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Abstract

The Fourth Industrial Revolution has brought new disruptive technologies that are
gradually being implemented in industries. These technologies range from the Internet
of Things, Artificial Intelligence, 3D Printing, and Augmented Reality, among others.
These enable improving existing industrial processes, “digitising” many operations
that were previously carried out manually, and adding intelligence to the information.
However, the 4IR presents significant challenges in integrating these technologies into
existing legacy systems or creating new innovative products and services that possess
these new technologies. One step in the transition to 4IR is using sensors on machines
to capture data on what is happening around the system context. This data can then
be sent to a computer system in the cloud, where AI-based technologies can be used to
analyse and gain insights into system events, e.g. the occurrence of system anomalies.
Detecting anomalies can proactively help the early detection of possible failures in
processes and machines, and foresee that they may occur at a specific time in the
future, which aids improving production and maintenance processes.

This dissertation focuses on the study of anomaly detection in industrial systems,
aiming to provide tools tested and validated in real use cases. This thesis aims to
verify the applicability and implementation of 4IR technology architectures, AI-driven
machine learning systems and advanced visualisation tools for supporting the decision-
making processes based on the detection of anomalies. The topics investigated in this
work range from the initial conception of a 4IR system based on a generic architecture,
the design of a data acquisition system for subsequent analysis and modelling, the
creation of ensemble supervised and semi-supervised models for anomaly detection,
the detection of anomalies through frequency analysis, and the visualisation of the
associated data using Visual Analytics.

The results obtained from each tool and approach developed in this thesis indicate
that the proposed methodology for integrating anomaly detection systems in new or
existing industries is valid. It is proved that the integration of 4IR architectures, en-
semble machine learning models and Visual Analytics tools significantly enhances the
anomaly detection processes for industrial systems. Furthermore, this work presents
a guiding framework for data engineers and end users.
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Body of the dissertation
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CHAPTER 1

Background

This chapter will first present a general introduction describing Industry 4.0 and its
derived technologies that are part of this work. It will then describe the research envi-
ronments where the work was carried out, and finally the structure of the dissertation
will be presented.

1.1 General introduction
The 4th Industrial Revolution (4IR) is an integration of systems and technology,
where virtual and physical manufacturing systems work together flexibly and globally.
Nevertheless, it is not just networked, intelligent systems. The scope is broader, from
gene sequencing to nanotechnology, from renewable energy to quantum computing.
These technologies’ convergence and interplay across physical, digital, and biological
domains distinguish the Fourth Industrial Revolution from its predecessors [130].
The 4IR poses new challenges to traditional industrial processes. This means either
improving existing processes or creating new ones that use new technologies efficiently
and exploit their full potential. In an increasingly competitive market, 4IR can be
viewed as a disruptive innovation that positively impacts various industrial sectors
by integrating new enabling technologies. Examples of these technologies include
3D printing, the Internet of Things (IoT), Cyber-Physical Systems (CPS), Artificial
Intelligence (AI), Big Data, Robotics, Nanotechnology, and Quantum Computing
[155, 78].

Improvements in internet speed, coverage, and bandwidth allow 4IR systems to
process large amounts of data using cloud computing [102]. These large amounts
of data come from many different sources, such as sensors, surveillance and data
acquisition systems (SCADA), or third-party data sources, such as weather stations.
Once data is collected, AI algorithms process these large amounts of data to provide
additional knowledge to optimise processes and increase profitability. However, some
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applications require real-time processing by using embedded system processing or
edge computing technology to speed up the response to the 4IR system [133].

Regarding the data collection from processes, the IoT is nowadays used. IoT refers
to the use of intelligently connected devices and systems leveraging data acquired by
embedded sensors and actuators in machines and other physical objects [50]. Fur-
thermore, these data are intended to be collected and stored in a cloud, which can
then be analysed by different AI algorithms, as mentioned above.

Machine Learning algorithms provide a way to analyse these previously collected
data. Their basis is a set of inputs (features), the model to be trained, and outputs
(targets) [95]. A model is trained to predict outputs based on the inputs (features).
Machine Learning methodologies can be differentiated into three main categories: (i)
Supervised Learning, (ii) Unsupervised Learning, and (iii) Semi-supervised Learning.
If the ground truth of the outputs is known, supervised algorithms are preferably
used [125]. In cases where the output is not known, unsupervised methodologies can
be used [54]. There are some cases where some outputs are known a priori or can be
inferred, and for these, semi-supervised algorithms can be implemented [158].

One of the challenges that often exists in the industry is the detection of anomalies
in their systems and processes. The definition of an anomaly is a moment in time in
which the system’s behaviour differs significantly from its previous normal behaviour
[22, 2]. For example, a fluctuation in the turbine rotation frequency of a jet engine
may indicate an imminent failure due to an anomaly. There is also the possibility of an
anomaly indicating a positive trend; for example, many web clicks on a new product
page may imply a high demand for the product. Notably, anomalies in data can
provide insight into abnormal behaviour that can be translated into potentially helpful
information in both cases. Anomaly detection can be used in several application areas,
which can include intrusion detection, fraud prediction, failure detection in industrial
equipment, and disease detection [15].

The above algorithms and methods usually need to be brought to an end user, so
some visualisation or interaction is necessary. For the latter, Visual Analytics (VA)
can be used. VA is a combination of automated analytic techniques with interactive
visualisations to understand, reason, and make sound decisions based on large and
complex amounts of data. VA focuses on creating new tools that allow users to: i)
aggregate information to gain new insights from massive heterogeneous datasets, ii)
detect the current state of the system and explore possible new states, iii) provide
real-time feedback and take actions based on these responses [69].

This work will guide through all parts of the process, from data acquisition,
through data analysis, and finally, visualisation, to present Machine Learning al-
gorithm strategies for anomaly detection in Industry 4.0 systems.

1.2 Research environment
This section describes the research environments and some of the projects in which
this work has been done.
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1.2.1 University EAFIT

This research was done in collaboration with the University EAFIT (Colombia), in
the Information and Communications Technologies Research, Development and Inno-
vation Group (GIDITIC), which belongs to the Department of Informatics & Systems
Engineering. GIDITIC implements research and development projects; offers advi-
sory and consultancy services; and relies on partnerships, technical cooperation, and
active participation in national and international research networks. The GIDITIC
research group has the following research lines:

• Agrotech.

• Scientific computing and high performance computing.

• Ubiquitous computing.

• Digital content.

• Information and knowledge.

• Educational informatics, networks and virtual communities.

• Educational informatics innovation models.

• Educational informatics collaborative work.

• Educational informatics intelligent tutorials.

• ICT infrastructure.

• Software engineering and formal methods.

• Mixed reality and video games.

• Information security.

• Autonomous systems for decision making.

The agrotech line investigates projects focused on developing technologies focused
on agriculture. For example, this line has developed projects focused on using machine
learning to predict crop pests for remote crop monitoring.

1.2.2 Vicomtech

The Vicomtech Visual Interaction and Communication Technologies Centre Founda-
tion is an applied R&D&I centre set up in 2000 and located in the Donostia-San
Sebastian Technology Park (Spain). It currently has 19 top-level business and insti-
tutional partners in different fields related to its activity.

Vicomtech is part of BRTA (Basque Research and Technology Alliance), estab-
lished by the Basque Government, SPRI, Regional Governments and Technological
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Centres, which has the main function of responding to the technological and indus-
trial challenges in the Basque Country and improving awareness of the centre at
international level. It is also part of the international research network Graphics-
Media.net (now GraphicsVision.AI), integrated by prestigious international applied
research centres totally aligned with Computer Graphics and Multimedia technolo-
gies, which also gives it an active and strategic profile of internationalisation of its
research activity.

Vicomtech is one of the few centres that simultaneously holds the internationally
recognised UNE 166002:2014 and ISO 9001:2008 certificates, which place it at the
forefront of quality in research and demonstrate its commitment to the quality of
its processes. It has also recently obtained the Silver A from Euskalit in recognition
of its Advanced Management, as well as the Quality Innovation of the Year 2015
Award (1st prize) for the best European Social and Healthcare Innovation. Recently,
Vicomtech has achieved the recognition of the European Commission HR Excellence
in Research that accredits its commitment to open, transparent and merit-based
recruitment of researchers (OTM-R: Open, Transparent and Merit-based Recruitment
of Researchers).

Since its foundation in 2000, its main function has been to carry out applied
research in the area of interactive computer graphics and multimedia technology,
focusing its areas of interest on:

• Industry and Advanced Manufacturing.

• Digital Media.

• Data Intelligence for Energy & Industrial Processes.

• Intelligent Systems for Mobility and Logistics.

• Digital Security.

• Intelligent Security Video Analytics.

• Speech and Natural Language Technologies.

• Digital Health and Biomedical Technologies.

• Connected & Cooperative Automative Systems.

This project was carried out in the Data Intelligence for Energy & Industrial
Processes department. In this department, Data Intelligence technologies are re-
searched. They focus on collection, distribution, storage and especially the analysis
of data in complex contexts, intending to discover characteristics, trends, relation-
ships and, ultimately, the data’s non-evident knowledge. This is especially relevant
in Big Data environments, and any context in which the data obtained can improve
the understanding of critical processes in a particular domain. Some modern Artificial
Intelligence techniques, such as Machine Learning or Visual Analytics, are relevant
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in specific Data Intelligence applications. In the discrete manufacturing and contin-
uous processes industries, there is a very high unexploited potential for underlying
knowledge, which can be obtained by applying Data Intelligence to already existing
data. Furthermore, in data intelligence, historical scenarios and temporal series of
high complexity are gathered (in some variables, in sample frequency, in a volume of
information, in a type of data, in heterogeneous sources), as well as data produced
in real-time, to show the domain experts patterns and trends allowing them to an-
ticipate faults (e.g., preventative and prescriptive maintenance) or to improve their
production strategies.

1.2.3 Projects

The following are the research projects the present PhD candidate has been working
on during the doctoral thesis. These projects allowed for the experimentation of this
thesis.

Coffee Leaf Rust (Gobernación de Colombia, Ministerio de Ciencias 2017-
2021)

Coffee Leaf Rust has been a fungal epidemic disease affecting Colombian coffee trees
since the 1980s. At the national level, it has caused massive defoliation, and in ex-
treme cases, it has resulted in devastating losses of 70% to 80% of the harvest. In
this regard, early detection of critical patterns that may indicate the presence of the
disease would contribute strategically to reducing crop damage and increasing farmer
profitability. Several studies have demonstrated the advantages of using technological
methods to identify those patterns. As a result, in this study, a technological integra-
tion of Remote Sensing, Wireless Sensor Networks, and Deep Learning was created to
evaluate its performance in diagnosing the Coffee Leaf Rust development stage in the
Colombian Caturra variety. To that end, this project developed a cyber-physical data
collection system that automatically collects data from a scale coffee crop and trans-
fers it to a remote server via the Internet, as well as a ML-based diagnostic model.
The results analysis revealed that the disease diagnosis made by visual inspection
versus the proposed technological integration are statistically comparable.

EDAR 4.0 (Hazitek Estratégico 2016-2020) & Digital Twin EDAR 4.0
(DFG 2021-2022)

Estación Depuradora de Aguas Residuales 4.0 (EDAR 4.0 by its acronym in Spanish)
is a research project aiming to create tools for optimising the operation and energy
management of wastewater treatment plants (WWTPs). Water and energy engineer-
ing companies, process automation companies, WWTP equipment manufacturing
companies, research centres, and universities all collaborate on different aspects of
the project, with the ultimate goal of developing a cloud-based web platform inte-
grating a complete set of tools to support the intelligent operation of WWTPs. The
project’s foundation is the collection of plant-wide data on all of the processes that
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comprise a WWTP. These processes can be divided into three main standard sub-
processes: i) the inflow process, which mainly represents the input of influent water
and its pretreatment and primary treatment; Usually done in primary septic tanks
or sedimentation ponds. ii) Biological treatment processes are the core part of the
so-called secondary treatment and constitute the plant’s primary waste water purifi-
cation process. It is driven by different types of bacteria and protozoa and can be
complemented by additional chemical treatments. iii) the drainage process; This is
primarily the discharge of wastewater directly into the receiving waters or through
a secondary septic tank or sedimentation tank, which is considered part of the post-
treatment of the facility. With the data mentioned above, an IoT infrastructure that
can be reached through the internet was developed, thus the overall WWTP, ICT
infrastructure has to have (a secure) access to it. Several services, such as multiple
plants management, cloud-based IoT data acquisition and storage, information mon-
itoring (visualisation), data analysis and associated services such as Visual Analytics
(VA), plant simulation, and plant optimisation through machine learning (ML), are
integrated into such a cloud-based ICT infrastructure.

SISTELIA (Hazitek Competitivo 2019-2020) & RICVAS (Hazitek Estratégico
2021-2023)

SISTELIA project acronym translates to “Intelligent Services for Industrial Blowers
based on Digitalisation Technologies and Artificial Intelligence”. RICVAS translates
to “Remote Integrated Control, Visualisation and Analytic Services”. The primary
purpose of projects SISTELIA and RICVAS was to create and implement a cloud-
based data management platform based on a 4.0 embedded system named “MAP-
NER Panel Control” (MPC), designed for the real-time acquisition, analysis, and
visualisation of data and enriched information of machines around the world. The
MPC includes an ad hoc Human Machine Interface (HMI) that collects data from
an integrated, real-time data acquisition (DAQ) system that is integrated with sen-
sors and provides real-time information to maintenance operators both directly on
the machine (local visualisation) and via a 4G network Communications Interface.
SISTELIA’s architecture comprises a physical blowing machine, a 4IR embedded sys-
tem, and a cloud data management platform. In these projects, real-time anomaly
detection models were developed using Machine Learning techniques to improve pre-
ventive maintenance and enable predictive maintenance for the customer’s MAPNER
air blower machines.

RAPID (Gobierno Vasco 2020-2021)

RAPID is a project launched by the Basque Government through the Basque Gov-
ernment’s Department of Economic Development and Infrastructures (SPRI Group)
to boost the Basque industrial sector by maintaining productive activity in the face
of the COVID-19 pandemic danger (PRAP Euskadi).

The RAPID mobile phone application (“Rapid-App” app) within the project col-
lects voluntary contact tracing information between employees of an organisation



1.3. Structure of the dissertation 9

during the workday to take rapid action in the event an employee shows symptoms
or has tested positive for COVID-19.

In this project, Visual Analytics tools were developed in conjunction with prox-
imity data analysis to assist the organisation in managing the pandemic.

1.3 Structure of the dissertation
This dissertation is divided in two parts: Part I contains the body of the dissertation;
Part II includes a summary of this thesis’ most relevant papers that are later included.

Part I is organised in nine main chapters, including this introductory chapter. A
brief description of the content of each chapter follows next.

Chapter 1: Background. This chapter starts with a general introduction. Then, the
research environment is described introducing the research centres and the main
projects where this research work has been based on. Finally, the structure of
the thesis is detailed.

Chapter 2: Motivation. The main context of the research is presented, together
with the research questions and outcomes.

Chapter 3: Theoretical concepts. This chapter presents definition and properties of
the theoretical concepts which are used in the dissertation.

Chapter 4: Architecture. In this chapter, a generic architecture for AI-driven In-
dustry 4.0 systems is presented.

Chapter 5: Data Acquisition. A cyber-physical data collection system design for
Coffee Leaf Rust is detailed.

Chapter 6: Supervised Ensembling. This chapter presents a method to detect
anomalies through ML ensembling of different sensor sources with a case study
of detecting the severity of Coffee Leaf Rust.

Chapter 7: Semi-Supervised Ensembling. A semi-supervised ensemble anomaly de-
tection method based on Industry 4.0 is presented in this chapter.

Chapter 8: Frequency Anomaly Detection. This chapter presents a method to de-
tect fractures in compacted hygroscopic materials by means of frequency anal-
ysis for anomaly detection.

Chapter 9: Visual Analytics. A Wastewater Treatment Plant Visual Analytics tool
is explained in this chapter.

Chapter 10: Conclusions and future work. Finally, this parts ends with general
conclusions and future work of the dissertation.
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CHAPTER 2

Motivation

This chapter presents the boundaries within which the research problem of the current
project is addressed. Then the research questions to be answered are presented in
detail. Finally, the scientific contributions made in this project are listed.

2.1 Boundaries
The fourth industrial revolution brings new technologies that enable industries to
improve their productivity and optimise their processes. These technologies include
Big Data and Analytics, Autonomous Robots, Advanced Simulation, Cyber-Physical
Systems Integration, Industrial Internet of Things, Cybersecurity, Cloud Computing,
Additive Manufacturing and Augmented Reality. Figure 2.1 presents these pillars of
the 4IR.

However, the transition of these legacy industrial processes and the creation of
new industrial processes with 4IR-enabled systems pose a challenge for industries.
Some of these challenges are listed below:

• Implementation of cloud services for industrial data: Industrial systems usually
use programmable logic controllers (PLCs) for process monitoring and control.
These are usually interconnected via industrial networks to a central system
called SCADA (Supervisory Control And Data Acquisition). From this central,
SCADA system, operators can monitor and control all processes. However,
these systems are often limited in computing capabilities to the physical in-
frastructure. This presents the challenge of implementing services in the cloud,
where more scalability and computational power can be made available [47].

• Ubiquitous process monitoring and control using emerging web technologies:
In this case, industries require greater ease of access to their processes from

11
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.

Figure 2.1: 4IR Pillars. Different emerging technologies available from the 4Th In-
dustrial Revolution [109]

anywhere and securely. It is also necessary to make it easier for operators to
understand the processes of the entire industry [26].

• Optimisation of computing capabilities for the appropriate selection of tech-
nologies such as Edge Computing and Cloud Computing: Industry processes
generally generate large amounts of data, so it is required to evaluate which
processes can be processed by Edge Computing or Cloud Computing [133].

• Failure prediction in processes/products/machinery: Industrial processes have
used fault detection techniques that sometimes do not account for the whole
context of the process. This makes it necessary to analyse data from one or
more processes to understand the system better [44].

• Integration of Big Data technologies in real-time for industrial data: Critical
industrial processes require a real-time or near real-time response to avoid pro-
cess failure. Therefore, the challenge is incorporating Big Data technologies to
process this data in real-time and deliver an appropriate corrective action [92].

• Cybersecurity: Connecting industrial processes to the cloud can carry significant
risks in terms of the security of the information collected [81].

In terms of fault detection, it is necessary, first of all, to have appropriate system
data. Therefore, methods for acquiring data from multiple process sources, such as
sensors and -existing process records, must be explored. Then, a model must be
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created capable of predicting and identifying possible anomalies in the system. This
model must consider all previously acquired variables and correctly decide which ones
to use. From this comes the challenge of defining which method(s) are optimal and
how they can be combined to obtain a more reliable answer. Finally, these results
must be presented to the end user in a clear, concise and understandable way so
they can make appropriate decisions in case of a possible failure in their industrial
system. This presents challenges ranging from data acquisition, through the creation
and combination of intelligent models, and finally, to deliver this information to the
user in an easily interpretable manner. The research challenge of this project is
to contribute to the prediction of failures integrated into remote data acquisition
processes and the monitoring process through Visual Analytics.

2.2 Research questions
This thesis focuses on failure prediction for industrial systems, for which research
centre Vicomtech has related real industrial projects. The problem relies on how to
approach a process of anomaly detection in the field of the 4IR. For this reason, and
based on the context of this research work, the following research question is posed:

To what extent is it possible to implement machine-learning models
and visualisation systems that allow the determination of anomalies on
new Industry 4.0 systems?

In order to obtain comprehensive answers, it is considered convenient to analyse
different industrial use cases, which provide a scalable, applicable, robust solution.
Based on the main research question, the following derived research questions are
proposed:

1. What is the recommended design architecture for creating or adapting an in-
dustrial process with 4IR-enabling technologies?

2. How should industrial data be collected to enable the creation of intelligent
models that can predict failures in 4IR systems?

3. How should data from different sensor sources be integrated into the models
generated for failure prediction?

4. How should Machine Learning models be assembled to generate a more reliable
prediction?

5. How should the results of the predictive analysis be delivered to the users so
that they can understand them easily and make decisions based on them?

This work will attempt to answer these research questions through different use
cases in different industrial contexts.



14 Motivation

2.3 Research outcomes
The results of this research present an answer to the main research question: anomaly
detection by using ensembling methods based on model performance. Additionally,
processes related to the definition of 4IR architectures and the integration of these
Machine Learning and visualisation technologies in the process management of these
industries are addressed. The following articles, including scientific contributions
from the authors, have been published in academic papers generated as part of this
thesis to answer the previously mentioned research questions.

Journal articles:

(a) Velásquez, D., Sánchez, A., Sarmiento, S., Toro, M., Maiza, M., & Sierra,
B. (2020). A method for detecting coffee leaf rust through wireless
sensor networks, remote sensing, and deep learning: Case study of
the Caturra variety in Colombia. Applied Sciences (Switzerland).

(b) Velásquez, D., Perez, S., Mejía-Gutiérrez, R., & Velásquez-López, A. (2020).
Crack Detection Method in Transport of Hygroscopic Particulate
Compressed Material. International Journal of Mechanical & Mechatron-
ics Engineering, 20, 26–33.

(c) Velásquez, D., Sánchez, A., Sarmiento, S., Velásquez, C., Toro, M., Montoya,
E., Trefftz, H., Maiza, M., & Sierra, B. (2021). A Cyber-Physical Data
Collection System Integrating Remote Sensing and Wireless Sensor
Networks for Coffee Leaf Rust Diagnosis. Sensors.

(d) Velásquez, D., P’erez, E., Oregui, X., Artetxe, A., Manteca, J., Mansilla, J.
E., Toro, M., Maiza, M., & Sierra, B. (2022). A Hybrid Machine-Learning
Ensemble for Anomaly Detection in Real-Time Industry 4.0 Systems.
IEEE Access, 10, 72024–72036.

(e) Velásquez, D., Vallejo, P., Toro, M., Odriozola, J., Moreno, A., Naveran, G.,
Maiza, M., & Sierra, B. (2023). EDAR 4.0: Visual-Analytics for Waste
Water Management. IEEE Transactions on Industrial Informatics, 1-10.
(Submitted)

(f) G. Olaizola, I., Bruse, J. L., Odriozola, J., Artetxe, A., Velásquez, D., Quartulli,
M., & Posada, J. (2023). Visual Analytics platform for Centralized Covid-19
Digital Contact Tracing. IEEE Computer Graphics and Applications, 1-14.
(Accepted)

Conference articles:

(a) Cestero, J., Velásquez, D., Suescún, E., Maiza, M., & Quartulli, M. (2022).
Pysurveillance: A Novel Tool for Supporting Researchers in the Systematic
Literature Review Process. In K. Nakamatsu, R. Kountchev, S. Patnaik, J. M.
Abe, & A. Tyugashev (Eds.), Advanced Intelligent Technologies for Industry
(pp. 239–248). Springer Nature Singapore.
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(b) Velásquez, D., Toro, M., Bruse, J. L., Oregui, X., Maiza, M., & Sierra, B.
(2022). A Novel Architecture Definition for AI-driven Industry 4.0
Applications. Proceedings - 2022 11Th International Conference on Industrial
Technology and Management (ICITM), 1–7. (Accepted)

According to the above, only the most significant publications about the author
(remarked in bold) and related to research questions will be included in Part II.
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CHAPTER 3

Theoretical concepts

This chapter presents the theoretical concepts related to Machine Learning for Anomaly
Detection in 4IR systems.

3.1 Machine Learning
One of the emerging technologies proposed by the 4IR is Machine Learning (ML).
ML is a field that studies the creation of methods that can learn from data, similar
to how a human brain works in the learning process [35, 121]. These trained systems
can then be used automatically to make decisions, such as identifying image elements,
filtering emails (spam or non-spam), predicting the weather, and detecting anomalies
in industrial systems, among others [134]. ML requires a set of data to be trained to
learn the patterns or behaviour of the data and then perform a specific function. In
the case of industrial systems, these have sensors that capture data on the physical
variables of the process, which can then be stored in a database for the subsequent
creation of ML algorithms [3].

Machine Learning algorithms can be categorised according to the availability of
ground truth in the training data: supervised, unsupervised, and semi-supervised
[120].

Supervised algorithms are those where a label is available for the training data.
For example, there are images of coffee leaves with healthy and diseased labels [62].
Then an ML algorithm is trained to learn to recognise diseased leaves, as can be seen
in Figure 3.1.

17
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Figure 3.1: Supervised ML Algorithm Example. A pipeline of a supervised ML
algorithm with a coffee disease classifier example.

In the case of unsupervised ML algorithms, there is no label as such but techniques
can be used to group the data, for example, with clustering algorithms [33]. One of the
most common techniques for unsupervised ML is the k-nearest neighbours algorithm,
where the input data is grouped with a label based on its nearest neighbours. The
most common metric for calculating distance between points is the euclidean distance,
which is shown in Equation 3.1. d(x,y) is the distance between a point x and y, k is
the number of classes.

d(x,y) =

√√√√ k∑
i=1

(xi − yi)2 (3.1)

Figure 3.2 displays an example of a clustering ML algorithm which groups data
based on three different clusters.

Figure 3.2: Unsupervised ML Algorithm Example. A clustering ML algorithm.

Semi-supervised ML algorithms are those with a small amount of labelled data
and many unlabelled data remaining in the training set [158]. These are usually the
case in industrial systems, where there is considerable sensor data, but the process
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or machine’s condition (label or ground truth) is unknown. Figure 3.3 displays the
pipeline process for a semi-supervised ML algorithm. This pipeline first consists of
a dataset with no labels or a small number of labels. Then there is a first Machine
Learning model that can also be an algorithm to correctly classify the existing data
labels and thus generate a pseudo-labelling training set. Finally, this labelled dataset
is used to train the Machine Learning model and make the relevant predictions.

Figure 3.3: A pipeline of a semi-supervised ML algorithm.

Deep Learning (DL) is a branch of ML that allows automatic learning tasks to be
performed more accurately and with greater identification capabilities than a tradi-
tional ML algorithm. These have been implemented and developed recently due to
the rapid growth of Cloud Computing. The most common DL algorithms are Autoen-
coders, Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN),
and Deep Neural Networks (DNN) [96]. Autoencoders are unsupervised algorithms
that learn to reconstruct the input layer data at its output layer. To achieve this,
they first “encode” the data in their hidden layer, thus reducing its dimensionality,
and then “decode” it until the original dimensions of the input layer are recovered in
the output layer (see Figure 3.4).
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Figure 3.4: An autoencoder architecture.

RNNs work well for sequential data. They have an input layer, hidden layers and
an output layer. RNNs differ from a traditional neural network in that they “remem-
ber” previous outputs, which are ultimately used as input for computation between
neurons in their inner layers (see Figure 3.5). The most widely used RNN algorithm
is Long Short Term Memory (LSTM), conceived by Hochreiter and Schimidhuber [55]
in 1997, which is commonly used for speech recognition.
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Figure 3.5: Recursive Neural Network architecture.

Convolutional neural networks (CNNs) have an input layer, a convolution layer,
a pooling layer, a fully connected layer and an output as shown in Figure 3.6. The
convolution layers allow abstracting the input data from the image into a feature
map (also called an activation map). The pooling layers are responsible for reducing
the size of the data by combining the outputs of the neuron clusters into a single
layer with a single neuron in the next layer. Fully connected layers connect each
neuron in one layer to all neurons in the next layer. CNNs allow the complexity of
the entire network to be reduced by sharing the weights and reducing the number
of neurons required through a pooling operation [74]. CNNs are commonly used for
image processing but can also be used for time series [86], natural language processing
[82], and recommender systems [71].

Figure 3.6: CNN architecture.
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Deep Neural Networks (DNN) have an input, output, and multiple hidden layers
(see Figure 3.7). They can learn patterns from the input data to predict an output.
Such networks are in essence a fully-connected neural network. DNNs are commonly
used in image or speech recognition [58].

Figure 3.7: DNN architecture.

3.2 Ensemble Learning
Ensemble learning is an ML methodology that seeks to improve the performance of
models by combining several models. There are three main methods for ensembling:
i) stacking, ii) boosting, and iii) bagging [126].

The stacking method consists of fitting different types of ML models (heteroge-
neous ML algorithms) using the same dataset and using another ML model to learn
the best combinations of the models. Among the benefits of ensembling by stacking
is the ability to leverage the capabilities of well-performing models to a greater extent
than each model separately.

In boosting, models are added to the output of an initial model sequentially to
correct or improve the predictions made by the previous models.

Bagging consists of training several decision trees (homogeneous ML algorithm)
on different samples of the same dataset and then averaging their predictions.

Figure 3.8 shows the architectures for each ensembling learning models.
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(a) Stacking

(b) Boosting

(c) Bagging

Figure 3.8: Three different ensemble learning architectures.
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3.3 Anomaly Detection
According to Hawkins [53], an anomaly can be defined as an observation that deviates
significantly from other observations to such an extent as to raise suspicion that it
was generated by a mechanism other than the system itself. Barnett et al. [12]
define it as an observation (or subset of observations) inconsistent with the rest of the
data. Anomaly detection methods can be divided into supervised, semi-supervised
and unsupervised. Which method to use usually depends on the presence or absence
of a label describing the anomaly. Labels can be categorical, for example, a binary
label such as “abnormal behaviour” (1) or “normal behaviour” (0). Or, they can be
numeric, for example, a value of “abnormal score” that goes from 0 (“normal”) to 1
(“completely abnormal”). Anomaly detection can be posed as a supervised learning
task, but this is generally not the case, as there is often little or no data flagged as
anomalous behaviour [21].

There are different techniques for anomaly detection, including statistical, classi-
fication, clustering, similarity-based, soft computing, knowledge-based and combina-
tion learners as summarised in Table 3.1. Furthermore, anomalies can be identified
in the time domain or, in some cases, may be easier to see in the frequency domain.
All of these categories are detailed below.

Table 3.1: Summary of techniques for anomaly detection[119]

Technique Sub Techniques Examples
Statistical Parametric,

Non-parametric
Box-plot, Grubbs test,
Chi-square, PCA,
Kernel methods

Classification One Class,
Multi-Class

Neural Networks,
Bayesian Networks,
SVM, Decision Trees

Clustering Parametric,
Non-parametric

DBSCAN, Rock, SNN,
K-means, EM,
LOF variants

Similarity based Continuous and
categorical data

k-NN variants,
Relative Density

Soft Computing GA, NN, Fuzzy and
Rough Sets,
Ant Colony

GANIDS, NN,
DNN, CNN

Knowledge based Rules and Expert Sys-
tems, Ontology and
Logic-based techniques

Decision Trees

Combination Learners Ensemble based,
Fusion based,
Hybrid

Bagging and
Boosting
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3.3.1 Statistical anomaly detection methods

Statistical techniques adjust a predefined distribution to a given data and apply sta-
tistical inference to determine whether an instance belongs to that model. Instances
with low probability are registered as anomalies [56]. The two typologies used by this
method are parametric and non-parametric. The first makes assumptions about the
underlying distribution of the data. Although the second method is somewhat less ef-
ficient at detecting anomalies, it is preferable because, a priori, it does not determine
the structure of the model inferred from the data. The most common paramet-
ric methods are divided into gaussian and regression models. If a non-parametric
approach is to be followed, such a classification can be based on histograms or ker-
nels. Statistical methods are suitable for simple structured data with small sizes and
quantities. A variety of methods can be used in such cases [119], including box-
plots, Bayesian networks, autoregressive methods (autoregressive integrated moving
average - ARIMA, autoregressive moving average - ARMA), Principal Component
Analysis (PCA), ML-based methods, the Blum Floyd Pratt Rivest Tarjan (BFPRT)
algorithm, medcouple test, Grubbs test, and, comparison of distributions (QQ chart,
Kolmogorov-Smirnov test, Kruskal-Wallis test, Wilcoxon signed range test).

3.3.2 Classification anomaly detection methods

Classification-based anomaly detection methods perform two main steps called train-
ing and testing. During the training phase, the system learns from available samples
and creates classifiers. The model’s performance is measured in the testing phase by
trying patterns the classifier does not recognize. Depending on the labels available
for training, the classifier can be divided into two categories: i) single class and ii)
multiple classes. Example methods of single- and multi-class classifiers are neural
networks, Bayesian networks, support vector machines (SVMs), fuzzy logic, and de-
cision trees. These methods also work well in high-noise environments as discussed
in [135, 38, 1, 157]. The advantage of classification-based methods is that they can
distinguish between observations belonging to different anomalies (rather than a gen-
eral class called “anomaly”), and test instances are compared to a predefined model
so that their testing phases are fast [20]. However, classification methods rely on the
ability to assign labels to different normal and abnormal classes, which is a difficult
task. In addition, these methods assign labels to the test data, which can be a dis-
advantage when anomaly scores are desired. Classification-based methods can also
classify by type of anomaly. Radial Base Functions (RBFs), SVMs, and derivatives
are commonly used for single anomalies. RBF is very accurate and fast, especially
for the controlled classification of individual anomalies. DNNs, induction rules, and
decision trees are used for multiple anomalies. DNNs can provide exceptional recog-
nition speed in static scenarios but can create problems for data that changes over
time.
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3.3.3 Clustering anomaly detection methods

Clustering methods are usually divided into two stages. First, the data are grouped
using a clustering algorithm, and then the degree of variance is analysed according to
the results obtained by the clustering [15]. There are some preliminary considerations
for data instances of these unsupervised methods. On the one hand, regular data
samples belong to the global cluster. On the other hand, anomalies do not belong
to any particular cluster. In addition, normal data samples are located near the
nearest cluster centroids, while anomalous data are further away. Finally, normal data
samples belong to large and dense groups, while anomalies belong to local, small and
separate groups. Cluster methods apply to both supervised learning and unsupervised
learning. Most methods are complex, large in size, work well with large amounts of
data, and are best suited when anomalies do not form significant clusters in short
time series. Examples of this type of algorithm are k-Means, Density-Based Noisy
Application Spatial Clustering (DBScan), Self Organising Map (SOM), Clustering
Based Dynamic Indexing Tree (CD-Tree), and, Shared Nearest Neighbour (SNN).

3.3.4 Similarity-based anomaly detection methods

Similarity-based methods are the most used for anomaly detection. The most com-
mon similarity-based method is the k nearest neighbours (k-NN). k-NN is a non-
parametric method that requires a distance metric to measure the similarity between
data observations. Euclidean distance is the most commonly used metric for data with
continuous attributes. The reason for the above is that Euclidean distance does not
work well for multidimensional sets, and measures such as Mahalanobis, Hamming or
Chebyshev distance are used instead. The k-NN algorithm is based on a data score
determined by the distance to most of the surrounding data. Therefore, new data
are classified according to this assessment. However, there are some considerations
to keep in mind when using this type of technique [119]:

• The lack of data can be seen as an anomaly of uncontrolled methods.

• The performance depends on the selected distance measurement method: There-
fore, it is necessary to clarify the criteria when choosing a metric.

• It is valid only for low-dimensional data: Determining distance measures be-
tween instances can become more complex as data dimensions increase.

Another important similarity-based anomaly detection method is based on relative
density rather than distance. This method estimates the density of neighbourhoods
such that data items in less dense neighbourhoods are considered anomalous, and data
items in denser neighbourhoods are considered normal. The above existing method
is the Local Outlier Factor (LOF). It is based on introducing the concept of local
outliers and evaluating data samples according to the average ratio of neighbourhood
density to instance density [16].
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3.3.5 Soft Computing anomaly detection methods

Soft Computing methods for anomaly detection include algorithms such as Neural
Networks (NN), Fuzzy Logic, and Evolutionary Algorithms (e.g. Genetic Algorithms).
These methods can tolerate uncertainty, partial data and are able to approximate pre-
dictions. A typical application of this method is in the context of security or cyber-
surveillance [4], where it may be necessary to perform anomaly detection rapidly to
identify an anomaly (e.g. intruder) in a system. Such algorithms can provide fast,
real-time predictions for various applications [127]. Another example of the applica-
tion of Soft Computing methods is in the IoT. In this case, information from sensors
can be analysed to detect a possible failure, thus helping predictive maintenance.

3.3.6 Knowledge-based anomaly detection methods

These anomaly detection methods rely on prior knowledge about the system domain
to classify whether a sample is an anomaly. They have rules that allow verification of
the operating conditions. For example, a system that checks the thermal conditions of
an electrical circuit, where if certain known thresholds are exceeded, the system will
generate an alert indicating a possible fault or anomaly. Ruiz et al. [124] implemented
a failure prognosis method based on System Operation Modes (SOM), which allows
monitoring of degradation and failures in a cyber-physical system (CPS). Statistical
Process Control (SPC) [88] is a method that uses 3-sigma limits (based on the variance
of historical data) to determine a system’s normal or abnormal operation. Figure 3.9
shows a graph with 3-sigma limits to determine the normal operation of a system.

Figure 3.9: Example of SPC using 3-σ anomaly detection.

3.3.7 Combination Learners anomaly detection methods

Combinations Learners are based on the ensembling of models to generate a more
robust prediction of an anomaly. Simple machine learning models can present spe-
cific problems, such as statistical problems, where the hypothesis space may be too
ample for the training data so that trained models may result in similar performance



28 Theoretical concepts

metrics, and there is a risk of selecting a model that will not predict well on unseen
data. Another problem that can arise is when a global optimum is not obtained.
Combination Learners make it possible to exploit the potential of several models that
can complement each other and thus compensate for the limitations of using each
algorithm separately [148].

3.3.8 Time domain anomalies

Regarding time domain, anomalies can be categorised into three types: i) point
anomalies, ii) contextual anomalies, and iii) collective anomalies [115, 150, 36] as
seen in Figure 3.10. Point anomalies are characterised by a value that is a significant
deviation from the expected behaviour of the data. They occur in a single period of
time and in very few samples of the entire data set. On the other hand, contextual
anomalies are samples or sequences that deviate from expected patterns in a time
series of data. However, point anomalies may be within the expected values of the
entire data set and are only identified in a subset of the data set. Finally, collective
anomalies are a subset of anomalous samples concerning the rest of the data. Still,
the individual samples within this subset of data may or may not be anomalous, but
collectively they exhibit a suspicious pattern [28].

Figure 3.10: Anomaly types in a time-series plot [28].

3.3.9 Frequency domain anomalies

Some anomalies are easier to see in the frequency domain. Thus, transformations
using Digital Signal Processing (DSP) techniques can be applied to the input data
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before performing anomaly detection [119]. Fourier transform, Gabor, and Wavelets
filters are examples of these transformations.

One of the methods to detect anomalies in the frequency domain is the Spec-
trogram. The spectrogram is a graphical representation of information about the
frequency and time of a signal [19]. One way to calculate the spectrogram is first
to process the Short-Time Fourier Transform (STFT) [79]. It can be calculated by
dividing the signal into several data blocks using a sliding window. The Fourier
transform calculates a time-dependent analogue signal in the frequency domain, but
this analogue signal is typically sampled. This requires a discrete Fourier transform
(DFT) to convert discrete time into the frequency domain [105, 106].

The processing required to calculate the DFT takes a long time. Computing the
convolution and discrete Fourier transform requires N2 operations [34]. where N is
the filter length or transform size. Using the Cooley-Tukey FFT reduces the number
of operations to Nlog2N , thus, improving computation time.

The main advantages of the FFT are computational speed and memory efficiency.
DFT can be an efficient process for samples of arbitrary size (N), but requires more
computation time than FFT because intermediate results must be stored in each
process, which consumes more memory [27].

When the FFT needs to be computed, the algorithm pads or truncates the input
length (m) to achieve the desired transform length (n). The spectrogram applies
this FFT to N − point data blocks to obtain the frequency content of each data
block, where N is the frequency bin. STFT centres the first sliding window on the
first sample of signal X and adds zeros to extend the beginning of the signal. The
sliding window moves the time step samples to the following data block. When the
window exits X, X is padded with zeros. After finding the STFT, the spectrogram
is calculated as the square of the magnitude of the STFT (X) elements. Figure 3.11
shows an example of anomalies in a STFT representation.
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Figure 3.11: Anomalies in a STFT graphical representation [149].



CHAPTER 4

Architecture

The Fourth Industrial Revolution (4IR) brings new challenges to traditional industrial
processes. This means either improving existing processes or creating new ones that
effectively use new technologies and their full potential. In an increasingly competitive
market, 4IR can be seen as a breakthrough innovation that positively impacts various
industries by integrating new cutting-edge technologies [155, 78].

Common contexts for 4IR applications include manufacturing. In manufacturing,
large amounts of data can be analysed in real-time to improve factory operations and
production, reduce machine downtime, and ultimately improve product quality [29].
Another application context is the smart water management industry, which uses
digitisation and process automation to collect helpful information from wastewater
treatment plants and external sources such as weather information. AI processes this
data to optimise the efficiency of the process, saving resources and the quality of the
results [13, 41, 100].

However, two significant problems arise when designing a novel, AI-driven 4IR
system: i) How to correctly design the system from scratch [122, 76] and ii) How to
improve existing legacy systems to integrate smart-capable and connectivity layers
[60]. An architecture is often used as a design baseline for building a system and it
provides insights of all sub-components and connections between each of them.

4.1 Background
To solve the problems mentioned above, the 4IR system architecture that defines all
components has been proposed by various authors at the state of the art, including
technologies such as IoT, Cyber-Physical Systems (CPS), and intelligent systems.
Ganti et al. [43] published an overview of mobile crowd sensing (MCS) technology
commonly used for environmental, infrastructure and social applications. It presents
a functional architecture showing how data from different contexts can be intercon-
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nected to provide helpful information to end users.
Bagheri et al. [11] and Lee et al. [77] proposed an integration framework for

incorporating CPS into production. This unified infrastructure architecture includes
a five-level definition (5C Framework) that allows to develop and deploy CPS into
production, from data collection to analysis and end value creation. The first layer,
the “Smart Connection Layer”, receives data from machines and components using
sensors from process controllers or enterprise manufacturing systems. The second
layer is the “Data-to-Information Conversion Level layer”, which is responsible for ex-
tracting valuable information from the data and adding self-awareness to the 4IR CPS
system. The third layer, called the “Cyber Layer”, acts as a central information hub,
collecting multiple data and roughly parsing it for more information. The fourth level
is called the “Cognition level”, where the 4IR CPS system generates knowledge about
specific parts of the system or processes for advanced users and presents them using
visual analysis tools. Finally, the fifth level is the “configuration level”. Its purpose
is to provide a feedback loop from cyberspace to physical space, acting as a supervi-
sory control that changes machines or processes depending on previous informational
knowledge.

Blonda et al. [13] proposes an IoT middleware architecture and exposes its func-
tionality as a set of cloud-supported RESTful APIs. This IoT architecture consists
of three layers: i) The user layer, ii) the middleware layer, and iii) the physical layer.
The middleware architecture is divided into three sub-layers: application, network,
and security. According to Blonda et al., the security of an IoT system can be de-
fined using six properties: confidentiality, integrity, availability, identification and
authentication, confidentiality, and trust.

On the other hand, there is the Reference Architectural Model for Industry 4.0
(RAMI 4.0) [131], defined in three dimensions. The first dimension is the life cycle
value stream, defined in standard IEC 62890, composed of the following phases: Type
and Instance. The second dimension includes the hierarchy levels defined in standard
IEC 62264 and IEC 61512. The levels are the following: product, field device, control
device, station, work centre, enterprise, and connected world. Finally, the third
dimension consists of different layers, similar to previous architectures: business,
functional, information, communication, integration, and asset. Figure 4.1 provides
a compact view of the architecture.
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Figure 4.1: Reference Architectural Model for Industrie 4.0 (RAMI 4.0) [131].

Paiva et al. [108] propose a hybrid reference architecture called RAMI 4.0 EA
that integrates RAMI 4.0 with Enterprise Architecture (EA). The proposed refer-
ence architecture allows visual and understandable enhancements to elements such
as EA principles, applications, technologies, and organisational processes in RAMI
4.0, allowing companies to apply it in their 4IR projects better. Finally, the Indus-
trial Internet Reference Architecture (IIRA) was developed by the Industrial Internet
Consortium (IIC) [59]. This application is independent of the subject area, and its
development was focused on the industry. IIRA focuses on industry-demanded ca-
pabilities, significantly predictive, optimisation, operations, business, analytics, and
device monitoring and control.

4.2 Case study
SoA approaches to define the components integrated into a 4IR system have in com-
mon that they require a physical layer, middleware, and a user interaction layer.
Mid-tier organisations are represented differently in different architectures, but they
all emphasise the importance of security and data analytics. In addition, there needs
to be guidance describing how to organise components, their connections and their in-
terfaces in real terms to obtain a detailed system architecture and complete a working
system [98]. The proposed methodology considers the most up-to-date best practices
for designing 4IR system architectures from scratch and analyses case studies from
various industries to understand specific problems comprehensively. Below three real
industrial case studies that improved or created a new product/service by using AI-
driven 4IR technologies are analysed.
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4.2.1 Smart-Water Case Study: Industrial Wastewater Treat-
ment Plant “La Cartuja / EDAR 4.0 Project”

EDAR 4.0 is a research project aiming to develop tools for optimising the operation
and, in particular, the energy management of wastewater treatment plants (WWTPs).
Different types of organisations such as water and energy engineering companies, pro-
cess automation companies, WWTP equipment manufacturing companies, research
centres, and universities participate in the project, all collaboratively working on dif-
ferent aspects of the project, finally aiming to develop a cloud-based, web platform
integrating a complete set of tools for supporting an intelligent operation of WWTPs.
The project’s basis consists of plant-wide data acquisition of all the processes com-
prising a WWTP. These processes can be classified into three principal, standard
sub-processes: i) the influent process, mainly representing the input of influent wa-
ter and its pre- and primary treatment, usually performed in a primary settling or
sedimentation tank; ii) the biological treatment process, which is the central part of
the so-called secondary treatment and represents the primary wastewater treatment
process of the plant driven by different types of bacteria and protozoa, which can
be complemented by additional, chemical treatments, and; iii) the effluent process,
which mainly represents the output of the effluent water, either directly to the re-
ceiving waters or through a secondary settling or sedimentation tank, which is also
considered as part of the secondary treatment of the plant. A tertiary treatment
process consisting of additional, advanced water purification treatments for specific
water uses, such as water reuse, can exist but is optional and rare. In this project,
sub-processes i) to iii) of the full-scale WWTP are addressed. The processes of a
WWTP in general and sub-processes i) to iii) in particular are typically controlled by
one, or several Programmatic Logic Controllers (PLC) integrated with different types
of sensors and actuators. All the control information is then locally displayed through
Human to Machine Interfaces (HMI), generally embedded within a Supervisory Con-
trol And Data Acquisition (SCADA) system. All plant information is usually shared
through an industrial protocol-based Local Area Network (LAN). The above repre-
sents the basis of a typical WWTP ICT architecture. EDAR 4.0 extends this to a
4IR system architecture by setting an additional, cloud-based IoT infrastructure that
can be reached through the internet. Thus, the overall WWTP ICT infrastructure
must have secure access. Several services, such as multiple plants, cloud-based IoT
data acquisition and storage, information monitoring (visualisation), data analysis
and associated services such as Visual Analytics, plant simulation, and plant optimi-
sation through machine learning (ML), are integrated into such a cloud-based ICT
infrastructure. A specific example of accessing the above cloud IoT infrastructure
and associated services could be the HTTP REST protocol. A specific example of a
data analysis service could be to classify different types of water quality and predict
(forecast) the evolution of water quality over time. Eventually, with the above cloud
IoT platform running, WWTP data can be displayed on a web page, where water
quality analyses and others can be run and monitored by remote users. Figure 4.2
details a view of the EDAR 4.0, 4IR system architecture.
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Figure 4.2: EDAR 4.0 architecture.

