivatives (delta and delta-delta features) to include the dynamic characteristics [9]. 

The combined set of features is then used to train the acoustic models of individual 

phonemes or visemes and their context-dependent bi-phones/bi-visemes and tri-

phones/tri-visemes [7]. Alternatively, the audio and visual features are combined to 

form a single audio-visual feature which is then used to train models for either 

phonemes or visemes. 
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2.3 AUDIO FRONT END 

The two stages generally used for the audio front-end design are depicted in Figure 

2.2. The first is the signal pre-processing stage that converts the sound pressure wave 

into a digital signal and enhances certain important spectral components. The second 

is the feature extraction stage that consists of the spectral analysis of the signal and 

the extraction of a set of parameters making the audio feature vector. These stages are 

now discussed in more detail. 

 

2.3.1 Front-end pre-processing (Spectral shaping) 

Firstly, the audio front-end samples and quantizes the speech using an analog to 

digital converter (ADC). Sampling rates in the range 10 kHz to 16 kHz are commonly 

used for microphone inputs, while for telephone signals an 8 kHz sampling rate is 

more appropriate [10]. The analog to digital conversion process will introduce some 

noise to the signal in the form of quantization noise, non-ideal frequency response and 

fluctuating DC bias. In addition, the microphone used in the analog to digital 

conversion will also introduce non-linear distortion and both high and low frequency 

information loss. To minimize the effects of such noise, the digital speech is normally 

enhanced using a pre-emphasis filter to flatten its spectrum [8]. The advantage of this 

pre-emphasis is two-fold. Firstly it offsets the natural attenuation in voiced section of 

speech, caused by the physiological characteristics of speech production mechanism; 

secondly it assists the spectral analysis stage in modelling the perceptually important 

aspects of speech by emphasising the band above 1 kHz. 

Figure 2.2 Stages of the audio front-end design 
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2.3.2 Audio feature extraction 

Audio speech recognition has been an active field of research for more than five 

decades and considerable work has been carried out on audio feature extraction [8], 

[11], [12], [13]. The frequency domain representation of speech is generally useful for 

the extraction of the salient features for speech recognition as it reveals the spectral 

components present in the signal. Fourier transform (FT) and linear prediction 

techniques are the commonly used signal analysis techniques in the speech 

recognition literature [8]. 

Speech signals are generally non-stationary, implying that the amplitudes of spectral 

components present changes with time. To overcome this problem, the spectral 

analysis is carried out in a sequence of relatively short frames each of a duration in the 

range 10ms to 20ms, during which time the signal is assumed to be stationary. A 

separate set of audio features is extracted from each of these frames. Although the 

assumption of stationarity may not be strictly true for certain phonemes such as stop 

consonants, for most practical purposes the approach has been found to yield 

satisfactory results. The frames are extracted by applying a Hamming window of 

length 20ms to 30ms and non-overlapping frames of typical duration of 10ms to 20ms 

are formed for feature extraction. As the window length is normally longer than the 

frame period, a resulting overlap typically of about 50% occurs. 

The most commonly used audio features are obtained from the Mel-frequency 

cepstral coefficients (MFCC), or less frequently linear predictive coefficients (LPC) 

or perceptual linear prediction (PLP) coefficients. More recently, features extracted 

from both the wavelet transform (WT) and wavelet packets (WP) have been found 

useful in addressing the limitations of MFCC based features in specific cases when 

the speech signal changes rapidly, such as stop consonants [14], [15], [16]. Although 

wavelet-based features have exhibited better performance when recognizing certain 

specific phonemes, MFCC coefficients remain the most commonly-used features in 

audio only ASR research. In AVASR research and in the work presented in this 

thesis, the primary focus is to explore the video modality for the extraction of 

additional features, whereas the MFCC features are used primarily for the audio 

modality. Nevertheless, as the AVASR work will involve integration with the audio 
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modality, it is appropriate here to provide a brief introduction to the most commonly 

used methods for audio feature extraction. 

Linear predictive coefficients (LPC) 

LPC is one of the most commonly used parametric modelling techniques in the 

speech recognition literature. In LPC analysis, it is assumed that the speech signal at 

any given time can be estimated from a linear combination of the speech samples in 

the past [10]. If s(n) is the current speech signal, it can be estimated from its previous 

values s(n-1), s(n-2), s(n-3),…, s(n-p) as 

                       

 

   

 (2.1) 

where e(n) is the error in the estimation of the current signal and the set of coefficients 

a(j) are the linear predictive coefficients. The number of predictive coefficients, p, is 

the number of previous samples used in the estimation. The predictive coefficients 

a(j) are computed by minimizing the mean-squared error between the predicted and 

the actual signal. The most frequently-used method to calculate the coefficients is 

autocorrelation, but covariance and lattice methods are also used [8]. 

Mel Frequency Cepstral Coefficients (MFCC) 

It has been shown in psychophysical studies that humans do not perceive the variation 

in speech frequency on linear scale, but rather they are more sensitive to frequency 

variations below 500Hz. Above this, the same degree of variation in pitch is perceived 

by an unequal increase in frequency. The interval over which a certain level of change 

in pitch is observed becomes greater as the frequency increases on an ordinary hertz 

scale. The Mel scale representation is based on this non-linear response of the human 

ear to pitch perception. A more even distribution of coefficients according to pitch 

sensitivity is produced by mapping the pitch variations on hertz scale to the Mel scale 

[14]. The relation between the hertz scale and the Mel scale is given by 

                     
 

   
   (2.2) 
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where f and fm are the frequencies on hertz scale and Mel scale, respectively. 

To obtain the MFCC values, the following procedure is normally followed [17]. The 

discrete Fourier transform (DFT) of the speech signal is taken over the frame duration 

and the power content of the resultant spectrum is mapped onto the Mel scale using 

triangular overlapping windows. The Fourier transform taken over a short duration 

such as the one above, is known as the short-time Fourier transform (STFT). The 

MFCC are calculated by taking the discrete cosine transform (DCT) of the logarithm 

of the power mapped on the Mel frequencies. The steps for calculating MFCC 

coefficients are depicted in Figure 2.3. 

 

Limitations of the STFT and wavelet transform 

STFT is the most commonly-used technique for spectral analysis of speech signals. In 

the application of the STFT, it is assumed that the speech signal remains stationary for 

the duration of a frame. However, this is not strictly true and particularly for stop 

consonants where the spectral transition occurs rapidly. It has been found that for 

certain rapidly-changing consonant sounds, replacing the STFT by the wavelet 

transform gives better recognition performance [14], [15], [16]. A detailed discussion 

on the capabilities of the wavelet transform in addressing the limitations of the STFT 

can be found in section 3.2. 

2.4 VISUAL FRONT END 

The visual front-end encompasses the detection of the speaker‘s face and mouth 

regions, the extraction of a visual ROI, extraction of visual features and the matching 

and synchronization of video and audio streams [9]. The general stages of the visual 

front-end process are shown in Figure 2.4. 

Figure 2.3 General stages for calculating the MFCC 
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Almost all visual feature extraction approaches obtain features from individual frames 

of speaker videos, requiring the frames to be isolated and stored as separate images. 

Most of the audio-visual databases used for AVASR research are also available as a 

sequence of separate images. As the videos of speakers contain information not 

related to the speech itself, such as the identity and background, the visual front-end 

needs to remove this superfluous information leaving only that related to speech. The 

mouth region of the speakers is identified and a region of interest (ROI) is isolated 

prior to the extraction of visual speech features. A number of feature extraction 

methods are described in the literature, but the general aim on normally to identify 

features which contain sufficient information for discriminating between speech 

classes (visemes) and which are stable and robust to changes in the environment [18]. 

The two tasks in visual front end design, namely ROI extraction and feature 

extraction, are greatly interdependent. The required accuracy of ROI identification 

depends on the feature extraction approach adopted. The linear transform based 

feature extraction techniques, such as the discrete cosine transform (DCT) [1] and 

discrete wavelet transform (DWT) [2], require only relatively crude mouth region 

detection. Conversely, both shape-based feature approaches [19] (that require 

parameters such as mouth length, width, area, perimeter and eccentricity), and face 

contour based approaches [20], [21], (such as the active appearance model) require 

more accurately defined face and lip region identification. 

2.4.1 Front-end pre-processing 

Although most of the databases are generated in constrained environmental conditions 

with constant lighting and a relatively static head and shoulders, to further improve 

invariance and simplify the recognition task, normalization is often performed. 

Typical of such operations are illumination and distance normalization, as well as 

head rotation compensation [1]. As features are typically extracted from audio speech 

Figure 2.4 Visual front-end processes 
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at a rate of hundred times a second whereas the video data are usually recorded at a 

rate of 25 or 30 frames per second, then, to allow a combined analysis, video data are 

normally up-sampled to the audio frame rate using some suitable interpolation 

technique. Up-sampling can be performed either by interpolation between the video 

frames before the feature extraction phase, or later by interpolation between the 

extracted features [9]. 

2.4.2 ROI identification 

The area containing the mouth of the speaker is generally considered as the most 

informative for visual speech information [7]. In shape-based AVASR, the ROI is 

normally defined around the mouth of the speaker from which the geometric 

parameters are extracted as visual features, but the entire face or the lower half of face 

containing the mouth and other articulators may be used in appearance-based 

AVASR. A brief survey of the ROI extraction approaches used in the AVASR 

literature is included in this section, while a more detailed discussion of ROI 

extraction can be found in chapter 5 of this thesis, along with a novel motion based 

approach for ROI extraction. 

An important area of research in AVASR is focused on extracting the most 

informative visual features for robust speech recognition. One approach is to colour or 

apply markings to the speaker‘s lips in order to simplify detection [22], [23]. Further, 

in some corpora, the mouth region is extracted manually [6], [24]. To realise a real-

time and general purpose AVASR system, it is essential to be able to detect, track and 

extract the face and mouth in video frames automatically without applying any pre-

defined marking. In recent years various techniques have been used for automatic 

extraction of the ROI, including statistical approaches [25], as well as traditional 

image processing based techniques such as colour segmentation [26], combining 

colour and edge detection techniques [27], template matching [28], symmetry 

detection [29], deformable templates [30]. To enhance performance these techniques 

are usually used in combination with simple image analysis and morphological 

operations. 

Depending on the feature extraction approach adopted, ROI extraction may require 

only the detection and tracking of the face and mouth regions, but in other 



27 
 

applications a rather more accurate estimation of lip contour is required. These 

operations are discussed in further detail in the following subsections. 

Face and mouth detection, and tracking 

As the mouth region contains very few features to detect it directly, most of the ROI 

extraction approaches first detect the face of the speaker followed by the identification 

of the mouth region, from which the required ROI is then extracted [2]. A typical 

procedure is the one described in Steifelhagen et al. [31], in which the face of the 

speaker was first detected using a skin colour statistical model and the mouth position 

was subsequently identified by detecting the locations of the eyes before using 

geometric relationships between the eyes and the mouth. 

Face and mouth detection for audio-visual speech recognition is normally performed 

using techniques similar to those found in image analysis and recognition literature. 

These include, skin colour based segmentation [32], [33], region based approaches 

[34] and methods based on knowledge of the geometric relations between facial 

features [35]. As the corpora in use for audio-visual speech recognition are usually 

face centred and variations in orientation and lighting conditions are restricted, these 

techniques generally yield outputs sufficient for the needs of AVASR systems. For 

appearance-based feature extraction, the detected face or mouth of the speaker is the 

desired ROI while for shape or model-based approaches, further processing is carried 

out to estimate lip and face contours in order to extract either their geometric 

parameters or the parameters of model. 

Face and mouth detection could be performed for every frame of the video sequence, 

but when the head movement is limited, it is usually more computationally 

economical to track the face and mouth region between consecutive frames. 

For appearance-based approaches, features are often extracted from a mouth region 

that is not carefully defined and, the coordinates of ROI are determined once in the 

first frame of video, and the coordinates so identified are then used for ROI extraction 

in the remainder of the frames. As shape-based feature extraction require a more 

accurate estimation of the lip contour, a tracking approach constrains the search area, 

thereby reducing the computation time. 

Lip contour estimation 
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To extract the geometric parameters of the mouth a number of algorithms suitable for 

lip detection and contour estimation have been proposed in literature. In [25], a lip 

detection algorithm based on normalized RGB pixel values and refined by using 

neighbourhood-based processing is reported. Chandramohan et al. [30] have proposed 

a deformable template approach where an initial estimate of the lip contour is 

provided by comparing the image with pre-defined templates whose points iteratively 

converge to the lip contour, minimizing a penalty function. Other techniques used for 

lip contour extraction include edge tracking [27], active contour models [28], active 

shape and appearance models [20] and snakes [36]. 

2.4.3 Visual feature extraction 

Research in AVASR has been being carried out for over two decades, but, unlike 

audio speech recognition where MFCC have emerged as de facto standard audio 

features, no agreed standard for visual feature extraction yet exists. The types of 

visual features found in the AVASR literature can be broadly grouped into three 

categories: (a) appearance-based (or low-level) features; (b) shape-based (or high-

level) features; and (c) hybrid features obtained by using a combination of appearance 

and shape based features [2]. 

Although speech production is a dynamic activity, in AVASR research it is generally 

assumed that the individual static frames from the videos of speakers can provide 

important information to aid the recognition of speech. Nearly all of the visual feature 

extraction approaches found in the literature are based on information obtained from 

individual frames. To provide dynamic visual information, the first and second 

derivatives are taken of features extracted from consecutive frames and used to 

supplement the static features [37]. 

Appearance-based features 

In the appearance-based feature extraction approaches, pixels from the speaker‘s 

mouth region are used as source of visual speech information for AVASR. 

Appearance-based approaches do not need sophisticated algorithms for feature 

extraction but are generally more sensitive to lighting conditions and pose than are 

shape-based features. The ROI used is typically either a rectangular or circular region 

that includes the speaker‘s mouth. A vector is then obtained either directly using the 
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colour or greyscale values of the pixels in the ROI or some suitable transformation of 

the pixel values is obtained, such as the DCT [6] or the DWT [2]. 

The dimensionality of this vector is generally too high to be used directly for 

statistical modelling of speech classes and one of a number of available 

dimensionality-reduction techniques is normally applied to render the information 

suitable for recognition purposes while retaining as much of the original speech 

information as possible. The two most commonly used techniques for dimensionality 

reduction are principal component analysis (PCA) [38], [39] and linear discriminant 

analysis (LDA) [1], [40]. PCA transforms data in such a way that the most of the 

variance in the data is contained to a small number of parameters called principal 

components. LDA transforms data so as to maximize the discrimination between 

different classes. 

Shape-based features 

Shape-based features are inherently of low dimensionality and are less affected by the 

lighting conditions and face orientation. However, compared with the appearance-

based features, they are difficult to extract robustly and are computationally 

expensive. 

In these approaches, the shape of speaker‘s lips or the face contour itself is used to 

generate the speech related information for speech recognition. One approach is to 

obtain geometric features such as the length, width, area and perimeter of the inner or 

outer parts of the lips [23], [41]. Also, statistical models have been developed to 

describe the shape of lips or the face. For example, Luettin and Thacker, [21] 

described active shape models (ASM) as deformable templates that can be iteratively 

adjusted to match the outlines of objects in an image. The parameters of the model are 

then used as visual features for recognition. Active appearance models (AAM) extend 

ASMs to include grey-level information in performing the template match [20]. Kass 

et al. [36] describe a method termed ‗snakes‘ that track edges in image sequence and 

are used to extract the lip contour. 
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Hybrid Features 

The use of appearance and shape features each has their own strengths and 

limitations. In an attempt to harness the advantages of both, appearance and shape 

based features have been combined to make a third class of features known as hybrid 

features, normally by using a simple concatenation of the two types. In [42], the PCA 

projection of pixels from the mouth region was combined with lip geometric features. 

In another investigation, the combination of ASM-based features with PCA to 

produce a set of visual features was reported [43]. 

2.5 AUDIO VISUAL INTEGRATION 

Although audio and visual streams have been used independently to design audio-

only and video-only ASRs, the literature shows that recognizers combining 

information from both audio and visual modalities can outperform those using a 

single modality [2]. Consequently, the effective integration of audio and video 

streams of data is likely to be a fruitful area for research activities that are attempting 

Figure 2.6 An example of Active Appearance Models (AAM) Cootes et al. [20] 

Initial pose After 2 iterations Convergence 

Figure 2.5 An example of Active Shape Models (ASM) Cootes et al. [28] 

Initial pose After 5 iterations Convergence 
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to improve ASR performance. There are different levels at which the two modalities 

could be integrated, namely feature level, state level, phoneme and word level, or 

even combining the recognition scores at a sentence level [44]. A number of AVASR 

design approaches have also attempted to integrate the information from audio and 

visual modalities at a number of levels, using methods that are as near as possible to 

those used by humans [2]. This is, however, proving a difficult task, as it is not really 

known how humans integrate audio and visual speech modalities. Cognitive studies 

have suggested that there may be four different architectures for modality integration 

[45] and integration strategies used in AVASR literature for auditory-visual fusion 

usually follow one of these architectures. These architectures are as follows. 

1. In the Direct Identification (DI) model, the data from both the audio and video 

modalities are provided as direct inputs to a bimodal classifier. The classifier 

chooses the prototype from its vocabulary which is nearest to the input in some 

statistical sense. 

2. The Separate Identification (SI) model employs a separate classifier for each 

modality and the results from the unimodel classifiers are fused for final decision 

making based on probabilistic values. 

3. In the Dominant Recording (DR) model, the audio modality is taken as a dominant 

modality, with the video modality incorporated in the audio representation, such as 

the estimation of the vocal tract transfer function from both the audio and visual 

data. These estimates are integrated for final classification purposes. 

4. In the Motor Recording (MR) model, both audio and visual inputs are projected into 

a common space before being passed to a classifier. 

These models are graphically depicted in Figure 2.7. 



32 
 

Figure 2.7 Models of audio-visual integration [45] 
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Although there is no general agreement among psychologists regarding which model 

most closely resembles the human speech perception process, empirical evidence 

favours the MR architecture [45]. 

The approaches used in the AVASR literature for the integration of the audio and 

visual streams of information can be grouped into three categories: feature fusion, 

decision fusion and hybrid fusion. These integration strategies are graphically 

depicted in Figure 2.8, and discussed in more detail in the following subsections. 
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2.5.1 Feature fusion 

Feature fusion is the most straight forward form of modality integration. In this 

method, a single classifier is trained on data obtained by a simple concatenation of 

audio and video data or their transformation [2], [7]. There are two common 

implementation approaches. In the first approach, data from both the audio and visual 

modalities are combined directly and, using suitable dimensionality reduction tools, 

mapped to a common lower dimensional space with little correlation and a small 

number of dimensions. In the second approach, instead of combining raw audio and 

visual data, features extracted from the two speech modalities are concatenated to 

form the audio-visual feature vector. Although simple to implement, this type of 

integration suffers from a number of limitations, such as the audio and visual features 

having different dynamic range, the time offset often found to exist between audio 

and video signals and the absence of a one-to-one mapping from phoneme to viseme 

set [46]. As the data or features are combined directly, the asynchrony between the 
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Audio stream Video stream 
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Classifier 

Audio stream Video stream 

Classifier Classifier 
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(a) feature fusion (b) decision fusion 

(c) hybrid fusion 

Figure 2.8 Depiction of the alternative types of Audio-visual integration 
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two streams can‘t be adequately modelled. Also training a single set of units 

(phonemes or visemes) will favour one modality over the other. 

2.5.2 Decision fusion 

In the decision fusion approach, audio and video streams are used to train two 

separate classifiers, one for each modality [3], [46]. The most popular scheme used to 

combine the recognition results from the two modalities uses the classification value 

obtained from the class conditional probabilities of the individual modality classifiers 

based on stream reliability scores. As the audio and visual streams have different 

speech information content and speech discriminative performance, and also the two 

streams are affected by different types of noise, the use of reliability measures provide 

better control of the contribution of each modality in calculating the final likelihood 

score. In decision fusion, both audio and video channel noise and the reliability of the 

visual ROI extraction can all be modelled by using appropriate stream weights for 

each modality. 

2.5.3 Hybrid fusion 

In hybrid fusion, the audio and visual modalities are integrated at a stage intermediate 

between the two extremes of feature and decision fusion. Although there is a range of 

possible levels at which integration could take place, most commonly hybrid fusion 

occurs at state level due to its simplicity of implementation in a multi-stream HMM 

framework [47]. Hybrid fusion thus attempts to exploit the individual advantages of 

both feature and decision fusion, in particular capturing the mutual dependencies of 

the audio and visual modalities while at the same time giving a better control of 

modality reliability compared to feature fusion [2]. 

2.6 TYPES OF CLASSIFIER 

The overall performance of any speech recognition system is greatly dependent on the 

classifier adopted. In AVASR systems research, the classification tools used tend to 

be the same as those found in the audio-only speech recognition literature. The 

dynamic time warping (DTW) [48] algorithm has been historically used for audio-

only speech recognition. It tracks the similarities between two time series that differ in 

speed or time and adopts a dynamic programming approach to optimize the match 
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between two time series within certain constraints. Another popular tool is linear 

discriminant analysis (LDA) [6], [49], a statistical pattern recognition technique that 

classifies objects on the basis of a set of features representing these objects. LDA falls 

into the category of supervised classification, as the output of the classifier is one of 

the set of pre-defined classes. LDA-based classifiers do not make use of a language 

model and classification is based solely on the basis of acoustic evidence. This makes 

LDA classifiers unsuitable for complex tasks like continuous speech recognition, 

where the use of lexicon and language models are usually helpful to guide the 

recognition process and greatly improve the recognition performance. Apart from its 

use as a classifier, LDA is most commonly used in AVASR literature for 

dimensionality reduction [1], [7], [11], as it maximizes the variance between different 

classes while minimizing the variance between members of same class. At present, 

the most popular classifiers for speech recognition are artificial neural networks 

(ANNs) and hidden Markov models (HMMs) and their variants. Of the two 

approaches, HMMs are the more commonly used due to their simplicity of 

implementation, ease of training and computational efficiency. 

