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ABSTRACT

Selected Topics in Video Coding and Computer

Vision

Congxia Dai

Video applications ranging from multimedia communication to computer vision have been

extensively studied in the past decades. However, the emergence of new applications

continues to raise questions that are only partially answered by existing techniques.

This thesis studies three selected topics related to video: intra prediction in block-based

video coding, pedestrian detection and tracking in infrared imagery, and multi-view video

alignment.

In the state-of-art video coding standard H.264/AVC, intra prediction is defined on

the hierarchical quad-tree based block partitioning structure which fails to exploit the

geometric constraint of edges. We propose a geometry-adaptive block partitioning struc-

ture and a new intra prediction algorithm named geometry-adaptive intra prediction

(GAIP). A new texture prediction algorithm named geometry-adaptive intra displace-

ment prediction (GAIDP) is also developed by extending the original intra displacement

prediction (IDP) algorithm with the geometry-adaptive block partitions. Simulations on

various test sequences demonstrate that intra coding performance of H.264/AVC can be

significantly improved by incorporating the proposed geometry adaptive algorithms.

In recent years, due to the decreasing cost of thermal sensors, pedestrian detection

and tracking in infrared imagery has become a topic of interest for night vision and all

weather surveillance applications. We propose a novel approach for detecting and track-

ing pedestrians in infrared imagery based on a layered representation of infrared images.

Pedestrians are detected from the foreground layer by a Principle Component Analysis

(PCA) based scheme using the appearance cue. To facilitate the task of pedestrian track-

ing, we formulate the problem of shot segmentation and present a graph matching-based

tracking algorithm. Simulations with both OSU Infrared Image Database and WVU In-

frared Video Database are reported to demonstrate the accuracy and robustness of our

algorithms.



Multi-view video alignment is a process to facilitate the fusion of non-synchronized

multi-view video sequences for various applications including automatic video based

surveillance and video metrology. In this thesis, we propose an accurate multi-view video

alignment algorithm that iteratively aligns two sequences in space and time. To achieve

an accurate sub-frame temporal alignment, we generalize the existing phase-correlation

algorithm to 3-D case. We also present a novel method to obtain the ground-truth of

the temporal alignment by using supplementary audio signals sampled at a much higher

rate. The accuracy of our algorithm is verified by simulations using real-world sequences.
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Chapter 1

Introduction

Over the past two decades, the rapid growth of imaging, computing and communica-

tion technologies has stimulated the prominent emergence of many video applications.

Modern video based applications heavily rely on two categories of techniques: video

processing and computer vision. Video processing mainly deals with the problems of

employing mathematical tools to achieve enhanced visual quality or compact represen-

tation of video signals. Examples of video processing include video restoration, supper

resolution, and compression. The goal of computer vision is to endow computers with

the ability to understand imagery. Applications such as object detection, tracking and

recognition, and video content analysis have received increasingly more attention in re-

cent years. In this thesis, we choose to study three specific topics from both categories,

and present novel approaches to attack these problems. The selected topics are intra

prediction in block-based video coding, pedestrian detection and tracking for infrared

imagery, and multi-view video alignment.

1.1 Intra Prediction for Video Coding

Video coding is a technique used to achieve compact representations of video data by

removing their redundancies. Because of their large size, video signals have to be com-

pressed for transmission and storage purposes. Therefore since 1980’s, video coding has

been a research topic of great interest in both academia and industry, and a wide variety

1



CHAPTER 1. INTRODUCTION 2

of video coding algorithms [1–7] have been proposed. Among the existing video coding

strategies, block-based hybrid video coding is the most widely used due to its applicability

to a broad range of video content and adaptability for hardware implementations. There-

fore all the existing video coding standards (e.g. MPEG-1, MPEG-2, H.263, MPEG-4

and H.264/AVC, etc.) belong to this category. Block-based video coding systems have

two coding modes: inter coding and intra coding. Inter coding models the current video

frame by referencing to other video frames. Intra coding essentially treats a video frame

like a still image. Since the temporal redundancy is higher than the spatial redundancy,

inter coding usually contributes more to the overall compression efficiency than intra

coding in block-based video coding systems. Therefore, during the development of block-

based video coding, significant research activities have been focused on the optimization

of inter coding algorithms.

However, intra coding is also important for at least the following reasons: intra re-

freshment, error resilience, and special video play modes (fast forward and reverse). The

intra coding procedure in current popular block-based video coding systems is usually

comprised of intra prediction, transformation, quantization, and entropy coding. Where

intra prediction functions as a modeling procedure of the current block of data with

previously coded information of the same video frame, and prediction errors (residues)

are transformed, quantized, and encoded by certain entropy coding techniques. There-

fore, a properly designed intra prediction algorithm reduces the redundancy of prediction

residues leading to the improvement of the intra coding efficiency. Unlike inter prediction,

early block-based video coding systems (e.g. H.261, MPEG-1) do not have an explicit

intra prediction procedure for intra coding. The intra coding scheme of MPEG-1 for ex-

ample is conceptually similar to JPEG the image coding standard. Indeed, the concept

of intra prediction was first introduced in H.263+ where the prediction algorithm was

built in the domain of DCT (Discrete Cosine Transform) transform coefficients [8]. In

H.264/AVC the state-of-art video coding standard, intra prediction scheme is designed

based on a hierarchical qual-tree block partitioning structure. According to the compar-

ative study conducted in [9], the intra coding scheme of H.264/AVC outperforms the still

image coding standard JPEG and achieves comparable performance to JPEG2000.
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Despite the superior performance, the intra coding scheme of H.264/AVC is not op-

timized. One possible improvement originates from the limitation of using quad-tree

block partitioning structure to represent natural images. Since natural images are often

approximated by 2D signals with piecewise smooth characteristics, studies in approxi-

mation theory have shown that quad-tree block partitioning structures are suboptimal

for such models in terms of rate and distortion (R-D) [10, 11]. This limitation is mainly

due to the fact that quad-tree based structures fail to exploit the geometric constraint of

edges [12].

Based on this observation, we propose a geometry-adaptive block partitioning struc-

ture to exploit geometric constraint along image edges for enhancing the intra coding

performance of block-based video coding systems. Upon the the proposed geometric

block partitions, a set of prediction/modeling schemes have been designed to generate

pixel predictions for the partitioned regions. This intra prediction algorithm is referred to

as geometry-adaptive intra prediction (GAIP). Simulation results show that when com-

pared to standard intra prediction schemes of H.264/AVC, the proposed GAIP algorithm

provides more efficient representation of piecewise smooth image regions, and therefore

leads to enhanced intra coding performance.

Modeling texture information of images is a very challenging task for the intra video

coding purpose. Local prediction schemes often give poor performance on texture pat-

terns. Therefore, in [13–16], algorithms have been proposed to model image texture

patterns via nonlocal information. In this thesis, we also study the problem of modeling

texture information for intra video coding by extending the intra displacement predic-

tion (IDP) algorithm presented in [13] with our geometry-adaptive block partitioning

structure. The resulting algorithm is named as geometry-adaptive intra displacement

prediction (GAIDP). Experimental results show that the GAIDP algorithm is efficient to

model texture patterns that reappear within the same video frame. More importantly,

we demonstrate that when the GAIP and GAIDP algorithms are jointly enabled in an

H.264/AVC video coding system, the intra coding performance can be significantly im-

proved by approximately 6.9% average bit savings or equivalently 0.45dB average PSNR

gain on twelve standard test video sequences.
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1.2 Pedestrian Detection and Tracking in Infrared

Imagery

The first computer vision problem we tackle is pedestrian detection and tracking for

infrared imagery. Pedestrian detection and tracking in visible spectrum has been exten-

sively studied over past decades, and various algorithms [17–30] have been developed to

meet the challenges arising from the variety of body pose, clothing, illuminating condi-

tion, and occlusion. Successful pedestrian detection and tracking algorithms in visible

spectrum have been applied to many important applications from video surveillance to

intelligent vehicles. However under certain circumstances such as night conditions or

bad weathers, sensing in visible spectrum becomes infeasible, which calls for the imaging

modalities beyond visible spectrum. In recent years, the cost of thermal sensors has

dramatically reduced and infrared (IR) sensors with high dynamic range and sensitivity

have become widely deployed in night-vision and all-weather surveillance applications.

Stimulated by the decreasing cost of IR sensors, a flurry of research works [31–35] on

pedestrian detection and tracking for infrared imagery have emerged.

In the visible spectrum, the human vision system (HVS) is often used as the bench-

mark for the robustness and accuracy of machine vision systems. However, as we enter

the infrared spectrum, there are several critical questions to be considered: Are the tech-

niques developed in visible spectrum directly applicable to IR imagery? How can we

efficiently represent IR images for object detection and tracking purposes? Is simulating

HVS still the right approach, if objects are invisible to human eyes but still detectable

by thermal sensors? All these questions suggest that for object tracking and classifi-

cation beyond the visible spectrum (OTCBVS), physical principles of various imaging

modalities become more relevant than psychophysics. Therefore, we argue that it is the

mathematical modeling of sensor data instead of HVS that plays the fundamental role

in OTCBVS.

In this thesis, we present a new approach towards pedestrian detection and tracking

for infrared imagery using the appearance cue. In the proposed technique, a layered

representation is first introduced and a generalized expectation-maximization (EM) al-

gorithm is developed to separate infrared images into background (still) and foreground
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(moving) layers regardless of camera panning. To accurately locate individual pedestri-

ans from the foreground layer, the appearance cue is employed via a modified Principle

Component Analysis (PCA) algorithm. PCA templates with varying sizes are sequen-

tially applied to detect pedestrians at multiple scales to accommodate different camera

distances. To facilitate the task of pedestrian tracking, we formulate the problem of

shot segmentation and present a graph matching-based tracking algorithm that jointly

exploits the appearance and distance information. Experimental results with both the

OSU Infrared Image Database and the WVU Infrared Video Database are reported to

demonstrate the accuracy and robustness of our algorithm.

1.3 Multi-view Video Alignment

The second computer vision problem that we want to study in this thesis is multi-view

video sequence alignment. Many video applications often require video sequences of high

spatial and temporal resolutions. Examples include automatic video-based surveillance

[36, 37], video metrology for athletic events [38], video-based modeling and rendering of

3-D scenes [39], and tele-immersion [40]. However any single video camera has limited

spatial and temporal resolutions. Therefore a flexible and cost efficient way to achieve

higher spatial and temporal resolutions is to fuse video sequences shot by multiple low

cost cameras. Video alignment is a technique that manipulates multiple video sequences

to facilitate this fusion purpose. In recent years, various algorithms for aligning video

sequences have been proposed [41–45].

In this thesis, we propose an accurate technique for temporally aligning two video

sequences of the same scene captured by non-synchronized cameras. An iterative pro-

cedure is proposed to successively align the sequences in space and time; The existing

two-dimensional phase-correlation method [46] is generalized into three dimensions to

achieve sub-frame accuracy. The ground-truth1 of sub-frame temporal alignment is ob-

tained by using supplementary audio signals sampled at a much higher rate. The accuracy

1To assess the accuracy of our algorithm, we recorded together with each video sequence a piece of
audio signal. Since they have a much higher sampling rate, the alignment of audio signals provides much
more accurate estimates of temporal displacements, and therefore can be used as the ground-truth for
the video alignment.
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of our technique is demonstrated by experimental results using real-world sequences.

1.4 Organization and Contributions

In this thesis, we study three selected topics from video coding and computer vision. For

each topic we shall start with our motivation on why we choose to study it by presenting

related background information. Then theoretical analysis of the selected problem from

our own point of view will be presented. Based on the analysis, we shall describe in

detail our approaches to attack these problems. Extensive simulations will be reported

and discussed to verify the effectiveness of the proposed approaches. Finally, we shall

conclude each topic by providing some perspectives on its future research directions.

Chapter 2 of this thesis studies the problem of intra prediction in block-based video

coding. We shall start with theoretical analysis of the limitations of the intra predic-

tion schemes of the state-of-art video coding standard H.264/AVC. Noticing that the

quad-tree based block partitions fail to exploit the redundancies along image edges, we

present a novel geometry-adaptive block partitioning structure. Based on the geometric

block partitions, a new intra prediction scheme named geometry-adaptive intra prediction

(GAIP) is proposed. To explore the problem of modeling texture information for intra

video coding, we extend the existing intra displacement prediction (IDP) algorithm with

our geometry-adaptive block partitions. The new texture prediction algorithm is referred

to as geometry-adaptive intra displacement prediction (GAIDP). simulations on both the

GAIP and GAIDP algorithms are reported and discussed to verify their effectiveness.

In Chapter 3 we propose a novel approach for pedestrian detection and tracking in

infrared imagery by exploiting the appearance cue. In our algorithms, a layered repre-

sentation is first introduced to separate infrared images into background (still) and fore-

ground (moving) layers. Pedestrian detection is accomplished in the foreground layer by

using the appearance cue. The tracking task is formulated as a graph matching problem

where the correspondent assignment between individual pedestrians of successive video

frames is measured by exploiting both the geometric approximity and the appearance

similarity. To address the problem of temporal discontinuities caused by scene changes

and non-uniform temporal sampling rates, a shot-segmentation algorithm is developed to
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cut a sequence into several temporally correlated shots. The tracking task is performed

within each segmented shot. In order to better understand as well as to demonstrate the

effectiveness of the proposed algorithms, simulations with both the OSU thermal image

database and WVU infrared video database are presented and discussed at the end of

this chapter.

Chapter 4 deals with the problem of multi-view video alignment. we present an ac-

curate video alignment algorithm using phase correlation. Noticing that the spatial and

temporal alignments of two non-synchronized video sequences of the same dynamic scene

are intertwined with each other, we propose an iterative procedure to successively align

the sequences in space and time. To achieve sub-frame accuracy of the temporal align-

ment, we generalize the existing 2-D phase-correlation algorithm to 3-D case. Another

contribution of our work is that we invent a simple but accurate method to obtain the

ground-truth of temporal alignment by utilizing supplementary audio signals sampled at

a much higher rate.

In Chapter 5, we present concluding remarks for this thesis and provide possible

directions of future research.



Chapter 2

Geometry-Adaptive Intra Prediction

for Video Coding

2.1 Introduction

Due to their huge size, transmitting and storing raw video data can easily swamp any

practical communication and storage resources. For example, a video sequence of CIF

resolution with 8-bit precision per pixel sampled at 30 frames per second requires a data

rate of 36.5Mbit/s. Consequently, digital video must be compressed in order to make a

better use of available transmission and storage resources.

Generally speaking, video coding is a process that removes the spatial and temporal

redundancies of video signals to reduce the size of their digital representations. Based on

the fidelities of the compressed video sequences to their original formats, video coding

schemes can be divided into two classes: lossless video coding and lossy video coding.

In lossless video coding [47], the primary target is to pursue without any distortion the

most compact descriptions of video sources which are given by their entropies according

to Shannon’s theory [48]. Comparing to the lossless case, lossy video coding often achieves

much higher compression by allowing distortions with acceptable perceptual quality loss.

Therefore, the ultimate goal of lossy video coding is to find the optimal tradeoff between

the bit rate and the perceptual quality. In this chapter we shall focus on lossy video

coding.

8
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Due to the rapid growth of multimedia communication and processing in the past

two decades, video coding has experienced a fast and steady progress. Since 1980’s, two

international standardization organizations ISO and ITU-T have released recommenda-

tions for universal video coding standards [49]. In 1991, ISO released the first draft of

MPEG-1 [50] for audiovisual storage on CD-ROM, and MPEG-2 [51] (ITU-T H.262)

was released in 1994 for HDTV applications. ITU-T released their first video coding

standard H.261 [52] for ISDN networks in 1993. After that the ITU-T H.263 [53] video

coding standard was released in 1996 for low bit rate communications over PSTN net-

works followed by its extensions: H.263+ [8] and H.263++ released in 1998 and 1999

respectively. In 2003, JVT (Joint Video Team) released the final draft of the newest video

coding standard H.264/AVC [54] which is also known as MPEG-4 [55] part 10. It is well

accepted that H.264/AVC represents the current state-of-art video coding technique for

the following reasons: First, H.264/AVC provides services to a broad area of multimedia

communication applications ranging from low bit rate, low complexity video streaming

over wireless and mobile networks to high bit rate, high quality HDTV broadcasting over

cable networks. Second, H.264/AVC has been reported to achieve 50% average bit rate

savings over H.263 or MPEG2 for equivalent perceptual quality [56].

In addition to the standardization activities, a variety of video coding techniques

have been proposed from different perspectives of modeling video contents. Segmenta-

tion based video coding [1, 2] splits video frames into arbitrary shaped regions based on

rate and distortion criterion, and the information (region shape, motion, and texture)

required for representing each segmented region is encoded separately. Model based video

coding [3–5] employs a set of predefined models (3D object model, illumination model,

and camera model) to describe the 3D scene. At the encoding stage, the models are

manipulated and deformed to adapt to the video content. Then the analyzed model

parameters and matching errors are encoded and transmitted. The decoder reconstructs

the video content by synthesizing the 3D scene using the received information. Sub-band

video coding [6,7] decomposes video signals into a number of frequency bands using a set

of filter banks in both the spatial and the temporal domain. The transform coefficients in

each sub-band are quantized and encoded. Compression is obtained by carefully designed

adaptive bit allocations in different frequency bands. Because of its inherently embedded
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nature, sub-band video coding owns a scalable coding structure which is desirable to

many video transmission applications with variable bandwidth constraints.