4.2.2 Industrial Quality Testbench Case Study: Rotary Pneu-
matic Machines Company “MAPNER / EDAR 4.0”

MAPNER is an industrial company that manufactures rotary machines for various
applications such as wastewater treatment and power generation. Once the manufac-
turing process of the rotary machines has finished, every machine is taken to a quality
control process performed on a testbench where the machines are subjected to a set
of tests in stationary working conditions in an isolated room. The outputs of the tests
are then compared to some expected results described by the manufacturing order
to guarantee an adequate quality and performance rate of the final product (the ma-
chine). However, that process is typically highly manual: after leaving the machine
on for some time until it reaches its stationary operation region, the operator goes
through a set of GUI elements of a computer program. It shows the data measured by
sensors and allows manually introducing such data to a database so that subsequent
calculations of physical magnitudes, such as flow rate and power, can be performed
to generate a quality report of the machine. This use case is a good example of a
classic manufacturing process digitalisation project where the process evolves from a
view-only data management system to an automatic, real-time data acquisition and
storage system, which not only improves the existing testing process (the machine’s
performance can be analysed continuously instead of via a single-instant, manual
data acquisition system, which can hardly reflect the overall condition of the rotary
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machine) but also allows stepping forward towards a data-analysis-based machine per-
formance study that may facilitate identifying, predicting and preventing problems
for the manufactured products. The first step of adapting MAPNER’s testbench to a
4IR platform was automating the acquisition of data corresponding to measurements
as provided by sensors attached to the machine during the testing process and by
some environmental sensors in charge of measuring relative humidity and tempera-
ture. As usual in many manufacturing processes, every sensor or measuring device
has its communication protocol for providing information. Multiple protocol systems
are usually managed by gateways that unify and translate the information into a
standard protocol. These gateways can be independent hardware devices or software
modules designed to do so. In this use case, a software gateway was implemented to
gather all the information on a single, Python-based daemon (or “Python gateway”)
in order to be able to send the data to the data storage layer. In order to do so, the
data had to be converted (unified) to a common, standard communications interface:
Ethernet. Machine sensors are connected to a Siemens PLC that exposes the infor-
mation through the OPC-UA protocol. The humidity and temperature information
and the information provided by a set of electrical network analysers (current, volt-
age, power, and power factor) are exposed employing the MODBUS TCP protocol
and transferred to Ethernet utilising a MODBUS-MODBUS TCP hardware gateway.
The Python gateway not only made the acquisition possible, but it also helped to
fix a critical aspect related to acquiring data from multiple sources - thanks to the
gateway, incoming data with different sampling frequencies can be homogenised by
applying data synchronisation or re-sampling algorithms prior to analysis. Once the
data from the different sources is gathered and unified, the information is deployed
to an internal server database, where it can be further processed and analysed to
create and show operator-enriched information (such as machine status information)
throughout the tests in real-time. The data storage is running within a secure LAN.
In addition, a daily backup of the information managed by the data storage layer is
configured. The global architecture of the entire system is shown in Figure 4.3.



4.2. Case study 37

Figure 4.3: MAPNER Testbench architecture.

4.2.3 Smart IoT Embedded System Case Study: Rotary Pneu-
matic Machines Company “MAPNER / SISTELIA Project”

The third case study consists of an architecture for remotely managing data related
to blower machines manufactured by MAPNER that are installed in various locations
worldwide. With the arrival of the digital transformation and the 4IR, MAPNER saw
the opportunity to provide their machines with greater ubiquity, especially in intelli-
gent and predictive maintenance applications, using technologies such as IoT and AI.
In this sense, MAPNER has participated in several funded R&D projects and col-
laborated with research agents. One of these projects is SISTELIA, which translates
to “Intelligent Services for Industrial Blowers based on Digitalisation Technologies
and Artificial Intelligence”. SISTELIA’s main objective is to design and implement
a cloud-based data management platform based on a 4.0 embedded system called
“MAPNER Panel Control” (MPC), designed to acquire, analyse, and visualise data
and enriched information coming from machines that are operating worldwide, in
real-time. The MPC includes an ad hoc Human Machine Interface (HMI), which
gathers data from an integrated, real-time data acquisition (DAQ) system that is
integrated with sensors and provides real-time information to maintenance operators
both directly on the machine (local visualisation) and through the cloud (remote vi-
sualisation), via a 4G network Communications Interface. SISTELIA’s architecture
consists of three parts: i) the physical blowing machine, ii) a 4IR embedded system,
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and iii) a cloud data management platform. The physical blowing machine is the
core process of the whole system, which operates independently of the architecture.
The 4IR embedded system contains multiple sensors to gather operational data (e.g.,
temperature, speed, pressure, and vibrations) from the physical blowing machine,
which is locally stored and processed in a real-time DAQ system. Furthermore, the
locally stored and processed data is displayed to users (locally) on an integrated, tac-
tile HMI display, where the user can program maintenance operations and configure
and resolve alarms. In addition, these data are sent to an IoT cloud platform via 4G
for remote storage, real-time visualisation, and data analysis. Finally, the cloud data
can be monitored by remote users. This architecture is detailed in Figure 4.4.

Figure 4.4: SISTELIA architecture.

4.3 Innovation
The main contribution of this research is a novel software-and-hardware architecture
design for AI-driven Industrial 4.0 systems to facilitate the transition towards such
smart-connected systems. The proposed generic 4IR architecture is intended to be
used as a template for new AI-driven Industry 4.0 projects. This architecture is built
around the use cases and state-of-the-art hardware and software components pre-
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sented in the previous section. The proposed generic architecture presented in Figure
4.5 includes three levels: i) the physical layer, ii) the layer of an embedded 4IR system,
and iii) the IoT cloud layer. The physical layer relates to the process, for example, a
machine that executes a task. The 4IR embedded system comprises four (4) sublay-
ers: The Perception and Control sublayer, where everything related to actuators and
sensors can be found. The Data Acquisition and Processing sublayer, which involves
the different microcontroller and PLC units with their respective internal/external
storage systems for local data persistence. The Local Visualisation sublayer, which
includes the different HMI interfaces for the visual and control interaction between
the local user (who could be a supervisor or an operator on site) and the machine.
The Communications sublayer, which addresses all the local communication interface
systems such as RS232, RS485, Modbus, Profibus, and the global ones (for the new
4IR systems) through TCP/IP protocol by Ethernet, WiFi and 3G/4G networks, al-
lowing to connect to the IoT cloud. The IoT Cloud layer incorporates four sub-layers.
The first is the Security and Data Exchange sublayer, which establishes a secure con-
nection between the Embedded 4IR System and other external information sources
(External Data) through WebAPIs. The latter, for example, can use WebSockets
for real-time connections, HTTP REST protocol for on-demand requests, Mosquitto
Transfer Protocol (MQTT) for IoT connections, and OPC-UA for industrial data
connections. The second sub-layer is related to Data Storage, where relational (e.g.,
SQL) and non-relational databases are used. This stored data can then be retrieved
to perform different analytical and visualisation operations, for example. The third
sub-layer is called Analysis, in which AI tools perform advanced processing opera-
tions. These operations create enriched information, thus adding a greater degree
of knowledge about the process to allow, for example, identifying failures in a pre-
dictive manner. Finally, the fourth sub-layer includes Remote Visualisation, where
dashboards are usually shown with the received data and additional graphics derived
from the analysis process (e.g., Visual Analytics) for supervision by External Users.
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Figure 4.5: 4IR generic architecture.

4.4 Conclusions and future work
AI-driven Industry 4.0 systems are usually complex and challenging to understand be-
cause they comprise different hardware and software components. Commonly, these
include SoA and legacy technologies. Hence, guidelines are missing explaining how
such a problem could be tackled in practical terms and how components and their
connections and interfaces could be organised to fully understand the system and end
up with a working system. In this sense, the new hardware and software architecture
for AI-driven Industry 4.0 systems has been developed based on real use cases. The
architecture was created using common elements from many contemporary architec-
tures and analysing three case studies of real industrial projects. It includes a physical
layer, an embedded system layer, and an IoT cloud layer, where all components of a
4IR system can be organised clearly. This architecture provides users with a detailed
view and practical guidelines for including the appropriate hardware and software
components to implement a 4IR system. Future work may include methodologies
for creating specific architectures based on user requirements and the above general
architectures for new 4IR projects. In addition, other case studies can be analysed to
expand on this architecture.



CHAPTER 5

Data Acquisition

Data acquisition is the initial part of any Machine Learning process. At this stage,
it is important to consider in the design guidelines the elements that will allow the
collection of information through the system’s sensors and how to integrate multiple
data sources to obtain more reliable information. This chapter will present a use case
for the design of a cyber-physical data acquisition system for Coffee Leaf Rust (CLR).
Regarding phytosanitary issues concerning coffee crops, one of the main problems is
the presence of pests such as the Coffee Borer Beetle and diseases such as Coffee
Brown Eye Spot and the CLR [123]. In terms of disease, CLR is the most relevant
disease from an economic and pathological point of view. The disease can cause
massive defoliation of entire crops [101], causing devastating losses ranging from 70%
to 80% of the crop in some regions of Colombia[123]. It should be noted that at the
beginning of this study, the primary objective was to develop early detection of the
Coffee Brown Eye Spot employing Remote Sensing (RS) and by analysing spectral
reflectance data. However, after conducting interviews with Colombian experts and
coffee growers, we found that this disease was not as severe as the CLR and did
not restrict their economic activity. Therefore, following their indications, it was
decided to integrate the Wireless Sensor Network (WSN) and also diagnose the CLR
instead of the Coffee Brown Eye Spot. In this sense, the first step towards diagnosing
the disease was the collection of reliable data on its occurrence. Thereby, once the
necessary data had been collected, it would be possible to create a diagnostic model
based on such data. Thus, this study shows two contributions: The mechatronic
design of a cyber-physical data collection (acquisition) system to collect and store
data, integrating RS and WSN; ii) a three-month data set for CLR detection.
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5.1 Background
Multiple studies have been carried out, including technical methods and strategies
for obtaining nutritional information, disease diagnosis and pest detection on diverse
types of crops [94, 87, 140]. Recently, an important concept called Precision Agri-
culture (PA) has emerged. PA refers to agricultural management using information
technology to observe, measure and respond to the variability of specific crops. PA
involves applying the proper treatment method according to the plant’s needs at the
right time [66].

In PA, one of the methods currently used to evaluate various properties of crops
is called Remote Sensing (RS). RS is based on the interaction between a material and
its electromagnetic radiation. This includes receiving radiation reflected from soil
or plants to provide valuable information such as chlorophyll content, water stress,
weed density, crop nutrients, and the presence of diseases in agricultural fields. These
measurements can be made using aircraft, handheld sensors, satellites, tractors and
drones [97].

Multiple authors highlight the importance of using high-quality portable devices
to detect and treat diseases in hard-to-reach places. For example, Goel et al. [48]
analyzed the detection of changes in the spectral response of corn (Zea mays) under
nitrogen application and weed control. To do this, a hyperspectral sensor called the
Compact Airborne Spectrographic Imager was employed to analyse the reflectance
values of 72 bands from 409 nm to 947 nm. These bands include visible light and
the emission spectrum’s outer Near-Infrared (NIR). Their work demonstrated the
ability to detect weed infestation and nitrogen stress using hyperspectral sensors. In
particular, it has been found that the optimal wavelength ranges for detection are
around 498 nm and 671 nm, respectively.

In addition, Bolaños et al. [14] developed a crop classification method using the
infrared and visible parts of the electromagnetic spectrum and low-cost cameras on
multi-rotor aircraft. This research is based on determining a normalized vegetation
index to assess health status and water content. Similarly, Chemura et al. [25]
presented a method for early prediction of disease and pest infestation in coffee trees
due to weak water pressure. To do this, a handheld multispectral scanner with visible
and near infrared regions was deployed on an unmanned aerial vehicle. Chemura et
al. also considered irrigation schemes based on specific plant water requirements.

Aside from RS, smart farming methods, and the Internet of Things (IoT) tech-
nologies (which refers to using intelligently connected devices and systems that use
data received by sensors and actuators embedded in machines and other physical ob-
jects), there is a method called Wireless Sensor Network (WSN). WSN is responsible
for real-time monitoring of various agricultural characteristics. It consists of several
integrated drones called sensor nodes that collect data on-site and transmit it wire-
lessly to a central processing station (called a base station). This station can store,
process and transmit data to the Internet, where the end user can analyse the data
and transform it into relevant information [10].

In this regard, Chaudary et al. [24] emphasised the importance of WSN in the
field of PA using microcontroller technology called Programmable System on Chip
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to control and define the most relevant variables in greenhouses. Their research
has explored the integration of wireless sensor nodes and communication methods in
the high-frequency range. This proved useful in determining the optimal irrigation
strategy to meet specific crop needs. In addition, studies recommend the use of
reliable low current equipment for WSN applications. In addition, Piamonte et al.
[112] implemented a WSN prototype to monitor an African oil palm disease called Bud
Rot. By employing sensors for humidity, pH, light and temperature, their prototype
measured climate change and soil factors to determine the presence of disease-causing
fungi indirectly. The study concludes that measurements of the aforementioned non-
biological factors have changed slightly, which the researchers believe may reveal
Bud Rot. The present state of the art shows that RS and WSN are two widely
used methods in PA due to their ability to monitor various crop features and detect
anomalies.

In conclusion, the state of the art shows that RS and WSN are two widely used
methods within PA due to their capability to perform data acquisition tasks for
identifying different crop characteristics and detect the presence of various anomalies.

5.2 Case study
Previous research has helped to develop a cyber-physical data collection system that
can integrate both methods, RS and WSN, to diagnose CLR. By applying concepts
and following best practices, a system that can collect reliable data from various
sources and store it remotely can be created. Such cyber-physical systems aim to
characterise coffee crops on test benches for changes caused by the disease in question.
This section describes the mechatronic design of the data acquisition system.

The cyber-physical data collection system was developed following the Pahl &
Beitz methodology [107]. The system development requirements were drawn up with
the participation of the Colombian Association of Coffee Producers (CENICAFÉ )
and the EAFIT University. Creating a coffee-growing data acquisition test bed that
simulates various agricultural conditions and compliance with the requirements for
data collection, storage and transmission were the main principles of the system
design. In this sense, this section describes using the Pahl & Beitz methodology to
create a data collection system that combines RS and WSN to diagnose CLR.

First, the Product Design Specification (PDS) was used to formalise, structure
and classify all requirements according to their characteristics and priorities. The
main requirements are to measure the physicochemical characteristics of the plant
and obtain Red, Green, Blue (RGB) and multispectral images of the coffee crop on
the test bench and store all this data locally and remotely. Other requirements related
to the isolation and irrigation of plants, the coffee varieties used, building materials,
the type of database and the protocol for communicating with field sensors.

The next step is to develop a black box that reflects the system’s main functions.
Its primary function is to collect a set of inputs, transform them, and create a set of
outputs. Inputs and outputs can be divided into three main streams: matter, energy
and signal, as shown in Figure 5.1. Regarding inputs, material flows consisted of CLR,
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coffee plants, organic matter, fertilisers/fungicides and wind. Energy flows have been
divided into electrical, human, and photovoltaic energy. The signal flow consisted
of input information and expert information. The corresponding experimental coffee
yield, power consumption, field sensors, and general data records were obtained at
the output. This output relates to the primary goal of this study, which is to create
a system that can collect, store and transmit reliable data on coffee crops of the CLR
data acquisition test bed.

Figure 5.1: Black box representation of the cyber-physical data collection system.

After defining the black box, the functional structure was created, decomposing
the inputs and outputs, and establishing a detailed understanding of the required
subfunctions. For example, one of these sub-functions was to combine human power
with a coffee plant to place it on a coffee plant in a test bench to affect the rear inte-
gration of a rice field sensor. In addition, sensors are used for each plot to measure soil
moisture/temperature, pH, light, and ambient humidity/temperature. In addition,
RGB images and multispectral images were obtained. To complete the data collection
process, the data was stored locally, pre-processed for cleaning, and then sent over
the Internet to a remote server. In addition, the collection process was monitored in
real-time through the IoT web platform.

After determining the main features and the corresponding sub-features, a mor-
phology matrix was built. Such a matrix presents various proposals for solutions for
the implementation of each of the sub-functions presented in the function structure.
The output of the morphological matrix consists of two candidate concepts, Concept
1 and Concept 2, each of which consists of different combinations of solution propos-
als. The concept represents two possible ways of building a data collection system,
which were explored to evaluate various aspects and decide which one is most suit-
able for a given purpose. The resulting candidate concepts were evaluated using a
scoring system that computed a weighted average of preselected evaluation criteria.
These weights have been set according to the previously determined PDS and the
experience of the design team. As a result, the final concept is chosen. Concept 1
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was selected with 78% approval compared to 74% for concept 2, as shown in Table
5.1. The system for collecting cyber-physical data was built on the winning concept.
Cyber-physical systems (CPS) are a new class of engineering systems that interact
closely between cyber and physical components [70].

Table 5.1: Concept Scoring. ªValue scale (score between 0 - 4); 0 = Not satisfied, 1
= Acceptable, 2 = Sufficient, 3 = Good, 4 = Totally satisfied

Nº Evaluation Criteria Relevance (%) Solutionsª
Concept 1 Concept 2

1 Functionality 11 4 3
2 Simplicity 5 3 4
3 Fulfilment of requirements 10 3 2
4 Robustness 3 4 3
5 Fabrication 7 3 3
6 Assembly 6 3 2
7 Reliability 9 3 3
8 Low cost 7 3 3
9 Expert criteria 6 3 3
10 Crop management 7 3 3
11 Maintainability 3 2 3
12 Performance 8 2 3
13 Usability 5 3 3
14 Testability 3 3 2
15 Availability 10 4 4

Weighted average 3.13 2.96
Total score 100 78% 74%

The final concept is composed of a physical part and a cybernetic part. The
physical part is comprised by four raised wooden beds representing the lots and
separated by four plastic curtains, a rotary arm holding the multi-spectral cameras, a
rain system which irrigates the lots and a circuit box with the necessary elements to
interact with the electronic components. The cybernetics part of the design includes
a data collector for joining the data coming from the test bench coffee-crop and a data
organiser, which structures and saves it on the local storage for its posterior transfer
to a remote server.

After the final concept was elaborated, the mechanical, electronic and computer
design is carried out. The mechanical design considered the location of the coffee
crop plots and the location of each component (e.g. electronic sensors) of the system.
The electronic design considered all calculations required for each sensor or actuator
of the system. In the computer design, the algorithms concerning data acquisition,
conditioning and storage of the data in the IoT platforms were programmed.

Using the Pahl & Beitz methodology allowed to evolve from the definition of initial
requirements to the final and detailed design of a data acquisition system integrating
RS and WSN. The final 3D Computer-Aided Design (CAD) of the physical part of
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the data acquisition system is shown in Figure 5.2.

Figure 5.2: Final physical detailed design of the data acquisition system.

Figure 5.3 shows the final design of the data collection system’s cybernetic part,
which explains the pipeline for the execution of the data collection system.

Figure 5.3: Final design of the data collection system’s cybernetic part.
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5.3 Innovation
The application of the Pahl & Beitz design methodology results in the target sys-
tem solution. Precisely, the result of this research work corresponds to the solution
obtained by applying the Pahl & Beitz methodology, i.e., the target system, i.e., a
cyber-physical data acquisition system capable of obtaining a dataset suitable for
use in the early detection of Coffee Leaf Rust. Therefore, the following describes
the result obtained, i.e., the system built, which was first represented by a 3D-CAD
model.

Finally, the integration of the mechanical, electronic and software parts led to the
construction of a complete functional cyber-physical data collection system.

After completing the integration and construction of the data acquisition system
mentioned above, a final test and calibration of each system component’s operation
was performed, which is essential to ensure the system’s operation’s reliability. For
example, one part of this process included the precise adjustment of the robotic arm
position with respect to each plants’ lot for taking the multispectral photos, where
each position was stored in the program to perform the data collection routine. Having
performed the final system’s calibration, a data collection routine was executed for
three months. The Data Collection System recorded crop’s cameras and sensors
information from each lot seven times per day at different moments (with and without
sunlight). It must be noted that although the data storage occurred seven times per
day, the system was acquiring and monitoring the data in real-time, with a sampling
period of 3 seconds. In addition to the data collected by the system, a team of
biologists evaluated daily, in a separate file, the current development stage of the
CLR of each data collection system lot. The output of this routine generated a
dataset comprising 603 RGN files (≈153 MB), 641 RE files (≈177 MB), 730 RGB
files (≈196 MB) and 672 sensor data (JSON) files (≈1.12 MB), which were ready to
be used for diagnosing the CLR development stage by training a Machine Learning
model.

5.4 Conclusions and future work
The data acquisition chapter described the mechatronic design of a cyber-physical
data acquisition system that integrates RS and WSN into a coffee crop in a test bench.
It can automatically collect, structure and locally & remotely store reliable multi-
type data from various field sensors (pH, soil moisture/temperature, illumination,
humidity/ambient temperature), RGB and multispectral cameras. In addition, a
data visualisation dashboard was introduced to monitor data collection procedures in
real-time. This result represents the first step towards diagnosing the CLR in Caturra
varieties. The correct operation of the data acquisition system resulted in the creation
of a 3-month data set containing the sensor and camera data needed to create the
CLR design phase model. This result confirms that the developed system can collect,
store and transmit reliable coffee yield data on a CLR diagnostic test bench. In future
work, this data collection system may help measure and record traits that differ from
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other types of crops. In addition, concerning the CLR, the data generated by this
system can be used to analyse how crops respond (physicochemically and visually)
to the presence of the disease. For example, artificial intelligence techniques such as
computer vision and deep learning can be implemented to generate models based on
collected data to diagnose the CLR effectively. The current development is intended
to be a testing lab for plant experiments. However, it will be possible to conduct
scalability, cost and energy analyses to turn the test lab into a complete mobile lab
(using drones or ground robots) for large-scale crops. In this regard, the data set
from this research work can be used to determine the optimal number and type of
sensors needed in a particular case of real plantations.



CHAPTER 6

Supervised Ensembling

The ensembling of supervised models allows different sources of information and mod-
els to be used to generate an output that combines the advantages of each of these
sources. This chapter will show a use case with CLR, which was already introduced
in the chapter on Data Acquisition with the design of a data acquisition test bed for
coffee rust. This case will present a method to combine different sources of informa-
tion (WSN, RS) with DL models to diagnose the development stage of CLR, which
is considered an anomaly in the coffee plantation. CLR is a fungal infectious disease
that affects coffee trees and causes massive defoliation. For example, the disease has
been affecting coffee trees in Colombia (the third largest coffee producer in the world)
since the 1980s, causing devastating losses of 70% to 80% of the crop. Failure to de-
tect pathogens at an early stage can lead to contamination that causes widespread
destruction of plantations and seriously reduces the product’s commercial value. The
most common method of detecting the disease is walking around the crops and visu-
ally inspecting the plants. As a result of this problem, various studies have proven
that automated technical methods can help identify these pathogens.

6.1 Background
Many studies have been carried out on applying technical methods and strategies
for diagnosing diseases of crops [87], detecting pests [139], and obtaining nutritional
information [94]. The phytosanitary status of a plantation is closely related to var-
ious essential ecosystem factors such as weather, altitude and soil type. Therefore,
several biological and engineering studies aim to realise practical solutions to improve
agricultural practices in maintaining healthy crops based on these factors. The most
commonly used methods for effective monitoring of phytosanitary conditions include
visual inspection, biological intervention, Remote Sensing (RS), Wireless Sensor Net-
works (WSN), and Machine Learning (ML).

49
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Visual symptom detection uses changes in plant appearance (colour, shape, le-
sions, spots) as indicators of disease or pest attack [90]. In Hamuda et al.’s investiga-
tion [52], image-based plant segmentation, a process of classifying images into plants
and non-plants, was used for plant disease detection [18]. For example, to assess
the infection rate of the CLR in a particular lot, the number of diseased leaves of
60 random trees should be divided by the total number of leaves on those trees and
multiplied by 100. Leaves are considered affected by CLR when yellow-green spots
or orange dust are seen on the leaves. Depending on the number and diameter of
the rust-orange spots, the severity of the disease can be divided into five categories.
Figure 6.1 displays the CLR development stages.

Figure 6.1: CLR development stages [31].

In terms of biological intervention, some authors note the importance of relation-
ships between organisms living in the same environment. One of these is Haddad et
al. [51], who propose a study to determine whether seven isolated bacteria selected
under greenhouse conditions effectively detect and regulate CLR. To develop this
study, they inoculated six Bacillus sp., B10, B25, B157, B175, B205 and B281, and
one Pseudomonas sp., P286. According to the preliminary results presented by Had-
dad, they help detect and control the CLR in the early stages of development. Two
important coffee varieties, Mundo Novo and Catuai, were chosen for the experiment
due to their high susceptibility to CLR. Therefore, for three years, diseased varieties
interacted with various treatments (bacteria) to analyse the evolution of behaviour
among them. This was as effective as a copper fungicide in the control of diseases.
Therefore, the use of biological control of the B157 isolate of Bacillus sp., given the
harmful effects of copper-based fungicides. This can be a reliable alternative solution
for managing the CLR. Thus, this study provides an opportunity to regulate CLR
successfully for speciality coffee producers.

RS is based on the interaction of electromagnetic radiation with all matter. For
agriculture, non-contact measurements of reflected radiation from soils and plants are
used to assess various attributes such as Leaf Area Index (LAI), chlorophyll content,
water stress, weed density, and crop nutrients [97]. RS helps detect problems in the
agricultural sector, as it captures abnormal behaviours in crop reflectance caused by
factors such as nutrient deficiencies, pests and diseases, and water stress. Calvario et
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al. [17] used Unmanned Aerial Vehicles (UAVs) to monitor agave crops and integrated
RS with unsupervised machine learning (k-means) to classify agave plants and weeds.
Goel et al. [48] studied the detection of changes in the spectral response of corn with
nitrogen application rate and weed control. To that end, the researchers employed
a hyperspectral sensor called the Compact Airborne Spectrographic Imager (CASI),
which has 72 wavelengths between 409 and 947 nm, which constitutes part of the
visible and near-infrared (NIR) regions. The results demonstrated the feasibility of
detecting weed infestation and nitrogen stress using the hyperspectral sensor CASI.
Specifically, it was found that the best bands for detection were in the wavelength
regions around 498 nm and 671 nm, respectively. Bolaños et al. [14] used two distinct
filters, Roscolux #19 and Roscolux #2007, and an inexpensive multi-rotor aircraft
camera to characterise these components using visible and infrared spectra. By this
method, the anomalies that could cause crop disease could be observed and analysed.
Chemura et al. [25] proposed a method for early prediction of the presence of diseases
and pests on coffee trees based on invisible water stress. Their method consisted
of integrating a multispectral scanner with filters in the visible, and near-infrared
wavelength ranges into a UAV. Waveband scanning results showed an inflexion point
between the 430 nm and 705-735 nm regions, depending on the water content of the
coffee tree.

WSN is a technology used in many countries worldwide to monitor various agri-
cultural characteristics in real time remotely. It consists of several self-contained
embedded devices called sensor nodes that collect data in the field and communicate
wirelessly to a central processing station known as a Base Station (BS). The BS can
store, process and combine data and is responsible for sending the received data to the
Internet and presenting it to the end user [10]. After the collected data is stored on a
central server on the Internet, further analysis, processing and visualisation methods
are applied to extract valuable information and hidden correlations to detect changes
in crop characteristics. These changes can be used as indicators of phytosanitary
problems such as nutrient deficiencies, pests, diseases and water scarcity. The most
common sensors in agricultural WSNs are those that collect climate data, images and
frequencies. Piamonte et al. [112] proposed a WSN prototype for monitoring African
oil palm bud rot. This study aimed to indirectly measure climate change and soil-
related factors using pH, humidity, temperature, and photometric sensors to detect
pathogens.

Regarding the state-of-the-art in ML, Sulistö et al. [143] presented a computer in-
telligence vision sensing approach for estimating the nutrient content of wheat leaves.
This approach analysed the colour features of leaf images taken in the field under
various lighting conditions to estimate the nitrogen content of wheat leaves. Another
work by Sulistyo et al. [142] proposed a method for determining the nitrogen con-
tent in wheat leaves using colour constancy through the fusion of neural networks
and a genetic algorithm that normalises plant images at different sunlight intensities.
Sulistö et al. [141] also developed a method for extracting statistical characteristics
from images of wheat plants and, in particular, for estimating nitrogen content in real
contextual environments where there may be fluctuations in light intensity. This work
provided a robust image segmentation method using deep multilayer perceptrons to
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remove complex backgrounds and fine-tune colour normalisation using genetic algo-
rithms. After image segmentation and colour normalisation, the system’s output is
used as input to several standard multilayer perceptrons with different hidden layer
nodes, and the simple weighted average method is used to find their output. Fuentes
et al. [40] presented a robust deep-learning detector for real-time classification of
various types of tomato diseases and pests. For such tasks, the detector used im-
ages from RGB cameras (multiple resolutions and different devices such as mobile
phones and digital cameras). This method determined whether crops were infected
with diseases and pests and, their type. Similarly, Picon et al. [114] developed an au-
tomated deep residual neural network algorithm that detects multiple plant diseases
in real-time using a mobile device camera as input. The algorithm was able to detect
three types of diseases in wheat crops: (i) Septoria tritici, (ii) tan spot (Drechslera
tritici-repentis), and (iii) rust (Puccinia tritici), and Puccinia recondita). Chemura
et al. [25] assessed the potential of the Sentinel-2 range for early detection of CLR
infection levels at a devastating rate. The use of random forest (RF) and partial least
squares discriminant analysis (PLS-DA) algorithms can determine such levels for ini-
tial CLR control. The researchers used the Yellow Catuai variety selected for its CLR
susceptibility. The results of the study show that the CLR reflectance is high in the
NIR region of the spectrum, as seen in leaves in the B4 (665 nm), B5 (705 nm) and
B6 (740 nm) bands. These ranges achieved high overall CLR discrimination of 28.5%
and 71.4% using the RF and PLS-DA algorithms, respectively. Thus, MSI-derived
Sentinel-2 bands and vegetation index made it possible to detect diseases and assess
CLR at an early stage, avoiding unnecessary chemical protection of healthy trees.

Several studies have been able to integrate different CLR detection tools to gain
more information and accuracy in predicting this disease. In addition, determining
crops’ contamination level by visual inspection is a tedious task, laborious, time-
consuming, and prone to human error and discrepancies. Therefore, this study as-
sesses to what extent it is possible to diagnose the CLR stage in the Colombian
Caturra variety by integrating RS, WSN, and DL.

6.2 Case study
The experimental design used in this study was completely randomised (CRD). It
was used to compare two or more treatments, considering only two sources of vari-
ability: treatment and random error. This experimental design aimed to analyse
whether the diagnosis of the developmental stage of CLR by integrating RS, WSN,
and DL is similar to the diagnosis performed by conventional visual examination. In
that sense, the study factor was the type of inspection, which had two levels (“visual
inspection” and “technological integration”), and the response variable was the devel-
opment stage of the disease, which was an integer number between 0 and 4. Thereby,
the fundamental hypothesis to prove, presented in Equation (6.1), helped by deciding
whether Treatments 1 (“visual inspection”) and 2 (“technological integration”) were
statistically equivalent with respect to their means [117].
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H0 : µ1 = µ2

HA : µ1 ̸= µ2

(6.1)

The procedure for confirming the above hypothesis was called analysis of variance
(ANOVA) and required a data table with a row for each observation and a column for
each treatment representing the measured value of the response variable. This pro-
cedure separated treatment variability from random error variability and compared
them. If the first is higher than the second, then different means of treatment influ-
enced the stage of CLR development, at which the type of diagnosis was determined.
Otherwise, we might conclude that the means were statistically equivalent and that
visual examination and technical pooling were similar to disease diagnosis. Finally, it
is essential to note that the significance level used to confirm the hypothesis was 10%
(α = 0.1). This is because the problem under consideration was related to agriculture,
which involves many noise factors associated with changes in environmental condi-
tions. Data collection experiments used 16 healthy, 6-month-old coffee plants from
the Antioquia Gardens. These plants were kept in the EAFIT University greenhouse.
A team of biologists was responsible for transplanting, farm management (weeding,
fertilising, fumigation), grafting, and supervision. The biologists’ team followed the
process described in Chemura’s study [25] for inoculation. It is important to clarify
that a new group of diseased plants was kept in reserve in case the grafting of healthy
plants failed over time. In addition, a group of engineers was involved in the design
and assembly of a system that combines RS and WSN in one greenhouse. This al-
lowed us to build large-scale crops, periodically record their various characteristics,
store them on a remote server, and then use DL to analyse the phytosanitary situ-
ation. Thus, after the plants were inoculated and the system was tested, they were
transplanted to start data collection. To do this, the large-scale crop was divided into
four lots, each with specific differences in agronomic management, to replicate the
different situations with actual coffee crops. This covered more scenarios and reduced
false positives. Lot 1 contained four non-inoculated plants that were neither fertilised
nor fumigated. Lot 2 had four non-inoculated plants that were fertilised but not fumi-
gated. There were four inoculated plants in Lot 3, which were also fertilised but not
fumigated. Four inoculated plants in Lot 4 were neither fertilised nor fumigated. Fi-
nally, the team of biologists carried out the visual inspections for diagnosis of the CLR
development stage for three months. Once a day, a member of the team examined
the severity of the disease for each lot and indicated the value of the response variable
for each observation; this measure corresponded to the ground truth. Similarly, the
technological system automatically recorded the scale crop’s characteristics from each
lot seven times per day at different moments (with and without sunlight because the
field sensors and cameras had different illuminance requirements), assigning to each
of these samples the above-mentioned daily ground truth. After the data collection
phase finished, the DL diagnostic model was generated, and a comparative data table
for the statistical analysis was produced based on its predictions and the results of
the visual inspections. As it was expected that a considerable amount of observations
would be made, only 25% of all collected data were used for the statistical study. It
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should be noted too that, as was recommended, the order of the table’s entries was
randomised before executing the analysis to minimise bias.

The stored data were first divided into two sets: training (cross-validated) and
testing to create a suitable model for diagnosing the stages of CLR development. The
training set was processed to build diagnostic models using cross-validation. After
creating the diagnostic model, the test set was used to evaluate the final performance.
As part of this project, a data centre was used to store remotely collected data
on the physical part of the prototype. Both the MongoDB instance in it and its
file system allowed copying of the SBC’s local storage, making it easy to access its
information everywhere. In addition, the data centre performed data prepossessing,
model building, and diagnostics during the CLR development phase. A machine
learning pipeline model showing how the collected data was processed to obtain a
model used to diagnose the initial stage of the disease in question is shown in Figure
6.2. This pipeline model originally consisted of four sub-directories, from Lot 1 to 4.
The data will be labelled accordingly later. To this end, a team of biologists conducted
visual field inspections of all plants once a day throughout the data collection phase for
labelling; in this respect, they assigned an integer value from 0 to 4 was to each plant
in each lot, assessed the level of damage to the leaves of the plants, and calculated
the label for a particular lot as the rounded average of the disease stages of the
four plants. Also, for general images, they were manually checked them one by one,
leaving only those with important content (focus, brightness) and deleting the rest.
A script was executed to remove extraneous sensor data files (files with missing or
outlier values). The last two steps were part of the cleanup step. Finally, there
are five sub-directories containing data for all lots (lot 1 - lot 4) with appropriate
labelling. These sub-directories were used to create the diagnostic model and the
final evaluation, given that the diagnostics were performed at the lot level.

Figure 6.2: CLR ML pipeline model.

The final step consisted of combining the outcomes of the four sub-models and cal-
culating their rounded weighted average, the weights being the respective F 1-scores.
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Thereby, the definitive lot’s CLR diagnosis was obtained, and it was recorded along
with the processed lot’s data directory label. Once the whole test set was covered, a
table showing comparative results was generated for the statistical analysis, and the
performance reached by the composite model was assessed with the calculation of the
F 1-score. Table 6.1 shows the selected hyperparameters and obtained F 1-score for
each of them.

Table 6.1: Hyperparameters and F 1-score for each generated submodel.

Submodel Batch Size Epochs Kernel Initialiser Activation Rate Optimiser F1-Score (Cross-Val Set)
Sensor data 16 20 normal ReLU 0.4 Adam 0.651

RGB 16 6 glorot_uniform ReLU 0.4 Adam 0.949
RGN 32 9 glorot_uniform elu 0.3 Adam 0.928
RE 16 6 normal ReLU 0.4 Adam 0.878

The proposed machine learning pipeline consisted of integrating the four sub-
models presented and evaluating the composite model. Throughout it, the stages of
CLR development were diagnosed, a comparison table with the results achieved was
created, and model’s performance calculated. For this purpose, a model evaluation
script was implemented. This script loads the sub-models into memory, iterates over
the test set, gets each lot data directory in it, pre-processes the contained files by
breaking them down by type, and reduces the size to modify to reduce space com-
plexity (normalise and structure each file according to the expected inputs of the
sub-models and send them to the respective sub-models to get predictions. In ad-
dition, the script allowed gathering the four predicted labels and calculating their
rounded weighted average, since the generated sub-models presented different per-
formances for diagnosing the CLR development stage. Table 6.2 shows the weights
for the predictions of each sub-model, which were determined as the ratio of each
F 1-score in Table 6.1 with respect to the sum of all F 1-scores.

Table 6.2: Weights for the predictions of each submodel.

Submodel Weight for Predictions (RRR table)
Sensor Data (JSON) 0.191

RGB 0.279
RGN 0.272
RE 0.258

To explain the weighted average, we assume that the sample folder containing
all collected data (sensor data, RGB, RGN and RE images) was marked as CLR 2
development stage. This data in this folder was then used to develop sub-models
(sensor data, RGB, RGN, and RE submodels) that produced output based on the
trained model. It is also assumed that the sensor data submodel classified this as 0,
the RGB submodel as 3, the RGN submodel as 2, and the RE submodel as 2. Then,
given the weights from the RRR table, the average developmental stage is about 1.90.
Then round up this value, and the final result of the machine learning pipeline will
be DevelopmentStage = 2. An example of this is shown in Figure 6.3.
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Figure 6.3: Machine learning classification example through weighted average.

6.3 Innovation
The result of this experiment was a composite-trained model with an F 1-score of
0.775. This model was tested using ANOVA to prove the validity of previously pre-
sented proposal hypotheses using visual inspection and technology integration meth-
ods. The resulting p-value was 0.231, greater than the significance of α = 0.1. This
result showed that the proposed method for automatic detection of CLR disease
showed comparable performance compared to the manual/visual inspection method.

The resulting training set used to fit the submodel consisted of 968 directories.
It contained 672 sensor data (JSON) files, 2192 RGB files, 603 RGN files, and 641
RE files. In addition, the test set used to evaluate the composite model consisted
of 202 lot data directories containing 224 sensor data (JSON), 730 RGB files, 202
RGN files, and 202 RE files. Finally, a performance table was successfully generated
after evaluating the CLR developmental stage diagnostics of the Colombian Caturra
varieties using the DL model. Table 6.3 shows the final F 1-scores obtained by each
submodel and the composite model.

Table 6.3: F 1-score reached by the individual submodels and the composite model.

Model F 1-score (Test Set)
Sensor Data (JSON) 0.570

RGB 0.920
RGN 0.946
RE 0.944

Composite 0.775

Statistical analysis of the performance evaluation results of the diagnostic model
was performed using the generated dataset. The purpose of the analysis was to de-
termine whether there was a significant difference in the mean CLR development
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stage diagnosed with a visual inspection and using the proposed technological inte-
gration. This result provided the statistical support needed to answer the research
question. The comparison table contained 202 observations corresponding to the di-
agnosed stage of development for both treatment options. Figure 6.4 shows a block
diagram illustrating measurements. On the x-axis, two processes are deferred (“visual
inspection”´ and “technical integration”), and on the y-axis, the development phase
of the CLR is deferred. The visual similarity of the data distribution for each treat-
ment suggests a possible similarity to the mean of the response variable. ANOVA
was performed to assess this condition and make decisions based on hypotheses.

Figure 6.4: Data distribution of the observations for both treatments.

The ANOVA results are shown in Table 6.4. The p-value obtained for the treat-
ment factor was 0.231. This value is greater than the established significance (α =
0.1), which means there was insufficient evidence to reject the null hypothesis. Thus,
with 90% confidence, it was concluded that there was no statistically significant dif-
ference in the diagnosis of the developmental stage of CLR by visual inspection vs.
technology integration. This result showed that both methods are significantly sim-
ilar for diagnosing diseases. This study demonstrated the possibility of diagnosing
the developmental stage of CLR in Colombian Caturra varieties by integrating RS,
WSN and DL. Analysis of the results provided statistical data supporting the study’s
hypotheses. In this sense, the results showed the potential to complement tradi-
tional visual inspections for diagnosing the most economically limiting diseases for
coffee production in Colombia, and thus technology integration could improve the
phytosanitary status of coffee crops.
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Table 6.4: ANOVA table of the statistical analysis.

Df Sum Sq Mean Sq F Value Pr (>F)
Treatments 1 2.7 2.696 1.437 0.231
Residuals 402 753.9 1.875

6.4 Conclusions and future work
The integration of RS, WSN and DL within this study allowed evaluating to what
extent CLR developmental stages can be diagnosed in Colombian Caturra varieties.
To this end, the most up-to-date information obtained has been synthesised, previous
research works and knowledge about CLR have been detailed, and the impact of the
disease on the Colombian coffee growing industry has been identified. The method
was reviewed and used in the current study. A functional prototype was then created
to automatically collect data in the field and transmit it over the Internet to a remote
server. In addition, a diagnostic model was implemented using DL based on stored
data and successfully evaluated the CLR development stage using unknown field data.

The p-value obtained from the analysis of the results was 0.231, which helped
to determine with 90% confidence that visual inspection and technical integration
did not show a statistically significant difference in diagnosing the developmental
stage of rice field CLR. Thus, both methods of assessing the disease led to similar
results, which indicates that the results confirmed the study’s hypothesis. Finally,
integrating RS, WSN and DL made it possible to diagnose the CLR developmental
stage of Colombia Caturra with an F 1-score of 0.775. This average value indicates
that the diagnostic model is superior in terms of diagnostic validity and utility.

Regarding the data processing phase, a further extension of this research could
include implementing a simple user interface for visualising the CLR development
stage diagnosis through the generated DL model and illustrating the results to a
coffee grower in a user-friendly manner. Additionally, the proposed technological
integration could be scaled to a real context by using drones with one or both of
the two multispectral cameras used in the experiment presented by this work as a
possible approach, knowing that the identification of the CLR could be made with
just one camera, e.g., RGN (F 1-score of 0.946), due to its high score. Another real
context approach could be further explored using a mobile autonomous robot with
a single RGB camera. Finally, the F 1-score values achieved on the test set, which
showed that the submodels based on images presented a higher performance than the
JSON submodel (sensor data model), suggested reconsidering the composite model
for future work and focusing all efforts on improving the collection and processing of
just RGB and multispectral data or using more robust sensors when the technology
allows it; by using just the three submodels (RGB, RGN, and RE), we computed
an average F 1-score of 0.93, which clearly showed that an improved composite F 1-
score could be surely achieved, but a real context commercial application may only
implement one of the best three previous submodels due to both implementation and
maintenance costs.



CHAPTER 7

Semi-supervised Ensembling

In industrial machines, it is common for the data generated by their sensors not
to have a label or ground truth. This is why semi-supervised ML techniques can
help to train ML models with few or no labels to have enough information to create
an optimal model. This chapter will present an industrial case study, where semi-
supervised anomaly detection techniques and ensembling were performed to have a
complete model for predictive maintenance. Most industrial companies today face
problems related to system maintenance. However, some methods, including predic-
tive or Condition-Based Maintenance (CBM), can anticipate critical situations and
mitigate these issues. Regarding diagnostics, preventive maintenance falls into two
categories: i) models based on physical principles and ii) models based on past ob-
servations [6]. One of the methods used by the second group is the early detection of
anomalous behaviour of industrial equipment [15]. This early detection avoids poten-
tial equipment failures and reduces associated maintenance costs. Anomaly detection
has been explored in several application areas. Related research areas include disease
detection, intrusion detection, fraud prediction, and industrial equipment failure de-
tection. Anomaly detection typically detects anomalous conditions that do not match
the normality data corresponding to the prevailing conditions. Detection of anoma-
lous conditions is challenging, and if data needs to be processed in real-time (e.g.
streaming), it poses a difficult task. Unlike batch training, where all historical data
is available, and no new information is added to an already-built model, streaming
training, as proposed by Silva et al. [136], has five limitations that must be consid-
ered: i) Stream data samples are received online and can be read at most once. This
is a severe limitation for processing current data samples, as the system must decide
whether to discard or archive them. ii) Historical data samples can only be accessed if
stored in memory. Otherwise, the forgetting mechanism is used, which is responsible
for discarding past samples. iii) Not all data samples can be saved, so decisions made
on past samples cannot be reversed. iv) The processing time for each data sample
should be short and constant. v) Data processing algorithms should produce models

59
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that are comparable to those generated by batch algorithms. This chapter presents
the evaluation and comparison of different methods to detect anomalies that, due to
their performance-control metrics, establish the weight (or incidence) of each method
in the final combined model, thus responding better and efficiently to the challenge
of real-time anomaly detection. Specifically, the present work combines the predicted
output of three Machine Learning (ML) models: Local Outlier Factor (LOF), One-
Class Support Vector Machine (OCSVM), and Autoencoder employing a weighted
average –using as weight the F 1-score value of each model. The goal of the combined
model is the detection of anomalies in industrial systems in real-time. The proposed
hybrid model was implemented using a data set from a real industrial system of air-
blowing machines. Thus, it can be said that the proposed hybrid anomaly detection
model applies to Industry 4.0 systems as well as other industrial frameworks where
real-time data acquisition systems are available.

7.1 Background
Detecting anomalies in industrial environments poses two challenges. First, propos-
ing a method to understand of heterogeneous data from different sensors (which
commonly have noise). Second, obtaining an overview of normal behaviour and char-
acterise such behaviour from historical data. Therefore, normal data behaviour must
be characterised and defined to successfully detect anomalies in a dataset [118]. In
addition, normal behaviour can be characterised by the following three stages. (i)
Consider data describing normal behaviour through historical data (without consid-
ering anomalies) segmented into different classes according to the context in which
they were recorded. (ii) Extract the most frequent behaviours, thus characterising
each class. (iii) Detect anomalies in newly recorded data based on previous knowledge.

There are many studies in the literature on anomaly detection for static datasets
[21]. Examples of supervised approaches are cluster methods such as SVM and Deci-
sion Trees (DT) or Distributed Matching-based Grouping Algorithm (DMGA) [26].
Other examples use self-adaptive and dynamic clustering to learn weights for anomaly
detection and statistical methods such as autoregressive methods such as ARIMA
models [111].

The problem with these methods is that they are not designed to handle streaming
data. This is because the dataset must already be stored in the main memory. There-
fore, these traditional methods are often first adapted and then applied to streaming
environments. In this sense, Tan et al. [145] proposes a class of fast anomaly de-
tections that uses only normal data and works well when abnormal data is rare. To
do this, we use the Half-Space Trees (HS-Tree) algorithm. The HS-trees algorithm
represents a set of random HS trees. Each HS-tree consists of a set of nodes, each
of which fixes the number of data elements (called masses) in a subspace of the data
flow. Mass is used to profile the extent of anomalies because it can be calculated
quickly and easily compared to other methods based on distance or density. Since
the tree structure is built without data, it is very efficient because the model does
not need to be rebuilt on streaming data. HS-Tree only needs regular training data.
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Another method worth mentioning is isolation-Forest Algorithm for Streaming Data
(iForestASD) [32], based on the Isolated Forest Algorithm [84]. This method pro-
cesses streaming data using a sliding window. In this case, the author begins with
the “concept drift”, which is a common occurrence when working with streaming data
in dynamic and non-stationary environments that introduce changes in data distri-
bution [42]. Concept drift is a problem that occurs when the statistical properties
of a target variable change over time, making the anomaly detection model incon-
sistent with the data it processes, resulting in less accurate predictions. Therefore,
the model needs to be retrained and updated to ensure effective anomaly detection
based on new data received. Hulten et al. [57] proposes another anomaly detection
work based on the Hoeffding Tree (HT). It is an inductive incremental decision tree
algorithm used for anomaly detection. The disadvantage of this algorithm is that it
requires class labels for training. Another noteworthy work was done by Laptev et
al. [75]. Their system is called the Extensible Generic Anomaly Detection System
(EGADS). EGADS provides accurate, flexible, scalable and extensible time series
anomaly detection. This system allows us to separate forecasts, anomaly detection
and alerts into three components.

