107 research outputs found

    Integration of set point optimization techniques into nonlinear MPC for Improving the operation of WWTPs

    Get PDF
    [EN] Optimization and control strategies are necessary to keep wastewater treatment plants (WWTPs) operating in the best possible conditions, maximizing effluent quality with the minimum consumption of energy. In this work, a benchmarking of different hierarchical control structures for WWTPs that combines static and dynamic Real Time Optimization (RTO) and non linear model predictive control (NMPC) is presented. The objective is to evaluate the enhancement of the operation in terms of economics and effluent quality that can be achieved when introducing NMPC technologies in the distinct levels of the multilayer structure. Three multilayer hierarchical structures are evaluated and compared for the N-Removal process considering the short term and long term operation in a rain weather scenario. A reduction in the operation costs of approximately 20% with a satisfactory compromise to Effluent Quality is achieved with the application of these control scheme.[ES] Las estrategias de optimización y control son necesarias para que las plantas de tratamiento de aguas residuales funcionen en las mejores condiciones posibles, maximizando la calidad de los efluentes con el mínimo consumo de energía. En este trabajo, se presenta un benchmarking de diferentes estructuras de control jerárquico para WWTP que combina Optimización en tiempo real estática y dinámica (RTO) y control predictivo modelo no lineal (NMPC). El objetivo es evaluar la mejora de la operación en términos de economía y calidad del efluente que se puede lograr al introducir las tecnologías NMPC en los distintos niveles de la estructura multicapa. Se evalúan y comparan tres estructuras jerárquicas multicapa para el proceso considerando la operación a corto y largo plazo en un escenario de lluvia. Con la aplicación de este esquema de control se logra una reducción de los costos de operación de aproximadamente el 20% con un compromiso satisfactorio a la calidad del efluente

    Innovative Surveillance and Process Control in Water Resource Recovery Facilities