Block-based hybrid video coding is the most widely used video coding technique,

whose popularity mainly comes from its generality, computational simplicity, and adapt-

ability of hardware implementations. Therefore, all of the aforementioned mainstream

video coding standards belong to this category. In block-based hybrid video coding, each

video frame is partitioned into macroblocks first. During the encoding process, mac-

roblocks are predicted, transformed, quantized, and encoded by some entropy coding

technique. Most block-based video coders have two basic coding modes: intra and inter

modes. In intra coding mode, a macroblock is predicted using the spatial information of

the current video frame. While in the inter mode, a macroblock is predicted by exploiting

the temporal redundancies among successive video frames. Normally in a block-based

hybrid video coding system, the inter coding mode achieves higher compression efficiency

than the intra coding mode with comparable visual quality. This is due to the fact that in

most video signals temporal redundancy is much higher than the spatial one. Therefore,

during the development of block-based hybrid video coding, researchers have devoted

more attentions to optimizing the performance of the inter coding.

However, intra coding is also important for at least the following reasons: First, since

an inter coded video frame is predicted from the previously coded frames, an sequence

of successively inter coded frames suffers quality degradation due to the accumulation

of quantization errors. Therefore, an intra coded frame is usually required to refresh

the frame quality after a certain number of inter coded video frames. Second, many

multimedia services, such as mobile TV and mobile teleconferencing applications, require

transmitting compressed video data over networks of varying bandwidth and error rate

characteristics. Transmission errors appearing in the coded bitstreams may lead to serious

problems at the decoding process. In these transmission applications, properly increasing

the portion of intra coded data in coded bitstreams is a way to relieve error propagation

problems and enhance the error robustness of compressed video data [49].

Aiming at enhancing the coding efficiency of the intra mode in block-based video

coding, in this chapter, we present a novel geometry-adaptive intra prediction scheme

in which wedgelet like discontinuities are used to defined separate coding regions where
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different statistical/waveform modeling tools can be used. To verify the proposed in-

tra prediction scheme, we have implemented it under the framework of the state-of-art

video coding standard H.264/AVC. Extensive experimental results show that when in-

corporated with the proposed intra prediction scheme, the efficiency of H.264/AVC intra

coding can be significantly improved. The rest of this chapter is organized as follows:

Section 2.2 reviews existing intra prediction schemes for block based video coding. In

section 2.3 we discuss in detail our geometry-adaptive block partitioning scheme for intra

prediction. In section 2.4 we extend the existing intra displacement prediction schemes

by applying the proposed geometry-adaptive block partitioning structure to address the

problem of modeling texture regions in intra coding. Finally, concluding remarks of this

chapter are presented in section 2.5.

2.2 Overview of Existing Intra Prediction Schemes

Intra prediction is an effective procedure to reduce spatial redundancy of video data in

intra video coding. In current block-based video coding systems, the intra predicted

sample block is subtracted from the original block and the resulting residual block is

transformed, quantized, and coded by certain entropy coding technique. The first intra

prediction scheme was introduced as the Advanced Intra Coding Mode in H.263+ video

coding standard [8], where intra prediction is performed in the block DCT (Discrete

Cosine Transform) domain with three prediction modes: DC, Vertical DC and AC, and

Horizontal DC and AC. In the DC mode, only the DC coefficient of the current 8x8

block is predicted from its above and left neighbors. In the Vertical/Horrizontal DC and

AC mode, the DC and first row/column of AC coefficients of the current 8x8 block are

vertically/horrizontally predicted from those of the block to the above/left.

In H.264/AVC video coding standard [54], intra coding is based on a hierarchical

quadtree-partition of the luminance component of an intra 16x16 macroblock into four

8x8 blocks (INTRA8x8) or sixteen 4x4 blocks (INTRA4x4). For each block size, a set

of intra prediction schemes using decoded causal neighbor information, have been care-

fully designed as follows: There are four prediction modes (Vertical, Horizontal, DC,
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Figure 2.1: INTRA16x16 prediction modes in H.264/AVC.

and Plane) defined for INTRA16x16 macroblocks, and nine prediction modes (eight di-

rectional predictions, and DC) defined for INTRA8x8 and INTRA4x4 blocks. The pre-

diction modes for INTRA8x8 luminance blocks and INTRA4x4 blocks are just similar.

Besides, the two 8x8 Chrominance blocks have four prediction modes which are similar

to those defined for INTRA16x16 luminance blocks except that the orders of the Vertical

and DC modes are switched. The prediction modes of INTRA16x16 and INTRA4x4

luminance blocks are illustrated in Fig. 2.1 and Fig. 2.2 respectively. At the encoding

stage, a rate and distortion (R-D) optimization procedure selects the best macroblock

partition and associated prediction modes among all the possible choices.

This intra prediction scheme together with enhanced prediction residue coding proce-

dures have significantly improved the intra coding efficiency of H.264/AVC over previous

video coding standards such as H.263+ and H.263++ [56]. Moreover, in [9] performance

comparisons between intra coding of H.26L (the prototype of H.264/AVC) and existing

still image coding standards (JPEG and JPEG2000) were conducted. Based on the ex-

perimental results, the author concluded that over a wide range of targeted bit rates,

H.26L significantly outperforms JPEG in both objective (PSNR) and subjective mea-

sures. Although on average, JPEG2000 performs slightly better than H.26L, for small
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Figure 2.2: INTRA4x4 prediction modes in H.264/AVC.

sized images at low bit rates, H.26L can achieve higher coding gain than JPEG2000

with less perceptual artifacts. According to [9], the superior performance of H.264/AVC

intra coding indeed attributes to the quadtree-based block partition structure and the

directional prediction schemes shown in Fig. 2.2. First of all, the quad-tree partitioning

structure adapts automatically to the non-stationary nature of natural images: bigger

blocks are often used to represent smooth regions, while smaller blocks tend to aggregate

around edges or textured regions. Second, directional prediction schemes exploit some

geometric redundancy by extrapolating previously decoded neighboring pixels [56].

Despite the aforementioned advantages, H.264/AVC intra prediction strategy can

still be further improved. First, the quadtree-based block partition structure is not R-D

efficient to represent piecewise smooth images. For instance, if we consider a piecewise

smooth image model illustrated in Fig. 2.3 where two different smooth regions, with

different smoothness properties, are separated by an edge, small blocks will tend to

accumulate around the boundary due to the difficulty of predicting both regions with a

single model. In near-edge areas, tree-based partition leads to separately code different

blocks with similar data with unnecessary overhead. In effect, H.264/AVC standard

does not take into account large scale geometry in images for efficient intra coding.
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Quatree Based: :Geometry Based

   Vertically Oriented Texture

    Horizontally Oriented Texture

Figure 2.3: Quadtree (Left) vs Geometry (Right) partitioning of 2D piecewise smooth
signals.

Second, as shown in Fig. 2.1 and Fig. 2.2, the intra prediction modes of H.264/AVC

rely on the neighboring decoded pixels (predictors). Sometimes, pixels located farther

from these predictors can not be well modeled, leading to higher prediction errors and

losses in coding efficiency. This case is shown in Fig. 2.4 where a region of the Foreman

image predicted by H.264 is displayed. Obviously H.264 intra prediction scheme performs

poorly around the edges in Fig. 2.4. As we can imagine, these inaccurate predictions will

generate high prediction errors leading to the loss of coding efficiency. Based on these

observations, in section 2.3 we present in detail a novel way of representing intra video

data, called geometry-adaptive intra prediction (GAIP). Specifically, we will demonstrate

that theoretically geometry-adaptive block partition is R-D more efficient than the quad-

tree based block partition for representing signals with piecewise smooth characteristics.

In addition to the better partitioning structure, geometry-adaptive block partition also

provides the flexibility of representing each partitioned region with different modeling

tools and this flexibility helps to mitigate some of the limitations of intra prediction

schemes used in H.264/AVC therefore reducing the prediction error around edge regions

as shown in Fig.2.4.

Natural images usually contain plentiful texture information which is highly non-

stationary and abundant of high frequency components. However H.264/AVC intra pre-

diction schemes (as illustrated in Fig. 2.1 and Fig. 2.2) are not able to model texture
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Figure 2.4: H.264 intra prediction result: Left (original image), Right (predicted by
H.264)

information well. One possible explanation is that complex texture patterns are dif-

ficult to be predicted by simple low frequency operations (extrapolation along certain

directions) using limited local information. In recent years, several texture prediction

techniques [13–16] have been proposed to facilitate the modeling of texture information

of intra video data by exploiting the available non-local information within the same

video frame. In section 2.4, we study the problem of modeling intra video data via tex-

ture prediction. To do this, we extend the intra displacement prediction (IDP) algorithm

proposed in [13] by incorporating our geometry-adaptive block partitioning structure pro-

posed in section 2.3. We show that this geometry-adaptive intra displacement prediction

(GAIDP) when jointly applied with the GAIP algorithm described in section 2.3 can

significantly improve the intra coding performance of H.264/AVC.

2.3 Geometry-Adaptive Intra Prediction

In this section, we present in detail the concept of the geometry-adaptive intra prediction.

We shall start with the motivations for introducing the geometry-adaptive intra predic-

tion. Then we discuss the geometry-adaptive intra prediction by defining geometry-based

block partitions together with the predicting/modeling tools for the partitioned regions.

In section 2.3.4, we show how the geometry-adaptive intra prediction is incorporated in

the standard H.264/AVC intra coding scheme. At the end of this section, simulation

results will be presented to demonstrate the effectiveness of the geometry-adaptive intra

prediction.
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2.3.1 Motivations

Natural images are often approximated by two-dimensional signals with piecewise smooth

characteristics, especially for low bit rate representations. Considering such a signal

model, it has been shown that quadtree-based structures are R-D suboptimal for coding

purposes [10, 11]. This is because tree partitioning, with homogeneous approximation

models within leaves, is often unable to exploit the redundancy along region boundaries.

As shown in Fig. 2.3, one may intuitively consider that a good compression approach

should exploit region shapes and code, with no further splitting, each one of the disjoint

regions with homogeneous characteristics: P0 and P1. This is what has been actually

proved in terms of R-D for the case of piecewise-smooth images in [10], where the authors

show that distortion reduces with the rate, in a way close to the optimal, when wedge-like

partitions are used within tree leaves to code piecewise-smooth images, having smooth

contours. To help readers better understand this motivation, here we briefly describe the

theoretical analysis presented in [10].

Figure 2.5: A simple piecewise smooth image model.

Consider a simple piecewise smooth image model (in Fig. 2.5) f(x, y) defined as

follows:

f(x, y) =

{
1, if b(x) ≤ y

0, otherwise
(2.1)

Where (x, y) ∈ [0, 1] × [0, 1], and b(x) ∈ Cp is the smooth partitioning curve which is p-

times continuously differentiable and has a finite length. An optimal way (Oracle based
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method) to code this image is to spend all available bit rate R to coding the partitioning

curve b(x). Assume that b̂(x) and f̂(x, y) are the coded versions of b(x) and f(x, y)

respectively. Then the resulting distortion function Dopt(R, f) should be written as:

Dopt(R, f) =
∫

(x,y)∈[0,1]2
(f(x, y)− f̂(x, y))2dxdy

≤ ∫
x∈[0,1]

|b(x)− b̂(x)|dx

≤ (
∫

x∈[0,1]
(b(x)− b̂(x))2dx)1/2

= (D(R, b))1/2

Since it is proven in [57] that coding a 1D curve b(x) ∈ Cp using a proper wavelet basis

can result in a distortion D(R, b) ∼ R−2p, the oracle based method for coding the image

f(x, y) will have a R-D performance as:

Dopt(R, f) ∼ R−p (2.2)

When a quad-tree based wavelet1 coder is used for this image model, at level j, wavelet

basis functions have a support size of 2−j. Denote nj the number of dyadic squares at

level j intersecting with the curve b(x). Then nj ∼ 2j as illustrated in Fig. 2.6. Therefore

there are O(2j) significant wavelet coefficients at level j. If the wavelet decomposition is

Figure 2.6: Quad-tree based wavelet decomposition of a piecewise smooth image.

performed up to level J , the total number of nonzero wavelet coefficients to be coded is

1Please note that any specific tools for representing the quad-tree partitioned blocks is not essential
here. Wavelet is used to keep the analysis mathematically tractable.
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NJ ∼
J∑

j=0

2j ∼ 2J . Assuming wavelet coefficients decay like Cj,k ∼ 2−j at level j, then

a quantization step size of ∆ ∼ 2−J is fine enough to code all nonzero coefficients. In

other words, J bits are required to represent each nonzero coefficient. Therefore the total

number of bits required to code the nonzero wavelet coefficients up to level J is:

R ∼ NJJ ∼ J2J . (2.3)

The total distortion is the sum of the quantization error and wavelet series truncation

error:

Dtree(R, f) ∼ NJ∆2 +
∞∑

j=J+1

nj2
−j

∼ 2−J

(2.4)

Combining Eq.(2.3) and Eq.(2.4), we derive the R-D performance of the quadtree-based

wavelet coder:

Dtree(R, f) ∼ log R

R
(2.5)

Now let us discuss the geometry-adaptive coding algorithm proposed in [10]. In

this algorithm, the image is also decomposed into dyadic squares using quad-tree based

partitions. The difference is that each dyadic square (edge node) that intersects with the

edge curve b(x) is represented by a Wedgelet mode which consists of two smooth regions

separated by a straight line. In this way, the smooth curve b(x) is actually approximated

by the concatenation of line segments as shown in Fig.2.7. Assume that when this coding

scheme is applied to the image in Fig. 2.5, the quad-tree based partitioning is performed

up to level J , then the smallest dyadic square will be of size 2−J , and 2J bits will be

used to code the two vertices of the wedgelet within an edge node. Also notice that

as illustrated in Fig. 2.7 we need 2 bits to indicate the type of each node within the

tree, which can be one of the following: black, white, edge, or intermediate (an edge

node that is further split). Denote Na and Ne the number of total nodes and edge nodes

respectively. Then the total number of bits required for coding this image is:

R = 2Na + 2JNe
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Figure 2.7: Wedgelet representation of a piecewise smooth image. Wedgelets are denoted
by green line segments.

Since Na is bounded by Na ≤ 2J (in Fig.2.6), and Na ≥ Ne, the total number of bits can

be written as:

R ∼ J2J (2.6)

Denote b̂(x)the line segment representation of the curve b(x). Since the size of the smallest

dyadic square is 2−J , and the quantization step size of the vertices of each line segment

is ∆ = 2−J (J bits for each vertex), the maximum distance between b(x) and b̂(x) is

bounded by:

max
x∈[0,1]

|b(x)− b̂(x)| ≤ C∆2−J = C2−2J

Therefore the total distortion can be written as:

Dtree+wedgelet(R, f) =
∫

(x,y)∈[0,1]2
(f(x, y)− f̂(x, y))2dxdy

≤ ∫
x∈[0,1]

max |b(x)− b̂(x)|dx

≤ C2−2J

(2.7)

Combining Eq.(2.6) and Eq.(2.7), the R-D performance of this Wedgelet coder can be

shown as:

Dtree+wedgelet(R, f) ∼ log R

R2
(2.8)

Comparing Eq.(2.2), Eq.(2.5), and Eq.(2.8), we can conclude that quad-tree based
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coding algorithm is R-D less optimal than the method incorporated with Wedgelet rep-

resentations for coding piecewise smooth signals as defined in Eq.(2.1). If the edge curve

b(x) ∈ C2, the wedgelet coding algorithm approaches the oracle based method in terms

of R-D.

In addition to the theoretical improvements, when modeling piecewise smooth images,

geometry-adaptive block partitioning allows to adaptively select different models for each

partition depending on the signal while considering the geometric structure of object

boundaries. This may help to mitigate some of the limitations of intra prediction schemes

used in H.264/AVC, e.g. reducing the prediction error around edge regions as shown in

Fig.2.4. Unlike quad-tree based partitions where a uniform predicting scheme is used

for each block, the geometry based structure automatically provides the flexibility to

represent a block with two different models either from the neighboring predictors or

by the statistics from within the partitioned regions, at the same time when object

boundaries can be described.

2.3.2 Definition of Geometry-Based Block Partitions

In this section, based on previous discussions, we present the definition of geometry-based

block partitions to extend the intra coding scheme of H.264/AVC. Ideally the geometric

single-edge representation of a block can be modeled by an arbitrary parametric curve

f(x, y, ~p), where ~p represents the model parameters. In our current work, a first order

polynomial model is adopted to generate the splitting Wedgelets for quad-tree partitioned

blocks within a video frame. Although our work focuses on intra coding, we notice that

the concept of Wedgelet-based block partitions has been proposed elsewhere [58, 59] for

the inter coding purpose.

Given a block of finite size L, a partitioning line segment within this block can be

implicitly defined by its level-set [60] parametric model:

f(x, y, ~p) = x cos θ + y sin θ − ρ, (x, y) ∈ [−L/2, L/2]2 (2.9)

where ~p = [ρ, θ] are model parameters, and ρ and θ represent respectively the partitioning

radius and angle as illustrated in Fig. 2.8. Based on this parametric line mode, geometric



CHAPTER 2. GEOMETRY-ADAPTIVE INTRA PREDICTION FOR VIDEO CODING 21

ρ

θ

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 2.8: Left: Line partition of a block based on geometric parameters θ and ρ. Right:
Example of wedge-like partition with θ = π/6 and ρ = 4. White color indicates one of
the partitions, black marks the complementary partition. Gray intermediate values show
“partial-surface” pixels.

partitions of the block are defined such that each pixel (x, y) ∈ [−L/2, L/2]2 ideally can

be classified as:

Partition(x, y) =





if f(x, y) > 0 Partition 0

if f(x, y) = 0 Line Boundary

if f(x, y) < 0 Partition 1

.