2.6.1 Artificial neural networks (ANNs) 

ANNs are models that imitate the human brain activity and consist of a set of 

interconnected ‗neurons‘, whose outputs are formed by taking the product of a 

weighted sum of its inputs before applying either a linear or non-linear activation 

function. Neurons in a network can be connected in a number of alternative ways 

often using a layered architecture. The most popular architecture is the feed-forward 

architecture with a single hidden layer, as shown in Figure 2.9, where a neuron is 

connected to each neuron in the previous layer and each connection is associated with 

a weight that can be adjusted during the training process. 
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ANNs are found to perform well when larger quantities of training data are available 

and in applications that require only a limited speech vocabulary. ANNs outperform 

HMMs on phoneme recognition and small vocabulary tasks, but ANNs perform less 

well for large vocabularies and on continuous speech recognition applications due to 

the more effective language modelling capabilities of HMMs [50]. Hybrid approaches 

that make use of both ANN and HMM classification have also been reported to give 

better performance than individual ANN or HMM classifiers [23]. 

2.6.2 Hidden Markov models (HMMs) 

HMMs are statistical models suitable for performing pattern recognition of sequential 

data [11] and are the most commonly-used classifiers in audio-only and audio-visual 

speech recognition [4], [31]. HMMs are able to model any time series using two 

stochastic variables, where the first variable models the state transition probability 

between hidden states while the second models the probability of state output 

observation. An example of a four state left-right HMM is shown in Figure 2.10. 

Figure 2.9 Feed-forward artificial neural network 
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In HMMs, each state transition from state Si to Sj is associated with a transition 

probability aij whereas each state j generates an output probability distribution bj(yk). 

In their application to speech recognition, HMMs are used to produce both an acoustic 

model based on the features extracted from the speech signal and a language model 

based on the language grammar. A model is normally produced for each of the speech 

units (phoneme/viseme) and these are concatenated to form an HMM for a word or a 

sequence of words. Variants of HMMs, such as state synchronous multi-stream 

HMMs and product HMMs, have been used to incorporate the concepts of early and 

intermediate level integration [2], [6]. A brief introduction to the HMM theory and its 

applications to speech recognition, and the HMM based speech recognition toolkit 

(HTK) [51] is provided in chapter 3, while a more detailed discussion on HMM can 

be found in [4] and [51]. 

2.7 AUDIO-VISUAL DATABASES 

The research in audio-only speech recognition is relatively mature compared to 

AVASR research and while databases for audio-only speech recognition are 

abundantly available, there are few databases available for AVASR research. Most of 

these audio-visual databases have been developed by individual researchers or small 

research groups and suffer from a number of limitations, such as only showing 

sequences from a small number of speakers, being of short duration, audio and video 

stream asynchrony, limited phonetic coverage, having been designed for specific 

recognition tasks such as isolated word recognition, or having only a small 

vocabulary. These issues give rise to practical problems in their use such as the 

models produces being undertrained or lacking generality [2], [3], [7]. In addition, 
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Figure 2.10 Four-state left-right HMM 
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AVASR database capture often requires expensive hardware to achieve high-quality 

image capture, additional data storage capacity, synchrony of audio and video 

streams, as well as needing to satisfy privacy issues related to the use of video 

information. 

A number of databases have been developed in various languages and for a range of 

applications and the principal databases that have been used in AVASR research are 

given in Table 2.1. 

Table 2.1 Popularly-used audio-visual databases 

Database Language Task Number of 

speakers 

Reference 

XM2VTS UK English Isolated digits 295 [52] 

University of 

Sheffield 

UK English Isolated letters 34 [53] 

Tulips1 US English Isolated digits 12 [54] 

IBM US English Continuous 

digits 

50 [55] 

AV-ViaVoice US English Continuous 

speech 

290 [2] 

AV-TIMIT US English Continuous 

speech 

1 [56] 

VidTIMIT Australian 

English 

Continuous 

speech 

43 [57] 

ICP French Vowels 1 [58] 

M2VTS French Isolated digits 37 [59] 

ATR Japanese Isolated words 1 [60] 

AV-ViaVoice and VidTimit are suitable for large vocabulary continuous speech 

recognition and VidTIMIT is used in the research in this thesis. A detailed discussion 
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of VidTimit database is given in chapter 3 and the use of various component parts of 

VidTIMIT used in the experiments in this work are discussed in their respective 

chapters. 

2.8 SUMMARY 

In this chapter, the architecture of AVASR systems has been discussed. Current 

approaches reported in the AVASR literature and their relative advantages and 

disadvantages have been identified. After this general overview of AVASR systems, 

chapter 3 discusses some important concepts used in AVASR and also in this 

research, in further details. 

Some of component parts of AVASR systems, such as classifier methods and 

modality fusion are multidisciplinary research areas while the audio front-end design 

and ROI detection and extraction are performed by approaches borrowed from other 

research areas such as audio-only ASR and image analysis research. The main focus 

of AVASR is the extraction of speech informative visual features to complement and 

supplement the audio steam, particularly when the audio channel is noisy. As the 

quality of extracted visual feature values are greatly dependent on the accurate 

extraction of the mouth ROI, it is potentially beneficial to view the ROI extraction 

task from an AVASR perspective, in particular to exploit the information available in 

video sequences, in contrast to image analysis approaches where the image 

segmentation is based only on information available in individual images. In this 

thesis a novel motion based approach is used for both accurate ROI extraction and for 

the generation of high quality visual features. In addition, a new frequency-band 

based approach to the extraction of appearance-based visual feature is also 

investigated. A suitable database has been identified for use in the experimental work 

performed in this thesis. 
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CHAPTER 3 

AN OVERVIEW OF IMPORTANT 

CONCEPTS IN AVASR 

3.1 INTRODUCTION 

Chapter 2 introduced the structure of a typical AVASR system and its components 

parts, and the approaches taken in the literature to achieve their implementation. This 

chapter concentrates on developing the background to the methods adopted in the 

work presented in this thesis. 

AVASR systems contain two streams of information, namely audio and visual rather 

than the one audio stream used in audio-only ASR. Since ASR generally has its basis 

in pattern recognition research, this approach has also been adopted in AVASR work. 

The chapter is organized as follows. Section 3.2 discusses the concept of image 

transformations and their use in AVASR, with emphasis on the discrete cosine 

transform (DCT) and discrete wavelet transform (DWT). In order to make the quality 

of data to be processed more manageable, dimensionality reduction is normally 

applied in AVASR implementations. Section 3.3 discusses the concept of 

dimensionality reduction and describes the operation of the two most popular 

dimensionality reduction techniques, principal component analysis (PCA) and linear 

discriminant analysis (LDA). As audio and video streams have different speech units, 

namely phonemes and visemes respectively, a form of mapping between the two is 

needed for their use in AVASR; the existing approaches are introduced in section 3.4. 

A Hidden Markov Model (HMM) based classifier is used in this work and Cambridge 

University‘s toolkit, HTK, is used for training, recognition and analysis of the results. 

Section 3.5 describes the use of HMM for speech recognition and section 3.6 provides 

a brief introduction to HTK. Lastly, VidTIMIT, the audio-visual database used in this 

research is described in section 3.7. 
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3.2 IMAGE TRANSFORMATION 

Transforms are mathematical operations that map data from one domain to another. 

Transformations may be carried out for the purposes of data compression, to reduce 

computational complexity or to view certain hidden patterns in the data. For example, 

compressed images (such as JPEG) [1] require less storage capacity than the same 

image in an uncompressed format (such as bit map pattern). Similarly, Laplace 

transforms can make handling of differential equations easier as the algebraic 

operation can be applied in transform domain rather than in the original time domain. 

Transformations may also aid visualization, for example by using the logarithm of 

intensity in a plot of luminance readings whose values cover a wide dynamic range. 

Important considerations when selecting a data transformation are its generality, 

compactness and computational feasibility. 

In signal analysis research, transforms are used for accessing specific aspects of a 

signal. For example, the temporal variations in a signal are more readily available in 

the time domain, while the different frequency components that make up a signal can 

more easily be assessed when viewed in the frequency domain. The frequency domain 

representation is usually preferred for signal analysis purposes as this provides 

information best able to characterize the data [1]. 

Audio-only ASR solutions, perhaps due to their relative maturity, have generally 

settled on the use of a single set of feature types, namely the Mel-frequency cepstral 

coefficients (MFCC) derived from the short time Fourier transform (STFT) of the 

audio speech signal. Conversely, in video feature extraction, a range of transformation 

techniques, such as discrete cosine transform (DCT) [2], discrete wavelet transform 

(DWT) [3], [4], principal components analysis (PCA) [5] and linear discreminent 

analysis (LDA) [6], [7] are still being described in the literature. These techniques are 

largely inherited from techniques described in the data compression literature. In 

AVASR research, the DCT and DWT are the most commonly-used image 

transformation methods, while PCA and LDA are more popular in dimensionality 

reduction applications. Consequently, visual feature extraction usually takes the form 

of either DCT or DWT based representations followed by the application of PCA or 

LDA to reduce the dimensionality of final feature vector [8], [9]. 
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3.2.1 Discrete cosine transform 

The DCT is one of the most popular tools used in image analysis research. It describes 

an image in terms of its frequency components and is widely used in image 

reconstruction, filtering and image compression applications. The use of the DCT in 

pattern recognition research is well established with the majority of AVASR systems 

using the DCT transformation as a first stage of the visual front-end [10], [11]. The 

DCT transformation is lossless and an inverse transform can be performed to 

reconstruct the original image from the DCT coefficients. The DCT is often used to 

exploit the inter-pixel and inter-frame redundancies present in images and in video 

data for compression. A detailed discussion on DCT theory and its applications to 

image and video analysis can be found in [12]. 

The number of frequency components generated in the DCT transform domain 

corresponds to the dimensionality of the input signal. Thus the output of the DCT 

transform on a sequence of length N will be a sequence of same length N. For a two 

dimensional image signal of dimensionality MxN, the output of the DCT transform is 

a matrix of the same order MxN. As the DCT is a separable transform, the two-

dimensional DCT of an image can be performed by applying a one-dimensional DCT 

in one dimension followed by a second one-dimensional DCT performed in the 

second. 

A one-dimensional DCT y[f] of a sequence x[n] of length N can be performed as 

follows 

                   
        

  
 

   

   

                  ( 3 . 1 ) 

where the coefficient r[f] is defined as 

      

 
 
 

 
 

 
 

 
                               

 
 

 
                   

  ( 3 . 2 ) 
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The first coefficient f [0] in the DCT domain represents the mean value (or energy) of 

the sequence known as DC component. 

A plot of the term cos  
  2n+1 f

2 
  for N=8 is shown in Figure 3.1. Each one of these plots 

represents the waveforms associated with one value of f. These are called the one-

dimensional cosine basis function. The DCT performs the matching between the input 

signal and these basis functions. The output values of the DCT transform represent 

what proportion each of the basis functions contributes in forming the signal. 

 

The two-dimensional DCT y[u,v] of a matrix x[m,n] of dimension MxN is given by 

Figure 3.1 One-dimensional DCT basis functions 
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The coefficients r[u] and r[v] are defined as 
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The two-dimensional basis functions for M=N=8 are shown in Figure 3.2. 
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As the neighbouring pixels in an image are generally highly correlated, the DCT 

transform coefficients of the high frequency components are usually small and, as 

they contribute little to the perceived image, are often discarded; this being known as 

lossy compression. In this process, although some information contained in the 

original image is lost, frequencies containing important information are retained, thus 

resulting in little or no effect on the perceived visual quality of the image [13]. Such 

inter-pixel redundancy has also been applied in DCT based AVASR systems in an 

attempt to achieve a compact representation of speech related information from the 

speaker‘s mouth region (ROI). 

3.2.2 Discrete wavelet transform 

Wavelets are commonly used to represent both the time and frequency information in 

a signal and can provide a more efficient representation of signals than do the discrete 

Fourier transform (DFT) or DCT [1], by providing information relating not only the 

spectral components present in a signal, but also to the time at which these spectral 

components exist. 

Although the word wavelet was first coined by Haar in 1909 [14], the use of wavelets 

in science and engineering became established only after the introduction of the Fast 

Figure 3.2 two-dimensional DCT Basis function 
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Fourier (FFT) algorithm in 1965 [1]. Since the 1980s wavelets have extensively been 

used as a signal analysis tool in audio and visual processing [15]. 

Background 

Signals can be considered to be made up of a collection of sinusoidal waves of 

different frequencies. Signals with constant amplitude are considered to have zero or 

no frequency, whereas other signals will be composed of one or more frequency 

components. The Fourier transform (FT) extracts the amplitudes of the component 

frequencies of a signal. Mathematically it can be written as 

X f      t e-2 ft
 

- 

dt (3.6) 

where t and f are the time and frequency; and the notation x and X are used to 

represent the input time domain signal and the resulting frequency domain 

representation respectively. 

The Fourier transform is a reversible transform and the time domain signal can be 

recovered from the frequency domain representation using equation 

x t      f e2 ft
 

- 

d  (3.7) 

A signal is said to be stationary if its spectral characteristics remain constant over 

time. Otherwise it is non-stationary. In Figure 3.3, (a) is stationary signal with a 

constant frequency of 4Hz while (b) is non-stationary as its frequency changes from 

2Hz to 4Hz after 3 seconds. 
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Using the Fourier transform, the frequency information of the signals in Figure 3.3 

can be obtained. As shown by the power spectra in Figure 3.4, in case (a) there will be 

a single peak on the frequency axis at 4 Hz while in case (b) there will be principally 

two peaks, one at 2 Hz and the second at 4 Hz (the additional frequency components 

caused due to the transition in frequency are ignored). This information is sufficient to 

determine which frequency components are present in the signal, but it does not 

reveal the times at which these frequency components are found in the original signal. 

A
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(a) Stationary signal 

Time (s) 

A
m

p
li

tu
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(a) Non stationary signal 

Time (s) 

Figure 3.3 Examples of stationary and non-stationary signals 
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To localize in time the frequency information in the signal, either the short time 

Fourier transform (STFT) or the wavelet transform (WT) can be used. The two 

methods are briefly described below. 

Short time Fourier transform (STFT) 

The limitation of the Fourier transform in not being able to represent changes in the 

frequency content of signals over time is addressed in the STFT in which the signal is 

divided into short time segments during which the signal can be considered to be 

stationary. A ‗window‘ of width equal to the segment length is used to extract 

samples at a number of positions along the duration of the signal. The Fourier 

transform is applied to each individual windowed section of the signal generating a 

series of frequency responses. A number of window types exist, including rectangular, 

Hamming and Blackman windows; but in speech recognition applications, the 

         Figure 3.4 Power spectra of signals in Figure 3.3 
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(a) Power spectrum of signal in Figure 3.3 (a) 
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(a) Power spectrum of signal in Figure 3.3 (b) 
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Hamming window is most commonly used. The window length and the frame 

duration are selected in pairs that result in smoothly varying estimates of the spectral 

components while avoiding over smoothing. A window of length about double the 

frame duration is commonly used, resulting in an overlap of around 50%. The 

resulting STFT can be written as 

STFT 
    t ,f       t   *(t-t )  e-j2 ftdt (3.8) 

where  (t) is the window function, x(t) is the input time domain signal to be 

transformed and t
’
 is the time shift. The STFT is thus the FT of the product of x(t) and 

the shifted version of window function  (t). 

The STFT so obtained includes not only the frequency components present in the 

signal but also the time at which these components exist. In the STFT, spectral 

amplitudes are plotted against both time and frequency and the tiling of time-

frequency is shown in Figure 3.5, where △t and △f are the time and frequency 

resolutions respectively. 

 

Figure 3.5 STFT based time-frequency tiling 

f (Hz) 

t (s) 

Δf 
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Although STFT gives better time localization of frequency components, it suffers 

from the resolution problem. Time resolution means how well separated are the 

spectral values in time, while the frequency resolution indicates how well separated 

are the frequency components. The application of a window of finite length causes 

degradation in the frequency resolution as it gives a band of frequencies rather than 

individual frequencies. Increasing the window duration improves the frequency 

resolution but results in a reduction in time resolution. This time-frequency resolution 

conflict is related to Heisenberg‘s uncertainty principle [16], meaning that for a given 

window size high resolution can be attained either in time or frequency but not both. 

This time-frequency relation is mathematically given by 

 t* f 
1

4 
 (3.9) 

This implies that an increase in resolution of either time or frequency will result in a 

decrease in resolution of the other. 

Multi resolution analysis 

High frequency components have better time resolution as they last for a shorter 

duration while low frequency components have poorer time resolution as they last for 

a longer duration. In the wavelet transform (WT) this time-frequency resolution 

problem is addressed by using variable size window, instead of the fixed size window 

as used in STFT. This scheme of analyzing signal at multiple resolutions is known as 

Multi Resolution Analysis (MRA). The time-frequency tiling for MRA is shown in 

Figure 3.6. 
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The continuous wavelet transform (CWT) of signal x(t) is given by 

CWT 
   ,s    

 
   ,s   

1

  s 
    t  *  

t- 

s
 dt (3.10) 

Where the transformed signal depends on the two variables   and s, termed the 

translation and scale variables respectively. The function   is called the mother 

wavelet and can generate small waves (window) by varying τ and s, effectively 

determining the similarity between the waves and x(t) at different scales and times. 

One major difference between the FT and the WT is that the FT has uses only sine 

and cosine as basis functions, while the WT has available an infinite set of basis 

functions. Examples of commonly used mother wavelets functions are Haar, Meyer 

and Daubechies wavelet, Figure 3.7. The discrete wavelet transform (DWT) is 

performed by using a dyadic scheme, where the translation and scale values are 

repeatedly increased by a factor of two, giving a high pass and a low pass version of 

Figure 3.6 WT based time-frequency tiling (MRA) 
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the signal. A detailed discussion of the DWT and its filtering scheme can be found in 

[16] and [17]. 

 

3.3 DIMENSIONALITY REDUCTION 

In pattern recognition, an observation is commonly represented by a set of parameters 

known as features. These features are extracted from the input observation or as a 

result of the application of a suitable transformation in order to emphasise 

distinguishing characteristics. In general, increasing the number of dimensions 

provides additional input information and hence improves the performance of the 

pattern recognition system. This, however, may not always be the case, since adding 

features that contain no additional information not only increase the storage 

requirement but could also increase computation time. Furthermore, using high 

dimensional data for pattern recognition also increases the quantity of data required 

for training the recognizer and, if training data is limited, this can reduce the 

effectiveness of the training process and thus worsen the performance of the 

recognition system [18]. The source dimensionality of both audio and visual data is 

Figure 3.7 Examples of mother wavelet functions [17] 

(a) Haar wavelet (b) Meyer wavelet 

(c) Daubechies wavelet of order 2 
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high and some form of reduction is required to convert the inputs into more compact 

representations in which the number of dimensions is reduced to that intrinsic in the 

data [19]. However, a general transformation that leads to such a compact 

representation for a wide range of applications has not yet been identified in the 

literature. For data compression applications, the intrinsic dimensions are those 

carrying most of the information present in the original data, while for pattern 

recognition application they are those maximizing the discrimination between the 

elements of the different classes present in the source. 

Dimensionality reduction methods can be grouped into two categories, namely feature 

selection and feature extraction techniques. In feature selection approaches, features 

are selected from the original data based on scores assigned using a recognition 

criterion. Discrimination criteria that have been used in the literature include 

discriminative features analysis, F-ratio and recognition rate [20], with the resulting 

feature set obtained depending greatly on the selection approach adopted. The main 

limitation of feature selection methods is that they do not consider the correlation 

between selected features, meaning that although the selected feature may have high 

discriminative power, it could be highly correlated with one or more other features 

and thus add little or no additional information [18]. In contrast, feature extraction 

methods transform data to orthogonal dimensions to reduce the correlation between 

the original feature set. The aim is to produce a new set of features that contain all the 

information present in the original set, but with a different representation that 

minimizes the correlation between the features. Two popular methods used for feature 

extraction are principal component analysis (PCA) and linear discriminant analysis 

(LDA) [21]. PCA transforms the original data in a manner such that the feature with 

the maximum data variance lies along the first dimension, the one with the second 

highest variance lies along the second dimension, and so on. LDA transforms the data 

in such a manner so as to maximize the discrimination between members of different 

classes while minimizing the discrimination between members of same class. A 

detailed survey on different types of dimensionality reduction techniques can be 

found in [22]. The operations of PCA and LDA and their application to data reduction 

are discussed briefly in the following subsections. 
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3.3.1 Principal component analysis 

Principal component analysis (PCA) is one of the most popular linear dimensionality 

reduction techniques and is widely used in pattern recognition applications [23]. In 

PCA, the data are transformed into a transform space whose dimensions are ordered 

according to decreasing variance. A certain number of these dimensions, called the 

principal components, are then indentified as containing sufficient information to 

represent the original data [24]. These dimensions are considered to capture useful 

information to provide a distinction between the classes contained in the data and so 

reveal a hidden underlying pattern in the data which would be difficult to extract in 

the original data space. A detailed discussion on the theory, calculation and various 

applications of PCA can be found in [25]. 

For a given set of data of N dimensions, PCA finds a new space of D orthogonal 

dimensions (D < N) such that the data points mainly lie along these D dimensions. Let 

M observations of an N dimensional data vector x be represented by a matrix X of 

order NxM such that each column of X represent one observation of the data vector x. 

Let the D principal axes be denoted by T1, T2, …, TD. These principal axis could be 

given by the eigenvectors of the covariance matrix S, such that 

where λi is the i
th

 largest eigenvalue of S and 

   
 

 
        

 
      

 

   

 (3.12) 

Where µ is the mean of the observation vectors and xj is the j
th

 observation vector. 

As the larger is the value of λ, then the larger is the variance and so the maximum data 

variance can be found by selecting the first few components in the projected space. A 

measure for representing the portion of data is the percentage variance. The projected 

D dimension matrix is given by 

  i λi i   i 1, 2, 3….  (3.11) 
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where T is the transformation matrix whose columns are made of the principal axis Ti. 

The DxM dimensional matrix Y thus obtained contains the desired principal 

components of input matrix X of dimensionality NxM. Although the features 

extracted using PCA have a minimum correlation along the direction of the principal 

axis, the approach does not guarantee the separation of classes among data as no class 

information is used in the PCA calculation. PCA also has a limitation of scale 

sensitivity implying that the principal components may be affected by the relative 

scaling of variables in original data. 