Most of the approaches to detect anomalies existing in the literature are based on
models that first build a profile of what is “normal” and then point out those instances
that do not fit that normal profile as anomalies (statistical methods, classification-
based methods, or cluster-based methods use this approach). The main objective
of the semi-supervised ensembling chapter is to build an ensemble model that uses
different algorithms that, by combining their results, will generate a new model to
detect anomalies. Ensemble learning, either for classification or regression, refers to
methods that generate multiple models combined to make a prediction [93]. Ensem-
bles have been used in the last decades as they provide greater accuracy and increased
robustness [45]. Additionally, multiple ensemble approaches have been proposed, and
several studies have reported that model diversity enhances the ensemble model’s
performance as different learners generalise in different ways [73].

7.2 Case study
The proposed ML hybrid pipeline for real-time anomaly detection consists of two
stages: i) the Manufacturing stage and ii) the Operation stage. This pipeline can be
seen on Figure 7.1.
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Figure 7.1: Higher-level representation of the proposed Hybrid-ML pipeline for
Anomaly Detection in real-time.

The manufacturing stage of the proposed hybrid anomaly detection is named
based on the industrial machine manufacturing process. At this stage, an ML model
is trained on the machine’s quality control process data to validate that the machine
meets its design criteria [67]. Therefore, the purpose of completing this manufacturing
phase model-building task is two-fold: (i) to use the trained model for detecting ma-
chine design/manufacturing anomalies; (ii) to later deploy it in the operation stage of
the machine when it is integrated into an industrial production process, for performing
a machine operation anomaly detection task. This model construction manufacturing
stage is equivalent to the design phase of a classical ML workflow. The metric chosen
for measuring models’ performance is the F 1-score of label L. The data set available
is a slightly imbalanced, where more machine’s “normal data” than “anomalous data”
exists, for which the F 1-score metric is considered appropriate. The F 1-score is a
value in the [0, 1] range, and it’s computed as the harmonic mean of the estimator
precision and recall with respect to L (see Equation (7.1))

F1−scoreL =
2× precisionL × recallL

precisionL + recallL
(7.1)

Finally, models’ F 1-score (F1i) performance ratio with respect to the sum of all
F 1-scores (

∑
j F1j) (see Equation 7.2) is calculated and used as the weight (wi) for the

weighted average of the prediction done by each model multiplied by the computed
weights. This weighted average assembles the Hybrid Anomaly Detection model at
the manufacturing stage.

wi =
F1 − scorei∑
j F1 − scorej

(7.2)
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The operation stage is when the machine is already running in production. In
terms of traditional ML pipelines, it represents the deployment phase. Therefore,
in this pipeline, machines should be able to measure the same variables obtained
during the manufacturing stage via industrial sensors. Data from these sensors is
captured in real-time and used as input for a Hybrid Anomaly Detector already
trained during the manufacturing phase. This detector diagnoses based on the data
received and generates alarms to the operator in case of anomalies. This detector can
also be adjusted during operation by the monitored actions of the operator. When
this action is triggered, data is captured within the time window and labelled as
"normal" data. Once data capture is complete, the model is retrained within the
hybrid anomaly detector. Once the calibration is complete, the system can detect
anomalies in real-time.

7.2.1 Manufacturing-stage pipeline

The proposed pipeline requires the manufactured machines to undergo a quality con-
trol process [67]. This process allows sensors to obtain information about the manu-
factured equipment’s behaviour over time. The data collected by the sensors during
the quality control process is called the sensor data set.

After the sensor data is stored, the data is preprocessed for data cleansing pur-
poses. In other words, it removes features the system cannot detect using sensors
while the machine runs. The preprocessed data is then normalized so that all fea-
tures are at the same scale and can be compared later in the pipeline. Then feature
selection is performed to extract variables relevant to the study. This step includes
domain experts as the first filter. This allows for choosing which variables to keep
and which to discard. An automatic algorithm is then applied to remove redundant
features [65]. Following the above, dimensionality reduction is performed using Prin-
cipal Component Analysis (PCA) to extract the most representative features of the
data.

The next step applies a clustering algorithm with k=2 (K-means algorithm). This
makes it possible to distinguish between one group of data samples belonging to the
transient state and another group of data belonging to the steady state. In order
to correctly label the group results obtained with the clustering algorithm, the value
assigned to the cluster is first identified for the sample with the smallest timestamp
in the dataset. Since this value corresponds to the transient data group, all samples
containing the same cluster value correspond to the same state. The remaining values
are labelled as the steady-state data group.

It is also suggested to apply the outlier detection algorithm to stationary datasets.
In this case, it is proposed to use a density-based algorithm called DBSCAN. This is
useful for detecting outliers in noisy applications commonly found in industrial sensor
data [129].

Once the data groups relating to the transient, steady state and outliers (in the
steady state) are identified, a new labelled dataset is created. In addition, a cleaning
step is performed to obtain the final dataset labels. Transients and outliers are labelled
with a value of -1, and stable data is labelled with a value of 1. The previous data
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set is then randomly split into train, validate, and test. The training set represents
60% of all data, and only regular data is used to build each machine-learning model
using cross-validation. This allows for intermediate performance testing and tuning
of model hyper-parameters.

This pipeline uses the following three machine learning algorithms selected from
current research on single-class anomaly detection in real-time systems. These algo-
rithms offer the best balance between computational cost, implementation complexity,
and performance. The ML algorithms selected are [2, 22, 118, 21, 20]: i) LOF, which
consists of detecting anomalous data points using the local deviation of a given data
point and its neighbouring data points [16]. ii) One-Class SVM (OCSVM), which de-
tects a boundary that surrounds most of the data (ordinary data) and the following
new data beyond the boundary is considered anomalous [128, 30]. iii) Autoencoders,
which reduce the dimensions of input data by encoding information into a smaller
space. This compressed space is decoded to the same dimensions as the original input.
Then, the reconstruction errors in this process define possible anomalies [5].

Normal data are used for the training because the proposed pipeline is designed
to identify anomalies based on a single class for novelty detection, and individual ML
models use unsupervised algorithms.

The validation set, which corresponds to 20% of the data set, is used to obtain the
definitive performance (in this case, the F 1-score value) of each trained model. The
weights for the predictions of each model are then determined as the ratio of each
F 1-score value (obtained using the validation set). The weights are stored to be later
used for the rounded weighted average of the Hybrid Anomaly Detector component.
The test set corresponds to the final 20% of the data set and is reserved for measuring
the performance of the hybrid anomaly detector. The manufacturing stage pipeline
is shown in Figure 7.2.

Figure 7.2: ML Manufacturing stage pipeline.
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7.2.2 Operation-stage pipeline

This step is performed while the machine is running. During this process, the operat-
ing machine generates real-time data from pre-installed sensors that match the same
sensors used during the production (machine manufacturing) phase. Each run cycle
is pre-processed and delivered to the previously captured hybrid model to diagnose if
the machine is healthy or if anomalies should be reported via alarms. The operation
stage also allows for calibrating the Hybrid Anomaly Detection models required in
industrial systems that degrade over time and can be planned (for example, at every
maintenance). The operator must verify that the machine is in a stable state and un-
der optimal conditions of normality and activate the ML models’ calibration routine
to carry out this process. Once this process is activated, the system will collect data
during a period of time, which will depend on each system’s dynamics. Each data
will be stored with the normality label in the data set. This data set with normal
data is then used to retrain each ML algorithm with cross-validation. Finally, the
newly trained models are updated in the Hybrid Anomaly Detector. It should be
noted that only the weights (obtained through the F 1-scores) that were acquired in
the manufacturing process are used because, in the operation process, usually, there
are no anomalous data to measure this performance. The operation stage pipeline
can be seen in Figure 7.3.

Figure 7.3: ML Manufacturing stage pipeline.

The proposed machine learning real-time anomaly detection hybrid pipeline has
been tested on three different industrial air blowers from a local industry using quality
control datasets, and these machines are currently in operation. The machine data
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collection period is from January 7, 2020 to October 2, 2020. Data is recorded and
saved at 2-second intervals. The final dataset consists of 16 columns (15 variables
and timestamps) containing 1990 observations for machine A, 2009 observations for
machine B, and 2132 observations for machine C. These dataset characteristics are
shown in Table 7.1.

Table 7.1: Air-Blowing Machines’ data set characteristics.

Model version

A

Date control 1 June 2020
Start-End time 08:30 - 09:36
Total Samples 1990
Normal Samples 67.789%
Anomaly Samples 32.211%
Sample period 2 sec.

B

Date control 15 June 2020
Start-End time 08:13 - 09:20
Total Samples 2009
Normal Samples 55.351%
Anomaly Samples 44.649%
Sample period 2 sec.

C

Date control 14 July 2020
Start-End time 09:40 - 10:51
Total Samples 2132
Normal Samples 70.779%
Anomaly Samples 29.221%
Sample period 2 sec.

The sensor data set consisted of the variables measured by the sensors attached to
each machine during the quality control step. Measured variables are flow, power, wa-
ter temperature, nozzle temperature, inlet pressure, outlet pressure, flow temperature,
machine vibration, rpm, active power, cos phi, motor current, motor voltage, ambi-
ent humidity, ambient temperature environment and atmospheric pressure. Common
variables are selected for the production and operation phases in the preprocessing
phase. Variable preprocessing can be seen in Table 7.2. A total of 11 variables
(both production and operational) were selected. In addition, samples with invalid or
missing values were checked in the preprocessing step and removed from the dataset.



7.2. Case study 67

Table 7.2: Variables preprocessing at Manufacturing Stage.

Variable Available at
Manufacturing

Available at
Operation

Flow Rate ✓ ×
Nozzle Temperature ✓ ×
Suction Pressure ✓ ✓
Discharge Pressure ✓ ✓
Flow Temperature ✓ ✓
Machine Vibrations ✓ ✓
RPM ✓ ✓
Active Power ✓ ✓
Cos Phi ✓ ✓
Motor Current ✓ ✓
Motor Voltage ✓ ✓
Ambient Humidity ✓ ✓
Ambient Temperature ✓ ✓
Atmospheric Pressure ✓ ×
Water Temperature ✓ ×

The last step of the proposed ML pipeline consisted of implementing an ensemble
of three models: LOF, OCSVM, and Autoencoder, through a weighted average dis-
tribution. Table 7.3 shows the weights for the predictions of each model, which were
determined as the ratio of each F 1-score value in the validation set with respect to
the sum of all F 1-score values for each class (“-1” and “1”). As an illustrative example,
for a given sample, the LOF model predicted an anomaly (-1), the OCSVM predicted
normality (1), and the Autoencoder predicted an anomaly (-1) again, each output
is multiplied by its respective weight, this computing the final classification of the
hybrid model. Thus, considering the weights from Table 10, the output of the hybrid
model will be 0.8. If this value is positive (greater than 0), the hybrid model will
classify it as a normal data point (“1”), whereas, if is negative or zero (lower or equal
than 0) it is considered as an anomaly.

Table 7.3: Weights for the predictions of each submodel.

Model Machine Weights (-1) Weights (1)

LOF
A 0.373 0.363
B 0.412 0.378
C 0.215 0.259

OCSVM
A 0.406 0.371
B 0.417 0.370
C 0.177 0.259

Autoencoder
A 0.352 0.359
B 0.344 0.353
C 0.304 0.288
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7.3 Innovation
In addition to the proposed pipeline for real-time anomaly detection, the proposed
hybrid model should represent improved performance measures of individual models.
In this case, the accuracy, recall, F1 scores, and area under the ROC curve (AUC) of
all models were compared.

7.3.1 Manufacturing pipeline results

Three machines were selected corresponding to three different model versions to con-
firm that the hybrid model performs equally well on different hardware. The confusion
matrix allows seeing what types of hits and errors (type I or false negative errors and
type II or false positive errors) the current model have through various metrics such as
accuracy, reproducibility, sensitivity, and specificity. The ensemble model confusion
matrix was analysed to see if individual models perform better. In this regard, we
will focus on two indicators. i) Accuracy: Abnormal data is classified as normal. Also
called false positive rate (FP) or Type I error. ii) Recall: Normal data is classified
as abnormal, also known as false negative rate (FN) or type II error. The Confusion
matrix for machine A, machine B, and machine C are shown in Tables 7.4, 7.5, and
7.6 respectively.

Table 7.4: Machine A - Confusion Matrix (Test Set).

Model LOF Predicted

Actual Anomaly (-1) 120 39
Normal (1) 2 237

Anomaly (-1) Normal (1)
Model OCSVM Predicted

Actual Anomaly (-1) 130 29
Normal (1) 4 235

Anomaly (-1) Normal (1)
Model Autoencoder Predicted

Actual Anomaly (-1) 63 96
Normal (1) 97 142

Anomaly (-1) Normal (1)
Model Hybrid Predicted

Actual Anomaly (-1) 132 27
Normal (1) 1 238

Anomaly (-1) Normal (1)
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Table 7.5: Machine B - Confusion Matrix (Test Set).

Model LOF Predicted

Actual Anomaly (-1) 122 31
Normal (1) 3 271

Anomaly (-1) Normal (1)
Model OCSVM Predicted

Actual Anomaly (-1) 137 16
Normal (1) 23 251

Anomaly (-1) Normal (1)
Model Autoencoder Predicted

Actual Anomaly (-1) 56 97
Normal (1) 98 176

Anomaly (-1) Normal (1)
Model Hybrid Predicted

Actual Anomaly (-1) 126 27
Normal (1) 4 270

Anomaly (-1) Normal (1)

Table 7.6: Machine C - Confusion Matrix (Test Set).

Model LOF Predicted

Actual Anomaly (-1) 174 46
Normal (1) 2 180

Anomaly (-1) Normal (1)
Model OCSVM Predicted

Actual Anomaly (-1) 163 57
Normal (1) 5 177

Anomaly (-1) Normal (1)
Model Autoencoder Predicted

Actual Anomaly (-1) 170 50
Normal (1) 51 131

Anomaly (-1) Normal (1)
Model Hybrid Predicted

Actual Anomaly (-1) 177 43
Normal (1) 2 180

Anomaly (-1) Normal (1)

The confusion matrix shows a generalised improvement of the hybrid model’s
performance compared to the other models in all three machines, both for recall
and precision. For the experiments being analysed, precision should be maximised as
much as possible since it is indicative of the anomalous values detected by the system.

Tables 7.7, 7.8, and 7.9 show the models’ summary results, both individually and
jointly, using their metrics for comparison.
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Table 7.7: Machine A - Metrics table (Test Set).

Model Label Precision Recall F 1-score AUC

LOF -1 0.980 0.750 0.854 0.8731 0.860 0.990 0.920

OCSVM -1 0.970 0.820 0.887 0.9001 0.890 0.980 0.934

Autoencoder -1 0.390 0.400 0.394 0.4951 0.600 0.590 0.595

Hybrid -1 0.990 0.830 0.904 0.9131 0.900 1.000 0.944

Table 7.8: Machine B - Metrics table (Test Set).

Model Label Precision Recall F 1-score AUC

LOF -1 0.980 0.800 0.877 0.8931 0.900 0.990 0.941

OCSVM -1 0.860 0.900 0.875 0.9051 0.940 0.920 0.928

Autoencoder -1 0.360 0.370 0.365 0.5041 0.640 0.640 0.643

Hybrid -1 0.970 0.820 0.890 0.9051 0.910 0.990 0.946

Table 7.9: Machine C - Metrics table (Test Set).

Model Label Precision Recall F 1-score AUC

LOF -1 0.990 0.790 0.878 0.8901 0.800 0.990 0.882

OCSVM -1 0.970 0.740 0.840 0.8561 0.760 0.970 0.851

Autoencoder -1 0.770 0.770 0.771 0.7461 0.720 0.720 0.722

Hybrid -1 0.990 0.800 0.887 0.8971 0.810 0.990 0.889

From the table above it can be seen that the hybrid model’s performance im-
proves the individual models’ performance. Thus, it justifies combining models with
hybrid models using weighted averaging to improve the final performance of the entire
pipeline. Also, note that the results presented by the autoencoder are relatively low
compared to other models. This is because autoencoders are well suited for anomaly
detection using time windows and convolutional network architectures, which is not
the case. The problem with a convolutional architecture is that it requires time
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windows that could add significant delay in the operation stage and would make it
difficult to compare its metrics to those of the rest of the models due to the trans-
formation of the training, validation, and testing data that is needed to be done for
being able to use the data with this type of model.

7.3.2 Operation pipeline results

The anomaly detection algorithms described above are ineffective if the trained model
cannot be processed smoothly in a standard real-time operating environment. To
measure performance, data batches containing 2012 samples were compared against
all individual models on a regular computer (8 GB RAM and minimum Intel Core i5
or equivalent, no graphics card required). The computation time required to obtain
the result was measured. Finally, the same data was used with the hybrid model,
and the computation time required to process the data was logged. The results are
shown in Table 7.10.

Table 7.10: Performance results of each model in microseconds.

LOF OCSVM Autoencoder Hybrid
mean 803.6 175.4 34445.7 35982.6
std 2515.4 21.3 9999.4 11254.8
min 674.6 159.8 30300.3 31399.4
max 112896.7 446.4 174986.8 187873

As expected, the hybrid model was slower than the individual models. However,
its response time still exceeds the real-time response threshold defined for mainstream
computers in 2020 (less than 200ms for the worst-case cycle for batch analysis), al-
lowing real-time anomaly detection.

7.4 Conclusions and future work
This chapter has developed and presented a Hybrid Machine-Learning Ensemble for
Anomaly Detection for a Real-Time Industry 4.0 System (employing semi-supervised
ML algorithms). This ensemble consists of implementing two stages inspired by a
standard industrial system: i) A Manufacturing Stage and ii) An Operation Stage.
Up to our knowledge, there are no other ML methods that consider these industrial
stages. The ensemble system was tested on three machines, presenting an increased
F 1-score value and AUC concerning individual ML submodels (LOF, OCSVM, and
Autoencoder). The ensemble model for Machine A presented a F 1-score value of
0.904 for anomalies (-1), a F 1-score value of 0.944 for normal data (1), and an AUC
value of 0.913; the ensemble model for Machine B presented a F 1-score value of 0.890
for anomalies (-1), a F 1-score value of 0.946 for normal data (1), and an AUC value of
0.905; finally, the ensemble model for Machine C presented a F 1-score value of 0.887
for anomalies (-1), a F 1-score value of 0.889 for normal data (1), and an AUC value
of 0.897.



72 Semi-supervised Ensembling

The proposed system allows vertical scaling in the number of algorithms used
for the ensemble. As seen in section Results, subsection B, the hybrid model pre-
sented a maximum computation time of approximately 190 milliseconds, fast enough
for real-time anomaly detection. Concerning individual models’ performance, the
Autoencoder results showed a low F 1-score value, so it is proposed to test other algo-
rithms (e.g., Isolation Forest, Elliptic Envelope) to improve the overall performance
of the whole assembly. However, a study of the computational cost linked to the
retraining of more types of algorithms must be carried out.

Future work is proposed to study system retraining in the Operation Stage pipeline
and its computational cost. It is also proposed to study the proposed system devel-
oped on machines with different levels of degradation. Additionally, a data imputation
study should be carried out to generate synthetic samples for systems where some
information is missing (a loss of data due to communication breakdowns is a com-
mon problem in industrial systems). Deep Learning techniques could be considered
when creating meta-classifiers using different base classifiers such as recurrent neu-
ral networks, like LSTMs, where time series need to be considered. Furthermore, a
study with a larger number of machines must be carried out to see how well the hy-
brid model generalises against the individual sub-models. In cases where the hybrid
model does not provide any improvement, other ensemble strategies such as taking
the best of the individual sub-models are considered.

Finally, as this project focuses on single-type anomaly detection, a challenge to
be addressed in future work will be to be able to classify or categorise different types
of faults. For that, the authors might use appropriate methods such as explainable
ML or correspondingly labelled datasets.



CHAPTER 8

Frequency-based Anomaly Detection

In industrial systems, there can be anomalies that are not easily visible in the time
domain. Some of these anomalies can be identified in the frequency domain. In this
chapter, a case of anomaly detection will be presented for detecting cracks in trans-
port of hygroscopic particulate compressed material using frequency transformations.
The transport of goods has been carefully studied, as it is essential to ensure the
quality of the final product. The particulate matter situation is further complicated
when companies decide to innovate product geometry due to the trade-off between
packaging and cargo space optimisation. It refers to particulate compressed hygro-
scopic materials that can be solved by compressing particles into geometric shapes to
improve the end-user experience. However, if the transported material is compacted
particles, the problem is that cracks and damage to the product may occur if the
truck operating conditions, such as vehicle suspension and road conditions, are not
met during transportation. This chapter will introduce a crack identification method
applied to hygroscopic particulate compressed materials subject to simulated trans-
port conditions. An experimental approach is used to simulate package and transport
conditions. Spectral analysis was used to determine if a material fulfils transport re-
quirements to go from a given location to its destination, in terms of cracking.

8.1 Background
In the simulation of transportation situations using vibration, frequency analysis can
be used to obtain the necessary information. One of these types of analysis is the
spectrogram. Spectrograms can be used to analyse sound patterns (such as ani-
mal sounds) [104], radar and sonar applications for target tracking [37], and medical
applications such as measuring blood flow using ultrasound information [146] and
detecting cracks in cantilever beams [80]. Using accelerometers as sensors to measure
vibration, Gillich and Praisach [46] proposed a method based on changes in nat-
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ural frequencies for detecting damage in beam structures, concluding that damage
changes the natural frequencies. Sha et al. [132] presented a new method to detect
single and multiple damages in beams using relative natural frequency changes, en-
abling damage in cracked beams to be identified and measured. Onchis [103] also
used the frequency spectrum to identify cantilever damage using the Gabor trans-
form and his proposed procedure with LASSO minimisation. Sinou [137] investigated
the possibility of detecting the presence of open cracks in rotating machinery at low
and high rotor accelerations. Webb [152] measured for the first time the full spectral
response of a Fiber Bragg Grating (FBG) sensor exposed to vibration. Yan [156]
used a multi-scale enveloping spectrogram through vibration signal analysis for the
health diagnosis of bearings, Puchalski [116] used vibration signal to diagnose me-
chanical defects, Wang [151] extracted fault features with transient vibration signal
analysis. Jweeg et al. [68] performed a frequency analysis from the vibration of the
pipe to investigate the effects of cracks in the pipe, and it was found that the more
profound the crack, the lower the frequency. Aramburo-Londońo et al. [7] presented
a dynamic analysis using the Finite Element Method (FEM) to evaluate the effects
of vibration on hygroscopic particulate matter. The results infer the behaviour of
compacted powders in handling and transport and determine ideal conditions for
product packaging. Gomes et al. [49] proposed an experimental approach to validate
the canonical Power Spectral Density (PSD) by acquiring acceleration data from an
electrodynamic shaker and proposed software for signal processing. Wu et al. [153]
presented a method for detecting and locating fatigue cracks in aluminium plates by
measuring instantaneous baselines using a series of piezoceramic transducers and a
shaker testbed. Aymerich et al. [9] investigated the effect of boundary conditions
on nonlinear acoustics that can be used for impact damage detection of composite
structures. In addition to health monitoring applications, Shin investigated the two
properties of correlation coefficients between two transient vibration signals used for
Location Template Matching (LTM) methods that can estimate the impact location
through vibration signal analysis. Most of the methods presented in the literature are
based on damage to solid materials but not particulate compacted materials. This
chapter presents a methodological proposal on combining different frequency domain
analyses to deal with vibrations in particulate compression materials.

8.2 Case study
The proposed method is integrated into the normal compaction and transport process
and usually starts with product compaction at certain speeds (PC and SC respec-
tively). The compressed product is then packaged in a special envelope designed to
protect the product from damage. The packaged products are then stacked in the
vehicle’s storage, and pressure (PP ) is applied to the packaged product below, causing
it to vibrate at a frequency of (fT ). This frequency is mainly dependent on road con-
ditions and vehicle suspension. After the vehicle reaches its destination, the product
quality is verified, and the defective products are rejected. Finally, the process is
repeated. The proposed method tests a product sample to see if it will withstand
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transport conditions, which are simulated through hardware and software. The hard-
ware consists of a vibration test bench that first vibrates the sample with simulated
spring pressure (PP ) at a specific frequency (fT ). Sample vibration data is collected
using accelerometers through a data acquisition device, and the information is trans-
ferred to a computer database. The software component is a developed spectrogram
post-processing algorithm that checks the stored database and indicates whether the
sample failed the test (cracks/anomalies were detected) or passed the conditions of
simulated transportation. Figure 8.1 shows the contribution of this research work
and how this new method relates to conventional compression and transport.

Figure 8.1: Proposed new method for crack detection.

A series of practical experiments were conducted to test the proposed method,
based on frequency analysis, for detecting cracks in fragile compressed materials dur-
ing transportation. The test consisted of a simulated packaging and shipping testbed
that applied preload and vibration to a compacted hygroscopic particulate material
to see if the material would crack. Based on typical load handling conditions, a vi-
bration frequency of 45 Hz is programmed, and the resulting acceleration is obtained
from data acquisition. In this test, five hygroscopic materials were used to validate
the proposed method, including powdered sugar, plaster, white cement, chocolate
powdered drink, and orange powdered drink. In addition, the results allow materials
to be compared concerning their behaviour under specific transport and packaging
conditions. The software tool used to measure crack initiation was a spectrogram.
The expected result of this method is the detection of loss of uniformity through the
detection of new frequency components. These components appear when the cracked
parts vibrate along with the sample. This behaviour means that the sample did not
survive the transportation conditions, as cracks began to appear on the spectrogram.

For analysing the acquired vibrations’ data, an algorithm was developed using
spectrogram function plus a direct-form FIR low pass digital filter [138] for data
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conditioning and filtering possible electronic noise for frequencies over 100 Hz. The
inputs for the low pass digital filter are shown in Table 8.1 and the output coefficients
were used in the integrated function filter.

Table 8.1: Low pass digital filter inputs.

Variable Value
FIR Design Method Equiripple
Fs 50000 Hz
Fpass 90 Hz
Fstop 100 Hz
Apass 0.1 dB
Astop 40 dB

The result of the algorithm is an image file containing a graphical representation
of the colour map of the spectrogram. The x-axis is the time in seconds, the y-axis
is the frequency, and the black intensity is the amplitude of the vibration signal. An
example of a graph of results for a compressed sample subjected to vibration on a test
stand is shown in Figure 8.2. Four states can be seen: i) vibration-free start, ii) steady
state vibration frequency , iii) initial segmentation (first crack) of the sample and iv)
total crack. The first crack can be detected when a new frequency and oscillation
frequency appear.

Figure 8.2: Sample result spectrogram with the corresponding states.
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8.3 Innovation
Four samples of different hygroscopic particulate materials were compacted with a
pressure of 110 PSI, each of them having a different particle size in order to validate
the proposed method. These particulate materials were:

1. White cement

2. Chocolate powdered drink

3. Orange powdered drink

4. Plaster

After compaction process, each sample was tested through the vibrations testbed
at 45 Hz. Then the acquired data was processed using the test processing method in
order to check if they will fail or not with a spring load of 3 Kg (package load simu-
lation) and a vibration frequency of 45 Hz (truck frequency during transportation).

After the test, it was found that only two samples got a crack: the Sample-1
and Sample-3. This deduction was made using the method proposed in the section
3, where crack occurs when more components in frequency appear than the main
frequency of vibration (45 Hz). The Sample-1 showed the first crack at t = 19
seconds and at t = 29 seconds it had a total crack. This result concludes that
the compressed white cement under the given conditions will have cracks during
transportation. Sample-2 did not present even a minor crack, which means this
compressed material can be transported without getting a crack using the previous
conditions. Sample-3 had the first crack approximately at t = 11 seconds and after t =
20 minutes, it did not present a major change which means that this type of mixture
(Chocolate and Plaster) will present a minor crack during transportation under these
conditions. Sample-4 showed similar results to Sample-2, it did not present even
a minor crack, which means this compressed material can be transported without
getting a crack using the previous conditions. Figure 8.3 shows the spectrogram
results.
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(a) Sample-1 - Crack detection.

(b) Sample-2 - First 14 secs. (c) Sample-2 - After 20 mins.

(d) Sample-3 - After 25 secs. (e) Sample-3 - After 20 mins.

(f) Sample-4 - After 12 secs. (g) Sample-4 - After 20 mins.

Figure 8.3: Spectrogram results for all samples.
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8.4 Conclusions and future work
Frequency analysis was used to check if cracks occurred during compacted products’
transportation to detect product failure during transportation. This method con-
siders all possible interactions between vehicle vibrations and vertical loads acting
on the sample (stack of the same product) from the compacted material, the pack-
age type and the compacted product. Cracks (anomalies) in compacted hygroscopic
compressed materials can be detected by finding the time on the spectrogram at
which new frequency components appear, different from the fundamental vibration
frequency. When these new frequency components are detected, they indicate that
particles that have left the main sample have begun to oscillate around the material.
Of the experiments presented, the most stable materials under test conditions were
sample 2 (chocolate powder) and sample 4 (a mixture of plaster and orange powder),
indicating that these materials are safe to transport compared to the other sample
materials under standard freight transport conditions. This test is generic and ap-
plicable to other types of compressed materials. This analysis checks the integrity
of these materials during shipping and checks the compression conditions during the
design of the compression product, which reduces the risk of cracking during ship-
ping, and the quality of the final product after shipping can be improved. It has been
proven that the amount of data received increases linearly with the sampling time
to obtain reliable results. This requires significant computing power to analyse the
spectrogram. Secondly, it is recommended to use parallel computing to reduce simu-
lation time. Future work may improve the algorithm for determining the exact failure
time. Vision acquisition can also be implemented on packaging and transportation
simulation test benches to compare spectrogram and vision results to make testing
more reliable. For this study, the round shape of compacted samples was considered,
but tests of other compacted sample shapes were further analysed to determine the
handling stability of hygroscopic compacted materials.
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CHAPTER 9

Visual Analytics

The last stage of the Machine Learning for Industry 4.0 process is Visual Analytics
(VA). The output of the models created and the information gathered must be clearly
visualised for the end user so that they can make more objective decisions based on
the data. This chapter will present the case of a Waste Water Treatment Plant
(WWTP), where a visual analytics-based platform for WWTP that allows users to
determine relationships between data through simple data validation is developed.

New connected industrial facilities are rapidly generating data that needs to be
stored, processed and monitored in real-time to make decisions that optimise produc-
tion in new Industry 4.0 factories. This newly generated data and methods for visu-
alising it present several challenges, including dimensionality reduction and real-time
visualisation of high-dimensional data. A data processing and visualisation solution
is visual analytics. Keim et al. [69] defined visual analytics as a combination of in-
teractive visualisation and automated analysis techniques for better understanding,
reasoning, and decision-making based on vast and complex datasets. Visual analytics
focuses on creating new tools that allow users to: i) synthesise information that al-
lows getting new insights from massive heterogeneous sets of data, ii) detect current
states of systems and discover possible new states, iii) provide real-time assessments
and perform actions based on these assessments.

Keim et al. [69] also proposed six visual analytics challenges: i) scalability with
large data volumes and dimensionality, ii) graphical representation of data quality,
iii) visual representation of the level of detail, iv) new display interface walls such as
massive power, v) visual analytics score frameworks, vi) real-time update interactions.
Many of these issues still need to be addressed today.

The success of a WWTP can be managed by finding optimal process conditions
and identifying factors, features or patterns critical to data-driven decision-making.
Newhart et al. [99] emphasised that wastewater treatment plant operators usually
keep a fair amount of historical data. Additionally, recent advances in data-driven
process control and performance analysis, as well as greater computing power, could
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allow the wastewater industry to lower costs and improve operations, as well as the
required experience of data cleansing and processing specialists in the field of data
processing, limits the possibilities for getting the most out of data.

One of the most critical factors influencing decision-making in the age of big data
is finding relevant data and extracting meaningful insights from it. To address this
issue in the context of WWTP, the Estación Depuradora de Aguas Residuales 4.0
(EDAR 4.0) project has developed a suite of WWTP management and operation
systems, integrating cloud computing, data analytics, and visual analytics. The goal
of EDAR 4.0 is to improve the storage, processing, computing and decision-making
capabilities for wastewater plant operations [89]. The results of EDAR 4.0 have been
tested and validated at La Cartuja (Zaragoza, Spain), a complete municipal WWTP
operated by the Giroa-Veolia company.

The five variables analysed for the operation and management of wastewater treat-
ment plants in EDAR 4.0 are Biological Oxygen Demand-5 (BOD5), Total Chemi-
cal Oxygen Demand (TCOD), Total Kjeldahl Nitrogen (TKN), Total Phosphorus
(TP ) and Total Suspended Solids (TSS). These variables were chosen based on
the European Directive 91/271/EEC and are quality requirements that wastewater
from WWTPs must comply with. Similarly, where applicable, wastewater treatment
plants are located in areas declared sensitive to eutrophication (Aragon, Spain), so
specific values for total phosphorus and total nitrogen are required. Table 9.1 shows
the quality requirements based on the above European directives.

Table 9.1: Water Quality requirements from European Directive 91/271/EEC

Variable Absolute Values Performances
BOD5 25 mgO2/L 70%
TCOD 125 mgO2/L 75%
TKN 10 mg/L 90%
TP 1 mg/L 80%
TSS 35 mg/L 70%

9.1 Background
The most common approach to optimising process performance for fluctuations in
incoming water quality is to apply process control and process simulation to obtain
optimal operating strategies. Ordinary Differential Equations (ODEs) are widely
used in process modelling. To model a WWTP using an ODE, it is important to
first model the steady state of the process under a given set of disturbances and op-
erating conditions. The disadvantage, however, is the longer computation time when
parsing the ODE. Recently, Jong-Rack et al. [63] proposed an improved Newton-
Raphson method to reduce computation time. The above shows that there is still
active research on modelling wastewater treatment plants using ODE.

In a separate study, Flores-Alsina et al. [39] developed a plant-wide water phase
chemistry model that describes pH change in conjunction with industry-standard
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models. Flores-Alsina et al. formulated the general equilibrium as a set of differential-
algebraic equations (DAEs) instead of ODEs to increase simulation speed. In ad-
dition, Flores-Alsina et al. applied a multivariate version of the Newton-Raphson
algorithm to handle multiple algebraic interdependencies.

It is essential to mention that the International Water Association (IWA) ref-
erence simulation model has been available for several years, providing a platform
for comparative analysis of activated sludge management strategies. Jeppsson et al.
[61] extended the IWA benchmark to facilitate the development and evaluation of
the effectiveness of plant-level control strategies, thus including both processes that
consider wastewater pre-treatment and sludge treatment.

Finally, although Li et al.’s [83] work is not related to wastewater treatment, it
is a combination of ODE and ML, so it is worth mentioning. Their paper presents
a neural Fourier operator for turbulence simulation with zero superresolution. This
work showed high speed and accuracy compared to conventional solvers.

The ODE approach to process control and modelling has several drawbacks. Large
ODEs perform significantly worse than database models, such as visual analysis of
complex data. Wastewater management solutions exist, but some are difficult to use
and understand for those who need to learn the details of such solutions.

Visual analytics is a way to visualise data and simplify decision-making. It com-
bines interactive visualisation with data analytics and machine learning (ML) to help
people analyse, explore and understand data at any scale. The visual analysis process
can be summarized using the scheme proposed by Van Wijk [147] (see Figure 9.1).
The first step is extracting the data from the data stored in the database or the data
stream. This data is then analysed and processed to extract the most important fea-
tures presented in the visualisation phase. The render step then creates an image to
represent this processed and selected data, or is created to a user specification. The
user then sees and recognises this image, gaining information and knowledge from
the latest images. This step is repeated until the user has scanned the entire image.
Finally, users can generate hypotheses. Hypotheses are developed at the stages of
research and analysis. In addition, a new analysis may be required, translating into
specification steps where users can interact with current visualisations to gain new
knowledge.
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Figure 9.1: Visual analytics process framework [147].

As Liu et al. [85] mentioned, interactive model analysis, the process of under-
standing, diagnosing, and refining machine learning models using interactive visuali-
sations, allows users to solve real-life artificial intelligence and data mining problems
effectively. In Liu et al.’s article, work related to visual analytics is classified into three
categories: (i) understanding, (ii) diagnostics, and (iii) refinement. Liu et al. point
out that many methods create static images to show which parts of the image are
most important for classification. However, interactive visualisations are essential in
understanding and analysing models, helping people understand different machine-
learning models better. Therefore, our proposal is about the dynamic creation of
demand-driven models, such as water quality models and how their responses can
help us understand specific variables.

Visual analytics is widely used in industrial contexts. Jonker et al. [64] used a
visual analytical approach to understand better complex time series models applied
to economic data. Using computational linguistics, visual analytics and deep learn-
ing techniques, Chang et al. [23] analysed hotel reviews and responses collected on
TripAdvisor to determine response strategies. Park et al. [110] proposed a visual
analytics system to improve supply chain managers’ decision-making process. Sun et
al. [144] created PlanningVis, which consists of a visual analysis system that supports
the exploration and comparison of production plans with three levels of detail: a plan
overview that shows general differences in the plan, a product view that visualises
the various characteristics of individual products, and a production detail view that
shows products. Finally, Wu et al. [154] reported on developing and implementing
an interactive visual analytics system. The system allows shop floor managers and
operators to use domain knowledge and apply significant human decisions to drive
automated analytical approaches to produce understandable and trustworthy results
in real-world applications.

In WWTP, visual analytics tools allow to quickly and interactively explore mul-
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tiple views of the same multidimensional data. It is possible to have a global view of
data behaviour through different colours, orientations and data. Interactive visualisa-
tion of trade-offs across multiple dimensions is suitable for stakeholders with different
interests [91]. Kim et al. [72] recently introduced the Operator Decision Support
System (ODSS) to help wastewater plant operators make the right decisions. Kim et
al. describe a system of fluctuations in water quality in wastewater treatment plants.
Kim et al.’s system consist of two diagnostic modules, three prediction modules, and
a scenario-based help module. The prediction module is based on the k-nearest neigh-
bours (k-NN) method and predicts water quality three days in advance. Wastewater
treatment plants account for an increasing share of operating costs associated with
electricity consumption. Piao et al. [113] used mathematical modelling to propose six
improvements to reduce power consumption. The power consumption of the proposed
Piao et al’s plan was estimated using an artificial neural network.

9.2 Case study
The methodology followed in this article is inspired by the proposal of [8], who argued
that these are the typical steps in a successful data analysis and mining:

1. Data collection and acquisition. It is the process of gathering and measuring
information on targeted variables; it is divided into the following activities:

(a) Analysis of data origin and frequency.

(b) Quantification of data uncertainty.

(c) Compilation of data from various sources.

2. Data management and data validation. It consists of checking the accuracy and
quality of source data before using, importing, or otherwise processing it. It is
compound by the following activities:

(a) Definition of erroneous data.

(b) Detection and removal of outliers based on the variable analysis.

(c) Detection of outliers based on physical processes.

3. Data visualisation. It is the graphical representation of information and data,
its main activities are:

(a) Exploration and visualisation of data.

(b) Development of intuitive, powerful visuals.

(c) Development of algorithms for prediction of future conditions.

AvRuskin et al. states that “due to the physical nature of waste-water process data,
it is recommended that laboratory, operations, and engineering staff be consulted at
all points in the process to confirm assumptions" [8].
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By using the above methodology (see chapter ’Architecture’), an EDAR 4.0 ar-
chitecture is created. This architecture has the WWTP process as the base, which
is a factory-level data acquisition of all the processes that make up a WWTP. This
process can be divided into three main standard sub-processes. First, the inflow
represents the entry of incoming water and its preliminary and primary treatment,
usually in a primary settling tank or settling tank. Secondly, the biological treatment
process is central to the so-called secondary treatment. It is the primary wastewater
treatment process for various types of bacteria and protozoa using chemicals. Third,
the wastewater treatment process is a product of the wastewater treatment plant.
This output receives either directly treated water or water that passes through a sec-
ondary settling tank or settling tank that is considered part of the plant’s secondary
treatment. Typically, a wastewater treatment plant’s processes and sub-processes are
controlled by one or more Programmable Logic Controllers (PLCs) that combine var-
ious sensors and actuators. All control information is displayed locally via a Human
Machine Interface (HMI), usually integrated into a Supervisory Control and Data
Acquisition (SCADA) system. Based on industrial protocols, all system information
is usually transmitted over a local area network (LAN).

EDAR 4.0 expands this to a 4IR system architecture, creating an additional cloud-
based IoT infrastructure accessible via the Internet, which requires (secure) access to
the entire WWTP and ICT infrastructure. There are various services in this cloud,
such as multiple WWTPs monitoring systems, 4IR data cloud collection and storage,
information monitoring (visualisation), data analysis, visual analysis, factory simula-
tion, and related services, such as factory optimisation through automatic learning.
A specific example of access to the above cloud IoT infrastructure and related ser-
vices can be the HTTP REST protocol. A specific example of a data analysis service
is classifying different types of water quality and predicting (forecasting) how water
quality will change over time. Finally, with the above cloud 4IR platform deployed,
data from the WWTP is displayed on a web page, allowing remote users to perform
and control water quality analysis. Figure 9.2 is a detailed view of the EDAR 4.0,
4IR system architecture. The diagram also describes the software tools used for cloud
4IR components. For this work, the Flask library API with Python tools was used.
The PostgreSQL database was used for storage. The Rapidminer program was used
for the analysis. Finally, the Bokeh library was used for the rendering part.
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Figure 9.2: Proposed EDAR 4.0 architecture.

9.3 Innovation
As a result of following the EDAR 4.0 architecture, which was based on the AvRuskin
methodology, the software tool “EDAR 4.0” was created. In the following, its modules
and a discussion of its validation with the end-user are detailed.

9.3.1 Water quality monitoring

The dataset generated by the WWTP “La Cartuja” SCADA system was subjected
to a series of steps to preprocess it and leave it ready for the Data Cleaning process.
After cleaning the data, the Principal Component Analysis (PCA) method was ap-
plied to extract the two main components that define the dataset. In addition, the
clustering process was performed using the K-means algorithm with k=4. Each group
identified by the algorithm belongs to a water quality cluster. The platform allowed
parameterising if the water quality monitoring was displayed on water treatment per-
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formance or absolute values in the front end. Another parameter that users could
specify from the platform was the duration of the treatment plant. This was done
because the processing plant “La Cartuja” had improved its equipment. Therefore,
it was essential to track and separate these two periods. Water quality profiles (or
clusters) were constructed using line profiles and spider plots. Figure 9.3 shows the
monitoring module of the EDAR 4.0 platform. This graph shows that the worst wa-
ter quality is in the blue cluster (cluster 0), and the best quality is in the red cluster
(cluster 3). Also, it should be noted that the WWTP “La Cartuja” needs to handle
NTK chemical variables better.
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(a) Monitoring configuration parameters

(b) Water Quality Line Chart (Perfor-
mance) (c) Water Quality Line Chart (Absolute)

(d) Water Quality Spider Chart (Perfor-
mance)

(e) Water Quality Spider Chart (Abso-
lute)

(f) Water Quality Variable Importance
(Performance)

(g) Water Quality Variable Importance
(Absolute)

Figure 9.3: Visual Analytics Water Quality Monitoring Platform.
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9.3.2 Water quality prediction

The water quality prediction tool predicted the number of months the wastewater
treatment plant would have each water quality cluster. The method used was a Holt-
Winters time series forecasting implemented in the back end. The front end plotted
two graphs: i) Time Series Cluster Prediction Plot and ii) an Outlier Probability Plot
(see Figure 9.4). The vertical dotted line separates the data set from the forecast data.
Wastewater treatment plant operators should ideally be in the red cluster (cluster 3)
with the highest predicted values for the best water quality on this graph and in the
blue cluster (cluster 0) with the lowest predicted values for the worst water quality.
Note that the forecast graph shows values above 30. This is because the forecasts do
not consider that there are 30 days in a month.

(a) Water quality forecast

(b) Water quality forecast outlier probability plot

Figure 9.4: Visual Analytics Water Quality Prediction Platform.

9.3.3 WWTP Model Creation & Simulation

At this stage, a database model of the energy or chemical variables of the wastewater
treatment process was created. The default model generated by the platform was
water quality. For example, energy consumption (kilowatts per day) can be modelled
as a function of all other process variables. On the back end, the implemented machine
learning system was able to determine the most relevant variables for modelling based
on the correlation matrix. The method used to create the model was decision trees.
Once the model was created, it was possible to interact with the associated platform
variables. Once the values were selected, predicting the modelled variable’s range of
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values would be with those with which the model was simulated. This process is shown
in Figure 9.5 using as an example the electricity consumption modelling, where a set
of values is given for the relevant values and after simulating the platform predicts
that the WWTP will be at a range1 (−∞ to 59816 kW) of energy consumption.

Figure 9.5: Energy consumption model simulation.

The confusion matrix allows the visualisation of the model performance, which is
displayed in Figure 9.6. This shows how many of the values predicted by the model
were correct according to the label. In addition, the developed platform allows the
operator to check the importance of variables in the created model (see Figure 9.7).
Finally, the dashboard displays the decision tree generated for the given variable, as
shown in Figure 9.8.



92 Visual Analytics

Figure 9.6: Confusion matrix for electric model.

Figure 9.7: Variable influence for electric model.
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Figure 9.8: Decision tree for electric model.

9.3.4 WWTP Model Optimisation

This component of the platform works oppositely to the simulator, where a target
interval (range) is set for the variable being modelled, and restrictions are placed
on the variables that influence it. Once this has been done, optimal values can be
obtained for each influential variable to guarantee the modelled variable’s target with
the given restrictions. As an example, it could be found in Figure 9.9 which are the
values of the chemical concentrations to be used to obtain the lowest possible range
of energy consumption for the WWTP.
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Figure 9.9: Energy consumption model optimisation.

9.3.5 User’s validation

End users have confirmed the operational improvements made by the developed tools.
This improvement includes the following aspects of the current tools:

• Observability: it allows monitoring the state of water quality through a visual-
isation based on clustering.

• Predictability: the operator can forecast how his WWTP will go in the future.

• Risk-free evaluation: operators can validate how their system will perform if
specific parameters change through simulation and optimisation. This repre-
sents an essential advantage because, currently, they were required to test their
actual WWTP, which could lead to damage if their operating variables were
manipulated.

• Interpretability: The decision trees and variable importance graphs helped the
operator better understand his WWTP behaviour.
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Users recognise that these benefits can be obtained without needing well-trained
and qualified personnel. Although this aspect can be interpreted as limiting, it is
ultimately viewed as positive by users as continuing education and training are part
of employees’ rights and the company’s obligations. So this is seen as a possibility,
not a limitation.

Finally, in addition to this qualitative validation, it has been possible to perform
a quantitative validation of the quality of the tools models. Specifically, as it can be
seen in the confusion matrix on Figure 9.10.

Figure 9.10: Confusion matrix for water quality model.

Furthermore, the predictor importance plot (see Figure 9.11) shows the variables
that have the most significant impact on the operation of the treatment plant, accord-
ing to the model built and validated by end users. It was found that these variables
do have a direct effect on wastewater quality, which is the best evidence to confirm
the results.
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Figure 9.11: Variable importance for water quality model.

9.4 Conclusions and future work
This chapter described a visual analytics-based wastewater treatment plant platform
called EDAR 4.0. Intuitive visualisations have great potential to support decision-
making in the operation and management of WWTPs. The proposed tool allows users
to discover relationships between data through simple data validation. The developed
tool allows wastewater plant operators to perform modelling and optimisation without
compromising real-world field testing. This tool has been endorsed by WWTP experts
and has shown to be an additional source of information for WWTP management.
For future work, it is suggested to first scale the tool for a multi-factory approach. In
addition, this tool can be used for the dynamic monitoring of ammonium, which is a
novelty for WWTPs. It is also proposed to carry out an in-depth study concerning
usability.



CHAPTER 10

Conclusions and future work

In this chapter the final conclusions of the present research are presented and the
proposed future work.

10.1 Conclusions
As presented in the previous chapters, the Fourth Industrial Revolution (4IR) has
brought disruptive technologies to enhance existing industrial systems or create from
scratch systems with these new capabilities. One of the problems faced by industries
is to be able to quickly detect any anomalies in their systems in order to make
the respective corrections or decisions. For this reason, this thesis aims to provide a
framework to guide data engineers in designing and constructing 4IR-enabled systems
for anomaly detection. Detecting anomalies in real-time is a challenging task. One
of the problems encountered in this process is that information must be processed
carefully and quickly to provide a reliable and early response to an anomaly. Another
common problem is the accuracy of prediction systems, where a Machine Learning
algorithm may perform better at predicting anomalies than others. There may be
missing data in the acquisition of data used to detect these anomalies, so it is crucial
to have strategies to tackle this issue. Finally, presenting the prediction information
of these Artificial Intelligence (AI) driven anomaly detection systems to the end user
so that in a clear and understandable way is also a challenge. This research sought
to answer the research questions proposed in Chapter 1, background.