However due to the discrete nature of digital images, the partitioning line may cross some

pixels, and those pixels can not be classified to either partition. Hence, when building

the partition masks, they may be labeled as “partial surface” pixels (in Fig. 2.8), with a

label different from 1 and 0. “Partial surface” pixels can be labeled with some value in

between. This way of labeling also reflects how much “Partial surface” pixels are weighted

as if they are fully classified into each region (e.g. a value of 1 would be completely, 0.5

would be half-half, 0 nothing). Therefore the labeling of pixels is formally defined as:

Label(x, y) =





if f(x, y) ≥ 0.5 then 1

if 0.5 > f(x, y) > −0.5 then f(x, y) + 0.5

if f(x, y) ≤ −0.5 then 0

. (2.10)

As shown in Fig. 2.8, Label(x, y) = 1 indicates that pixel is included within one partition,
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and Label(x, y) = 0 indicates that it is within the complementary partition. The rest

values indicate, for that particular pixel, it is partially classified.

For coding purposes, line parameters (ρ and θ) can not be represented in their con-

tinuous form. Hence a dictionary of possible partitions is a priori defined as follows:

ρ : ρ ∈ [0,

√
2L

2
), ρ ∈ {0, ∆ρ, 2 ·∆ρ, . . . } ,

and

θ :

{
θ ∈ [0, π) if ρ = 0

θ ∈ [0, 2π) otherwise
, θ ∈ {0, ∆θ, 2 ·∆θ, . . . } .

In here, ∆ρ and ∆θ are the selected sampling steps for the radius and angle data respec-

tively. Depending on the target bit rate, these can be modified in order to maximize R-D

coding efficiency.

2.3.3 Predicting/Modeling Schemes for Partitioned Regions

Given the geometric block partitions defined in the previous section, we need to design

proper prediction methods for the partitioned regions. In this section we present two

predicting/modeling schemes (in Fig. 2.9) that are used to generate sample predictions

for the partitioned regions by exploiting either the neighboring decoded information or

the statics inside the partitioned regions.

Linear Directional Prediction

Considering a partitioned block of size N ×N together with 3N + 1 predictors (decoded

neighboring pixels), the directional predicting scheme is defined such that every pixel

p(x, y) inside a partitioned region is predicted along the predicting direction ϕ from

the predictors as shown in Fig. 2.9(a,b,c), where ϕ ∈ [0, π), ϕ ∈ {0, ∆ϕ, 2 ·∆ϕ, . . . }.
Depending on the number of intersecting points of the line passing through (x, y) with

orientation ϕ (e.g. the dashed lines in Fig. 2.9) and the coordinate axes, the pixel

value p(x, y) may be predicted in one of following three cases: 1) When there are two

intersecting points (x′, 0), and (0, y′) (in Fig. 2.9(a)), the pixel values of these intersecting
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p(x,y)=½[p(16,0)+p(0,8)]
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p’(x’,0)

x

y

P0

Figure 2.9: The linear directional predicting(a,b,c) and DC modeling(d) schemes for
partitioned regions (gray squares representing the neighboring predictors).

points: p′h(x
′, 0) and p′v(0, y

′) are interpolated from their nearest predictors. Then the

pixel value p(x, y) is linearly interpolated from p′h(x
′, 0) and p′v(0, y

′) along the direction

of ϕ; 2) When there is only one intersecting point, for example, the point (x′, 0) in

Fig. 2.9(b), p(x, y) is predicted by simply copying (extrapolated) the pixel value p′(x′, 0)

which is interpolated from its nearest predictors; 3) If there is no such intersecting point

within the range of the predictors, the prediction of pixel p(x, y) is set to be the average

of the two ending predictors (as shown in Fig. 2.9(c)). Note that each directional intra

prediction mode defined in H.264/AVC (in Fig. 2.2) generates sample predictions by only

copying the values of the predictors on one side of the block. While in our scheme, the

pixel value can be predicted from the predictors on both sides of the block. Therefore our

scheme may produce more accurate predictions at the price of moderate computational

complexity.

Linear directional prediction scheme requires to signal the decoder values of the pre-

dicting directions ϕ. Given a predefined quantization step size ∆ϕ, a straightforward

way is to code the index of ϕ with a fixed-length code by assuming ϕ a uniform distribu-

tion. However, recalling our piece-wise smooth assumption, it is reasonable to infer that

instead of being uniformly distributed, ϕ is more likely to be along the partitioning edge

than crossing it. Based on this observation, a better coding strategy is to differentially

code ϕ with respect to the partitioning edge orientation ω as illustrated in Fig. 2.10,
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ϕ ω

Figure 2.10: Predicting direction ϕ is differentially coded with respect to the partitioning
edge orientation ω.

where ω is derived from the partitioning line parameter θ by ω = θ± π
2
. Denote δ = ϕ−ω

the difference between the predicting direction and the partitioning edge orientation, and

let the quantization step sizes ∆ϕ and ∆θ to be multiples of each other. To guarantee a

fully reversible quantization of δ, the index of δ is defined as:

Index(δ) =





ϕ−ω
∆ϕ

if ∆ϕ ≤ ∆θ

ϕ−ROUND( ω
∆ϕ

)×∆ϕ

∆ϕ
otherwise

. (2.11)

The derived index of δ is then encoded using signed variable length codes.

DC Modeling

Sometimes, the linear directional predicting scheme based on neighboring predictors is

not able to provide accurate predictions for partitioned regions, due to the limited ac-

cessibility of the neighboring pixels. For example, in Fig. 2.9(d), pixels inside region

P0 might not be accurately predicted from neighboring predictors, because they are
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separated by the partitioning edge. In this case, we can model the region as a smooth

polynomial of certain order. In our current implementation, for simplicity purpose, we

choose zero order polynomial or the DC value to model that region. Therefore any pixel

p(x, y) ∈ P0 is estimated by:

p̂(x, y) = DC(P0) =
∑

p(x,y)∈P0

p(x, y)

In spite of its simple form, the DC modeling scheme is very useful to reduce the prediction

errors shown in Fig. 2.4 which is unavoidable in any directional prediction schemes using

decoded neighboring predictors.

0 0 0 0 0 0 0 0

0

0

0

1

1

1

1

1

0

P0

P1

Figure 2.11: Predictive coding of the DC value of the partitioned regions

Since in the DC modeling scheme, the DC value of a partitioned region is estimated

from the pixels to be encoded, when the DC modeling scheme (DC mode) is selected to

represent a region, we have to signal the decoder explicitly the estimated DC value. To

fully exploit the decoded information, we predict the DC value of a partitioned region

by the mean of the decoded neighboring pixels that are adjacent to that region (in Fig.

2.11). Then the difference between the DC value and its prediction is encoded using

signed variable length codes. For example, denote S0 = {p : label(p) = 0} the set of all

predictors that is adjacent to region P0 in Fig. 2.11, the predicted DC value of region

P0 is computed as: D̂C(P0) =

∑
p∈S0

p

|S0| .
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2.3.4 Intra Macroblock Encoding Procedure

To implement our geometry-adaptive intra prediction scheme, we introduce two geomet-

ric modes named INTRA16x16GEO and INTRA8x8GEO into the standard H.264/AVC

mode table. The mode INTRA16x16GEO is defined for the geometric partition of mac-

roblocks and inserted after the standard mode INTRA4x4. The INTRA8x8GEO mode

is defined for the 8x8 blocks inside a macroblock, therefore a 1-bit flag is defined for

each 8x8 block to distinguish it from the standard INTRA8x8 mode. Note that for the

mode INTRA16x16GEO, sometimes, both of two partitioned regions of a macroblock

may select the same predicting direction ϕ, and the existence of a geometric partition is

redundant. To resolve this pathological case, a 1-bit flag is used for each macroblock to

indicate whether it is partitioned.

Given a block of size 16x16 or 8x8, there are a set of possible geometric partitions

P = {P (1), P (2), . . . , P (N)} and a set of predefined predicting and modeling schemes

Ω = {ϕ1, ϕ2, . . . , ϕM , DC} associated with the partitioned regions. The optimal geomet-

ric partition and associated predicting/modeling schemes for representing the block is

selected such that an R-D cost function is minimized:

(Pbest, ω1best, ω2best) = min
∀P∈P and ∀ω1,ω2∈Ω

(Dp(P, ω1, ω2) + λpRp(P, ω1, ω2))

WhereDp(P, ω1, ω2) is the distortion measure between the original block (Io(x, y)) and

its predicted version (Îo(x, y)) generated by using the partition P and corresponding

prediction schemes ω1, and ω2 for each region. Examples of the distortion measure include

SSE (sum of square error) and SAD (sum of absolute difference), etc. Rp(P, ω1, ω2) is

the number of bits required to represent the geometric partition P together with the

prediction schemes ω1, and ω2. λp is a Lagrangian multiplier which is a function of the

system quantization parameter (QP).

At the encoding stage, for every intra macroblock, the encoder selects among all

possible coding modes: INTRA4x4, INTRA16x16, INTRA8x8, INTRA16x16GEO, and

INTRA8x8GEO, the optimal one that results in the lowest R-D cost: J = Dm + λmRm.

Where Dm is a distortion measure (SSE or SAD) between the original macroblock

(Io(x, y)), and its decoded version (Id(x, y)), λm is a Lagrangian multiplier, and Rm =
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End of 8x8 block loop
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Encode the macroblock
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Figure 2.12: Intra macroblock encoding procedure

Rmode+Rpred+Rresidue is the total number of bits to encode the macroblock, where Rmode

is the number of bits to indicate the coding mode (e.g. INTRA4x4), Rpred is the number

of bits to represent the predicting scheme (e.g. P, ω1, and ω2), and Rresidue is the number

of bits required for the quantized transform coefficients of the residual signal. Fig. 2.12

illustrates the intra macroblock encoding procedure of H.264/AVC when the proposed

geometry-adaptive intra prediction modes are enabled.

Here, we want to point out that the Lagrangian multipliers λp and λm for the optimal

geometric parameter selection and mode decision procedures are functions of the quan-

tization parameter (QP). In this thesis we adopt the mathematical expressions of these

functions provided in [61], which have been empirically determined from the statistics of

extensive coding experiments.

2.3.5 Simulation Results and Discussions

In this section, we present experimental results of our geometry-adaptive intra prediction

algorithm. The experiments are carefully designed to help us better understand the
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performance of the proposed algorithm, which is dependent on both the characteristics

of the video data and the choice of coding parameters.

We select several popular test video sequences with different spatial resolutions in

our experiments as presented in Table 2.1. In all experiments these sequences are coded

exclusively as I (intra) frames. To evaluate the coding results, the Peak-Signal-to-Noise-

Resolutions Sequences 

352x288 (CIF) Foreman, Paris  

176x144 (QCIF) Car Phone 

320x240 (SIF) Duck dodgers 

480x480 Tiger 

 

Table 2.1: Test video sequences.

Ratio (PSNR) is used as the objective distortion measure. Given a video frame with

spatial resolution W ×H, PSNR is defined by:

PSNR(I, Î) = 10 log10

2552

1
WH

W−1∑
x=0

H−1∑
y=0

(I(x, y)− Î(x, y))2

Where I and Î denote the original and the decoded video frames. The bit rate is calcu-

lated from the total number of bits used for encoding the video frame.

To make a fair coding performance comparison between our geometry extended

H.264/AVC intra coding scheme and the standard version, during the experiments the

encoder settings are set exactly the same for both cases. The mainly used settings are:

VLC coding, Enabling the 8x8 block partition and transform (FRext) for intra coding,

and the standard deblocking filter is on. Throughout the experiments we use the pop-

ular Bjontegaard’s average coding gain to measure the performance difference between

the two intra coding schemes, which is calculated according to the convention proposed

in [62]. The H.264/AVC reference software JSVM 6.0 [61] has been used as the compliant

codec to conduct all experiments.
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In our first experiment, we employ a fixed set of basic geometric parameters ∆ρ,

∆θ, and ∆ϕ for our geometry-adaptive intra prediction scheme. The values of the ge-

ometric parameters are empirically determined and given as: ∆ρ = 1, ∆θ = π/16, and

∆ϕ = π/32. Based on these basic geometric parameters, in our present settings the ac-

tual parameters for modes INTRA16x16GEO and INTRA8x8GEO are derived as follows:

∆ρ16×16 = ∆ρ8×8 = ∆ρ, ∆θ16×16 = 1/2∆ρ8×8 = ∆θ, and ∆ϕ16×16 = 1/2∆ϕ8×8 = ∆ϕ.

Table 2.2 summarizes the coding performance comparison between the geometry extended

H.264/AVC intra coding scheme and the standard version at various quantization param-

eters (QP) for all the test video sequences listed in Table 2.1. It can be observed from

H.264 H.264+GEO 

Sequences 

number 

of 

frames 

QP 
YPSNR(dB)  Bit rate(kbps)  YPSNR(dB)  Bit rate(kbps)  

PSNR 

diff(dB) 

Bit 

saving(%) 

 ave. 

Bit 

saving  

 ave. 

PSNR 

gain  

28 37.67  1967.75  37.68  1868.15  0.01  5.06% 

32 35.17  1249.87  35.24  1151.42  0.07  7.88% 

36 32.88  800.06  33.07  719.01  0.19  10.13% 
Foreman 30 

40 30.69  520.49  31.04  465.82  0.35  10.50% 

-11.19% 0.60  

28 38.46  1568.72  38.45  1526.17  -0.02  2.71% 

32 35.69  1114.68  35.71  1072.35  0.02  3.80% 

36 32.89  780.32  33.02  743.06  0.13  4.78% 
Cartoon 60 

40 30.10  547.75  30.32  519.72  0.22  5.12% 

-5.23% 0.42  

28 36.72  4182.66  36.72  4140.79  -0.01  1.00% 

32 33.47  2941.46  33.45  2893.58  -0.02  1.63% 

36 30.50  1999.65  30.51  1950.46  0.01  2.46% 
Paris 30 

40 27.67  1327.99  27.74  1291.81  0.07  2.72% 

-2.03% 0.16  

28 40.19  4509.31  40.24  4276.97  0.04  5.15% 

32 37.20  3082.80  37.32  2884.26  0.12  6.44% 

36 34.41  2031.44  34.66  1899.42  0.26  6.50% 
Tiger 30 

40 31.74  1353.94  32.13  1284.95  0.40  5.10% 

-8.82% 0.62  

28 38.27  508.67  38.24  487.82  -0.02  4.10% 

32 35.35  351.98  35.36  328.80  0.01  6.59% 

36 32.61  239.72  32.70  220.29  0.09  8.10% 
Car phone 60 

40 29.84  158.88  30.07  148.92  0.23  6.27% 

-7.61% 0.54  

 

Table 2.2: Performance comparison between the geometry extended H.264/AVC intra
coding (H.264+GEO) and the standard H.264/AVC (H.264).

Table 2.2 that the geometry extended intra coding scheme outperforms H.264/AVC for

all test video sequences at various QP values, and up to 11% average bit rate savings

have been achived for the Foreman sequence. Besides, the results presented in Table

2.2 suggest that our geometry-adaptive intra prediction scheme provides more coding

gain for higher QP values. This is mainly due to the fact that encoded images lose more

texture details by coarser quantization operations, and therefore appear more “piecewise-

smooth”.

To better illustrate how the geometry-adaptive intra prediction contributes to the

enhanced coding performance, using the Foreman sequence as an example, we compare

the prediction results generated by the two intra coding schemes in Fig. 2.13. By
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simple visual inspection, prediction improvements of geometry extended H.264/AVC can

be easily observed. Indeed, edges regularity and regions smoothness are significantly

enhanced in Fig. 2.13(a) with respect to Fig. 2.13(b). In terms of coding efficiency,

Predicted Frame (H.264+GEO) Predicted Frame (H.264 Only)

(a) (b)

Original Frame Geometric Edge Map

(c) (d)

Figure 2.13: Intra predicted pictures for the 15th frame of Foreman(CIF) at QP=28. (a):
Intra prediction by geometry extended H.264/AVC (H.264+GEO). (b): Intra prediction
by H.264/AVC (H.264). (c): The original picture. (d): The geometric block partitioning
map for H.264+GEO.

this translates into the reduction of prediction residual energy, few number of quantized

non-zero transform coefficients. This demonstrates the edge preserving characteristics

and better modeling capabilities of the proposed geometric intra prediction scheme. Fig.

2.13(d) shows in detail which blocks are coded using the geometry-adaptive modes, along

with the encoded partition wedges. It can be observed that geometric partitions tend

to aggregate around edge regions where H.264/AVC standard intra prediction scheme
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produces poorer predictions. Also, some wedge partitions are used in non-edge areas in

order to better model luminance changes and local gradients.

Among all the test video sequences, in Table 2.1, we find that Paris achieves only a

marginal amount of average coding gain when coded with the geometry extended intra

coding scheme. This is due to the fact that Foreman contains large amount of piecewise-

smooth regions, while Paris on the contrary is mainly composed of abundant complex

structures and textures. To justify this, we present in Fig. 2.14 the prediction results of

a frame of Paris generated by the two intra coding algorithms. Comparing Fig. 2.14(a)

Predicted Frame (H.264+GEO) Predicted Frame (H.264 Only)

(a) (b)

Original Frame Geometric Edge Map

(c) (d)

Figure 2.14: Intra predicted pictures for the 30th frame of Paris(CIF) at QP=28. (a):
Intra prediction by geometry extended H.264/AVC (H.264+GEO). (b): Intra prediction
by H.264/AVC (H.264). (c): The original picture. (d): The geometric block partitioning
map for H.264+GEO.

to Fig. 2.14(b), we find that for Paris our geometry-adaptive intra prediction does not
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provide significantly better predictions over the standard prediction scheme, and the

limited improvements appear to aggregate around regions with strong edges (e.g. the

edge of the table and the man’s hands). This observation is justified by Fig. 2.14(c).