3.3.2 Linear discriminant analysis 

The transformation performed by linear discriminant analysis (LDA) is able to 

separate the elements of different classes while at the same time minimizing the 

distance between elements of same class [26]. This approach comes under the domain 

of supervised dimensionality reduction methods, meaning that prior knowledge of the 

classes present in the data is used in performing the transformation. 

Let the data matrix X contain observation vectors from k classes, x1, x2, x3 …xk, each 

having N dimensions. If the j
th

 observation of class i is represented by xij such that i = 

1, 2, …, k and j   1, 2, …, Mi, where the Mi are the number of observations in class i. 

The mean of observations in class i is then given by 

 
i
  

1

Mi

  ij

Mi

i 1

 (3.14) 

and the covariance matrix for class i is given by 

 i  
1

Mi

 ( ij- i)( ij- i)
 

Mi

j 1

 (3.15) 

For k classes, the within-class variance Sw is given by 

      i

k

i 1

 (3.16) 
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and the between-class variance Sb is 

     Mi( i- )( i- )
 

k

i 1

 (3.17) 

where µ is the mean of all the data given by 

   
 

 
      

  

   

 

   

 (3.18) 

and M is the total number of data vectors such that M   ΣMi for i   1, 2,…, k. 

The transformation from N-dimensional space to a lower D-dimensional space is 

performed by 

       (3.19) 

where W is the transformation matrix. The greatest separation between classes can be 

achieved by maximizing the Fisher Linear Discriminant operator 

      
 T   

 T   
 (3.20) 

The optimum W consists of the D largest eigenvectors, where D is the desired 

dimensionality of the transformed space. 

3.4 PHONEME AND VISEME MAPPING 

Audio and visual speech units are termed phonemes and visemes respectively [27]. A 

phoneme is the smallest segment of audio speech that conveys linguistic information, 

whereas a viseme is the smallest visually distinguishable segment of speech that may 

represent one or more phonemes. The difference between the lengths of the segments 

arises due to the fact that in practice not the entire vocal tract is visible making it 

impossible to identify each phoneme visually [28]. The phoneme grouping that 

corresponds to a viseme is determined either manually [29] or by using statistical 

clustering techniques [30]. While several studies investigating suitable phoneme 
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clustering techniques have been reported in literature [27], [28], [31], there is no 

general agreement among the researchers as which phoneme set actually corresponds 

to a specific viseme. As a result there are a number of distinct phoneme-to-viseme 

mappings being used in AVASR research, containing a number of visemes ranging 

from 12 to 20. Three of the most commonly used phoneme-to-viseme mappings are 

shown in Table 3.1. 

Table 3.1 Examples of the phone-viseme mapping 

Viseme Phonemes Viseme  Phoneme  

Hazen et al. [29] 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

/ax/, /ih/, /iy/, /dx/ 

/ah/, /aa/ 

/ae/, /eh/, /ay/, /ey/, /hh/ 

/el/, /l/ 

/er/, /axr/, /r/ 

/y/ 

/s/, /z/, /epi/, /tcl/, /dcl/, /n/, 

/en/ 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

/b/, /p/ 

/bcl/, /pcl/, /m/, /em/ 

/ch/, /jh/, /sh/, /sz/ 

/t/, /d/, /th/, /dh/, /g/, /k/ 

/gcl/, /kcl/, /ng/ 

/f/, /v/ 

/aw/, /uh/, /uw/, /ow/, /ao/, 

/w/, /oy/ 

Lewis et al. [32] (consonants) 

(1) 

(2) 

(3) 

(4) 

(5)  

/p/, /b/, /m/ 

/f/, /v/ 

/th/, /dh/ 

/sh/, /zh/ 

/w/ 

 (6) 

(7) 

(8) 

(9) 

 

/s/, /z/ 

/l/ 

/r/ 

/d/, /t/, /n/, /g/, /k/, /ng/, /h/ 

Yau et al. [33] (consonants) 
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(1) 

(2) 

(3) 

(4) 

(5) 

/p/, /b/, /m/ 

/f/, /v/ 

/th/, /dh/ 

/t/, /d/ 

/k/, /g/ 

(6) 

(7) 

(8) 

(9) 

 

/sh/, /j/, /ch/ 

/s/, /z/ 

/n/, /l/ 

/r/ 

Example of mouth shapes and their corresponding phonemes are given in appendix I. 

3.4.1 Phoneme and viseme based AVASR 

Although audio and visual speech have different sets of units (phoneme and viseme), 

in AVASR research the recognition is generally performed using phonemes only [34]. 

Both audio and video streams are used to train models for a set of phonemes and their 

context-dependent bi-phonemes and tri-phonemes. In early integration, as the data or 

features are combined before passing into the recognizer for training or testing, it is 

not possible to have two different sets of units for audio and visual streams. However, 

in a late integration approach, the use of separate phoneme and viseme models for 

audio and visual streams has been studied showing no significant improvement in 

performance [28]. An inspiration for the use of separate audio and visual units is the 

inherent asynchrony in audio and visual streams due to the inertia of articulators due 

to which video speech lags slightly behind the audio speech. The asynchronous 

modelling of audio and video streams is reported by Hazen et al. in [29], who showed 

that there is no performance gain in the approach with respect to synchronous 

modelling. In this work, for all audio, video and audio-visual ASR tasks, the speech 

units used are phonemes and their bi-phonemes and tri-phonemes. 

3.5 HIDDEN MARKOV MODEL (HMM) 

Hidden Markov Models (HMMs) are statistical models suitable for modelling and 

recognition of sequential data and are most commonly used technique in speech 

recognition applications today [35]. HMMs drive two stochastic processes: one models 

the transition between Markov chain of hidden states while the second models the 

output observation omitted for being in a specific state. The transition from state i to 
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state j is governed by the state transition probability aij while the output observations k 

from state j is given by probability distribution bj(k). 

Consider a system with N number of distinct states S= {S1, S2, S3, ..., SN} such that the 

system changes its state at regular time intervals t = 1, 2...T. In a Markov chain it is 

assumed that the state of the system at any time t depends only on previous state, and is 

independent of all the states before the previous. If St represents the state of the system 

at any time t, and St=j, St-1=i and St-2=k then the Markov process can be probabilistically 

described as 

                  2       

                                      
(3.21) 

If the right-hand side of equation (3.21) is independent of time then it leads to state 

transition probability 

                                      

                                            i j  N 
(3.22) 

In systems where any state can be reached from any other state in a single step, aij > 0 

for all i and j, while for others aij = 0 for one or more pairs of i, j. The state transition 

probabilities obey the following general rule 

    

 

   

   (3.23) 

The observation symbol Ok is emitted in state j according to the output probability 

distribution bj(k) such that 

                   (3.24) 

Depending on the nature of observation probability distributions, the HMMs can be 

discrete HMM (DHMM) or continuous density HMM (CDHMM). 

If the probability of being in state i at the beginning of HMM chain, that is, at t=1, is 

given by 
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           (3.25) 

The sets of probabilities given by equations (3.22), (3.24) and (3.25), can be used both 

to compute the probability of generating an observation O = O1O2,...,OT, and to find a 

most likely state sequence S = S1S2,...,ST, given the observation O. 

HMM models can thus be completely specified by the number of states N, the number 

of output observations per state M and three sets: (a) the set of state transition 

probabilities A; (b) the set of observation probabilities B; and (c) and the probabilities 

for the states initializing the HMM chain  , commonly referred as the components of 

HMM. The HMM model is compactly described as 

△  A B    (3.26) 

The operation of HMMs is governed by the solution of three fundamental problems, 

these are. 

(1) To compute the probability of occurrence of a specific observation given a model 

∆ = (A, B,  ) that is to find P(O/∆). This is an evaluation problem or how well a 

model matches a certain observation sequence. 

(2) Given an HMM model ∆=(A, B,  ) and observation O = O1 O2 O3 … OT, how to 

choose a sequence of state transition S = S1 S2 S3...ST, so that to maximises the 

joint probability of O and S, that is P(O,S/∆). This is a decoding problem. 

(3) Given an observation O = O1 O2 O3 … OT, adjust the parameters of the HMM, 

that is ∆ = (A, B,  ) so that P(O/∆) is maximized. This is a training problem. 

The solutions of these problems are provided in Appendix II. 

3.5.1 Speech recognition using HMM 

Continuous speech recognition by HMM is performed by connecting HMMs of 

individual speech units in sequence [36][37]. An example of a five state left-right 

HMM with three emitting states is shown in Figure 3.8. This topology is the most 

commonly used in speech recognition applications. The two non-emitting states S1 

and S5 have the purpose of providing an interface between individual HHMs. 
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In this section, the simpler case of isolated word recognition is first considered and 

then extended to the more complex case of continuous speech recognition. 

Let the utterance of a word w produce an observed speech signal S and Y contain a 

sequence of parameter vectors yr extracted from S at regular intervals such that 

                  (3.27) 

The word recognition problem can be stated as solving 

                   (3.28) 

Where P(wi|Y) is the probability of word wi being identified given observation Y, and 

can be expressed according to Bayes‘ Rule as 

         
            

    
 (3.29) 

In practice, however, it is not practically feasible to compute the conditional 

probability of Y due to the high dimensionality of the observation vector. In HMMs, 

this complex problem is replaced by estimating the parameters of the Markov model. 

For the Markov model shown in Figure 3.8, the above problem can be stated as the 

joint probabilities of state transitions and observations, as 

S3 

 

S4 

 

S2 

 

S5 

 

S1 

a33 a44 a22 

a12 a23 a34 a45 

y3 y4 y2 y1 

b2(y1) 
b3(y2) b3(y3) b4(y4) 

Figure 3.8 Five state left-right HMM with three emitting states 
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                                       (3.30) 

where X is the sequence of hidden states and M is the model. P(Y|M) can be computed 

by summing equation (3.30) over all allowed state sequences, although in practice, the 

summation is replaced by the maximum operator. 

Equation (3.29), and hence equation (3.28), can be solved by assuming that 

                (3.31) 

For isolated speech recognition, a HMM is built for every word in the vocabulary. 

For continuous speech recognition it is not computationally practical to build an 

HMM for each word, so instead HMMs are developed for the speech units 

(phonemes) and their context-dependent bi-phones and tri-phones. The initial and 

final states of HMMs are non-emitting so that they can be combined together to form 

a composite model. More detailed discussion of HMM concatenation and 

development of composite HMM models can be found in [36] and [37]. 

3.6 HMM TOOLKIT (HTK) 

An extensively used HMM based speech recognition package is the Cambridge 

University HTK toolkit [36]. HTK is a general purpose HMM toolkit that provides 

specific library modules for the range of operations needed for speech recognition 

research, such as speech recoding, parameterization and the formation of lexicon and 

language model. 
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The mechanism of speech recognition by HTK is depicted in Figure 3.9. It consists of 

two major processing stages. In the first stage, HMMs are developed for each of the 

speech units based on the features extracted from the known speech samples and their 

associated transcriptions using HTK training tools. In the recognition stage, test data 

are transcribed based on the acoustic models and both lexical and language constraints 

using the HTK recognition tools. In addition to standard parameterization and 

embedded training tools, HTK also provides specialized tools for HMM adaptation 

and a number of linear transformations. 

The speech recognition process and hence HTK tools are sub-divided into the 

following four stages discussed below. 

Data preparation tools 

To build HMMs, training speech data and its association transcription are needed. The 

speech data is usually obtained from available databases, however HTK also provide 

tools for audio recording and manual annotation of the recorded speech. As HTK was 

originally developed for audio speech recognition, it does not have tools for video 

recording and hence the video must be obtained from a database archive or recorded 

offline. Tools are also provided for converting transcriptions into the form accepted 

by HTK. A number of choices for the extraction of audio feature are available by 

using HTK tools; however the features from video data need to be extracted 

separately. The HTK tools are mostly designed for audio and therefore the data 

HMM set 

Training tools 

Recognizer 

Transcription Unknown Speech 

Speech Data Transcription 

Figure 3.9 HTK speech recognition mechanism [36] 
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preparation stage for video streams needs to be performed offline except for the 

labelling of the transcript that can be used for both audio and video speech 

recognition. 

Training tools 

Unlike the data preparation tools, the training tools operate in the same manner for 

both audio and video data. First, a topology for the HMM is defined by using a 

prototype HMM. Although HTK has provision for a number of common topologies to 

be generated automatically, user-generated topologies can be specified using a simple 

text editor. An initial set of models can be created with known phoneme/viseme 

boundaries, known as bootstrap data, or all the HMMs can be initialised with same 

mean and variance, known as flat start. Once the HMMs are created, they are refined 

incrementally using the embedded re-estimation tool HERESET. Context dependent 

bi-phone and tri-phone HMM are created and refined in a similar fashion. Tools for 

parameter tying (to address the issue of limited data) and speaker adaptation are also 

provided among the training tools. 

Recognition tools 

The HVITE tools perform recognition using acoustic and language models. For audio 

speech the recognition can be performed on stored audio as well as direct audio input, 

however, for video speech, recognition can be performed only for already-prepared 

test data as HTK does not have the capability of extracting video features. 

Analysis tools 

The performance of the developed recognizer can be assessed using test data for 

which the transcription is known. The HRESULT tools are able to compare known 

and recognized transcriptions in a number of different aspects, such as word, 

phoneme, speaker-by-speaker, and confusion matrix. The results are produced in a 

format compatible with that specified by National Institute of Standards and 

Technology (NIST) [36]. 



72 
 

3.7 VIDTIMIT DATABASE 

The VidTIMIT database used in this work contains recordings of audio and their 

corresponding videos of continuous speech [38]. It consists of 43 speakers (24 male 

and 19 female) uttering short sentences taken from the test section of the TIMIT 

database [39]. The database is recorded in three different sessions with a gap of seven 

days between the first two sessions and six days between the last two. Each speaker 

utters ten sentences in front of a camera centred on the face of the speaker resulting in 

a total of 430 sentences. The ten sentences are distributed among the three sessions so 

that six sentences are uttered in the first session and two sentences in each of the 

remaining two sessions. Two out of the ten sentences are common among all the 

speakers and the remaining eight are generally different for any two speakers. On 

average, a single sentence has a duration of 2.4 seconds with 106 frames per 

utterance. The audio is recorded at a sampling rate of 32 kHz and 16 bits quantization; 

the video is recorded at a rate of 25 frames per second and resolution of 512x384 

pixels with 24 bits per pixels and available in JPEG format. Office paper was placed 

between the lamps (fluorescent and tungsten) and the speaker to reduce glare from the 

head and face of the speakers. The database was recorded in an office environment 

with background noise emanating from a computer fan. 

3.8 SUMMARY 

This chapter discussed in detail those approaches found in the AVASR literature that 

have been adopted in this thesis. The image transformation techniques discussed in 

this chapter are used in chapter 4 and 6 of this thesis in order to analyse the images 

from the videos of the speakers and to achieve a compact representation of speech 

information present in the images. The dimensionality reduction tools, PCA and LDA 

are used to reduce the dimensionality of observation vectors obtained from the image 

transformations into a small number of dimensions, suitable for use in the recogniser. 

In the work reported in this thesis, phonemes are used as common speech units for 

both audio and video streams. The extracted audio and visual features are combined 

using an early integration strategy and the audio-visual features thus obtained are used 

to develop HMM models for a set of phonemes and their context dependent bi-

phonemes and tri-phonemes. The MFCC features from speech audio are extracted 
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utilizing the HTK built-in tools while the video features are extracted separately. The 

HTK recognition toolkit is used for training, recognition and analysis of results in the 

experiments reported in this thesis. The recognition is performed using only acoustic 

models and without the aid of a language model, so as to yield a direct comparison of 

the performance of the visual features proposed in this work with those of baseline 

systems. The results are produced based on percentage of words recognized correctly. 

Various subsets of the VidTIMIT database have been used in different experiments 

and these are divided into training and test sets such that all the phonemes present in 

test set are also available in training set. 
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CHAPTER 4 

FREQUENCY-BAND BASED VISUAL 

FEATURES FOR AVASR 

This chapter presents a novel frequency-band based approach to visual feature 

extraction for AVASR using both DCT and DWT domain representations of the 

images obtained from the videos of speakers. The new visual features use a novel 

discriminative approach to the DCT and DWT transformation, in contrast to the more 

commonly-used data reduction viewpoint. Where the work presented in this chapter 

lies within the general AVASR system of Figure 2.1 is shown in Figure 4.1. 

 

The chapter is organized as follows. Section 4.1 provides an introduction to visual 

feature extraction for AVASR and discusses the visual feature extraction approaches 

currently used in AVASR research. Section 4.2 describes the feature extraction 

approach adopted in this work and the rationale of using the frequency-band based 

DCT and DWT for AVASR. The experimental setup used in this work, including the 

data used for training and testing of the recognizer, extraction of the mouth ROI, 

extraction of visual features, integration of audio and video modality and training of 

the classifier, are presented in Section 4.3. Section 4.4 presents the results obtained 

Video 

pre-processing 
ROI extraction 

Feature 

extraction 

Audio 

front-end 

Visual 

front-end 

Audio-visual 

integration 
Classification 

AVASR system 

Visual front-end 

Figure 4.1 Location of the feature extraction process in the general AVASR system 
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from a series of experiments conducted for both visual-only and audio-visual ASR. 

Section 4.5 concludes the outcomes of this investigation and highlights the specific 

findings of the study. 

4.1 VISUAL FEATURE EXTRACTION FOR AVASR 

Visual feature extraction is a core area of research in AVASR. The purpose of feature 

extraction is to retain as much speech related information as possible from the original 

images of the speaker in a reasonably small number of parameters. Feature extraction 

techniques aim to develop models based on the knowledge of human speech 

production and perception mechanisms [1]. Visual features could be used to develop 

visual-only speech recognition systems, but, in most cases, they are combined with 

features extracted from the audio stream to form an AVASR system. Consequently, 

these visual features should be robust, but also supplement and complement the audio 

features so as to be able to improve on the performance of ASR systems under certain 

challenging conditions [2]. Three types of features namely shape-based features, 

appearance-based features and hybrid features, which are a combination of the first 

two types, have been used in literature. Shape (sometimes termed geometry or model-

based) features may represent various aspects of the speaker‘s mouth region, such as 

length, width, curvature or eccentricity. Alternatively, the shape of mouth is fitted to a 

statistical model, whose parameters are then used as visual features for ASR [3]. In 

the extraction of appearance (or transform based) features, the assumption is that the 

whole mouth region provides useful information about the speech. Features are 

extracted directly from the mouth pixel values or following some suitable 

transformation of the mouth region [4]. Shape-based feature extraction techniques 

require robust face and mouth tracking and mouth contour extraction, while 

appearance-based techniques require an approximate mouth region for their 

implementation [5]. In the last two decades, a number of AVASR systems both on 

shape-based [6], [7], [8] and appearance-based [9], [10], [11] features have been 

reported and have been demonstrated to yield improved recognition performance 

compared with audio-only ASRs in the presence of noise. It has been claimed that 

appearance-based methods, when applied to AVASR, outperform approaches based 

on shape-based features [12], [13]. 
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The visual feature extraction approach presented in this chapter falls into the category 

of appearance-based features extraction techniques. The most commonly used 

transforms in appearance-based feature extraction approaches for AVASR research 

are the DCT and the DWT. In AVASR, coefficients from the low frequency region of 

the DCT and DWT transforms matrices have been used as visual features, or 

alternatively as observation vectors for PCA and LDA based feature extraction. 

Appearance-based visual feature extraction approaches are adopted principally from 

the data reduction literature, where the main goal is to achieve a compact 

representation of images or video for reducing the memory capacity required for 

storage. Retaining just a few of the low frequency DCT and DWT coefficients is 

generally sufficient for restoring an image whose subjective quality is adequate for 

many practical imaging purposes [14]. However, this approach does not guarantee 

that these coefficients also contain the most discriminating information for speech 

recognition; thus being the main concern here and this is in contrast with data 

compression applications, where the aim is to present image data in a compact set 

containing a small number of dimensions [15], [16]. In the work presented in this 

chapter, visual features for AVASR are extracted from either the DCT or DWT 

coefficients based on a novel pattern recognition approach. PCA and LDA techniques 

are used to reduce the dimensionality of extracted features so as to render the final 

feature vector suitable for use in a classifier. 

4.2 RESEARCH RATIONALE 

The DCT and DWT feature extraction approaches used in AVASR research are taken 

mainly from the image compression literature, in which the primary goal is to 

accomplish a compact representation of image and video information while 

maintaining high visual quality. The concept of psychovisual redundancy forms the 

basis of image and video compression research and takes advantage of the fact that 

human eye is less sensitive to high frequency information in video and so an 

acceptable video quality can be achieved by retaining only low-frequency components 

[14]. However, it has not been established that psychovisual redundancy will not 

remove visual information that may be useful for speech recognition. In particular, 

while the low-frequency coefficients represent the gross features in an image, visual 
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speech information is at least partly contained in the higher-frequency, finer details of 

the image, such as the curvature of the mouth. 

The DCT transform of an image I(xi,yi) of size MxN (where 1  i  M and 1  j  N) is a 

matrix D(up,vq) of the same dimensions MxN, where the coefficients d(up,vq) of 

transform matrix D(up,vq) represent the p
th
 and q

th
 frequency component in the vertical 

and horizontal direction in the image, respectively. The DCT transform places the 

frequency information in the image in such a way that the low frequency coefficients 

lie towards the upper left corner while the high frequency coefficients lie towards the 

bottom right of the transform matrix, as shown in Figure 4.2. 

Similarly, the DWT transform decomposes the input image into a low-frequency sub-

band (known as the approximate image) and high-frequency sub-bands (known as 

detailed images), as shown in Figure 4.3. The LL region of the DWT transform in 

Figure 4.3, contain the low frequency contents of the image, the HL region contains 

the high-frequency horizontal details, LH the high-frequency vertical details and HH 

the high-frequency details for both the horizontal and vertical direction. The 

application of the DWT to an image results in high-pass and low-pass filtering of the 

image. Further refined details of an image can be extracted by applying higher levels 

of decomposition. This is achieved by the application of DWT to the sub-images 

obtained in the lower level, starting from the original input image. First-level 

decomposition means the DWT of the original image; second-level decomposition 

low high horizontal frequency 

high 

low 

vertical 

frequency 

Figure 4.2 Frequency coefficients distribution by DCT 
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means the DWT of sub-images obtained in first level and so on, whereas the low-

frequency components are known as approximate coefficients while the high-

frequency components are known as detailed coefficients. 