    Get PDF
    Water Resource Recovery Facilities (WRRF), previously known as Wastewater Treatment Plants (WWTP), are getting increasingly complex, with the incorporation of sludge processing and resource recovery technologies. Along with maintaining a stringent effluent water quality standard, the focus is gradually shifting towards energy-efficient operations and recovery of resources. The new objectives of the WRRF demand an economically optimal operation of processes that are subjected to extreme variations in flowrate and composition at the influent. The application of online monitoring, process control, and automation in WRRF has already shown a steady increase in the past decade. However, the advanced model-based optimal control strategies, implemented in most process industries, are less common in WRRF. The complex nature of biological processes, the unavailability of simplified process models, and a lack of cost-effective surveillance infrastructure have often hindered the implementation of advanced control strategies in WRRF. The ambition of this research is to implement and validate cost-efficient monitoring alternatives and advanced control strategies for WRRF by fully utilizing the powerful Internet of Things (IoT) and data science tools. The first step towards implementing an advanced control strategy is to ensure the availability of surveillance infrastructure for monitoring nutrient compositions in WRRF processes. In Paper A, a soft sensor, based on Extended Kalman Filter, is developed for estimating water-quality parameters in a Sequential Batch MBBR process using reliable and inexpensive online sensors. The model used in the soft sensor combines the mechanistic understanding of the nutrient removal process with a statistical correlation between nutrient composition and easy-to-measure parameters. Paper B demonstrates the universality of the soft sensor through validation tests conducted in a Continuous Multistage MBBR pilot plant. The drift in soft-sensor estimation caused by a mismatch between the mathematical model and process behavior is studied in Paper B. The robustness of the soft sensor is assessed by observing estimated nutrient composition values for a period of three months. A systematic method to calibrate the measurement model and update model parameters using data from periodic lab measurements are discussed in Paper B. The term SCADA has been ubiquitous while mentioning online monitoring and control strategy deployment in WRRFs. The present digital world of affordable communication hardware, compact single board processors, and high computational power presents several options for remote monitoring and deployment of soft sensors. In Paper C, a cost-effective IoT strategy is developed by using an open-source programming language and inexpensive hardware. The functionalities of the IoT infrastructure are demonstrated by using it to deploy a soft sensor script in the ContinuousMultistage MBBR pilot plant. A cost-comparison between the commercially available alternatives presented in Paper A and the open-source IoT strategy in Paper B and Paper C highlights the benefits of the new monitoring infrastructure. Lack of reliable control models have often been the cause for the poor performance of advanced control strategies, such as Model Predictive Controls (MPC) when implemented to complex biological nutrient removal processes. Paper D attempts to overcome the inadequacies of the linear prediction model by combining a recursive model parameter estimator with the linear MPC. The new MPC variant, called the adaptive MPC (AMPC), reduces the dependency of MPC on the accuracy of its prediction model. The performance of the AMPC is compared with that of a linear MPC, nonlinear MPC, and the traditional proportional-integral cascade control through simulator-based evaluations conducted on the Benchmark Simulator platform(BSM2). The advantages of AMPC compared to its counterparts, in terms of reducing the aeration energy, curtailing the number of effluent ammonia violations, and the use of computational resources, are highlighted in Paper D. The complex interdependencies between different processes in a WRRF pose a significant challenge in defining constant reference points for WRRFs operations. A strategy that decides control outputs based on economic parameters rather than maintaining a fixed reference set-point is introduced in Paper E. The model-based control strategy presented in Paper D is further improved by including economic parameters in the MPC’s objective function. The control strategy known as Economic MPC (EMPC) is implemented for optimal dosage of magnesium hydroxide in a struvite recovery unit installed in a WRRF. A comparative study performed on the BSM2 platform demonstrates a significant improvement in overall profitability for the EMPC when compared to a constant or a feed-forward flow proportional control strategy. The resilience of the EMPC strategy to variations in the market price of struvite is also presented in Paper E. A combination of cost-effective monitoring infrastructure and advanced control strategies using advanced IoTs and data science tools have been documented to overcome some of the critical problems encountered in WRRFs. The overall improvement in process efficiency, reduction in operating costs, an increase in resource recovery, and a substantial reduction in the price of online monitoring infrastructure contribute to the overall aim of transitioning WRRFs to a self-sustaining facility capable of generating value-added products.Water Resource Recovery Facilities (WRRF), tidligere kjent som avløpsrenseanlegg (WWTP), blir stadig mer komplekse ettersom flere prosess steg tillegges anleggene i form av slambehandling og ressursgjenvinningsteknologi. Foruten hovedmålet om å imøtekomme strenge avløpsvannskvalitetskrav, har anleggenes fokus gradvis skiftet mot energieffektiv drift og gjenvinning av ressurser. Slike nye mål krever økonomisk optimal drift av prosesser som er utsatt for ekstreme variasjoner i volum og sammensetning av tilløp. Bruk av online overvåking, prosesskontroll og automatisering i WRRF har jevnt økt det siste tiåret. Likevel er avanserte modellbaserte kontrollstrategier for optimalisering ikke vanlig i WRRF, i motsetning til de fleste prosessindustrier. Komplekse forhold i biologiske prosesser, mangel på tilgang til pålitelige prosessmodeller og mangel på kostnadseffektiv overvåkingsinfrastruktur har ofte hindret implementeringen av avanserte kontrollstrategier i WRRF. Ambisjonen med denne avhandlingen er å implementere og validere kostnadseffektive overvåkingsalternativer og avanserte kontrollstrategier somutnytter kraftige Internet of Things (IoT) og datavitenskapelige verktøy i WRRF sammenheng. Det første steget mot implementering av en avansert kontrollstrategi er å sørge for tilgjengelighet av overvåkingsinfrastruktur for måling av næringsstoffer i WRRF-prosesser. Paper A demonstrerer en virtuell sensor basert på et utvidet Kalman filter, utviklet for å estimere vannkvalitetsparametere i en sekvensiell batch MBBR prosess ved hjelp av pålitelige og rimelige online sensorer. Modellen som brukes i den virtuelle sensoren kombinerer en mekanistisk forståelse av prosessen for fjerning av næringsstoffer fra avløpsvann med et statistisk sammenheng mellom næringsstoffsammensetning i avløpsvann og parametere som er enkle å måle. Paper B demonstrerer det universale bruksaspektet til den virtuelle sensoren gjennom valideringstester utført i et kontinuerlig flertrinns MBBR pilotanlegg. Feilene i sensorens estimering forårsaket av uoverensstemmelse mellom den matematiske modellen og prosesseatferden er undersøkt i Paper B. Robustheten til den virtuelle sensoren ble vurdert ved å observere estimerte næringssammensetningsverdier i en periode på tre måneder. En systematisk metode for å kalibrere målemodellen og oppdatere modellparametere ved hjelp av data fra periodiske laboratoriemålinger er diskutert i Paper B. Begrepet SCADA har alltid vært til stede når online overvåking og kontrollstrategi innen WRRF er nevnt. Den nåværende digitale verdenen med god tilgjengelighet av rimelig kommunikasjonsmaskinvare, kompakte enkeltkortprosessorer og høy beregningskraft presenterer flere muligheter for fjernovervåking og implementering av virtuelle sensorer. Paper C viser til utvikling av en kostnadseffektiv IoT-strategi ved hjelp av et programmeringsspråk med åpen kildekode og rimelig maskinvare. Funksjonalitetene i IoT-infrastruktur demonstreres gjennom implementering av et virtuelt sensorprogram i et kontinuerlig flertrinns MBBR pilotanlegg. En kostnadssammenligning mellom de kommersielt tilgjengelige alternativene som presenteres i Paper A og åpen kildekode-IoT-strategi i Paper B og Paper C fremhever fordelene med den nye overvåkingsinfrastrukturen. Mangel på pålitelige kontrollmodeller har ofte vært årsaken til svake resultater i avanserte kontrollstrategier, som for eksempel Model Predictive Control (MPC) når de implementeres i komplekse biologiske prosesser for fjerning av næringsstoffer. Paper D prøver å løse manglene i MPC ved å kombinere en rekursiv modellparameterestimator med lineær MPC. Den nye MPC-varianten, kalt Adaptiv MPC (AMPC), reduserer MPCs avhengighet av nøyaktigheten i prediksjonsmodellen. Ytelsen til AMPC sammenlignes med ytelsen til en lineær MPC, ikke-lineær MPC og tradisjonell proportionalintegral kaskadekontroll gjennom simulatorbaserte evalueringer utført på Benchmark Simulator plattformen (BSM2). Fordelene med AMPC sammenlignet med de andre kontrollstrategiene er fremhevet i Paper D og demonstreres i sammenheng redusering av energibruk ved lufting i luftebasseng, samt redusering i antall brudd på utslippskrav for ammoniakk og bruk av beregningsressurser. De komplekse avhengighetene mellom forskjellige prosesser i en WRRF utgjør en betydelig utfordring når man skal definere konstante referansepunkter for WRRF under drift. En strategi som bestemmer kontrollsignaler basert på økonomiske parametere i stedet for å opprettholde et fast referansesettpunkt introduseres i Paper E. Den modellbaserte kontrollstrategien fra PaperDforbedres ytterligere ved å inkludere økonomiske parametere iMPCs objektiv funksjon. Denne kontrollstrategien kalles Economic MPC (EMPC) og er implementert for optimal dosering av magnesiumhydroksid i en struvit utvinningsenhet installert i en WRRF. En sammenligningsstudie utført på BSM2 plattformen viste en betydelig forbedring i den totale lønnsomheten ved bruk av EMPC sammenlignet med en konstant eller en flow proportional kontrollstrategi. Robustheten til EMPC-strategien for variasjoner i markedsprisen på struvit er også demonstrert i Paper E. En kombinasjon av kostnadseffektiv overvåkingsinfrastruktur og avanserte kontrollstrategier ved hjelp av avansert IoT og datavitenskapelige verktøy er brukt for å løse flere kritiske utfordringer i WRRF. Den samlede forbedringen i prosesseffektivitet, reduksjon i operasjonskostnader, økt ressursgjenvinning og en betydelig reduksjon i pris for online overvåkningsinfrastruktur bidrar til det overordnede målet om å gå over til bærekraftige WRRF som er i stand til å generere verdiskapende produkter.DOSCON A