Comparing Fig. 2.14(c) to Fig. 2.13(c), we find that much less blocks are predicted by

the geometric modes for Paris than Foreman. In fact, according to our experiments, for

Foreman, there are more than 30% blocks predicted by the geometric modes, while the

percentage drops to about 17% for Paris.

We also study the effect of the geometric parameters on the R-D performance of the

geometry extended intra coding scheme. Specifically, we compare three parameter set-

tings: Par1 = {∆ρ = 0.5, ∆θ = π/32, ∆ϕ = π/32}, Par2 = {∆ρ = 1, ∆θ = π/16, ∆ϕ =

π/16}, and Par3 = {∆ρ = 2, ∆θ = π/8, ∆ϕ = π/8}. As we can see from Fig. 2.15, the
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Foreman(!rst 30 frames)

H.264

H.264+GAIP(Par1)

H.264+GAIP(Par2)

H.264+GAIP(Par3)

Figure 2.15: Rate-Distortion curves using different sets of geometric parameters for Fore-
man: Par1 = {∆ρ = 0.5, ∆θ = π/32, ∆ϕ = π/32}, Par2 = {∆ρ = 1, ∆θ = π/16, ∆ϕ =
π/16}, and Par3 = {∆ρ = 2, ∆θ = π/8, ∆ϕ = π/8}.
geometry extended intra coding scheme performs better with finer geometry parameters.

The improvement comes from two aspects: First, the finer resolutions of the geometric

partitioning parameters θ,and ρ provide better approximations of the arbitrarily orien-

tated edges; Second, the finer resolution of the directional prediction angle ϕ supports
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more accurate predictions of directional structures which are not necessarily aligned with

the partitioning edge orientation θ inside image blocks. In fact, besides Foreman, we have

observed the similar relationship between the parameter resolution and the coding per-

formance for other test video sequences. However, the price of employing finer geometric

parameters is the increased computational complexity of the encoder. Besides, for our

current implementation, we have found that no significant coding gain can be achieved

for geometric parameters finer than those in Par1.
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Figure 2.16: Performance comparison between INTRA16x16GEO and INTRA8x8GEO
using Foreman and Cartoon.

As it has been mentioned in the previous section, our geometry-adaptive intra pre-

diction is implemented by introducing two geometric modes: INTRA16x16GEO and
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INTRA8x8GEO. At the end of this section, we compare the contributions of these two

geometric modes to the overall coding performance of the geometry extend H.264 intra

coding scheme. Fig. 2.16 shows the experimental results of enabling each of the modes

individually and jointly for Foreman and Cartoon. We can see from Fig. 2.16, for Fore-

man, mode INTRA16x16GEO performs much better than mode INTRA8x8GEO. This

is due to the fact that many of the strong edges in Foreman are straight lines, and the

Wedgelet partition defined on larger blocks are more efficient to represent them in terms

of R-D. However, for the Cartoon case, we observe that the two modes performs almost

equally, and we believe this is due to that Cartoon contains both linear strong edges

and non-linearly shaped curves. The latter ones obviously are better approximated by

smaller Wedgelet partitions.

2.4 Geometry-Adaptive Intra Displacement Predic-

tion

In the previous section, we have discussed the geometry-adaptive intra prediction (GAIP)

for enhancing the intra coding efficiency of H.264/AVC. Simulation results show that the

GAIP algorithm performs well as expected for images with piecewise-smooth character-

istics. However, we also observed that limited coding gain is achieved for video sequences

containing significant amount of texture information (e.g. Paris). In deed, as we can see

in Fig. 2.14(a), and Fig. 2.14(b) neither the standard scheme nor the GAIP algorithm

is able to generate accurate predictions around texture regions. Since textures represent

the non-stationary and high frequency components of image signals, previously discussed

intra prediction schemes which apply low frequency operations (e.g. interpolation and

extrapolation) on local decoded information are not suitable to model complex texture

patterns of natural images. Therefore in this section we shall discuss the problem of

modeling texture information for intra video coding. More specifically we study the intra

displacement prediction (IDP) scheme proposed in [13] in which the texture information

of a block is modeled from global decoded information (all the decoded pixels) of the

current frame and extend the original IDP scheme with our geometry-adaptive block



CHAPTER 2. GEOMETRY-ADAPTIVE INTRA PREDICTION FOR VIDEO CODING 35

partitioning structure. The rest of this section is organized as follows: In section 2.4.1,

we briefly review the existing texture prediction schemes for intra coding; In section

2.4.2 we discuss in detail the geometry-adaptive intra displacement prediction algorithm

(GAIDP). Finally the simulation results will be presented in section 2.4.3. Experimental

results show that when the previously presented GAIP algorithm and the GAIDP scheme

are jointly applied significant average coding gain can be achieved for the tested video

sequences at low bit rate regime.

2.4.1 Review of Existing Texture Prediction Algorithms

Modeling the texture information of natural images is a challenging and keenly studied

research topic in computer vision and image processing. In the context of image/video

intra coding, a desired texture modeling scheme should generate the sample prediction

that best matches the original signal in terms of rate and distortion rather than the

visual quality. Aiming at enhancing the performance of video intra coding, in recent

years several texture prediction techniques have been proposed [13–16]. Although they

are different approaches, a common motivation of these texture prediction algorithms is

to search within the decoded region of an intra coded picture the best candidate of the

texture pattern to be coded. In the following paragraphs three typical texture prediction

algorithms will be briefly discussed.

Decoded Region

Candidate Block

Current Block

Figure 2.17: Intra displacement prediction (IDP).

Intra Displacement Prediction (IDP): As proposed in [13], the basic idea of

the IDP algorithm is to apply the block motion compensated prediction procedure for
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inter coding in H.264/AVC to intra coding. In the IDP algorithm, the current block is

predicted by referencing to the decoded region within the same frame via a displacement

vector as shown in Fig. 2.17. At the encoding stage, a displacement vector estimation

procedure searches within the decoded region the best prediction of the current block in

terms of rate and distortion. Similar to the motion compensated inter prediction this

algorithm requires explicit transmitting the estimated displacement vectors as overheads.

Decoded Region

Template

Candidate Block

Current Block

Figure 2.18: Template matching (TM).

Template Matching (TM): Template Matching (TM) is originally a mathematical

tool for texture synthesis problems in computer vision [63,64], and was introduced in [65]

and [14] for inter prediction and intra prediction in video coding respectively. In [14]

the template matching algorithm searches the previously coded region for the candidate

sample prediction block whose neighborhood (template) best matches that of the block

to be encoded. Since the search region and the neighborhood of the current block are

known at both the encoder and the decoder, no additional side information (e.g. motion

vectors) is needed, and identical prediction can be achieved on both sides [16]. The basic

procedure of the Template Matching technique is shown in Fig. 2.18.

Extended Texture Prediction (ETP): Since both the IDP and the TM techniques

have their own pros and cons, a new texture prediction method named Extended Texture

Prediction (ETP) was proposed in [16] recently to fuse them together. Specifically, the

proposed ETP algorithm combines those two schemes together with a simplified version

of H.264 intra prediction (only Horizontal, Vertical and DC modes) in a way such that

under the quad-tree partitioning structure of a macroblock, each block or sub-block may
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H.264/AVC Intra Prediction

Intra Displacement Prediction

Template Matching

Figure 2.19: Extended Texture Prediction (ETP).

be predicted using either of these schemes based on the RD criterion. For example Fig.

2.19 depicts a possible combination of the prediction modes used by the ETP algorithm

when predicting an intra macroblock.

As we can see, the discussed texture prediction algorithms are conceptually similar to

the block motion compensated prediction scheme for inter coding. The main difference

is that the former ones use the decoded region of the current frame as their reference

picture, while the reference picture of the latter one has to be a previously decoded

frame. Besides, we also notice that recently the geometry-adaptive block partitioning

structure has been proposed to improve the motion compensated inter prediction in video

coding [58, 59]. Based on these observations, in this section we propose to extend the

IDP algorithm in [13] with our geometry-adaptive block partition structure presented in

section 2.3.2. The reason we choose to extend the IDP algorithm mainly comes from the

consideration for the decoder complexity: Compared to the other two texture prediction

schemes, IDP imposes much less computational complexity at the decoder by explicitly

indicating candidate blocks via displacement vectors. This property is crucial to real

time video applications.

2.4.2 Geometry-Adaptive Intra Displacement Prediction (GA-

IDP)

In this section we shall present the design of the geometry-adaptive intra displacement

prediction (GAIDP) algorithm. To implement the GAIDP algorithm we introduce a new

mode: INTRA SEARCH into the H.264/AVC standard mode table. More specifically,
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the INTRA SEARCH mode is inserted after the INTRA16x16GEO mode introduced for

the GAIP algorithm and before the standard INTRA16x16 modes.

Macroblock Partitions for GAIDP : The original IDP algorithm adopted the

same quad-tree macroblock partition structure for the block motion compensated inter

prediction in H.264/AVC. In this section, we extend this qual-tree based macroblock

partition by introducing the geometry-adaptive block partitioning structure to the 16x16

and 8x8 blocks. Fig. 2.20 shows the macroblock and sub-macroblock (8x8) partitions

16x16 16x8

8x16

16x16GEO

(a)

8x8
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1

0

0 1

0

1

0 1

2 3

8x8 8x4

4x8
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(b)

2 3
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1

0

0 1

0

1

0 1

Figure 2.20: The macroblock Partition (a), and sub-macroblock partition (b) structures
designed for GAIDP.

defined for the GAIDP algorithm. As we can see from Fig. 2.20, the 16x8 and 8x16 mac-

roblock partitions are special cases of the 16x16GEO partitioning structure. Therefore

we remove these two special cases from the 16x16GEO partitioning structure to avoid

the redundant representation (the similar strategy is also adopted to the 8x8GEO case).

The sets of macroblock and sub-macroblock prediction modes associated with the parti-

tion scheme in Fig. 2.20 are specified in Table 2.3. Notice that the prediction mode of

MODE SKIP ISMB in Table 2.3 is just the intra equivalent to the skip mode defined for

the motion compensated inter prediction in H.264/AVC [54]. When this mode is used,

no information for the macroblock is coded, and the decoder reconstructs the macroblock

by only using the information derived from its casual neighbors. When the geometric

prediction modes (MODE 16x16GEO ISMB and BLK 8x8GEO) in Table 2.3 are used to

code a macroblock or 8x8 block, the corresponding geometric parameters: θ and ρ have
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Prediction mode of 

macroblock partitions 
Mode value 

Prediction mode of 

sub-macroblock partitions 

Mode 

value 

MODE_SKIP_ISMB 0 BLK_8x8 0 

MODE_16x16_ISMB 1 BLK_8x4 1 

MODE_16x8_ISMB 2 BLK_4x8 2 

MODE_8x16_ISMB 3 BLK_8x8GEO 3 

MODE_16x16GEO_ISMB 4 BLK_4x4 4 

MODE_8x8_ISMB 5 N/A N/A 

 
Table 2.3: Prediction modes for the macroblock and sub-macroblock partitions of the
GAIDP algorithm.

to be sent to the decoder as overheads.

Displacement Vectors (DV): In the GAIDP algorithm, a displacement vector

(DV) is used to indicate within the same frame the relative position of the current block

to its sample prediction. In our current implementation, displacement vectors with the

1/4 pixel resolution are supported. Since pixel samples at fractional pixel positions are

not present in the original video data, estimates of these fractional pixel values have to be

generated. To do this, we borrow the sub-pixel interpolation technique specified for the

inter prediction purpose in [54] from H.264/AVC. This sub-pixels interpolation procedure

can be summarized as follows: the pixel values at 1/2 pixel positions are interpolated

from neighboring samples at integer pixel positions using a 6-tap FIR filter, then the

pixels at 1/4 pixel positions are linearly interpolated from the nearest two samples at the

integer and the 1/2 pixel position. The detailed discussion of this interpolation technique

is presented in [66]. During the encoding process, given one of the macroblock partition

modes specified in Table 2.3, the best DV for a block or a region of a block is estimated

based on the following rate and distortion criterion:

DVbest = min
DV

(‖ I − Î(DV ) ‖ +λmotionR(DV )).

Where ‖ I − Î(DV ) ‖ is the distortion (e.g. SSE) between the original region/block

and its prediction, R(DV ) is the number of bits required to code the DV, and λmotion is

the Lagrangian multiplier. Similar to the coding of motion vectors (MV) for the inter

prediction case, in our implementation the estimated DV is differentially coded with
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respect to its predicted value which can be computed from its causal neighbors using a

median filter if one or more neighboring macroblocks are coded as the INTRA SEARCH

mode. The standard motion vector prediction procedure is defined in [54] for quad-tree

based block partitions. For the geometric block partition case, the task of motion vector

prediction becomes more involved and the prediction scheme specified in [67] has to

consider the number of block corners present in a partitioned region.

Adaptive Reference Picture Smoothing : The intra reference picture used by

the GAIDP algorithm contains visually apparent blocky artifacts (as shown in Fig. 2.21)

which are introduced mainly by the quantization of the transformed residues in each 4×4

block. The blocky artifacts have negative impact on the quality of the reference picture,

which essentially leads to the efficiency loss of the GAIDP algorithm.

Figure 2.21: Comparison of two intra reference pictures (Left: without smoothing; Right:
with adaptive smoothing).

Therefore, in the current the GAIDP algorithm, we have implemented an adaptive

smoothing filter to enhance the quality of the intra reference picture. The main chal-

lenge for designing this adaptive smoothing filter is to suppress the blocky artifacts as

well as to preserve true image edges. Indeed, we have noticed that the in-loop filter [68]

of H.264/AVC serves this purpose well. Our adaptive smoothing filter is in fact directly

derived from the in-loop filter in [68]. Since the in-loop filtering procedure is very sophis-

ticated and its design is out of the scope of this thesis, we refer interested readers to [68]

for detailed discussions. Here, we clarify that our adaptive smoothing filter is almost

identical to the in-loop filter in [68], except that we modified the boundary strength2

2Boundary strength is a value which together with some other parameters indicate if a 4 × 4 block
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(BS) calculation for intra macroblocks coded by the INTRA SEARCH mode as if they

are inter coded.

Fig. 2.21 shows two intra reference pictures for the Foreman (CIF) sequence at

QP=28. It is easy to observe that the reference picture with adaptive smoothing contains

much less blocky artifacts than the one without being smoothed. In fact, more than 1%

bit savings can be obtained when our adaptive intra reference smoothing filter is enabled

for this sequence.

Intra Macroblock Encoding and Decoding Procedures: Since the essence of

the GAIDP algorithm is to predict a macroblock by find its best match in the decoded

region of the current frame, an intra reference picture buffer is needed at both the encoder

and the decoder to store the decoded region of the current frame. For a video codec

with the GAIDP algorithm enabled, both the encoder and the decoder shall update

the intra reference picture buffer after each intra macroblock is encoded or decoded

no matter this macroblock is coded by the INTRA SEARCH mode or not. Fig. 2.22

Macroblock to be 

encoded

Encode with other intra modes
encode with INTRA_SEARCH 

mode

Intra Reference 

Picture Buffer

Rate Distortion Optimization

Macroblock Reconstruction

Bit Stream

Reconstructed

MB

Coded Information

Figure 2.22: Intra macroblock encoding procedure of a video codec incorporated with
the GAIDP algorithm.

illustrates the intra macroblock encoding procedure of a video codec incorporated with

the GAIDP algorithm. As shown in Fig. 2.22, the GAIDP algorithm competes with

other intra prediction schemes (e.g. INTRA4x4, INTRA16x16GEO, etc.) and will be

boundary shall be filtered or not and the strength of the smoothing filter in [68]
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selected to predict the current intra macroblock if it leads to the lowest R-D cost. After

the macroblock is encoded with the best prediction scheme, it will be reconstructed, and

the reconstructed macroblock is sent to the intra reference picture buffer which will then

be used to encode the future intra macroblocks. The corresponding intra macroblock

decoding procedure is depicted in Fig. 2.23.

Is current Mb Mode

INTRA_SEARCH

Decode Mb of other Intra Modes Decode INTRA_SEARCH Mb
Intra Reference 

Picture Buffer

N

Y

Decoded Picture Buffer

Decoded Mb

Decoded Intra Mb Decoded Intra Mb

Information for 

decoding the 

Mb

Information for 

decoding the 

Mb

Macroblock information

 parsed from the bit stream 

Intra Mb Type

Figure 2.23: Intra macroblock decoding procedure of a video codec incorporated with
the GAIDP algorithm.

2.4.3 Simulation Results and Discussions

To test the coding performance of the GAIDP algorithm, several simulations have been

conducted. In this section, we report and discuss the experimental results. In order to

have an accurate and thorough evaluation of the algorithm, our simulations are conducted

on twelve video sequences which have been recommended as the standard video coding

test sequences in a recent VCEG (Video Coding Expert Group) meeting [69]. Table 2.4

contains the test video sequences used for our simulations. The geometric parameters of

the experiments are identical to those specified in section 2.3.5. The H.264/AVC baseline

profile settings are employed to conduct simulations. Besides, the adaptive smoothing

filter discussed in previous section is enabled throughout the experiments.

In this section, we compare the coding performances of the following three cases:H.264

+GAIDP, H.264+GAIP and H.264+GAIDP+GAIP to the original H.264/AVC intra
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Resolution Sequence 

352x288 (CIF) Foreman, Paris, Mobile, Tempete 

176x144 (QCIF) Foreman, Container, Silent 

1280x720 Big_Ships, City, Crew, Night, Shuttle_Start 

 

Table 2.4: Test video sequences.

coding. R-D curves of the three coding schemes are shown in Fig. 2.24 and Fig. 2.25.