 

The use of frequencies other than low frequencies from the DCT and DWT transform 

space has been reported in pattern recognition applications. In [17], for text capture 

application, the DCT coefficient matrix is partitioned into three regions, low, medium 

and high frequency, as shown in Figure 4.4. It was shown that medium frequency 

components performed better in this application as compared with using only the low 

frequencies coefficients. A similar partition of DCT coefficients has been reported in 

[18] for face recognition applications, where it was found that the salient features for 

face recognition are contained in medium frequency components and that a weighted 

combination of all frequencies outperformed a solution using only low frequency 

coefficients. As the low frequency components are more sensitive to illumination 

variations, in [19] an illumination invariant face recognition system was proposed that 

truncated the low frequency coefficients in DCT transformed space. In this work, low 

frequency components in the DCT transform matrix were set to zero and it was found 

that the features extracted from the resulting matrix, containing only medium and high 

frequency coefficients, were more robust to illumination variations. Similarly the 

medium frequency coefficients from the DWT decomposition of fingerprint images 

has been used for fingerprint recognition purposes [20]. In Wong et al. [21], the 

features for face recognition were extracted from a multiple sub-band decomposition 

LL HL

HHLH

Figure 4.3 Single level DWT decomposition of an image 
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based on the DWT transform and certain frequency bands were identified with giving 

better recognition performance. 

Figure 4.5 and Figure 4.6 show the reconstruction of the mouth region of speakers 

from low and high frequency coefficients of the DWT and DCT domains respectively. 

In both figures, images (a) and (b) are reconstruction from low frequency coefficients, 

while (c) and (d) are reconstructions from high frequency coefficients. In Figure 4.5, 

images (a) and (b) are reconstructions from the 2
nd

 level and 3
rd

 level approximate 

coefficients of DWT decomposition, while (c) and (d) are reconstructions from the 

remaining detailed coefficients. The corresponding coefficients from the DCT 

transform are used for the DCT-based reconstructions of Figure 4.6. These image 

reconstructions suggest that while the overall subjective appearance of the image is 

well retained in low frequency coefficients, the edges of the mouth are better 

preserved in detailed coefficients, and hence the use of these coefficients could 

potentially be useful for AVASR purposes. 

Figure 4.4 Partitioning of the DCT coefficients matrix in [17] 
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Although the use of discriminative information extracted from the medium and higher 

frequency coefficients of the DCT and DWT transform domains have been reported in 

various pattern recognition applications, to the best of author‘s knowledge it has not 

been applied to AVASR. Assuming that the visual speech information is contained in 

the motions of the lips and other visible articulators, the motion information is likely 

to be found in the edges and texture of this region. As edge information is captured in 

Figure 4.6 Image reconstructions from DCT coefficients 

(a) approximate coefficients 

at level 2 

(a) approximate coefficients 

at level 3 

 

(c) detailed 

coefficients at level 2 

 

(d) detailed 

coefficients at level 3 

  

Figure 4.5 Image reconstructions from DWT coefficients 

(a) approximate coefficients 

at level 2 

(a) approximate coefficients 

at level 3 

 

(c) detailed 

coefficients at level 2 

 

(d) detailed 

coefficients at level 3 
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mid and high frequency coefficients, in this work the visual features for AVASR 

purpose are extracted from regions in the DCT and DWT transform space that include 

these frequency bands. In particular, a detailed investigation of visual feature 

extraction for speech recognition purposes has been carried out that includes specific 

frequency bands of DCT and DWT transform and the results compared with those 

obtained using features from only the low frequency coefficients, as is commonly 

used in the literature. It was found that the speech recognition performance of the 

visual modality can be improved by the inclusion of certain intermediate and higher 

frequency coefficients. Furthermore, the visual features from the frequency bands 

giving the best visual-only recognition performance were combined with MFCC 

based audio features to form an audio-visual feature set that can be used for AVASR. 

This system was tested in the presence of acoustic noise at a range of signal-to-noise 

ratios and the results obtained are compared with audio-only ASR. The results of this 

study are presented in the next section, and show that while the performance of audio-

only speech recognition system degrades drastically in presence of noise, the AVASR 

system remains relatively robust under such conditions. 

4.3 EXPERIMENTAL SETUP 

This study has investigated the use of a range of different frequency bands in the 

generation of visual features in AVASR system design. The audio-visual database, 

ROI identification, feature extraction, and audio-visual integration techniques used in 

this work are presented in this section. Using this new method, the experimental work 

involves investigation of visual-only, audio-only and audio-visual features for their 

use in speech recognition. 

4.3.1 Audio-visual database 

The VidTIMIT [22] database used in this thesis is discussed in detail in section 3.7. A 

subset of VidTIMIT database having 32 speakers (16 male and 16 female speakers) 

was used in the experiments presented in this chapter. To avoid over training of 

specific phonemes, the two sentences common to all speakers in VidTIMIT are not 

used in these experiments. The data thus obtained has each speaker uttering eight 

different sentences in front of a camera centered on the face of the speaker. The 

sentences are all examples of continuous speech taken from the TIMIT database and 



86 
 

contain a total of 256 utterances and a vocabulary of 925 words. Of these, 216 

utterances are used for training and the remaining 40 are used for testing such that all 

the phonemes in the test set are also available in the training set. To make the 

comparison between different visual feature fair, these training and test sets were used 

in all the experiments on visual feature extraction reported in section 4.4 of this 

chapter and sections 6.4 and 6.5 of chapter 6. The video is provided at a rate of 25 

frames per second with a resolution of 384x512, while the audio stream has a sample 

rate of 32 kHz and 16 bits depth. As, in this work, features are extracted from the 

audio stream at a rate of 100 times a second, so, to match this rate, video frames were 

up-sampled to the rate of 100 frames per second using linear interpolation. 

4.3.2 Face detection and mouth ROI extraction 

Local successive mean quantization transform (SMQT) features [23], were used to 

locate the face of the speaker in the first frame of the utterance. A bounding box of 

size 72x96 around the center of the lower half of the face is extracted as the mouth 

ROI. As the training and recognition by HMMs requires that all the observation 

vectors have the same dimensionality, the dimensions of mouth bounding box needs 

to be the same for all images in the training and test data sets. The size of the 

bounding box was adopted following manual observation of the mouth region across 

all the utterances in the test and training sets. To reduce the computation time, the 

coordinates found for the mouth region extracted from first frame of utterance are 

used for ROI extraction in the remaining frames of that utterance. As the mouth 

movement in these utterances is limited, the above approach was found to work well 

and greatly reduced the time required to extract the mouth region in each image of the 

video sequence at a rate of 100 frames per second, resulting in 92732 and 46740 

frames for the training and test data respectively. One such mouth region extracted in 

this manner is shown in Figure 4.7 (a). In a small number of cases where the face 

region was not found correctly, the coordinates of the mouth centre were provided 

manually. Figure 4.7 (b) shows one such case where the face region is not found 

correctly and therefore the mouth region not properly located, while Figure 4.7 (c) 

shows the manually corrected mouth ROI for this frame. 
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4.3.3 Feature extraction 

The two dimensional DCT and DWT display the spatial-frequency information 

contained in images in the transformed space. The wavelet transform decomposes an 

image into sub-images at a range of resolutions, corresponding to different frequency 

bands. The image decomposition by the DWT transform is shown in Figure 4.8, 

where (a) shows a single level of decomposition while (b) shows two levels of 

decomposition. The four sub-images in Figure 4.8(a), namely LL, HL, LH and HH are 

known as approximate, vertical detail, horizontal detail, and diagonal detail 

coefficients, respectively, and contain information about the spatial frequencies 

present in the image in the horizontal and vertical dimensions. Figure 4.8(b) shows a 

two-level decomposition where the symbols L and H represent low and high 

frequency coefficients respectively, while the numbers 1 and 2 here represent the 

level of decomposition. Further frequency sub-bands for the DWT transform can be 

obtained by applying higher levels of decomposition. 

(b)  

Missed ROI 

(a) 

Accurately extracted ROI 

(c) 

Manually corrected ROI 

Figure 4.7 Region of interest (ROI) extraction 



88 
 

 

Similarly, the DCT transform of an image, shown in Figure 4.9, places the spatial 

frequency information in the image in ascending order of frequency. Thus regions R1 

to R4 in Figure 4.9 contain the horizontal and vertical components in order of 

increasing frequency. Additional sub-bands can be obtained for the DCT by further 

subdivision of the regions R1 to R4. In this work, both four and eight frequency bands 

are used and this was achieved in the DWT by taking two and three levels of 

decomposition and while for the DCT the appropriate regions from the transform 

space were selected. 

Figure 4.8 Image decomposition by DWT transform 

LL HL

LH HH

(a) Single-level decomposition 

LL2 HL2

HH2LH2

HL1

LH1 HH1

(a) Two-level decomposition 
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The two-dimensional DCT and DWT of the mouth region of interest (ROI) were 

taken and separated into a number of frequency bands, named R1, R2, R3, …, RN. 

(where N is the number of bands used). These frequency bands were used as input 

observations for the extraction of visual features for AVASR. The coefficients from 

these regions were re-arranged to form an observation vector. As the dimensionality 

of the observation vectors obtained from these regions is too high to be used directly 

for training the recognizer, PCA or LDA are applied to reduce the dimensionality to a 

common 30 dimensional feature vector. 

4.3.4 Audio-visual integration and HMM modelling 

In the visual-only experiments, the extracted 30 static visual features were appended 

with their first and second derivatives so as to incorporate dynamic information and 

resulting in a total of 90 features. Similarly, for the audio-only experiments, the 13 

MFCC coefficients were extracted from the speech audio and appended with their 

first and second derivatives to form a feature vector of 39 dimensions. In the audio-

visual experiments, an early integration strategy was adopted in which the 13 MFCC 

coefficients were combined with the 30 visual features to form a 43 dimensional 

audio-visual feature vector. Similarly, the audio-visual vectors were appended with 

their derivatives resulting in a 129 dimension feature vector. Using the HTK Toolkit 

R1

R2

R3

R4

Figure 4.9 DCT based frequency regions 
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[36], the three state HMM model shown in Figure 4.10 was developed for each of the 

46 phonemes used in this work, along with their context-dependent bi-phones and tri-

phones. The recognition is performed on the basis of phoneme models for all audio, 

video and audio-visual recognition and only the acoustic model was deployed without 

the aid of language information. 

 

4.4 EXPERIMENTS AND RESULTS 

The experiments on the extraction of visual features from the frequency bands were 

carried out in two stages. In the early experiments related to this work and reported in 

[25], the DCT and DWT transform coefficients were divided into four frequency 

bands and experiments were conducted to assess the effect on performance of 

including the different bands, the types of features included and the choice of 

transformation technique. To investigate the influence of the different frequency 

bands in finer detail, later experiments extended the number of frequency bands to 

eight and two additional factors were investigated, namely the choice of 

dimensionality reduction technique and performance under noise. 

4.4.1 Experiments using four frequency bands 

In these experiments, the DCT and DWT transform spaces were each divided into 

four frequency bands, as shown in Figure 4.11. Here, the Haar mother wavelet is 

applied at level 1 to perform the first level DWT decomposition of input image into 

four sub-images, LL1, HL1, LH1 and HH1. Further single level decompositions were 

carried out of both the low-frequency sub-image LL1 (LL1 is not visible in Figure 

4.11) to obtain LL2, HL2, LH2 and HH2 and of the high-frequency sub-image HH1 

to obtain LL‘2, HL‘2, LH‘2 and HH‘2. The four sub-images along the diagonal 

1 2 3 4 5 

Figure 4.10 HMM with three emitting states 
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containing the horizontal and vertical frequency details, namely LL2, HH2, LL‘2 and 

HH‘2 were then used as the input frequency bands for visual feature extraction. A 

similar operation was performed for DCT, where the output of the transform was 

divided into the four regions, R1, R2, R3 and R4 (in order of increasing horizontal 

and vertical frequency), as shown in Figure 4.11(b). To simplify the comparison 

between DCT and DWT transform features, in the investigations that follow, the 

frequency bands from the DWT are referred to as R1, R2, R3 and R4, rather than 

LL2, HH2, LL‘2 and HH‘2. Note that as the ROI is of dimension 72x96, each of these 

regions is of dimension 18x24. 

 

Visual features obtained from the low frequency coefficients of the DCT transform 

(top-left corner of transform matrix) of the mouth ROI have been reported by Jun and 

Hua [26]. In addition, in Matthews et al. [27], a number of regions from the low 

frequency region of the DCT and DWT transform matrices of the mouth ROI have been 

used for AVASR visual feature extraction. In Huang et al. [28], the visual ROI was 

reduced in size and visual features extracted by applying the LDA to the whole 

transform matrix. In Gagnon et al. [29], high energy coefficients from the DCT 

transformed space have been selected and reduced to lower dimensions using LDA. In 

order to compare the performance of the newly proposed frequency band-based features 

with these approaches, the coefficients from the four regions of the DCT transform 

matrix were re-shaped to form an observation vector of 432 dimensions. In one set of 

experiments, the entire observation vector was passed to LDA to reduce the 

Figure 4.11 Image decompositions in the transform domain 

(a) DWT image decomposition (b) DCT image decomposition 
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dimensionality of final feature vector to a total of 30 values. In a second set of 

experiments, 100 high energy coefficients from the DCT transform matrix were 

retained and reduced to 30 values using LDA. As LDA is a supervised dimensionality 

reduction technique requiring that the class membership of input observations are 

provided, these were obtained from an audio-only HMM developed earlier, using 

forced alignment. In addition, to compare the frequency band-based method with the 

ROI resizing approach, the ROI was reduced to 18x24 pixels (the same as that of the 

frequency bands) using nearest neighbour interpolation and features obtained from the 

DCT transform of the resized ROI in the same manner as used in the method for 

determining the frequency-based features. The resulting 30 dimensional feature vectors 

for the four frequency bands and the resized ROI were then used to train a video-only 

recognizer using the training set described in section 4.3, and the performance 

evaluated using the corresponding test set. The results obtained using DCT are shown 

in Figure 4.12. 

 

Figure 4.12 Recognition performance of DCT based frequency-band features 

To determine the performance of these frequency bands on the DWT transform, a 30 

dimension feature vector was extracted from the DWT transform of the resized ROI 

and each of the four regions of the DWT transform of the original ROI, in a way 
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similar to that described for the DCT transform above, and their performances 

evaluated using the same training and test sets used for the DCT. The results obtained 

from the DWT transform feature are shown in Figure 4.13. 

 

Figure 4.13 Recognition performance of DWT based frequency band features 

The results for both the DCT and DWT frequency bands show that the features 

extracted from mid-frequencies bands (R2 and R3) gave better recognition 

performance than using only the low frequency band and that the features obtained by 

using the entire observation vector from the frequency bands as input for LDA 

outperformed those obtained from using only the 100 highest energy coefficients. 

This is probably because the highest energy coefficients do not necessarily represent 

the same spectral component among the sequence of video images and therefore result 

in an improper comparison. Also, the resizing of the ROI to smaller dimensions 

adversely affected the recognition performance, perhaps due to the loss of the visual 

speech information present around the lip edges and texture of the original mouth 

ROI. This suggests that the visual speech information is retained better in the mid-

frequency bands rather than at the low frequencies. 
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To compare the performance of the DCT transform with that of DWT, the results for 

the DCT features obtained using the entire frequency-band as input observation vector 

were compared with those of DWT, as shown in Figure 4.14. 

 

Figure 4.14 Comparison of DCT and DWT based features 

Figure 4.14 shows that DCT based features in general gave better performance 

compared to DWT features. The reason for this may be that the DWT can better 

represent certain specific phonemes, but may be less effective in representing others. 

DWT is thus suitable for recognising certain specific phonemes but, for overall 

speech recognition, the DCT performs better than the DWT. 

The results obtained from the four frequency bands above have shown that the use of 

the mid-frequency coefficients of the DCT and DWT transforms of the mouth ROI 

give improved recognition performance compared to the low frequency coefficients 

that are commonly used in the AVASR literature. In next section the frequency-band 

based visual feature are explored in finer detail by using eight frequency bands. 

4.4.2 Experiments using eight regions 

To investigate the performance of the frequency band based features in greater detail, 

the DCT and DWT transform spaces were further divided into a total of eight 

frequency bands. This was achieved by applying an additional single level of 
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decomposition on the DWT regions obtained in earlier experiments. Corresponding 

regions in the DCT transform were also subdivided to give a total of eight frequency 

bands R1, R2, R3...R8, each of dimensions 9x12, as shown in Figure 4.15. 

 

Consequently, 108 values from each of the eight regions of DCT and DWT transform 

domain were reshaped into a vector, followed by the application of LDA, in order to 

reduce the number of dimensions in the final visual feature vector to 30. These 

vectors were then used to train a video-only recognizer for each region and the 

performance evaluated using the same test set as used in earlier experiments on four 

frequency bands. The recognition performance achieved in each of the eight 

frequency bands is shown in Figure 4.16. 

Figure 4.15 DCT and DWT frequency bands for eight regions 
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Figure 4.16 Recognition performances of DCT and DWT transform coefficients for 

eight frequency bands features using LDA for dimensionality reduction 

Figure 4.16 shows that the DCT based features in general perform better than the 

DWT based features. This further verifies the results shown in Figure 4.14 for four 

frequency bands, namely that for speech recognition applications, containing both 

vowel and consonant phonemes as used in these experiments, the DCT performs 

better than the DWT. In addition, comparing the speech recognition results of eight 

frequency-bands in Figure 4.16 with those obtained for four bands in Figure 4.14 

shows that there is no significant difference in the performance of mid-frequency 

bands for speech recognition purposes following the increase in the number of bands. 

This implies that mid-frequency components, although containing useful visual 

speech information, contain some form of redundancy and therefore the addition of 

extra components in the mid frequencies adds little to the information content. 

PCA is another commonly used dimensionality reduction technique [30]. To compare 

the performance of the LDA based approach with that of the PCA, the experiments 

for eight frequency bands discussed above were repeated using PCA to reduce the 

dimensionality of observation vector. The results obtained are shown in Figure 4.17. 
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Figure 4.17 Recognition performance of PCA based frequency bands features from 

DCT and DWT transform coefficients 

From Figures 4.16 and Figures 4.17, it can be seen that LDA generally gives better 

results than PCA. In PCA, the data in the transform space are arranged in order of 

decreasing variance, so that retaining a few principal components represent most of 

the variance in the original data, but does not guarantee to separate the different 

classes present, while LDA transforms the input data such that the separation between 

the classes present in the data is maximized. This demonstrates that LDA is a better 

option for dimensionality reduction in pattern recognition applications. Although PCA 

reveals certain patterns in the input data, it appears better suited to data compression 

than speech recognition. 

An important aspect in the selection of features for speech recognition is their 

robustness to changes in the environmental conditions. For the video modality, the 

most common challenge to the performance of visual features is changes in the 

illumination. As the available databases for AVASR and also the VidTIMIT database 

used in this research do not have video sequences allowing such investigations, the 

intensity of the images from the videos was artificially altered to provide the test data 

for assessing ASR performance under different illumination conditions. This was 

achieved by altering the intensity values of each pixel of the images in the test data 

12

15

18

21

24

27

30

33

36

R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8

p
er

ce
n

ta
g
e 

o
f 

w
o
rd

s 
co

rr
ec

t

frequency band

DCT
DWT



98 
 

and then determining the DCT-based frequency-band features extracted from each of 

the eight regions and using LDA for dimensionality reduction. The speech recognition 

performance of the visual features for the original test data and those obtained after 

the intensity change are shown in Figure 4.18. 

 

Figure 4.18 Speech recognition performance of frequency-band based features after 

lowering the illumination 

The results in Figure 4.18 show that, while the speech recognition performance of the 

low frequency features (R1) is affected more by the intensity changes, the features 

from medium and high frequency bands remain quite robust to these changes. This is 

due to the changes in intensity affecting mainly the coefficients of the lower 

frequencies in the image that contain the overall appearance information in the image, 

while the mid and high frequency coefficients containing information about edges are 

largely unaffected. 

These experiments show that the features obtained from the mid-frequency bands 

consistently performed better than those obtained from the low frequency bands, 

irrespective of the transformation and dimensionality reduction method used. This 

shows that intermediate frequencies coefficients are probably more informative about 

visual speech than low frequency coefficients. 
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In the above experiments, the performance of the new frequency-band based features 

was evaluated on visual-only recognition task and compared with the visual features 

reported in literature. To investigate the performance of the new visual features for the 

AVASR task, features from the regions that give the best performance for visual-only 

speech recognition in each of the combinations of transform and dimensionality 

reduction techniques were combined with 13 MFCC features from the audio modality 

to form a 43 dimension audio-visual feature vector. An AVASR system was thus 

developed for each of the combinations DCT-PCA, DCT-LDA, DWT-PCA and 

DWT-LDA using the training set described in section 4.3. For comparison purposes, 

an audio-only speech recognition system was implemented using MFCC features 

obtained from the same training set. All of the recognition systems described above 

were tested both on clean speech and noisy speech at a range of signal to noise ratios 

(SNR). The test data for clean speech was provided by the test set described in section 

4.3, whereas the noisy speech signal at different signal-to-noise ratios was obtained by 

weighted summation of the test set with the speech noise obtained from the NOISEX 

database [31]. Figure 4.19 show the results for these audio-only and audio-visual 

recognition experiments. 

 

Figure 4.19 Performance of audio-only and audio-visual ASRs under noise 
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Figure 4.19 shows that, for clean speech, the performances of both the audio-only and 

AVASR approaches using DCT and PCA, are very similar. With the increase in audio 

noise, the performance of the audio-only recogniser degrades rapidly; the performance 

of AVASR is affected to a lesser extent as the video modality is unaffected by the audio 

noise and thus gave better recognition compared to audio-only ASR. 