The present research proposed a new hardware and software architecture for AI-
driven Industry 4.0 systems inspired by state-of-the-art architectures and three real
industrial use cases. This architecture includes a physical layer, an embedded system
layer and an Internet of Things (IoT) cloud layer, providing the users with a clear
view and practical guidelines for including the components required to implement a
4IR system.

97
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Then, the design and construction process of a test bench cyber-physical data ac-
quisition system that integrates Remote Sensing (RS) and Wireless Sensor Networks
(WSN) for detecting pests in coffee crops was presented. Within this research work, it
was possible to create a 3-month dataset containing different sources of information,
particularly images from RGB, multispectral cameras and data from precision agri-
culture sensors. The data acquisition process is the first part of a Machine Learning
algorithm’s pipeline for detecting possible anomalies. This result explains how to re-
liably obtain information to subsequently create predictive Machine Learning models,
which in this case made it possible to detect the level of Coffee Leaf Rust disease in
coffee crops.

Next, a supervised anomaly detection system for the detection of Coffee Leaf Rust
was introduced. The novelty of this system is that it integrates multiple sources of
information, specifically Remote Sensing, Wireless Sensor Networks and Deep Learn-
ing for the creation of an ensembled Machine Learning meta-model. With this result,
it was possible to predict the severity of the Coffee Leaf Rust disease, which is consid-
ered an anomaly in the coffee plant. In this particular case, it is shown that combining
models does not necessarily improve the overall anomaly prediction performance since
using the multispectral cameras or the RGB camera on their own gave an F1-score of
greater than 0.9, whereas using the combined model gave an F1-score of 0.775. This
can be explained by the fact that the data source from the Precision Agriculture sen-
sors was very noisy or had a significant amount of missing information, thus impairing
the system’s overall response. Nevertheless, it was proved that the performance of
an AI-driven anomaly detection system is comparable and reliable enough to replace
human visual inspection.

It is common to find that industrial systems do not have a ground truth to distin-
guish when the system is faulty or in a normal state. In these cases, semi-supervised
techniques can help generating preliminary labels to train a subsequent Machine
Learning model. In this research, a Hybrid Machine-Learning Ensemble for Anomaly
Detection for a real-time Industry 4.0 system was developed and created. This system
was inspired by the process of an industrial machine, thus having a Manufacturing
Stage and an Operation Stage. This system was tested on three different machines,
obtaining F1-scores on higher than 0.9 on average. This ensembling consisted of three
state-of-the-art algorithms for anomaly detection: Autoencoder, One Class Support
Vector Machine and Local Outlier Factor. The ensemble model improves over the
individual models for detecting anomalies in real-time. It is concluded that in some
industrial cases, it is beneficial to have multiple decision sources for anomaly detection
since a Machine Learning algorithm can better detect specific patterns in some in-
stances and having different algorithms allows to cover more cases where the anomaly
is present.

Anomalies can be challenging to detect with the naked eye using the time do-
main. This is why using frequency domain transformations can provide additional
information about the behaviour of an industrial system. This research performed
a frequency domain analysis for cracks in compacted hygroscopic material. In this
case, the spectrogram method and a vibratory test bench were used to identify the
exact time point where the compacted samples failed (had a crack). With this, it
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was possible to simulate the transport conditions to make decisions on the design of
the compacted material to be transported, such as its compression pressure or the
design of the truck’s dampers that must be used for transporting these materials. It is
noted that the anomalies in the frequency domain were identified when new frequency
components appeared in addition to the primary vibration frequency.

Finally, the data from the previously created models must be visualised clearly and
efficiently in the machine learning process. This research proposed a Visual Analytics
platform for water quality monitoring in a Wastewater Treatment Plant (WWTP). In
this case, this platform allowed the creation of Machine Learning models to identify
different water qualities and to simulate wastewater treatment processes. The de-
veloped tools allowed the creation, simulation and optimisation of Machine Learning
models for any variable of the WWTP process. Domain experts validated this plat-
form. The end-user was thus able to test different parameters of the WWTP process
to guarantee a specific water quality and/or to optimise the energy management of
the WWTP.

10.2 Future work
Each of the contributions presented in this thesis introduces challenges for future
work. In the case of 4IR architectures, the challenge is to create a tool to guide
the end-user in creating a specific architecture for their industrial context. Each
component of this architecture should be based on the user’s requirements. Other
industrial use cases could be analysed to extend the proposed generic architecture.

In the data acquisition process, extending the current data collection system’s
design with costing studies, scalability analysis, and energy consumption study is
relevant to convert from a laboratory test bed into a full-scale data acquisition system.

Concerning the case study of supervised ensembling methods for anomaly de-
tection, it is proposed to test other Machine Learning algorithms to improve the
ensembling results, as future work. In this case, the precision agriculture sensors’
data source was the worst performer, so this could be further improved with other
Machine Learning algorithms. It is also proposed to test missing data imputation
techniques to obtain a more complete data set.

In the research work carried out in chapter 7, semi-supervised ensembling tech-
niques for anomaly detection, it is proposed to explore other algorithms, such as
Isolation Forest and the Elliptic Envelop, to improve the overall performance of the
models, as future work. Furthermore, it is proposed to study techniques for the adapt-
ability of the Machine Learning model as it wears out and loses validity over time.
For this, for example, techniques for retraining Machine Learning algorithm models
can be further explored. In addition, it is noted that the data from the industrial
machines used in this case study had a significant amount of null or missing data.
Thus, exploring further data imputation techniques is also proposed.

For the method presented in this thesis for detecting cracks (anomalies) in com-
pacted hygroscopic particulate materials, it is proposed to complement the imple-
mented algorithm with artificial vision techniques that allow recognising the exact
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point (location) where the fracture occurred, as future work, in order to make the
proposed algorithm more robust.

Finally, the Visual Analytics techniques presented for single Wastewater Treat-
ment Plants can be completed by addressing a multiple plant approach. Additionally,
the proposed visualisation tools can be extended with other explanatory techniques
of Machine Learning models, e.g., analysing the relationships between process and/or
operational variables of the WWTP, such that clearer, more understandable and
richer information is provided to the users.
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[42] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Hamid
Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys
(CSUR), 46, 04 2014.

[43] Raghu K. Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: Current state and
future challenges. IEEE Communications Magazine, 2011.

[44] Jiechao Gao, Haoyu Wang, and Haiying Shen. Task failure prediction in cloud
data centers using deep learning. IEEE Transactions on Services Computing,
PP:1–1, 05 2020.



Bibliography 105

[45] Nicolás García-Pedrajas, César Hervás-Martínez, and Domingo Ortiz-Boyer.
Cooperative coevolution of artificial neural network ensembles for pattern clas-
sification. IEEE transactions on evolutionary computation, 9(3):271–302, 2005.

[46] Gilbert-Rainer Gillich and Zeno-Iosif Praisach. Modal identification and
damage detection in beam-like structures using the power spectrum and
time–frequency analysis. Signal Processing, 96, Part A:29–44, 2014.

[47] Omid Givehchi, Henning Trsek, and Juergen Jasperneite. Cloud computing for
industrial automation systems — a comprehensive overview. In 2013 IEEE 18th
Conference on Emerging Technologies & Factory Automation (ETFA), pages 1–
4. IEEE, 2013.

[48] Pradeep K Goel, Shiv O Prasher, Jacques-André Landry, Ramanbhai M Patel,
R B Bonnell, Alain A Viau, and J R Miller. Potential of airborne hyperspec-
tral remote sensing to detect nitrogen deficiency and weed infestation in corn.
Computers and electronics in agriculture, 38(2):99–124, 2003.

[49] H. M. Gomes, D. dos Santos Gaspareto, F. de Souza Ferreira, and C. A. K.
Thomas. A Simple Closed-Loop Active Control of Electrodynamic Shakers
by Acceleration Power Spectral Density for Environmental Vibration Tests.
Experimental Mechanics, 48(5):683–692, Oct 2008.

[50] GSMA Association. Understanding the Internet of Things (IoT). Gsma Con-
nected Living, page 15, 2014.

[51] Fernando Haddad, Luiz A Maffia, Eduardo SG Mizubuti, and Hudson Teixeira.
Biological control of coffee rust by antagonistic bacteria under field conditions
in brazil. Biological Control, 49(2):114–119, 2009.

[52] Esmael Hamuda, Martin Glavin, and Edward Jones. A survey of image process-
ing techniques for plant extraction and segmentation in the field. Computers
and Electronics in Agriculture, 125:184–199, 2016.

[53] D. M. Hawkins. Identification of outliers. Monographs on applied probability
and statistics. Chapman and Hall, London [u.a.], 1980.

[54] Geoffrey Hinton and Terrence J. Sejnowski. Unsupervised Learning: Founda-
tions of Neural Computation. The MIT Press, 05 1999.

[55] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[56] M Hubert and E Vandervieren. An adjusted boxplot for skewed distributions.
Computational Statistics & Data Analysis, 52(12):5186–5201, 2008.

[57] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data
streams. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2001.



106 Bibliography

[58] Hanan Hussain, PS Tamizharasan, and CS Rahul. Design possibilities and
challenges of dnn models: a review on the perspective of end devices. Artificial
Intelligence Review, pages 1–59, 2022.

[59] Industrial Internet Consortium. The Industrial Internet Reference Architecture
v1.9, 2019.

[60] Intel Corporation. Connecting legacy devices to the Internet of Things, 2014.

[61] U. Jeppsson, C. Rosen, J. Alex, J. Copp, K. V. Gernaey, M.-N. Pons, and
P. A. Vanrolleghem. Towards a benchmark simulation model for plant-wide
control strategy performance evaluation of wwtps. Water Science and Technol-
ogy, 53(1):287–295, Jan 2006.

[62] Tammy Jiang, Jaimie L Gradus, and Anthony J Rosellini. Supervised machine
learning: a brief primer. Behavior Therapy, 51(5):675–687, 2020.

[63] Kim Jongrack, You Kwangtae, Piao Wenhua, and Kim Yejin. Modified newton-
raphson method to minimize calculation time for wastewater treatment plant
simulation. J. Korean Soc. Hazard Mitig, 18(5):319–326, 2018.

[64] David Jonker, Richard Brath, and Scott Langevin. Industry-driven visual ana-
lytics for understanding financial timeseries models. In 2019 23rd International
Conference Information Visualisation (IV), pages 210–215. IEEE, 2019.

[65] A. Jović, K. Brkić, and N. Bogunović. A review of feature selection methods
with applications. In 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pages
1200–1205, 2015.

[66] JRC of the European Commission. Precision Agriculture: an Opportunity for
Eu Farmers- Potential Support With the Cap 2014 - 2020. European Union,
page 56, 2014.

[67] Hairulliza Judi, Ruzzakiah Jenal, and Devendran Genasan. Quality Control Im-
plementation in Manufacturing Companies: Motivating Factors and Challenges,
chapter 25. IntechOpen, 04 2011.

[68] M. J. Jweeg, E. Q. Hussein, and K. I. Mohammed. Effects of cracks on the
frequency response of a simply supported pipe conveying fluid. International
Journal of Mechanical and Mechatronics Engineering, 2017.

[69] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn
Kohlhammer, and Guy Melançon. Visual Analytics: Definition, Process, and
Challenges, pages 154–175. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[70] Siddhartha Kumar Khaitan and James D. McCalley. Design techniques and
applications of cyberphysical systems: A survey. IEEE Systems Journal, 2015.



Bibliography 107

[71] Zafran Khan, Naima Iltaf, Hammad Afzal, and Haider Abbas. Enriching non-
negative matrix factorization with contextual embeddings for recommender sys-
tems. Neurocomputing, 380:246–258, 2020.

[72] M. Kim, Y. Kim, H. Kim, W. Piao, and C. Kim. Operator decision support
system for integrated wastewater management including wastewater treatment
plants and receiving water bodies. Environ Sci Pollut Res Int, 23(11):10785–
10798, Jun 2016.

[73] Josef Kittler, Mohamad Hatef, Robert PW Duin, and Jiri Matas. On combining
classifiers. IEEE transactions on pattern analysis and machine intelligence,
20(3):226–239, 1998.

[74] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume
1, NIPS’12, page 1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc.

[75] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and scalable frame-
work for automated time-series anomaly detection. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2015.

[76] Edward A. Lee. Cyber physical systems: Design challenges. In Proceedings -
11th IEEE Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, ISORC 2008, 2008.

[77] Jay Lee, Behrad Bagheri, and Hung An Kao. A Cyber-Physical Systems archi-
tecture for Industry 4.0-based manufacturing systems. Manufacturing Letters,
2015.

[78] Min Hwa Lee, Jin Hyo Joseph Yun, Andreas Pyka, Dong Kyu Won, Fumio Ko-
dama, Giovanni Schiuma, Hang Sik Park, Jeonghwan Jeon, Kyung Bae Park,
Kwang Ho Jung, Min Ren Yan, Sam Youl Lee, and Xiaofei Zhao. How to
respond to the Fourth Industrial Revolution, or the second information tech-
nology revolution? Dynamic new combinations between technology, market,
and society through open innovation. Journal of Open Innovation: Technology,
Market, and Complexity, 2018.

[79] F. Leonard. Phase spectrogram and frequency spectrogram as new diagnostic
tools. Mechanical Systems and Signal Processing, 21(1):125–137, 2007.

[80] F. Leonard, J. Lanteigne, S. Lalonde, and Y. Turcotte. Free-vibration behaviour
of a cracked cantilever beam and crack detection. Mechanical Systems and
Signal Processing, 15(3):529–548, 2001.

[81] Marianna Lezzi, Mariangela Lazoi, and Angelo Corallo. Cybersecurity for in-
dustry 4.0 in the current literature: A reference framework. Computers in
Industry, 103:97–110, 2018.



108 Bibliography

[82] Ping Li, Jianping Li, and Gongcheng Wang. Application of convolutional neural
network in natural language processing. In 2018 15th International Computer
Conference on Wavelet Active Media Technology and Information Processing
(ICCWAMTIP), pages 120–122. IEEE, 2018.

[83] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural opera-
tor for parametric partial differential equations, 2020.

[84] Fei Tony Liu, Kai Ming Ting, and Zhi Hua Zhou. Isolation-based anomaly
detection. ACM Transactions on Knowledge Discovery from Data, 2012.

[85] Shixia Liu, Xiting Wang, Mengchen Liu, and Jun Zhu. Towards better analysis
of machine learning models: A visual analytics perspective. Visual Informatics,
1(1):48–56, 2017.

[86] Ioannis E Livieris, Emmanuel Pintelas, and Panagiotis Pintelas. A cnn–lstm
model for gold price time-series forecasting. Neural computing and applications,
32(23):17351–17360, 2020.

[87] Brad Lobitz, Louisa Beck, Anwar Huq, Byron Wood, George Fuchs, A S G
Faruque, and Rita Colwell. Climate and infectious disease: use of remote sensing
for detection of Vibrio cholerae by indirect measurement. Proceedings of the
National Academy of Sciences, 97(4):1438–1443, 2000.

[88] J. F. Macgregor. On-line statistical process control. Chemical Engineering
Progress, 84:21–31, 1988.

[89] M Maiza, J Odriozola, A Gil, G Naveran, R Basagoiti, I Lecuona, U Zurutuza,
G Urchegi, and A Mañas. Visual analytics for supporting the management of
wwtps. In Proceedings of the Young Water Professionals (YWP) conference,
2017.

[90] Federico Martinelli, Riccardo Scalenghe, Salvatore Davino, Stefano Panno,
Giuseppe Scuderi, Paolo Ruisi, Paolo Villa, Daniela Stroppiana, Mirco
Boschetti, Luiz R. Goulart, Cristina E. Davis, and Abhaya M. Dandekar. Ad-
vanced methods of plant disease detection. a review. Agronomy for Sustainable
Development, 35(1):1–25, Jan 2015.

[91] Evgenii S Matrosov, Ivana Huskova, Joseph R Kasprzyk, Julien J Harou, Chris
Lambert, and Patrick M Reed. Many-objective optimization and visual an-
alytics reveal key trade-offs for london’s water supply. Journal of Hydrology,
531:1040–1053, 2015.

[92] Erum Mehmood and Tayyaba Anees. Challenges and solutions for process-
ing real-time big data stream: A systematic literature review. IEEE Access,
8:119123–119143, 2020.



Bibliography 109

[93] Joao Mendes-Moreira, Carlos Soares, Alípio Mário Jorge, and Jorge Freire De
Sousa. Ensemble approaches for regression: A survey. ACM Computing Surveys
(CSUR), 45(1):10, 2012.

[94] Mustafa Mirik, Jack E Norland, Robert L Crabtree, and Mario E Biondini. Hy-
perspectral one-meter-resolution remote sensing in Yellowstone National Park,
Wyoming: I. Forage nutritional values. Rangeland Ecology & Management,
58(5):452–458, 2005.

[95] Tom M Mitchell. Machine learning, volume 1. McGraw-hill New York, 1997.

[96] Ruihui Mu and Xiaoqin Zeng. A review of deep learning research. KSII Trans-
actions on Internet and Information Systems (TIIS), 13(4):1738–1764, 2019.

[97] David J Mulla. Twenty five years of remote sensing in precision agriculture: Key
advances and remaining knowledge gaps. Biosystems Engineering, 114(4):358–
371, 2013.

[98] E.Y. Nakagawa, P.O. Antonino, F. Schnicke, R. Capilla, T. Kuhn, and P. Ligges-
meyer. Industry 4.0 reference architectures: State of the art and future trends.
Computers and Industrial Engineering, 156, 2021.

[99] Kathryn B Newhart, Ryan W Holloway, Amanda S Hering, and Tzahi Y Cath.
Data-driven performance analyses of wastewater treatment plants: A review.
Water research, 157:498–513, 2019.

[100] P. Nthutang and A. Telukdarie. Integration of Small and Medium Enterprises
for Industry 4.0 in the South African Water Services Sector: A Case Study for
Johannesburg Water. In IEEE International Conference on Industrial Engi-
neering and Engineering Management, 2019.

[101] F J Nutman and F M Roberts. Coffee leaf rust. PANS Pest Articles & News
Summaries, 16(4):606–624, 1970.

[102] Miguel Oliveira and Daniel Afonso. Industry Focused in Data Collection: How
Industry 4.0 is Handled by Big Data. In Proceedings of the 2019 2nd Inter-
national Conference on Data Science and Information Technology, DSIT 2019,
pages 12–18, New York, NY, USA, 2019. Association for Computing Machinery.

[103] Darian Onchis. Observing damaged beams through their time–frequency ex-
tended signatures. Signal Processing, 96, Part A:16–20, 2014.

[104] A. V. Oppenheim and R. W. Schafer. Spectrogram Display of the Time-
Dependent Fourier transform of Speech, 2009.

[105] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. The Continuous-Time
Fourier Transform, 1996.



110 Bibliography

[106] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. The Discrete-Time Fourier
Transform, 1996.

[107] G Pahl, K Wallace, L T M Blessing, W Beitz, and F Bauert. Engineering
Design: A Systematic Approach. Springer London, 2013.

[108] M. Paiva, A. Vasconcelos, and B. Fragoso. Using enterprise architecture to
model a reference architecture for industry 4.0. In ICEIS 2020 - Proceedings
of the 22nd International Conference on Enterprise Information Systems, vol-
ume 2, pages 709–716, 2020.

[109] Dorota Palka and Jolanta Ciukaj. Prospects for development movement in
the industry concept 4.0. Multidisciplinary Aspects of Production Engineering,
2:315–326, 09 2019.

[110] Hyunwoo Park, Marcus A Bellamy, and Rahul C Basole. Visual analytics for
supply network management: System design and evaluation. Decision Support
Systems, 91:89–102, 2016.

[111] Eduardo H.M. Pena, Sylvio Barbon, Joel J.P.C. Rodrigues, and Mario Lemes
Proenca. Anomaly detection using digital signature of network segment with
adaptive ARIMA model and Paraconsistent Logic. In Proceedings - Interna-
tional Symposium on Computers and Communications, 2014.

[112] Miguel Piamonte, Monica Huerta, Roger Clotet, John Padilla, Tito Vargas, and
David Rivas. WSN Prototype for African Oil Palm Bud Rot Monitoring. In
International Conference of ICT for Adapting Agriculture to Climate Change,
pages 170–181. Springer, 2017.

[113] W. Piao, C. Kim, S. Cho, H. Kim, M. Kim, and Y. Kim. Development of a
protocol to optimize electric power consumption and life cycle environmental
impacts for operation of wastewater treatment plant. Environ Sci Pollut Res
Int, 23(24):25451–25466, Dec 2016.

[114] Artzai Picon, Aitor Alvarez-Gila, Maximiliam Seitz, Amaia Ortiz-Barredo, Jone
Echazarra, and Alexander Johannes. Deep convolutional neural networks for
mobile capture device-based crop disease classification in the wild. Computers
and Electronics in Agriculture, 2019.

[115] Barani R Priyanga and DrKAnitha Kumari. A Survey on Anomaly Detection
using Unsupervised Learning Techniques. International Journal of Creative
Research Thoughts (IJCRT), 6(2):2320–2882, 2018.

[116] A. Puchalski. A technique for the vibration signal analysis in vehicle diagnostics.
Scopus, 56:173–180, 2015.

[117] Humberto Gutiérrez Pulido, Román De la Vara Salazar, Porfirio Gutiérrez
González, Carlos Téllez Martínez, and María del Carmen Temblador Pérez.
Análisis y diseño de experimentos. McGraw-Hill New York, NY, USA:, 2012.



Bibliography 111

[118] Julien Rabatel, Sandra Bringay, and Pascal Poncelet. Anomaly detection in
monitoring sensor data for preventive maintenance. Expert Systems with Ap-
plications, 2011.

[119] Annie Ibrahim Rana, Giovani Estrada, Marc Sole, and Victor Muntes. Anomaly
Detection Guidelines for Data Streams in Big Data. In Proceedings - 2016 3rd
International Conference on Soft Computing and Machine Intelligence, ISCMI
2016, 2017.

[120] Susmita Ray. A quick review of machine learning algorithms. In 2019 In-
ternational Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COMITCon), pages 35–39, 2019.

[121] Gopinath Rebala, Ajay Ravi, and Sanjay Churiwala. Machine Learning Defi-
nition and Basics, pages 1–17. Springer International Publishing, Cham, 2019.

[122] Luis Ribeiro and Mats Bjorkman. Transitioning from Standard Automation
Solutions to Cyber-Physical Production Systems: An Assessment of Critical
Conceptual and Technical Challenges. IEEE Systems Journal, 2018.

[123] C A Rivillas, C A Serna, M A Cristancho, and A L Gaitan. La roya del cafeto
en Colombia: Impacto manejo y costos del control. Technical report, Cenicafe,
2011.

[124] Santiago Ruiz-Arenas, Zoltán Rusák, Ricardo Mejía-Gutiérrez, and Imre
Horváth. Implementation of system operation modes for health management
and failure prognosis in cyber-physical systems. Sensors, 20(8):2429, 2020.

[125] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 3 edition, 2010.

[126] Omer Sagi and Lior Rokach. Ensemble learning: A survey. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1249, 2018.

[127] Dinesh Kumar Saini, Dikshika Ahir, and Amit Ganatra. Techniques and chal-
lenges in building intelligent systems: Anomaly detection in camera surveil-
lance. In Suresh Chandra Satapathy and Swagatam Das, editors, Proceedings
of First International Conference on Information and Communication Tech-
nology for Intelligent Systems: Volume 2, pages 11–21, Cham, 2016. Springer
International Publishing.

[128] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and
Robert C. Williamson. Estimating the support of a high-dimensional distribu-
tion. Neural Computation, 2001.

[129] Erich Schubert, Jörg Sander, Martin Ester, Hans Kriegel, and Xiaowei Xu.
Dbscan revisited, revisited: Why and how you should (still) use dbscan. ACM
Transactions on Database Systems, 42:1–21, 07 2017.



112 Bibliography

[130] Klaus Schwab. The Fourth Industrial Revolution. Crown Publishing Group,
USA, 2017.

[131] K. Schweichhart. Reference Architectural Model Industrie 4.0 (RAMI 4.0) - An
Introduction), 2016. [Online; accessed 31-Jan-2020].

[132] G Sha, M Radzieński, M Cao, and W Ostachowicz. A novel method for sin-
gle and multiple damage detection in beams using relative natural frequency
changes. Mechanical Systems and Signal Processing, 132:335–352, 2019.

[133] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge Com-
puting: Vision and Challenges. IEEE Internet of Things Journal, 2016.

[134] Pramila P. Shinde and Seema Shah. A review of machine learning and deep
learning applications. In 2018 Fourth International Conference on Computing
Communication Control and Automation (ICCUBEA), pages 1–6, 2018.

[135] Basilio Sierra, Elena Lazkano, Ekaitz Jauregi, and Itziar Irigoien. Histogram
distance-based bayesian network structure learning: A supervised classification
specific approach. Decision Support Systems, 48(1):180–190, 2009.

[136] Jonathan A. Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hruschka,
André C.P.L.F. De Carvalho, and Joaõ Gama. Data stream clustering: A
survey. ACM Computing Surveys, 46(1), 2013.

[137] J. J. Sinou. An Experimental Investigation of Condition Monitoring for Notched
Rotors Through Transient Signals and Wavelet Transform. Experimental Me-
chanics, 49(5):683–695, 2009.

[138] J.O. Smith. Introduction to Digital Filters: With Audio Applications. Music
signal processing series. W3K, 2007.

[139] Nan-Yao Su. Remote monitoring system for detecting termites, September 1998.
US Patent 6,052,066.

[140] Nan-Yao Su. Remote monitoring system for detecting termites, 2000.

[141] Susanto B. Sulistyo, W. L. Woo, S. S. Dlay, and Bin Gao. Building a Globally
Optimized Computational Intelligent Image Processing Algorithm for On-Site
Inference of Nitrogen in Plants. IEEE Intelligent Systems, 2018.

[142] Susanto B. Sulistyo, Wai Lok Woo, and S. S. Dlay. Regularized Neural Networks
Fusion and Genetic Algorithm Based On-Field Nitrogen Status Estimation of
Wheat Plants. IEEE Transactions on Industrial Informatics, 2017.

[143] Susanto B. Sulistyo, Di Wu, Wai Lok Woo, S. S. Dlay, and Bin Gao. Com-
putational Deep Intelligence Vision Sensing for Nutrient Content Estimation
in Agricultural Automation. IEEE Transactions on Automation Science and
Engineering, 2018.



Bibliography 113

[144] Dong Sun, Renfei Huang, Yuanzhe Chen, Yong Wang, Jia Zeng, Mingxuan
Yuan, Ting-Chuen Pong, and Huamin Qu. Planningvis: A visual analytics
approach to production planning in smart factories. IEEE transactions on
visualization and computer graphics, 26(1):579–589, 2019.

[145] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly detection
for streaming data. In IJCAI International Joint Conference on Artificial In-
telligence, 2011.

[146] K. W. Taylor, P. N. Burns, J. P. Woodcock, and P. T. Wells. Blood flow in deep
abdominal and pelvic vessels: ultrasonic pulsed-Doppler analysis. Radiology,
154:487–493, 1985.

[147] J.J. van Wijk. The value of visualization. In VIS 05. IEEE Visualization, 2005.,
pages 79–86, 2005.

[148] Juan Vanerio and Pedro Casas. Ensemble-learning approaches for network se-
curity and anomaly detection. In Proceedings of the Workshop on Big Data An-
alytics and Machine Learning for Data Communication Networks, Big-DAMA
’17, page 1–6, New York, NY, USA, 2017. Association for Computing Machin-
ery.

[149] David Velásquez, Santiago Perez, Ricardo Mejia-Gutierrez, and Alejandro
Velásquez-López. Crack detection method in transport of hygroscopic particu-
late compressed material. International Journal of Mechanical & Mechatronics
Engineering, 20:26–33, 04 2020.

[150] Vincent Vercruyssen, Wannes Meert, Gust Verbruggen, Koen Maes, Ruben
Baumer, and Jesse Davis. Semi-Supervised Anomaly Detection with an Appli-
cation to Water Analytics. In Proceedings - IEEE International Conference on
Data Mining, ICDM, 2018.

[151] S. Wang, G. Cai, Z. Zhu, W. Huang, and X. Zhang. Transient signal analysis
based on Levenberg-Marquardt method for fault feature extraction of rotating
machines. Scopus, 54:16–40, 2015.

[152] S. Webb, K. Peters, M. A. Zikry, S. Chadderdon, S. Nikola, R. Selfridge, and
S. Schultz. Full-Spectral Interrogation of Fiber Bragg Grating Sensors Exposed
to Steady-State Vibration. Experimental Mechanics, 53(4):513–530, 2013.

[153] Weiliang Wu, Wenzhong Qu, Li Xiao, and Daniel J Inman. Detection and
localization of fatigue crack with nonlinear instantaneous baseline. Journal of
Intelligent Material Systems and Structures, 27(12):1577–1583, 2016.

[154] Wenchao Wu, Yixian Zheng, Kaiyuan Chen, Xiangyu Wang, and Nan Cao. A vi-
sual analytics approach for equipment condition monitoring in smart factories of
process industry. In 2018 IEEE Pacific Visualization Symposium (PacificVis),
pages 140–149. IEEE, 2018.



114 Bibliography

[155] Min Xu, Jeanne M. David, and Suk Hi Kim. The fourth industrial revolution:
Opportunities and challenges. International Journal of Financial Research,
2018.

[156] Ruqiang Yan and Robert X. Gao. Multi-scale enveloping spectrogram for vibra-
tion analysis in bearing defect diagnosis. Tribology International, 42(2):293–302,
2009.

[157] Ye Yuan, Shouzheng Li, Xingjian Zhang, and Jianguo Sun. A comparative
analysis of svm, naive bayes and gbdt for data faults detection in wsns. In 2018
IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 394–399, 2018.

[158] Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised Learn-
ing. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, 2009.



Part II

Appended Papers

115





CHAPTER 11

Summary of the appended papers

This section provides a brief summary of the six papers that have been appended to
this document. It includes their title, primary objective, methodology, and findings.
Finally, the papers are attached.

11.1 Paper 1
Title: A Novel Architecture Definition for AI-driven Industry 4.0 Applications.

Conference Paper: Proceedings - 2022 11Th International Conference on Indus-
trial Technology and Management (ICITM), IEEE Xplore.

Year: 2022.

Objective: To develop a novel generic architecture that allows to design and de-
velop AI-driven Industry 4.0 systems.

Methodology: The methodology proposed in this paper is based on the analysis
of three different case studies of industrial projects that improved or created a new
product/service by using AI-driven Industry 4.0 technologies.

Findings: A novel software and hardware architecture for AI-driven Industry 4.0
systems was developed based on real-world use cases. The architecture was created
by using common elements of different architectures presented in the state-of-the-art
and by analysing three case studies of real industrial projects. It includes a physical
layer, an embedded system layer and an IoT cloud layer with which it is possible to
clearly organise all components of a 4IR system. This architecture provides a detailed
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view and practical guideline for users on how to implement 4IR systems by embedding
relevant hardware and software components.

11.2 Paper 2
Title: A Cyber-Physical Data Collection System Integrating Remote Sensing and
Wireless Sensor Networks for Coffee Leaf Rust Diagnosis.

Journal: Sensors, MPDI.

Year: 2021.

Objective: Data acquisition combined with data preparation is the first part of
a Machine Learning process. In this paper the main objective is to design and im-
plement a cyber-physical data collection system that integrates Remote Sensing and
Wireless Sensor Networks, which can be used to train a Machine-Learning model to
diagnose Coffee Leaf Rust (CLR).

Methodology: Previous research was helpful to design a cyber-physical data collec-
tion system that could integrate both methods towards the CLR diagnosis. Applying
the concepts and following the recommendations found in the state-of-the-art, it is
possible to create a system capable of acquiring and remotely storing reliable data
from diverse sources. The goal of such cyber-physical systems (CPS) is the charac-
terisation of a test bench coffee-crop regarding the changes induced by the disease at
hand. The cyber-physical data collection system was designed following the Pahl and
Beitz methodology.

Findings: A cyber-physical data-collection system was developed, by integrating
Remote Sensing and Wireless Sensor Networks, to gather data, during the develop-
ment of the CLR, on a test bench coffee-crop. The system is capable of automatically
collecting, structuring, and locally & remotely storing reliable multi-type data from
different field sensors, Red-Green-Blue (RGB) and multi-spectral cameras (RE and
RGN). In addition, a data-visualization dashboard was implemented to monitor the
data-collection routines in real-time. The operation of the data collection system
allowed to create a three-month size dataset that can be used to train CLR diagnosis
machine learning models. This result validates that the designed system can collect,
store, and transfer reliable data of a test bench coffee-crop towards CLR diagnosis.

11.3 Paper 3
Title: A Method for Detecting Coffee Leaf Rust through Wireless Sensor Networks,
Remote Sensing, and Deep Learning: Case Study of the Caturra Variety in Colombia.



11.4. Paper 4 119

Journal: Applied Sciences, MDPI.

Year: 2020.

Objective: Machine Learning algorithms commonly require a significant amount
of data to perform an optimal model, and by ensembling, it is possible to combine
the output of several models into one. This project aimed to develop a coffee leaf
rust stage classification (CLR) model by integrating Remote Sensing (RS), Wireless
Sensor Networks, and Deep Learning techniques.

Methodology: This paper proposes a method to do a machine learning ensembling
by integrating WSN, RS and deep learning techniques for detecting the Coffee Leaf
Rust (which is an anomaly to a coffee plant). The ensembling consists of a weighted
average by using the F 1-score of each model.

Findings: An ensemble model comprising the integration of WSN, RS, and Deep
Learning was implemented to detect the CLR with an F1 score of 0.775. The analysis
of the results revealed a p-value of 0.231, which indicated that the difference between
the disease diagnosis made employing a visual inspection and the proposed technolog-
ical integration was not statistically significant. The above shows that both methods
were significantly similar in diagnosing the disease.

11.4 Paper 4
Title: A Hybrid Machine-Learning Ensemble for Anomaly Detection in Real-Time
Industry 4.0 Systems.

Journal: IEEE Access, IEEE.

Year: 2022

Objective: The detection of faults and anomalies in real-time industrial systems is a
challenge due to the difficulty of sufficiently covering an industrial system’s complex-
ity. This paper proposes to develop a hybrid machine-learning ensemble real-time
anomaly-detection pipeline that combines three Machine-Learning models -a Local
Outlier Factor, a One-Class Support Vector Machine, and an Autoencoder-, through
a weighted average, to improve anomaly detection.

Methodology: The proposed ML hybrid pipeline for real-time anomaly detection,
consists of two stages: i) the Manufacturing stage and ii) the Operation stage. The
Manufacturing stage takes its name from the manufacturing process of an industrial
machine. At this stage, an ML model is trained on machines’ quality control process
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data to validate whether the machine meets its design standards or not. The oper-
ation stage or pipeline refers to the phase when the machine is already running in
production; in terms of a classical ML pipeline, it represents the deployment phase. It
uses the pre-trained model from the manufacturing stage to detect anomalies in real-
time. The ML models inside this pipeline combines three Machine-Learning models
-a Local Outlier Factor, a One-Class Support Vector Machine, and an Autoencoder-,
through a weighted average to develop a ensemble model.

Findings: This research work has developed and presented a Hybrid Machine-
Learning Ensemble for Anomaly Detection for a Real-Time Industry 4.0 System.
This ensemble consists of implementing two stages inspired by a standard industrial
system: i) A Manufacturing Stage and ii) An Operation Stage. Up to our knowledge,
there are no other ML methods that consider these industrial stages. The ensemble
system was tested on three machines, presenting an increased F 1-score value and
AUC concerning individual ML submodels (LOF, OCSVM, and Autoencoder). The
ensemble model for Machine A presented a F 1-score value of 0.904 for anomalies (-1),
a F 1-score value of 0.944 for normal data (1), and an AUC value of 0.913; the en-
semble model for Machine B presented a F 1-score value of 0.890 for anomalies (-1), a
F 1-score value of 0.946 for normal data (1), and an AUC value of 0.905; finally, the
ensemble model for Machine C presented a F 1-score value of 0.887 for anomalies (-1),
a F 1-score value of 0.889 for normal data (1), and an AUC value of 0.897.

11.5 Paper 5
Title: Crack Detection Method in Transport of Hygroscopic Particulate Compressed
Material.

Journal: International Journal of Mechanical and Mechatronics Engineering.

Year: 2020

Objective: To develop a crack detection method in transport of hygroscopic par-
ticulate compressed materials by using frequency and spectral analysis.

Methodology: This article proposes a methodology that first verifies if a product
sample will resist the transportation conditions, simulating them through hardware
and software. The hardware consists of a vibrations test bench, which first makes
the sample oscillate at a particular frequency and with a simulated spring pressure.
The vibrations’ data of the sample is then acquired using an accelerometer through a
data acquisition device, which reports the information in a computer database. The
software component consists of a developed spectrogram post-processing algorithm
that checks the stored database and shows if the sample failed the test (detected
crack) or if it passed the simulated transportation conditions.
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Findings: A method for detecting failures in products being transported was im-
plemented, using frequency analysis to verify if a crack occurred during the trans-
portation of a given compressed product. The method considers vehicle vibrations
and all possible interactions between the compressed material, type of packaging,
and the vertical load applied by the compressed product over the sample (pile of the
same product). A crack can be detected in a compressed hygroscopic particulate
material by finding the time in the spectrogram when new frequency components,
different from the main oscillating frequency, start to appear. These new frequency
components, when they are detected, indicate that some detached particles from the
primary sample started to oscillate around the material. These results indicate that
frequency analysis can be used to detect anomalies as an alternative way to Machine
Learning.

11.6 Paper 6
Title: EDAR 4.0: Visual-Analytics for Waste Water Management.

Journal: Sent to IEEE Transactions on Industrial Informatics (Under Review).

Year: 2023

Objective: Wastewater treatment plants (WWTPs) have large amounts of data
from their sensors and from the tests performed every day in relation to water quality
variables. Analysing all these variables to make decisions presents a major research
challenge, where the use of Machine Learning and Visual Analytics tools can facilitate
this task. For this reason this research aims to develop a Visual Analytics tool for
Wastewater Treatment Plants.

Methodology: The methodology followed in this article is based on Avruskin [8],
who proposes three steps for successful Data Analysis and Data Mining: i) Data
collection and acquisition, where information on the target variables is obtained and
measured; ii) Data management and validation, which consists of verifying the ac-
curacy and quality of the data source before it is used; and iii) Data visualisation,
where the data is graphed and represented.

Findings: This paper presents a visual-analytics-based platform for WWTP, called
EDAR 4.0. Intuitive visualisations have great potential for supporting decision-
making during the operation and management of WWTPs. The proposed tool allows
users to identify relationships between data through simple data inspection. The
developed tool allows WWTP operators to perform simulations and optimisations
without risking real site testing. This tool has been validated with WWTP domain
experts, showing that it can provide an additional source of information for WWTP
management.
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Abstract—The adoption of new technologies such as the 

Internet of Things and Big Data has become one of the main 

challenges in the era of Industry 4.0. Industrial 4.0 systems can 

provide increased reconfigurability and flexibility, in particular 

regarding Cyber-Physical Systems that integrate advanced 

artificial intelligence (AI) and fast-communication systems to 

provide real-time decisions. However, adoption of these new 

technologies in real-world applications is typically hindered by 

the complexity introduced by a multitude of legacy and state-of-

the-art hardware and software components that need to be 

connected and need to communicate with each other. Consulting 

previously published approaches and analysing three real 

industrial use cases, this paper proposes a novel software-and-

hardware architecture design for AI-driven Industrial 4.0 systems 

to facilitate the transition towards such smart-connected systems. 

Keywords—industry 4.0, internet of things, architecture, cyber-

physical system, artificial intelligence, system design 

I. INTRODUCTION 

The fourth industrial revolution (4IR) sets new challenges 
for traditional industrial processes: to improve existing or 
create new processes that efficiently use novel technologies 
and take full advantage of their potential. In an increasingly 
competitive market, 4IR can be considered as a disruptive 
innovation that positively impacts different industrial sectors 
by integrating new enabling technologies. Examples of these 
technologies are 3D printing, Internet of Things (IoT), Cyber-
Physical Systems (CPS), Artificial Intelligence (AI), Big Data, 
Robotics, Nanotechnology, and Quantum Computing [1], [2]. 

With the improvement of internet speed, coverage and 
bandwidth, 4IR systems can take advantage of cloud 
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computing [3] to process large volumes of data. These large 
volumes of data come from different types of sources such as 
sensors, supervisory control and data acquisition (SCADA) 
systems or third-party data sources (e.g., weather stations). 
After data has been acquired, AI algorithms process these large 
volumes of data to provide additional knowledge that may 
optimise processes and increase profitability. However, some 
types of applications require real-time processing, such as 
embedded system processing or edge computing technologies 
[4] to provide faster responses to the 4IR system. 

Common contexts of 4IR applications include 
manufacturing, where massive data can be analysed in real-
time to improve factory operations and production, thus 
reducing machine down times, which finally improves the 
product quality [5]. Another application context is the smart 
water-management industry, which uses process digitalisation 
and automation to gather useful information from water 
processing plants and external sources (e.g., weather 
information). This data is then processed through AI to 
optimise process efficiency, resource savings, and quality of 
results [6]–[8]. 

A key application for AI-driven 4IR applications is the field 
of (predictive) maintenance. In this sense, 4IR systems can 
provide process monitoring where the state of a system can be 
determined through three stages: detection, diagnosis, and 
prognosis. 

The detection stage's main objective is to infer an anomaly 
accurately (detection strength) as soon as it happens (detection 
speed). Methods for such a task include statistical normal-
operation condition models (NOC), which do not require 



 

information about the process structure but instead estimate 
some of the model parameters through data processing. Some 
univariate examples of these NOC detection models are 
Shewhart, Exponentially-Weighted Moving Average 
(EWMA) and Cumulative Sum (CUSUM) control charts based 
on a univariate Gaussian model. Multivariate examples include 
the Hotelling's T2 chart, the Multivariate Exponentially 
Weighted Moving Average chart (MEWMA), Multivariate 
Cumulative Sum chart (MCUSUM), high-dimensional 
Principal Component Analysis (PCA), and Partial Least 
Squares (PLS) [9]. 

The diagnosis stage takes place when an anomaly is 
detected at the detection stage. Its main objective is to find 
possible causes for that anomaly or system failure, also known 
as “failure identification”. For this task, two existing structured 
approaches are used: i) knowledge-based and ii) data-driven. 
Knowledge-based approaches (e.g., Causal Maps, bond graphs, 
signed digraphs, parity relations, Bayesian Networks among 
others) make use of pre-created information on the whole 
causal connectivity of the process to find which part of the 
system was the cause of the anomaly or failure. Data-driven 
approaches (e.g., machine learning, one-class classifiers, multi-
class classifiers, density-based methods, to name a few) extract 
data from logs and database records of the system operation to 
correctly classify features that caused the anomaly or failure 
[9]. 

Finally, the prognosis is the most challenging stage, which 
requires a stable operation of the two previous stages (detection 
and diagnosis). This stage focuses on predictions of future 
faults, called “fault prognosis”. Thus, prognosis can provide 
better planning of maintenance, which can optimise 4IR 
systems process performance by minimising production losses 
and by providing a more secure working environment for both 
workers and all the process equipment, hence maintaining 
Equipment Health [9]. 

Hence, two significant problems arise when designing a 
novel, AI-driven 4IR system: i) How to correctly design the 
system from scratch [10], [11] and ii) How to improve existing 
legacy systems to integrate smart-capable and connectivity 
layers [12]. 

The first problem is related to the process of 4IR system 
design, where depending on the requirements for the design, all 
the parts of the system must be correctly selected and interfaced 
to satisfy a set of characteristics that these novel systems must 
have [10], [13]–[15]. These characteristics are: Customization, 
where the system is designed to adjust to product families 
instead of to a single product; Convertibility, to facilitate 
functional changes; Scalability, to adapt to different process 
demands by increasing or reducing the usage of software and 
hardware resources; Modularity, where each system 
component is considered as a module and provides a specific 
function; Integrability, to allow quick integration of future 
system upgrades from software (Cyber) or hardware 
(Physical); and Diagnosability, to react to disturbances and 
detect any possible anomaly that may be occurring. Moreover, 
many of these characteristics of 4IR systems are part of the 
technical perspective of sustainable systems [16]. 
Unfortunately, in a systematic mapping study on sustainable 

4IR systems, authors found that the specification of these 
characteristics is not often considered, and most of the designs 
do not consider the physical layer [16]. 

The second problem is related to the fact that existing 
industry systems are typically isolated and with limited 
connection to external systems. These industry systems are 
usually driven by Programmable Logic Controllers (PLCs), 
which are only accessible through a local industry network. 
These legacy systems are inflexible when upgrading or 
expanding their functionalities in a ubiquitous manner [17]. 
While current research involves incorporating the Internet of 
Things and self-adaptation to such systems, most of the case 
studies are purely theoretical and have not been tested in an 
industrial environment [18], [19]. 

To address these two problems, 4IR system architectures 
that define all their components have been proposed in the 
state-of-the-art by different authors, comprising technologies 
such as IoT, CPS, and smart-systems: Ganti et al. [20] 
presented a Mobile Crowdsensing (MCS) technology review, 
commonly used for environmental, infrastructure, and social 
applications. Functional architecture is presented in their 
review and shows how data coming from different contexts can 
be interconnected and provide useful information to end-users. 
Their architecture consists of seven parts. First, there is a 
“context” with all the raw data that can be sensed through 
“sensors”. Then, a “localized analytics” module processes and 
analyses these raw data (e.g., using embedded system 
processors or edge computing technologies [4]) to provide a 
summary of data “privately” to the local user in a real-time 
manner. Then, massive data coming from different contexts are 
sent to a cloud where a “Back-end server aggregation module” 
can store it, and, eventually, send it to an “aggregate analytics 
module”. The analytics module can then analyse all the data 
using advanced AI-driven algorithms and finally show it to 
remote users through an “App”. 

Bagheri et al. [21], and Lee et al. [22] proposed a unified 
framework that integrates CPS in manufacturing. This unified 
framework architecture contains a 5-level definition (5C 
framework) that allows CPS manufacturing design and 
deployment from data acquisition to data analysis and final 
value creation. The first level is named “Smart Connection 
Level” which acquires accurate and reliable data from 
machines and components through sensors obtained from a 
process controller or through the enterprise manufacturing 
system (e.g., an enterprise resource planning ERP system). The 
second level is the “Data-to-Information Conversion Level”, 
which is in charge of inferring valuable information from the 
data and adding self-awareness to the 4IR CPS system. The 
third level, named “Cyber Level”, acts as a central information 
hub, gathering massive amounts of data, which are then 
roughly analysed to acquire additional information. This new 
information provides insights into the status of the 4IR system 
and possible predictions of its future behaviour, giving a self-
comparison ability. The fourth level is called the “Cognition 
Level”, where a 4IR CPS system generates knowledge of a 
particular part of the system or a process for an expert user, 
presented using visual analytics and infographics tools. Then, 
through this knowledge, expert users can make knowledge-
guided decisions. Finally, the fifth level is the “Configuration 



 

level”, whose main objective is to provide a feedback loop 
from cyberspace to the physical space, acting as a supervisory 
control making machine or process changes depending on all 
the previous information knowledge. This level adds self-
configure and self-adaptive quality features to 4IR systems. Fig. 
1 provides a detailed view of the manufacturing CPS 5C 
framework architecture. 

 

Fig. 1. 5C framework architecture [21]. 

Blonda et al. [6] propose an IoT Middleware architecture to 
expose its functionalities as a set of Cloud-supported RESTful 
APIs. Three layers compose Blonda et al.’s architecture: Users, 
Middleware, and Physics layer. The Middleware architecture is 
divided into three sublayers: application, network, and security. 
According to Blonda et al., security in IoT systems can be 
defined using six properties: confidentiality, integrity, 
availability, identification and authentication, privacy, and 
trust. Fig. 2 provides a detailed view of their architecture. 