In fact from Fig. 2.24 and Fig. 2.25, several interesting observations can be obtained,

which may help us better understand the properties of the GAIDP and GAIP algorithms

presented in this chapter.

First, compared to H.264, the intra coding scheme that enables the GAIDP algorithm

(H.264+GAIDP) achieves better coding performance on Foreman (CIF and QCIF), City,

Big Ships, Crew, and Mobile sequences. This might be due to the fact that these se-

quences contain fairly large amount of texture patterns that repeatedly appear within

the same video frame (e.g. windows of buildings in City and edges of the wall in Fore-

man). Besides, for those aforementioned sequences the behavior of the R-D curves of

the H.264+GAIDP scheme suggests that GAIDP performs better at high bit rates than

low bit rates. This phenomenon probably can be explained as follows: At low bit rates,

higher QP values introduce more distortion into the coded macroblocks which are used

to build the intra reference picture for the GAIDP algorithm. Therefore the quality of

sample predictions generated by GAIDP are often worse at lower bit rates than higher

bit rates, which leads to the loss of coding efficiency of the GAIDP algorithm.

Second, we found that when the GAIP and GAIDP algorithms are both enabled

(H.264+GAIDP+GAIP), a better intra coding performance is achieved compared to the

other two cases for all test sequences. This observation suggests that the GAIP and

GAIDP algorithms are complementary to each other in a way that the GAIP algorithm

is good at modeling the piecewise smooth image regions and the GAIDP algorithm helps

to handle certain complex texture patterns. The conjecture is also partially justified

by the R-D curves in Fig. 2.24 and Fig. 2.25. As we can see for most of the test

sequences, at higher bit rates the H.264+GAIDP+GAIP scheme performs similarly to the
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H.264+GAIDP scheme, while at lower bit rates the former scheme obviously outperforms

the latter one. The reason is that at higher bit rates, texture information is well preserved,

while at lower bit rates, certain amount of texture information will be removed due to

the quantization operation and images appear smoother.

Third,currently there still exist some of video sequences that can not be well modeled

by any of the intra prediction schemes we have discussed in this chapter. For example

the Tempete, Paris, and Silent sequences only achieves marginal coding gains even when

both GAIP and GAIDP are enabled. In fact, these sequences contain large amount of

complex texture patterns that unlike the texture patterns of the City sequence do not

simply reappear at different spatial locations within the same video frame. Apparently

the current GAIDP algorithm is unable to handle these cases well. In addition to the

aforementioned sequences, We notice that the Shuttle Start and Container sequences

also receive very moderate coding gains in our simulations, and these two sequences

do not contain lots of texture information. In fact, Since these two sequences contain

abundant smooth regions, the original H.264 intra prediction has done a very good job,

therefore the potential space for further improvements should be very limited. In Table

2.5, we have listed the average coding gains of the two schemes: H.264+GAIDP, and

H.264+GAIDP+GAIP over the original H.264 intra coding scheme. As we can see when

our geometry-adaptive intra prediction schemes presented in this chapter are enabled,

different degrees of improvement of H.264/AVC intra coding performance have been

achieved for all test video sequences. Especially, the Foreman CIF sequence obtains 20%

of bit savings the highest coding gain among all.

2.5 Concluding Remarks

In this chapter, we have studied the topic of intra prediction in block based hybrid video

coding systems. Noticing that the traditional quad-tree based block partitioning struc-

ture is suboptimal in the sense of rate and distortion to represent video signals in which

regions with different statistical characteristics are separated by smooth discontinuities,

we proposed a geometry-adaptive block partitioning structure within the quad-tree par-

titioned blocks (tree leaves). We show in detail the theoretical analysis presented in [10]
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H.264+GAIDP H.264+GAIP H.264+GAIDP+GAIP 

Sequences 

Number 

of 

Frames 

ave. 

Bit 

Savings 

ave. 

PSNR 

Gain(dB) 

ave. 

Bit 

Savings 

ave. 

PSNR 

Gain(dB) 

ave. 

Bit 

Savings 

ave. 

PSNR 

Gain(dB) 

Big_Ships 10 -4.25% 0.21 -4.95% 0.23 -9.37% 0.46 

City 10 -5.81% 0.34 -3.11% 0.18 -9.17% 0.55 

Crew 10 -5.52% 0.32 -4.55% 0.18 -9.27% 0.38 

Night 10 -2.06% 0.14 -2.32% 0.15 -4.67% 0.31 

Shuttle_Start 10 -1.41% 0.05 -0.44% 0.01 -2.87% 0.12 

Foreman_CIF 10 -6.52% 0.43 -12.78% 0.77 -20.08% 1.36 

Mobile 10 -2.62% 0.24 -0.30% 0.03 -4.11% 0.38 

Paris 10 -0.78% 0.07 -1.76% 0.14 -2.24% 0.18 

Tempete 10 -0.76% 0.06 -1.19% 0.09 -2.20% 0.17 

Foreman_QCIF 10 -7.43% 0.55 -8.78% 0.66 -15.70% 1.23 

Container 10 -1.03% 0.08 -0.77% 0.06 -1.76% 0.13 

Silent 10 0.09% -0.01 -1.33% 0.09 -1.45% 0.09 

 

Table 2.5: The average gains of H.264+GAIDP, H.264+GAIP and
H.264+GAIDP+GAIP over the original H.264/AVC intra coding scheme.

that when the geometric block partitions are incorporated into the quad-tree based block

partitioning structure a better R-D performance can be obtained for piecewise-smooth

images. In our current realization, the smooth discontinuities (partitioning curves) are

featured by arbitrarily orientated line segments (Wedgelets) which are parameterized by

two geometric parameters: the orientation θ, and the distance ρ.

Aiming at improving the intra prediction performance of H.264/AVC the state-of-art

video coding standard, we applied the geometry-adaptive block partitioning structure

on the 16x16 and 8x8 blocks of the H.264/AVC intra coding scheme, and designed our

own schemes to model each geometrically region using either the neighboring decoded

predictors (directional prediction) or the statistics inside (DC modeling). We refer this

intra prediction scheme to as geometry-adaptive intra prediction (GAIP). Simulation

results show that when GAIP is enabled, the intra prediction performance of H.264/AVC

is enhanced for sequences containing piecewise-smooth image regions, which leads to

impressive coding gains over the original H.264/AVC intra coding scheme.

Modeling texture information to facilitate image or video coding is a challenging task.

In this chapter, we discussed several existing texture prediction techniques proposed for

intra video coding. Among all the discussed texture prediction techniques, we chose the

IDP algorithm and extended it with our geometry-adaptive block partitioning structure.

Simulation results show that the GAIDP algorithm is able to improve the intra cod-

ing performance of H.264/AVC for certain video sequences containing repeated texture
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patterns. More importantly, we found that when GAIP and GAIDP are both enabled,

the intra coding performance of H.264/AVC is enhanced for all the twelve test video

sequences. Among them, Foreman achieves maximum average coding gain of 20% bit

savings which is equivalent to more than 1dB PSNR improvement.

Although in this chapter, we have demonstrated the power of geometry-adaptive

block partitioning structure for modeling the intra video data, our current design is still

quite simple and may be further improved. For example, currently we only use first order

curves to model the smooth discontinuities, which is apparently not sophisticated enough

to describe edges of natural images. Therefore, in the future higher order of curves should

be considered to represent the partitioning edge of image regions. Besides, as we have

discussed in section 2.4.3, the modeling capability of the GAIDP algorithm is limited

in the case where texure patterns appear repeatedly within a video frame. For more

complex texture patterns the GAIDP algorithm could not provide better predictions

than H.264/AVC. In fact, within the block coding framework of hybrid video coders,

task of modeling texture information is even more difficult, and to our best knowledge

there is no such a texture modeling scheme that is able to significantly enhance the

intra coding performance of H.264/AVC for video sequences that contain various texture

patterns. Therefore in our own opinion, instead of trying to build a single algorithm that

is able to handle complex texture patterns, a more promising way might be to model

complex texture patterns by fusing together different predictions provided by several

prediction schemes. Each of those prediction schemes is not necessarily very sophisticated

and might be only able to handle certain types of texture patterns. In our current

implementation, the optimal partitioning edge of a block is computed via exhaustive

search. The exhaustive searching scheme is highly computation demanding especially

when fine edge parameter resolutions are used in real time applications. Therefore fast

searching algorithms shall be explored in the future. Indeed, one possible way of designing

the fast algorithm is to exploit the geometric information of neighboring decoded blocks.

For example, if we know the block on top of the current one has a vertically orientated

edge, then it is more probable that there is an edge passing through the current block

with a similar orientation.
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Besides the aforementioned possible improvements, there are some other thoughts re-

garding to the presented geometry-adaptive intra prediction algorithms, which are worth

of exploration in the future. First, in this thesis we have shown simulations of our al-

gorithms on video sequences with ideal quality. In many real applications, video data

may have non-ideal quality (e.g. contaminated by noise and blur), in such situations,

the robustness of the proposed algorithms shall be tested; Second, Similar to the motion

compensated inter prediction [70], the performance of the proposed GAIDP algorithm

can be affected by illumination variations. Therefore in the future, we shall explore

possible ways to accommodate the negative impact of illumination variations.
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Figure 2.24: Simulation results of three intra coding schemes: H.264, H.264+GAIDP,
H.264+GAIP and H.264+GAIDP+GAIP at QP=[28,32,36,40].
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Figure 2.25: Simulation results of three intra coding schemes: H.264, H.264+GAIDP,
H.264+GAIP and H.264+GAIDP+GAIP at QP=[28,32,36,40].



Chapter 3

Pedestrian Detection and Tracking

in Infrared Imagery

3.1 Introduction

3.1.1 Overview

Pedestrian detection and tracking have been extensively studied in computer vision over

the past decade. To meet the challenges arising from large variability of body pose, cloth-

ing and environmental factors (e.g. [17,18]), various algorithms have been developed. For

example, wavelet based appearance representations with support vector machine (SVM)

classifier were proposed in [19,20]. Silhouette and shape-based detection techniques have

been adopted in [21–24]. In [25–27], human body, pose and motion are respectively,

modeled and utilized for pedestrian detection; Periodicity and self-similarity of human

motion analysis is proposed to detect pedestrians in [28]. Feature vectors involving both

appearance and motion information are passed to an Adaboost classifier for pedestrian

recognition in [18]. Principle component analysis (PCA) and time-delay neural networks

are jointly used for object recognition and tracking in [29]. A stereo-based disparity seg-

mentation and neural network-based pedestrian recognition algorithm appears in [30].

Effective pedestrian detection and tracking algorithms in visible spectrum have found

many important applications from video surveillance to intelligent vehicles. However,

50
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under certain circumstances (e.g., in nights or bad weathers), sensing in visible spectrum

becomes infeasible or severely impaired, which calls for the imaging modalities beyond

visible spectrum. In particular, the cost of thermal sensors has reduced dramatically in

the past decades and we start to witness that infrared (IR) sensors with high dynamic

range and sensitivity become more widely deployed in the applications such as night-

vision and all-weather surveillance.

Driven by the decreasing cost of IR sensors, there have been a flurry of works on

pedestrian detection and tracking in IR imagery recently. In [31], probabilistic templates

are used to capture the variations in human shape for pedestrian detection. In [32],

support vector machine and Kalman filtering are adopted for detection and tracking,

respectively. In [33], the P-tile method is developed to detect human head first, and then

human torso and legs are included by local search. In [34], a particle swarm optimization

algorithm is proposed for human detection in IR imagery. In [35], a two-stage template-

based method with an Adaboosted classifier was presented for pedestrian detection.

In this chapter we present a pedestrian detection and tracking scheme via layered

representation. In the proposed algorithm, infrared images are first separated into two

layers: a background layer (still layer), and a foreground layer (moving layer). Pedestrians

are then detected in the foreground layer using the appearance cue. To facilitate the task

of pedestrian tracking, we formulate the problem of shot segmentation and present a

graph matching-based tracking method.

3.1.2 Contributions

The contributions of this work are summarized into the following three aspects.

Layered representation. Layered representations have been widely used for ob-

ject tracking in visible imagery [71–73]. For IR imagery, layered representation is also

attractive because it facilitates the statistical modeling of senor data even when motion

cue is not directly useable. We propose to decompose an IR image into two layers: back-

ground (still objects) and foreground (moving objects). A light version of generalized

expectation maximization (GEM) algorithm [71] is developed to dynamically mosaic the
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background by registering IR images based on the global motion model. When com-

pared with the GEM algorithm for visible imagery [71], ours runs much faster since it

only involves appearance and a global motion model.

Pedestrian detection using the appearance cue. We propose to detect pedes-

trians from the foreground layer by exploiting the appearance information. To obtain

accurate localization of individual pedestrians, a multi-scale principle component anal-

ysis (PCA) technique [74] is developed to accommodate pedestrians with various sizes

in the foreground layer. Compared to the benchmark work presented in [35] using the

OSU infrared image database, our appearance based approach seems to achieve improved

true-positive performance in the situation of crowed pedestrians and false-positive per-

formance for low-SNR IR imagery.

Shot segmentation and tracking. We address the problem of shot segmentation

to facilitate tracking of pedestrians in a long sequence (i.e., with scene changes) or a

collection of IR imagery with unknown temporally sampling information (e.g., snapshots

taken at random timing). The sequence is first segmented into shots (temporally corre-

lated frames) based on Hausdorff distances; then within each shot, pedestrian tracking

is formulated as a matching problem on weighted bipartite graphs. Each pedestrian cor-

responds to a node and every potential matching between two nodes in adjacent frames

corresponds to a weighted edge whose weight reflects the tradeoff between appearance

similarity and geometric proximity. When compared with the existing Kalman-filtering

based tracking [32], ours does not require any assumption about the characteristics of

motion trajectory.

The rest of this chapter is organized as follows: Section 3.2 describes a generalized

EM algorithm for dynamic background mosaicing and discusses the detection of polarity

switch. Section 3.3 presents an appearance based pedestrian detection technique, which

accommodates various pedestrian sizes for pedestrian detection. Section 3.4 covers shot

segmentation and matching-based pedestrian tracking. Experimental results are reported

and discussed in Section 3.5. We also discuss some challenging situations involving po-

larity switch of IR imagery in Section 3.5.4. Concluding remarks and future work are

included in Section 3.6.
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3.2 Two-Layer Representation

3.2.1 Modeling of IR Imagery

Layered representation of image sequences was first introduced by [75] in which video

is decomposed into layers with different motions. Since then, numerous studies have

followed [73]. For instance, decomposing video into layers was formulated as a maximum-

likelihood (ML) estimation of multiple motion models in [76]. In [71], a generalized

expectation maximization (GEM) algorithm was developed to learn a mixture of sprites

(layers) from a video sequence. Most recently, [73] shows how occlusion and rigidity can be

exploited to enable a computationally simple algorithm to jointly estimate the unknown

background and rigid shape of the moving object directly from the image intensity values.

Layered representations are attractive because they support a variety of high-level vision

tasks including recognition, tracking and retrieval.

There are two main issues in layered representation: the number of layers and the

layer decomposition. For pedestrian detection and tracking in IR imagery, we suggest

that two layers consisting of background and foreground (similar to figure-ground model

in [73]) will be sufficient. Background and foreground layers include still and moving ob-

jects in the scene, respectively. However, unlike [73] emphasizing the joint utilization of

rigidity and occlusion, we argue that simple cues such as shape and appearance are more

appropriate for surveillance applications where camera distance is in the middle-to-far

range. Such observation also allows us to derive a both conceptually and computationally

simple layer decomposition algorithm for IR imagery. Our algorithm can be viewed as

a light version of GEM algorithm introduced in [71]: we only consider a simple global

translational model to compensate the camera motion and we directly obtain the binary

mask without computationally demanding non-linear optimization procedure. Such com-

putational reduction is often critical to IR-related applications (e.g., intelligent vehicles)

where real-time implementation is highly desirable.

The following notations are adopted in this chapter. A sequence of IR images are

denoted by Ik(m,n) where k = 1, 2, ..., K and (m,n) ∈ Ω = [1, H]× [1,W ] are temporal

and spatial variables, respectively. Each sequence is assumed to be taken at a medium-to-

large camera distance and within a short period of time such that environmental factors
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such as precipitation and temperature remain unchanged.

Similar to [71] and [73], our two-layer model is described by:

Ik = (1−Mk)Bk + MkFk + Nk. (3.1)

where Bk, Fk stand for background, foreground layers respectively, Mk represents the

foreground mask, and Nk models sensor noise. Note that background layer Bk can be

described by a sprite (we shall elaborate on this next) and foreground Fk includes both

pedestrian and non-pedestrian moving objects. When compared with the model used

in [71], ours does not involve complicated motion characterization, which might not be

feasible for IR imagery. We also note that there exists non-parametric techniques for

background and foreground modeling of visible imagery in the literature (e.g. [77]) but

their computational cost is prohibitive.

Another important difference between IR imagery and visible imagery is the amount

of sensor noise. The strength of thermal sensor noise is strong enough to be highly visible.

For example, for the IR cameras considered in our experiments, we have found that the

additive noise term Nk approximately observes the Gaussian distribution with zero mean

and variance of σw ∈ [40, 60]. Such heavy noise poses a challenge to both background

extraction and pedestrian detection. In background extraction, we will suppress noise

components by adaptive temporal filtering; in pedestrian detection, we will empirically

choose the number of principle components to minimize the noise interference.