For clean speech, the information content in the audio stream is superior to that of video 

stream. Below a signal-to-noise ratio of 0 dB, the performance of the audio modality 

solution was severely affected while the video stream is unaffected by this noise. 

However, due to the equal contribution of both modalities to the features used, the 

AVASR implementation was affected by a degradation in the performance of audio 

modality, as can be seen from the AVASR results of Figure 4.18. A remedy for this 

problem could be to introduce an appropriate weighing of the two modalities in 

accordance with the modality reliability. In this work, experiments were carried out to 

adjust the weights for the two modalities in order to obtain the best performance under a 

variety of noise conditions. This was achieved by using a multi-stream HMM where the 

audio and video streams were assigned weights α and β respectively, such that α+β 1. 

The value of α was varied from 1 to 0 in steps of 0.1, thus effectively providing the 

flexibility to alter the recognizer from being audio-only (α 1) through a combination of 

audio and video, to video-only (α 0). The results from the AVASR with stream weights 

determined to provide the best performance, are shown in Figure 4.20. 
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Figure 4.20 AVASR performance with streams optimised according to noise level 

As can be seen from Figure 4.20, the AVASR system with tuned audio and video 

weights gave the best recognition results for all signal-to-noise ratios tested, and this 

is because the approach is able to exploit information content present in the two 

modalities at many different levels of noise. In traditional AVASR systems with equal 

weights for audio and video streams, then, for clean speech, the classification may 

become confused by the one-to-many mapping of viseme to phonemes and the 

relatively low speech information content found in video streams. Where tuned 

weights are used, these problems are overcome by rectified resorting to an audio-only 

mode. When audio noise is present, the audio stream is corrupted while the video 

stream remains unaffected. Consequently applying higher weightings to video streams 

in noisy conditions helps to avoid the ASR misclassifications that result from the 

presence of audio noise. This ability to select different sensors according to 

environmental conditions is somewhat akin to the approach taken by humans 

performing speech recognition. 

4.5 DISCUSSION AND CONCLUSION 

The work in this chapter has investigated how a range of different types of video 

features affects automatic speech recognition performance. Because there is no 
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common agreement on which benchmark database AVASR community should adopt, 

and as face and mouth extraction techniques are not yet mature, it is not possible to 

directly compare the results obtained here with previous work. To overcome this, the 

results obtained in this chapter have been obtained by re-implementing the techniques 

reported in the AVASR literature and using a single continuous speech recognition 

database obtained for a large number of subjects. The proposed new region-based 

features are compared with commonly-used low frequency features and the results are 

reported on both visual only and audio-visual speech recognition, implemented 

without using a language model in order to provide a direct comparison of the 

methods. The results show that mid-frequencies in both the DCT and DWT transform 

were able to give better speech recognition performance than the commonly-used 

low-frequency coefficients, irrespective of the dimensionality reduction method 

applied. This is probably because the intermediate level features contain information 

at frequencies similar to those exhibited by the lip moments. LDA is able to separate 

the speech classes and was shown to provide a superior dimensionality reduction 

technique for ASRs when compared to PCA. The results also demonstrate that, in 

general, the DCT-based features give better performance compared to wavelet 

transform based features. The visual modality inherently contains less information 

about speech than the audio modality, mainly because the audio modality is richer in 

information content, but also due to the total or partial occlusion of various articulators 

such as the tongue, the teeth and larynx. In addition, the mapping between visemes and 

phonemes is one-to-many, implying that not all phonemes are visually distinguishable. 

Due to these limitations of visual speech recognition, adding visual features may have 

no benefit or even a degrading effect as it may cause confusion during phoneme 

classification. The real benefit of the video modality occurs in the presence of audio 

noise where the performance of the audio speech recognition worsens, but the visual 

speech information remains unaffected. The results of experiments on changing the 

individual stream weights according to noise level demonstrated that a noise adaptive 

scheme could make good use of the visual modality by controlling the contribution of 

the two modalities in accordance with the noise level in the environment of application. 

In this chapter one of the core areas of AVASR, namely visual feature extraction, has 

been investigated. The feature extraction approach presented in this chapter falls into 

the category of appearance-based methods. The next chapter presents a novel approach 
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to the automatic extraction of the mouth ROI, another important area in AVASR 

research, while chapter 6 presents a new approach to visual feature extraction based on 

the motion information obtained from videos of speaker. 
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CHAPTER 5 

VISUAL REGION OF INTEREST 

EXTRACTION FOR AVASR 

This chapter presents a novel motion based approach for visual region of interest 

(ROI) extraction for AVASR purposes. The movements of the speakers in videos of 

speech are used to identify the mouth region, which is further processed to isolate a 

ROI from which visual features for AVASR can be generated. The work presented in 

this chapter depicted as part of the general AVASR system of Figure 2.1 is shown in 

Figure 5.1. 

 

The chapter is organized as follows. Section 5.1 provides an introduction to the 

extraction of visual ROI for AVASR and discusses as how different feature extraction 

approaches affect the required approach to ROI extraction. It also outlines the impact 

of robust ROI extraction on the extraction of informative visual features and its role in 

the overall performance of the AVASR system. Section 5.2 discusses currently used 

ROI extraction approaches and provides a detailed discussion of the concepts behind 

these approaches. Section 5.3 provides an introduction to motion estimation in video 

and also discusses the most commonly used motion estimation approaches, namely 
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Figure 5.1 Location of the ROI extraction process in the general AVASR system 
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the intensity-based and feature-based methods. Section 5.4 discusses motion based 

approaches for ROI extraction for application in AVASR. In section 5.5, the proposed 

intensity-based ROI extraction approach introduced in this thesis is described and 

results obtained by practical application of the method are given. In section 5.6, a new 

feature-based ROI extraction method is described and initial results given. Section 5.7 

concludes the findings of this study and provides a commentary on the performances 

of the proposed methods. 

5.1 VISUAL REGION OF INTEREST (ROI) FOR AVASR 

The visual front-end identifies the portion of the speaker‘s face that contains the most 

speech information and extracts that information in a parametric form suitable for 

processing by the recognizer. Front-end design can be divided into two sub-tasks, 

region of interest (ROI) extraction and feature extraction [1]. Though often considered 

separately, the two tasks are largely interdependent. The ROI provides the raw input 

data for visual feature extraction and thus the overall performance of an AVASR 

system is greatly influenced by the accurate extraction of ROI [2]. 

In appearance-based feature approaches the whole mouth region is considered as a 

source of speech information. Some researchers argue that the jaw and chin moments 

also provide useful information about the speech and therefore need to be included as 

part of the ROI [3], reducing the ROI identification task to one of detection of the 

lower half of the face containing the mouth along with other articulators. This crude 

initial estimate is, in practice further refined by filtering out un-required parts such as 

the nostrils and the background on either side of the chin. The shape-based feature 

approaches extract information regarding the lip geometry and compared to 

appearance-based approaches, require a more robust lip contour estimation. 

The required ROI thus depends upon the feature extraction approach used and the use 

of a wide range of different ROIs have been reported in literature, ranging from entire 

face of speaker to the lower half of face and mouth region only [4]. For appearance-

based feature approaches, the desired ROI is obtained by extracting a bounding box 

around the detected mouth/lips region containing the mouth region and perhaps other 

articulators, from which the visual features are then extracted by applying a suitable 

transformation to the ROI such as DCT [9] or DWT [1]. For shape-based features, the 
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required ROI is the region around the detected mouth or lips from which the 

geometric parameters of lips can then be extracted by employing a suitable algorithm. 

In some cases the boundary points of the detected lip are used to provide initial 

estimates of the lip model and the model then determines the exact lip contour by 

iteratively refining its parameters. Various approaches such as edge tracking [6], 

template matching [7] active shape and appearance model [8] and snakes [9] have 

been used for lip contour estimation. 

ROI detection and extraction is fundamentally an image analysis task and 

development in image analysis literatures leads to robust ROI extraction and thus to 

the effective extraction of informative visual features for AVASR. For example, the 

approaches that involve certain pre-defined lip models have not included other visible 

articulators such as the tongue and teeth, probably due to the difficulty in modelling 

these articulators. In [10], Saenko argues that the use of lip shape features alone 

cannot differentiate visemes in different contexts, and that a multi-articulator based 

approach is more useful for such classification. In this work, the articulatory features 

are used implicitly by developing HMM models as outputs of multiple underlying 

articulators rather than extracting features from individual articulators separately. 

Extracting features from visible articulators other than lips and their use along with lip 

contour features could potentially improve the performance of current AVASR 

systems. Developments reported in image analysis research have lead to the more 

accurate mouth/lip detection and lips parameter estimation and thus to new 

approaches to feature extraction. 

Early research on AVASR system design focused both on the analysis of the visual 

modality for the extraction of informative visual speech features and on the 

integration of audio and video streams, while the ROI extraction task was generally 

ignored [1]. The AVASR tasks reported in these works is commonly limited to frontal 

face AVASR in a controlled environment. The ROI in those studies was extracted 

either manually or otherwise the extraction task was simplified by applying visible 

markers to the lips of the speaker. Also the corpora used are face-centred with limited 

variation in orientation and lighting. In some corpora, the mouth region coordinates 

are determined manually for use in a series of subsequent research studies [11], [12]. 

However, to achieve a real-time and general purpose speech recognition system, it is 

essential to detect and track the face and mouth automatically with any pose and in 
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unrestricted environmental conditions without any artificial marking. Due to this 

realization and tremendous impact of accurate ROI extraction on overall performance 

of AVASR systems, research on visual ROI has attracted the interest of many 

researchers. In recent research, a number of automatic ROI extraction methods have 

been proposed [13], [14]. 

5.2 AN OVERVIEW OF VISUAL ROI EXTRACTION 

The identification of the ROI is made more difficult due to the high deformation of lip 

shape, as well as the variation in the content of the mouth region due to the presence 

or absence of tongue, teeth, and opening and closing of mouth during speech. 

Mouth/lip detection approaches are also often influenced by variations in lighting 

conditions and changes in the pose and orientation of the speakers. The presence or 

absence of a beard or moustache also presents a possible source of confusion that 

reduces the effectiveness of generic ROI extraction algorithms. 

The general steps of the typical ROI extraction task are depicted in Figure 5.2. 

Although attempts have been made to detect directly the mouth or lips of the speaker 

[13], [14], they have met limited success. This is because mouth/lips exhibit few 

easily distinguishable features, the face and lip colours are largely correlated and the 

mouth contour becomes deformed during speech. To help define an initial estimate of 

the mouth ROI, most ROI extraction methods use face detection as a first step. 
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First the face of the speaker is identified and isolated from the background. Various 

face detection techniques based on skin colour, geometry of face and facial features 

have been reported in literature [15], [16], [17] and [18]. Face detection is followed 

by mouth/lip region detection. The lower half of the face region is assumed to contain 

the mouth and other visible articulators and is generally used as a starting point for a 

further refined search for the detection of the mouth/lips region. Techniques similar to 

face detection have also been used for mouth/lip detection. The approaches used for 

mouth/lip detection include traditional image processing techniques such as colour 

segmentation and edge detection techniques [19], template matching [20], deformable 

templates [21], symmetry based methods [17] and statistical techniques such as [22]. 

As the shape of the mouth and lips goes through considerable deformation during 

speech and contains very few distinguishable features, the detection is often facilitated 

by referring to other facial features. For instance, a region aligned with the centre of 

eyes may be regarded as the best candidate for an initial reference in frontal view 

AVASR tasks. Detecting the ROI in each frame of video separately would be a time 

consuming task, and hence a ROI tracking approach is often adopted instead. The 

desired ROI is commonly identified in first frame of utterance and tracked in the 

remaining frames of video. As the mouth movement in consecutive frames is small, 

the tracking process is typically easier and less time consuming. 

Figure 5.2 Block diagram of visual ROI extraction 
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Face and mouth detection, extraction of ROI and tracking of ROI along the frames of 

video are discussed below in further detail. 

5.2.1 Face and mouth detection 

Face detection is used in many different branches of research such as surveillance 

systems, expression recognition, emotional/cognitive state recognition and audio-

visual speech recognition. Typical challenges in face detection are orientation, 

presence of beard and moustache, facial expression, non rigidity, lighting conditions, 

size, partial occlusion and noise. Profile view face detection (which is of interest in 

profile view AVASR), has also received attraction recently but that is still a 

challenging task. Face detection is a special case of image segmentation and object 

detection. Face detection approaches could be further extended to mouth and lip 

detection by applying additional constraints. Different approaches used for face and 

mouth/lip detection can be broadly grouped into one of the four categories [23]. 

Knowledge-based methods 

Knowledge based methods for face detection describe the face in terms of parameters 

based on human knowledge. The rules are defined on the basis of constituent parts of 

face and their mutual relationship. These rules are then utilized to guide the search for 

face in the target image. The regions that fit the rules are identified as faces [24]. 

Yang and Huang in [25], proposed a three-level face detection method. At the first 

level, the image is scanned at the lowest resolution and all the regions in the image 

with uniform intensity are extracted as face candidates. At the second level, the 

number of candidate faces is further refined by scanning the regions identified in the 

first level and its neighbouring pixels at higher resolutions. At the highest level, the 

face candidates are searched for the structural components of the face and either 

verified or rejected as being part of a face based on geometric relationships and 

intensity information. The method described in [24] uses a symmetry operator to 

locate the line of symmetry in the image. Facial features, such as the eyes and mouth, 

are then located with reference to this symmetry line. This method can be used to 

locate a single face in the image and claims to locate faces for a wide range of 

rotation, scale and lighting variations. It is simple to devise some basic rules but as 

human can‘t completely transform its knowledge to definite rules; the model cannot 

completely reflect the human knowledge. Pose variations and cluttered images are 
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challenging issues in defining a common rule. In the case of mouth detection, defining 

these rules become further challenging problem due to its non rigidity and presence 

and absence of different parts such as tongue and teeth. 

Feature invariant approaches 

Feature invariant methods use a bottom-up approach for face detection and 

localization [26]. They search for features that are present in faces irrespective of the 

pose, size and variation in lighting conditions. As human can detect facial features 

even at different poses and illumination, it is assumed that detecting individual 

features could lead to complete face detection. Facial features such as eyes, nose, 

mouth and chin are detected using shape, colour, texture or edge detection techniques. 

In [27], a number of regions of connected edges are detected in the image with the 

assumption that they form facial landmarks. The eyes and eyebrows are then detected 

by identifying landmark pairs of horizontal orientation and the centre point defined by 

these features are used to determine the nose and mouth locations. The landmarks thus 

obtained are verified by the use of facial geometry. Bevilacqua et al. in [28] detected 

the eyes using template matching and support vector machine (SVM), with their 

positions used as initial reference locations to determine the nose and mouth 

positions. The detected features are then combined to fit a model of the entire face. 

Although facial features are substantially invariant to pose and location, they are 

difficult to detect in presence of noise, occlusion and in case of complex background. 

Template matching 

In these methods, predefined face patterns or templates are stored and the input image 

is searched for these templates during the detection process. The correlation between 

the stored templates and the searched regions in the image itself are used to produce 

the similarity measures. In [29] a frontal-view face template was generated by taking 

the mean of 36 frontal face vectors. Regions in the image of uniform skin colour and 

containing at least one hole are selected as candidate faces. The regions are correlated 

with the face template, and those having correlation values above 0.6 are classified as 

detected faces. These methods are simple to implement, but as the templates are based 

on specific poses and orientations, they cannot detect faces with different poses and 

sizes and their generality is limited. There has been some research to make the 

templates more flexible to fit into cases of varying poses and size. Deformable 
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templates, sub-templates and multi-scale templates have been used to address the 

issue of non-rigidity, occlusion and size of faces and facial features. Chandramohan 

and Silsbee [22], proposed a multiple deformable template model. In this work they 

argue that a single template, even if deformable, cannot describe all the possible two-

dimensional projections of an object that may occur in practice. The search for target 

lip detection took place in two stages. In the first stage, a rough scan of the image 

produced a coarse selection of template and initial parameters, while the second stage 

involved varying parameter values so that the penalty function converged to a local 

minimum. The use of mouth templates and its deformable variants have extensively 

been reported in AVASR research both to detect the mouth region and to extract the 

mouth parameters that are then used in as a visual feature vector for shape-based 

AVASRs. 

Appearance-based methods 

Unlike the template based methods where the patterns are pre-defined, appearance-

based methods learn the face patterns from the training data [30], [31] often for use in 

identifying whether an object is a face [32] or for face recognition purposes [33]. 

These methods use statistical analysis techniques to classify objects or regions into 

either face or non-face classes based on a probabilistic framework. The images are 

represented as variable x associated with class conditional probabilities, P(x|face) and 

P(x|non-face). As the dimensionality of variable x is usually high, then, to compute 

these probabilities directly, they are transformed to a lower dimensional space using 

suitable dimensionality reduction techniques, such that 

     (5.1) 

where y is the output lower dimension vector and W is the transformation matrix. The 

dimensionality of y is substantially lower as compared to x, suitable for calculating the 

class conditional probabilities. Bayesian classifiers, artificial neural networks, the 

Fisher linear discriminant or other suitable classifier can then be used to classify the 

transformed variable as a face or a non-face class. These methods have been widely 

used in AVASR research to reduce the high dimensional video data to a reasonably 

small number of dimensions [5]. 
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5.2.2 ROI Extraction 

After identification of speakers mouth/lips region the next stage is the extraction of 

the ROI. For appearance based feature approaches a bounding box around the lower 

half of the face containing the mouth region is extracted as desired ROI. As same size 

of bounding box need to be used for the application of transformation, the size of the 

bounding box is selected according to the maximum mouth size along all utterances. 

For shape-based feature approaches, the region containing mouth or lips is extracted 

as desired ROI, which is then processed further to extract lips and determine the lip 

parameters. Typical approaches used for lip contour extraction are edge detection [35] 

and colour based segmentation techniques [18]. 

5.2.3 ROI tracking 

As visual features are extracted from each frame of video, the ROI needs to be 

extracted from every video frame. This could be done either by detecting a ROI in 

each frame of video independently or alternatively the coordinates of ROI are found 

in one frame and tracked along the remaining frames of video. The latter approach is 

commonly preferred due to much reduced computation time. In restricted conditions 

where head movement is small, the tracking task can be omitted for appearance based 

features by selecting a larger spatial window around the detected mouth region. The 

coordinates of bounding box are selected in such a way that it contains the desired 

ROI in all the frames of utterance. 

For shape features, a more sophisticated mechanism for ROI tracking is implied. In 

this case the tracking mechanism instead of extracting the ROI helps to reduce the 

search area for lip boundary detection and also improves the performance of lip 

boundary estimation algorithm by avoiding the occurrences of false positives in the 

background and other parts of the face such as eyes and face wrinkles. 

5.3 MOTION ESTIMATION IN VIDEO 

The work in this thesis reports a novel motion-based approach to visual ROI detection 

and extraction for AVASR systems. Before discussing the proposed motion-based 

approach for ROI detection purposes, the background of motion detection in video 
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(sequence of frames) is discussed as this has been the most fertile application area for 

these approaches. 

Sensing and estimating motion in video is of great interest in many fields of research 

and has many practical areas of use ranging from defence, security and surveillance to 

medical applications. Humans have the ability to discern objects, sense their state of 

motion or rest, and to comprehend their motion in three-dimensional space. Computer 

vision research attempts to replicate the human ability in a machine. However, this is 

rather a difficult task as it is not known how exactly the human motion sensing 

mechanism work. Neuropsychologists and psychophysicists are aiming to understand 

human vision systems while computer scientists and engineers conduct research on 

developing machine vision systems to detect objects in images for identification and 

motion tracking applications. The findings in the two areas of research have a cross 

impact on each other [36]. 

Motion in a sequence of image frames can come from the motion of the camera or of 

the objects in a scene. The problem is ill posed as the three dimensional motion of 

objects and camera zoom have an impact than the actual motion perceived. Two 

distinct approaches, tracking objects feature and the change in brightness level have 

been adopted in the literature for motion estimation in video. Object feature 

approaches detect certain distinct features of objects such as vertices, edges and 

curves in the image and track these features in a sequence of frames to estimate the 

speed and direction of motion. Three dimensional motion is calculated from the two-

dimension motion in frames based on 2-D to 3-D motion conversion models. An 

alternative method, referred to as the optical flow approach, determines motion from 

the rate of temporal variation in the intensity values of pixels. Motion estimation has 

also been used for communication applications and video compression and due to its 

relevance to the work presented in this thesis, a discussion on the use of motion 

compensation approach in MPEG based video compression is provided in chapter 6. 

Feature-based motion estimation 

Feature-based (sometimes termed region-based) motion estimation extracts a set of 

features from a region in a frame of video and searches for the same features in 

subsequent frames and identifies the region in the frame that provide the best match. 

The matching criteria is defined on the basis of a similarity measure, such as 
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maximizing the cross correlation between the region in the first frame and the 

corresponding region (and neighbouring regions) in later frames. Alternately an error 

minimization criteria could be used such as the minimum absolute difference (MAD) 

or the mean square error (MSE). In practice, the region-based motion estimation is 

implemented by dividing the image into a number of macro-blocks of size 8x8 or 

16x16. For a block B of N x N pixels, the MAD is given as 

    △   △     
 

  
      △     △     △             

       

 (5.2) 

where y(m,n,t) is the value of a pixel in B in the reference frame at time t and 

y(m+△m, n+△n, t+△t) is its value at time t+△t, assuming a displacement of △m and 

△n in the horizontal and vertical dimensions respectively. 

The MSE can be written as 

    △   △     
 

  
      △     △     △              

       

 (5.3) 

Although the method primarily estimates the translational motion between frames, it 

could be extended to rotational and scaling matching by piecewise translation of 

regions. The search window may be of fixed size where the matching is assessed for 

all the points in the region, or alternatively the search is terminated based on a match, 

where measure of correlation or minimum error exceeds a given threshold. A number 

of search patterns for block-matching have been reported in the literature for the fast 

and efficient implementation of the feature-based motion estimation approach. Two of 

these methods, namely the ‗three step search‘ (TSS) and ‗adaptive rood pattern 

search‘ (ARPS) were use in this work. In the TSS method, the best match to a block 

in the current frame is searched in the subsequent frame by iteratively updating the 

location of the centre and altering the size of the search window. The initial starting 

point for the search is to use the coordinates of the block in the current frame and a 

search window of size 8x8. The ARPS method utilises the fact that the macro-blocks 

in the neighbouring location often have similar motion patterns and therefore the 

search direction and the step size is determined statistically from the motion pattern in 
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the neighbouring blocks. A detailed description of these methods can be found in 

[41]. 

