48,596 research outputs found

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    A Finite Element Method for Interactive Physically Based Shape Modelling with Quadratic Tetrahedra

    Get PDF
    We present an alternative approach to standard geometric shape editing using physically-based simulation. With our technique, the user can deform complex objects in real-time. The enabling technology of this approach is a fast and accurate finite element implementation of an elasto-plastic material model, specifically designed for interactive shape manipulation. Using quadratic shape functions, we avoid the inherent drawback of volume locking exhibited by methods based on linear finite elements. The physical simulation uses a tetrahedral mesh, which is constructed from a coarser approximation of the detailed surface. Having computed a deformed state of the tetrahedral mesh, the deformation is transferred back to the high detail surface. This can be accomplished in an accurate and efficient way using the quadratic shape functions. In order to guarantee stability and real-time frame rates during the simulation, we cast the elasto-plastic problem into a linear formulation. For this purpose, we present a corotational formulation for quadratic finite elements. We demonstrate the versatility of our approach in interactive manipulation sessions and show that our animation system can be coupled with further physics-based animations like, e.g. fluids and cloth, in a bi-directional way

    Interactive shape editing techniques for 3D point models using an electronic glove

    Get PDF
    The development of simple and intuitive interactive deformation techniques for 3D point-based models is essential if they have to find wide-spread application in different domains. In this thesis we describe an interactive technique for editing the surface of a point-based model by adapting a physically-based mesh-free shape deformation formulation to work in conjunction with data input from an electronic glove. Each finger tip of the glove forms an interaction point in 3D space, whose movement into/away from the surface is used as a directed force applied on the surface for deforming the model in an intuitive yet computationally stable manner. After the glove is spatially registered with the point-based model, one or more fingers can be simultaneously used for deforming the model. For editing large 3D point based models, we have proposed two heuristic techniques which yield interactive response times for both global and locally detailed deformations on a large model. The heuristics use a localized deformable region or use a reduced model set with offline transfer of shape modification to the larger model. The proposed technique is simple to implement and its effectiveness has been demonstrated through a number of illustrative examples and videos

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Shape manipulation using physically based wire deformations

    Get PDF
    This paper develops an efficient, physically based shape manipulation technique. It defines a 3D model with profile curves, and uses spine curves generated from the profile curves to control the motion and global shape of 3D models. Profile and spine curves are changed into profile and spine wires by specifying proper material and geometric properties together with external forces. The underlying physics is introduced to deform profile and spine wires through the closed form solution to ordinary differential equations for axial and bending deformations. With the proposed approach, global shape changes are achieved through manipulating spine wires, and local surface details are created by deforming profile wires. A number of examples are presented to demonstrate the applications of our proposed approach in shape manipulation

    MoSculp: Interactive Visualization of Shape and Time

    Full text link
    We present a system that allows users to visualize complex human motion via 3D motion sculptures---a representation that conveys the 3D structure swept by a human body as it moves through space. Given an input video, our system computes the motion sculptures and provides a user interface for rendering it in different styles, including the options to insert the sculpture back into the original video, render it in a synthetic scene or physically print it. To provide this end-to-end workflow, we introduce an algorithm that estimates that human's 3D geometry over time from a set of 2D images and develop a 3D-aware image-based rendering approach that embeds the sculpture back into the scene. By automating the process, our system takes motion sculpture creation out of the realm of professional artists, and makes it applicable to a wide range of existing video material. By providing viewers with 3D information, motion sculptures reveal space-time motion information that is difficult to perceive with the naked eye, and allow viewers to interpret how different parts of the object interact over time. We validate the effectiveness of this approach with user studies, finding that our motion sculpture visualizations are significantly more informative about motion than existing stroboscopic and space-time visualization methods.Comment: UIST 2018. Project page: http://mosculp.csail.mit.edu

    Neural Face Editing with Intrinsic Image Disentangling

    Full text link
    Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other --- a process that is tedious, fragile, and computationally intensive. In this paper, we propose an end-to-end generative adversarial network that infers a face-specific disentangled representation of intrinsic face properties, including shape (i.e. normals), albedo, and lighting, and an alpha matte. We show that this network can be trained on "in-the-wild" images by incorporating an in-network physically-based image formation module and appropriate loss functions. Our disentangling latent representation allows for semantically relevant edits, where one aspect of facial appearance can be manipulated while keeping orthogonal properties fixed, and we demonstrate its use for a number of facial editing applications.Comment: CVPR 2017 ora
    corecore