 

Fig. 2. Middleware architecture for IoT systems [6]. 

On the other hand, there is the Reference Architectural 
Model for Industrie 4.0 (RAMI 4.0) [23], which is defined in 
three dimensions. The first dimension is the life cycle value 
stream, defined in standard IEC 62890, composed of the 
following phases: Type and Instance. The second dimension 
are hierarchy levels, defined in standard IEC 62264 and IEC 

61512. The levels are the following: product, field device, 
control device, station, work center, enterprise, connected 
world. Finally, the third dimension are different layers, similar 
to previous architectures: business, functional, information, 
communication, integration, and asset. Fig. 3 provides a 
compact view of the architecture. 

 

Fig. 3. Reference Architectural Model for Industrie 4.0 (RAMI 4.0) [23]. 

Paiva et al. [24] proposes a hybrid reference architecture 
called RAMI 4.0 EA that integrates RAMI 4.0 and Enterprise 
Architecture (EA). The proposed reference architecture allows 
empowering RAMI 4.0 with elements such as EA principles, 
applications, technology, and organizational processes in a 
visual and easy-to-understand way, allowing enterprises' better 
adoption in 4IR projects. 

Finally, the Industrial Internet Reference Architecture 
(IIRA) was created by the Industrial Internet Consortium (IIC) 
[25]. It is application domain-independent, and its development 
was guided by industry. IIRA is focused on the functionalities 
required by industry, specifically in prognostics, optimisation, 
operation, business, analytics, and the monitoring and control 
of devices. 

Some approaches for defining components integrated into 
a 4IR system are a mobile crowdsensing functional architecture, 
a 5C framework architecture, and an IoT middleware 
architecture. They all have in common that there must be a 
physical layer, a middleware, and a layer for user interaction. 
The middle layer's organisation is presented differently in each 
architecture, but they all underline the importance of security 
and data analytics. Additionally, there is a lack of guidelines 
explaining how to organise the components, their connections 
and their interfaces in practical terms to get a detailed 
architecture of the system and end up with a working system 
[26]. 

The methodology proposed here addresses the previously 
identified problems by taking into account the best state-of-the-
art practices for designing from zero a 4IR system architecture 
and by analysing different industrial case studies to give a 
comprehensive understanding of the given problem. In this 
way, all components around a smart-connected system that 
provide direct feedback to the user about the status of a process 
or a system can be defined. 



 

This article is divided into four (4) sections. First, the 
introduction section described the concepts and importance of 
4IR systems. It also includes a review of the current state-of-
the-art highlighting different approaches and existing methods 
for defining Industry 4.0 architectures. Then, a case study 
analysis of three different architectures from real industrial 
implementations is presented in section 2, which is used to 
define our proposed novel methodology for defining Industry 
4.0 architectures. The results section describes the details of the 
proposed generic, extensible, and flexible architecture. Finally, 
conclusions are drawn. 

II. PROPOSED METHOD 

This section describes the proposed method, which is based 
on the analysis of different case studies of industrial projects 
that improved or created a new product/service by using AI-
driven Industry 4.0 technologies. This section will first 
describe three real industrial case studies. Their processes and 
technological architectures (hardware and software 
components) are described and compared, followed by the 
identification and selection of components that we considered 
to be the basis of our proposed, generic 4IR system architecture.  

A. Smart-Water Case Study: Industrial Wastewater 

Treatment Plant “La Cartuja / EDAR 4.0 Project” 

EDAR 4.0 is a research project aiming to develop a set of 
tools for optimising the operation and in particular the energy 
management of wastewater treatment plants (WWTPs). 
Different types of organisations such as water and energy 
engineering companies, process automation companies, 
WWTP equipment manufacturing companies, research centres, 
and universities participate in the project, all collaboratively 
working on different aspects of the project, finally aiming to 
develop a cloud-based, web platform integrating a complete set 
of tools for supporting an intelligent operation of WWTPs. 

The project's basis consists of plant-wide data acquisition 
of all the processes comprising a WWTP. These processes can 
be classified into three principal, standard sub-processes: i) the 
influent process, mainly representing the input of influent 
water and its pre- and primary treatment, usually performed in 
a primary settling or sedimentation tank; ii) the biological 
treatment process, which is the central part of the so-called 
secondary treatment and represents the primary wastewater 
treatment process of the plant driven by different types of 
bacteria and protozoa, which can be complemented by 
additional, chemical treatments, and; iii) the effluent process, 
which mainly represents the output of the effluent water, either 
directly to the receiving waters or through a secondary settling 
or sedimentation tank, which is also considered as part of the 
secondary treatment of the plant. A tertiary treatment process 
consisting of additional, advanced water purification 
treatments aimed at specific water uses such as water reuse can 
exist but is optional and not so frequent. In this project, sub-
processes i) to iii) of the full scale WWTP are addressed. 

The processes of a WWTP in general and sub-processes i) 
to iii) in particular, are typically controlled by one or several 
Programmatic Logic Controllers (PLC), integrated with 
different types of sensors and actuators. All the control 
information is then locally displayed through Human to 

Machine Interfaces (HMI), generally embedded within a 
Supervisory Control And Data Acquisition (SCADA) system. 
All plant information is usually shared through an industrial 
protocol-based local area network (LAN). 

The above represents the basis of a typical WWTP, ICT 
architecture. In EDAR 4.0, this is extended to a 4IR system 
architecture by setting an additional, cloud-based IoT 
infrastructure that can be reached through the internet, thus the 
overall WWTP, ICT infrastructure has to have (a secure) access 
to it. Several services such as multiple plants, cloud-based IoT 
data acquisition and data storage, information monitoring 
(visualisation), data analysis and associated services such as 
Visual Analytics, plant simulation, and plant optimisation 
through machine learning (ML), are integrated into such a 
cloud-based ICT infrastructure. 

A specific example of how to access the above cloud IoT 
infrastructure and associated services could be through the 
HTTP REST protocol. A specific example of a data analysis 
service could be to classify different types of water quality and 
predict (forecast) the evolution of water quality over time. 

Eventually, with the above cloud IoT platform running, 
WWTP data can be displayed on a web page, where water 
quality analyses and others can be run and monitored by remote 
users. Fig. 4 details a view of the EDAR 4.0, 4IR system 
architecture. 

 

Fig. 4. EDAR 4.0 architecture [Original Work]. 

B. Industrial Quality Testbench Case Study: Rotary 

Pneumatic Machines Company “MAPNER / EDAR 4.0” 

MAPNER is an industrial company that manufactures 
rotary machines for various applications such as wastewater 
treatment and power generation. Once the manufacturing 
process of the rotary machines has finished, every machine is 
taken to a quality control process performed on a testbench 
where the machines are subjected to a set of tests in stationary 
working conditions, in an isolated room. The outputs of the 
tests are then compared to some expected results described by 



 

the manufacturing order, in order to guarantee an adequate 
quality and performance rate of the final product (the machine).  

However, that process is typically highly manual: after 
leaving the machine on for some time until it reaches its 
stationary operation region, the operator goes through a set of 
GUI elements of a computer program. It shows the data 
measured by sensors and allows manually introducing such 
data to a database, so that subsequent calculations of physical 
magnitudes such as flow rate and power can be performed to 
generate a quality report of the machine. 

This use case is a good example of a classic manufacturing 
process digitalisation project where the process evolves from a 
view-only data management system to an automatic, real-time 
data acquisition and storage system, which not only improves 
the existing testing process (the machine's performance can be 
analysed continuously instead of via a single-instant, manual 
data acquisition system, which can hardly reflect the overall 
condition of the rotary machine), but also allows stepping 
forward towards a data-analysis-based machine performance 
study that may facilitate identifying, predicting and preventing 
problems for the manufactured products. 

The first step of adapting MAPNER's testbench to a 4IR 
platform was automating the acquisition of data corresponding 
to measurements as provided by sensors attached to the 
machine during the testing process as well as by some 
environmental sensors in charge of measuring relative 
humidity and temperature. As usual in many manufacturing 
processes, every sensor or measuring device has its own 
communication protocol for providing the information. 
Multiple protocol systems are usually managed by using 
gateways that unify the information and translate it into a 
standard protocol. These gateways can be independent 
hardware devices or software modules designed to do so. In 
this use case, a software gateway was implemented to gather 
all the information on a single, Python-based daemon (or 
“Python gateway”) in order to be able to send the data to the 
data storage layer. In order to do so, the data had to be 
converted (unified) to a common, standard communications 
interface: Ethernet. Machine sensors are connected to a 
Siemens PLC that exposes the information by means of the 
OPC-UA protocol. The humidity and temperature information, 
as well as the information provided by a set of electrical 
network analysers (current, voltage, power, power factor, etc.) 
are exposed by means of the MODBUS TCP protocol, and 
transferred to Ethernet by means of a MODBUS-MODBUS 
TCP hardware gateway. 

The Python gateway did not only made the acquisition 
possible, but it also helped fixing a critical aspect related to 
acquiring data from multiple sources - thanks to the gateway, 
incoming data with different sampling frequencies can be 
homogenised by applying data synchronisation or re-sampling 
algorithms prior to analysis. 

Once the data coming from the different sources is gathered 
and unified, the information is deployed to an internal server 
database, where it can be further processed and analysed in 
order to create and show to operators enriched information 
(such as machine status information) throughout the tests, in 
real-time. The data storage is running within a secure LAN. In 

addition, a daily backup of the information managed by the 
data storage layer is configured. The global architecture of the 
entire system is shown in Fig. 5. 

 

Fig. 5. MAPNER Testbench architecture [Original Work]. 

C. Smart IoT Embedded System Case Study: Rotary 

Pneumatic Machines Company “MAPNER / SISTELIA 

Project” 

The third case study consists of an architecture defined for 
remotely managing data related to blower machines 
manufactured by MAPNER that are installed in various 
locations across the world. With the arrival of the digital 
transformation and the 4IR, MAPNER clearly saw the 
opportunity for providing their machines with a greater degree 
of ubiquity, especially in terms of smart and predictive 
maintenance, using technologies such as IoT and AI. In this 
sense, MAPNER has participated in several funded R&D 
projects and collaborated with research agents. One of these 
projects is SISTELIA, which translates to “Intelligent Services 
for Industrial Blowers based on Digitalization Technologies 
and Artificial Intelligence”. SISTELIA's main objective is to 
design and implement a cloud-based data management 
platform based on a 4.0 embedded system called “MAPNER 
Panel Control” (MPC), designed for the acquisition, analysis, 
and visualisation of data and enriched information coming 
from machines that are operating worldwide, in real-time. The 
MPC includes an ad hoc Human Machine Interface (HMI) 
which gathers data from an integrated, real-time data 
acquisition (DAQ) system that is integrated with sensors and 
provides real-time information to maintenance operators both 
directly on the machine (local visualisation) and through the 
cloud (remote visualisation), via a 4G network 
Communications Interface. SISTELIA's architecture consists 
of three parts: i) the physical blowing machine, ii) a 4IR 
embedded system, and iii) a cloud data management platform. 
The physical blowing machine is the core process of the whole 
system, which operates independently of the architecture. The 
4IR embedded system contains multiple sensors to gather 
operational data (e.g., temperature, speed, pressure, and 
vibrations) from the physical blowing machine, which is 
locally stored and processed in a real-time DAQ system. 



 

Furthermore, the locally stored and processed data is also 
locally displayed to users on an integrated, tactile HMI display, 
where the user can program maintenance operations and 
configure and resolve alarms. In addition, these data are sent to 
an IoT cloud platform via 4G for remote storage, real-time 
visualisation, and data analysis. Finally, the cloud data can be 
monitored by remote users. This architecture is detailed in Fig. 
6.  

 

Fig. 6. SISTELIA architecture [Original Work]. 

III. RESULTS 

Results of this work consist of a generic 4IR architecture 
that aims to serve as a template for new AI-driven Industry 4.0 
projects. This architecture has been built from hardware and 
software components identified in the use cases presented in 
the previous section as well as in the state-of-the-art. 

The proposed generic architecture presented in Fig. 7 
includes three levels: i) the physical layer, ii) the layer of an 
embedded 4IR system, and iii) the IoT cloud layer. The 
physical layer relates to the process itself; for example, a 
machine that executes a task. 

The 4IR embedded system layer may include different sub-
layers of Perception and Control, where everything related to 
actuators and sensors can be found; Data Acquisition and 
Processing, which involves the different micro controller and 
PLC units with their respective internal/external storage 
systems for local data persistence; the Local Visualisation 
sublayer, which includes the different HMI interfaces for the 
visual and control interaction between the local user (who 
could be a supervisor or an operator on site) and the machine; 
the Communications sublayer, which addresses all the local 
communication interface systems such as RS232, RS485, 
Modbus, Profibus, and the global ones (for the new 4IR 
systems) through TCP/IP protocol by Ethernet, WiFi and 
3G/4G networks, allowing to connect to the IoT cloud. 

The IoT Cloud layer incorporates four sub-layers. The first 
one is the Security and Data Exchange sublayer, which 
establishes a secure connection between the Embedded 4IR 
System and other external information sources (External Data) 

through WebAPIs. The latter, for example, can use 
WebSockets for real-time connections, HTTP REST protocol 
for on-demand requests, Mosquitto Transfer Protocol (MQTT) 
for IoT connections, OPC-UA for industrial data connections, 
among others.  

The second sub-layer is related to Data Storage, where 
relational (e.g., SQL) and non-relational databases are used. 
This stored data can then be retrieved to perform different 
analytical and visualisation operations, for example.  

The third sub-layer is called Analysis, in which AI tools 
perform advanced processing operations. These operations 
create enriched information, thus adding a greater degree of 
knowledge about the process to allow, for example, identifying 
failures in a predictive manner.  

Finally, the fourth sub-layer includes the Remote 
Visualisation, where dashboards are usually shown with the 
received data and additional graphics derived from the analysis 
process (e.g., Visual Analytics) for supervision by External 
Users. 

 

Fig. 7. 4IR generic architecture (contribution). 

IV. CONCLUSIONS 

Industry 4.0 systems including AI applications are 
generally complex and difficult to understand as they consist 
of so many different HW and SW components. Typically, they 
include state-of-the-art and legacy technologies. Hence, 
guidelines are missing explaining how such a problem could be 
tackled in practical terms and in which way components and 
their connections and interfaces could be organised to have a 
full-sight understanding of the system and end up with a 
working system. In this sense, a novel software and hardware 
architecture for AI-driven Industry 4.0 systems was developed 
based on real-world use cases. The architecture was created by 
using common elements of different architectures presented in 
the state-of-the-art and by analysing three case studies of real 
industrial projects. It includes a physical layer, an embedded 
system layer and an IoT cloud layer with which it is possible to 
clearly organise all components of a 4IR system. This 
architecture provides a detailed view and practical guideline 



 

for users on how to implement 4IR systems by embedding 
relevant hardware and software components. 

Future work may include a methodology to generate a 
specific architecture based on both user requirements and the 
above generic architecture for a new 4IR project. Additionally, 
other case studies can be analysed to extend this architecture. 
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Abstract: Coffee Leaf Rust (CLR) is a fungal epidemic disease that has been affecting coffee trees
around the world since the 1980s. The early diagnosis of CLR would contribute strategically to
minimize the impact on the crops and, therefore, protect the farmers’ profitability. In this research, a
cyber-physical data-collection system was developed, by integrating Remote Sensing and Wireless
Sensor Networks, to gather data, during the development of the CLR, on a test bench coffee-crop. The
system is capable of automatically collecting, structuring, and locally and remotely storing reliable
multi-type data from different field sensors, Red-Green-Blue (RGB) and multi-spectral cameras
(RE and RGN). In addition, a data-visualization dashboard was implemented to monitor the data-
collection routines in real-time. The operation of the data collection system allowed to create a
three-month size dataset that can be used to train CLR diagnosis machine learning models. This
result validates that the designed system can collect, store, and transfer reliable data of a test bench
coffee-crop towards CLR diagnosis.

Keywords: coffee leaf rust; cyber-physical system; internet of things; mechatronic design; technologi-
cal integration; remote sensing; wireless sensor networks

1. Introduction

Coffee, for over 1000 years and even today, has been one of the most consumed
drinks around the world with more than 400 billion cups per year [1]. Among more
than 100 existing coffee species, only two are used for the drink preparation, namely
Coffea arabica and Coffea robusta. The first one, which is used to obtain a more aromatic
and softer beverage, is best valued by the market and represents over 75% of the world
production. The drink resulting from processing the second one, which is considered to
have a stronger and more bitter flavor, represents the remaining 25% [2]. Moreover, each
species subdivides into coffee varieties, each of them having characteristics that allow the
creation of distinct aromas and tastes.

As a case study, we consider the case of Colombia, which is the third major coffee pro-
ducer of the world [3]. Colombia is located on the Bean Belt, a strip across the globe where
all coffee plants are grown [4]. The national production is concentrated on Coffea arabica,
due to the mountainous topography of the country, which offers a suited combination
of altitude, temperature, and rainfall for this species. Particularly, the most cultivated
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varieties of Coffea arabica in the country are Castillo, Colombia, Caturra, and Bourbon [5].
Depending on the selected variety and the post-harvesting process, the resulting product
is offered in two different markets. One of them is the standard coffee market, which is
guided by the international coffee price, and the other one is called the specialty coffee
market, which has a premium above the standard price.

Regarding the phytosanitary problems on coffee crops, one of the main concerns is
related to the presence of pests, such as the Coffee Borer Beetle, and diseases, such as the
Coffee Brown Eye Spot and the Coffee Leaf Rust (CLR) [6]. For the diseases, the CLR is the
most relevant one, in economic and pathological terms, at the national level. This disease
presents a vertiginous expansion on the coffee plant and its surroundings, and it can cause
massive defoliation on the whole crop [7]. As an example, in extreme cases, this disease
has led to devastating losses in some Colombian regions reaching between 70% and 80% of
the harvest [6].

It should be noted that the use of technology to support agriculture has made it possi-
ble to automate and optimize production. In this sense, sensors can be used both to monitor
the machinery required for a plantation (e.g., performing predictive maintenance [8]) and
to detect specific features of a crop and its ecosystem (e.g., non-invasive phenotyping in
plant breeding [9]). Other applications of the use of sensors in agriculture may include
precision irrigation, greenhouse instrumentation, and pest control [10].

It is noteworthy that, at the beginning of this research, the general objective was ori-
ented to the early detection of the Coffee Brown Eye Spot disease through Remote Sensing
(RS) with spectral reflectance data analysis. However, after carrying out the interviews with
the Colombian coffee experts and producers, we realized that the mentioned disease was
not as crucial or economically limiting as the CLR. The interviewees expressed that their
main concern was the CLR and most of them even reported that they have been struggling
with it over the last four years. Thus, and thanks to their recommendations, we decided
not only to diagnose the CLR instead of the Coffee Brown Eye Spot disease, but also to
integrate Wireless Sensor Networks (WSN). In that sense, the first step towards diagnosing
the disease consisted of collecting reliable data regarding its development. Thereby, once
the necessary data had been collected, it would be possible to create a diagnostic model
based on such data. Therefore, this research presents the following two contributions:
(i) The mechatronic design of a cyber-physical data collection system to collect and store
data, integrating RS and WSN; (ii) a three-month dataset for CLR detection.

This paper is structured as follows: Section 2 explains some key concepts and describes
related work by different authors, Section 3 presents the conceptual and detailed design of
the data collection system, Section 4 shows the building and integration of the mechani-
cal, electronic, and computing components and, finally, Section 5 states the conclusions,
recommendations, and future work.

2. State of the Art

Different studies have been carried out involving technical methods and strategies for
obtaining nutritional information of different types of crops [11], diagnosing diseases [12],
and detecting pests [13]. Recently, an important concept has emerged called Precision Agri-
culture (PA). PA refers to an agricultural management concept that uses information and
communications technology to observe, measure, and respond to specific crop variabilities.
PA includes applying the correct treatment method at the right time according to the needs
of the plants [14].

In PA, one of the current methods used to evaluate the features of different crops
is called RS. RS relies on the interaction between materials and their electromagnetic
radiation. It includes receiving radiation reflected from soil or plants to obtain valuable
information, such as chlorophyll content, water stress, weed density, crop nutrients, and
disease presence. These measurements can be made using airplanes, portable sensors,
satellites, tractors, and drones [15].
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Several authors [16–18] pointed out the importance of using high-quality portable
devices to detect and control diseases in hard-to-reach sites. For example, Goel et al. [16] an-
alyzed the detection of variations in the spectral response of corn (Zea mays) due to nitrogen
application rate and weed control. For this reason, a hyperspectral sensor called Compact
Airborne Spectrographic Imager is used to analyze the reflectance values of 72 bands in the
range of 409 nm to 947 nm. These bands include visible light and external Near-Infrared
(NIR) from the radiation spectrum. Their research demonstrated the potential of using
hyperspectral sensors to detect weed infestation and nitrogen stress. Specifically, the most
suitable wavelength bands for detection are found to be the wavelength regions around
498 nm and 671 nm, respectively.

In addition, a crop classification method employing the infrared and visible portions of
the electromagnetic spectrum and low-cost cameras in a multi-rotor aircraft was proposed
by Bolaños et al. [17]. This study is based on the identification of Normalized Difference
Vegetation Index to assess health status and moisture content. Similarly, Chemura et al. [18]
presented a method for predicting the presence of diseases and pest infestations early in
coffee trees due to imperceptible water pressure. To this end, a handheld multi-spectral
scanner with the visible and near-infrared regions is placed in an Unmanned Aerial Vehicle.
Chemura et al. research is also related to irrigation planning based on the specific water
needs of plants.

In addition to RS, based on smart farming techniques and the Internet of Things (IoT),
which refers to the use of intelligently connected devices and systems leveraging data
acquired by embedded sensors and actuators in machines and other physical objects [19],
there is another popularly used method named WSN. WSN is responsible for real-time
monitoring of different agricultural characteristics. It consists of multiple integrated,
unattended devices called sensor nodes, which collect data at the site and wirelessly
transmit it to a centralized processing station (called a base station). This station can store,
process, and transmit data to the Internet, where a final user can analyze and transform it
into relevant information and knowledge [20].

In this regard, Chaudary et al. highlighted the importance of WSN in the PA field by
controlling and sensing the most relevant variables of a greenhouse using a microcontroller
technology named Programmable System on Chip. This research examined the integration
of wireless sensor nodes with high-bandwidth spectrum telecommunications technology,
which proved helpful in determining the optimal irrigation strategy that meets crops’
specific needs. Moreover, the study recommended using reliable low-current consumption
hardware for WSN applications because it improves farmers’ confidence to incorporate
them into their crops [21]. Additionally, Piamonte et al. implemented a WSN prototype
for monitoring an African Oil Palm disease called the Bud Rot. By using humidity, pH,
light, and temperature sensors, their prototype measured climate change and soil factors to
identify the presence of disease-causing fungi indirectly. This research concluded that the
measurement results for the aforementioned non-biological factors had changed slightly,
which, according to the researchers, indicates the possibility of detecting the Bud Rot [22].

The presented state of the art shows that RS and WSN are two widely used methods
within PA due to their capacity to monitor different crop features and detect the presence
of various anomalies.

3. System Design

Previous research was helpful to design a cyber-physical data collection system that
could integrate both methods towards the CLR diagnosis. Applying the concepts and
following the recommendations found in the state-of-the-art, it is possible to create a system
capable of acquiring and remotely storing reliable data from diverse sources. The goal
of such cyber-physical systems (CPS) is the characterization of a test bench coffee-crop
regarding the changes induced by the disease at hand. The cyber-physical data collection
system was designed following the Pahl and Beitz methodology [23]. The mechatronic
design of the data collection system is presented in this section.
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For the development of the system, requirements were elicited with the participation
of Colombian Coffee Agricultures Association (CENICAFÉ) and University EAFIT. From
EAFIT, the design team was composed by the Mechanical, Informatics and Electronic
Engineers, as well as Biologists. The fulfillment of those requirements, which included,
among others, building a test bench coffee-crop, emulating different agronomic conditions,
and allowing the data acquisition, storage, and transfer, was the guideline for the design of
the system. In that sense, this section describes, in a stepwise fashion, the use of the Pahl
and Beitz methodology for achieving a data collection system that integrates RS and WSN
towards the CLR diagnosis.

3.1. Main Requirements

First, all requirements were formalized, structured, and classified according to their
characteristics and priority through the employment of the Product Design Specification [24].
The main requirement was measuring physicochemical features of the plants as well as
capturing Red-Green-Blue (RGB) and multi-spectral images of the test bench coffee-crop
for storing all this data locally and remotely. Other requirements were related to plants’
separation and irrigation, coffee variety to be used, construction materials, database type, and
communication protocol with the field sensors.

3.2. Black Box Definition

The following step is to design a black box [25], which represents the primary function
of the system to be developed. This primary function is to collect a set of inputs, transform
them, and produce a set of outputs. As shown in Figure 1, the inputs and outputs are
divided into three major flows: namely matter, energy, and signal. Regarding the inputs, the
matter flow was composed by CLR, coffee plants, organic matter, fertilizer/fungicide, and
wind; the energy flow was divided into electrical energy, human force, and photovoltaic
energy; and the signal flow consisted of input information and expert information. At the
output, the adequate experimental coffee crop dissipated energy as well as field sensors and
general data records were obtained. These output data correspond to the main objective of
this research, which is to create a system capable of collecting, storing, and transferring
reliable data of a test bench coffee-crop towards the CLR diagnosis.

Figure 1. Black box representation of the cyber-physical data collection system.

3.3. Functional Structure

After defining the Black box, the functional structure [26] was specified, breaking
down the presented inputs and outputs and establishing, with a detailed understanding,
the sub-functions required, and the pathway created by these. As a way of example, one of
these sub-functions consisted of merging human force with the coffee plants to arrange the



Sensors 2021, 21, 5474 5 of 15

latter in the test bench coffee-crop, which impacts the posterior incorporation of the field
sensors. The general pathway of the overall functional structure is described as follows.

The coffee plants were divided into four lots, where half of them were inoculated
with Hemileia vastatrix [27], the fungus that causes CLR. For their agronomic management,
fertilizer and fungicide were distributed and incorporated into all four lots. Then, each lot
was isolated from the others to make them independent and, finally, the whole crop was
integrated with the rain and wind emulation systems. Rainfall and wind speed were both
monitored and regulated for the entire crop.

Furthermore, employing sensors in each lot, soil moisture/temperature, pH, illumi-
nance, and environmental humidity/temperature were acquired. In addition, RGB and
multi-spectral images were captured. To finish the data collection process, data were stored
locally, pre-processed for cleaning purposes, and then sent to a remote server over the
Internet. In addition, the collection process was monitored in real time through an IoT
web platform.

3.4. Morphological Matrix and Candidate Concepts

Once the main function and the corresponding sub-functions were specified, the mor-
phological matrix [28] was developed. Such a matrix illustrates different solution proposals
for the implementation of each of the sub-functions exposed in the functional structure.
The output of the morphological matrix consisted of two candidate concepts, Concept 1
and Concept 2, each made up of a different combination of the solution proposals. The
concepts indicated two possible ways of building the data collection system, and they were
elaborated with the purpose of evaluating them under different aspects and deciding which
was the most appropriate for the objective at hand. The most relevant features for Concept
1 and Concept 2 included: (i) holes in tubes or sprinklers to emulate rain, (ii) a stepper
motor or a servomotor to position the multi-spectral cameras over the lots, (iii) using
normal pressure from the aqueduct or a pump to transport the water for irrigation, and (iv)
a rotary arm or a single rail to capture images from multispectral cameras, respectively (see
Table S1 from supplementary material uploaded at MDPI platform and at provided link in
Supplementary Materials section). The resulting candidate concepts were then evaluated
by using a scoring system, which calculates a weighted average of a set of pre-selected
evaluation criteria. These weights were established according to the previously defined
PDS and the design team expertise. As a result, the final concept is selected. As shown in
Table 1, Concept 1 resulted as the selected concept, with an approval of 78% against 74%
of Concept 2. The cyber-physical data collection system was built based on the winning
concept. CPS are a new class of engineered systems which offer close interaction between
cyber and physical components [29]. It should also be noted that the chosen concept was
slightly modified following some improvements proposed by CENICAFÉ and the design
team to better fulfill the initial requirements.

3.5. Final Concept

Figure 2a shows a sketch of the final concept for building the physical part of the
system. This concept is composed of four raised wooden beds representing the lots and
separated by four plastic curtains, a rotary arm holding the multi-spectral cameras, a rain
system which irrigates the lots, and a circuit box with the necessary elements to interact
with the electronic components. Figure 2b shows a sketch of the cybernetics part of the
design, which includes a data collector for joining the data coming from the test bench
coffee-crop and a data organizer, which structures and saves it on the local storage for its
posterior transfer to a remote server located at EAFIT University.
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Table 1. Concept Scoring. a Value scale (score between 0–4); 0 = Not satisfied, 1 = Acceptable,
2 = Sufficient, 3 = Good, 4 = Totally satisfied.

N◦ Evaluation Criteria Relevance (%) Solutions a

Concept 1 Concept 2

1 Functionality 11 4 3
2 Simplicity 5 3 4
3 Fulfilment of requirements 10 3 2
4 Robustness 3 4 3
5 Fabrication 7 3 3
6 Assembly 6 3 2
7 Reliability 9 3 3
8 Low cost 7 3 3
9 Expert criteria 6 3 3
10 Crop management 7 3 3
11 Maintainability 3 2 3
12 Performance 8 2 3
13 Usability 5 3 3
14 Testability 3 3 2
15 Availability 10 4 4

Weighted average 3.13 2.96
Total score 100 78% 74%

(a)

(b)
Figure 2. Final concept sketch for the data collection system: (a) of the physical part; (b) of the
cybernetic part.
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3.6. Mechanical Design

The mechanical design considered four identical crop lots, each one housing four
coffee plants under different development stages of the disease. Each lot had specific struc-
tures designated to place the sensors for pH, illuminance, soil moisture, soil temperature,
environmental humidity, and environmental temperature. In addition to the sensors, a
rotary platform, holding a rack-pinion mechanism and containing a slider extension, three
micro-switches, a mini-DC motor, and a digital servo, was also designed for each lot aiming
at driving an RGB camera close to each plant for capturing images from the bottom of the
leaves. In addition, each lot had a filtering point, which directed the residual water into a
container where the pH-meter was placed.

Furthermore, a rotary arm was designed to place two multi-spectral cameras and to
be able to move them above the four crop lots for capturing images from the upper side
of the leaves. One of the cameras had an RGN filter (Red-850 nm, Green-660 nm, Near
Infrared-550 nm), whereas the other one had a RE filter (Red Edge-735 nm). Both filters
were suitable for assessing the presence of plagues and diseases (in particular the CLR) in
crops [30,31]. Moreover, since the coffee plants needed a suitable environment to grow, a
rain system was also designed for irrigation purposes. This system was controlled through
an open/close command that could change the state of a corresponding solenoid valve
according to a pre-defined rain schedule.

3.7. Electronic Design

To collect data from each crop lot using field sensors, an electronic design of the
system was required. Sensors, actuators, interfaces, power supplies, two (2) Arduino Mega
microcontrollers, one (1) Raspberry Pi microcomputer, and an electrical cabinet composed
this electronic design. These electronic components were connected and integrated to
support the cybernetic part of the data collection system. In what follows, each component
is described.

3.7.1. Arduino Mega Microcontrollers

One of the Arduino Mega microcontrollers (named Arduino 1) collected lot data. Thus,
four pH-meters, four illuminance sensors, four soil moisture sensors, four soil temperature
sensors, and one environmental humidity/temperature sensor were connected to it. In
addition, the Arduino controlled the movements of the central rotary platform. For its part,
the other Arduino Mega (named Arduino 2) was considered for the general data collection,
having the tasks of activating/deactivating the rain system, communicating with the flow
and wind sensors, as well as moving the rotatory arm over the lots. Both Arduino Mega
microcontrollers were communicated with the Raspberry Pi via USB.

3.7.2. Raspberry Pi

The Raspberry Pi was responsible for orchestrating the sequence of steps during each
data collection routine, storing the gathered data locally, and transferring it to a remote
server over the Internet. For that purpose, in addition to being communicated with both
Arduino Mega microcontrollers, four RGB and two multi-spectral cameras were connected
to it via USB. Thereby, the Raspberry Pi was able to trigger the different electronic devices
and obtain the results. Finally, to send data to the remote server, an outdoor 4G LTE router
was used to facilitate remote connectivity from the Data Collection System location.

3.7.3. Electrical Cabinet

The design of an electrical cabinet was required for the distribution and organization
of all electronic components. This cabinet had an IP5 minimum environmental protection
due to the system exposure to the greenhouse’s harsh conditions. Furthermore, a current
security breaker was also included to protect the components from a peak current over
10 A, considering that the total consumption of the data collection system was about 7 A.
Additionally, protection fuses were proposed for each power supply and actuator to miti-
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gate damages, and one 9 V/1 A AC/DC adapter was considered for each microcontroller
to avoid problems related to low current values.

The Raspberry Pi and the Arduino Mega microcontrollers were connected through a
Master–Worker network architecture. The connections were implemented by a serial interface.

3.8. Software Design

The software design was essential to detail how the physical components commu-
nicated with the cybernetic part of the system to collect and transfer the data properly.
In that sense, it is essential to explain the principal functions, commands, components,
architectures, content specifications and platforms, which were thought as necessary for
managing the incoming and outgoing data flow.

3.8.1. Data Acquisition, Conditioning, and Storage Routines

Several functions regarding the acquisition, conditioning, and storage of the readings
of the electronic devices connected to Arduino 1 and Arduino 2 were defined. Arduino 1
functions were in charge of collecting, conditioning, and storing the data proceeding from
the pH, soil temperature/moisture, illuminance and environmental temperature/humidity
sensors, and controlling the servomotor angle and arm’s extension to position the RGB
camera of each lot. Arduino 2 functions included collecting, conditioning, and storing
readings from the flow rate and wind speed sensors and controlling the direction and
destination of the global rotary arm that holds the multispectral cameras. The programs of
both Arduino Mega microcontrollers were designed to respond to specific commands sent
by the Raspberry Pi.

3.8.2. Main Orchestration Program

A main, global program run by a Raspberry Pi in charge of orchestrating every step of
the data collection routines and automatically executing such a process seven times a day
was defined. Such an orchestration program was also in charge of activating/deactivating
the rain system according to a pre-set schedule. This pre-set schedule included the raining
days of year 2018. In addition, the program implemented by the Raspberry Pi was in charge
of receiving and organizing the collected data from the Arduino Mega microcontrollers,
triggering the RGB and multi-spectral cameras, storing everything locally in a structured
way and transferring it to a remote server, named Academic Data Center (ADC), over the
Internet via Secure File Transfer Protocol (SFTP). Finally, this program reported the current
state to Thingworx (IoT platform, see subsection (iii)) during each routine. The software
technologies selected for the implementation of this program were Python 3.5.3, OpenCV
3.4.1 [32], RPi.GPIO 0.6.3 [33] and MongoDB [34].

3.8.3. Thingworx

Thingworx is a complete software platform designed for the Industrial IoT [35]. It was
used to develop a dashboard, to remotely monitor the field and general data in real-time.
This software platform was installed in the ADC. The ADC is the remote server used
for remotely storing the collected data from the CPS to replicate the Raspberry Pi’s local
storage. This server is hosted by the Computer-Science Department of EAFIT University
and is composed of 72 Cores, 512 GB RAM, 4 TB Storage, 2 GPU Tesla K80, and an Ubuntu
18.04 Operating System. It can be accessed over the Internet through a Virtual Private
Network (VPN) connection.

The use of the Pahl and Beitz methodology allowed for evolving from the elicitation
of the initial requirements towards the achievement of the final and detailed design of a
data collection system that integrates RS and WSN. The final 3D Computer-aided design
(CAD) of the data collection system’s physical part is shown in Figure 3.
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Figure 3. Final 3D CAD of the data collection system’s physical part.

Figure 4 shows the final design of the data collection system’s cybernetic part, which
explains the pipeline for the execution of the data collection system.

Figure 4. Final design of the data collection system’s cybernetic part.
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4. Results

The application of the Pahl and Beitz design methodology results in the target system
solution. Precisely, the result of this research work corresponds to the solution obtained by
applying the Pahl and Beitz methodology, i.e., the target system, i.e., a cyber-physical data
acquisition system capable of obtaining a dataset suitable for use in the early detection of
CLR. Therefore, the following describes the results obtained, i.e., the system built, which
was first represented by a 3D-CAD model.

4.1. Mechanical Components

These included the installation of a set of curtains, which were planned to work
as a separation between the four crop lots. In addition, the assembly of the rotary arm
structure was carried out. Finally, a separate structure for holding the multi-spectral
cameras container was fixed.

Additionally, due to the emulated rain conditions that the prototype would be sub-
jected to, immunized wood was chosen for the construction of the coffee crop lots, since
it is resistant to moisture. At the bottom of each lot, a mesh in conjunction with a plastic
tarp was installed to contain the soil. Furthermore, a slope was built within each lot using
soil and impermeable plastic with the purpose of driving the residual water into the pH
measurement system.

Regarding the rain system, all accessories related to the main pipeline for the incoming
water source were installed over immunized wooden blocks. In addition, the whole
wooden base was buried to keep the structure fixed. In addition, five supports were also
installed on two adjacent sides of each lot for mounting a wooden L-structure over them.
That structure served as a base for three additional hoses with small perforations, which
would distribute the water within the lot producing the rain effect.

Succeeding the plants’ irrigation, the slope, which was built within each lot using soil
and impermeable plastic, was helpful to drive the residual water into the filtering point
located in one corner of each coffee crop lot. There, a hose was connected to lead the water
to the container for the pH measurement.

Concerning the assembly of the rotary platform, several acrylic pieces were cut,
including the rotary platform, rack, pinion, support for the rack, base, and protection for
the RGB camera, supports for the mini-DC motor and digital servo and mechanical end
stop for the rotary platform’s extension. To achieve the movement of the latter, a drawer
slide was installed below this extension, and, therefore, the camera displacement towards
the coffee plants could be achieved. Furthermore, before placing the rotary platforms in
the center of each lot, steel plates were assembled to the supports of the digital servos and
four levelers were screwed to the corners of each plate to put them underground for fixing
the whole structure. Lastly, each platform was placed on top of a wooden base to mitigate
the terrain’s instability.

4.2. Electronic Components and Their Integration

Following the construction of the mechanical components, the electronic integration
was executed to complete the system’s physical part. For that purpose, each sensor and
actuator were tested, calibrated, and connected to the corresponding micro-controller. In
addition, individual connectors with a thick silicon protective layer were added to each of
them to keep their metal terminals safe from the harsh conditions, which would include
high temperatures, soil, and water from the rain system on a regular basis.

Similarly, the sensors’ calibration process was carried out to ensure the correct measure-
ment and reliability of the data to be collected. Some sensors were already pre-calibrated
at the factory (e.g., ambient temperature and humidity sensors) while others required
calibration. For example, one of these sensors was the pH sensor, for which two buffer
solutions with exact pH values were used. The sensor was adjusted to the same measured
pH value as the buffer solution using the included potentiometers in the sensor’s interface.
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The calibration of the RGB cameras was carried out by manually adjusting the lens’s focus
with respect to the leaves of the coffee plant to obtain a correct image sharpness.

After verifying the proper functioning and calibration of the sensors and actuators in
the laboratory, along with the micro-controllers, they were merged into the corresponding
mechanical structures to form the integrated components, which were required for the gen-
eral operation of the cyber-physical data collection system. In addition, to protect, contain,
and distribute the completely intermediate electronic devices (Raspberry Pi, Arduino Mega
microcontrollers, USB-hubs, power supplies, and interfaces), an electrical hermetic cabinet
was employed. To this end, the cabinet was subdivided into different sections, and it was
also tailored for offering protection against dust, water, and a possible peak current. After
installing it, the sensors, actuators, and cameras were connected to their corresponding
place inside the electrical cabinet, guiding their cables through impermeable PVC pipes
coming from the lots.

4.3. Software Components

Once all electronic components were duly tested and the respective drawbacks were
successfully solved, it was possible to send commands to the Arduino Mega microcon-
trollers and trigger the cameras from the Raspberry Pi with the objective of verifying the
communication, checking that the desired actions were executed and validating the results.
Thereby, the integration of the mechanical and electronic components, along with the ability
to control the system from the Raspberry Pi, was successfully proven.

For its part, the cybernetic part of the data collection system began with the implemen-
tation of the communication between Raspberry Pi and Arduino microcontrollers. It was
achieved through the development of an Arduino communicator component, which estab-
lished two separate serial connections and grouped the responses of the micro-controllers
into single programming objects that could be subsequently structured and stored. More-
over, a data sub-directory creator component was developed for creating a sub-directory
within the main data directory using the timestamp at which each data collection routine
began. This component was also in charge of generating the proper internal structure for
the files, which consisted of one sub-directory for each lot and another one for the general
data. With respect to the files, different software components were also implemented to
capture the RGB and multi-spectral images of the plants and write corresponding JSON
files with the collected data and the paths to those images. Figure 5 shows an example of
some of the generated files after concluding a routine.

In addition, a data visualization dashboard was developed using Thingworx according
to the presented design for monitoring the current state during each routine. Thingworx’s
appearance was preserved, and it was accessible through a Uniform Resource Locator
(URL) with user-password authentication. Every used widget for creating the dashboard
had a unique identifier so that it was possible to target each of them separately for updating
their values.

After a routine finished, another software component, named data uploader, was
responsible for transferring the collected data to the ADC over the Internet using a Wi-Fi
connection. Consequently, the procedure to verify that the result was satisfactory consisted
of checking whether the files uploaded to the ADC were identical to those stored locally in
the Raspberry Pi.
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(a) (b)

(c) (d)
Figure 5. Example of generated files after data collection routine: (a) RGN image from lot 1; (b) RE
image from lot 1; (c) RGB image from plant 3, lot 3; (d) RGB image from plant 4, lot 3.

4.4. Global Integrated System

Finally, the integration of the mechanical, electronic, and software parts led to the con-
struction of a complete functional cyber-physical data collection system. The approximate
total cost of the system implemented with all its components was 4863 USD. The total for
the electronic and computer components were 3535 USD and for the mechanics 1328 USD.
The most expensive components, in general, were the multispectral cameras with a cost of
1318 USD. It is estimated that, by implementing this system, followed by integrating an
ML-based early CLR detection predictive model, the current harvesting losses due to this
disease (e.g., 70% to 80% in Colombia) could be halved. Regarding maintenance costs, it is
similarly estimated that these will be below 1% of net gains, which, considering estimated
savings, is entirely affordable. Finally, the system’s lifetime is estimated to be five to ten
years, which is usual in this kind of equipment and is within the standards of amortization
periods. Nevertheless, these figures should be validated for a full-scale implementation of
the system.

After completing the integration and construction of the data acquisition system
mentioned above, a final test and calibration of each system component’s operation was
performed, which is essential to ensure the system’s operation’s reliability. For example,
one part of this process included the precise adjustment of the robotic arm position with
respect to each plants’ lot for taking the multispectral photos, where each position was
stored in the program to perform the data collection routine. Having performed the final
system’s calibration, a data collection routine was executed for three months. The Data
Collection System recorded crop’s cameras and sensors information from each lot seven
times per day at different moments (with and without sunlight). It must be noted that,
although the data storage occurred seven times per day, the system was acquiring and
monitoring (Thingworx) the data in real-time, with a sampling period of 3 s. In addition to
the data collected by the system, a biologist team evaluated and labeled daily in a separate
file the current development stage of the CLR of each data collection system lot. The
output of this routine generated a dataset comprising 603 RGN files (~153 MB), 641 RE files
(~177 MB), 730 RGB files (~196 MB), and 672 sensor data (JSON) files (~1.12 MB), which
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were ready to be used for diagnosing the CLR development stage by training a Machine
Learning model.

The operation of the current data collection system allowed the creation of a three-
month size dataset. This dataset was used to train a deep learning model based on an
ensemble algorithm integrating three convolutional neural networks and a multi-layer
perceptron fed by RGB, RGN, and RE images; and Wireless Sensor Network data, corre-
spondingly. This model was used to classify the early stage of CLR of a coffee crop (from 0
to 4), obtaining an F1-score of 0.775 [36].

5. Conclusions

This paper presents the mechatronic design of a cyber-physical data collection system,
which integrates RS and WSN on a test bench coffee-crop. It is capable of automatically
collecting, structuring, and locally and remotely storing reliable multi-type data from
different field sensors (pH, soil moisture/temperature, illuminance, and environmental
humidity/temperature), RGB and multi-spectral cameras. In addition, a data visualization
dashboard was implemented to monitor the data collection routines in real time. This
result represents a first step towards the CLR diagnosis on the Caturra variety.

The correct operation of the data collection system allowed for creating a three-
month size dataset, which contains sensors and camera data required for creating a CLR
development stage model. This result validates that the designed system can collect, store,
and transfer reliable data of a test bench coffee-crop towards the CLR diagnosis.

For future work, this data collection system may be useful for measuring and recording
different characteristics from other types of crops. In addition, and regarding the CLR, the
data acquired through this system can be exploited for analyzing how the crop responds
(in physicochemical and visual terms) according to the presence of the disease. It could be
considered, for instance, to implement Artificial Intelligence techniques, such as Computer
Vision and Deep Learning, to create a model based on the collected data for effectively
diagnosing the CLR.

The current development is intended to be used as a test laboratory for plant ex-
periments, which means that the obtained results are limited to a sample of a real crop
plantation. As future work, a scalability, cost, and power consumption analysis could
be carried out to turn the test laboratory into a full-scale mobile system. No relevant
limitations are identified; however, employing drones and land robots are considered a
technological requirement. Regarding drones, multispectral cameras (RGN and RE), which
show the CLR in a distinct color from a top view of the crop, should be used. Concerning
land robots, to effectively detect the CLR, they should be equipped with RGB cameras to
monitor CLR’s yellow spots under the coffee leaves and land sensors (e.g., pH, temperature,
humidity, soil moisture, and luminance). This research work will be helpful to size the
optimal number and type of sensors required by such a full-scale implementation.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
.3390/s21165474/s1, Table S1: Morphological Matrix.
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8. Pech, M.; Vrchota, J.; Bednář, J. Predictive Maintenance and Intelligent Sensors in Smart Factory: Review. Sensors 2021, 21, 1470.

[CrossRef] [PubMed]
9. Busemeyer, L.; Mentrup, D.; Möller, K.; Wunder, E.; Alheit, K.; Hahn, V.; Maurer, H.P.; Reif, J.C.; Würschum, T.; Müller, J.; et al.

BreedVision—A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding. Sensors 2013, 13,
2830–2847. [CrossRef]

10. Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, I. A Review of Wireless Sensor Technologies and Applications in Agriculture and
Food Industry: State of the Art and Current Trends. Sensors 2009, 9, 4728–4750. [CrossRef]

11. Mirik, M.; Norland, J.E.; Crabtree, R.L.; Biondini, M.E. Hyperspectral one-meter-resolution remote sensing in Yellowstone
National Park, Wyoming: I. Forage nutritional values. Rangel. Ecol. Manag. 2005, 58, 452–458. [CrossRef]

12. Lobitz, B.; Beck, L.; Huq, A.; Wood, B.; Fuchs, G.; Faruque, A.S.G.; Colwell, R. Climate and infectious disease: Use of remote
sensing for detection of Vibrio cholerae by indirect measurement. Proc. Natl. Acad. Sci. USA 2000, 97, 1438–1443. [CrossRef]

13. Su, N.Y. Remote Monitoring System for Detecting Termites. U.S. Patent 6,052,066, 18 April 2000.
14. JRC of the European Commission. Precision Agriculture: An Opportunity for Eu Farmers-Potential Support With the Cap 2014–2020.

European Union: Brussels, Belgium, 2014; p. 56. [CrossRef]
15. Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps.