Feature-based motion estimation performs well for rigid bodies with sharp features 

such as edges and corners, but its performance is affected adversely by occlusion, 

detection of false features and deformation of non-rigid objects. 

Intensity-based motion estimation (Optical-flow method) 

The relative motion of the objects in a scene with respect to the image sensor gives 

rise to in brightness changes in the objective plane. Intensity (or optical-flow) based 

motion estimation approaches determine motion by calculating the instantaneous 

variation in the intensity pattern in a sequence of video images. A velocity map 

known as optical flow is obtained by analyzing the changes in the brightness values at 

each pixel position. The motion and structure of entire object is then recovered by 

optical flow based clustering of regions in the image. 

If f(x,y,t) is the intensity of a point p(x,y) in the image at time t and point p(x+△x, 

y+△y) has the same intensity at time t+△t then 

    △     △     △             (5.4) 

where △x, △y and △t are small changes in the horizontal, vertical and temporal 

dimensions respectively. Expanding the left-hand side of equation 5.4 using the 

Taylor series gives 

             △       △       △                        

                                                                                                                   
(5.5) 

where fx, fy and ft are the partial derivatives in the x, y and t dimensions. Ignoring 

higher order terms, then 

  △       △       △     (5.6) 

or 
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                  (5.7) 

where u = △x/△t and v = △y/△t are the desired velocity components along horizontal 

and vertical direction of motion. 

Equation 5.7 can be solved by making additional assumptions, such as the optical 

flow is constant for all the points of same object. A variety of methods are available 

for solving equation 5.7, and these are discussed in detail in [36]. A detailed 

discussion of different approaches have been taken in the implementation of intensity-

based motion estimation can be found in [37]. For motion detection applications, the 

approach is often implemented using the difference in the intensities of the 

corresponding pixels of consecutive frames of videos [38]. 

The performance of optical flow methods can be adversely affected by the presence of 

noise and brightness variations due to other sources such as changes in lighting 

conditions as well as occlusion which violates the continuity assumption. 

5.4 MOTION BASED APPROACH FOR ROI EXTRACTION IN 

AVASR 

In most current AVASR research, the ROI, if not extracted manually, uses approaches 

developed in image analysis research, such as differences in skin and lip colour, facial 

features and their spatial relationships. These methods commonly operate on 

individual images, and so use only a small portion of the available information, well 

are affected by the high correlation between the skin and lip colours or fail due to 

miss-identification of features in the mouth region or the non-rigidity of lips. 

Although speech is a dynamic phenomenon and the advantage of motion information 

for both audio and visual speech recognition is well proven, an explicit use of motion 

information is rarely reported in AVASR research. In the previous approaches taken 

that include visual speech dynamics have involved taking the temporal derivatives of 

static features extracted from individual frames or by concatenating image frames 

before feature extraction. However, to the best of author‘s knowledge the explicit use 

of motion information for ROI detection purpose has not been reported. This may be 

because the research on AVASR has mostly focussed on discriminative feature 

extraction and modality integration with little attention paid to the ROI extraction 
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task. Also, the ROI extraction methods used in AVASR research are mainly borrowed 

from the image analysis literature where the inputs are individual images rather than 

sequences. The work presented in this thesis takes a new approach to visual ROI 

extraction based on the motion between frames of video of speakers. Motion-based 

approaches have a significant advantage over the appearance-based approaches due to 

their greater tolerance to changes in lighting conditions. In the following sections, two 

new motion-based ROI methods are introduced. Firstly, an intensity-based method in 

described and compared with baseline colour based approaches, this being a popular 

method for lip region detection found in literature [18]. Secondly, the implementation 

of a feature-based method is described. 

Database 

The database used in this work was a subset of the VidTimit audio-visual database 

[57], taken from its video part and consist of 16 speakers (8 male and 8 female) each 

uttering 10 sentences. The data obtained is composed of 160 utterances with a total 

number of 16510 images at a resolution of 512x384 pixels and 24 bit depth. The video 

is recorded at 25 frames per second. 

5.5 INTENSITY-BASED ROI EXTRACTION 

The intensity-based ROI extraction method introduced in this section is depicted in 

Figure 5.3. The process of ROI extraction is performed in two stages. The first stage 

utilizes the relative motion of objects in the image sequence to detect the mouth of the 

speaker, while the second stage extracts the desired mouth ROI for AVASR purposes. 

As the required ROI depends on the feature extraction approach adopted; in this work 

one such bounding box containing the mouth region is extracted, suitable for 

appearances-based feature approaches while for shape based approaches, the lip 

region is extracted from which the geometric parameters can be computed or 

alternatively the model parameters can be estimated. 
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5.5.1 Mouth region detection 

Motion in different parts of the face conveys different expressions such as happiness, 

sadness, fear and surprise [40]. Humans perceive these expressions by observing the 

motion of some facial parts relative to others. During speech the lips undergoes 

through the highest amount of motion compared to other parts of the face and 

background. Eyes are other such parts that undergoes through significant motion. The 

higher relative motion in the mouth region during the speech could be used to 

automatically detect the mouth region of the speakers. The mouth region detection 

approach is shown in Figure 5.4. 

 

Motion calculation 

The motion between consecutive frames of video is represented by changes in 

intensity values. Here the change is first determined by simply finding the difference 

in values of corresponding pixels between frames. The resultant image is referred to 

as difference image (DI). An alternative approach that was considered is a macro-

block based motion vector method that was adopted for estimating the motion of lips 

and other articulators and is further discussed in section 5.6. The DI is given by 

Figure 5.4 Mouth region detection process 
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Figure 5.3 Block diagram of the proposed motion based ROI extraction 
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                                            (5.10) 

where Ii(x,y) and Ii+1(x,y) are i
th
 and (i+1)

th
 image in the sequence respectively. 

Typical examples of DIs obtained are shown in Figure 5.5. 

 

The motion in the scene between successive frames of video is usually small and 

therefore difficult to detect robustly. To improve the reliability of the motion 

information obtained, difference information gathered from a number of consecutive 

video frames can be used. This can be achieved by adding together the DIs for several 

frames, resulting in a cumulative difference image (CDI). For N consecutive 

difference images, the CDI is calculated by 

              

 

   

 (5.11) 

Examples of CDIs obtained are shown in Figure 5.6. 

Figure 5.5 Examples of difference images 
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Increasing the number of frames for determining the CDI improves the discrimination 

of mouth region from the background and other parts of the face, but increases the 

time for the operation of mouth detection algorithm. Experiments were performed to 

investigate the effect of the number of frames used on the detection of mouth region, 

and to determine the number of frames required to extract the motion information 

needed for accurate mouth region detection with the aim to minimize the processing 

time. Number of frames, from 13 to 50 with associated delays from half a second to 

two seconds has been studied and the results for mouth detection shown in Figure 5.7. 

 

Figure 5.7 Performance of mouth detection with variation in number of frames used 

for the calculation of CDI 

Examples of resulting CDIs for different number of frames are shown in Figure 5.8.  
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Figure 5.6 Examples of cumulative difference images (N=38) 
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Figure 5.8 Impact of number of frames on CDI 

(a)  13 frames 

(b) 25 frames 

(c) 38 frames 

(d) 50 frames 
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As can be seen from the CDIs in Figure 5.8, the mouth region of the speaker becomes 

more apparent when frames are used in the process, simplifying its subsequent 

isolation with respect to other facial parts and the background. The accuracy of mouth 

detection improved as the number of included frames was increased, but above a 

value of around 38 frames no further significant gain in performance was apparent. 

Consequently, 38 frames were used in the subsequent experiments performed in the 

remainder of this section. Note that in the database used in these experiments, the 

movement of the speaker‘s face is limited and normally had little effect on the 

resulting CDI. 

Filtering and thresholding of the CDI 

The dominant regions in the CDI represent the mouth and the eyes of the speaker as 

these features generally exhibit the most motion, but, due to the presence both of 

edges separating regions of different luminance, particularly at the face boundaries 

and of ‗salt and pepper‘ noise, filtering of the CDIs is needed to improve the mouth 

region identification. For the database used in these experiments, a 7x7 median filter 

was applied to smooth edges that can cause outliers in the later thresholding stage and 

to remove the ‗salt and pepper‘ noise. The resulting images after the filtering are 

shown in Figure 5.9. 
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The filtering is followed by the conversion to binary of the CDI by applying a suitable 

threshold level. A number of threshold levels have been used and the impact of 

changing the threshold level on false positives and true negative mouth and eye region 

was studied. The results suggested that instead of fixed threshold value, an adaptive 

thresholding approach dictated by rate of change in foreground, total number of 

foreground objects and the geometric relation between the foreground objects, were 

found useful. In the adaptive thresholding approach reported here, the threshold level 

was initially set to 1 and decremented in small steps of 0.02 and the number of objects 

in the foreground counted at each step. This process is terminated until three objects 

being the vertices of a triangle with ratios between the lengths of sides ranging from 1 

to 1.4, are obtained. Examples of binary images obtained from the adaptive threshold 

approach are shown in Figure 5.10. 

Figure 5.9 filtering of the CDI 

 (b) CDI after filtering 

(a) CDI Before filtering  
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The adaptive thresholding technique works for the majority of cases to suppress 

outliers on the face boundary; in a few cases some regions have deceived the triangle 

rule such as the one‘s shown in Figure 5.11. 

 The reason for this failure is that in these cases the face moved significantly in the 

horizontal, vertical or in both directions, causing motions in the face boundary parts, 

such as the chin or ears, to become more dominant. These failures could potentially be 

Figure 5.11 Facial boundaries deceiving the triangle rule 

(a) Mouth and ears (b) Face boundary and chin 

Figure 5.10 Binary images obtained from adaptive thresholding (N = 38) 
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avoided by subtracting the global motion so as to minimize the effect of face and 

camera movements. 

Mouth localization 

The aim is that the regions obtained following the thresholding will be those that 

include the two eyes and the mouth. The lower vertex of the triangle is the mouth 

region of the speaker. The centroid of the mouth region gives an estimate of the centre 

of the mouth while its height and width represent the opening of the mouth among the 

frames from which the CDI is calculated. These provide the location of the mouth and 

an estimate of its size required for the isolation of a ROI for AVASR purposes. For 

the database used in these experiments, the mouth of the speaker was identified with 

an accuracy of 94.33 percent. 

5.5.2 ROI extraction 

The ROI extraction process is depicted in Figure 5.12. The ROI are extracted from the 

original video frames based on the location and dimensions of the mouth region 

obtained from the CDI in mouth localisation stage. 

As stated in section 5.1, different feature extraction approaches requires different 

ROIs. For appearance-based feature approaches, a bounding box of same size needs to 

be extracted from each frame of the videos. The examples of rectangular bounding 

box extracted from the CDI containing the detected mouth region and the 

corresponding ROIs from the first frame of the videos are shown in Figure 5.13. The 

rectangles in the Figure 5.13 are of size 56x88, larger than the height and width of the 

detected mouth regions in these experiments. 

Figure 5.12 ROI extraction 
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The bounding box containing the mouth region of the speaker, such as the one above, 

is the required ROI for the most commonly-used appearance-based features extraction 

approaches. However, different sizes of bounding rectangle can be chosen depending 

on the dimensions of detected mouth region and the purpose of ROI extraction. For 

example, for mouth-only ROI, a rectangle of size equal to the detected mouth region 

would normally be appropriate whereas in other appearance-based feature extraction 

approaches additional facial parts such as jaws and chin may be included by selecting 

a bigger size of the bounding box. 

In Figure 5.13, the bounding rectangles obtained from the original image is the ROI 

for the first frame of the utterance, however, for visual feature extraction for AVASR 

purposes, a ROI needs to be extracted from every frame of the video. The ROIs for 

the remaining frames of videos are obtained by extracting the bounding rectangle 

from each of the video frames, using the same coordinates used in extracting the ROI 

Figure 5.13 Examples of the bounding rectangle obtained for the mouth region  

(a) Bounding rectangle of the mouth region obtained from the CDI 

(b) Corresponding mouth region extracted from the first frame of video 
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for the first frame. Examples of the ROIs thus obtained from the 1
st
, 5

th
, 10

th
 15

th, 
20

th
 

and 25
th

 frames of the utterances are shown in Figure 5.14. 

 

As for the database used in these experiments, the head movement is limited; the 

mouth of the speakers remains inside the bounding rectangle and the same coordinates 

can be used to extract the ROI from all frames of the utterance. In cases where the 

head of the speaker moves significantly during the speech, the location of the mouth 

needs to be updated. This can be achieved by implementing the mouth detection 

Figure 5.14 ROI extracted from different frames of video 

(a) 1
st
 frame 

(b) 5
th
 frame 

(c) 10
th
 frame 

(d) 15
th
 frame 

(e) 20
th
 frame 

(f) 25
th
 frame 
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algorithm in recursive mode, where the process is repeated after a certain number of 

frames, depending on the rate of head movement. 

In appearance-based feature approaches, the visual features are obtained from a 

suitable transformation of the extracted ROI, while in shape-based methods the ROI 

obtained is processed further to extract the lips of the speaker from which the 

geometric parameters are then calculated. One such method for lip extraction is to 

apply an adaptive thresholding approach and a novel implementation of such an 

approach is described below. 

Lip extraction 

Suitable processing of the rectangular box around the detected mouth region is needed 

to extract the lips of the speaker for subsequent determination of the lip geometric 

parameters for shape-based AVASR. Skin and lip region separation were investigated 

including RGB (red, green and blue), HSV (hue, saturation and value) and YCbCr 

(luma and, bue and red chroma) spaces. The examples of the ROIs obtained, 

represented in these spaces, are shown in Figure 5.15. 
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Figure 5.15 ROI representations in different colour spaces 

Original RGB domain Images 

i) R channel 

ii) G channel 

iii) B channel 

iv) Y channel 

v) Cb channel 

vi) Cr channel 

vii) H channel 

viii) B channel 

ix) B channel 
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 A number of threshold levels were investigated in these spaces in order to separate 

the lip region from the skin in the mouth region and it was found that no single 

threshold value was suitable for the segmentation for all the speakers, probably due to 

the skin colour of the speaker. However an adaptive thresholding approach based on 

the rate of change of the foreground was able to give the best segmentation on the 

green component in RGB space for all the speakers. The adaptive thresholding 

approach was implemented by initially setting the threshold level to 1, decremented in 

steps of 0.02 and the number of pixels in the foreground counted at each step. As the 

threshold level decreases the rate of change in the foreground first decreases and then 

increases. The threshold with minimum rate of change in foreground was found to 

give the best separation between the skin and lip colours for all the speakers. Typical 

examples of the extracted lip region obtained from the adaptive thresholding approach 

are shown in Figure 5.16. 
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5.5.3 Comparison of new intensity based ROI detection method with colour 

based approach 

In this section the new motion-based ROI detection method is compared with the 

baseline colour approach. ROI extraction involves the segmentation of an image into 

lip and non-lip regions. In practice, the image is often first segmented into face and 

Figure 5.16 Lip extraction for shape-based AVASR 

(a) Mouth bounding box (ROI) 

(b) Extracted lips region 
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non-face candidates with the lip and skin segmentation being the second stage. In the 

baseline colour method, ROI detection aims to enhance the contrast both between the 

skin and background and between the skin and the lips. The performance of such ROI 

extraction is effected by how well separated in colour are the lip and non-lip (skin) 

regions. A number of colour transformation approaches have been assessed in 

literature, including RGB, HSV, YCbCr and the Pseudo-Hue spaces. In the baseline 

system described in [18], a mouth map was developed by using a non-linear 

transformation of a YCbCr representation of the mouth region. The mouth map is 

given by the following equation 

             
      

    
  

  
   (5.8) 

where Cr, and Cb are the red and blue components of chroma while   is defined as 

       

 
 
        

 
        

 
   

       
       

        

 (5.9) 

where FM is the face mask and n is the number of pixels in the face mask. 

Examples of the resulting images obtained from the first frame of the videos of 

speakers based on the baseline method and the CDI obtained from the motion based 

approach are shown in Figure 5.17. 
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(a) Original images (first frame of video) 
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(b) Color-based lip segmentation 

Figure 5.17 Lip segmentation for ROI extraction 

(c) Motion-based lip segmentation N = 38 
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While the colour based segmentation approaches have been reported to give 

acceptable performance for skin detection, our results show that they are not very 

effective for lip detection purposes. It is because, the lip and skin colours are highly 

correlated and also the colour based segmentation is affected by the presence of 

objects having lip-like colours. As in the motion based approach the background is 

subtracted, these methods are unaffected by these factors and therefore appears to be 

more robust as compared to the colour-based method. 

5.6 FEATURE-BASED ROI EXTRACTION 

As discussed in section 5.3, an alternative method for motion estimation in video is 

the feature-based approach, commonly implemented using the blocks-matching 

scheme. The motion based mouth detection method described in the previous section 

was also implemented using the feature-based approach. The block matching 

approaches reported in [41] were used to calculate the motion vectors, representing 

the displacement of the macro-blocks in consecutive frames of video. In all the block-

matching based motion estimation experiment reported in this section, a block size of 

4x4 pixels was used. As in the intensity-based approach described in section 5.6, the 

motion vectors obtained from a number of frames were accumulated in an attempt to 

provide better detection. Although motion vectors have widely been used to 

efficiently capture motion in regions containing edges, the results show that they 

failed to capture motion in the lip region. The reason for this failure is that lips are 

non rigid and go through higher deformation during speech and consequently there 

were few occasions where the shape of the lips persisted sufficiently between frames 

that the object could be tracked. Examples of CDIs obtained from the motion vector 

approach and corresponding CDIs from intensity-based approach are shown in Figure 

5.18 (a) and (b) respectively. 
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A comparison of the CDIs obtained from the motion vector and intensity-based 

methods shows that the dominant regions in motion vector CDIs are those 

representing the regions having rigid outlines such as face and mouth boundaries 

while the mouth region with non-rigid shape is mostly missed. On the other hand the 

intensity based approach though giving a weak outline of the face boundary; the 

dominant regions are mouth and eye regions because of larger intensity changes in 

these regions, and thus can be easily isolated from the background and other facial 

parts. The motion vectors in these experiments were calculated using the Three Step 

Search (TSS) based block matching algorithm. To investigate the effect of search 

pattern, the approach was implemented using the Adoptive Rood Pattern Search 

(ARPS) algorithm. Examples of the CDIs obtained by the TSS and ARPS methods are 

shown in Figure 5.19. 

CDIs obtained from motion vector method 

CDIs obtained from intensity-based method 

Figure 5.18 Comparison of intensity-based and motion vector approaches 
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The results in Figure 5.19 show that the search pattern has no significant effect on 

capturing the motion in the mouth region. This is because, although the ARPS has 

changed the search pattern, the matching criteria remains the same thus having impact 

on the motion estimation for the regions with sharp edges, thus giving enhanced 

outline of the face boundary only. 

The effects of varying the number of frames for CDI calculation were also studied and 

the results for the use of 25 and 50 frames are shown in Figure 5.20. 

(a) TSS based CDIs 

(b) ARPS based CDIs 

Figure 5.19 CDIs obtained from two search techniques 
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Figure 5.20 shows that, with an increase in the number of frames in calculating the 

CDI, although the face outline becomes more prominent but has no impact on 

highlighting the motion present in the mouth region. 

5.7 DISCUSSION AND CONCLUSION 

This chapter has presented a novel approach for mouth detection and ROI extraction 

for the purpose of AVASR system design, based on motion information calculated 

from video sequences of speakers. The ROI extraction stage of the visual front-end 

provides the input for feature extraction and its accurate estimation is likely to impact 

on the quality of features that are subsequently obtained and thus on the overall 

performance of the AVASR system. 

The mouth detection performance of the motion-based ROI was compared with the 

colour-based method and was found to give better performance over the commonly 

used colour based methods. 

(a) 50 frames 

(b) 25 frames 

Figure 5.20 CDIs obtained for different numbers of frames 
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For the motion-based ROI reported in this work, both feature-based and intensity-

based motion estimation techniques have been investigated. The intensity approach 

based on the difference in intensity values of the pixels obtained from successive 

frames was found to isolate the mouth region effectively. In the feature-based 

approach, due to the high deformation of the lips during speech and the relatively 

weak edges of lips, the feature-based motion estimation techniques generally do not 

perform well. 

As the motion in the lip region is quite distinct from other parts of face region and 

background, the intensity-based method was able to achieve mouth region detection 

for use in AVASR applications. In comparison with a colour-based segmentation 

method often used in literature, the intensity-based ROI detection approach is able to 

achieve a more robust extraction of speakers‘ mouth region and thus potentially 

improve AVASR performance. The next chapter uses the mouth region identified in 

the ROI extraction approach described here in order to investigate potential 

improvement in AVASR performance that may result. 
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CHAPTER 6 

MOTION BASED VISUAL FEATURES 

FOR AVASR 

6.1 INTRODUCTION 

Videos of speakers can be considered to contain two types of speech information 

namely, the static speech information of the speaker‘s mouth region in individual 

frames in the form of the position of the mouth and other visible articulators and the 

dynamic information in the form of temporal changes in the video signal [1]. The two 

commonly used feature extraction approaches in AVASR research, namely the 

appearance-based and shape-based methods, extract visual speech features from 

individual frames of video streams and thus these features capture only static speech 

information. This chapter presents a new motion based approach to visual feature 

extraction, in which they are obtained from the dynamic speech information in the 

mouth region of interest (ROI). The work presented in this chapter is based on the 

motion compensation concepts found in the video compression literature and 

particularly in MPEG video coding. The visual features obtained are augmented by 

audio features (here the Mel-frequency cepstral coefficients) to form an audio-visual 

feature vector. The performance of the motion-based visual features is studied on both 

visual-only and audio-visual recognizers, both for clean speech and in the presence of 

a range of different types of audio noise at various signal-to-noise ratios. 