    New approach for regulation of the internal recirculation flow rate by fuzzy logic in biological wastewater treatments

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICMarian Barbu acknowledge the support of the project " EXPERT ", Contract no. 14PFE/17.10.2018.The internal recirculation plays an important role on the different biological processes of wastewater treatment plants because it has a great influence on the concentration of pollutants, especially nutrients. Usually, the internal recirculation flow rate is kept fixed or manipulated by control techniques to maintain a fixed nitrate set-point in the last anoxic tank. This work proposes a new control strategy to manipulate the internal recirculation flow rate by applying a fuzzy controller. The proposed controller takes into account the effects of the internal recirculation flow rate on the inlet of the biological treatment and on the denitrification and nitrification processes with the aim of reducing violations of legally established limits of nitrogen and ammonia and also reducing operational costs. The proposed fuzzy controller is tested by simulation with the internationally known benchmark simulation model no. 2. The objective is to apply the proposed fuzzy controller in any control strategy, only replacing the manipulation of the internal recirculation flow rate, to improve the plant operation.Therefore, it has been implemented in five operation strategies from the literature, replacing their original internal recirculation flow rate control, and simulation results are compared with those of the original strategies. Results show improvements with the application of the proposed fuzzy controller of between 2.25 and 57.94% in reduction of total nitrogen limit violations, between 55.22 and 79.69% in reduction of ammonia limit violations and between 0.84 and 38.06% in cost reduction of pumping energy