Biosyst. Eng. 2013, 114, 358–371. [CrossRef]
16. Goel, P.K.; Prasher, S.O.; Landry, J.A.; Patel, R.M.; Bonnell, R.B.; Viau, A.A.; Miller, J.R. Potential of airborne hyperspectral remote

sensing to detect nitrogen deficiency and weed infestation in corn. Comput. Electron. Agric. 2003, 38, 99–124. [CrossRef]



Sensors 2021, 21, 5474 15 of 15

17. Bolaños, J.A.; Campo, L.; Corrales, J.C. Characterization in the Visible and Infrared Spectrum of Agricultural Crops from a
Multirotor Air Vehicle. In Proceedings of the International Conference of ICT for Adapting Agriculture to Climate Change,
Popayán, Colombia, 22–24 November 2017; Springer: Cham, Switzerland, 2017; pp. 29–43.

18. Chemura, A.; Mutanga, O.; Dube, T. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water
absorption and random forests. Phys. Chem. Earth Parts A/B/C 2017, 100, 317–324. [CrossRef]

19. GSMA Association. Understanding the Internet of Things (IoT). arXiv 2014, arXiv:1011.1669v3.
20. Azfar, S.; Nadeem, A.; Shaikh, A.B. Pest Detection and Control Techniques Using Wireless Sensor Network: A Review. J. Entomol.

Zool. Stud. 2015, 3, 92–99.
21. Chaudhary, D.D.; Nayse, S.P.; Waghmare, L.M. Application of wireless sensor networks for greenhouse parameter control in

precision agriculture. Int. J. Wirel. Mob. Netw. (IJWMN) 2011, 3, 140–149. [CrossRef]
22. Piamonte, M.; Huerta, M.; Clotet, R.; Padilla, J.; Vargas, T.; Rivas, D. WSN Prototype for African Oil Palm Bud Rot Monitoring.

In Proceedings of the International Conference of ICT for Adapting Agriculture to Climate Change, Popayán, Colombia, 22–24
November 2017; Springer: Cham, Switzerland, 2017; pp. 170–181.

23. Pahl, G.; Wallace, K.; Blessing, L.T.M.; Beitz, W.; Bauert, F. Engineering Design: A Systematic Approach; Springer: London, UK, 2013.
24. Ma, X.J.; Ding, G.F.; Qin, S.F.; Li, R.; Yan, K.Y.; Xiao, S.N.; Yang, G.W. Transforming Multidisciplinary Customer Requirements to

Product Design Specifications. Chin. J. Mech. Eng. 2017, 30, 1069–1080. [CrossRef]
25. Bunge, M. A General Black Box Theory. Philos. Sci. 1963, 30, 346–358. [CrossRef]
26. Liu, A.; Lu, S. Functional design framework for innovative design thinking in product development. CIRP J. Manuf. Sci. Technol.

2020, 30, 105–117. [CrossRef]
27. Avelino, J.; Muller, R.; Eskes, A.; Santacreo, R.; Holguin, F. La roya anaranjada del cafeto: Mito y realidad. In Desafios de la

Caficultura en Centroamerica; IICA: San José, Costa Rica, 1999; pp. 194–241.
28. Kang, Y.; Tang, D. Matrix-based computational conceptual design with ant colony optimisation. J. Eng. Des. 2013, 24, 429–452.

[CrossRef]
29. Khaitan, S.K.; McCalley, J.D. Design techniques and applications of cyberphysical systems: A survey. IEEE Syst. J. 2015, 9,

350–365. [CrossRef]
30. Thenkabail, P.S.; Lyon, J.G.; Huete, A. Hyperspectral remote sensing of vegetation and agricultural crops: Knowledge gain and

knowledge gap after 40 years of research. In Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2016;
pp. 698–763.

31. Chemura, A.; Mutanga, O.; Sibanda, M.; Chidoko, P. Machine learning prediction of coffee rust severity on leaves using
spectroradiometer data. Trop. Plant Pathol. 2018, 43, 117–127. [CrossRef]

32. Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Real-time computer vision with OpenCV. Commun. ACM 2012, 55, 61–69.
[CrossRef]

33. Chaczko, Z.; Braun, R. Learning data engineering: Creating IoT apps using the node-RED and the RPI technologies. In Proceedings
of the 2017 16th International Conference on Information Technology Based Higher Education and Training (ITHET), Ohrid,
Macedonia, 10–12 July 2017; pp. 1–8.

34. Alvermann, M. Introduction to MongoDB. 2016. p. 9. Available online: https://www.mongodb.com/citedon (accessed on 18
July 2020).

35. Mineraud, J.; Mazhelis, O.; Su, X.; Tarkoma, S. Contemporary internet of things platforms. arXiv 2015, arXiv:1501.07438
36. Velásquez, D.; Sánchez, A.; Sarmiento, S.; Toro, M.; Maiza, M.; Sierra, B. A Method for Detecting Coffee Leaf Rust through

Wireless Sensor Networks, Remote Sensing, and Deep Learning: Case Study of the Caturra Variety in Colombia. Appl. Sci. 2020,
10, 697. [CrossRef]



applied  
sciences

Article

A Method for Detecting Coffee Leaf Rust through
Wireless Sensor Networks, Remote Sensing, and
Deep Learning: Case Study of the Caturra Variety in
Colombia

David Velásquez 1,2,3,* , Alejandro Sánchez 1, Sebastian Sarmiento 1, Mauricio Toro 1 ,
Mikel Maiza 2 and Basilio Sierra 3

1 I+D+i on Information Technologies and Communications Research Group, Universidad EAFIT,
Carrera 49 No. 7 Sur - 50, Medellín 050022, Colombia; asanch41@eafit.edu.co (A.S.);
ssarmien@eafit.edu.co (S.S.); mtorobe@eafit.edu.co (M.T.)

2 Department of Data Intelligence for Energy and Industrial Processes, Vicomtech Foundation,
Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain;
mmaiza@vicomtech.org

3 Department of Computer Science and Artificial Intelligence, University of Basque Country,
Manuel Lardizabal Ibilbidea, 1, 20018 Donostia/San Sebastián, Spain; b.sierra@ehu.eus

* Correspondence: dvelas25@eafit.edu.co

Received: 20 December 2019; Accepted: 15 January 2020; Published: 19 January 2020
����������
�������

Abstract: Agricultural activity has always been threatened by the presence of pests and diseases that
prevent the proper development of crops and negatively affect the economy of farmers. One of these
pests is Coffee Leaf Rust (CLR), which is a fungal epidemic disease that affects coffee trees and causes
massive defoliation. As an example, this disease has been affecting coffee trees in Colombia (the third
largest producer of coffee worldwide) since the 1980s, leading to devastating losses between 70% and
80% of the harvest. Failure to detect pathogens at an early stage can result in infestations that cause
massive destruction of plantations and significantly damage the commercial value of the products.
The most common way to detect this disease is by walking through the crop and performing a human
visual inspection. As a result of this problem, different research studies have proven that technological
methods can help to identify these pathogens. Our contribution is an experiment that includes a
CLR development stage diagnostic model in the Coffea arabica, Caturra variety,scale crop through the
technological integration of remote sensing (through drone capable multispectral cameras), wireless
sensor networks (multisensor approach), and Deep Learning (DL) techniques. Our diagnostic model
achieved an F1-score of 0.775. The analysis of the results revealed a p-value of 0.231, which indicated
that the difference between the disease diagnosis made employing a visual inspection and through
the proposed technological integration was not statistically significant. The above shows that both
methods were significantly similar to diagnose the disease.

Keywords: coffee leaf rust; machine learning; deep learning; remote sensing; Fourth Industrial
Revolution; Agriculture 4.0

1. Introduction

The food and beverage industry is characterized by a relatively small number of multinational
companies that link small producers around the world with consumers. A development analysis
conducted by the World Economic Forum and Accenture, in 2018 [1], focused, predominantly,
on upstream value chain segments due to the low tech nature of food and beverage processing
and production and the substantial potential for improving efficiency in agrifood activities.
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According to the Organisation for Economic Co-operation and Development (OECD), the food
and beverage industry is classified as a low tech industry, so it can add innovation without significant
social disadvantages [2]. According to the OECD, each opportunity presented by the Fourth Industrial
Revolution must be used to realize a global food production system that can address challenges with
limited environmental impact while taking advantage of opportunities for growth, innovation, and
development [2].

The developments of the Fourth Industrial Revolution will change production systems in the
food and beverage industry through innovation in digital, physical, and biological technologies [1];
for instance, vertical agriculture, advanced wastewater treatment, advanced packaging, precision
agriculture [3], advanced organic agriculture, supply chain traceability [4], genome editing, cell and
tissue engineering, automated agriculture [5], remote sensing [6], 3D food printing, and Agriculture 4.0.

The three main developments with the most significant growth potential for value creation in
the food and beverage industry are: precision agriculture, advanced organic agriculture, and genome
publishing [1]. In particular, precision agriculture integrates data analysis processes with crop science
and technologies such as GPS, soil sensors, meteorological data, and the Internet of Things (IoT) for
decisions related to fertilizer, irrigation, harvest time, and seed spacing, among others. Precision
agriculture is applicable to the entire agricultural production system and drives substantial yield
increases while optimizing for resource use [1]. The goal of precision agriculture is to enable scientific
decisions in agriculture to improve value creation.

One industry in which precision agriculture can improve value creation is the coffee industry;
in particular, the specialty market. Coffee is one of the world’s most popular drinks and merchantable
commodities. Every year, over 500,000 million cups are consumed, and over 158 million bags of
60 kg are produced. Coffee is grown in around 70 countries around the world in a region known as
the Bean Belt. This region is located between the Tropics of Cancer and Capricorn, and the world’s
primary producers are Brazil (2720 million kg/year), Vietnam (1650 million kg/year), and Colombia
(810 million kg/year). Furthermore, the social impact of the coffee growing industry is very significant
because the people who depend on this activity for all or most of their living exceeds 100,000,000
worldwide [7].

The market is divided into two groups, known as the standard and specialty markets, according
to the quality of the final product, which depends on the cultivated coffee variety, the environmental
conditions, and the post-harvest process. This quality is measured with a score between zero and 100
and is known as the cup quality. When the cup quality is less than 80 points, the coffee belongs to
the standard market, and its selling price depends primarily on the New York Commodity Exchange.
On the other hand, when the coffee has a cup quality greater than or equal to 80 points, it belongs to
the specialty market, and its selling price is at least twice the standard coffee price [8]. Nevertheless,
it is a fact that coffee, which is cultivated with a view toward the specialty market, needs a more careful
and judicious agronomic management.

Regardless of the product’s target market, coffee growers around the world face three significant
challenges currently to preserve quality: (i) unpredictable climate variations, (ii) the presence of
nutritional deficiencies, and (iii) attacks of pests and diseases. Concerning the latter, for instance, Coffee
Leaf Rust (CLR), which is a disease considered to be the main phytosanitary problem for coffee crops,
causes in Latin America losses of 30% of the efficiency of each harvest [9].

The fungus Hemileia vastatrix is the cause of the CLR disease, which is the major phytosanitary
problem for coffee crops. Once high levels of severity are reached, the corrective actions can be
minimal. Inappropriate management of the disease can harshly compromise the coffee plants, as seen
in Figure 1a, resulting in only a few leaves remaining on the trees, which has a direct negative impact
on the quantity and quality of the harvest [10].
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(a) (b)
Figure 1. Coffee Leaf Rust (CLR) effects: (a) on the Caturra variety crops; (b) on a leaf at the disease’s
highest development stage [11].

CLR progresses gradually in time and reaches three noticeably phases. The first one, called
the “slow phase” (severity ≤5%), is where the first structures responsible for the production of
spores emerge and low levels of infection are evident. The second one, which is named the “fast or
explosive phase” (5% < severity ≤ 30%), starts with the fungus sporulation and is represented by
more plants getting sick in a short period. The final phase is called the “maximum or terminal phase”
(severity >30%) and occurs when most of the leaves are severely attacked and a small amount of
healthy leaves remains. At that moment, the epidemic stops in the host due to the lack of biological
matter to continue the infection. When the CLR is not controlled and the climatic conditions are
favorable, the disease can develop at a daily rate of 0.19–0.38%, reduce the impact of the chemical
controls, and cause significant economic damage [10].

1.1. Context

In the Colombian context, coffee is the most exported agricultural product, followed by cut flowers,
bananas, cocoa, and sugarcane [12]. In the country, there are more than 903,000 hectares dedicated to
it, and approximately 563,000 families depend directly on this economic activity. Colombian coffee has
been considered one of the best soft coffees in the world, and this product has traditionally been of
great importance for Colombian exports. Currently, 14,000,000 bags of 60 kg are exported every year
to the USA, Japan, and Germany, among other countries [13].

In terms of employment generation and income distribution, coffee growing is a sector with
superlative relevance for local economies and the maintenance of the social fabric in many regions of
the country. For this reason, it is justified to contribute by solutions that strengthen the profitability of
families engaged in this activity and improve their life quality, either by increasing the selling price
of the product, reducing production costs, or increasing the number of units produced per unit of
cultivated area.

Among the main threats for strengthening the coffee growing families’ profitability, nutritional
deficiencies and phytosanitary problems stand out. Phytosanitary problems are caused by pests such
as the coffee borer beetle and diseases such as CLR, whose proliferation increases due to the drastic
climate changes (from long drought periods to extended rainy seasons) that occur in Colombia. In the
case of CLR, when the climatic conditions are unfavorable and the agronomic management deficient,
at least 20% of the total expected harvest is not able to be collected. Additionally, the quality of coffee
deteriorates dramatically, reducing the marketing price and increasing the costs associated with its
control [10]. In extreme cases of CLR, the disease has caused devastating losses that have represented
between 70% and 80% of the total harvest.

Although it is a disease with vertiginous spread and highly negative repercussions for the coffee
farmers’ economy, its detection and diagnosis are carried out using visual inspection while walking
through the crops. This method refers to the recognition of plant diseases using visual inspections,
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development scales, and standard severity diagrams for their measurement [14]. People in charge of
the crops walk through them, watching and touching the plants to identify symptoms associated with
the particular disease that produces them and calculate infection levels [15].

Unfortunately, because the process consists of a visual inspection, which is not done with enough
regularity, most of the time, the detection of the development stage of the disease is late, its control
becomes more difficult, and considerable economic losses are inevitable.

1.2. State-of-the-Art

Plenty of research has been done on applying technological methods and strategies to diagnose
diseases [16], to detect pests [17], and to obtain nutritional information [18], among other objectives,
for different types of crops. The phytosanitary status of the plantations is closely related to different
crucial factors in their ecosystem, such as weather, altitude, and type of soil, among others. Therefore,
several biological and engineering studies aim to implement practical solutions based on these factors
to improve farming techniques to preserve healthy crops.

The most commonly used methods for monitoring the phytosanitary status efficiently, including
those that make use of technology, are: (i) Remote Sensing (RS), (ii) visual detection, (iii) biological
intervention, (iv) Wireless Sensor Networks (WSN), and (v) Machine Learning (ML) supported on a
source of data. Thus, this work is intended to present recent relevant studies based on the mentioned
methods for detecting anomalies on the plantations.

(i) Remote Sensing (RS)

RS is based on the interaction of electromagnetic radiation with any material. In the case of
agriculture, it involves the non-contact measurement of the reflected radiation from soil or plants
to assess different attributes such as the Leaf Area Index (LAI), chlorophyll content, water stress,
weed density, and crop nutrients, among others. Those measurements can be made using satellites,
aircraft, drones, tractors, and hand held sensors [19]. In addition to measuring reflected radiation,
there are two other RS techniques that analyze fluorescent and thermal energy emitted by the leaves.
However, the most common technique is reflectance, because the amount of reflected radiation from
the plants is inversely related to the radiation absorbed by their pigments, and this can serve as an
indicator of their health status [19]. RS helps the indirect detection of problems in agricultural fields
since this method captures unusual behaviors in crops’ reflectance, which can be caused by factors like
nutritional deficiencies, pests and diseases, and water stress. In 2017, Calvario et al. [20] monitored
agave crops using Unmanned Aerial Vehicles (UAVs) and integrating RS with unsupervised machine
learning (k-means) to classify agave plants and weed. In 2003, Goel et al. [21] studied the detection of
changes in the spectral response in corn (Zea mays) due to nitrogen application rates and weed control.
For that purpose, the researchers employed a hyperspectral sensor called the Compact Airborne
Spectrographic Imager (CASI) and analyzed the reflectance values of 72 bands with a wavelength
between 409 and 947 nm, which comprise part of the visible and Near-Infrared (NIR) regions of
the electromagnetic spectrum. The obtained results demonstrated the potential of detecting weed
infestations and nitrogen stress using the hyperspectral sensor CASI. Specifically, the researchers found
that the best fitting bands for the detection were the wavelength regions near 498 nm and 671 nm,
respectively, as seen in Figure 2.

It has been shown that using satellites’ multispectral images, it is possible to detect the location of
crops [22], but the resolution of satellites images does not allow early detection of the phytosanitary of
individual lots of plants. Regarding the phytosanitary status of the plants, the water and the type of
soil are two components that play an essential role in their health. In 2017, Bolaños et al. [23] proposed
a characterization method using the visible and infrared spectrum to identify these components,
through low cost cameras with two different filters, Roscolux #19 and Roscolux #2007, and a
multi-rotor air vehicle. Through this method and using portable and highly qualified devices, those
hard-to-reach places were monitored and analyzed to detect anomalies that may cause diseases in the
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crop. This monitored phase provided a characterization of the Normalized Difference Vegetation Index
(NDVI), as seen in the example of Figure 3, which was used to categorize essential characteristics of
the crop, such as crop health, diseased plants or soil, and water or others.

Figure 2. Reflectance (%) of the corn response during different flights under normal nitrogen rates and
no weed control [21], Copyright Elsevier, 2003.

Figure 3. Characterization of the NDVI with low cost solutions [24].

In 2017, Chemura et al. proposed a method to predict the presence of diseases and pests early
among coffee trees based on unnoticeable water stress. For that purpose, multispectral scanners with
filters with wavebands from the visual spectrum and near infrared region were placed on a UAV [25].
The wavebands scanner results showed inflections points between the regions 430 nm and 705–735 nm
due to the water content in coffee trees.These results underlined the importance of a suitable irrigation
plan according to the water requirements of the trees, causing an improvement in productivity.
Although the later region indicated relevant values, the waveband of 430 nm was the most relevant
band of remote sensing for predicting the water plant content directly related to its stress. However,
in [25], the authors remarked that although the results were promising, there were some missing
valid components that could allow the model to be suitable and testable in real conditions. For that
purpose, they recommended using hyperspectral cameras, which provide more precise measured
waveband results.
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(ii) Visual Detection

The detection of visual symptoms uses the changes in the plant’s appearance (colors, forms,
lesions, spots) as an indicator of it being attacked by a disease or pest [15]. In the survey of
Hamuda et al. [26], image based plant segmentation, which is the process of classifying an image into
plant and non-plant, was used for detecting diseases in plants [27]. For instance, for the evaluation of
the CLR’s infection percentage in a specific lot, the number of diseased leaves in 60 random trees had to
be divided into the total number of leaves in those trees and multiplied by 100 (see Equation (1)). A leaf
is considered diseased with CLR when chlorotic spots or orange dust are observed on it. The severity
of the disease can be divided into five categories depending on the number and diameter of rust orange
spots, as seen in Figure 4.

Average in f ection % in the lot =
Number o f diseased leaves in the 60 trees

Total number o f leaves in the 60 trees
× 100 (1)

Figure 4. CLR development stages [28].

A visual inspection can be carried out to detect the presence of chlorotic spots on the leaves, which
are then used for measuring the incidence and severity of the disease [10].

To understand the conditions conducive to the development of CLR and, subsequently, refine
the disease control, Avelino et al. [29] monitored such development on 73 coffee crops in Honduras
for 1–3 years. Thereby, through the analysis of production situation variables such as climate, soil
components, coffee tree productive characteristics, and crop management patterns, the researchers
aimed to establish a relationship with the presence of rust. The result of this research indicated that
CLR epidemics depend on the diverse production situations based on Table 1, linked as well to the local
conditions of the plantation. Due to the above, these results reflect the need for the consideration of a
certified growing system that aims for sustainability, taking into consideration production situations
and, thus, preventing the development of pests and diseases.

Table 1. Kinds of variables that describe the importance of coffee plots in the presence of CLR [29].

Kind of Variable Relevance

Climate variation (Altitude and rainfall) High
Soil components Medium–low

Cropping practices Medium
Coffee tree productive characteristics High

(iii) Biological Intervention

Several authors stated the importance of the relationship between living beings sharing the same
environment. One of them was Haddad et al. [30], who in 2009, proposed a study to determine if
seven selected isolated bacteria under greenhouse conditions would efficiently detect and control
CLR. For the development of this research, they inoculated these bacteria: six Bacillus sp., B10, B25,
B157, B175, B205, and B281, and one Pseudomonas sp., P286, which help to detect and control CLR in
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the early development stages, according to a preliminary result presented by Haddad et al. (2007).
For the experiment, two important coffee varieties, Mundo Novo and Catuai, were selected due to the
high susceptibility to CLR. Therefore, for three years, the varieties with the disease interacted with
different treatments (bacteria) to analyze the behavior evolution between them. Based on the results of
the treatments, the isolates P286 and B157 were as efficient as the copper fungicide in controlling the
rust. Hence, considering the harmful effects due to the copper fungicide, the application of biological
control with the B157 isolate of Bacillus sp. may be a reliable alternative solution to CLR management.
That is why this research displayed the opportunity to successfully biocontrol CLR, for specialty
coffee growers.

Jackson et al. [31], in 2012, proposed as well a biological detection and control based on a fungus,
Lecanicillium lecanii. Their primary interest in the crops, in general, was the analogy of the coexistence
of organisms in a specific environment with defined conditions that encounter a perfect balance. Given
the above, the biological control system of the A. instabilis ants were mutualistically associated with
the white halos of the fungus, Lecanicillium lecanii, based on the CLR effect.

However, the hypothesis stated the possibility that spores from Lecanicillium lecanii help to attack
the Hemileia vastatrix before the rainy season. The effect of the time delay of Lecanicillium lecanii in
Hemileia vastatrix resulted in a relationship between the two fungi and the ants not to be demonstrated,
in spite of the control experiment resembling the real world. In conclusion, the restriction of biotic
factors directly affects the development of CLR; therefore, for future work, it is important to consider
the climate variation of an ecosystem to be able to predict such development [31].

(iv) Wireless Sensor Networks (WSN)

Wireless Sensor Networks (WSN) are a technology that is being used in many countries worldwide
to monitor different agricultural characteristics in real time and remotely. It consists of multiple
non-assisted embedded devices, called sensor nodes, that collect data in the field and communicate
them wirelessly to a centralized processing station, which is known as the Base Station (BS). The BS
has data storage, data processing, and data fusion capabilities, and it is in charge of transmitting
the received data to the Internet to present them to an end-user [32]. Once the collected data are
stored on a central server on the Internet, further analysis, processing, and visualization techniques
are applied to extract valuable information and hidden correlations, which can help to detect changes
in crop characteristics. These changes could be used as indicators of phytosanitary problems such
as nutritional deficiencies, pests, diseases, and water stress. WSN is a powerful technology since
the information of remote and inaccessible physical environments can be easily accessed through
the Internet, with the help of the cooperative and constant monitoring of multiple sensors [33].
The sensor nodes in a WSN setup can vary in terms of their functions. Some of them can serve as
simple data collectors that monitor a single physical phenomenon, while more powerful nodes may
also perform more complex processing and aggregation operations. Some sensors can even have
GPS modules that help them determine their particular location with high accuracy [33]. The most
common sensors used in WSN for agriculture are the ones that collect climate data, images, and
frequencies. Chaudhary et al. [34] emphasized in 2011 the importance of WSN in the field of PA by
monitoring and controlling different critical parameters in a greenhouse through a microcontroller
technology called Programmable System on a Chip (PSoC). As a consequence of the disproportionate
rainfall dynamics, the need for controlling a suitable water distribution meeting those parameters
inside the greenhouse arises. Thereby, the study tested the integration of wireless sensor node
structures., with high bandwidth spectrum telecommunication technology. Mainly, it was proven
that the integration was useful to determine an ideal irrigation plan that met the specific needs of
a crop based on the interaction of the nodes within the greenhouse. Furthermore, the researchers
recommended using reliable hardware with low current consumption to develop WSN projects,
because it generates more confidence for the farmers concerning its incorporation with their crops and
provides a longer battery life.
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Besides, Piamonte et al. [35] proposed in 2017 a WSN prototype for monitoring the bud rot of the
African oil palm. With the use of pH, humidity, temperature, and luminosity sensors, they aimed to
measure climate variations and edaphic (related to the soil) factors to detect the presence of the fungus
that causes the disease indirectly.

(v) Machine Learning

The domain concerned with building intelligent machines that can perform specific tasks just like
a human is called Artificial Intelligence (AI) [36]. One of the main subareas of AI is Machine Learning
(ML), which aims to extract complex patterns from large amounts of raw data automatically to predict
future behaviors. When the extracting process of those patterns is taken to a more detailed level,
where computers learn complicated real-world concepts by building them out of simpler ones in a
hierarchical way, ML enters one of its most relevant subsets: Deep Learning (DL) [37]. The functionality
of DL is an attempt to mimic the activity in layers of neurons in the human brain. The central structure
that DL uses is called an Artificial Neural Network (ANN), which is composed of multiple layers of
neurons and weighted connections between them. The neurons are excitable units that transform
information, whereas the connections are in charge of rescaling the output of one layer of neurons
and transmitting it to the next one to serve as its input [38]. Inputting data such as images, videos,
sound, and text through the ANN, DL builds hierarchical structures and levels of representation
and abstraction that enable the identification of underlying patterns [36]. One application of finding
patterns through DL can be for estimating plant characteristics using non-invasive methodologies
by means of digital images and machine learning. Sulistyo et al. [39] presented a computational
intelligence vision sensing approach that estimated nutrient content in wheat leaves. This approach
analyzed color features of the leaves’ images captured in the field with different lighting conditions to
estimate nitrogen content in wheat leaves. Another work of Sulistyo et al. [40] proposed a method to
detect nitrogen content in wheat leaves by using color constancy with neural networks’ fusion and a
genetic algorithm that normalized plant images due to different sunlight intensities. Sulistyo et al. [41]
also developed a method for extracting statistical features from wheat plant images, more specifically to
estimate the nitrogen content in real context environments that can have variations in light intensities.
This work provided a robust method for image segmentation using deep layer multilayer perceptron
to remove complex backgrounds and used genetic algorithms to fine tune the color normalization.
The output of the system after image segmentation and color normalization was then used as an input
to several standard multi-layer perceptrons with different hidden layer nodes, which then combined
their outputs using a simple and weighted averaging method. Fuentes et al. [42] presented a robust
deep learning based detector to classify in real-time different types of diseases and pests in tomatoes.
For such a task, the detector used images from RGB cameras (multiple resolutions and different devices
such as mobile phones or digital cameras). This method detected if the crop had a disease or pest and
which type it was. Similarly, Picon et al. [43] developed an automatic deep residual neural network
algorithm to detect multiple plant diseases in real time, using mobile devices’ cameras as the input
source. The algorithm was capable of detecting three types of diseases on wheat crops: (i) Septoria
(Septoria tritici), (ii) tan spot (Drechslera tritici-repentis), and (iii) rust (Puccinia striiformis and Puccinia
recondita). Related to CLR, research has been done, such as that by Chemura et al. [44], who evaluated
the potential of Sentinel-2 bands to detect the CLR infection levels early due to its devastating rates.
Through the employment of the Random Forest (RF) and Partial Least Squares Discriminant Analysis
(PLS-DA) algorithms, such levels could be identified for early CLR management. The researchers
employed the variety of Yellow Catuai, which was chosen due to its CLR susceptibility. In this matter,
Chemura et al. considered only seven Sentinel-2 Multispectral Instrument (MSI) bands due to the high
resolution stated by previous works in biological studies. Based on the selected bands, the research
results determined that the CLR reflectance was higher in NIR regions of the spectrum, as could be
seen in leaves from the bands B4 (665 nm), B5 (705 nm), and B6 (740 nm). These bands achieved a
high overall CLR discrimination of 28.5% and 71.4% using the RF and PLS-DA algorithms respectively.
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Thus, the band and vegetation indices derived from the MSI of Sentinel-2 achieved the detection of
the disease and an evaluation of CLR in the early stages, avoiding unnecessary chemical protection in
healthy trees.

In 2017, Chemura et al. [45] studied the detection of CLR through the reflectance of the leaves
at specific electromagnetic wavelengths. The objective of their investigation was to assess the utility
of the wavebands used by the Sentinel-2 Multispectral Imager in detection models. The models
were created using Partial Least Squares Regression (PLSR) and the non-linear Radial Basis Function
partial Least Squares Regression (RBF-PLS) machine learning algorithm. Then, both models were
compared, resulting in a low accuracy prediction of the state of the disease for the PLSR, due to its
over-fitting, and a high accuracy prediction for the RBS-PLS model. Additionally, Chemura et al.,
through weighting of the importance of the variables, found that the blue, red, and RE1 bands had
a high model correlation, but the implementation excluding the remaining four bands led to lower
accuracy in both models. On the other hand, if more than one NIR or red edge (RE) band were used,
then the RBS-PLS model developed would over-fit, resulting in a non-transferable model. However,
Chemura et al. emphasized the utilization of the RBS-PLS model due to its machine learning advantage
and its excellent adaptation to possible model over-fitting.

1.3. Conclusions of the Literature Review

The presented state-of-the-art showed that several researchers sought the detection of any vital
element like water stress, nitrogen levels, and vegetation indexes that could lead to an improvement of
production and quality in crops, which translated to an increase in profitability. However, most of the
research did not integrate different means of detecting CLR to have more insights and better accuracy
in predicting this disease. Furthermore, the determination of the infection percentage of the crop
through visual inspection is a tedious task, which is also laborious, time consuming, and subject to
human error and inconsistency [46]. For this reason, the objective of this research is to evaluate to what
extent it is possible to diagnose the CLR development stage in the Colombian Caturra variety (the most
susceptible to the disease) through a technological integration system that involves Remote Sensing
(RS), Wireless Sensor Networks (WSN), and Deep Learning (DL). Adequate management of CLR could
preserve the quality and selling price of the final product, reduce production costs by rationing control
costs, and protect productivity. The present research aims to facilitate the management of the most
dangerous disease in the Colombian Caturra variety’s coffee production to strengthen the profitability
of the rural inhabitants.

The present work provides empirical evidence of a novel diagnostic method for the classification
of the development stage of CLR in coffee crops, by means of a technological integration of image data
(RS), WSN, and DL. This contribution allows coffee growers to detect CLR disease automatically, thus
optimizing the production and maintenance of their crops and replacing the task of manual inspection.
Through this method, the performance evaluation is done, and the results are presented to conclude
to what extent it is possible to diagnose CLR disease. Thus, this information can be useful for coffee
growers to determine if the integration of RS, WSN, and DL in our method could positively impact
their profitability.

2. Proposed Method

The design of experiment implemented in this research was a Completely Randomized Design
(CRD). It was used to compare two or more treatments considering only two sources of variability:
treatments and random error. The objective of using this design of experiment in this project was to
analyze whether the diagnosis of the CLR development stage through the integration of RS, WSN, and
DL was similar to the one made with a traditional visual inspection. A summarized diagram of this
process is shown in Figure 5.
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Figure 5. Proposed methodology flowchart (based on [44]).

In that sense, the study factor was the type of inspection, which had two levels (“visual inspection”
and “technological integration”), and the response variable was the development stage of the disease,
which was a whole number between 0 and 4. Thereby, the fundamental hypothesis to prove,
presented in Equation (2), helped by deciding whether Treatments 1 (“visual inspection”) and 2
(“technological integration”) were statistically equivalent with respect to their means [47].

H0 : µ1 = µ2

HA : µ1 6= µ2
(2)

The procedure for proving the mentioned hypothesis is called Analysis Of Variance (ANOVA)
and required a data table containing a row for each observation and a column for each treatment
indicating the measurements of the response variable. This procedure separated the variability due to
the treatments from the one attributed to the random error and compared them. If the former was
higher than the latter, the means of the treatments were different, and thus, the type of diagnosis
influenced the determined CLR development stage. Otherwise, the means were statistically equivalent,
and it was possible to conclude that the visual inspection and the technological integration were
similar for diagnosing the disease. Lastly, it is essential to mention that the significance level that
was used for proving the hypothesis was 10% (α = 0.1), since the problem at hand was related to
agriculture, where many noise factors associated with the variation of environmental conditions were
involved [47].

For the data collection experiment, 16 six month old, healthy coffee plants coming from Jardín,
Antioquia, were used. Those plants were stored in a Universidad EAFIT’s greenhouse. A biology team
was in charge of their transplantation, agronomic management (elimination of weeds, fertilization,
and fumigation), inoculation, and supervision. For the inoculation, the biology team followed the
process described in Chemura et al. [44]. It is relevant to clarify that a new group of diseased plants
was held as a reserve in case the inoculation of the healthy plants did not take effect over time.

Furthermore, an engineering team was dedicated to the design and assembly of a system, in the
same greenhouse, that integrated RS and WSN. It allowed building a scale crop, recording different
characteristics of it regularly, and storing them on a remote server to analyze its phytosanitary status
later using DL. In that way, once the plants were inoculated and the system was verified, they were
transplanted to it so that the data collection may begin. For that purpose, the scale crop was divided
into four lots with certain differences in their agronomic management, which sought to recreate various
circumstances of a real coffee crop. Thereby, a greater number of scenarios were covered, and the false
positive rate regarding the diagnosis was reduced. LOT 1 contained four non-inoculated plants, and
they were neither fertilized nor fumigated; LOT 2 had four non-inoculated plants and was fertilized
but not fumigated; LOT 3 had four inoculated plants, and they were also fertilized but not fumigated;
and LOT 4 had four inoculated plants, and they were neither fertilized nor fumigated. The previous
distribution can be seen in Figure 6.

Finally, the visual inspections for diagnosis of the CLR development stage were carried out by
the biology team for three months. Once per day, one of them examined the severity of the disease
for each lot and indicated the value of the response variable for each observation; this measure
corresponded to the ground truth. Similarly, the technological system automatically recorded the
scale crop’s characteristics from each lot seven times per day at different moments (with and without
sunlight, because the field sensors and cameras had different illuminance requirements), assigning
to each of these samples the above mentioned daily ground truth. After the data collection phase
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finished, the diagnostic model using DL was generated, and a comparative data table for the statistical
analysis was produced, based on its predictions and the results of the visual inspections. As it was
expected that a considerable amount of observations would be made, only 25% of all collected data
were used for the statistical study. It should also be noted that, as was recommended, the order of the
table’s entries were randomized before executing the analysis in order to minimize bias.

Figure 6. Data collection distribution.

2.1. Experimental Testbed

To evaluate to what extent it was possible to diagnose the CLR development stage in the
Colombian Caturra variety through the integration of RS, WSN, and DL, it was necessary to obtain
empirical evidence employing an experiment. Therefore, an experimental testbed prototype was
built, which included a scale coffee crop. This testbed was capable of simulating different agronomic
conditions and allowed capturing data for diagnosing the disease. The experimental testbed consisted
of a data collection system prototype that integrated remote sensing and wireless sensor networks.
In this testbed, the coffee plants were grouped, combined with the soil, and then divided into four
lots. Furthermore, they were separated to inoculate CLR in half of them, and after that, the four lots
were assembled again. For their agronomic management, fertilizer and fungicide were distributed
and incorporated. Then, each lot was isolated from the others to make the four lots independent,
and the whole scale crop was combined with a rain emulation system and a wind system. Both
rainfall and wind speed for the whole crop were perceived. Furthermore, using sensors in each lot,
pH, illuminance, temperature, humidity, and electrical conductivity were perceived, which will be
further called “sensor data”, and RGB and multispectral images were captured. RGB pictures were
acquired through a regular RGB camera with a resolution of 720 p. These cameras were positioned on
the bottom of the plants since CLR was commonly visible at the underside of the leaf [10]. Regarding
the multispectral cameras, which allowed capturing the reflected radiation of wavelengths that were
not perceptible to the human eye, two cameras from MAPIR R©, called Survey3, were used. Based on
the information cited in the state-of-the-art [21,23,25], the Red + Green + NIR (RGN) and Red Edge
(RE) camera filters were chosen as being suitable to identify crop diseases, including CLR. Thus, one
camera centered in the wavelengths 660 nm–550 nm–850 nm and another one centered in the 735 nm
wavelength were selected to capture images from the top of the plants. The Survey3 incorporated a
Sony R© Exmor R IMX117 12MP sensor and a sharp non-fish eye lens for perceiving light in specific
wavelengths. The created experimental testbed is shown in Figure 7.
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(a) (b)
Figure 7. Experimental testbed: (a) 3D CAD model; (b) implemented prototype.

Afterwards, the state of each lot was integrated with the expert’s visual inspection information
to diagnose the CLR development stage, and then, this information was clustered with the collected
data. To finish the data collection process, data were stored locally and sent to a remote server over
the Internet.

On the other hand, the data that were received on the remote server were preprocessed for
cleaning purposes and stored in a remote database. An example of the LOT 3 directory’s content on
the remote server after one data collection routine was concluded is presented in Figure 8.

Figure 8. LOT 3 directory’s content after a data collection routine.

To clarify how a data collection routine worked, Figure 9 details the whole pipeline from the
sensor readings and image captures until the remote storage. The data from sensors were gathered
and smoothed by a microcontroller. RGB and multispectral images were captured by the cameras.
The totality of the data was collected by a Single Board Computer (SBC), which continually notified the
progress to the Internet of Things (IoT) platform (see Figure A3 inside Appendix C for the IoT platform
dashboard) while it created a single data package. The package containing the documents with the
lots and general data, as well as the images was stored locally. Furthermore, the documents were
inserted into the remote MongoDB R©, which resided in the data center, and the entire data package
was uploaded via Secure File Transfer Protocol (SFTP) to the data center’s file system. At that point,
the data collection routine finished.

Finally, it is also relevant to mention how the collected data can be reviewed so that the process
can be verified. Using a personal computer, the IoT platform, the single board computer, and the data
center could be accessed over the Internet. The access to the IoT platform required a web browser,
while the single board computer and the data center could be remotely inspected through the graphical
desktop sharing system Virtual Network Computing (VNC) or the cryptographic network protocol
Secure Shell (SSH).
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Figure 9. Data collection pipeline.

2.2. Machine Learning Pipeline

To create an adequate model for diagnosing the CLR development stage, the stored data were
first divided into two sets, namely training (with cross-validation) and test. The training set was
processed to build the diagnostic model with cross-validation, which served to assess its intermediate
performance and tune it. Once the diagnostic model was generated, the test set was used for evaluating
its final performance. All the developed models and cloud storage were implemented using an
academic data center.

Within the framework of this project, the data center was used to store the data collected remotely
on the physical part of the prototype. Both the MongoDB R© instance in it, as well as its file system made
the replication of single-board computer’s local storage possible and facilitated the ubiquitous access
to that information. Furthermore, the data center was the place where the data preprocessing, model
generation and CLR development stage diagnosis occurred. It is also relevant to mention that the
software libraries used for the implementation were Python 3.6.0, NumPy 1.16.0 [48], Pandas 0.24.0 [49],
Scikit-learn 0.20.2 [50], and Keras 2.2.4 [51] running on top of TensorFlow 1.12 [52].

The machine learning pipeline model to show how the collected data were manipulated to extract
the model that was used to diagnose the development stage of the disease in question is shown
in Figure 10.

This pipeline model initially consisted of four sub-directories ranging from LOT 1 to LOT 4
where each lot’s data would be correspondingly labeled later on. For that purpose, the biology team
determined the labels by carrying out visual inspections in the field on all plants once a day during the
whole data collection phase. In that sense, it assigned a whole number between 0 and 4 to each plant
on each lot, evaluating the plant leaves’ severity level, and calculated the specific lot’s label as the
rounded average of its four plants’ disease development stages. All data directories of the current day
and corresponding lot were labeled with the value of the last visual inspection, which was determined
in the most recent checkup.

Subsequently, a new rgb_images directory containing five sub-directories (ranging from 0 to 4)
representing the diseases’ five stages was created. In these five sub-directories, RGB images coming
from all lots (LOT 1 to LOT 4) were correspondingly stored according to their label. Similarly, the sensor
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data, which were stored as a JavaScript Object Notation File (JSON), and the multispectral images had
the same label as the RGB images belonging to the same lot. Furthermore, in the case of images in
general, they were visually checked one-by-one to keep only the ones with valuable content (focus,
brightness level) and remove the others. In addition to this, a script was executed to eliminate the
irrelevant JSON files (those with missing values and outliers), as well as the sub-directories that
ended up with no content. The last two actions were part of the depuration stage. In the end, five
sub-directories would exist containing the data from all lots (LOT 1 to LOT 4) adequately labeled.
Those sub-directories were the ones that were used for the generation and final evaluation of the
diagnostic model, taking into account that the diagnosis occurred at the lot level.

Figure 10. Machine learning summarized pipeline model.

Once all the data were correctly distributed, the content of each of the five sub-directories was
virtually shuffled, and the elements per file type were counted for every sub-directory. Then, per label
sub-directory, the minimum of those values was found. Twenty-five percent was calculated, and the
file type associated with that minimum was determined. The resulting numbers indicated the number
of files per respective determined file type and per label that could be used, at most, for testing the
diagnostic model. Taking those threshold numbers into account, the shuffled lot data directories within
each label subdirectory were individually analyzed to split them into two groups, namely training and
test sets. If a particular lot;s data directory was considered as complete (i.e., it had a JSON file, the two
multispectral images, and at least one RGB image) and supposing that using its files for testing did not
exceed the corresponding threshold, then it was copied under the same structure to another location in
order to feed the test set. Otherwise, the lot data directory was also copied, but to grow the training
set. Thereby, the training set (∼75% of all data) was used to train and tweak the model, while the test
set (∼25% of all data), with no overlapping with training set, was only incorporated at the time of
the diagnosis evaluation. The data distribution after the above mentioned process was importantly
imbalanced, as seen in Table 2. It can be noted that Stage 1 was not included in the table. This was due
to the fact that only one sample was identified in that stage. Consequently, it could not be used for the
model construction, and therefore, it could be considered as not relevant.

Table 2. Data distribution between the training and test sets by each CLR development stage.

# of Samples Stage 0 Stage 2 Stage 3 Stage 4 Total

Training 711 55 90 112 968
Test 149 12 18 23 202
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After the two sets were correctly obtained, one submodel was generated for each file type,
i.e., sensor data (JSON), RGB, RGN, and RE. For the JSON files, Multi-Layer Perceptron (MLP) was
used, whereas Convolutional Neural Networks (CNNs) were implemented to classify the RGB, RGN,
and RE images. For that purpose, the data in the training set were first divided into four subdirectories
according to the file type, while preserving the same structure. Then, each of them was preprocessed
so that the noise was removed from the images, and the irrelevant keys in the documents were also
identified and eliminated. Figure 11 illustrates an example of preprocessed image files.

(a)

(b) (c)
Figure 11. Example of preprocessed image files: (a) RGB image; (b) RGN image; (c) RE image.

After that, the corresponding data were loaded within each submodel’s generation, divided
into feature data (the files themselves) and label data (the names of the label subdirectories that
contained the files), and permuted. Thereby, the data were randomly mixed while it was still
possible to know each feature’s respective label unequivocally. Then, if applicable, the data were
normalized and structured to scale the input and format, as was recommended when using deep
ANNs. The normalization used for this experiment was the z-score (subtracting the mean of the feature
and dividing by its standard deviation), which scaled the data to have the properties of a standard
normal distribution [53]. Upon having the data prepared, different architectures and hyperparameter
values were tried to train the submodel to tune it to reach higher performance values on the predictions.

The technique used for tuning the submodel is called grid search with cross-validation. It
consisted of executing an exhaustive search over specified hyperparameter values for an estimator
to find out which combination achieved the best performance, which was by default the higher
accuracy, but different metrics could be chosen. One candidate estimator for each combination of
hyperparameters was built and evaluated, so that the best estimator, its attributes, and its average
performance could be extracted once the search was complete [54]. Furthermore, the procedure
for measuring the average performance of each candidate estimator during the generation of the
submodel is called k-Fold Cross-Validation, where k separate learning experiments are run on the
the same estimator to calculate k performance values and average them. To achieve this, the feature
and label data were split at the beginning into k non-overlapping subsets (also known as “folds”),
so that for every experiment, one different fold was kept for measuring the performance, whereas
the remaining k − 1 were put together to form the training set to fit the estimator [55]. Finally, when
the grid search processes concluded, the four submodels were extracted and saved for the definitive
diagnosis about the CLR development stage.

To select the best estimator during the grid search with cross-validation, the chosen metric was the
F1-score, which, in the multi-label case, was the weighted average of the labels’ F1-scores. This metric
was used due to the importantly imbalanced dataset (skewed classes) between the development
stages of the CLR, as seen in Table 2. The F1-score of the label L is a value in the [0, 1] range, and it
was calculated as the harmonic mean of the estimator’s precision and recall with respect to L (see
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Equation (3)). The precision with respect to L is the ratio of the number of times that L was correctly
predicted to the overall number of times that L was predicted. Furthermore, the recall with respect to L
is the ratio of the number of times that L was correctly predicted to the overall number of times that L
should have been predicted. Thereby, the general F1-score reaches its best value at 1, indicating that
the estimator perfectly matched reality, and its worst at 0, showing that the estimator never coincided
with reality [53].

F1−scoreL =
2 ∗ precisionL ∗ recallL

precisionL + recallL
(3)

At this point, the data that were kept to be only incorporated at the time of the diagnosis evaluation
were brought up. First, the submodels were loaded. Then, each lot’s data directory contained in the
test set was submitted to the following process. At the beginning, its data were divided according to
the file type. After that, each type was sent to its corresponding submodel, where it was first cleaned,
normalized, and structured, applying the same particular procedures that were used to prepare the
data for the submodel generation. Subsequently, the submodel made its prediction based on the
trained model output. It is also relevant to mention that, considering that the diagnosis was made at
the lot level, the RGB submodel could be used up to four times per lot data directory before retrieving
its result (which was the rounded average of its predictions). The final step consisted of combining
the outcomes of the four submodels and calculating their rounded weighted average, the weights
being the respective F1-scores. Thereby, the definitive lot’s CLR diagnosis was obtained, and it was
recorded along with the processed lot’s data directory label. Once the whole test set was covered,
a table showing comparative results was generated for the statistical analysis, and the performance
reached by the composite model was assessed with the calculation of the F1-score. Figure A2 from
Appendix B illustrates the above machine learning pipeline in a detailed manner, and Table 3 shows
the selected hyperparameters and obtained F1-score for each of them. Tables A1, A2 and A3 from
Appendix D details the architectures of the submodels.

Table 3. Hyperparameters and F1-score for each generated submodel.

Submodel Batch Size Epochs Kernel Initializer Activation Rate Optimizer F1-Score (Cross-Val Set)

Sensor data 16 20 normal ReLU 0.4 Adam 0.651
RGB 16 6 glorot_uniform ReLU 0.4 Adam 0.949
RGN 32 9 glorot_uniform elu 0.3 Adam 0.928
RE 16 6 normal ReLU 0.4 Adam 0.878

The last step of the proposed ML pipeline consisted of integrating the four presented submodels
and evaluating the composite model, i.e., diagnosing the CLR development stage through it, creating a
comparative table with the results achieved and calculating the model’s performance. For that purpose,
a model evaluator script was implemented. This script was in charge of loading the submodels
into memory, iterating over the whole test set, taking each lot data directory within it, dividing the
contained files according to their type and preprocessing them, resizing them to reduce the spatial
complexity (in the case of images), normalizing and structuring each file according to the submodels’
expected input, and sending them to their corresponding submodel to get a prediction. In addition,
the script allowed gathering the four predicted labels and calculating their rounded weighted average,
since the generated submodels presented different performances for diagnosing the CLR development
stage. Table 4 shows the weights for the predictions of each submodel, which were determined as the
ratio of each F1-score in Table 3 with respect to the sum of all F1-scores.
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Table 4. Weights for the predictions of each submodel.

Submodel Weight for Predictions

Sensor Data (JSON) 0.191
RGB 0.279
RGN 0.272
RE 0.258

To further explain the weighted average, let us assume that a sample folder with all the collected
data (sensor data, RGB, RGN, and RE images) was labeled as CLR Development Stage 2 (Label = 2).
Then, these data inside this folder were fed into the developed submodels (sensor data, RGB, RGN,
and RE submodels) which produced an output based on their trained model. Let us assume that the
sensor data submodel classified this as 0, the RGB submodel as 3, the RGN submodel as 2, and the RE
submodel as 2. Then, considering the weights from Table 4, the averaged development stage would
be approximately 1.90. Then, rounding this value up, the final output of the ML pipeline would be
DevelopmentStage = 2. This example is shown in Figure 12.