The work presented in this chapter is part of the visual front-end design and it relation 

with the AVASR system of Figure 2.1 is depicted in Figure 6.1. 
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The chapter is organized as follows. Section 6.2 provides the rational for the use of a 

motion-based approach to AVASR and reviews previous work on the use of motion 

information for the AVASR task. An overview of the motion compensation in MPEG 

video compression is provided in sections 6.3. The two popular motion estimation 

approaches reported in the literature are feature-based motion estimation and 

intensity-based methods [2]. Both of these approaches have been used in the current 

work for the extraction of motion-based visual speech features from the mouth region 

of the speaker. In particular, the feature -based method is implemented using a block 

matching approach while the intensity-based method is implemented using two 

alternative approaches; by using an optical-flow field approach and by applying a 

frame difference approach. Section 6.4 provides a description of the newly proposed 

motion-based visual feature extraction approaches and the experiments performed to 

investigate their performance.  A description of the experiments to investigate the 

performance of motion-based features in the presence of noise can be found in section 

6.5, while section 6.6 concludes the findings of the work presented in this chapter and 

discusses the important outcomes of the study. 

6.2 MOTION-BASED APPROACH TO AVASR 

Although the shape of the mouth and the positions of visible articulators in individual 

frames of video provide useful information about the utterance, they fail to capture the 

speech dynamic information necessary for distinguishing certain phonemes [3]. As 

Video 

pre-processing 
ROI extraction 

Feature 

extraction 

Audio 

front-end 

Visual 

front-end 

Audio-visual 

integration 
Classification 

AVASR system 

Visual front-end 

Figure 6.1 Location of the feature extraction process in the general AVASR system 



149 
 

speech is inherently a dynamic phenomenon, the motions of the various articulators is 

likely to add additional information which may not be captured by features extracted 

from individual frames [4]. For instance, the position of the tongue appears similar 

when uttering /l/ or /d/, and can only be differentiated by observing the motion of the 

tongue during the articulation. While the mouth shape provides information for 

recognizing a set of visemes, the mapping from phoneme to viseme is not one-to-one 

and several phonemes may correspond to a single viseme. Such phonemes can often 

be differentiated by utilizing dynamic information obtained from the lips and other 

visible articulators. Consequently, a suitable representation of the motions of the 

articulators may potentially improve the overall recognition performance of AVASR 

systems. 

In most appearance-based and geometry-based approaches, the speech dynamics are 

obtained by taking the temporal derivatives of the extracted frame features. First and 

second order derivatives are commonly used, while the use of higher orders 

derivatives have also been reported to yield improved performance [5][5]. However, 

concatenating the temporal derivatives with static features increases the 

dimensionality of the feature vector resulting in increased processing time for both 

training and recognition purposes. In addition, unlike appearance, motion information 

may well have greater tolerance to changes in lighting conditions and be less 

influenced by the speaker‘s skin colour. Furthermore, while extracting motion-based 

visual features, information unrelated to speech such as static background are filtered 

out automatically [6]. 

In [7], Goldschen et al. compared the performance of static and dynamic information 

when applied to speech recognition and found that dynamic features performed better. 

A joint use of lip texture and motion information was been reported by Cetingul et al.  

[8], for speech and speaker recognition task. In this work, the authors considered lip 

texture and lip motion as two separate modalities and found that the inclusion of 

motion features improved system performance. In Pao and Liao [9], motion vectors 

for specific locations on the lip were used as visual motion features for a digit 

recognition task. Although some work has recently been reported on the use of motion 

based features [10], [11], more research is needed to fully explore the potential of 

speech dynamic information for AVASR tasks. 
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Feature extraction and redundancy in data 

Feature extraction for pattern recognition is the process of isolating discriminating 

information about the classes present in the data in a compact set of parameters. This 

is achieved by eliminating irrelevant data and removing the redundancies present in 

the input data. For the purpose of AVASR this implies that the background and 

speaker identity information be removed and the ROI be suitably transformed such 

that the visual speech information is represented in a reasonably small number of 

dimensions. Video data contains three types of redundancy, namely, spatial, temporal 

and psychovisual [10][12]. Spatial redundancy means that the pixels in a frame of 

video are correlated with neighbouring pixels, while temporal redundancy refers to 

correlation between pixels, in successive frames. Psycovisual redundancy takes 

advantage of the fact that that the human eye is less sensitive to fine details in the 

image at objects‘ edges [13]. 

In the video compression literature, it has been shown that the number of bytes 

needed to represent video data can be greatly reduced by reducing redundancy [14]. 

Intra-frame image transformation techniques are used to reduce spatial redundancies 

while temporal redundancies are reduced by storing and transmitting the temporal 

changes in the video signal rather than the separate frames of the raw video sequence. 

Similar concepts are used in the AVASR literature to represent high dimensional 

video signals in a more compact form, suitable for use in recognition systems. In 

appearance-based feature extraction approaches, transformations such as the DCT 

[15] or DWT [16] have been applied to frames from the speech video to eliminate the 

spatial redundancy present among the neighbouring pixels. However, to the best of 

author‘s knowledge, the use of temporal redundancy has not been fully exploited in 

the context of AVASR. In this work, a motion-based approach employing DCT 

transformations, are used for visual feature extraction for AVASR, thus exploiting 

both the spatial and temporal redundancies present in the video signals of speakers. 

6.3 MPEG BASED VIDEO COMPRESSION 

MPEG (Moving Picture Expert Group) is the most commonly-used video 

compression standard in current multimedia applications. MPEG compression 

exploits spatial, temporal and psychovisual redundancies present in video sequences 
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to reduce the quantity of input data generated prior to coding [12]. To eliminate the 

spatial redundancy, inter-frame DCT transformations are applied and DCT 

coefficients of small value are ignored. These coefficients are generally associated 

with high-frequency information to which the eye is less sensitive and so its loss has 

little significant effect on the video quality. For removing the temporal redundancy, 

inter-frame prediction approaches are adopted, in which all the frames are not 

transmitted, but rather only a relatively small number of reference frames, with the 

remaining neighbouring frames being predicted by compensating for the motion 

between frames.  MPEG encodes the input video using a range of data reduction 

techniques, while the decoder accomplishes the reverse operations at the receiving 

end for recovery purposes [12]. MPEG compression reduces both the storage and 

transmission bandwidth requirements. The concepts of intra-frame and inter-frame 

coding for removing spatial and temporal redundancies are discussed in more detail in 

the following sub-sections. 

6.3.1 Intra frame coding techniques (DCT transformation) 

The intra frame coding process of MPEG is depicted in Figure 6.2 and typically 

involves video filtering, DCT transformation, DCT coefficient quantization and 

variable length coding (VLC). The DCT transform, when applied to a video frame, 

represents the image in terms of the spatial frequencies present. In the MPEG 

standard, the image is subdivided into blocks of size 8x8 pixels and the DCT 

transform applied to each block [17] resulting in an 8x8 transform matrix, with the 

first element representing the mean value (or DC component) and the subsequent 

coefficients ordered in terms of increasing frequency. The DCT transform coefficients 

are 11 bits in depth, greater than the input spatial domain representation of 8 bits. The 

high frequency coefficients are usually relatively small in value and can often be 

removed without discernable degradation of overall quality and can also be justified 

by psychovisual redundancy which implies that the eye is less sensitive to the fine 

details in the video contained in the high frequency coefficients. The sequence of 

zeros can be encoded efficiently using variable length coding. 
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6.3.2 Inter frame motion compensation 

Significant video compression is often achieved by reducing time-based redundancies. 

In MPEG, temporal redundancies are removed using the inter-frame motion 

compensation approach [18][18]. In MPEG video coding, not every frame is encoded 

independently rather the frames to be transmitted are predicted from some reference 

frame among the neighbouring frames. Three types of frames are transmitted: I or 

intra-frame coding, where each frame is encoded independently using the technique 

discussed in section 6.3.1; P frames or forward frames that are predicted from the 

immediately preceding frames; and B frames or bi-directional frames that are 

predicted from frames before and following the current frame. The motion 

compensation and encoding process of MPEG is shown in Figure 6.3. 

Figure 6.2 Block diagram of MPEG based intra-frame coding [12] 
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The motion compensated prediction (MCP) process is performed on the image 

reconstructed after intra-frame coding instead of the original source frame, as shown 

in Figure 6.3. This is because the bit rate reduction in intra-frame coding introduces 

distortions, due to which the frames recovered at the decoder are not identical to the 

original source frame. A local decoder in the transmitter is used to replicate the 

decoding process at receiver. The motion of objects in neighbouring frames is 

estimated to predict frames from the previous frame for P frames and both preceding 

and succeeding frames for B frames. The frame for the current time so predicted is 

subtracted from the actual current frame and the difference (known as the residue) is 

encoded and transmitted instead. The more accurate the prediction, the smaller is the 

residue and the fewer the number of bits required for its encoding. The motion 

estimation techniques discussed in chapter 5 can be used to find the motion. The 

choice of motion estimation technique depends on the application and is based on a 

trade-off between accuracy, processing time and resources. The compliment of this 

process is accomplished at the decoder to recover the original signal. 

6.3.3 Motion estimation in MPEG based compression 

Motion estimation, the process of finding the motion vector defining the 

transformation from the reference frame to the current frame, is the central and most 

time consuming part of MPEG-based video compression. The motion estimation in 

Figure 6.3 Block diagram of MPEG based inter-frame motion compensation 
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MPEG is performed using the block matching approach [17]. The video frames can be 

divided into macro blocks that are either 8x8 or 16x16 pixels and the position of a 

macro block in the current frame is determined in the reference frame. The general 

mechanism of block matching based motion estimation is shown in Figure 6.4. The 

macro block in the current frame is matched with macro blocks located at a number of 

candidate positions, known as the search window, in the reference frame. The 

horizontal and vertical displacement of the macro block are recorded in the form of 

two dimensional motion vectors. The full search (FS) algorithm checks for a block 

match at all possible positions in the search window and is the most time consuming 

method. A number of fast block matching algorithms [19], [20], [21] have been 

proposed that attempt to reduce the number of search positions tested (and thus the 

computational time), yet without serious degradation of the accuracy of the motion 

estimation. A detailed discussion of the alternative block matching algorithms and 

their search complexities can be found in [22]. The two popular block-matching 

algorithms are diamond-based search [23] and hexagon-based search [24]. The 

variable shape search (VSS) algorithm has been used in the current work [25]. It 

combines the diamond and hexagon search methods and has been found to give 

performance superior to the individual performances of either of these methods. 
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Figure 6.4 Block matching based motion estimation 
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6.4 MOTION-BASED VISUAL FEATURES FOR AVASR 

This section describes the different approaches used in this work for the extraction of 

motion-based visual features for AVASR, and presents various experiments 

performed to determine the performance of these approaches. To allow direct 

comparison of the results obtained from the motion-based approach with those 

obtained from the appearance-based methods, the experimental setup was the same as 

that described in chapter 4, in which a visual ROI of dimension 72x96 around the 

mouth of the speaker was determined from a subset of the VidTIMIT database [26] 

that contains sentences from 16 speakers. The data thus obtained consists of 256 

sentences with a vocabulary of 925 words and was divided into training and test sets 

such that the vocabulary of the test set is included in training set. Out of the 256 

sentences, 216 are used as the training set and the remaining 40 as the test set. The 

same training and test sets were used in all of the video-only, audio-only and audio-

visual experiments presented in this chapter. As in the appearance-based method, a 30 

dimensional vector was used as the visual feature set, the same number of features 

were extracted for each of the motion-based methods used in this work and a five 

state hidden Markov model (HMM) was trained for each of the 46 phonemes and their 

context-dependent bi-phonemes and tri-phonemes, using the Cambridge University 

HTK toolkit [27]. The experiments were performed on the acoustic model employing 

dictionary search, but without the use of a language model. The results of the new 

motion based approaches were compared with commonly-used appearance based 

features on a visual-only ASR task. For the AVASR experiments, MFCC based 

features were extracted from the speech audio and combined with the extracted visual 

feature vectors using an early integration strategy. The performance of the AVASR 

systems was compared with the audio-only ASR for clean speech and in presence of 

noise at a range of signal-to-noise levels. 

6.4.1 Block matching approach 

The motion of an object in a sequence of video frames is commonly represented by 

two dimensional motion vectors. The components of a motion vector represent the 

horizontal and vertical displacements of object in the plane of a frame. In MPEG-

based video compression, the frames are divided into a number of macro blocks and 

the motion of each macro blocks between successive frames of video is calculated 
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using the block matching approach. The vectors thus obtained, represent the motion of 

macro blocks in the sequence of video frames. In this work, the mouth ROI is divided 

into a number of macro blocks and their motion estimated in each pair of consecutive 

frames during the utterance. In the experiments described in this section, the variable 

shape search (VSS) based block-matching algorithm has been used. The horizontal 

and vertical components of the motion vectors obtained were used as observation 

vectors for visual speech, from which visual features were extracted by application of 

either LDA or PCA. Although macro blocks of different dimensions were used, so 

giving rise to a range of dimensionalities for the observation vectors, these were 

reduced to the same number of features in each of the experiments. 

Experiments and results 

The horizontal and vertical components of the motion vectors obtained from the 

mouth ROI of the speaker represent the horizontal and vertical movements of lips and 

other articulators during the utterance. As the motion of lips, teeth and tongue during 

speech is mainly in the vertical direction, it may be expected that the vertical 

components of the motion vectors would contain more information than the horizontal 

components. To investigate the performance of the horizontal and vertical 

components, the two components of motion vectors were used separately to train two 

separate recognizers. A macro block of size 8x8 was used, giving 108 (9x12) 

dimensions vector in each of the horizontal and vertical direction and this was 

reduced to 30 dimensions by applying either LDA or PCA. The performance of the 

horizontal and vertical components of motion vectors are shown in Table 6.1. 

Table 6.1 Word recognition rates for horizontal and vertical components of motion 

vectors 

 Recognition rate (percentage of words correct) 

Horizontal Component Vertical Component 

PCA 31.18 33.60 

LDA 32.26 33.60 
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As expected, the results showed that the features obtained from the vertical component 

of the motion vectors gave better recognition performance than the horizontal 

component. Although the speech produces both horizontal and vertical motion in the 

mouth region, the dominant direction of motion is vertical and that is why the vertical 

components of motion vector could better represent the visual speech information 

compared to the horizontal components. Regarding dimensionality reduction 

approaches, LDA performed better than to PCA because LDA attempts to separate the 

classes present in data while PCA preserves the data variance. Methods able to provide 

better separation of classes is more appropriate in speech recognition applications. 

In MPEG compression, macro blocks of sizes 8x8 and 16x16 are commonly used. To 

assess the effect of the size of macro block, visual features from the vertical 

components of motion vectors for 4x4, 8x8 and 16x16 macro blocks were 

investigated. The dimensionality of the motion vector obtained depends on the size of 

macro block, since the larger the macro block, the smaller the dimensionality of 

motion vector. To add comparison of results, the motion vectors were reduced to 30 

features using LDA or PCA. The recognition results for the different macro block 

sizes are shown in Figure 6.5. 

 

Figure 6.5 Speech recognition performance using different sizes of macro block 
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As can be seen from the results the largest macro block (16x16) gave the worst 

performance. As, such a macro block covers a larger area it may potentially include 

gross movements that originate from more than one articulator rather than being 

representative of the movements of a single articulator. Consequently, poor estimation 

of the motion of the objects in the region that are of interest for speech recognition 

purposes may well result. Conversely, the smallest size of macro block (4x4) may not 

capture the salient features of articulators, so resulting in a slightly worse tracking of 

motion. The best performance is given by the intermediate size macro block of 8x8 

pixels. This is probably because the macro block of medium size includes sufficient 

features to perform suitable motion estimation while still giving an adequate 

representation of the motion of the individual articulators or their constituent parts. 

6.4.2 Optical flow approach 

A second commonly used approach for the representation of motion in video is 

optical flow method. Optical flow is defined as the apparent velocities of the moment 

of brightness patterns in an image sequence, sometimes described as the velocity of 

intensity that warps one frame of video to the next. The two most popularly used 

approaches for optical flow calculation are the Lucas-Kanade [28] and Horn-Schunck 

[29] methods. In this thesis, the optical flow in the mouth region of the speaker is 

calculated using the Lucas-Kanade method. The Lucas-Kanade method is a local 

optical flow calculation method in which the flow field is assumed to be constant in 

the neighbourhood of a pixel. The method calculates the flow field by solving the 

basic optical flow equations using a least squares approximation. In contrast to point-

wise approaches, the method is less sensitive to noise as the optical flow is calculated 

based on the assumption of constant flow in the neighbourhood. At the same time, the 

method gives more accurate estimates of the local motion in mouth regions compared 

to those operating on the bases of global flow calculations. This effect is similar to 

that observed in block matching approaches where an intermediate size of macro-

block gave better performance compared to those obtained from the smallest and 

largest sizes studied. Examples of the calculated optical flow field in the mouth region 

of the speaker are shown in Figure 6.6, where (a) and (b) show the flow fields of the 

instances of mouth opening and closing respectively. 
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Figure 6.6 Examples of the optical flow field in the mouth region of a speaker 

(a) Mouth opening 

(a) Mouth closing 

Experiments and results 

The optical flow field gives the velocity at each pixel and this is resolved into horizontal and 

vertical components giving two separate input matrices. To generate a more compact 

representation, a 2-D DCT was applied to each component of the flow field and each resulting 

transform matrix divided into four bands of frequencies as performed in section 4.4 in the 

processing of appearance based features. Each region had a dimensionality of 432 (24x18) 

which was reduced to 30 using LDA. The performance of the four optical flow based regions 

for horizontal and vertical component of flow field is shown in Figure 6.7. 
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Figure 6.7 Comparison of the speech recognition performance using horizontal and 

vertical components of the optical flow field  

As in the case of the block matching approach, the vertical components of the optical flow 

field provides better speech recognition than the horizontal components. As was found for the 

motion vectors, the optical flow in the vertical direction provided a better representation of 

mouth motion during the utterance of speech than did the horizontal components and this is 

likely to be because the majority of articulator movements (such as the lips and the tongue) 

occur in the vertical direction. Moreover, among the four frequency regions used, the medium 

frequency bands of the DCT transform of the optical flow field gave the best performance, 

which supports the earlier finding presented in chapter 4. 

PCA was used in place of LDA for dimensionality reduction of the vertical component of 

flow field and the results obtained for speech recognition performance are shown in Figure 

6.8. 
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Figure 6.8 Comparison of the use of LDA and PCA for dimensionality reduction of 

the vertical component of the optical flow method 

The results of Figure 6.8 are in agreement with the earlier results obtained using PCA 

and LDA approaches for dimensionality reduction. In these experiments, LDA has 

consistently shown better results than the PCA technique. Although both the LDA and 

PCA approaches are widely used in the AVASR literature to identify underlying 

patterns in video data, LDA appears to give better separation of speech classes and 

consequently better recognition performance compared to PCA. 

6.4.3 Frame difference approach 

The difference between the neighbouring frames of video for motion detection is of 

importance for compression in video coding [30]. In this thesis the author has 

investigated the use of the frame difference approach in the extraction of informative 

motion features for AVASR. The approach can be implemented by subtracting the 

pixel intensity vales between consecutive frames of video. The frame difference 

approach naturally filters out undesired data such as the background, yet the 

difference between the mouth regions (ROI) between consecutive images will be able 

to provide information about the motion related to speech. The difference image 

Dt(x,y) is given by, 
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  (6.1) 

where T is the duration of utterance and It(x,y) and It-1(x,y) are the images at times t 

and t-1. An example of consecutive frames and their corresponding difference image 

is shown in Figure 6.9. 

 

Experiments and results 

Similar to optical flow approach, the dimensionality of the difference image is the 

same as that of the input image and a 2-D DCT is applied and the DCT coefficients 

divided into four frequency bands and reduced to 30 dimensions using LDA and PCA. 

The results for the PCA and LDA based features from frame difference approach are 

shown in Figure 6.10. 

Figure 6.9 Illustration of the frame difference approach 

 (b) Current frame  (a) Previous frame   (c) Difference image 
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Figure 6.10 Comparison of LDA and PCA in their application to the frame difference 

approach 

The results for the frame difference approach, shows in Figure 6.10 are similar to 

those obtained by using the optical flow approach, in Figure 6.8. It is probably 

because both frame difference and optical flow method attempts to extract similar 

information. However, the frame difference approach is simple to implements and is 

computationally less expensive as compared to the optical flow approach. These 

results are also in agreement with earlier results that found that the mid-frequency 

components obtained from the DCT transform contain information more suitable for 

AVASR purposes than that obtained from low-frequency components. 

6.4.4 Comparison with appearance based features 

This section shows a comparison of the results obtained for the motion-based visual 

feature with those obtained using features extracted from the appearance-based 

approach. The same number of features was used for all experiments and care was 

taken to keep all other parameters identical, including training and test set contents 

and the HMM topology. In the block-matching methods, a 30 dimensional feature 

vector was obtained by applying PCA or LDA to reduce the dimensionality of the 

vertical components of the motion vector obtained from 8x8 macro blocks. In each of 

appearance-based, optical-flow and frame difference method, 30 dimensional feature 
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vectors were extracted from the four frequency bands of the 2-D DCT transformations 

of the ROI, optical-flow field and difference image respectively, followed by the 

application of either PCA or LDA. The best recognition results in terms of word error 

rate that were obtained for each feature type are shown in Figure 6.11. 

 

Figure 6.11 Comparison of the performances of the investigated techniques  

As can be seen from the results in Figure 6.11, the new motion-based features 

outperform the commonly-used appearance based features. Moreover, the motion 

vector approach gives the best performance among all the three motion features 

described in this chapter. The results obtained from the optical flow approach are 

similar to those obtained from the frame difference method. Both methods use the 

intensity variations that occur during speech utterances and therefore have similar 

information available to them in performing their respective recognition operations. 