3.2.2 Background Extraction

Due to simplification of our two-layer model, the primary task in layer decomposition

is to resolve the uncertainty about the binary mask Mk. In the absence of camera

motion (i.e. Bk = B), EM algorithm can be used to extract the still background. For

instance, mask layer Mk and back ground layer Bk = B can be iteratively refined (refer

to [78, page 310]). With camera motion [79], we are facing a more general background

mosaicking problem [80] where each Bk can be viewed as a subset of the mosaicked image

B or sprite [71]. Under the assumption of camera panning motion, we have developed a

generalized EM algorithm as shown in Fig. 3.1 where an additional global camera motion
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compensation step is adopted to handle the sprite generation. At the initialization, phase

correlation method [81] is used to register K IR images and produce an initial estimation

of Bk, k = 1, 2, ..., K. At each each iteration, we update Mk by thresholding |Ik − Bk|,
refine the alignment results by excluding the foreground pixels and then update Bk by

adaptively averaging the K registered images.
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Figure 3.1: Flow chart for background extraction.

The stopping criterion is set to be ||Bt+1 − Bt||2 < δ, where δ is a small positive

number (e.g. 0.01). We have found that such algorithm converges rapidly (typical three

iterations) [82]. To improve the robustness, we use morphological filtering to process

the mask layer to eliminate small objects (connected components) and fill in the holes

of moving objects. After background extraction, the set Ωmov = {(m,n)|Mk(m,n) = 1}
consists of connected components R1, ..., REk

where Ek is the total number of moving

objects.

Motionless pedestrians. One tricky issue that often arises from our short acquisi-

tion time assumption is that pedestrians could remain still with respect to the background
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throughout the whole sequence. In such case of “motionless pedestrians”, miss detec-

tion is likely to occur unless we exhaustively search the background layer, which defeats

the merit of layer decomposition (although motion cue is not directly used in our layer

decomposition, thresholding operator in our GEM algorithm can be viewed as motion

detector). To overcome such difficulty, we suggest that the problem roots in that mo-

tion is a concept relative to time and propose the following engineering solution—i.e.,

IR sensor can be programmed to take shots either frequently in a day (e.g., every other

hour) or at particular chosen timing (e.g., 6AM when it is unlikely to catch pedestrians).

We believe that those strategies are also applicable to pedestrian detection in the visible

spectrum.

Polarity switch. Another interesting phenomenon with IR imaging is the so called

“polarity switch”. When it occurs, hot and cold ranges of thermal sensor get reversed:

For instance, pedestrians that normally give rise to bright pixels could become dark pixels

as shown in Fig. 3.7. This phenomenon definitely poses a challenge to the pedestrian

detection task, because the prior knowledge that pedestrians appear brighter than non-

pedestrian objects no longer holds in polarity reversed IR images. However, to the best

of our knowledge, the mechanism of polarity switch has not been well documented in

the literature. It is roughly known that various environmental factors such as outdoor

temperature and specular surfaces could trigger the switch of polarity [83]. The test data

available for experimental studies are also limited at this point.

To meet the challenge of the polarity switch phenomenon, in this work we have

developed a heuristic strategy to detect polarity switched IR sequences by using the

outcome of the background extraction procedure. Here, we briefly describe the polarity

switch detection strategy as follows: Assuming that all pedestrians would undergo the

same switch, we propose to compute the average of ek = (Fk −Bk)Mk over the set Ωmov

and then the polarity of eavg could be used as the indicator of polarity switch (refer to Fig.

3.13). Note that in some situations polarity switch could occur with a single pedestrian

(i.e., become a spatially localized event), whose detection is beyond the scope of this

work (refer to Fig. 3.14 for more details). Once the polarity switched IR sequences have

been identified, we are able to deal with the pedestrian detection task for both normal

and polarity switched IR images using the appearance based technique described in the
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next section.

3.3 Static Pedestrian Detection Using Appearance

Pedestrian detection and tracking deal with the questions of “where are the pedestrians”

and “where does this pedestrian go”, respectively. These two classes of questions are

closely related but have clearly different objectives. Although detection is often conceived

as a preliminary step before tracking, we note that temporal constraint imposed by

most tracking algorithms can help the detection task as well. Therefore, we use static

pedestrian detection to denote the class of techniques that do not involve any temporal

cues.

Spatial cues generated by layer decomposition include both the shape and appearance.

The shape cue has been exploited for the pedestrian detection purpose in several previous

works (e.g. [31, 35],). For example, in [35], shape-based adaptive filters trained by an

adaboosting procedure are applied to locate individual pedestrians. This shape-based

approach is very effective as reported for the OSU thermal pedestrian database which

covers a wide variety of challenging scenarios including rainy weathers, polarity switch

and occluded pedestrians.

Unlike shape information, appearance information is rarely exploited in literature for

pedestrian detection tasks in infrared imagery. we conjecture it might be due to the fact

that some appearance cues such as color and texture that have been employed for visible

spectrum [19] are absent in infrared imagery. Besides, the polarity switch phenomenon

poses an obstacle for direct exploiting the appearance cue. However, we argue that

appearance information can be very useful for pedestrian detection in infrared imagery if

it is properly manipulated. More importantly, as we shall demonstrate in section 3.5.2,

our appearance based algorithm seems to be more sensitive compared to the shape based

approach in [35].

Among all appearance based techniques, in this work we choose to use a principle

component analysis (PCA) based approach to represent pedestrian’s appearance varia-

tions in infrared imagery. PCA has been widely used for object recognition and detection

in visible spectrum. One famous example is the “eigenface” approach for face detection
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and recognition in [74]. Despite of its huge impact, the original “eigenface” approach

has its own drawbacks: As indicated in [74] this approach is sensitive to sensor noise,

illumination variation, and interference of non-face objects. Therefore, recent research

works have incorporated advanced classification techniques to enhance its robustness.

For example, in [84], a support vector machine (SVM) trained in the “eigenface” space

is applied for face detection. For infrared imagery, we notice that the direct application

of the original PCA based approach proposed in [74] shall face the similar difficulties

as in visible spectrum (Although “illumination variation” does not exist for thermal

sensors, we found that the thermal signatures of moving objects and backgrounds vary

significantly due to weather conditions and environmental temperatures, which poses the

similar effect as “illumination variation”). Besides, the original PCA approach obviously

is not applicable to polarity-switched infrared images.

Therefore, to exploit the appearance cue of pedestrians in infrared imagery, we have

developed a modified PCA approach based on the layered representation presented in

the previous section. To meet the aformentioned challenges for pedestrian detection in

infrared imagery, we have carefully revised the steps of the original “eigenface” approach.

Our modified PCA approach is comprised of four components: normalization, training,

projection, and local aggregation. We shall introduce them one by one in the following

paragraphs.

Normalization. Based on the background extraction results, we have estimates

of the background layers {Bk}, the foreground layers {Fk}, and the masks {Mk}. The

pedestrian appearance information presents in the foreground layers {Fk}. Due to the

significant thermal signature variations of pedestrians (the “polarity switch” phenomenon

can be viewed as the extreme case of thermal variations), we found that directly apply-

ing the PCA algorithm on the foreground layers {Fk} does not guarantee a satisfying

detection performance. However, careful investigations on infrared imagery suggest that

relative thermal signatures of pedestrians to their local background {BkMk} vary less

significantly. This observation motivates us to normalize the foreground layers.

We first calculate the difference image ek = (Fk −Bk)Mk for the kth infrared image.
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Then ek is normalized by its maximum absolute value, i.e:

ēk =
ek

ek,max

(3.2)

Where ek,max = max(m,n) |ek(m,n)|. To accommodate polarity-switched sequences de-

tected by the heuristic method presented in Section 3.2, we simply take ēk = | ek

ek,max
|.

Note that both training and detection are performed with the normalized difference image

ēk. This normalization operation is important to accommodate a variety of environmen-

tal conditions across the databases we have tested as well as polarity switch. We also note

that similar techniques have been used by other object detection algorithms (e.g. [18]).

Training. To serve the multi-scale pedestrian detection purpose, we have manually

clipped training pedestrian templates for each of the three training template sets. In our

previous work [82], we have chosen a single pedestrian template set with a fixed window

size of 30 × 20. This template size performs well for OSU thermal pedestrian database

due to the fact that the pedestrian sizes in this database are almost constant. However,

such fixed template size becomes less effective as camera distance varies (i.e., lack of scale

invariance in [82]). Motivated by previous works [35,85], we propose to use a sequence of

template sets with varying sizes. In our current implementation, we have chosen three sets

of pedestrian training templates: T1, T2, and T3 sized by 110× 40, 60× 24, and 30× 20

pixels, respectively. Some samples of the training pedestrian templates are illustrated in

Fig. 3.2. We follow the same procedure of eigenvector decomposition describe in [74] to

derive a set of orthonormal principle eigenvectors ~Vi = {v(1), v(2), ..., v(Ni)}, i = 1, 2, 3

and a corresponding mean vector mi for each training template set. The optimal value

of Ni is determined by the power of noise as well as the subspace structure of signal. For

the OSU and WVU thermal pedestrian databases, we have found that a small number of

principle eigenvectors, for example: N1 = N2 = 16, and N3 = 12 give good signal-noise

separation results.

Projection. We follow the same eigenvector projection procedure as presented

in [74], to obtain an cost map p(m,n) from which the likelihood of the presence of a

pedestrian at each pixel position can be derived. We summarize this projection proce-

dure as follows: 1) Given a normalized foreground image ē(m,n), we extract a block
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Figure 3.2: Template sets in different scales.

ēb(m,n) centering at each pixel location (m,n), and compute s = ēb − mi, where mi

is the mean vector of the ith eigenvector set. 2) Project s onto the ith eigenvector set

~Vi = {v(1), v(2), ..., v(Ni)} to produce the correspondent set of projection coefficients

λ1, λ2, ..., λNi
. 3) Compute ŝ =

Ni∑
n=1

λnv(n). 4) Compute p(m,n) = MAD(s, ŝ), where

MAD(s, ŝ) is the mean absolute difference between s and ŝ.

Figure 3.3: Derived cost map after the projection. (Left: the original IR image; Right:
the correspondent cost map after the thresholding.)

The above projection procedure actually indicates that when the eigenvector set aligns

with a pedestrian, it will produce a prominent local minimum at the center of the pedes-

trian in the cost map p(m,n). To reduce the noise interference, we propose to exclude

weak local minima from the original cost map p(m,n) with a threshold Ti. the value of Ti
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is designed to be associated with the thermal signatures of the backgrounds and usually

higher for darker backgrounds due to bad weathers, and lower for brighter backgrounds.

Fig. 3.3 shows an IR image containing five pedestrians and its correspondent cost map

after the thresholding.

For IR images containing pedestrians of variable sizes, we propose to apply the three

sets of principle eigenvectors ~Vi = {v(1), v(2), ..., v(Ni)}, i = 1, 2, 3 sequentially in a way

such that pedestrians of the largest size are detected first, and the correspondent regions

of ē(m,n) are masked. Then pedestrians of smaller sizes are detected in the unmarked

regions of ē(m,n).

Location aggregation. Once the cost map p(m,n) is computed. We first identify

all prominent local minima in p(m,n) whose values are below a pre-selected threshold Ti

as the candidates. Then we locally aggregate the multiple candidates into one if they are

too close to each other. Specifically, if the overlapped area of two candidates is more than

30% of the window area, we aggregate them into one; otherwise they are treated as two

adjacent yet different pedestrians. Here Ti is a threshold for the ith eigenvector set, and

Ti 6= Tj for i 6= j. Note that by using location aggregation, we actually make a balanced

trade off between false alarm and miss detection rates for the pedestrian detection task.

Here we highlight the three features of our PCA-based pedestrian detection technique.

First, the layered representation effectively reduces the interference of non-pedestrian ob-

jects1. Second, to compensate thermal signature variations of pedestrians and especially

to handle the “polarity switch” problem, we propose a heuristic method in which the

extracted foreground Fk layer (pedestrian appearance information) is normalized relative

to the local background BkMk, and the principle component analysis is applied to the

normalized foreground layer. Third, on the contrary to our intuitions, we notice that

employing a smaller set of principle components can serve the purpose of noise removal

and contributes to the accuracy of pedestrian detection. Indeed a similar statement can

be found in [84], where the authors claim that compared to face recognition, the face

1Layered representation indeed can not reduce the interference of non-pedestrian moving objects like
vehicles. This may cause false detections in our algorithm as demonstrated in section 3.5.2. However
this situation is extremely rare in both the OSU and the WVU databases, therefore its solution is out
of the scope of this work. In section 3.6 we shall discuss the possible directions towards solving this
problem.
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detection task requires less principle components for a better performance.

3.4 Pedestrian Tracking

Tracking can be viewed as the dynamic extension of static pedestrian detection where

motion-related temporal constraint is exploited to establish the correspondence of moving

objects across multiple frames. However, such motion-related constraint can only be

exploited for video frames whose sample rate is sufficiently high (otherwise they are no

different from still images). For an ordered yet non-uniformly sampled collection of IR

imagery, tracking is not always possible (e.g., when there is scene change). Therefore,

we propose to do shot segmentation before tracking—a shot is defined as a collection of

consecutive frames whose adjacent time interval is sufficiently small (e.g., a fraction of

second). Tracking will be done within each shot instead for the whole sequence.

3.4.1 Shot segmentation

Based on the above definition, it is reasonable to assume that frames within the same

shot look more alike than those outside. In visible imagery, histogram-based techniques

are often suitable for shot segmentation [86]. However, histogram becomes less effective

for IR imagery because pixels in the still background would dominate those in the mov-

ing foreground. Instead, we have developed a fast Hausdorff-distance [87] based shot

segmentation algorithm.

Recall the collection of objects in foreground layer is labeled R1, R2, ..., REk
. For an

object Rk, we collect the endings and intersections along its skeleton and form a feature

point set Ck. To measure the distance between two feature point sets Ck and Ck+1, the

Hausdorff distance has been widely used in the literature of compute vision [88]. We

adopt the following definition of Hausdorff distance:

H(Ck, Ck+1) =
h(Ck, Ck+1) + h(Ck+1 + Ck)

|Ck|+ |Ck+1| (3.3)

where h(X,Y ) = max
{∀ a∈X}

{ min
{∀ b∈Y |a∈X}

{d(a, b)}}, d(a, b) denotes the Euclidean distance
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between two points a ∈ X and b ∈ Y , and |Ck| is the cardinality of set Ck. Note that

the above definition has enforced the symmetry, i.e., H(Ck, Ck+1) = H(Ck+1, Ck).

One practical constraint that has not been considered in the definition of Hausdorff

distance is that images have finite size. Therefore, if some pedestrian happens to enter

or leave the field of view, Hausdorff distance between two frames could be large even if

they are temporally close. To overcome such difficulty, we opt to exclude the pedestrians

around image boundary in the calculation of Hausdorff distance. Two frames are grouped

together if and only if their Hausdorff distance is below a pre-selected threshold.

3.4.2 Graph theoretic tracking

Within the same shot, pedestrian tracking in IR imagery is often more difficult than

that in visible imagery [22,89]. Unlike visible imagery containing color and texture cues,

shape is arguably the only cue that can be exploited by tracking in IR imagery. When

the camera distance is large, shape discrepancy between two different persons but with

similar weight and height is small. The silhouette of a person is constantly varying due

to the walking motion. Moreover, when two pedestrians walk closely or pass by each

other, the overlapped shape of pedestrians experiences severe deformation, which makes

tracking even more difficult.

To overcome the above difficulties, we propose the following strategies that exploit

both appearance and location information adaptively at the same time. First, it is

a reasonable to assume that a persons appearance does not change suddenly in two

consecutive frames of the same shot. To measure the similarity between two pedestrians

at different scales, we propose to normalize them to the same scale first (note that the

scale information for each pedestrian is available from the detection stage). Then we

project the pedestrians onto the eigenvectors ~Vi = {v(1), v(2), ..., v(Ni)} in scale i and

define their similarity to be the L2 distance calculated in the space spanned by the

eigenvectors. Such distance measuring the similarity in terms of appearance between two

pedestrians is denoted by dsa.

Second, we propose to adaptively exploit the cue of photometric similarity and geo-

metric proximity in the spatiotemporal domain. If pedestrians in the scene are far away
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from each other, geometric proximity is often sufficient for establishing the correspon-

dence (e.g., nearest neighbor rule). In difficult scenarios where multiple pedestrians walk

closely or pass by each other, both similarity and proximity will be useful to tracking.

Figure 3.4: The graph theoretic tracking scheme.

As shown in Fig. 3.4, we have implemented the above ideas for two-frame tracking

under a graph matching framework [90]. Let G be a weighted graph, in which 2Q nodes

denote the detected pedestrians: U = {u1, ..., uQ} from Ik and V = {v1, ..., vQ} from Ik+1

(Note that the equal number of pedestrians within each shot is guaranteed by the shot

segmentation procedure). For any u ∈ U and v ∈ V , there is an edge between them

whose weight is:

w(u, v) = αdsa + (1− α)deu (3.4)

where dsa has been defined earlier, deu is the Euclidean distance between the centroid of

u and v, and the weighting coefficient α is the overlapping ratio of u and v (i.e., the ratio

of overlapped area to pedestrian window size). Note that when α > 0, dsa is often much

larger than deu and easily dominates the weight assignment.

With the above-defined weighted graph G, two-frame pedestrian tracking can be

formulated as a bipartite matching problem with set U and V . Denote ai(U, V ), i =

1, 2, ..., Q! a one-to-one mapping between set U and set V , and W (U, V |ai) the total

weights of the graph G given the matching operation ai, the best mach between U

and V is determined by: abest = min
{ai}

W (U, V |ai). For example, assuming Q = 4, and

a1 = {(u1, v1), (u2, v2), (u3, v3), (u4, v4)}, then the total weights of the current graph G
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formed by the assignment a1 is W (U, V |a1) =
4∑

i=1

w(ui, vi). Therefore, given Q pedestrians

in each frame, theoretically there are Q! possible ways of constructing the graph G with

Q! correspondent total weights W (U, V |ai), and we are indeed pursing the one matching

operation ai that leads to the lowest total weight.

