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Abstract—Optimization and control strategies are necessary to keep wastewater treatment 

plants (WWTPs) operating in the best possible conditions, maximizing effluent quality with the 

minimum consumption of energy. In this work, a benchmarking of different hierarchical control 

structures for WWTPs that combines static and dynamic Real Time Optimization (RTO) and non 

linear model predictive control (NMPC) is presented. The objective is to evaluate the enhancement 

of the operation in terms of economics and effluent quality that can be achieved when introducing 

NMPC technologies in the distinct levels of the multilayer structure. Three multilayer hierarchical 

structures are evaluated and compared for the N-Removal process considering the short term and 

long term operation in a rain weather scenario. A reduction in the operation costs of 

approximately 20% with a satisfactory compromise to Effluent Quality is achieved with the 

application of these control scheme. 

I.  INTRODUCTION 

Process control and optimization systems are important for the successful operation of plants. In most of 

the process industries, the control and decision making tasks are performed following a functional 

decomposition that executes the appropriated actions at different time scales. The resulting hierarchical 

architecture is useful to operate the plant effectively, dealing with different environmental and process 

conditions such as seasonal demand, varying load changes, and energy availability among others issues 

affecting business and operation strategies. In the multiple layer structure, the highest levels are 

dedicated to planning and scheduling while the subsequent levels deal with the implementation of 

optimal operation policies (site-wide and local optimization), supervisory control, regulatory control and 

data acquisition functions (Skogestad, 2000; Seborg et al., 2004).  Planning and scheduling are usually 

called strategic levels, while optimization and control are tactical or operational levels (Manenti, 2011). 

A general scheme of the hierarchical structure is presented in Figure 1 (Skogestad, 2000; Araujo et al., 

2011), nevertheless the structure can be extended or modified according with the particular operation 

objectives. 
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Figure 1. Multiple layer hierarchical structure of process control given by functional decomposition. 

 

 

 

This work focuses on the operational levels, specifically on the implementation of optimal operation 

policies by integrating Real Time Optimization (RTO) and Model Predictive Control (MPC) techniques 

in Wastewater Treatment Plants. In the literature the optimization and control levels are treated as a two-

layer control structure encapsulated within the multiple layer hierarchical architecture (Engell, 2007; 

Scattolini, 2009).Typically, in industrial applications, a Real Time Optimization (RTO), either 

stationary,  dynamic or  both, is performed  in the upper layer to provide set-points, constraints and 

additional information regarding the economically optimal operating point to the control layer. This is 

possible when enough degrees of freedom are available to be adjusted in the process. The direct control 

layer carries out the actions to regulate the output variables, maintaining them as close as possible to the 

optimal set-points in the presence of disturbances. The direct control layer may be comprised by 

advanced Model Predictive Controllers (MPCs), simple PIDs controllers or a sequence of layers 

including MPC for supervisory purposes (constrained control) and MPCs or PIDs for regulatory 

purposes (Tatjewsky, 2008). 

 

The benefits of the Real Time Optimization are demonstrated by its successful implementation in a 

number of industrial applications leading to significant economical profits (Edgar, 2004). The RTO is 

recommended when significant changes occurs in the operating conditions affect strongly the plant 

profitability. In large plants, seasonal and day-to night variations may be sufficient to justify RTO 

(Darby et al., 2014). Additionally, the temporal decomposition is a solution for complex multi-scale 

processes to cope with the different dynamics of the state variables or disturbances (Tatjewsky, 2008). 

The sampling time and optimization horizon are larger in the upper layers dedicated to the slower 

process dynamics and disturbances. Thus, beyond the functional hierarchical decomposition carrying out 

specific tasks at different rates, a temporal decomposition with different time scales within one of the 

functional layers is recommended to achieve the optimal operation.  