6.5 NOISE ANALYSIS 

The visual modality is inherently inferior to the audio modality in that the videos of 

speakers convey only a limited portion of the speech information due to the 

invisibility of the vocal tract and the full or partial occlusion of articulators such as the 
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teeth and the tongue. This is also evident from the fact that far fewer distinguishable 

speech units (visemes) exist in the visual modality compared to the number of 

phonemes found in the audio modality [31][31]. However, the use of the visual 

modality is important in circumstances where the audio modality is corrupted by 

acoustic noise. To investigate the noise robustness of the new motion-based features 

introduced in the current work, their speech recognition performance was studied in 

the presence of audio noise. AVASR systems were developed for each of the new 

motion-based approaches and trained using the features obtained by concatenating the 

MFCC-based audio features with the visual features that gave the best performance in 

each of the motion-based methods. For comparison purposes, an audio-only ASR 

system was also developed and trained using the MFCC-based features obtained from 

the audio training set. MFCC-based audio features from noisy audio signal were then 

extracted at signal-to-noise ratios (SNR) ranging from 30 dB to -10 dB and combined 

with each of the new motion-based visual features. Speech noise from the NOISEX 

database [32][32] was added to the audio speech obtained from the VidTIMIT 

database to provide noisy speech signals at different SNR levels. The performance of 

audio-only and audio-visual speech recognition systems in the presence of speech 

noise is shown in Figure 6.12. 

 

Figure 6.12 Audio-only and audio-visual ASRs performance in presence of speech 
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The performance of the new motion based features was also studied in presence of a range of 

different types of noise taken from the NOISEX database. The results of audio-only and 

AVASR in presence of each of these types of noise are given in Table 6.2. 

 

Table 6.2 Audio-only and AVASR performance for different types of noise 

Car noise 

 
clean 30 dB 20 dB 10 dB 0 dB -10 dB 

Audio-only 33.87 33.87 33.6 33.06 31.99 27.96 

Frame difference 33.6 33.6 33.6 33.33 33.33 29.57 

Block matching 33.87 33.6 33.6 33.6 33.33 30.38 

Optical flow 33.87 33.87 33.87 33.6 33.06 30.11 

F16 noise 

 
clean 30 dB 20 dB 10 dB 0 dB -10 dB 

Audio-only 33.87 33.87 33.6 31.18 26.08 22.85 

Frame difference 33.6 33.33 32.8 32.53 29.57 25.81 

Block matching 33.87 33.87 33.33 33.06 29.84 26.34 

Optical flow 33.87 33.87 33.6 33.06 28.96 26.08 

Factory noise 

 
clean 30 dB 20 dB 10 dB 0 dB -10 dB 

Audio-only 33.87 33.87 33.6 33.33 28.13 23.92 

Frame difference 33.6 33.33 33.33 33.06 30.15 26.08 

Block matching 33.87 33.87 33.87 33.6 30.32 26.61 

Optical flow 33.87 33.87 33.6 33.33 29.96 26.34 

Operating room noise 

 
clean 30 dB 20 dB 10 dB 0 dB -10 dB 

Audio-only 33.87 33.87 33.87 33.6 26.61 23.39 

Frame difference 33.6 33.6 33.33 33.06 27.42 26.08 
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Block matching 33.87 33.87 33.6 33.6 28.15 26.34 

Optical flow 33.87 33.6 33.06 32.8 27.49 26.14 

 

The speech recognition results of the audio-only and the AVASR systems for speech with 

added noise shown in Figure 6.12, demonstrate that AVASR was able to give better 

performance than audio-only ASR. For the AVASRs methods investigated, the performance 

of the different motion-based features and that of appearance-based are very similar, but with 

the optical-flow approach giving marginally better results. 

The AVASR results for different noise types in Table 6.2 show that, for all types of noise, 

AVASRs gives better performance than audio-only ASR, particularly when the signal-to-

noise ratio is less than 0dB. Among the different motion-based approaches, the block-

matching approach was generally able to achieve the best recognition results. 

6.6 DISCUSSION AND CONCLUSION 

In this chapter, novel approaches to visual feature extraction for AVASR have been 

presented, based on motion information taken from the mouth region of the speaker. 

Speech is a dynamic activity and so the motion of mouth is likely to contain useful 

information about the contents of the speech. A number of video motion estimation 

approaches, namely, block matching, optical flow and frame difference methods have 

been studied. The performance of the novel motion based features extracted from 

each of these methods was compared with that obtained from features based on an 

appearance-based approach. The results show that the motion-based features were 

able to perform the better when experiments were performed using the VidTIMIT 

database, with the block matching method giving the best performance. In the block 

matching approach, the block size of 8x8 yielded the best recognition results among 

the block sizes studied. In their application to dimensionality reduction, LDA gave a 

better performance than PCA for both visual-only and AVASR. This was as expected 

since LDA maximizes the variance between classes, which is better suited to the 

separation of phonemes/visemes, while PCA is designed to retain maximum variance 

in data rather than attempting to provide a distinction between speech classes. The 

horizontal and vertical components of motion vectors and optical flow fields were 

isolated and compared in their speech recognition performance and it was found that 

the vertical component of both, the motion vectors and optical flow provided better 
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discrimination. The performances of optical flow and frame difference methods were 

similar perhaps because they both attempt to represent intensity variation during 

speech. Lastly, audio-only and audio-visual recognizers were investigated and it was 

shown that addition of the video modality improved the performance of ASR in the 

presence of various types of noise. As a consequence, it could be concluded that 

motion-based features contain useful visual speech information that could be 

combined with audio features for improved ASR performance in presence of noise. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK  

This chapter draws conclusions from the work presented in this thesis and 

recommends a number of avenues for further work. 

7.1 CONCLUSIONS 

Audio is used as principal source of speech information in automatic speech 

recognition systems, but their performance degrades in presence of noise. To 

compensate, a number of approaches have been adopted in the ASR literature, of 

which the use of the visually modality is probably the most suitable candidate being 

supported by both human speech perception studies and the work reported on AVASR 

systems. 

The main emphasis of this thesis has been to improve the visual front-end of AVASR 

systems, extracting useful speech information from videos of speakers in order to 

supplement audio information and resulting in a more robust ASR solution. The work 

reported in this thesis contains research on two important parts of the visual front-end 

for use in ASR, namely visual ROI extraction and visual feature extraction. Although 

AVASR has been an active field of research for the last two decades, the techniques 

applied mainly extract the speech information only from individual frames of video. 

Although speech is a dynamic activity and the use of temporal information in audio-

only speech recognition is well established, previously explicit use of dynamic 

information from the video modality has not been exploited. In addition, in this work, 

a novel approach was taken for the extraction of appearance-based visual features 

from the DCT and DWT transformations of the speakers‘ mouth ROI, but with 

emphasis on the discriminative characteristics of the coefficients in contrast to the 

traditional data preservation viewpoint. The new visual features extracted by this 

approach have been tested for a continuous speech recognition task for both visual-

only and audio-visual ASR. The popular HMM was used for classification and the 

HMM based HTK toolkit was used for both training and recognition. The results of 

the work carried out in this research are reported in three chapters. 
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In Chapter 4, the new frequency band based approach was used for visual feature 

extraction from DCT and DWT representations of the mouth ROI. LDA and PCA 

were used to reduce the dimensionality of the final feature vector for use in the speech 

recognition system. The features obtained from the frequency bands that gave the best 

performance on visual-only ASR were used for AVASR in presence of noise. The 

noise performance of features representing the mid-frequency bands was found to be 

superior to both audio-only and audio-visual ASRs that used visual features from only 

the low frequency bands of DCT and DWT transforms. The improvement is due to 

these bands containing not only useful information about the visual speech but also 

because they are more robust to variations in illumination. 

In chapter 5, a motion-based approach was applied to the detection of the mouth 

region of the speaker and the extraction of a visual ROI for feature extraction. The 

motion-based ROI extraction approach offers a reliable solution for the robust 

detection of the speaker‘s mouth region in speech videos and the adaptive 

thresholding method developed in this work was able to successfully remove the 

outliers caused by cluttered background and sharp edges. The method was shown to 

outperform the commonly-used colour-based methods. The motion-based approach 

can be used to extract an appropriate ROI for both appearance-based and shape-based 

feature extraction approaches. In addition, the lip detection method proposed in this 

work can also be used to provide reliable initial estimates for the model based 

AVASR approaches automatically. 

In chapter 6, the motion-based approach was used for visual feature extraction in the 

AVASR task. Three different representations of motion in the mouth region of the 

speaker were proposed and their results were compared with existing appearance-

based approaches. The motion-based approaches were found to give better 

performance than the appearance-based methods. In particular the motion-vector 

approach commonly used for motion estimation in MPEG compression was found to 

give the best motion representation for AVASR purposes. 

The specific findings of this research are summarized in the following subsections. 
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7.1.1 Frequency bands based visual features 

The mid-frequency bands in the DCT and DWT transform domains capture important 

visual speech information. It was found that visual features extracted from such 

frequency bands resulted in an AVASR system that was able to perform better than 

one that used only features extracted from low-frequency bands, as commonly used in 

appearance-based approaches. 

The further sub-division of the mid-frequency range into more than four bands was 

not found to have a significant effect on the AVASR performance, probably due to 

the mutual correlation of visual speech information contained in the frequency 

components in the frequency bands. 

DCT-based features were found to give better ASR performance than DWT features, 

while LDA was shown to be a more suitable dimensionality reduction tool than PCA. 

The DWT transformation may be more appropriate for analysing consonant 

phonemes, the DCT was found to be more suitable for continuous speech recognition 

including both the vowels and consonants phonemes. Similarly, PCA, although highly 

suited for compression applications, was not able to separate the speech classes as 

well as LDA. 

The performance of the AVASR based on the mid-frequency coefficients from both 

DCT and DWT transform perform better than audio-only ASR in presence of noise. 

Although the audio features captured more speech information in the absence of noise 

compared to their video counterparts, they were greatly affected by audible noise and 

AVASR performed better under these conditions due to the availability of the video 

modality that remained unaffected. 

The use of appropriate stream weights for the two modalities can make better use of 

the strengths and weaknesses of the two modalities in cases of clean speech and in 

presence of noise and hence give performance superior to both audio-only ASRs and 

AVASRs. 

7.1.2 Motion based ROI 

The motion in the sequence of video frames has shown to be a reliable source of 

information for the detection of the mouth region of the speaker and a motion-based 
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approach for the automatic extraction of a region of interest for AVASR purpose has 

shown to give better performance than the commonly used color-based lip 

segmentation method. 

The approach based on changes in intensity gives better performance compared to 

feature based approach, probably due to the non-rigid nature of mouth and lips, due to 

which its features are distorted during speech and can‘t be captured robustly by the 

block-matching approaches. 

The adaptive thresholding approach used in this work was able to suppress outliers, 

both for the detection of the mouth region and for lip extraction. For mouth detection, 

the approach was able to remove false candidates near edges separating regions of 

contrasting intensities, while for the lip segmentation required in shape-based 

AVASR, the approach was able to identify the separate lip and skin regions. 

7.1.3 Motion-based visual features 

The motion information from speech videos contains important information for 

speech recognition purpose and the motion based features were shown to outperform 

the static visual features that are usually captured from individual frames of video. 

The motion information was represented in three ways, the difference in luminance 

between successive frames, motion vectors calculated by block-matching method and 

optical flow. The motion-vector based features showed the best recognition 

performance among the three representations. 

While the performance of audio-only ASR is affected by the presence of audible 

noise, motion-based AVASR remains relatively robust under such conditions. 

In the speech recognition experiments, the AVASR based on motion-based visual 

features produced better results than those based on appearance based AVASR in the 

presence of noise. 

Although the use of the visual modality in ASRs has been an active research area for 

the last 25 years, the techniques used are mainly taken from video analysis and data 

compression research and the video modality has not yet been fully explored from a 

discriminative point of view. Moreover, the research carried out is mainly restricted to 

the extraction of spatial information from individual frames, with less attention paid 
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to the temporal information available in video. In this work presented in this thesis, 

both of these limitations found in previous research have been addressed by 

investigating both the discriminative information in individual frames of video and 

the motion information obtained from temporal changes in the video sequences. 

The approaches used in this research have concentrated on delivering improvements 

to the visual front-end processing and the resulting automated front-end design would 

be potentially beneficial in the deployment of AVASR system in commercial 

applications. This work has demonstrated the usefulness of the motion information in 

the automatic detection of the visual ROI and has implemented a method for feature 

extraction where there is limited head movement. It is likely that the techniques 

developed could be extended to more unconstrained environments using techniques 

that are able to compensate, at least in part, for the speaker and camera motion. 

7.2 FUTURE WORK 

One of the main results of the current work was that the adoption of visual features 

extracted from the mid-frequency bands was important in improving the performance 

of an AVASR system. Consequently, it is clearly important that specific frequency 

bands should be considered when extracting information from the visual modality and 

it is probably reasonable to assume that individual phonemes may be best captured 

from specific frequency bands. Future work could investigate which frequency bands 

are the most appropriate for extracting features for particular phonemes. 

The motion-based approach for AVASR has the potential to further enhance the 

capability of the video modality to compensate for the degradation of audio-only ASR 

in the presence of noise by capturing useful information from videos of speech. 

In this work, for the purpose of visual feature extraction, the motion in the ROI was 

estimated using block-matching, optical-flow and frame-difference approaches, but 

the exploration of potential motion representation and motion estimation approaches 

is far from complete. The block-matching approach that gives the best recognition 

performance was implemented by the variable shape search method, but other search 

methods could be used. The motion information for feature extraction can also be 

explored from the perspective of the temporal frequencies of motion patterns in the 

mouth ROI. 
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The success of the adaptive threshold method for both motion-based ROI detection 

and lip region extraction suggests that these methods could be enhanced by 

incorporating additional constraints. For example, allowing the intensity-based ROI 

extraction approach to take into account the direction in which changes in intensities 

are manifest could be beneficial in distinguishing between mouth motion that occurs 

principally in the vertical direction and the predominantly horizontal motion found at 

the face boundary. Further, it intuitively would appear to be the case that the motion-

based ROI detection and feature extraction approaches are independent both of 

lighting conditions and of the speaker‘s skin colour; the latter assuming that there is 

an adequate colour separation with respect to the background. As the VidTIMIT 

database used in these experiments is not designed for such investigations, such 

extensions to the existing motion-based approach will need to be investigated with 

reference to alternative or specifically established databases. In the database used in 

this thesis, the video sequences are recorded with limited head movement, but more 

unconstrained head and camera motions could be permitted should additional 

compensation for camera and speakers movement be implemented by algorithms able 

to determine the relative motions of the face and mouth region. The motion-based 

approach can also provide a computationally efficient way to track the changes in 

mouth position during speech by its implementation in a recursive mode.  
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APPENDIX I 

Phonemes and their corresponding mouth shapes. 

 

/f/ /v/ /sil/ 

/p/ /b/ /m/ 

/a/ /i/ /ae/ 

/ah/ /ay/ /ih/ 
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/d/ /c/ /j/ 

 

/n/ /r/ /k/ 

/x/ /y/ /iy/ 

/jh/ /ck/ /l/ 
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/g/ /h/ /s/ 

/w/ /q/ /aw/ 

/ch/ /z/ /sh/ 

/hh/ /zh/ /ng/ 
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/ao/ /o/ /ow/ 

/aa/ /uw/ /oy/ 

/ey/ /eh/ /er/ 

/t/ /it/ /uh/ 
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/dh/ /u/ /th/ 

/e/ 
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APPENDIX II 

The solution of the three problems of HMM namely the evaluation, decoding and the 

training problems are described in the following. 

1. Solution of problem 1 (Evaluation) 

The evaluation problem is to find the probability of observation O given model △. To 

find out the P(O|△), the probability of getting observation O needs to be summed over 

all possible state sequences S. 

For a fixed state sequence S = S1 S2 … ST, the probability of getting observation O is 

given by product of P (O/ S,  ) (the probability of observation O, given state sequence S 

and model  ) and P (S | △) (the probability of state sequence S itself). Thus 

    △        △      △  (1) 

where 

       △                                        (2) 

and 

      △                                (3) 

To find the total probability of observation O for all state sequences, equation (1) is 

summed over all possible state sequences, that is 

     △          △  

     

     △  (4) 

This mechanism is pictorially shown in Figure 1, where one such state sequence S is 

made red. 
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Although this method is quite straight forward, it is very much computationally 

expensive, involving (2T-1)*N
T
 multiplications and (N

T
-1) addition which is of an order 

of 2T* N
T
. For N = 6 and T= 80, the number of calculations comes out to be 2*80*6

100
, 

a number that is computationally infeasible. 

Fortunately there exists an efficient algorithm known as forward–backward algorithm, 

which greatly reduces the number of computations. Forward–backward algorithm is an 

iterative process and is briefly explained here. 

Let‘s define a forward variable, αt (j) such that 

                       △  (5) 

This gives the probability of partial observation sequence O= O1 O2...Ot, till time t and 

being in state j at time t. 

αt (j) can be calculated inductively for successive values of t until t=T. Thus αT (j) gives 

the probability of getting observation O with final state being j. Summing αT (j) for all 

values of j gives the probability of observation O for all states sequences, which is the 

total probability of observation O. This process can be summarized as 

Figure 1 Evaluating probability of observation given model 

S4 

S3 

S2 

S1 

SN 

t=T t= T-1 t=2 t=1 
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a) Initialization 

                                (6) 

b) Iterations 

                    

 

   

                                (7) 

c) Final step, summation over all end states 

    △         

 

   

 (8) 

This iterative process greatly reduces the number of computation required compared to 

the direct method. The number of computations required, using forward variable is 

N*(N+1)*(T-1). For the system with N=6 and T=80, considered earlier the number of 

operations will become, 6*7*79=3318,  an order of magnitude smaller than the direct 

method. 

The above algorithm can also be implementing by defining a backward variable βt(j) as 

the probability of being in state j at time t with the partial observation sequence after 

time t being Ot+1 Ot+2 …OT, given the model  . The backward variable βt(j) can be used 

to calculate P(O/ ) in a way similar to that of forward variable αt(j). Equation (4) can be 

solved using either forward or backward variable, the backward variable is introduced 

here as they it is used in the solutions of second and third problem. Solution of equation 

(4) using backward variable is summarized as follows 

a) Initialization 

                
(9) 

b) Iterations 
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                              (10) 

c) Final step, the total probability of O 

    △                

 

   

 (11) 

2. Second Problem (decoding) 

The second problem is, to find the state sequence S = S1 S2 … ST, that maximises the 

joint probability of observation O and state sequence S, that is P(O,S/ ). 

Contrary to the first problem that has a unique solution, second problem may have 

different solutions depending on the definition of ‗optimality criteria‘. Optimality 

criteria can be defined by optimising the probability of individual states, pair of states, 

and so on. The optimisation criteria based on optimising the probability of individual 

states is described first. 

Let‘s define a new variable  t(j) such that 

                △  (12) 

Where  t(j) is the probability of being in state j at time t given the observation O and 

model  . Equation (12) can be re-written in terms of forward and backward variables, 

αt(j) and βt(j) as 

       
           

    △ 
 

           

            
 
   

 (13) 

Equation (13) can be used to find the most likely state St at time t 

           
     

                  (14) 
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Equation (14) gives the best state at any time instance and entire state sequence can be then 

found by simply combining the individual states; however this method has a major limitation 

as it optimizes the probability of individual states with no regards to the resulting state 

sequence. In practice, some of the state sequences may not be allowed at all. A more practical 

way is to find out a single best state sequence S= S1 S2 S3…ST. This is commonly achieved by 

a method known as Viterbi algorithm, explained bellow. 

Let us define a quantity σt(j) as the ‗best path‘ of all the state sequences, prior to time t, and 

being in state j at t. Then 

          
         

                    △  (15) 

The best path for the time t+1 can then be given by 

             
 

                    (16) 

The best path (sequence of states) could be found by tracking the state S over all times that 

maximizes equation (16). This is achieved by defining a new variable ϕt(j). The mechanism 

for finding the best state sequence is described as 

a) Initialization 

                       

 

        

(17a) 

(17b) 

b) Iteration 

          
     

                     
     

     
 

            
     

              
     

     
   

  

(18a) 

 

(18b) 

c) End of iteration 

      
     

        

         
     

        

(19a) 

(19b) 
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d) Tracking best path 

                                (20) 

3. Third Problem (training) 

The third problem is a training problem where the HMM parameters, (A, B,  ) are 

adjusted such that P (O/ ) is maximized. No analytical solution exists to determine the 

exact values of A, B and  , however a number of iterative method have been proposed 

in literature, which locally maximise the value of P(O/ ). Out of these, the most 

popular one is Baun-Welch re-estimation algorithm, explained in the following. 

Let‘s define a variable  t (i,j) such that 

                        △  (21) 

 t(i,j) is the probability that the system is in state i at time t and state j at time t+1 conditional 

upon the observation O and model  , as shown in Figure 2. 

  t(i,j) can be expressed in terms of forward and backward variables, αt(i) and βt(i) as 

         
                          

    △ 
 

 
                          

                            
 
   

 
   

 

 

 

(22) 

Si Sj 

t-1 t t+1 t+2 

αt(i) βt+1(j) 

aijbj(Ot+1) 

Figure 2 Baun-Welch re-estimation; states of the system at time t and t+1 
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Here the denominator is a scaling factor that makes it a probability measure. The variable 

 t(i,j)   can be related to the previously defined variable  t(j) (the probability of being in state j 

at time t given model   and observation O), as 

          

 

   

      (23) 

Similarly, summing  t(i,j) over t = 1 to t= T-1 gives the expected number of transitions from 

state i to state j and summing  t (i,j) over the same time interval gives transition from state i, 

that is 

   

   

 

                                                       

   

   

 

                                                

(24a) 

 

(24b) 

The parameters of model   can now be found as follows 

                                                      (25) 

The state transition probability  

     
                                         

                                    
 

 
   

   
      

   
   
    

 

(26a) 

 

(26b) 

and 

     
                                                      

                             
 

  
   

 
      

   
 
      

 

(27a) 

(27b) 
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The model parameters thus obtained can be reused to find its second estimates. The first 

set of parameters is denoted as  1   ( i (1), aij(1), bj(1)(k)) and the second as  2   ( i(2), 

aij(2), bj(2)(k)). When  1    2, this is the optimal set of parameters, otherwise the 

iterative process is repeated until two consecutive estimates with same value are 

obtained. 