    Integrating dynamic economic optimization and nonlinear closed-loop GPC: Application to a WWTP

    Get PDF
    Producción CientíficaIn this paper, a technique that integrates methods of dynamic economic optimization and real-time control by including economic model predictive control and closed-loop predictive control has been developed, using a two-layer structure. The upper layer, which consists of an economic nonlinear MPC (NMPC), makes use of the updated state information to optimize some economic cost indices and calculates in real time the economically optimal trajectories for the process states. The lower layer uses a closed-loop nonlinear GPC (NCLGPC) to calculate the control actions that allow for the outputs of the process to follow the trajectories received from the upper layer. This paper also includes the theoretical demonstration proving that the deviation between the state of the closed-loop system and the economically time varying trajectory provided by the upper layer is bounded, thus guaranteeing stability. The proposed approach is based on the use of nonlinear models to describe all the relevant process dynamics and cover a wide operating range, providing accurate predictions and guaranteeing the performance of the control systems. In particular, the methodology is implemented in the N-Removal process of a WWTP and the results demonstrate that the method is effective and can be used profitably in practical cases such as the chemical, refinery and petrochemical process industries.Ministerio de Economía y Competitividad - (project DPI2015- 67341C21R)Junta de Castilla y Leon y Fondo Europeo de Desarrollo Regional (FEDER) - (grants CLU 2017-09 and UIC 233

    Development of PID control parameters in proportional valves for a wastewater treatment plant filtration process

    Get PDF
    Wastewater treatment has remained a topic of interest over the years, since this method allows the water to be reused in other activities, since it establishes a process of conversion to "clean water"; however, this water must comply with quality standards that support the healthiness of the water. On the other hand, the treatment systems are still managed through manual processes, in which the variables and parameters of the plant are measured, however, these do not tend to be accurate, which leads to overflows within the system and consequently contaminate the quality of the water. Therefore, the present study aims to analyze the PID control parameters in proportional valves for a wastewater treatment plant filtration process. Also, it was essential to establish a flow chart of plant processes, and then implement sensors and actuators in the filtration process, in turn, equations were established to find the gain, where a ki=0.5359 and kd=5.1042 were achieved. Therefore, constant oscillations were obtained as a result within the level control, by means of the SCADA system. Finally, it was concluded that the implementation of a PID control system minimized the oscillations (disturbances) of the system, which generated greater precision of the variables that established the filtering of the process and reduced the water overflow, thus maintaining the healthiness of the process

    Advances and Future Perspectives

    Get PDF
    Agharafeie , R., Ramos, J. R. C., Mendes, J. M., & Oliveira, R. M. F. (2023). From Shallow to Deep Bioprocess Hybrid Modeling: Advances and Future Perspectives. Fermentation, 9(10), 1-22. [922]. https://doi.org/10.20944/preprints202310.0107.v1, https://doi.org/10.3390/fermentation9100922--- This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). This work received funding from the European Union’s Horizon 2020 research and innovation program under the grant agreement no. 101099487- BioLaMer-HORIZON-EIC-2022-PATHFINDEROPEN-01 (BioLaMer)Deep learning is emerging in many industrial sectors in hand with big data analytics to streamline production. In the biomanufacturing sector, big data infrastructure is lagging comparatively to other industries. A promising approach is to combine Deep Neural Networks (DNN) with prior knowledge in Hybrid Neural Network (HNN) workflows that are less dependent on the quality and quantity of data. This paper reviews published articles over the past 30 years on the topic of HNN applications to bioprocesses. It revealed that HNNs were applied to various bioprocesses, including microbial cultures, animal cells cultures, mixed microbial cultures, and enzyme biocatalysis. HNNs were mainly applied for process analysis, process monitoring, development of software sensors, open- and closed-loop control, batch-to-batch control, model predictive control, intensified design of experiments, quality-by-design, and recently for the development of digital twins. Most previous HNN studies combined shallow Feedforward Neural Networks (FFNNs) with physical laws, such as macroscopic material balance equations, following the semiparametric design principle. Only recently, deep HNNs based on deep FFNNs, Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM) networks and Physics Informed Neural Networks (PINNs) have been reported. The biopharma sector is currently a major driver but applications to biologics quality attributes, new modalities, and downstream processing are significant research gaps.publishersversionpublishe

    Machine learning based anomaly detection for industry 4.0 systems.