 

The dynamical properties of disturbances are crucial in the formulation of the multilayer optimization 

strategy. The classical static RTO/ MPC structure is compatible with processes facing slow-varying 

disturbances or processes with disturbances that changes abruptly but rare respect to the controlled 
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process dynamics (Tatjewsky, 2008). If the time scale of disturbances is longer than RTO sampling 

period, the economic static optimization can be solved reasonable less frequently than the MPC 

optimization executes, updating the operating point to current conditions. However, in industrial practice 

is common to find processes where the disturbances dynamic is not slow, in the worst case it may be 

comparable to the process dynamics. In those cases, the static economic optimization fails producing a 

significant loss of economic effectiveness (Lawrynczuk et al., 2008). Consequently, it is necessary to 

compute the optimal set points more often and therefore, the dynamic optimization (D-RTO) using 

MPCs is an appealing strategy to perform efficiently the economic optimization accounting for 

disturbances and process dynamics.  Furthermore, in the presence of multi-scale disturbances, a 

combination of stationary RTO and dynamic RTO can be appropriated to optimize the operation of the 

plant as it is considered in this paper. This optimization strategy is also appropriated to address the 

problem of multi-scale behaviour in complex processes which exhibits substantial differences between 

rates of change of faster and slower state variables.   

 

The use of Model Predictive Control (MPC) is justified because it is an advanced control technology 

widely accepted in the process industry, proven by a considerable number of successful applications 

reported in literature (Qin and Badgwell, 2003). The MPC deals with the control problem transforming 

it into an optimization one. The classical objective function is a quadratic index which penalizes the 

deviations of the states and inputs from the targets; nevertheless it is possible to use different 

formulations as in Economic Model Predictive Control (EMPC) (Ellis and Christofides, 2014) . The 

noteworthy advantages of the MPC strategy are the ability to handle multivariable interactions and the 

possibility of including constraints imposed on inputs, outputs or states directly in the problem 

formulation to anticipate and prevent future violations (Qin and Badgwell, 2003; Edgar, 2004; 

Lawrynczuket et al, 2008). The constraints not only represent the admissible range of the inputs and 

control variables, but also decisions related to production quality, economic efficiency and general 

operation requirements. 

 

Wastewater treatment plants (WWTPs) are non-productive process subjected to very high economic 

penalties for off-specification discharges and very high operation costs basically associated with the 

aeration system and pumping energy. These plants exhibits complex and non-linear dynamics making 

difficult the control and the optimization tasks. In this type of processes, frequent and significant 

changes in the inputs affect the process behaviour, the climatic characteristics of the region define 

seasonal profiles and the influent variations tend to be cyclical, depending on the daily and weekly 

population activities. Moreover, WWTPs are complex systems with clearly separable slow and fast 

dynamics due to the non-linear and interacting biological processes occurring in multiple time scales. In 

that case as mentioned above, a temporal decomposition may be necessary for an adequate distribution 

of optimization and control tasks (Brdys et al., 2008; Picasso et al., 2010; Scattolini, 2009). 

Summarizing, all the mentioned above characteristics of the WWTs justify the application of 

hierarchical control strategies involving RTO and advanced control techniques in order to improve their 

operation in terms of economics, guarantee water quality and avoid legal sanctions. A solution proposed 

in this paper is the implementation of  multilayer structures comprising static Real Time Optimization 

(RTO) for the slower process and disturbances dynamics, a MPC dynamic Real Time Optimization (D-

RTO) to capture the medium to fast process and disturbances dynamics, and MPC regulatory layer to 

improve economically the plant performance. 

 

Several works have focused on the integration of Real Time Optimization (RTO) and Model Predictive 

Control (MPC). Some of these attempts are discussed and reported in Engell (2007) and Tatjewsky 

(2008). Sequeira et al. (2002) propose the Real Time Evolution (RTE) where the fulfillment of 
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stationary conditions is not necessary. The so-called LP-MPC and QP-MPC two-stage MPC structures, 

which are frequently used in industry to integrate the low frequency steady-state optimization carried out 

in the RTO layer and the relatively fast regulatory linear MPC. A RTO is followed by an intermediate 

MPC layer that calculates the set points for the controlled variables and the manipulated inputs for a 

lower level MPC that executes the direct control actions (Engell, 2007). In some approaches (Kadam et 

al., 2002; Zhu et al., 2004; Ochoa et al. , 2010; Wurth et al., 2009), a dynamic real-time optimization (D-

RTO) is performed instead of the RTO based on of steady-state models. In Kadam et al. ( 2002) and 

Ochoa et al. (2010) an alternative structure consisting of two interconnected NMPCs is employed.  The 

upper level NMPC determines the optimal values for the manipulated and control variables in terms of 

cost, considering a sampling time that captures the slow process dynamics. In the lower level, the 

sampling time has to be significantly smaller, and the optimization is performed for the tracking of the 

reference trajectories given by the upper level.  