Figure 12. Machine learning classification example.

3. Results

The results of this experiment were a composite trained model with an F1-score of 0.775.
This model was tested using ANOVA to prove the validity of the hypothesis presented in Section 2,
with respect to the visual inspection and our proposal using the technological integration methods.
The p-value obtained was 0.231, which was greater than the significance α = 0.1. This result indicated
that the proposed method for automatically detecting the CLR disease presented an equivalent
performance compared to the manual/visual inspection method (the ANOVA test will be further
discussed in Section 3.1). All the inputs for the obtained results are detailed below.

On the one hand, it must be mentioned that, during the data collection phase, the biology team
had to replace 12 coffee plants of the scale crop with external diseased ones because the inoculation
did not take effect after two months (all plants stayed in Development Stage 0).

On the other hand, the training set used for fitting the submodels was composed of 968 directories.
In total, they contained 672 sensor data (JSON) files, 2192 RGB files, 603 RGN files, and 641 RE files.
In addition, the test set employed for the composite model evaluation comprised 202 lot data directories,
with 224 sensor data (JSON), 730 RGB files, 202 RGN files, and 202 RE files. Finally, after evaluating
the diagnosis of the CLR development stage in the Colombian Caturra variety employing the created
DL model, a comparative table, along with a performance table, was successfully generated. Figure
A1 from Appendix A shows the comparative table for the statistical analysis. Table 5 presents the
definitive F1-score reached by each submodel and the composite model.
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Table 5. F1-score reached by the individual submodels and the composite model.

Model F1-score (Test Set)

Sensor Data (JSON) 0.570
RGB 0.920
RGN 0.946
RE 0.944

Composite 0.775

3.1. Analysis of the Results

Statistical analysis of the results regarding the performance evaluation of the diagnostic model
was carried out using the comparative table found in Figure A1 from Appendix A. The purpose
of the analysis was to determine whether there was a significant difference in the mean CLR
development stage diagnosed with a visual inspection and using the proposed technological
integration. The outcome was relevant to get the necessary statistical support for answering the
research question.

The comparative table contained 202 observations with the corresponding diagnosed development
stage for both treatments. Figure 13 shows the box plot chart describing the measurements. The x-axis
contains the two treatments (“visual inspection” and “technological integration”), whereas the CLR
development stage is presented on the y-axis. The graphical similarity of the data distribution of each
treatment suggested a possible similarity to the means of the response variable. To assess this condition
and make a decision based on the hypothesis, an ANOVA was executed.

Figure 13. Data distribution of the observations for both treatments.

The results of the ANOVA can be seen in Table 6. The obtained p-value for the treatments factor
was 0.231. This value was greater than the set significance (α = 0.1), which meant that there was not
sufficient evidence for rejecting the null hypothesis. Thus, it was concluded, with 90% confidence,
that there was no statistically significant difference between the diagnosis of the CLR development
stage made by using visual inspection and the technological integration. This result indicated that
both methods were significantly similar to diagnose the disease.

This research demonstrated the feasibility of diagnosing the CLR development stage in the
Colombian Caturra variety, with significant performance, through the integration of RS, WSN, and DL.
The analysis of the results allowed obtaining statistical evidence for supporting the research hypothesis.
In that sense, the outcome suggested that a technological integration could contribute to the protection
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of the phytosanitary status of coffee crops since it showed potential for complementing the traditional
visual inspections towards the diagnosis of the most economically limiting disease for Colombian
coffee production.

Table 6. ANOVA table of the statistical analysis.

Df Sum Sq Mean Sq F Value Pr(>F)

Treatments 1 2.7 2.696 1.437 0.231
Residuals 402 753.9 1.875

4. Conclusions

The integration of RS, WSN, and DL within the framework of this study successfully allowed
evaluating to what extent it was possible to diagnose the CLR development stage in the Colombian
Caturra variety. To this end, the most relevant information obtained was consolidated, the knowledge
about the study context and CLR was detailed, and the repercussions of the disease in the Colombian
coffee growing industry were identified. Furthermore, the state-of-the-art methods were reviewed
and used for the current research. Creative design sessions were carried out to define the most
useful technological integration of RS and WSN. Afterward, a functional prototype that automatically
collected data in the field and transferred them to a remote server over the Internet was built. Besides,
a diagnostic model using DL was implemented based on the stored data, and it successfully allowed
evaluating the CLR development stage with unknown field data.

The motivation of this research project was to contribute to rural development through
technological innovation to strengthen the profitability of Colombian coffee growers. Considering
that the country has the potential, in terms of environmental conditions and diverse ecosystems,
to generate a giant portfolio of exotic products that would be better valued in the specialty coffee
market, this research evaluated, with empirical evidence, a technological approach that attempted
to facilitate the diagnosis and mitigate the risks of one of the most economically limiting diseases
for coffee production. In that sense, the proposed technological integration could positively impact
the rural sector since those innovations promote investments in infrastructure, which are crucial to
empower the rural community and improve the living standards and activities concerning progress,
productivity, and income generation.

The obtained p-value in the analysis of the results was 0.231, which helped to determine, with 90%
confidence, that the visual inspection and the technological integration did not present a statistically
significant difference regarding the diagnosis of the CLR development stage. Thus, it could be said
that the assessment of the disease led to a similar outcome using either method, which suggested
that the obtained results supported the research hypothesis. Finally, it could be asserted that through
the integration of RS, WSN, and DL, it was possible to diagnose the CLR development stage in the
Colombian Caturra variety with a F1-score of 0.775. This value indicated that, on average, the diagnostic
model was excellent in terms of the certainty and usefulness of its diagnosis.

Regarding the data processing phase, a further extension of this research could include the
implementation of a simple user interface for visualizing the diagnosis of the CLR development
stage through the generated DL model to better illustrate the results to a coffee grower. Additionally,
the proposed technological integration could be scaled to a real context by using drones with one or
both of the two multispectral cameras used in the experiment presented by this work (depending
on the project budget) as a possible approach, knowing that the identification of the CLR could be
done with just one camera, e.g., RGN (F1-score of 0.946), due to its high score. Another real context
approach could be further explored using a mobile autonomous robot with a single RGB camera.
Finally, the F1-score values achieved on the test set, which showed that the submodels based on
images presented a higher performance than the JSON submodel (sensor data model), suggested
reconsidering the composite model for future work and focusing all efforts on improving the collection
and processing of just RGB and multispectral data or using more robust sensors when the technology
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allows it; by using just the three submodels (RGB, RGN, and RE), we computed an average F1-score of
0.93, which clearly showed that an improved composite F1-score could be surely achieved, but a real
context commercial application may only implement one of the best three previous submodels due to
both implementation and maintenance costs.
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Appendix A. Comparative Statistical Analysis Table
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1277 0 0 192 0 0 209 0 0 384 0 1 633 0 0 229 0 0 257 2 2

494 4 4 391 3 2 749 0 0 608 0 1 1511 0 0 449 4 4 3148 3 1

498 0 1 1090 0 0 245 2 2 628 0 1 1517 0 1 105 0 0 268 0 0

4217 4 3 380 3 3 854 0 2 1572 0 0 1571 0 0 527 0 0 215 2 2

469 0 1 246 0 0 3115 3 3 181 0 0 3193 3 2 361 0 0 164 0 0

1258 0 0 356 3 3 183 0 1 665 0 0 259 2 2 635 0 0 694 0 1

490 0 1 4231 4 3 1567 0 1 1077 0 0 154 0 0 1342 0 1 208 0 1

636 0 1 321 0 0 1525 0 0 204 0 0 1479 0 0 252 0 1 436 4 4

230 2 2 425 4 4 1437 0 1 360 0 0 437 4 3 602 0 1 1221 0 0

456 4 3 487 4 4 348 0 0 409 0 1 609 0 0 711 0 0 1559 0 0

667 0 0 1574 0 0 489 0 1 654 0 0 1512 0 0 919 0 0 1005 0 0

230 0 1 1499 0 0 895 0 1 1414 0 0 245 0 0 410 0 0 1463 0 0

514 0 0 4114 4 4 3188 3 2 359 3 3 3108 3 3 879 0 1 4233 4 4

911 0 0 695 0 0 76 0 0 4106 4 4 394 0 1 1230 0 1 488 0 1

721 0 0 138 0 0 552 0 1 572 0 1 1281 0 0 1173 0 0 2120 2 2

513 0 0 244 0 1 445 4 4 611 0 1 256 2 2 1386 0 0 439 0 0

4 0 1 792 0 1 692 0 1 596 0 1 1189 0 0 687 0 0 79 0 0

4207 4 4 777 0 0 1370 0 1 316 0 0 1462 0 0 453 0 0 387 0 0

3135 3 2 351 0 0 356 0 0 1278 0 1 97 0 0 28 0 0 300 0 0
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255 0 0 807 0 0 3106 3 3 323 3 3 491 0 0 153 0 0 3162 3 2
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394 3 3 376 0 1 1061 0 0 861 0 0 793 0 0 386 0 0 311 3 3

193 0 0 2101 2 2 4205 4 4 4230 4 3 850 0 1 377 0 0

` Figure A1. Comparative statistical analysis table showing Visual Inspection VS Technological Integration with their respective sample IDs.
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Appendix B. Data Management Model
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Figure A2. Detailed Data Management Model.
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Appendix C. IoT Platform Dashboard

Figure A3. Implemented IoT platform real-time dashboard.

Appendix D. Submodels’ Architectures

Table A1. JSON submodel’s architecture.

N Layer Output Shape # of Parameters

1. Input Layer (None, 6) -
2. Fully Connected (None, 16) 112
3. Batch Normalization (None, 16) 64
4. Activation (None, 16) 0
5. Fully Connected (None, 64) 1088
6. Batch Normalization (None, 64) 256
7. Activation (None, 64) 0
8. Dropout (None, 64) 0
9. Fully Connected (None, 32) 2080
10. Batch Normalization (None, 32) 128
11. Activation (None, 32) 0
12. Dropout (rate = rate/2) (None, 32) 0
13. Fully Connected (None, 4) 132
14. Activation (None, 4) 0
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Table A2. RGB submodel’s architecture.

N Layer Output Shape # of Parameters

1. Input Layer (None, 96, 128, 3) -
2. Convolutional2D (Kernel = (5, 5)) (None, 92, 124, 18) 1368
3. Batch Normalization (None, 92, 124, 18) 72
4. Activation (None, 92, 124, 18) 0
5. Max Pooling (pool = (2, 2)) (None, 46, 62, 18) 0
6. Convolutional2D (kernel = (5, 5)) (None, 42, 58, 36) 16,236
7. Batch Normalization (None, 42, 58, 36) 144
8. Activation (None, 42, 58, 36) 0
9. Max Pooling (pool = (2, 2)) (None, 21, 29, 36) 0
10. Convolutional2D (kernel = (3, 3)) (None, 19, 27, 54) 17,550
11. Batch Normalization (None, 19, 27, 54) 216
12. Activation (None, 19, 27, 54) 0
13. Max Pooling (pool = (2, 2)) (None, 9, 13, 54) 0
14. Dropout (None, 9, 13, 54) 0
15. Flatten (None, 6318) 0
16. Fully Connected (None, 512) 3,235,328
17. Batch Normalization (None, 512) 2048
18. Activation (None, 512) 0
19. Dropout (None, 512) 0
20. Fully Connected (None, 128) 65,664
21. Batch Normalization (None, 128) 512
22. Activation (None, 128) 0
23. Dropout (rate = rate/2) (None, 128) 0
24. Fully Connected (None, 5) 645
25. Activation (None, 5) 0

Table A3. RGN and RE submodels’ architectures.

N Layers Output Shape # of Parameters

1. Input Layer (None, 128, 96, 3) -
2. Convolutional2D (kernel = (5, 5)) (None, 124, 92, 18) 1368
3. Batch Normalization (None, 124, 92, 18) 72
4. Activation (None, 124, 92, 18) 0
5. Max Pooling (pool = (2, 2)) (None, 62, 46, 18) 0
6. Convolutional2D (kernel = (5, 5)) (None, 58, 42, 36) 16,236
7. Batch Normalization (None, 58, 42, 36) 144
8. Activation (None, 58, 42, 36) 0
9. Max Pooling (pool = (2, 2)) (None, 29, 21, 36) 0

10. Convolutional2D (kernel = (3, 3)) (None, 27, 19, 54) 17,550
11. Batch Normalization (None, 27, 19, 54) 216
12. Activation (None, 27, 19, 54) 0
13. Max Pooling (pool = (2, 2)) (None, 13, 9, 54) 0
14. Dropout (None, 13, 9, 54) 0
15. Flatten (None, 6318) 0
16. Fully Connected (None, 512) 3,235,328
17. Batch Normalization (None, 512) 2048
18. Activation (None, 512) 0
19. Dropout (None, 512) 0
20. Fully Connected (None, 128) 65,664
21. Batch Normalization (None, 128) 512
22. Activation (None, 128) 0
23. Dropout (rate = rate/2) (None, 128) 0
24. Fully Connected (None, 4) 516
25. Activation (None, 4) 0
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ABSTRACT Detecting faults and anomalies in real-time industrial systems is a challenge due to the
difficulty of sufficiently covering an industrial system’s complexity. Today, Industry 4.0 makes it possible
to tackle these problems through emerging technologies such as the Internet of Things and Machine
Learning. This paper proposes a hybrid machine-learning ensemble real-time anomaly-detection pipeline
that combines three Machine Learning models –Local Outlier Factor, One-Class Support Vector Machine,
and Autoencoder–, through a weighted average to improve anomaly detection. The ensemble model was
tested with three air-blowing machines obtaining a F1-score value of 0.904, 0.890, and 0.887, respectively.
The results of the ensemble model showed improved performance metrics concerning the individual
metrics. A novelty of this model is that it consists of two stages inspired by a standard industrial system:
i) a manufacturing stage and ii) an operation stage.

INDEX TERMS Anomaly detection, industry 4.0, machine learning, predictive maintenance, real-time.

I. INTRODUCTION
Thanks to the fourth industrial revolution (4IR), traditional
industrial processes face new challenges: improving current
or establishing new processes that efficiently use novel tech-
nologies and fully exploit their potential. 4IR or Industry
4.0 is viewed as a disruptive innovation in a highly compet-
itive market that positively impacts several industrial sectors
by incorporating new enabling technologies: 3D printing,
the Internet of Things (IoT), Cyber-Physical Systems (CPS),
Artificial Intelligence (AI), BigData, Robotics, Nanotechnol-
ogy, and Quantum Computing are examples of these tech-
nologies [1]. In industrial machines, high volumes of data are

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul S. Raval .

generated and acquired by data acquisition systems such as
a Supervisory Control and Data Acquisition (SCADA) or an
embedded system. AI algorithms can then process this data
to generate new knowledge of the process and identify new
machine conditions, which represents one of the advance-
ments provided by Industry 4.0. Predictive maintenance is an
industrial process that is the subject of the work presented in
this article and highly benefits from the Industry 4.0 technolo-
gies mentioned above [2].
Nowadays, most industrial companies face problems aris-

ing from maintaining their systems. However, multiple tech-
niques –involving predictive or condition-based maintenance
(CBM)– allow predicting critical situations to reduce these
problems. According to An et al. [3], in terms of diagno-
sis, predictive maintenance is divided into two categories:
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i) Models that take into account physical principles and
ii) models based on historical observations. One of the tech-
niques used in the second group consists of the early detection
of abnormal behavior in industrial equipment. This early
detection can avoid possible breakdowns of equipment and
reduce associated maintenance costs.
Anomaly detection is being researched in several appli-

cation fields. Some of the associated research fields are
disease detection, intrusion detection, fraud prediction, and
fault detection in industrial equipment [4]. It is possible to
identify anomalous states that do not match the normality
data, which usually corresponds to the predominant states
through anomaly detection.
The detection of anomalous states presents a challenging

task. The detection becomes more complicated than usual if
it is to be done in real-time due to the restrictive features of the
streaming data. Unlike batch learning, where all the historical
data are available, and no new information is added to the
models already built, stream learning has five restrictions that
must be taken into account [5]. i) Streaming data samples
arrive online and can be read at most one time, which is a
strong restriction for processing them since the system has
to decide whether the current data sample is discarded or
archived. ii) Past data samples can only be accessed if stored
in memory. Otherwise, a forgetting mechanism in charge of
discarding past samples is applied. iii) Since not all data
samples can be stored, a decision made on past samples
cannot be undone. iv) The data processing time of each data
sample should be short and constant. v) The data processing
algorithm must produce a model equivalent to what a batch
algorithm would produce.
The former five restrictions are why most anomaly detec-

tion algorithms –for batch processing– do not apply to stream
processing. Nonetheless, there are hybrid approaches that use
batch-learning algorithms to build an initial model as the first
step and then apply streaming anomaly-detection algorithms
as the second step.
The contribution of this work is the evaluation and com-

parison of different methods to detect anomalies that, due to
their performance-control metrics, establish the weight (or
incidence) of each method in the final combined model, thus
responding better and efficiently to the challenge of real-time
anomaly detection. Specifically, the present work combines
the predicted output of three Machine Learning (ML) mod-
els: Local Outlier Factor (LOF), One-Class Support Vector
Machine (OCSVM), and Autoencoder employing a weighted
average –using as weight the F1-score value of each model.
The goal of the combined model is the detection of anomalies
in industrial systems in real-time. The proposed hybrid model
was implemented using a data set from a real industrial
system of air-blowing machines. Thus, it can be said that the
proposed hybrid anomaly detection model applies to Industry
4.0 systems as well as other industrial frameworks where
real-time data acquisition systems are available.
The following sections of the article are divided into

four sections. The state-of-the-art section shows existing

approaches and research for anomaly detection in real-time.
Next, the third section shows a detailed explanation of
the proposed hybrid anomaly detection. Finally, the results
section describes the scores obtained by applying the hybrid
anomaly detection methodology to a testing data set. A Con-
clusions section ends this paper, showing some concluding
remarks and a future work proposal.

II. STATE OF THE ART
According to [6], [7], an anomaly can be defined as a point in
time where the system’s behavior is unusual and significantly
different from previous, normal behavior. An anomaly may
imply an adverse change in the system, for instance, a fluc-
tuation in a jet engine’s turbine rotation frequency, which
possibly means an imminent failure. An anomaly may also
mean positive behavior; for instance, many web clicks on
a new product page imply higher demand. In both cases,
anomalies in data provide an insight into abnormal behavior
that can be translated into potentially useful information.
The challenge of detecting anomalies –in an industrial

environment– can be twofold. Firstly, to propose a method
to understand different data obtained from various sensors,
often with excessive noise. Secondly, to obtain an overview of
normal behavior to characterize such behavior from historical
data. Therefore, to correctly detect anomalies in a data set,
one must first characterize and define normal data behav-
ior [8]. In addition, normal behavior can be characterized
by the following three stages. (i) Consider data describing
normal behavior through historical data (without considering
anomalies) segmented into different classes according to the
context in which they were recorded. (ii) Extract the most
frequent behaviors, thus characterizing each class. (iii) Detect
anomalies in newly recorded data based on previous knowl-
edge.
In general, anomalies are classified into three types: spe-

cific, contextual, and collective [9]–[11]. It is considered a
point anomaly when this single data point is recognized as
anomalous concerning the rest of the data. According to [10],
these anomalies must be identified before processing or ana-
lyzing the data.

• Contextual anomalies are those where the data are con-
sidered anomalous in a specific context (e.g., the same
sample data are ‘‘normal’’ in a given scenario but anoma-
lous in another context). These types of anomalies are
more common in time-series data flows [10].

• Collective anomalies are those that occur when a collec-
tion of related data are considered anomalous to the total
data. Collective anomalies can also be spatial if they are
outside a typical range or temporal, where the value is
not outside the typical range. However, the sequence in
which it occurs is unusual.

Anomaly detection methods can be distinguished as super-
vised, semi-supervised and unsupervised. Using one method
or another usually depends on the existence or not of descrip-
tive labels of the anomaly. The labels can be categorical,
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e.g., we can have a case of binary or all/nothing labels such
as ‘‘anomalous behavior’’ (1) and ‘‘non-anomalous / normal
behaviour (0)’’, or numerical, e.g., a value of ‘‘anomaly
score’’ ranging from 0 (‘‘non-anomalous / normal’’) to 1
(‘‘totally anomalous’’). While anomaly detection could be
posed as a supervised learning problem, this is –generally–
not the case, as there is often no or little data labeled with the
anomalous behavior [12].
Once the data is available, normally, a series of transfor-

mations of the data needs to be performed before starting the
anomaly detection process [13].

• Aggregation methods: A set of consecutive values from
a time-series data is replaced by a corresponding rep-
resentative value. It provides benefits such as reducing
dimensionality, although it can make detecting anoma-
lies in subsequent steps difficult.

• Discretisation methods: Time-series data are converted
into a discrete sequence of finite alphabets. Techniques
such as symbolic sequence and editing distance can be
applied to detect anomalies.

• Digital Signal Processing (DSP) techniques (such as
Fourier transform, Gabor, and Wavelets filters): Time-
series data are transformed into a lower-dimensional
representation of the input data where anomaly detection
can take place.

A common type of problem detected, whichmay be present
in the data, is noise and outliers. Noise among normal data
may cause the model not to obtain the desired optimal pre-
dictions. Outliers are data points that may be caused by noise
or may have an irregular pattern of behavior. Therefore, this
unusual behavior must first be identified and decided whether
it should be considered an anomaly or an outlier.
Usually, data are created by one or more generation pro-

cesses, representing system’s activities. When the generation
process behaves unusually, it creates anomalies. Therefore,
an anomaly often contains valuable information about the
abnormal characteristics of the systems and elements that
impact the generation process [11].

A. CLASSIFICATION OF TECHNIQUES FOR ANOMALY
DETECTION
There are currently six techniques to detect anomalies. These
techniques are i) Statistics, ii) Classification, iii) Clustering,
iv) Similarity-based, v) Soft Computing, and vi) Knowl-
edge and Combined Techniques based, as explained in [13].
In Table 1, these techniques –and some examples of the
algorithms– used can be seen in detail. Themost relevant ones
for this work will be detailed next.

1) STATISTICS BASED ANOMALY DETECTION TECHNIQUES
Statistical techniques adjust a predefined distribution to
a given data and apply statistical inference to determine
whether an instance belongs to that model. Instances with a
low probability are reported as anomalies [14].

TABLE 1. Classification of the different techniques for anomaly
detection [13].

The two typologies covered by this technique are para-
metric and non-parametric. The first assumes an underlying
data distribution. Although somewhat less efficient in finding
anomalies, the second is preferred because, a priori, it does
not define any model structure as this is determined from the
data.
The most common parametric techniques are divided into

those based on Gaussian models and those based on regres-
sion models. If a non-parametric approach is to be followed,
such a classification can be made based on histograms or
kernels.
Statistical techniques work well for simple structured data

with small dimensions and volume. In such cases, sev-
eral methods can be used [13], such as Box-plots, Blum
Floyd Pratt Rivest Tarjan (BFPRT) algorithm, and similar
central-value estimations on data streams; Medcouple and
Grubbs test (for univariate data); Comparison of distributions
(QQ charts, Kolmogorov-Smirnov test, Kruskal-Wallis test,
andWilcoxon signed range tests); Auto-regressive techniques
(Auto-regressive Integrated Moving Average - ARIMA,
Auto-regressiveMovingAverage - ARMA);ML-basedmeth-
ods; Bayesian networks. Principal Components Analysis
(PCA) / Independent Component Analysis (ICA) (e.g.,
sequence micro-batch analysis).

2) CLASSIFICATION BASED ANOMALY DETECTION
TECHNIQUES
Classification-based anomaly detection techniques perform
two main stages called training and testing. In the training
phase, the system learns from the available samples and
generates a classifier. In the testing phase, samples that the
classifier has not seen are tested to measure the model’s
performance. According to the labels available for training,
classifiers can be grouped into two categories: i) one-class
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and ii) multi-class. Examples of single and multi-class classi-
fiers are neural networks, Bayesian networks, Support Vector
Machines (SVM), and decision trees. These, together with
fuzzy logic, are alsomethods that present a good performance
in the presence of strong noise [15]–[18].
Classification-based techniques have the advantage of

being able to distinguish between observations that belong
to different anomalies (instead of an overall class called
‘‘anomaly’’), and their testing phase is quick, as the test
instance is compared to the predefined model [19]. Although,
classification techniques are based on the availability of
assigning labels to various normal and abnormal classes,
which is a difficult task. Also, these techniques assign labels
to test data, which can be a disadvantage when an anomaly
score is desired.
Classification-based techniques can also be categorized

according to the type of anomaly. Radial-Base Functions
(RBF), SVM, and derivates are commonly used for individual
anomalies. RBFs are very accurate and fast, particularly for
the supervised classification of individual anomalies. For
multiple anomalies, DeepNeural Networks (DNN), induction
rules, and decision trees are used. DNNs can provide excep-
tional recognition rates in static scenarios but can give data
problems that vary over time.

3) CLUSTERING-BASED ANOMALY DETECTION TECHNIQUES
Clustering techniques are generally divided into two stages:
first, the data are grouped with clustering algorithms, and
then the degree of deviation is analyzed according to the
results obtained by the clustering [4]. There are some prior
considerations about the data instances in these unsupervised
techniques. On the one hand, normal-data samples belong to
global clusters. On the other hand, anomalies do not belong to
any defined cluster. In addition, normal data samples are near
the centroids of the closest cluster, while anomalous data are
further away. Finally, normal-data samples belong to large,
dense groups, but anomalies belong to local, small, disparate
groups.
Cluster-based methods are applied in both supervised

and unsupervised learning. Most techniques work well for
complex, large-sized, and voluminous data and –optimally–
if the anomalies do not form significant clusters in a
short time series. Examples of this type of algorithm are
k-Means, Shared Nearest Neighbour (SNN), Density-Based
Spatial Clustering of Applications with Noise (DBScan),
Self-Organizing Map (SOM), or Clustering-based Dynamic
indexing Tree (CD-Tree) [4].

4) SIMILARITY BASED ANOMALY DETECTION TECHNIQUES
These techniques are the most widely used to detect anoma-
lies. One of the techniques, based on similarity, is known
as k Nearest Neighbours (k-NN). k-NN is a non-parametric
method that requires a distance metric to measure the similar-
ity between data observations. Although Euclidean distance
is the most commonly used metric for data with continuous
attributes, it is not usually employed on a practical level.

The above is because the Euclidean distance does not work
well in high-dimensional sets, and measurements such as
Mahalanobis, Hamming, or Chebyshev distances are used
instead. The k-NN algorithm is based on the data score given
by the distance to most of the data around it. So, new data
are classified according to this score. Although, there are
some considerations to be taken into account in this type
of technique [13]: i) A shortage of data can be seen as an
anomaly in unsupervised techniques. ii) The performance is a
function of the distance method chosen; therefore, the criteria
must be clear when choosing a metric. iii) It is valid only
in cases of low-dimensional data. Defining a measure of the
distance between instances can be complicated when the data
dimension is increased.
Another essential similarity-based anomaly detection tech-

nique is based on relative density rather than distance. This
technique estimates the neighborhoods’ density so that a
data item in a low-density neighborhood will be anomalous
while one in a high-density neighborhood will be considered
normal. An existing method for the above is the Local-Outlier
Factor (LOF), which introduces the concept of local outliers
and is based on scoring a data sample according to the
average ratio of the neighborhood’s density to the instance’s
density [20].

B. RELATED WORKS
Many studies on anomaly detection in static data sets in
the literature exist. Examples of supervised approaches are
SVM and Decision Tree [12], or cluster-based methods
such as the Distributed Matching-based Grouping Algorithm
(DMGA) [21]. Other examples use self-adaptive and dynamic
clustering to learn weights for anomaly detection [22] or
statistical methods such as auto-regressive techniques (e.g.,
ARIMA models [23]).
The problem with these methods is that they are not

designed to process streaming data as they need to have the
data set previously stored in the main memory. Therefore,
these traditional techniques have been adapted first and then
applied to streaming-data environments in many cases.
In this sense, Tan et al. [24] propose a fast-anomaly detec-

tion of a class that uses only normal data and works well
when anomalous data are rare. To do this, they use the
Half-Space Trees (HS-Trees) algorithm. The HS-Trees algo-
rithm presents a set of randomHS trees. EachHS tree consists
of a set of nodes, where each node captures the number of data
elements (called mass) within a subspace of the data stream.
The mass is used to profile the degree of an anomaly as it
is quick and straightforward to calculate compared to other
methods based on distance or density. The tree structure is
constructed without any data, making it very efficient as it
does not require restructuring the model once it is running on
streaming data. HS-Trees only need normal data for training.
Another technique that is worth mentioning is the

isolation-Forest Algorithm for Streaming Data
(iForestASD) [25], based on the Isolation-Forest algo-
rithm [26]. This method handles streaming data using sliding
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windows. In this case, the authors start from the ‘‘concept
drift’’, which is a common occurrence handling the streaming
of data in dynamic and non-stationary environments pro-
ducing a change in the distribution of the data [27]. The
‘‘concept drift’’ is a problem that occurs when the statistical
properties of the target variable change over time and the
anomaly detection model is no longer compatible with the
data the model handles, resulting in less accurate predictions.
Therefore, to maintain the anomaly detection effectively, the
model needs to be retrained and updated based on the new
data the model receives [27].
Another research work on anomaly detection is proposed

by [28], which is based on an HT (Hoeffding tree). It is
an inductive-incremental decision-tree algorithm used for
anomaly detection. A handicap of this algorithm is that it
needs class labels to be available for training.
Another work to be highlighted would be that carried out

by a group of Yahoo researchers [29]. Their system –called
Extensible Generic Anomaly Detection System (EGADS)–
allows precise, flexible, scalable, and extensible detection of
anomalies, taking into account time series. The systemmakes
it possible to separate forecasting, anomaly detection, and
alerts into three separate components.
Finally, another interesting work is that contributed by [30]

in which, through the integration of various technologies, the
development of a disease in the leaf of a Colombian-coffee
variety is evaluated and diagnosed. The project contribution
relied on a model ensemble comprising four sub-models
that received the data according to their nature. Once the
prediction of each sub-model was made, its results were
combined, calculating the weighted average. The weight of
each sub-model was a value associatedwith itsF1-score value
in the final model.
Most of the approaches to detect anomalies existing in the

literature are based on models that first build a profile of
what is ‘‘normal’’ and then point out those instances that do
not fit that normal profile as anomalies (statistical methods,
classification-based methods, or cluster-based methods use
this approach).
A contribution of this work is to build an ensemble model

that uses different algorithms that, by combining their results,
will generate a new model to detect anomalies. Ensemble
learning, either for classification or regression, refers to
methods that generate multiple models that are combined to
make a prediction [31]. Ensembles have been –extensively–
used in the last decades as they are considered to provide
greater accuracy and increased robustness [32]. Additionally,
multiple ensemble approaches have been proposed, and sev-
eral studies have reported that model diversity enhances the
ensemble model’s performance as different learners general-
ize in different ways [33].

III. PROPOSED METHODOLOGY
The proposed ML hybrid pipeline for real-time anomaly
detection, as seen in Fig. 1, consists of two stages: i) the
Manufacturing stage and ii) the Operation stage.

The manufacturing stage or pipeline of the Hybrid
Anomaly Detection model construction process takes its
name from the manufacturing process of an industrial
machine. At this stage, an ML model is trained on machines’
quality control process data to validate whether the machine
meets its design standards or not [34]. Thus, the objective of
completing this manufacturing stage model construction task
is double: (i) to use the trained model for detecting machine
design/manufacturing anomalies; (ii) to later deploy it in the
operation stage of the machine when it is integrated into
an industrial production process, for performing a machine
operation anomaly detection task. This model construction
manufacturing stage is equivalent to the design phase of a
classical ML workflow. The metric chosen for measuring
models’ performance is the F1-score of label L. The data
set available is a slightly imbalanced (see Table 2 for class
sizes percentage), where more machine’s ‘‘normal data’’ than
‘‘anomalous data’’ exists, for which the F1-score metric is
considered appropriate. The F1-score is a value in the [0, 1]
range, and it’s calculated as the harmonic mean of the estima-
tor’s precision and recall with respect to L (see Equation (1))

F1−scoreL =
2× precisionL × recallL
precisionL + recallL

(1)

Finally, models’ F1-score (F1i) performance ratio with
respect to the sum of all F1-scores (

∑
j F1j) (see Equation 2)

is calculated and used as the weight (wi) for the weighted
average of the prediction done by each model multiplied by
the computed weights. This weighted average assembles the
HybridAnomalyDetectionmodel at themanufacturing stage.

wi =
F1 − scorei∑
j F1 − scorej

(2)

The operation stage or pipeline refers to the phase when
the machine is already running in production; in terms of a
classical ML pipeline, it represents the deployment phase.
Thus, this pipeline requires the machine to be able to measure
the same variables taken at the manufacturing stage through
industrial sensors. Once these sensors’ data are captured in
real-time, they are used as inputs for the Hybrid Anomaly
Detector, already trained during the manufacturing stage.
This detector will diagnose based on the data received to
generate an alarm for the operator in case of an anomaly. This
detector can also be tuned in operation through a supervised
action of the operator. If this action is triggered, the data are
captured during a timewindow and labeled as ‘‘normal’’ data.
The models are retrained within the hybrid anomaly detector
when the data capture is complete. Once the calibration is fin-
ished, the systemwill be able to continue detecting anomalies
in real-time.

A. MANUFACTURING-STAGE PIPELINE
As previously mentioned, this stage is executed when the
machine is in the factory. The proposed pipeline requires
that the manufactured machine goes through a quality control
process [34], where sensors can capture information about the
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FIGURE 1. Higher-level representation of the proposed Hybrid-ML
pipeline for Anomaly Detection in real-time.

manufactured machine’s operation during a period of time.
The data captured by the sensors during the quality control
process will be called sensor data set.
Once sensors’ data are stored, the data are pre-processed

for data cleaning purposes, i.e., those features that the system
cannot capture with sensors when the machine is in operation
are removed.
The pre-processed data are then normalized so that all

features are on the same scale and comparable in later stages
of the pipeline. A feature selection is then carried out to
extract those variables relevant to the study; this step includes
as a first filter the expert in the domain knowledge, which
can give an initial selection of what variables should be
maintained or discarded. Then an automatic algorithm [35] to
remove redundant features is applied. Following the above,
a dimensionality reduction is performed using a Principal
Components Analysis (PCA) to extract the data’s most rep-
resentative characteristics.
The next stage is to apply a clustering algorithm, the

K-means algorithm, with k = 2, which allows a distinction
between a group of data samples belonging to the transient
state and another group of data belonging to the steady state.
To correctly label the result of the groups generated by the
clustering algorithm, the cluster assigned value is first identi-
fied to the sample with the lowest timestamp of the data set.
This value will correspond to the Transient Data Group and,
therefore, all the samples containing this same cluster value
will correspond to this same state. The rest of the values will
be labeled as Steady-State Data Group.
It is also proposed for the steady-state data group to apply

an outlier detection algorithm. In this case, it is proposed
to use a density-based algorithm called DBSCAN, which is
useful to detect outliers in applications with noise, commonly
found in industrial sensor data [36].
Once the data group belonging to the transient state, stable

state, and outliers (in the stable state) have been identified,
a data set with new labels is generated. Furthermore, a depu-
ration stage is carried out to obtain the final label for the data
set. The transient state and outliers are labeled with a value
of -1, and the normal stable data is labeled with a value of 1.

The previous data set is then divided at random and stratified
into three sets: training, validation, and test. The training set
corresponds to 60%of all the data, where only the normal data
are used to build eachMLmodel with cross-validation, which
allows for testing its intermediate performance and tuning
model hyper-parameters.
For this pipeline, the following three ML algorithms were

used, selected as a result of the authors’ researchwork on state
of the art relating one-class anomaly detection for real-time
systems, as they present an optimum balance of computation
cost, implementation complexity, and performance [6]–[8],
[12], [19]: i) LOF, which finds anomalous data points using
the local deviation of a given data point to its neighbors [20];
ii) One-Class SVM (OCSVM), which finds a frontier that
encloses the vast majority of data (normal data) and new
upcoming data that lay outside the frontier are considered
abnormal [37], [38]; and iii) Autoencoder, which reduces the
input data’s dimensionality by encoding the information to a
smaller space. From this compressed space, it is decoded to
the same dimensions as the original input. The reconstruction
error in this process determines a possible anomaly [39].
Normal data are used for the training because the proposed

pipeline is designed to identify anomalies based on a single
class for novelty detection, and individual ML models use
unsupervised algorithms.
The validation set, which corresponds to 20% of the data

set, is used to obtain the definitive performance (in this case,
theF1-score value) of each trainedmodel. The weights for the
predictions of each model are then determined as the ratio of
each F1-score value (obtained using the validation set). The
weights are stored to be later used for the rounded weighted
average of the Hybrid Anomaly Detector component. The test
set corresponds to the final 20% of the data set and is reserved
for measuring the performance of the hybrid anomaly detec-
tor. The manufacturing stage pipeline is shown in Fig. 2.

B. OPERATION-STAGE PIPELINE
This stage is executed when the machine is in operation. The
operating machine generates real-time data from previously
installed sensors during this process, corresponding to the
same sensors used in the manufacturing stage. Each execu-
tion cycle is pre-processed and delivered to the previously
obtained hybrid model, giving a diagnosis if the machine is
in normal condition or if any anomalies should be reported
through an alarm.
The operation stage also allows for calibrating the Hybrid

Anomaly Detection models required in industrial systems
that degrade over time and can be planned (e.g., every time
maintenance is carried out). The operator must verify that the
machine is in a stable state and under optimal conditions of
normality and activate the ML models’ calibration routine
to carry out this process. Once this process is activated,
the system will collect data during a period of time, which
will depend on each system’s dynamics. Each data will be
stored with the normality label in the data set. This data set
with normal data is then used to retrain each ML algorithm
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FIGURE 2. ML manufacturing stage pipeline.

TABLE 2. Air-Blowing machines’ data set characteristics.

with cross-validation. Finally, the newly trained models are
updated in the Hybrid Anomaly Detector. It should be noted
that only the weights (obtained through the F1-scores) that
were acquired in the manufacturing process are used because,
in the operation process, usually, there are no anomalous data
tomeasure this performance. The operation stage pipeline can
be seen in Fig. 3.

C. EXPERIMENTAL SETUP
The proposed ML Hybrid real-time anomaly detection
pipeline was tested for three different industrial air-blowing
machines from the local industry, with a data set generated by
the quality-control process, and these machines are currently
operational.
The period for collecting machines’ data is between

7 January 2020 and 2 October 2020. The data are recorded
and stored at 2-second intervals. The final data set comprises
16 columns (15 variables and timestamps) with 1990 obser-
vations forMachine A, 2009 observations forMachine B, and
2132 observations for Machine C. The above-mentioned data
set characteristics are shown in the table 2.

TABLE 3. Variables pre-processing at manufacturing stage.

The sensors’ data set was composed of the variables mea-
sured by sensors installed in each machine in the Quality-
Control stage. The measured variables were Flow Rate,
Power, Water Temperature, Nozzle Temperature, Input Pres-
sure, Output Pressure, Flow Temperature, Machine Vibra-
tions, RPM, Active Power, Cos Phi, Motor Current, Motor
Voltage, Ambient Humidity, Ambient Temperature, Atmo-
spheric Pressure.
The pre-processing step selects the shared variables for

the manufacturing and operation stages. The variables’ pre-
processing can be seen in Table 3, with a total of 11 variables
selected (those with ticks in both manufacturing and oper-
ation). Additionally, samples with invalid or missing values
were checked and removed from the data set in the pre-
processing stage.
Afterward, the pre-processed data set was normalized to

scale variables’ values, as it is recommended for data prepa-
ration in ML since some of the variables have different
ranges [40]. The normalization used for this experiment was
theMin-Max scaling, which scaled the data to values between
0 and 1.
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FIGURE 3. ML operation stage pipeline.

TABLE 4. Outlier detection using DBSCAN.

The ‘‘Standard Scaler’’ (Z-score Normalization) was not
used as the normalization method due to two main rea-
sons: i) In the presence of outliers, the ‘‘Standard Scaler’’
does not guarantee balanced scales of characteristics due to
the influence of outliers on the calculation of the empirical
mean and standard deviation, and ii) the ‘‘Standard Scaler’’
assumes a normally distributed data set, which is not the
case of our data set. In cases where the distribution is not
Gaussian or the standard deviation is small, the ‘‘Min-Max’’
scaling works better [41]. Besides, ‘‘Min-Max’’ preserves
the original distribution, does not significantly change the
information embedded in the original data, and does not
reduce the importance of outliers.
Following Data Normalization, a Feature-Selection step

was carried out, where all the data features were vali-
dated with the expert in the domain of the machines tested.
The expert determined that the ‘‘environmental’’ variables
(Ambient Humidity, Temperature, and Atmospheric Pres-
sure) should not be taken into account since they can present a
change not necessarily related to the machine’s behavior and
generate information that can disturb the final prediction of
the system. The variable Cos-phi was removed because it had
zero variance. Finally, the motor voltage could be explained
through the motor current, and it was removed, as it was
considered redundant. Finally, seven variables remained, and
none of them had zero variance, so no additional variable
selection step was required.
A dimensionality reduction was performed using a

two-component PCA with the selected features, which

TABLE 5. Labelled data sets final samples observations.

explained the variance by 90% for each machine. A clus-
tering was then performed using k-Means to separate the
data between the Transient State and the Steady-state with
k = 2 groups. Furthermore, the Silhouette coefficient was
used to measure the clustering’s quality, presenting a value
of 0.6547 for machine A, 0.5895 for machine B presented,
and 0.6744 for machine C.
Once the Transient and Steady-state data groups were sep-

arated, outliers were detected using DBSCAN in the Steady-
state part. For this algorithm, two parameters calledminimum
samples (min_samples) and epsilon (eps) are required, which
are assigned to a list of initial values. Then the best values are
found automatically to maximize the Silhouette coefficient.
The list of initial values for the three machines are displayed
in equations 3 and 4.

initial_min_samples = [2, 3, 4, 5, 6, 7, 8] (3)

initial_eps = [0.010, 0.011, 0.012,

. . . , 0.029, 0.030] (4)

The selected DBSCAN parameters, their performance, and
the resulting number of outliers for the three machines are
shown in Table 4.
Afterward, the labeled data set was created for each

machine. The previously identified Transient group and Out-
liers are labeled as anomalies (‘‘-1’’), and the rest of the
Steady-state group is labeled as normal data (‘‘1’’). The final
sample observations of the three labeled data sets are shown
in Table 5.
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TABLE 6. Hyper-parameters selection table.

TABLE 7. Hyperparameters and F1-score for each generated submodel of
Machine A.

TABLE 8. Hyperparameters and F1-score for each generated submodel of
Machine B.

The labeled data set was then separated into three sets:
20%Validation set, 60%Training set (with only normal data),
and 20% Test set, as explained in the Manufacturing stage
pipeline section. For the Training set, a grid search with
cross-validation was performed with five folds (k = 5),
where a set of hyper-parameters for each model was defined
so that the search algorithm finds the best ones according to
their respective F1-score. These initial hyper-parameters are
displayed on Table 6.
Tables 7, 8, and 9 show the selected hyper-parameters and

the obtained F1-score values for the three machines.
The last step of the proposed ML pipeline consisted of

implementing an ensemble of three models: LOF, OCSVM,
and Autoencoder, through a weighted average distribution.
Autoencoder’s architecture is detailed in Table 10. Table 11
shows the weights for the predictions of each model, which
were determined as the ratio of each F1-score value in
Tables 7, 8, and 9 with respect to the sum of all F1-score
values for each class (‘‘-1’’ and ‘‘1’’). As an illustrative
example, for a given sample, the LOF model predicted an
anomaly (-1), the OCSVM predicted normality (1), and the
Autoencoder predicted an anomaly (-1) again, each output

TABLE 9. Hyperparameters and F1-score for each generated submodel of
Machine C.

TABLE 10. Autoencoder’s architecture.

TABLE 11. Weights for the predictions of each submodel.

is multiplied by its respective weight, this computing the
final classification of the hybrid model. Thus, considering the
weights from Table 10, the output of the hybrid model will
be 0.8. If this value is greater than 0, the hybrid model will
classify it as a normal data point (‘‘1’’).

IV. RESULTS
In addition to the pipeline proposed for real-time anomaly
detection, the proposed hybrid model must present improved
performance metrics for the individual models. In this case,
the precision, recall, and F1-score values, as well as the Area
Under the ROC Curve (AUC) of all models, were compared.

A. MANUFACTURING-PIPELINE RESULTS
Three machines were selected corresponding to three differ-
ent model versions to check that the hybrid models worked
equally well on heterogeneous equipment.
The confusion matrix allows checking which types of hits

and errors (type I or false-negative errors and type II or
false-positive errors) the current models have through their
different metrics, such as accuracy, precision, sensitivity, and
specificity. Finally, the confusion matrix of the ensemble
model was analyzed to check whether it improves the indi-
vidual models’ performance or not. In this respect, we focus
on two metrics: i) Precision: Anomaly data are classified as
normal. Also known as the False Positive Rate (FP) or Type
I error. ii) Recall: Normal data are classified as an anomaly,
also known as False Negative Rate (FN) or Type II error.
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TABLE 12. Machine A - confusion matrix (test set).

TABLE 13. Machine B - confusion matrix (test set).

TABLE 14. Machine C - confusion matrix (test set).

The Confusion matrix for machine A, machine B, and
machine C are shown in Tables 12, 13, and 14 respectively.
The confusion matrix shows a generalized improvement of

the hybrid model’s performance compared to the other mod-
els in all three machines, both for recall and precision. For the
experiments being analyzed, precision should be maximized
as much as possible since it is indicative of the anomalous
values detected by the system.

TABLE 15. Machine A - metrics table (test set).

TABLE 16. Machine B - metrics table (test set).

TABLE 17. Machine C - metrics table (test set).

Tables 15, 16, and 17 show the models’ summary
results, both individually and jointly, using their metrics for
comparison.
As seen in the above tables, the performance obtained by

the hybrid model improves the performance of the individ-
ual models. Thus, this justifies integrating models through a
hybrid model using a weighted average improves the whole
pipeline’s final performance. It should also be noted that
the results presented by the Autoencoder are relatively low
compared to the other model; this is because the Autoencoder
operates better for anomaly detection using time windows
and a convolutional network architecture, which is not the
case. The problem of using a convolutional architecture is that
it requires time windows that could add significant delay in
the operation stage and would make it difficult to compare
its metrics to those of the rest of the models due to the
transformation of the training, validation, and testing data that
is needed to be done for being able to use the data with this
type of model.

B. OPERATION PIPELINE RESULTS
The above anomaly detection algorithmwould not be useful if
it could not process the trainedmodels smoothly in a standard,
real-time operation environment.
In order to measure performance, a data batch comprising

2012 samples was run for all individual models in a common
computer (8GB RAM and a minimum of Intel Core i5 or
equivalent; no graphic card required); the computation time
needed to get the results was measured. After that, we ran the
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TABLE 18. Performance results of each model in microseconds.

same data for the hybrid model and analyzed the computation
time needed to process the data. The results are presented in
table 18.
As expected, the hybrid model was slower than the indi-

vidual ones. Nevertheless, its time response is still over the
real-time response threshold defined for a run-of-the-mill
computer of 2020 (under 200 milliseconds in the worst loop
of the batch analysis), thus achieving the objective established
for the operation stage: real-time anomaly detection.