    Get PDF
    223 p.This thesis studies anomaly detection in industrial systems using technologies from the Fourth Industrial Revolution (4IR), such as the Internet of Things, Artificial Intelligence, 3D Printing, and Augmented Reality. The goal is to provide tools that can be used in real-world scenarios to detect system anomalies, intending to improve production and maintenance processes. The thesis investigates the applicability and implementation of 4IR technology architectures, AI-driven machine learning systems, and advanced visualization tools to support decision-making based on the detection of anomalies. The work covers a range of topics, including the conception of a 4IR system based on a generic architecture, the design of a data acquisition system for analysis and modelling, the creation of ensemble supervised and semi-supervised models for anomaly detection, the detection of anomalies through frequency analysis, and the visualization of associated data using Visual Analytics. The results show that the proposed methodology for integrating anomaly detection systems in new or existing industries is valid and that combining 4IR architectures, ensemble machine learning models, and Visual Analytics tools significantly enhances theanomaly detection processes for industrial systems. Furthermore, the thesis presents a guiding framework for data engineers and end-users

    A design of higher-level control based genetic algorithms for wastewater treatment plants

    Full text link
    A wastewater treatment plant facilitates various processes (e.g., physical, chemical and biological) to treat industrial wastewater and remove pollutants. This topic recently encourages much attention in different fields to explore suitable methods to be able to remove chemical or biological elements from wastewater. This paper presents a novel genetic based control algorithm for biological wastewater treatment plants, intending to improve the quality of the effluent, and reduce the costs of operation. The proposed controller allows adjusting the dissolved oxygen in the last basin, , according to the operational conditions, instead of maintaining it at a constant value. genetic algorithm (GA) is used in the higher-level control design to verify the desired value of the lower level based on the Ammonium and ammonia nitrogen concentration in the fourth tank, , concentration values in the fourth tank. In order to modify the tuning parameters of the higher level, an adjustment region is determined. Consequently, the effluent quality is improved, help to decrease the total operational cost. Simulation results demonstrate the advantages of the proposed method

    MODEL DEVELOPMENT AND SYSTEM OPTIMIZATION TO MINIMIZE GREENHOUSE GAS EMISSIONS FROM WASTEWATER TREATMENT PLANTS

    Get PDF
    As greenhouse gas emissions (GHG) reduction has drawn considerable attention, various methods have been established to estimate greenhouse gas emissions from wastewater treatment plants (WWTPs). In order to establish a design and operational strategy for GHG mitigation, accurate estimates are essential. However, the existing approaches (e.g. the IPCC protocol and national greenhouse gas inventories) do not cover emissions from all sources in WWTPs and are not sufficient to predict facility-level emissions. The ultimate goal of this research was to improve the quantification of GHG emissions from WWTPs. This was accomplished by creating a new mathematical model based on an existing activated sludge model. The first part of the research proposed a stepwise methodology using elemental balances in order to derive stoichiometry for state variables used in a mass balance based whole-plant wastewater treatment plant model. The two main advantages of the elemental balance method are the inclusion of carbon dioxide (CO2) into the existing model with no mass loss and ease of tracking elemental pathways. The second part of the research developed an integrated model that includes (1) a direct emission model for onsite emissions from treatment processes and (2) an indirect emission model for offsite emissions caused by plant operation. A sensitivity analysis of the proposed model was conducted to identify key input parameters. An uncertainty analysis was also carried out using a Monte Carlo simulation, which provided an estimate of the potential variability in GHG estimations. Finally, in the third part, the research identified an optimal operational strategy that resulted in minimizing operating costs and GHG emission, while simultaneously treating the wastewater at better levels. To do this, an integrated performance index (IPI) was proposed to combine the three criteria. The IPI was then incorporated into an optimization algorithm. The results obtained in this research demonstrated that the variation of GHG emissions is significant across the range of practical operational conditions. With system optimization, however, WWTPs have the potential to reduce GHG emissions without raising operating costs or reducing effluent quality. Further research should include a mechanistic examination of processes that produce methane (CH4) in the wastewater treatment stream and nitrous oxide (N2O) in the sludge treatment stream
    corecore