 

Some authors go beyond by using one layer approaches for solving the optimization and control 

problem. Zanin et al., (2000) and Zanin et al., (2002) integrate the steady-state optimization into MPC 

algorithm. These approaches are applicable in processes with slow dynamics and not computationally 

complicated models. Another one layer dynamic real time optimization approach is the economically 

oriented Model Predictive Control (EMPC) which focuses in the optimization of the economic 

performance of the process over the prediction horizon and at the same time it calculates control actions. 

The conventional MPC quadratic cost function is replaced by an economic (not necessarily quadratic) 

cost function is used directly as the cost in MPC (Rawlings and Amrit, 2009; Ochoa et al., 2010; 

Heidarinejad et al., 2012). In recent work, Ellis and Christofides (2014) propose a two layer approach, 

consisting of an economic MPC (EMPC) in the upper layer and a conventional MPC in the regulatory 

layer. The EMPC receives state feedback and time-dependent economic information and computes 

economically optimal time-varying operating trajectories for the process by optimizing a time-dependent 

economic cost function over a finite prediction horizon subject to a nonlinear dynamic process model.  

 

Regarding the optimization of the operation of WWTPs, some works propose the use of simple PI 

control schemes and perform the set point optimization off line (Machado et al., 2009; Araujo et al., 

2011; Guerrero et al., 2011).  Machado et al. (2009) presented a hierarchical structure of two cascaded 

PI for optimizing the operation of a nutrient removal WWTP. Araujo et al., (2011) used the steady state 

version of the process model for the calculation of the optimal fixed set points that allow keeping the 

variables related to the environmental regulation constraints within their limits , with minimum cost. In 

Guerrero et al. (2011), a model based set point optimization for influent profiles which are already 

known is performed considering different control strategies. The objective is to minimize the Overall 

Cost Index (OCI) and the time period that the Effluent Quality (EQ) index is above the allowed limits.  

  

Advanced control strategies are applied and real time optimization is carried out in Piotrowski et al. 

(2008) and Brdys et al. (2008). The first presents a hierarchical control structure for DO control with a 

MIMO robust MPC and other advanced methods in the optimizing layer. In the second, Brdys et al. 

(2008) an integrated wastewater treatment plant and sewer system is considered. They propose a 

functional decomposition consisting of supervisory, optimizing and follow-up layers. A temporal 

decomposition of the optimizing control layer produces three sub-layers for slow, medium and fast 

dynamics. Robust linear MPC control strategies are applied. This structure allows for significant cost 

savings while the discharge limits over a long operation period under the full range of disturbances are 

fulfilled.  
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Although, the mentioned techniques have been widely and successfully used in different fields of 

engineering and process industry, the integration of Real Time Optimization (RTO) and MPC 

technology and its application are still an open field of research, especially in the field of bioprocesses as 

WWTP  

 

This paper deals with the integration of the Real Time Optimization (RTO) and MPC technology 

considering non-linear phenomenological models for achieving the optimal operation and constrained 

multivariable control of Wastewater Treatment Plants (WWTP). The study presents a benchmarking of 

different hierarchical control structures with the objective of evaluating  and comparing  different  

strategies in a systematic way in order to determine if it is worthwhile using them. The criteria for 

evaluating the advantages of the implementation of the different architectures are the tradeoff between 

economic benefit, process and control performance and the complexity of the control structure. 