V. CONCLUSION
This research work has developed and presented a Hybrid
Machine-Learning Ensemble for Anomaly Detection for a
Real-Time Industry 4.0 System. This ensemble consists of
implementing two stages inspired by a standard industrial
system: i) A Manufacturing Stage and ii) An Operation
Stage. Up to our knowledge, there are no other ML meth-
ods that consider these industrial stages. The ensemble sys-
tem was tested on three machines, presenting an increased
F1-score value and AUC concerning individual ML sub-
models (LOF, OCSVM, and Autoencoder). The ensemble
model for Machine A presented a F1-score value of 0.904 for
anomalies (-1), a F1-score value of 0.944 for normal data
(1), and an AUC value of 0.913; the ensemble model for
Machine B presented a F1-score value of 0.890 for anomalies
(-1), a F1-score value of 0.946 for normal data (1), and an
AUC value of 0.905; finally, the ensemble model forMachine
C presented a F1-score value of 0.887 for anomalies (-1),
a F1-score value of 0.889 for normal data (1), and an AUC
value of 0.897.
The proposed system allows vertical scaling in the number

of algorithms used for the ensemble. As seen in section
Results, subsection B, the hybrid model presented a maxi-
mum computation time of approximately 190 milliseconds,
fast enough for real-time anomaly detection. Concerning
individual models’ performance, the Autoencoder results
showed a low F1-score value, so it is proposed to test
other algorithms (e.g., Isolation Forest, Elliptic Envelope)
to improve the overall performance of the whole assembly.
However, a study of the computational cost linked to the
retraining of more types of algorithms must be carried out.
Future work is proposed to study system retraining in

the Operation Stage pipeline and its computational cost.
It is also proposed to study the proposed system devel-
oped on machines with different levels of degradation. Addi-
tionally, a data imputation study should be carried out to
generate synthetic samples for systems where some infor-
mation is missing (a loss of data due to communication
breakdowns is a common problem in industrial systems).
Deep Learning techniques could be considered when creating

meta-classifiers using different base classifiers such as recur-
rent neural networks, like LSTMs, where time series need
to be considered. Furthermore, a study with a larger number
of machines must be carried out to see how well the hybrid
model generalizes against the individual sub-models. In cases
where the hybrid model does not provide any improvement,
other ensemble strategies such as taking the best of the indi-
vidual sub-models are considered.
Finally, as this project focuses on single-type anomaly

detection, a challenge to be addressed in future work will be
to be able to classify or categorize different types of faults.
For that, the authors might use appropriate methods such as
explainable ML or correspondingly labeled datasets.
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Abstract—  The transport of goods has been widely studied due 

to the importance to guarantee final product quality. The case of 

particulate materials is even more complicated when companies 

decide to innovate in the product's shape, because of the trade-off 

between packaging and cargo space optimization. That is the case 

of compressed hygroscopic particulate material, which may be 

addressed by compacting particles in geometric forms to improve 

end-user experience. However, there is a problem when 

transported materials are compacted particles: cracks and 

product damage may occur during transportation if conditions of 

the truck such as vehicle suspension or road conditions aren't met. 

These kinds of problems can be simulated to influence design 

decisions related to vehicle and product specifications to avoid 

them. This document proposes a crack identification method 

applied to hygroscopic particulate compressed materials subject 

to simulated transport conditions. An experimental approach is 

used to simulate package and transport conditions. Spectral 

analysis was used to determine if a material fulfills transport 

requirements to go from a given location to its destination, in terms 

of cracking. The article describes the experiment, data acquisition 

(hardware and software), as well as the theoretical basis of spectral 

analysis used for data processing. Finally, results are presented to 

explain how this analysis is capable of predicting if such a material 

will be damaged during transportation. The experiment considers 

the set of frequencies that affect the product in terms of 

transportation methods, compacting techniques, and packaging 

design. 

 

Index Term—  Spectral Analysis, Transportation Simulation, 

Hygroscopic Material, Crack Detection, Vibrations Testbed. 

I. INTRODUCTION 

Some significant challenges in transport are the trade-off 

between packaging (for product's care) and volume (use of the 

cargo space), to transport more quantity of goods in a safe 

mode. This challenge makes the efficiency in spatial 

distribution one of the main concerns in product transportation. 

This issue is particularly relevant in the transport of particulate 

materials, which are packed and transported in bags. However, 

the air in these packages may occupy potentially available space 

in limited cargo space. In particulate materials, a feasible 

solution to optimize distribution inside the cargo space may be 

solved by compacting particles typically in geometric forms [1]. 

These kinds of compacting methods have a disadvantage: the 

compressed product is more fragile than its particulate form. 

Companies usually invest in costly special packages for 

preserving the product from damage [2]. Nowadays, methods 

are needed to provide information about the whole supply chain 

and the influence of transport conditions in potential damages 

on transported products. If a company carries compressed 

material by truck, it may be relevant to have information from 

transport conditions to have feedback that may influence the 

compacting process, as well as packaging design, guaranteeing 

the final quality of the product. 

For the compression process, variables like the pressure 

applied to the particulate material, compression speed, particle 

density, moisture can change the resistance of the final product 

significantly during transportation, which can be modified if the 

transportation conditions may crack or destroy the product [3]. 

These compression and transportation variables can be 

validated through simulations methods to prevent possible 

damages and guarantying product quality. 

The simulation of transport conditions has been widely 

studied because of the importance of this phase in a product life 

cycle. Its importance is also linked to quality, in terms of the 

high possibility of product damage. These topics are the reason 

why simulation of transport conditions, using cost-effective 

methods, can offer vital information to guarantee a better 

quality in product transport, especially in predicting product 

conditions when it reaches the final destination [4]. 

This article is structured in five sections. After this 

introductory section that explained the problem, state of the art 

is presented to explain existing approaches and the theoretical 

background of the proposed method. Then the proposed method 

for crack detection is described from the hardware/software 

point of view. Section 4 presents the results and its 

corresponding analysis after executing the described test. 

Finally, in section 5, a set of conclusions are presented. 

II. STATE OF THE ART 

This section is divided in two subsections: (i) Existing 

approaches, which presents research through the state of the art 

focused on existing technologies for analyzing vibrations. (ii) 

Theoretical background, a subsection involving the 

mathematics required for the proposed method using frequency 

analysis. 

 

A. Existing approaches 

For simulating transport conditions using vibrations, the 

frequency analysis can be used to obtain required information. 

One of this type of analysis is the spectrogram, which can be 
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used to analyze speech patterns (like animal sounds) [5], radar 

and sonar applications for tracking targets [6], medical 

applications such as measuring blood flow with ultrasound 

information [7], and detecting cracks in cantilever beams [8]. 

Gillich and Praisach [9] proposed a method based on natural 

frequency changes for detecting damages in beam structures, 

using an accelerometer as sensor for measuring vibrations and 

concluded that natural frequency changes due to damage. Sha 

et al. [10] presented a novel method for single and multiple 

damage detection in beams using relative natural frequency 

changes, allowing to localize and measure the damage in a 

cracked beam. Onchis [11] also used frequency spectrum to 

identify damage in cantilever beams using a proposed 

procedure through Gabor transform and LASSO minimization. 

Sinou [12] examined the possibility of detecting the presence of 

open cracks in rotating machinery for low or high rotor 

accelerations, Webb [13] measured for the first time the full-

spectral response of a Fiber Bragg Grating (FBG) sensor 

subjected to vibration. Yan [14] used a multi-scale enveloping 

spectrogram through vibration signal analysis for health 

diagnosis of bearings, Puchalski [15] diagnosed mechanical 

defects using vibrations signals and Wang [16] extracted fault 

features with transient vibration signal analysis. Jweeg et al. 

[17] investigated the effect of cracks in pipes through frequency 

analysis from the vibrations of the pipe, finding that the 

frequency decreases more and more if the crack depth is 

increased. Aramburo-Londoño et al. [18] presented a dynamic 

analysis using Finite Element Method (FEM) for the evaluation 

of vibration effects on hygroscopic particulate materials, where 

the results estimate the behavior of the compressed powder for 

its handling and transportation to determine the ideal conditions 

for the product packaging. Gomes et al. [19] proposed an 

experimental approach to validate standard Power Spectral 

Densities (PSD) through acquisition of acceleration data from 

electrodynamic shaker and a proposed software for signal 

processing. Wu et al. [20] presented a fatigue crack detection 

and localization technique for aluminum plates through the 

measurement of instantaneous baseline using a set of 

piezoceramic transducers and a shaker testbed. Aymerich et al. 

[21] investigated the effect of boundary conditions on nonlinear 

acoustics, which can be used for impact damage detection in 

composite structures. In addition to health monitoring 

applications, Shin [22] investigated two properties of 

correlation coefficients between two transient vibration signals 

used for the location template matching (LTM) method, which 

can provide an estimation of the location of an impact through 

vibrations signal analysis. 

Most of the methods shown in literature are based on solid 

materials (beams, shakers, among others) damage but not on 

particulate compacted materials. This article presents a 

methodological proposal of how to combine different analysis 

in the domain of the frequency for processing vibrations on 

particulate compacted materials. 

 

B. Theoretical Background 

The spectrogram is a graphical representation of frequency 

and time information from a signal [23]. One of the ways to 

compute the spectrogram is processing first the Short Time 

Fourier Transform (STFT) [24], which can be calculated using 

a sliding window to divide the signal into several blocks of data. 

The Fourier transform calculates the analog time dependent 

signal into the frequency domain [25] but usually this analog 

signals are sampled, which requires the discrete Fourier 

transform (DFT) in order to translate from discrete time to 

frequency domain [26]. 

The processing required to calculate a DFT takes a lot of 

time. The computation of the convolution and discrete Fourier 

transform requires 𝑁2 operations where 𝑁 is the filter length or 

the transform size. Using the Cooley-Tukey FFT the operations 

are reduced to 𝑁𝑙𝑜𝑔2𝑁 decreasing the computation time [27]. 

The main advantages of the FFT are the speed of 

computation and the memory efficiency. The DFT can be an 

effective process in samples of any size (𝑁), but it requires more 

computation time than the FFT and consumes more memory, 

because the intermediary results must be stored in all the 

process [28]. 

When FFT needs to be calculated, the algorithm pads or 

chops the input length (m) to achieve the desired transform 

length (n). The spectrogram applies this FFT to a 𝑁-points 

block of data to obtain the frequency contents of each block of 

data, where 𝑁 is the frequency bins. The STFT aligns the center 

of the first sliding window with the first sample of the signal X 

and extends the beginning of the signal by adding zeros. The 

sliding window moves time steps samples to the next block of 

data. If the window moves out of X, it pads X with zeros. After 

finding the STFT, the spectrogram is calculated as the 

magnitude square of the elements in STFT(X) [29]. In the 

Figure Fig. 1 this procedure is shown. 

 

 
Fig. 1. STFT spectrogram calculation. 

 

III. PROPOSED METHOD FOR CRACK DETECTION 

Our proposed method is integrated to the usual compaction 

and transportation process, which usually starts with the 

compaction of the product at a certain speed (𝑃𝐶  and 𝑆𝐶  

respectively). Then, the compacted products are packed in a 

certain envelope, which aims to protect the product from 

damage. The packaged products are then stacked together in the 

vehicle storage, exerting a pressure (𝑃𝑃 ) in the lower packaged 

products and oscillating at a frequency (𝑓𝑇). This frequency 
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mainly depends on the road conditions and vehicle suspension. 

After the vehicle arrives to the desired destination, the products 

are inspected to check their quality, disposing defective 

products. Finally, this process is repeated. 

We propose a method that first verifies if a sample of the 

product will resist the transportation conditions, simulating 

them through hardware and software. The hardware part consist 

on a vibrations test bench, which first makes the sample 

oscillate at a certain frequency (𝑓𝑇) and with a simulated spring 

pressure (𝑃𝑃 ). The vibrations' data of the sample is then 

acquired using an accelerometer through a data acquisition 

device, which reports the information in a computer database. 

The software component consists on a developed spectrogram 

post-processing algorithm that checks the stored database and 

shows if the sample failed the test (detected crack) or if it passed 

the simulated transportation conditions. Figure 2 presents the 

contribution of this paper and how this new method connects 

with the usual compaction and transportation.  

The following subsections will explain the hardware and 

software contribution details. 

 

A. Hardware: Experimental test bench 

A practical set of experiments was performed in order to test 

a proposed method based on frequency analysis for detecting 

cracking in fragile compressed materials during transportation. 

The test consisted in a package and transport simulation testbed, 

which applied a preload and vibrations to a compressed 

particulate hygroscopic material in order to see if it produces a 

crack in the material. Based on standard freight transport 

conditions [30], an oscillating frequency of 45 Hz was 

programmed as described in section 3.1.1 and then the resulting 

acceleration is acquired through data acquisition. For more 

details about the data acquisition refer to section 3.1.2. During 

this test, five different types of hygroscopic particulate 

materials were used, such as powdered sugar, plaster, white 

cement, chocolate powdered drink and orange powdered drink 

to validate the proposed method. Additionally, the results will 

allow materials comparison in terms of behavior under the 

given transportation and packaging conditions. The software 

tool used for measuring the occurrence of a crack was a 

spectrogram. The expected result of this method is to detect 

homogeneity loss through detection of new frequency 

components. These components will appear when cracked 

pieces begin to oscillate together with the sample. This behavior 

implies that the sample did not resist the transportation 

conditions because cracks can now be detected in the 

spectrogram. 

 

1) Package and transport simulation testbed: A variator 

controlled motor with an eccentric added weight was 

implemented to induce vibrations to the testbed. The sample is 

compressed with three springs that simulates the load of a pile 

of the same product on its top (as a pile of compressed product 

will do) during transport. This testbed allows the user to 

program an oscillating frequency to obtain acceleration 

orthogonal to the sample, which is processed as described in 

section 3.1.2. Also, the user can setup different types of 

geometries and sizes of compacted samples using a different set 
of testbed components. For the purpose of this experiment, 

samples with circular geometries were used but the test can be 

extended to other type of shapes in the samples. Figure 3 shows 

the diagram of the vibrations testbed with the vehicle 

transportation simulator. 

 

 

 

 
Fig. 2. Proposed new method for crack detection. 
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Fig. 3. Graphical explanation of package and transport simulation testbed. 

 

2) Data Acquisition Setup: For acquiring the vibrations’ 

data, a NI DAQmx 9234 was used, which is a four-channel C 

Series dynamic signal acquisition module for making high-
accuracy audio frequency measurements from integrated 

electronic piezoelectric (IEPE) and non-IEPE sensors with NI 

CompactDAQ or CompactRIO systems. The NI 9234 delivers 

102 dB of dynamic range and incorporates software-selectable 

AC/DC coupling and IEPE signal conditioning for 

accelerometers and microphones. The four input channels 

simultaneously digitize signals at rates up to 51.2 kHz per 

channel with built-in anti-aliasing filters that automatically 

adjust to your sampling rate. 

For measuring the vibrations on the sample, an uni-axial 

Kistler accelerometer was implemented. This accelerometer has 

a measuring range of ±50 g and a sensitivity of 99.8 mV/g. 

Using the previous hardware, a communication was 

established with an algorithm developed in the software 

LabVIEW for storing the incoming data into a “.txt” file at a 

sampling rate of 50 kHz. Figure 4 presents the flow diagram of 

the algorithm, in which the acceleration is stored for each 

sample, then the Root Mean Square (RMS) value is calculated 

in order to see how much real acceleration is being applied to 

the vibrations testbed, then the acceleration is plotted in a 

graphic for visualization. When the STOP button is pressed, all 

data is stored in a “.txt” file for later processing. 

The designed Human Machine Interface (HMI) in the 

software LabVIEW for data acquisition is shown in Figure 5, 

which contains a start and stop buttons, a sampling frequency 

numeric control, the time elapsed by the test, information about 

the acceleration of the vibrations testbed presented as plots and 

in a meter bar. Finally, it contains RMS acceleration value in a 

numeric indicator. 

 

 
Fig. 4. Algorithm for vibrations acquisition. 

 

 
Fig. 5. LabVIEW HMI Interface for vibrations acquisition. 

B. Software: Algorithm for data processing 

 

For analyzing the acquired vibrations' data, an algorithm was 

developed in MATLAB using spectrogram function plus a 

direct-form FIR low pass digital filter [31] for data conditioning 

and filtering possible electronic noise for frequencies over 100 

Hz. The inputs for the low pass digital filter are shown in Table 

I and the output coefficients were used in the integrated function 

filter from MATLAB. 
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The developed algorithm test processing method first 

initializes the sampling frequency in 50000 Hz, then the data 

acquisition file is imported from a “.txt” to Y variable in 

MATLAB. A low pass filter is then applied to the data in order 

to remove possible electronic noise from the signal and the 

resulting filtered signal is stored in the variable X. Furthermore, 

the Spectrogram function is applied to the filtered data X with a 

sampling frequency of 𝐹𝑠, storing the results in a vector of three 

positions, that contains the vectors S, which is the Fourier 

vector, F the different frequencies vector and T the time vector. 

The Fourier vector S is then converted from Cartesian 

representation to polar representation with the 

“cartesian2polar” function and results are stored in M 

(magnitude) and Th (angle). Finally, the magnitude M, the 

frequencies F and the time T are stored in a .jpg file using the 

“colormap” function, ending the algorithm. The Figure 6 

describes the flowchart of the developed algorithm. 

 

 
Fig. 6. Algorithm for data processing with frequency analysis. 

The outputs of the algorithm are image files containing the 

graphical representation in a color map of the spectrogram, in 

which the X-axis is the time in seconds, Y-axis is the frequency 

and the intensity of black is the amplitude of the vibrations 

signal. An example of the resulting graph of a compacted 

sample subject to vibrations in the testbed is presented in Figure 

7 where four states can be seen: i) at the beginning when there 

are no oscillating vibrations, ii) a state of stabilization of the 

oscillating frequency, iii) the first segmentation of the sample 

(first crack) and iv) the total crack. The first crack can be 

detected when new frequencies start appearing along with the 

oscillating frequency. 

 

 
Fig. 7. Sample result spectrogram with the corresponding states. 

IV. EXPERIMENTAL RESULTS 

Four samples of different hygroscopic particulate materials 

were compacted with a pressure of 110 PSI. The materials of 

these samples were submitted to two tests of characterization:  

1. Particle size test using calibrated sieve meshes (50, 100, 

200 and 325). 

2. Scanning electron microscope photography for the 

distribution of particles of the material. 

Below, Table II presents the results of the particle size test. 

 

 
 

As seen in the previous table, the White Cement and the 

Plaster have smaller particles than the Chocolate Powdered 

Drink and the Orange Powdered drink. From this variation we 

got different results at the compaction process, changing their 

mechanical properties. 

At the second test, we obtained the following pictures from 

the scanning electron microscope at 268 𝜇𝑚 except the orange 

powdered drink, which had bigger particles that could not be 

zoomed at the microscope (it could scale up to 6111 𝜇𝑚). 

TABLE I 

LOW PASS DIGITAL FILTER INPUTS 

Variable Value 

FIR Design Method Equiripple 

𝐹𝑆 50000 Hz 

𝐹𝑝𝑎𝑠𝑠  90 Hz 

𝐹𝑠𝑡𝑜𝑝 100 Hz 

𝐴𝑝𝑎𝑠𝑠  0.1 dB 

𝐴𝑠𝑡𝑜𝑝 40 dB 

 

TABLE II 

PARTICLE SIZE TEST USING CALIBRATED SIEVE MESHES 

Material 
White 

Cement 

Chocolate 

Powdered 

Drink 

Orange 

Powdered 

Drink 

Plaster 

Particle Size 

[mm] 
Percentage (%) passing the sieve 

0.300 97.83 36.65 16.37 99.70 

0.150 94.16 26.90 6.80 97.41 

0.075 92.99 17.79 4.22 88.86 

0.045 91.24 9.86 1.39 N/A 
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From the Table III, we found that these materials have a 

different variation related to particle size, were the bigger 

particles are the support for the compaction process. 

The four compacted samples were mixed according to Table 

IV in order to test different particles types. 

 

 
After compaction process, each sample was tested through 

the vibrations testbed at 45 Hz. Then the acquired data was 

processed using the test processing method in order to check if 

they will fail or not with a spring load of 3 Kg (package load 

simulation) and a vibration frequency of 45 Hz (truck frequency 

during transportation). 

From the Figure 8, it was found that only two samples got a 

crack: the Sample-1 and Sample-3. This deduction was made 

using the method proposed in the section 3, where crack occurs 

when more components in frequency appear than the main 

frequency of vibration (45 Hz).  

The Sample-1 showed the first crack at 𝑡 = 19 seconds and 

at 𝑡 = 29 seconds it had a total crack. This result concludes that 

the compressed white cement under the given conditions will 

have cracks during transportation. Sample-2 did not present 

even a minor crack, which means this compressed material can 

be transported without getting a crack using the previous 

conditions. Sample-3 had the first crack approximately at 𝑡 =
11 seconds and after 𝑡 = 20 minutes, it did not present a major 

change which means that this type of mixture (Chocolate and 

Plaster) will present a minor crack during transportation under 

these conditions. Sample-4 showed similar results to Sample-2, 

it did not present even a minor crack, which means this 

compressed material can be transported without getting a crack 

using the previous conditions. 

 

 
(a) Sample-1 - Crack detection. 

  
(b) Sample-2 – First 14 secs. (c) Sample-2 – After 20 mins. 

  
(d) Sample-3 – After 25 secs. (e) Sample-3 – After 20 mins. 

  
(f) Sample-4 – After 12 secs. (g) Sample-4 – After 20 mins. 

  

Fig. 8. 2D Grayscale Map Spectrogram. 

V. CONCLUSIONS 

A method for detecting failures in products that are being 

transported was implemented, using the frequency analysis to 

verify if a crack occurred during the transportation of a given 

compressed product. The method considers vehicle vibrations 

TABLE III 

SCANNING ELECTRON MICROSCOPE PHOTOGRAPHY 

White Cement Chocolate Powdered Drink 

  

Orange Powdered Drink Plaster 

  

 

TABLE IV 

INPUT DATA FOR FOUR SAMPLES OF DIFFERENT MATERIALS, ALL OF THEM AT 

A COMPACTION PRESSURE OF 110 PSI, SPRING LOAD OF 3 KG AND A MAIN 

VIBRATION FREQUENCY OF 45 HZ 

Sample # Sample 1 Sample 2 Sample 3 Sample 4 

Material 
White 

Cement 

Chocolate 

Powdered 

Drink 

Plaster and 

Chocolate 

Powdered 

Drink 

Plaster and 

Orange 

Powdered 

Drink 
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and all possible interactions between the compressed material, 

type of packaging and the vertical load applied by the 

compressed product over the sample (pile of the same product). 

A crack can be detected in a compressed hygroscopic 

particulate material by finding the time in the spectrogram when 

new frequency components, different from the main oscillating 

frequency, start to appear. These new frequency components, 

when they are detected, indicate that some detached particles 

from the main sample started to oscillate around the material. 

From the experimentation presented in section 4, the most 

resistant materials under the test conditions were the Sample-2 

(chocolate powdered drink) and Sample-4 (mixture of plaster 

and orange powdered drink), indicating that these types of 

materials can be transported safely without cracks compared to 

the other sample materials under standard freight transport 

conditions. 

This test is generic and it can be applied to other types of 

materials in a compressed form. This analysis enables to test 

integrity of these materials during transportation, and it allows 

validating compression conditions during the design of the 

compacted product permitting the risk reduction of cracks in 

transportation, improving quality of final product after 

transport. 

It was proved that in order to have reliable results, the amount 

of acquired data increases proportionally to the sampling time. 

This requires a high computational processing capability for 

analyzing the spectrogram. It is then recommended to use 

parallel computing to reduce simulation time. 

As future work, the algorithm can be improved for detecting 

the exact time of the failure and also vision acquisition can be 

implemented to the package and transport simulation testbed 

for comparing the spectrogram results with the vision results 

making the test more robust. For the purposes of this research, 

circular geometries in compacted samples was considered, 

however tests for other type of geometries in compacted 

samples can be further analyzed to check if it can improve the 

resistance of the hygroscopic compacted material for 

transportation. 
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EDAR 4.0: Visual-Analytics for Waste Water
Management

David Velásquez , Paola Vallejo, Mauricio Toro , Juan Odriozola, Aitor Moreno, Gorka Naveran,
Mikel Maiza and Basilio Sierra

Abstract— Waste-Water Treatment-Plants (WWTPs) op-
erations manage a massive amount of data that can be
gathered with new Industry 4.0 technologies such as the
Internet of Things and Big Data. These data are critical
to allow the wastewater-treatment industry to improve its
operation, control, and maintenance. However, the data
available needs to be improved and enriched, partly due to
its high dimensionality, low reliability, and the lack of appro-
priate data analysis and processing tools for such systems.
This paper presents a visual-analytics-based platform for
WWTP that allows users to identify relationships among
data through data inspection. The results show that the tool
developed and implemented for a full-scale WWTP allows
operators to construct Machine Learning (ML) models for
water quality and other water-treatment process variables.
Thus, plant operation scenario analysis and optimization
can be performed. The validation of the variables influenc-
ing the created ML models by domain experts proved their
appropriateness.

Index Terms— Waste water management, visual analyt-
ics, industry 4.0, data driven modeling, waste water treat-
ment plant (WWTP)

I. INTRODUCTION

NEWLY-connected industry objects are generating data
at a fast speed that must be stored, processed, and

monitored –in real-time– to make decisions that optimize the
new Industry 4.0 factories’ production. Numerous challenges
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involve this newly-generated data and how to visualize it, such
as reducing dimension and visualizing multivariate real-time
data.

An advanced data processing and visualization approach
that can be followed is visual analytics. Keim et al. [1] defined
visual analytics as a combination of automated analysis tech-
niques with interactive visualizations for an adequate under-
standing, reasoning, and decision-making based on extensive
and complex data sets. Visual analytics focuses on creating
new tools that enable users to: i) synthesize information that
allows getting new insights from massive heterogeneous sets
of data, ii) detect the current states of systems and discover
possible new states, iii) provide real-time assessments and
perform actions based on these assessments.

Keim et al. [1], in 2008, proposed six challenges for visual
analytics: i) scalability with large data volumes and dimen-
sionality, ii) graphical representation of data quality, iii) visual
representation of levels of detail, iv) new display interfaces
such as large-scale power walls, v) evaluation frameworks for
visual analytics, vi) and refreshing the interactions in real-time
(e.g., less than 100 ms). Many of these issues still need to be
solved today.

Recently, Diez-Olivan et al. [2] found that a new challenge
is using visual analytics for enhanced understandability in the
context of Industry 4.0. This challenge is one handicap for
the widespread adoption of data-based analysis is the indus-
trial plant operator’s assimilation of information. According
to Diez-Olivan et al. [2], when it comes to data analysis,
the information produced by the deployed models cannot
be processed straightforwardly by non-specialized personnel
unless some preprocessing is conceived for an improved, more
intuitive understanding of the captured patterns.

Successful Waste Water Treatment-Plants (WWTPs) can be
managed by seeking optimal process conditions and identify-
ing essential factors, features, or patterns for data-supported
decision-making. Newhart et al. [3] highlighted that WWTP
operators usually store a sufficiently large amount of historical
data. Also, recent advancements in data-driven process control
and performance analysis and more substantial computation
power “could provide the wastewater treatment industry with
an opportunity to reduce costs and improve operations” [3].
However, the limited investments in instrumentation, control,
and automation of WWTPs and the need for data-science back-
ground for WWTPs professionals are limitations to making the
best of the data.
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TABLE I
WATER QUALITY REQUIREMENTS FROM EUROPEAN DIRECTIVE

91/271/EEC

Variable Absolute Values Performances
BOD5 25 mgO2/L 70%
TCOD 125 mgO2/L 75%
TKN 10 mg/L 90%
TP 1 mg/L 80%
TSS 35 mg/L 70%

One of the most critical factors affecting the Big Data era’s
decision-making process is finding relevant data and getting
meaningful information from them. To address this problem
in the context of WWTPs, project Estación Depuradora de
Aguas Residuales (EDAR 4.0) aims to develop a set of WWTP
operation and management systems by combining (i) cloud
computing, (ii) data intelligence, and (iii) visual analytics.
EDAR 4.0 aims to provide greater data storage, processing,
computation, and decision-making capabilities for WWTP
operation [4]. EDAR 4.0’s results were tested and validated in
a full-scale municipal WWTPs: La Cartuja (Zaragoza, Spain),
operated by Veolia.

Five variables related to WWTP’s operation and man-
agement were analyzed in EDAR 4.0: Biological Oxy-
gen Demand-5 (BOD5), Total Chemical Oxygen Demand
(TCOD), Total Kjeldahl Nitrogen (TKN ), Total Phosphorous
(TP ), and Total Suspended Solids (TSS). These variables are
not selected randomly but are the variables that the European
Directive 91/271/EEC establishes as quality requirements to be
fulfilled at the effluent of a WWTP. Likewise, in the case that
applies, as the WWTP is located in a region (Aragon, Spain)
declared as an area sensitive to eutrophication, specific values
for total phosphorus and total nitrogen are applied. Table I
shows the quality requirements taken as a reference in this
project based on the previously mentioned European Directive.

This paper presents a platform that allows the creation of
data-based models for the simulation, prediction, and opti-
mization of WWTPs.

Two modules compose this platform: i) a module for the
monitoring and prediction of water quality, and; ii) a module
for the creation of water quality and energy management, ML
models and subsequent future scenario analysis and optimiza-
tion of the WWTP.

In what follows, a brief state-of-the-art is presented in
Section II. Then, the methodology is shown in Section III and
the results in Section IV. Finally, conclusions and future-work
directions are proposed in Section VI.

II. STATE OF THE ART

The state-of-the-art is divided into three parts. The first part
presents research on model-based wastewater management.
The second part summarizes different works on visual ana-
lytics. Finally, the last part explains research on data-based
wastewater management.

A. Model-based wastewater management
A brief state-of-the-art on wastewater treatment plants mod-

eling based on Ordinary Differential Equations (ODEs) is

presented in what follows.
The most common approach to optimize the process op-

eration against fluctuating influent water quality is to apply
process control and simulation of the process for deriving
the optimal-operation method. For process simulation, ODEs
have been widely used. To simulate WWTPs using ODEs, it
is essential to first model the process’s steady-state under a
given set of disturbances and operating conditions. However,
a disadvantage of this is that the calculation time is extended
when analyzing the ODEs. Recently, Jong-Rack et al. [5]
proposed an improved Newton-Raphson method to shorten the
computation time. The above shows that there is still active
research on the simulation of wastewater treatment plants
using ODEs.

In another work, Flores-Alsina et al. developed a plant-
wide aqueous-phase chemistry model describing pH variations
interfaced with industry-standard models [6]. Flores-Alsina et
al. formulated the general equilibria as a set of Differential-
Algebraic Equations (DAEs) instead of ODEs to enhance
simulation speed. Additionally, Flores-Alsina et al. applied a
multi-dimensional version of the Newton–Raphson algorithm
to handle multiple algebraic inter-dependencies.

It is important to mention that the International Water Asso-
ciation (IWA) benchmark simulation model has been available
for several years to create platforms for control strategy bench-
marking of activated sludge processes. In 2006, Jeppsson et
al. extended the IWA benchmark to facilitate control-strategy
development and performance evaluation at a plant-wide level
and, consequently, includes both pre-treatment of wastewater
and the processes describing sludge treatment [7].

Finally, the work by Li et al. [8] did not involve WWTPs
but is worth mentioning because it presents a combination
of ODEs with ML. Their paper presents a Fourier Neural
Operator for modeling turbulent flows with zero-shot super-
resolution. This work showed higher speed and better accuracy
compared to classical solvers.

B. Visual Analytics
Visual Analytics combines interactive visualizations with

data analysis and machine learning (ML) to empower people
to analyze, explore, and understand large data [9]. The Vi-
sual Analytics process can be generalized by the framework
proposed by Van Wijk [10] (see Fig. 1). The first step is
acquiring data stored in a database or from a data stream.
This data is then analyzed and processed to extract the most
critical features presented in the visualization stage. An image
is then generated during the visualization stage, representing
this processed and selected data or by the user’s specifications.
Afterwards, the user sees this image, perceives it, and the user
will generate insights and knowledge from the recent image.
This stage may be repeated as long as the user looks through
the whole image. Finally, the user may generate hypotheses,
which will be detailed through an exploration and analysis
stage. Furthermore, a new analysis may be required, translating
into a specification stage, where the user can interact with the
current visualization to generate new knowledge.

Yuan et al. [11] presented a survey of visual analytics for
ML before, during, and after model building. Before model
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Fig. 1. Visual-Analytics process framework adapted from [10].

building, visual analytics is used to improve data quality and
feature quality. Visual analytics is then used during model
building to facilitate model understanding, diagnosis, and
steering. After model building, visual analytics is used to
understand static and dynamic data analysis results.

According to Diez-Olivan et al. [2], visual analytics has
emerged as a promising discipline to visually adapt the discov-
ered insights and optimally present results to different human
profiles. These aspects are essential in real-use cases to deploy
models for data analysis in industrial plants with minimum
usability and practical utility guarantee.

As an example of visual analytics, Li and Ma [12] proposed
P6, a declarative language for rapidly specifying the design of
visual-analytics systems that integrate ML and visualization
methods for interactive visual analysis. P6 was motivated
by three goals: interactive ML and visualization (to facili-
tate automated analysis), interactive and scalable systems (to
process and visualize large datasets), and declarative visual
analytics (to create interactive visualization applications). In
P6, the specification’s basic unit is a pipeline composed of
specifications: data, analysis, view layout, visualizations, and
interactions.

Nawaz et al. [13] developed an intelligent Human-Machine
Interface (HMI) called ANKSyst that allows operation and
decision support for the ANaerobic AMMonium OXidation
(ANAMMOX) process in WWTPs. This tool integrates soft
sensing, decision-making, and model simulation for supervi-
sory control, which consists of an Artificial Neural Network,
a Kalman filter, and a principal component analysis algorithm.

Additionally, Li et al. proposed that the declarative specifi-
cation for visual analytics allows non-specialists to develop
advanced data analytics and communication solutions that
combine the best of human and artificial intelligence [12].
According to Endert et al. [14], Visual analytics systems
combine machine learning (or other analytic techniques) with
interactive data visualization to facilitate insight and analytical
reasoning. Endert described three categories of models and
frameworks: (i) models meant to describe the people’s cog-
nitive stages for analyzing data; (ii) models and frameworks
that describe interaction and information design of visual
analytic applications; and (iii) ML frameworks that emphasize
the importance of training data and ground truth to generate
accurate and effective computational models. Endert and Keim
et al. [15] mentioned that the most common ML algorithms

used with visual analytics are: (i) dimension reduction, (ii)
clustering, (iii) classification, and (iv) regression.

As stated by Liu et al. [16], “interactive model analysis,
the process of understanding, diagnosing, and refining an
ML model with the help of interactive visualization, is very
important for users to solve real-world artificial intelligence
and data mining problems efficiently.” Liu et al.’s paper
presents a classification of relevant work in visual analytics
into three categories: (i) understanding, (ii) diagnosis, and (iii)
refinement. Liu highlights that many techniques generate static
images to indicate which parts of an image are most important
to the classification. However, interactive visualization plays
a critical role in model understanding and analysis to help
people gain insight into various ML models. For that reason,
our proposal addresses the dynamic creation of demand-driven
models, for example, a water-quality model, and how its
response helps to understand a particular variable.

Massive data sets and complex, long-running analytics are
common in various domains. Stolper et al. [17] introduced
the Progressive Visual Analytics (PVA) concept. PVA is a
workflow to provide the user with meaningful intermediate
results if the final result’s computation is too costly. Based on
these intermediate results, the user can visualize, analyze, and
interpret partial results before obtaining the complete results.

Visual analytics, in the industrial context, has been used
widely. Jonker et al. [18] followed a visual analytics approach
to aid this deep understanding of complex time-series models
as an application to economic data. Sun et al. [19] proposed
PlanningVis, a visual analytics system to support the explo-
ration and comparison of production plans with three levels
of details: a plan overview presenting the overall difference
between plans, a product view visualizing various properties
of individual products, and a production detail view displaying
the product dependency and the daily production details in
related factories. Finally, Wu et al. [20] reported the design
and implementation of an interactive visual analytics system,
which helps managers and operators at manufacturing sites
leverage their domain knowledge and apply substantial hu-
man judgments to guide the automated analytical approaches,
thus generating understandable and trustable results for real-
world applications. Our system integrates advanced analytical
algorithms (e.g., Gaussian mixture model with a Bayesian
framework) and intuitive visualization designs to provide
a comprehensive and adaptive semi-supervised solution to
equipment condition monitoring.

C. Data-based wastewater management

In WWTPs, visual analytics facilitates rapid and interactive
exploration of multiple views of the same high-dimensional
data. It is possible to have a global view of data behavior
through different colors, orientations, and data. Interactive
visualization of trade-offs in multiple dimensions is well-suited
for situations where stakeholders have diverse interests [21].

Recently, Kim et al. proposed an operator decision support
system (ODSS) to support WWTPs operators in making
appropriate decisions [22]. Kim et al.’s system accounts for
water-quality variations in the WWTP and comprises two
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diagnosis modules, three prediction modules, and a scenario-
based supporting module. The prediction modules are based
on the k-nearest neighbors (k-NN) method to forecast water
quality three days in advance.

Similarly, Heo et al. [23] proposed a hybrid influent fore-
casting model based on multimodal and ensemble-based deep
learning. This tool predicts a WWTP’s long-term (daily) and
short-term (hourly) influent load.

In WWTPs, the portion of operating costs related to electric
power consumption is increasing. Piao et al. used mathemat-
ical modeling to deduce six improvement plans to reduce
electric power consumption [24]. The electric power consump-
tion for Piao et al.’s suggested plans was estimated using an
artificial neural network.

III. METHODOLOGY

The methodology followed in this article is inspired by the
proposal of [25], who argued that these are the typical steps
in successful data analysis and mining:

1) Data collection and acquisition. It is the process of gath-
ering and measuring information on targeted variables;
it is divided into the following activities:

a) Analysis of data origin and frequency.
b) Quantification of data uncertainty.
c) Compilation of data from various sources.

2) Data management and data validation. It checks source
data’s accuracy and quality before using, importing, or
otherwise processing it. It is composed of the following
activities:

a) Definition of erroneous data.
b) Detection and removal of outliers based on the

variable analysis.
c) Detection of outliers based on physical processes.

3) Data visualization. It is the graphical representation of
information and data; its main activities are:

a) Exploration and visualization of data.
b) Development of intuitive, powerful visualizations.
c) Development of algorithms for the prediction of

future conditions.
AvRuskin et al. states that “due to the physical nature of

wastewater process data, it is recommended that laboratory,
operations, and engineering staff be consulted at all points in
the process to confirm assumptions” [25].

According to Anderberg, cluster analysis can be used to
develop inductive generalizations [26]. Clustering analysis has
been used in the domain of water quality to i) investigate
the spatiotemporal structure of determinants in a set of 21
Scottish lakes [27], ii) evaluate the water quality of three
different cross-sections of the Fen River [28], and iii) evaluate
the quality of underground water [29].

Radar plots are a useful way to present multivariate data.
According to Joan Saari [30], “radar plots have great utility in
situations in which there are large numbers of independent
variables, possibly with different measurement scales”. In
addition, Joan Saari found that “radar plots have a particular
relevance for researchers who wish to illustrate the degree of

multiple-group similarity/consensus or group differences on
multiple variables in a single graphical display” [30].

IV. PROPOSED EDAR 4.0 TOOL

EDAR 4.0’s architecture has the WWTP process as the
base, which includes a factory-level data acquisition of all
the processes that make up a WWTP. This process can be
classified into three main standard sub-processes. First, the
influent represents the entry of the incoming water and its
preliminary and primary treatment, usually performed in a
primary settling or sedimentation tank. Second, the biological
treatment process is the central part of the so-called secondary
treatment. It represents the biological wastewater treatment
process of different types of bacteria and protozoa, which can
be complemented by additional chemical treatments. Third,
the effluent process represents the wastewater treatment plant
output. This output receives directly treated water or water that
goes through a secondary decantation or sedimentation tank,
which can also be considered part of the plant’s secondary
treatment.

The processes and sub-processes of a WWTP are generally
controlled by one or more programmable logic controllers
(PLC) integrated with different sensors and actuators. All con-
trol information is displayed locally via human-machine inter-
faces (HMIs), usually integrated into a SCADA (Supervisory
Control And Data Acquisition) system. All the information
on the system is generally shared on a local network (LAN)
based on an industrial protocol.

In EDAR 4.0, this is extended to a 4IR system architecture
by establishing an additional cloud-based IoT infrastructure
that can be reached via the internet, so the overall WWTP and
its ICT infrastructure must have secure access. In this cloud,
various services are integrated, such as WWTP monitoring,
cloud-based IoT data acquisition and storage, information
visualization, data analysis, and related services, such as visual
analysis and scenario analysis for plant operation optimization
through machine learning models.

An example of accessing the above IoT cloud infrastructure
and related services is via the HTTP REST protocol. An
example of a data analytics service is to classify different
types of water quality and predict (forecast) how water quality
will change over time. Finally, with the above IoT cloud
platform running, the data from the sewage treatment plant
can be displayed on a webpage where remote users can
execute water quality analysis and other plant monitoring
functionalities. Figure 2 details a view of the EDAR 4.0,
4IR system architecture. This figure also explains the software
tools used for the IoT cloud components. The Python-based
Flask library’s API was used in this work. For data storage,
a PostgreSQL database was used. The software Rapidminer
was used for data analytics and ML-based model construction.
Finally, for the visualization part, the Bokeh library was used.
The following subsections detail each of the ML modules
developed.

A. Water-quality monitoring
The dataset obtained from the “La Cartuja” WWTP SCADA

system was subjected to a series of steps to preprocess it and
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Fig. 2. EDAR Architecture.

leave it ready for the Data Cleaning process. Once the data
has been cleaned, a PCA is applied to extract the two main
components that define the dataset. Furthermore, a clustering
process is executed using the K-means algorithm with k=4,
where each group identified by the algorithm belongs to a
water quality cluster.

The platform allows parameterizing if the water quality
monitoring is displayed according to the water treatment’s
contaminants removal performance or effluent’s water quality
absolute values, in the frontend. Another parameter that the
user could set from the platform is the WWTP operation
period. The above was implemented because the “La Cartuja”
wastewater treatment plant had a plant design and equipment
improvement over time, so it was essential to monitor and
separate these two periods. Water quality profiles (or clusters)
are plotted using a line profile chart and a spider chart. Figure
3 displays the monitoring module of the EDAR 4.0 platform.
This plot shows that the worst water quality is the blue-colored
cluster (Cluster 0), whereas the best quality is the red-colored
one (Cluster 3). Besides, it can be noted that the WWTP should
improve the treatment of the NTK chemical variable.

B. Water-quality prediction
The water-quality prediction tool predicts the number of

times the WWTP could have each water quality cluster in a
month. For that, the backend implements a Holt-Winters time-
series forecasting. Two plots are displayed in the frontend:
i) The time-series cluster prediction plot and ii) The outlier
probability plot. These plots can be seen in Figure 4. The
vertical dashed line separates the real dataset (monitoring)
from the prediction data. WWTP operators should ideally see
in this graph that the highest prediction count is in the best
water quality, the red cluster (Cluster 3), and the lowest count
in the worst water quality, the blue cluster (Cluster 0).

(a) Water quality forecast.

(b) Water quality forecast outlier probability plot.

Fig. 4. Visual Analytics Water Quality Prediction Platform.

C. WWTP Model Creation & Simulation
At this stage, it is possible to create a data-based model

for any WWTP process variable, including energy, water
quality, or process operation and control-related variables of
the wastewater treatment process. The model created in the
platform by default is a water quality model. However, other
process variables, such as energy consumption (kilowatts per
day), can be modeled as a function of other process variables.
In the back end, the machine learning system implemented
can detect the most relevant variables for the models to be
developed based on information such as a process variables’
correlation matrix. The method selected for the creation of
models is based on decision trees. Once the model is created,
it is possible to interact with the platform’s variables relevant
to that model. Once the values are selected, a prediction of
modeled variables’ range of values can be performed with
those values with which the model is simulated. This process
is shown in Figure 5, which is based on an example of
modeling electricity consumption; a set of values is given for
the relevant variables, and after running the simulation, the
platform predicts that the WWTP will be at a range1 (−∞ to
59816 kW) of energy consumption.

Fig. 5. Energy consumption model simulation.
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(a) Monitoring configuration parameters.

(b) Water Quality Line Chart (Performance). (c) Water Quality Line Chart (Absolute).

(d) Water Quality Spider Chart (Performance). (e) Water Quality Spider Chart (Absolute).

(f) Water Quality Variable Importance (Performance). (g) Water Quality Variable Importance (Absolute).

Fig. 3. Visual Analytics Water Quality Monitoring Platform.

The confusion matrix can visualize model’s performance in
Figure 6, which shows how many of the values predicted by
the model were correct according to the labels (real data).

Fig. 6. Confusion matrix for the electric model.



VELÁSQUEZ et al.: EDAR 4.0: VISUAL-ANALYTICS FOR WASTE WATER MANAGEMENT 7

In addition, the developed platform shows the relevance of
the variables of the created model to the operator, as seen in
Figure 7.

Fig. 7. Variable influence for the electric model.

Finally, the dashboard presents the decision tree created for
a specific variable (model), as seen in Figure 8.

D. WWTP Model Optimization

This platform component is complementary to the simulator,
where a target interval (range) is set for the variable being
modeled, and restrictions are placed on the variables that
influence it. Once this has been done, optimal values can be
obtained for each influential variable to guarantee the modeled
variable’s target with the given restrictions. For example,
Figure 9 shows which values of the chemical concentrations
must be used to obtain the lowest possible range of energy
consumption for the WWTP.

Fig. 9. Energy consumption model optimization.

V. DISCUSSION

The end-user validated the operational improvement pro-
vided by the developed tools. This improvement comprises
the following aspects concerning to their existing tools:

• Observability: it allows monitoring of the state of water
quality through a visualization based on clustering.

• Predictability: operators can forecast how their WWTP
will go.

• Risk-free evaluation: operators can validate how their
system will perform if specific parameters change through
simulation and optimization. This represents an essential
advantage because, currently, they were required to test
their actual WWTP, which could lead to damage if their
operating variables were not correctly manipulated.

• Interpretability: The decision trees and variable impor-
tance graphs help the operators better understand their
WWTP behavior.

The end user concluded that adequately trained and skilled
staff could obtain the above benefits. Although initially this
aspect might be interpreted as limiting, in the sense that if
the plant management staff does not have the appropriate
training, getting the benefits from the developed tools could
be a complex, time-consuming and complicated task, in the
end, it is considered as a positive situation by the end users
as continuous education and training are part of worker’s
rights and company’s obligation. Therefore, it is not seen as a
limitation but as an opportunity to advance in innovation and
continuous improvement.

Thus, incorporating new 4IR technology is suitable for the
company and its operators, and the economic benefits from
implementing the improvements that the user can identify
through these tools are clear.

Finally, in addition to this qualitative and general validation,
a quantitative validation of the performance of the developed
Machine Learning models could be performed by the end user:
On the one hand, Figure 10 shows the Confusion Matrix of
the Water Quality Model, which is a tool for validating the
model’s predictive performance.

Fig. 10. Confusion matrix for water quality model.

On the other hand, the predictor importance graph is shown
in Figure 11, which gives very valuable information about the
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Fig. 8. Decision tree for the electric model.

variables that, according to the models constructed, have the
greatest influence on the operation of the WWTP; the end user
has confirmed these variables as those which greatly influence
on the quality of the effluent water, which is the best proof of
validation of the obtained results.

Fig. 11. Variable importance for water quality model.

VI. CONCLUSION

This paper presents a visual analytics-based platform for
WWTPs, called EDAR 4.0. Intuitive visualizations have great
potential for supporting decision-making during the operation
and management of WWTPs. The proposed tool allows users
to identify relationships between key process variables through
advanced data inspection. The developed tool allows WWTP
operators to perform simulations and optimizations without
risking real operation. The tool has been validated by WWTP
domain experts, thus demonstrating its great potential as a

very valuable source of information for the day-to-day and
long-term decision-making in WWTPs.

As future work for consolidating the use of the developed
tools for the management of WWTPs, several possibilities
are foreseen: (i) firstly, it is proposed to scale up the tool
for a multi-plant implementation approach; (ii) secondly, the
development of a dynamic ammonium controller through the
scenario analysis and optimization functionalities provided by
the developed tools is proposed, which would be an important
novelty for WWTPs; (iii) thirdly, it is also proposed to carry
out an in-depth study concerning usability; (iv) finally, the
use of open-source Python libraries instead of RapidMiner
(commercial software) is proposed for data analysis and model
construction tasks to reduce costs and improve scalability.
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