When Q is large, the solution space of ai(U, V ) shall be very huge, and the exhaus-

tive search is not applicable. However, we found that for the OSU and WVU thermal

pedestrian database, pedestrians seldom stay closely in large groups. Therefore, in our

implementation, isolated pedestrians are matched first using the geometric cue, then

pedestrians standing very close to each other (often 2-3 pedestrians) are matched via

exhaustive search. Besides, we also notice there are fast algorithms to solve bipartite

graph matching problems such as the graph-cut algorithm in [91].

3.5 Simulation Results and Discussions

In this section, we report our experimental results for OTCBVS benchmark-OSU ther-

mal pedestrian database [35] (acquired by Raytheon 300D thermal sensor and avail-

able at http://www.cse.ohio-state.edu/otcbvs-bench/), and WVU IR video database (ac-

quired by Raytheon PalmIR thermal sensor and available at http://www.csee.wvu.edu/

xinl/research/OTCBVS.html). The spatial resolutions of the IR images in the OSU and

WVU databases are 360×240, and 320×200 respectively. There are 10 test sequences in

OSU thermal database. Each sequence contains 18–73 frames that are taken within one

minute but not temporally uniformly sampled (they are the subset of 30 Hz video coming

out of IR camera). This database reasonably covers a variety of environmental conditions

such as rainy, cloudy and sunny days. In OSU database, the camera is kept still all the

time, and the cameraCpedestrian distance is far. Since video sequences in WVU database

contain camera panning motion and are acquired at a closer camera distance, we choose

two of them to demonstrate the performance of our dynamic background mosaicing and

multi-scale pedestrian detection.
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3.5.1 Dynamic background mosaicing

We first demonstrate the performance of the proposed dynamic background mosaicing

algorithm. In the demonstrated video sequence, there are two pedestrians walking in

the same direction as the camera panning motion. Fig. 3.5 shows the background

mosaicing results for three disjointed frames in a sequence from WVU database. It can

be observed that generalized EM algorithm effectively separate moving pedestrians from

the background regardless of camera panning motion. Without any optimization, our

MATLAB-based implementation takes 3–5 s to process 30 frames, which is faster than

the reported speed in [71] To illustrate the problem with motionless pedestrians, we take

Figure 3.5: Background layer extraction result in the presence of camera panning. (Top:
original IR images; Bottom: extracted background layers)

sequence #8 in OSU thermal database as an example. If we only use its 24 frames

in background extraction, the two pedestrians will be assigned to the background B,

which seriously affects the detection performance as observed in [35]. Since we do not

have any reference image taken at the same day, we opt to add another 24 frames of

sequence #10 with similar thermal characteristics. It can be observed from Fig. 3.6 that

incorporating more frames into background extraction alleviates the problem, though

some ghost shadow of two pedestrians remains (it has been experimentally confirmed

that the ghost shadow does not affect the detection).
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Figure 3.6: Extracted background using 24 frames in #8 only (left) and 48 frames in
#8, #10 together (right).

3.5.2 Pedestrian detection

The size of training templates for PCA-based localization is empirically determined for

the given database. Table 3.1 shows the detection result for all ten sequences in the OSU

database. We have adopted the terminology in [35] to facilitate the comparison (note

that Sensitivity=#TP/#People, PPV=1-#FP/#People). When compared with [35]

our approach noticeably works better on sensitivity performance.

[35] Ours [35] Ours [35] Ous [35] Ours

1 31 91 88 91 0 0 0.97 1.00 1.00 1.00

2 28 100 94 99 0 0 0.94 0.99 1.00 1.00

3 23 101 101 100 1 2 1.00 0.99 0.99 0.98

4 18 109 107 109 1 2 0.98 1.00 0.99 0.98

5 23 101 90 101 0 0 0.89 1.00 1.00 1.00

6 18 97 93 97 0 0 0.96 1.00 1.00 1.00

7 22 94 92 94 0 0 0.98 1.00 1.00 1.00

8 24 99 75 99 1 1 0.76 1.00 0.99 0.99

9 73 95 95 95 0 0 1.00 1.00 1.00 1.00

10 24 97 95 94 3 3 0.98 0.97 0.97 0.97

1-10 284 984 930 979 6 8 0.95 0.99 0.99 0.99

1 45 135 135 0 1 1

2 60 215 215 0 1 1

3 60 180 159 3 0.88 0.98
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Sensitivity PPV#TP #FP

Table 3.1: Detection results for OSU thermal pedestrian database (TP - True Positive,
FP - False Positive; PPV - positive predictive value (see texts for its definition).

In Fig. 3.7, we show our pedestrian detection results for some challenging cases in

the OSU database, including the “polarity switch”, groups of pedestrians, and rainy

weather. Fig. 3.8 shows some examples of miss detection, false alarm, and arguably

correct detection (not included in the ground-truth table due to occlusion). As we can

see in the bottom right image of Fig. 3.8, our pedestrian detection algorithm has falsely



CHAPTER 3. PEDESTRIAN DETECTION AND TRACKING IN INFRARED IMAGERY 68

Figure 3.7: Pedestrian detection results for challenging cases in the OSU database. (Left:
“polarity switch”; Middle: group of pedestrians; Right: rainy weather)

Figure 3.8: Examples of miss detection, false alarm (red box) and arguably correct results
(green box).

detected the car entering the scene as two individual pedestrians. This type of false

alarm is mainly due to the fact that the linear transformation of PCA based methods

is not sufficient to capture the shape variation information of various types of objects.

Indeed, in [92] we have proposed to exploit shape information to distinguish pedestrian

and non-pedestrian objects. However, because of the extremely limited training examples

in the OSU and WVU database, the shape-based classifier has not been integrated in our

existing pedestrian detection algorithm.

To demonstrate the performance of our pedestrian detection algorithm across varying

scales, we have conducted experiments with WVU infrared video database. As we can

see from Table 3.1, we have obtained perfect detection without any errors for the first
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two video sequences; for the more challenging third sequence with polarity switch, the

sensitivity and PPV values are 0.88 and 0.98 respectively. Fig. 3.9 shows the detection

results for some frames containing large pedestrian size variations.

Figure 3.9: Multi-scale detection result with camera panning

3.5.3 Pedestrian tracking

In Fig. 3.10,we also show the shot segmentation result for sequence #9 in OSU database.

The total 73 frames are segmented into four separate shots. The starting frames of four

shots are shown in Fig. 3.11. In tracking experiments, the following heuristics is used

in finding the optimal matching: if a pedestrian is isolated, the best matching can be

found by direct local search (i.e. α = 0); only for overlapped pedestrians (α > 0), we

need to exhaustively try out different assignments. Fig. 3.12 shows the tracking result

for frames No.13-18 of sequence #5 in OSU database. Each pedestrian is marked by a

different color. It can be observed that tracking is successful despite slight overlapping

of pedestrians. Note that since our tracking is based on detection results it will not work

if some pedestrian is missed at the detection stage.
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Figure 3.10: Shot segmentation result for sequence #9 of OSU database

3.5.4 Polarity switch

We have also done some preliminary test with polarity switch detection. Fig. 3.13

plots the calculated eavg for all ten testing sequences. It clearly indicates the negative

value for #3, which is the only one with polarity switch among ten in OSU database.

However when applying the proposed heuristic strategy to more challenging situations

(e.g., sequences with polarity switch in WVU database), we find that our strategy suffers

from performance degradation in terms of increased miss detection rate. Polarity switch

in WVU database is more difficult to handle because: 1) Pedestrians with and without

polarity switch simultaneously appear in a sequence or even occasionally in one image; 2)

pedestrians are partially occluded by the fence at the front. For example, Fig. 3.14 shows

two frames from a sequence containing missed pedestrians. This sequence is composed of

60 consecutive frames sampled at 30 frames/second recording three walking pedestrians.

After applying our detection algorithm with a constant set of parameters to this sequence,

we get a detection rate of 88% (21 pedestrians are missed), and a false positive rate of

2% (3 falsely detected pedestrians). We also find that 15 out of the 21 missed detected

pedestrians belong to the first 19 frames all of which contain the mixture of polarity

switched and normal pedestrians (due to a glass-body building in the scene), and only

6 miss detections belong to the rest 41 frames in which all pedestrians are polarity

switched. One plausible explanation lies in the heuristic strategy we proposed in Section
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Figure 3.11: Frames No. 1, 16, 37, 59 in sequence #9 - they are the starting frames of
new shots.

3.3 to handle the phenomenon of polarity switch. In our heuristic strategy, we propose

to take the absolute value on the normalized foreground layer. Although such strategy

does compensate for the polarity switched pedestrians to some degree, it switches the

polarity of noise components in the foreground layer as well. Whenever the background

mosaicing result contains errors, pedestrians in the foreground could be confused with

the modified noise, which leads to the events of miss detection or false alarm regardless

of parameter settings.

3.6 Concluding Remarks

This chapter presents a pedestrian detection and tracking algorithm for infrared imagery

using the appearance cue via a layered representation.

Our layered representation separates infrared imagery into two layers: the background

layer (still), and the foreground layer (moving). This layered representation structure

significantly facilitates the pedestrian detection and tracking tasks by reducing the inter-

ference of non-pedestrian objects. To accommodate the panning of thermal sensors, we
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Figure 3.12: Tracking results for frames No. 13-18 in sequence #5. (Bounding boxes
with the same color represent the same pedestrian tracked at successive instances.)

propose a generalized EM algorithm is proposed for dynamic background mosaicing, in

which the background registration and foreground mask estimation procedures are con-

ducted in an iterative fashion. In section 3.5.1, this background mosaicing algorithm has

been verified to be sufficient to provide a satisfying background/foreground separation

for pedestrian detection and tracking with a moderate computational complexity.

Based on the layered representation, we have presented a pedestrian detection al-

gorithm in which we propose to exploit the appearance cue of pedestrians by a PCA

based algorithm. To meet the challenges of infrared imagery (e.g. “polarity switch”,

thermal signature variations, and heavy noise), we have carefully modified the original

“eigenface” algorithm. Compared to the benchmark shape-based pedestrian detection

algorithm in [35] using the OSU thermal pedestrian database, our appearance-based

approach have achieved a comparable overall performance and a noticeable better sensi-

tivity. This result supports our argument that the appearance cue is also important for

IR imagery. To serve the purpose of multi-scale pedestrian detection, we applied three

sets of PCA templates with various sizes sequentially to IR images containing variable

sized pedestrians. This heuristical scheme is verified by experimental results on the WVU

infrared image database.
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Figure 3.13: Polarity switch detection result.

Figure 3.14: Miss Detection (green circle) due to polarity switch and fence blocking.

We also studied the problem of pedestrian tracking. Because the thermal image

sequences in the OSU database are temporally non-uniformly sampled, we proposed to

divide a thermal image sequence into serval shots by a Hausdorff-distance based shot

segmentation algorithm. Tracking tasks are conducted within each shot. The pedestrian

tracking task is formulated as a graph-matching problem between two successive IR

frames by exploiting both the appearance similarity and geometry proximity of each

individual pedestrians. To reduce the computational complexity for solving this graph-

matching problem, we have proposed to match isolated pedestrians first to reduce the

solution space.

Experiments conducted on OSU and WVU databases demonstrate that our algorithm
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performs well for challenging situations regardless of camera motion and distance. How-

ever, the proposed algorithm still has some limitations that can be improved in the future.

We summarize them as follows: First, due to the limitation of PCA based approach, our

pedestrian detection scheme can not handle the interference of moving objects well. In-

deed, in [92], we have proposed a promising approach to screen non-pedestrian moving

object using shape information via support vector machine (SVM). However due to the

limited training examples in current OSU and WVU database, we have not been able

to fully test the shape-based classifier. In the future, we shall work on integrating the

shape-based classifier into the existing pedestrian detection scheme by collecting more

data with moving objects. Second, “Polarity switch” is one of the most challenging cases

in infrared imagery. It has negative impact on the accuracy of our algorithm. Currently,

the cause of this phenomenon is still poorly understood. We believe that more experi-

ment data and a better understanding of the physical mechanism shall provide effective

schemes against this hostile phenomenon. Third, our current pedestrian detection scheme

does not exploit any temporal information of IR image sequences. We believe motion

information provided by the tracking algorithm can help further improve the detection

performance (i.e., from static to dynamic). Within each shot, the motion cue can be

exploited to resolve the ambiguity with overlapped pedestrians.



Chapter 4

Accurate Video Alignment Using

Phase Correlation

4.1 Introduction

Despite recent advances in sensor technology, the spatial and temporal resolution of

video cameras remain limited. Although higher resolutions can be achieved using camera

array and high-speed cameras, the cost remains high. An alternative solution is to

integrate/fuse visual information acquired by multiple standard cameras (e.g. multi-view

video sequences). Such a computational approach has the advantage of cost efficiency and

has many potential applications such as automatic video based surveillance [36,37], video

metrology for athletic events [38], video-based modeling and rendering of 3D scenes [39],

and tele-immersion [40].

Multi-view video sequences of the same dynamic scene are subject to spatiotemporal

displacements. The spatial displacement is due to different camera positions. While the

temporal displacement originates from the fact that the cameras may not be able to start

recording at exactly the same temporal instance. Therefore, fusing such non-synchronized

multi-view sequences requires the knowledge of their spatial and temporal relationships.

Video alignment is a technique to fulfill this requirement by establish the correspondence

in time and space among different sequences of the same dynamic scene [93].

In recent years, a flurry of algorithms for aligning video sequences have emerged.

75
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In [41], a three-step approach using a set of corresponding feature points is proposed.

In [45,93], parametric spatial and temporal alignment is obtained by iterative refinement.

In [42], alignment is achieved by matching trajectories of moving objects. In [43], a

nonlinear temporal warping function is introduced to compute temporal alignment. In

[44], a linear video synchronization method is proposed to simultaneously align multiple

sequences.

All the aforementioned techniques have achieved very good spatiotemporal alignment

performances on multi-view sequences. For example, most of these techniques are able to

reach integer frame accuracy for estimating the relative temporal displacement, and some

of them (e.g. [44, 45]) do claim for subframe accuracy. However, to our best knowledge,

there is no published work (before ours) that has ever conducted quantitative evaluations

on their temporal alignment results. This situation might be due to the difficulty to mea-

sure true temporal displacements without using any specially designed synchronization

instruments.

Accurate temporal alignments (especially at the subframe level) of multi-view se-

quences indeed are beneficial to certain video applications. For instance, in [94], a tem-

poral super-resolution algorithm is developed to handle the motion aliasing problem by

fusing several multi-view sequences based on the knowledge of their relative temporal

displacements with subframe accuracy.

Motivated by the above observations, in this chapter, we present a highly accurate

approach toward space-time video alignment using 3-D phase correlation. To evaluate

the accuracy of the proposed algorithm, we have invented a simple but effective way

to measure the unknown temporal displacement by using supplementary audio informa-

tion that is recorded together with the video clips by the video cameras1 while they are

shooting a dynamic scene. Since audio signals can be sampled at a much higher rate

(usually hundreds of times higher) than the video clips, the alignment of these audio

signals provides an accurate enough estimate of temporal displacements between video

clips. Experiments conducted on five pairs of multi-view sequences show that the tem-

poral alignment results of the proposed algorithm lie within ±0.1 frames to the ground

1Note that in nowadays the audio recoding function has been a common feature of popular digital
video camera brands.
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truth provided by the audio signals.

4.1.1 Contributions

We summarize the contributions of our work into the following two aspects:

Video alignment via 3D phase correlation. We present a novel and highly

accurate approach toward space-time video alignment via 3D phase correlation. Inspired

by the subpixel image registration technique in [46], we propose to generalize the 2D

phase correlation algorithm in [46] into 3D for the temporal alignment purpose. When

combining it with existing spatial alignment techniques (e.g., [95] and [96]) under an

iterative framework, we show that accurate temporal alignments can be achieved between

multi-view sequences regardless of illumination difference and camera motion. we also

explain how to achieve subframe accuracy using phase correlation, which outperforms

cross-correlation based alignment (e.g., [44], and [45]).

Subframe ground truth via supplementary audio. As we have discussed, the

difficulty to obtain the true temporal displacement prevents us as well as other researchers

from evaluating the accuracy of proposed video alignment algorithms at the subframe

level. Although an accurate synchronization can be achieved by using certain specially

designed timing instruments, the associated design and instrumentation cost is not trivial.

The second contribution of this work is providing a simple and effective method that does

not require any extra instrument to achieve reliable and highly accurate estimates of true

temporal displacements between multi-view sequences. In our method, we make a novel

use of the audio recording function of video cameras, and record together with the video

sequences a piece of audio signal while the cameras are shooting a dynamic scene. Since,

audio signals are usually sampled at a much higher frame rate than video signals, the

alignment of audio signals via 1-D phase correlation can provide the ground-truth with

the accuracy of 0.0014 frame distance in our experiment settings.

The rest of this chapter is organized as follows: In section 4.2.1, we present our

assumptions and the mathematical formulation for the multi-view video alignment prob-

lem. In section 4.2.2, we present how to estimate the temporal displacement via 3-D
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phase correlation. In section 4.2.3, we briefly describe the procedure for spatial align-

ment via existing image gradient based approach in [95,96]. In section 4.2.4, An iterative

spatiotemporal sequence alignment scheme is presented to enhance the spatiotemporal

alignment performance. In section 4.2.5, we describe the procedure to obtain subframe

ground-truth for temporal displacements via supplementary audio information. Simula-

tion results and associated discussions are presented in section 4.3. Concluding remarks

and future work are presented in section 4.4.