 

The proposed approach is based on the use of non-linear phenomenological models of the process to 

describe all relevant dynamics and to cover a wide operating range, providing accurate predictions and 

ensuring the performance and robustness of the control systems (Backx, 2002). As it is well known, 

although the combination of static RTO and linear MPC has been widely used in industrial applications 

due to its computational efficiency, it can lead to a substantial loss of economic optimality in WWTPs 

because of the approximate linear  model. In general,  the dynamic behaviour of WWTPs is slow enough 

to cope with  non-linear optimization problems despite the required computational effort. 

 

The WWTP process selected as a case study follows the specifications given in the Benchmark 

Simulation Protocol (BSM1) (Alex et al., 2008) which are widely accepted by the scientific community. 

Particularly, in this work, the model focuses on the N-Removal process.  This is an interesting case 

study which is quite different from the standard applications of static-RTO/linear-MPC in the 

petrochemical area (Edgar, 2004).  

 

The paper is organized as follows: section 2 is devoted to the description and mathematical formulation 

of the proposed hierarchical control strategies integrating RTO and NMPC. The description of the N-

Removal process and the performance indices used to test the optimization protocol are presented in 

section 3. The direct layer NMPC is described in section 4.  

 In section 5, the formulation of the set point optimization problems with static and dynamic models for 

the process in study is presented as well as the results for the short term operation period. The results of 

the long term operation evaluation are presented in section 6 and finally the conclusions of the work are 

also presented. 
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II. INTEGRATION OF REAL TIME OPTIMIZATION AND MODEL PREDICTIVE CONTROL 

 

The formulation of the economic optimization problems for the WWTPs within the control structure 

depends strongly on the dynamical properties of disturbances as well as biological processes dynamics. 

The inflows to the systems depends on the daily and weekly population activities. A characteristic daily 

profile exhibits peaks in the morning and valleys in the night. The loads can vary during weekends and 

holiday seasons and rain and storm events occur with certain frequency, they are abrupt disturbances of 

different intensity depending on climatic characteristics of the region. It is possible to distinguish faster 

disturbances affecting the plant in a scale of minutes (Short time horizon variations), medium to fast 

disturbances in a scale from hours to days (Medium time horizon variations), and, finally, slow 

disturbances in the scale of days to weeks  (Long time horizon variations) as is shown figure 2. 

 

 

 
Figure 2. Characteristic paths defined by disturbances behavior in different time scales. 

 

 

Such characteristics are a determining factor in the formulation of the multilayer control structures for 

the economic optimization of the WWTP operation. Three multilayer hierarchical structures are 

proposed, comprising Real Time Optimization (RTO) and direct control tasks at different rates. The 

RTO level performs the economical optimization of the operating conditions to obtain the best set points 

for the current influent characteristics. The optimal set points are passed to a nonlinear Model Predictive 

Controller (NMPC) which actually drives the outputs to those desired values taking into account a set of 

operation and control constraints. The non-linear prediction model provides a good representation of 

process dynamics which allows for more effective control actions to deal with large disturbances and an 

accurate tracking of the optimum as it changes with time. 

 

The full multilayer structure, contemplates the temporal decomposition of the RTO to cope with the 

multi-scale behavior of disturbances and plant dynamics. The proposed strategy comprises a static Real 

Time Optimization (RTO) that handles long term objectives and deals with the slower disturbances over 

a horizon of days to weeks. Long time horizon targets (set points or optimal values of performance 

indices) are computed to be passed to the subsequent layer which performs a dynamic Real Time 

Optimization (D-RTO). The D-RTO is carried out to capture the medium to fast dynamics of process 
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and disturbances over a horizon of hours to days providing economically optimum set points to the 

NMPC control layer. Such structure is described in figure 3. 

 
 

Figure 3. Full hierarchical structure for process control considering the temporal decomposition 

 

 
Figure 4. Two layers hierarchical structure Static RTO +NMPC 

 

 

 
 

Figure 5. Two layers hierarchical structure Dynamic RTO +NMPC 

 

 

One drawback of the implementation of multiple layers is the increase of the complexity of the control 

system. In order to reduce the complexity, two alternative structures as described in figures 4 and 5 are 
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also considered.  The intention is to determine if an increase in the number of  layers to capture the 

different plant and disturbances dynamics is economically worthwhile.  