4.2 Video Alignment Using 3-D Phase Correlation

4.2.1 Problem Formulation

Without loss of generality, we focus on the alignment of two video sequences here. The

two cameras satisfy the following assumptions:

1) Spatially, two cameras are kept close to each other (not necessarily still), and the

distance between camera centers is negligible compared to the camera-to-scene distance

(planar scene);

2) Temporally, two cameras have the same sampling rate but are not synchronized;

We note that the first assumption is to assure that two video sequences have signifi-

cantly overlapped field of view (FOV) which contains the moving target of interest. No

assumption is made about the calibration of video cameras - i.e., the inner and outer

optical parameters of two cameras might slightly differ.

Let f1 and f2 be two input multi-view sequences. Denote (x, y, t) and (x′, y′, t′)

the spatiotemporal correspondent points (voxels [45]) in f1 and f2 respectively. The

mathematical model link these two sequences can be written as:

f1(x, y, t) = f2(x
′, y′, t′) + v(x, y, t) (4.1)

Where v(x, y, t) denotes the noise/illumination variations.

According to our assumptions, the temporal and spatial constraints between two

correspondent voxels (x, y, t) and (x′, y′, t′) can be described as follows:
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Temporal translation constraint :

t′ = t + ∆t (4.2)

Spatial projection constraint :

H × ~P ′ = ~P (4.3)

where H is an instantaneous 3 × 3 homography matrix and ~P = [x, y, 1]T is the ho-

mogeneous coordinate of the spatial component of (x, y). Note that the above spatial

projection constraint holds for our planar scence assumption [45].

Given f1 and f2, we need to resolve the uncertainty of both H (spatial) and ∆t

(temporal). Note that the spatial and temporal alignments are intertwisted in such a

way that knowing one will directly facilitate the estimation of the other. Therefore in the

subsequent sections we shall describe the algorithms for estimating ∆t and H respectively.

Then we present an iterative procedure in which the estimates of ∆t and H are jointly

refined.

4.2.2 The 3-D Phase Correlation Based Temporal Alignment

In this section we discuss how to achieve the temporal alignment via 3-D phase correla-

tion. Similar to the 2D case, we define the phase-correlation between f1 and f2 as

C(x, y, t) = F−1[
F ∗

1 F2

|F ∗
1 F2| ] (4.4)

where F1, F2 are the 3D Fourier transform of f1, f2. It is easy to observe that when

f2 = f1(x + ∆x, y + ∆y, t + ∆t), the phase correlation C(x, y, t) takes the form of Dirac

function δ(x−∆x, y −∆y, t−∆t). Similar to sub-pixel image registration [46], we can

estimate the subframe displacement in the phase-correlation domain.

Let f1(x, y, t) and f2(x
′, y′, t′) be generated by down-sampling two higher-resolution

signals linked by integer translations of x0,y0, and t0. Then the fractional displacements
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can be expressed as: ∆x = x0

M
,∆y = y0

N
, and ∆t = t0

K
where M ,N , and K denote the

down-sampling factors along three dimensions. Using similar derivation to [46], we can

show:

C(x, y, t) ≈ sin(π(Mx− x0))

π(Mx− x0)

sin(π(Ny − y0))

π(Ny − y0)

sin(π(Kt− t0))

π(Kt− t0)
+ w(x, y, t) (4.5)

where w(x, y, t) is a zero-mean Gaussian random variable modeling the interference noise

(e.g., due to non-overlapping regions).

Figure 4.1: Subframe estimation from main and side peaks of phase-correlation function.

Eq. (4.5) basically shows that the energy spreading of C(x, y, t) from the main peak

observes the sinc function. Using the same technique as [46], we can fit the model of Eq.

(4.5) around the locations where signal energy is mostly concentrated at main-peak tm

and side-peak ts (shown in Fig. 4.1). For instance, we can have the main peak located at

(0, 0, 0) and its closest side-peak along the t-dimension at (0, 0, 1) by change of variables.

Then we obtain

C(0, 0, 0) =
sin(πx0)

πx0

sin(πy0)

πy0

sin(πt0)

πt0
(4.6)

C(0, 0, 1) =
sin(πx0)

πx0

sin(πy0)

πy0

sin(π(K − t0))

π(K − t0)
(4.7)
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It follows from (4.6) and (4.7) that

∆t =
t0
K

=
C(0, 0, 1)

C(0, 0, 1)± C(0, 0, 0)
, (4.8)

where the ± ambiguity can be resolved by imposing the constraints that ∆t is in the

range of [-0.5,0.5] and has the same sign as ts − tm.

4.2.3 The Image Based Spatial Alignment

Although temporal alignment can be efficiently handled by the phase-correlation based

method, it is not appropriate for spatial alignment. Two-parameter translational models

are too limited to characterize the multi-view geometric relationship and consequently,

spatial alignment given by phase-correlation is often suboptimal. Therefore, we resort to

more sophisticated models such as 2D planar homography matrix H (refer to Eq.(4.3))

with eight free parameters (scale invariant):

H =




m0 m1 m2

m3 m4 m5

m6 m7 1


 (4.9)

In this work, we have adopted hierarchical techniques presented in [95] and [96] to es-

timate the homography matrix H for each pair of frames (under further assumption of

both cameras being fixed, we can estimate only one H for the whole sequence).

For the clarity and completeness purposes, in this section, we briefly describe the

technique in [95] for estimating the homography matrix H. Assuming the temporal dis-

placement ∆t between two sequences f1 and f2 is estimated via the 3-D phase correlation

algorithm in previous section, the homography matrix H linking the two correspondent

frame pairs f1(x, y, t) and f2(x, y, t + [∆t]) ([∆t] is the nearest integer of ∆t) at any

instance t is estimated by minimizing the sum of squared intensity errors:

E =
∑

(x,y)

e2 =
∑

(x,y)

(f2(x
′, y′, t + [∆t])− f1(x, y, t))2 (4.10)
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where the expressions of x′ and y′ can be derived from Eq.(4.3) and Eq.(4.9):

x′ =
m0x + m1y + m2

m6x + m7y + 1
, y′ =

m3x + m4y + m5

m6x + m7y + 1
. (4.11)

To minimize Eq.(4.10) with respect to the unknown parameters ~m = [m0,m1, ..., m7],

the hierarchical Levenberg-Marquardt iterative nonlinear minimization algorithm [97]

is applied for its numerical stability and fast convergence properties. Note that since

the implementation detail of the hierarchical Levenberg-Marquardt algorithm has been

covered in [95] and [96], we do not repeat the whole procedure here.

Once the homography maxtrix H at each instance t has been estimated, the spatial

alignment of f1 and f2 is achieved by warping the sequence f2 towards f1 using Eq. (4.3).

Since some pixels (x′, y′) may fall between the sampling grids of f1, a bilinear interpolation

technique is adopted to compute the pixel values at the correspondent grade points.

4.2.4 The Joint Spatiotemporal Sequence Alignment

As we have mentioned, the spatial and temporal alignments are intertwisted procedures:

On the one hand, the spatial alignment rely on the knowledge of temporal displacement;

On the other hand, the temporal alignment is inaccurate without compensating the

spatial displacements which are usually non-translational (refer to Fig. 4.5). Therefore,

in this section, we present an joint spatiotemporal sequence alignment scheme in which

the temporal and spatial alignments are iteratively refined.

Putting the temporal and spatial alignment procedures together, we summarize our

spatiotemporal alignment algorithm in Fig. 4.2. As shown in Fig. 4.2, the iterative

procedure starts with estimation of the temporal displancement. After the initial tem-

poral alignment, the set of homography matrices {Hk} are computed from the spatial

alignment procedure. Then the temporal alignment procedure is resumed for one original

sequence (f1) and the spatially compensated version of the other sequence (f ′2) which is

achieved via the homography transform defined in Eq.(4.3). Finally, the iterative pro-

cedure stops when the temporal alignment can not be further refined. Note that during

the iterations only the integer part of temporal alignment result [∆ti] is fed back into the

loop to improve the homography estimation (no temporal interpolation is involved). For
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Figure 4.2: Flow chart of the joint spatiotemporal alignment algorithm

most sequences, we have found that convergence is reached after only one spatial and

two temporal alignment steps.

4.2.5 Subframe Ground-Truth via Supplementary Audio

In view of difficulty with evaluating the accuracy of subframe video alignment, we come

up with a novel approach based on the observation that supplementary audio is sampled

at a much higher rate than video. As shown in 4.3, we can apply 1D phase correlation

based alignment technique to audio signals and obtain the temporal distance (measured

by the number of audio samples). It is easy to see that integer-sample accuracy of audio

sampled at 22,050Hz corresponds to 0.0014-frame accuracy of video sampled at 30Hz.

Therefore, audio-based alignment conveniently provides the subframe ground truth to

validate the accuracy of video alignment techniques.

Indeed the idea of using audio information to obtain accurate estimates of temporal

displacements of video signals is both effective and cost efficient. the cost efficiency

comes from the fact that it does not require any extra instrumentation and is very easy to

conduct. It exploits the audio recording function owned by most commercial camcorders.
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Figure 4.3: Illustration of audio alignment to obtain subframe ground truth.

What one needs to provide is a piece of audio signal that will be recorded by the cameras

while they are shooting a specific dynamic scene. The effectiveness of this technique is

generally guaranteed by the fact that the sampling rates of audio signals (22,050Hz) are

much higher than video signals (30Hz). One may concern that the latencies between

the video and audio signals inside the two cameras could differ due to different inner

parameters of the cameras. This difference however should be negligible in our work,

since we have used two cameras of the identical model (Canon S2-IS) throughout all the

experiments.

4.3 Simulation Results and Discussions

In this section, we use experimental results to demonstrate the performance of the pro-

posed video alignment techniques. Two sets of test sequences are captured under ideal

(walk, ball, flag) and nonideal (flag1 , flag2) conditions respectively. Specifically, two

cameras have varying illumination conditions in flag1 and in flag2, one camera is kept

still and the other moves.

First, it is well known from [46] that phase-correlation is more accurate than cross-

correlation for subpixel image registration. Similarly, we want to show that phase-

correlation is preferred to cross-correlation adopted in [45] for subframe video alignment.

Fig. 4.4 compares the phase-correlation function and cross-correlation function for flag1.

It can be seen that the peak of phase-correlation function is sharper than that of cross-

correlation function, which has been observed in [46] for 2-D images.
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Figure 4.4: Comparison between cross-correlation (left) and phase-correlation (right) for
flag1.
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Figure 4.5: Phase-correlation function along the temporal axis before (left) and after
(right) spatial alignment for walk.

Second, we want to demonstrate how spatial alignment sharpens the peak of phase-

correlation function and therefore improves the accuracy of subframe temporal alignment.

Fig. 4.5 compares the phase-correlation functions before and after spatial alignment for

the walk sequence. To facilitate the visual inspection, they have been displayed at the

same range - the improvement of peak magnitude is obvious. Such increased energy

concentration at the main and side peaks is a direct evidence of improved alignment

accuracy [46].

Finally, we report the alignment results for the two data sets in Table 4.1. For both

data sets, we observe that our method can achieve temporal accuracy within the range of

±0.1 frame compared to the ground truth. It should be noted that 3D phase-correlation

achieves highly accurate alignment regardless of motion rigidity. Such result suggests
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Table 4.1: Video synchronization results

that accurate alignment of multiview video does not necessarily require the estimation

of motion trajectory (i.e., independent of the complexity of motion in each sequence).

For the non-ideal data set, we have found that our technique achieves higher accuracy

for flag1 than flag2 because phase-correlation is robust to photometric distortions than

geometric distortions. Fig. 4.6 shows two spatially aligned video frames selected from

the flag and the walk sequences using the estimated homography matrices. It is clear

to observe that the spatial correspondence between the misaligned video sequences is not

purely translational.

Figure 4.6: Spatial alignment results (Left: flag sequence, Right: walk sequence).
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4.4 Concluding Remarks

In this chapter, we have studied the problem of multi-view sequence alignment. To

achieve an accurate temporal alignment, we have generalized the 2-D phase correlation

algorithm in [46] for 3-D video data. Since the spatial alignment between multi-view video

sequences is constrained by the homographic transformation (assuming planar scene), we

adopted the procedures in [95,96] to estimate the homography matrices. We verified that

after combining the spatial and temporal alignment procedures in an iterative fashion,

very accurate estimate of temporal alignment can be achieved. Experimental results

show that our scheme is robust to both illumination variations and camera motions.

Currently, the proposed algorithm is based on the assumption of 2-D planar scenes

under which the spatial relationship of multi-view sequences is reduced to the homo-

graphic transformation. This assumption is valid for large camera-to-scene distances.

When the distance becomes close, our current algorithm does not guarantee to produce

satisfying alignments because of the effect of scene depth variations. Indeed in this case

the spatial constraint of multi-view sequences becomes the more general 3-D perspective

transformation. In the future, we shall investigate on developing algorithms to deal with

3-D scenes. Besides, our current algorithm assumes an identical temporal sampling rate

for the two cameras. In the future, we shall explore on a more general case in which the

temporal alignment of multi-view sequences could have a linear relationship.



Chapter 5

Conclusions and Future Work

In this thesis we choose to study three topics in video coding and computer vision. These

topics cover a wide range of video applications ranging from the conventional monocular

and binocular applications within the visible spectrum to the applications beyond the

visible spectrum. For each selected problem, we have investigated the fundamentals

behind and proposed our own solutions.

Intra coding in block-based hybrid video coding systems is essentially a still image

coding problem. In chapter 2, we identify that the quad-tree based image representation

structure adopted by many image coding schemes (e.g., wavelet based image coders and

H.264/AVC intra coding) fail to take into account the geometric constraint of edges in

natural images and therefore lead to a suboptimal R-D performance. Based on this ob-

servation, we have introduced the concept of geometry-adaptive intra prediction (GAIP)

to exploit the redundancy along edge orientations. In the GAIP algorithm, an image

block is separated into two regions by an arbitrarily oriented line segment, and a set

of prediction schemes have been designed to model each partitioned region. We have

also studied the problem of modeling texture patterns of natural images by exploiting

the non-local information and developed a geometry-adaptive intra displacement predic-

tion (GAIDP) algorithm by applying the proposed geometry-adaptive block partitioning

structure to the existing intra displacement prediction (IDP) algorithm. Simulations

have shown that at low bit rate regime, the intra coding performance of H.264/AVC

is significantly improved after being incorporated with the proposed GAIP and GAIDP

88
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algorithms.

Despite the demonstrated power of modeling natural images, the proposed algorithms

can still be improved. First, the current block partitioning edge is modeled by a line seg-

ment. This linear model is too simple to efficiently represent arbitrarily shaped image

edges. Therefore in the future, partitioning curve models of higher orders should be

explored. Second, in our current implementation, the optimal partitioning edge is de-

termined via an exhaustive searching procedure which is highly intensive in terms of

computation. For real time applications, fast edge searching algorithms based on the

statistics of decoded information shall be investigated. Finally, due to the complex na-

ture of texture patterns, we believe that an adaptive fusion of multiple texture descriptor

is a promising direction of modeling texture patterns.

Object detection and tracking has been extensively studied in visible spectrum. For

infrared imagery, we are facing new challenges because of a different sensing modality. In

chapter 3, we have proposed a pedestrian detection and tracking algorithm via layered

representation. To separate the foreground layer and the background layer in the presence

of the camera panning motion, a generalized expectation maximization (GEM) procedure

is developed to iteratively conduct the global background registration and foreground

mask estimation. We argue that for the pedestrian detection purpose, the appearance cue

of pedestrians in infrared imagery is equally important as the shape cue which has been

exploited in the literature. We have developed a multi-scale principle component analysis

(PCA) technique to detect pedestrians with various sizes. Simulations on both the OSU

and WVU thermal image databases justify the importance of the appearance cue. To

facilitate tracking task, we propose a shot segmentation technique based on the Hausdorff-

distance measure. Within each shot, tracking is formulated as a graph matching problem

by exploiting both the appearance similarity and the geometric approximate of individual

pedestrians.

Due to the limitation of PCA based approach, the current pedestrian detection tech-

nique is not sufficient to distinguish between pedestrians and non-pedestrian moving ob-

jects on the foreground layer. To address this problem, in the future we can collect more

examples of various non-pedestrian objects, and explore the possibility of combining a

shape-based classifier with our appearance based approach. Besides, our current tracking
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scheme defined on two successive frames does not fully exploit the motion information.

Indeed, motion is a very important cue for object tracking tasks. We believe that the

robustness and accuracy of current tracking scheme can be further improved by exploit-

ing the motion trajectories of pedestrians. “Polarity Switch” is a hostile phenomenon for

detection and tracking tasks in thermal imagery. To fight against it, heuristic methods

have been proposed (including ours) in literature. We believe the solution to this problem

lies behind the understanding of the imaging mechanisms of thermal sensors.

Video alignment is a procedure to facilitate the fusion of multi-view sequences. For

video alignment, we identify that the temporal and spatial alignments are intertwined. In

chapter 4, we have proposed to conduct temporal and spatial alignments in an iterative

framework. To obtain accurate temporal alignments, we have generalized the 2-D phase

correlation algorithm to 3-D. We also provide a novel way of obtaining the ground truth

of temporal displacements by using auxiliary audio signals with much higher sampling

rates. Currently, our algorithm is based on the assumptions of planar scenes and identical

temporal sampling rates. In the future, we shall explore the situations of more complex

3-D scenes and non-identical frame rates.
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