 

Thus, the proposed structures are identified as: full hierarchical structure, Static RTO+NMPC and 

Dynamic RTO+NMPC structures. The mathematical formulation of these optimization problems are 

described below.  

 

 

Direct Control layer: 

 

In the proposed structures, a NMPC is used to obtain, in a fast time scale, the optimal values of the 

manipulated variables to be applied to the plant in order to achieve proper disturbance rejection and set 

point tracking. The optimization problem solved by this NMPC each sampling time TMPC subject to a set 

of constraints is the following: 

 

           
1

2 2 2 2

( );0 1
1 0

min min | | | |
u

y y y y u u u
p c

c

H H

MPC p sp sp sp RQ Sk i i H P
i i

J k k H k k i k k i k k i k


   
 

 
             

 
       (1) 

 

s.t.  

 

min max

min max

min max

( | ) 0, , 1

( | ) 1, ,

( | ) 0, , 1

u u u

y y y

u u u

c

p

c

k i k i H

k i k i H

k i k i H

    

   

       

                            (2) 

 

where y is the vector of process outputs, u the vector of manipulated variables, ysp is the set points 

vector, usp is the target vector for the manipulated variables, P is the terminal penalty weight matrix, Q is 

the output weighting matrix, R is the move suppression weighting matrix and S is the input deviations 

weighting matrix, all of them positive definite Hp and Hc are the prediction and control horizons in this 

layer. The values of ysp and usp are fixed goals provided by the optimization strategy together with all 

required information related to the optimal operating point.  

 

The predictions are obtained using the following nonlinear discrete time prediction model of the process 

along Hp: 

 

 

( 1| ) ( ( | ), ( | ), ( | ))

( | ) ( | ), ( | ), ( | )

x f x u d

y g x u d

k k k k k k k k

k k k k k k k k

 


                                (3) 

 

where x is the vector of measure or estimated states, and d the vector of measured disturbances (which 

are kept constant along Hp) 

 
Real Time Optimization layer: 

 

Static optimization 

 

In the proposed structure, a stationary RTO is used in the upper layer to achieve long term economic 

objectives.  The optimization is carried out in a medium-to-slow sampling time scale (days-weeks) in 

order to obtain the optimal targets to be sent to the subsequent layer. Those targets can be: set point 
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values or trajectories, updated constraints limits or the desired goals for the performance indices.  The 

selected time horizon (Tss) defines an operating window where filtered (or average) values of the inputs 

are considered and the optimized variables impact positively on the process economics.  

 

It is assumed that for the optimal steady-state operation of the process a scalar cost function 

: x un n

ss
J     can be defined, where nx and nu are the number of states and manipulated variables 

respectively. The optimization problem for the steady state RTO is stated as: 

 

 min ,
u

x u
ss

ss ss ssJ                                        (4) 

 

subject to constraints: 

 

min maxx x xss ss ss   (bounds in states) 

min maxu u uss ss ss   (bounds in manipulated variables) 

 

 , , 0x u dss ssF                                        (5) 

 , , 0x u dss ssh                                        (6) 

 , ,y x u dss ss ssg                                      (7) 

 

where x xn

ss   is the vector representing the steady state values of the model used for representing the 

static process behavior, u un

ss  is the vector of the corresponding steady state manipulated variables, 

d dn
  is the vector of disturbances, their current estimate or measurement, short-prediction, or filtered 

disturbances, with nd the number of disturbances, minxss and maxxss are the lower and upper bounds for xss , 

minuss and maxuss are the lower and upper bounds for uss , F is a function representing the steady state model 

equations of the process, h is a function representing process constraints and others, and g is a function 

representing the model output equations. 

 

The problem is solved each Tss, that is the sampling time corresponding to the selected operating 

window, assuming that steady state is achieved. The results of the optimization problem are the optimal 

manipulated variables uss,o and the corresponding steady states xss,o, which could be sent to the next 

optimization layer as optimal set points or constraints. 

 

In this work, the static RTO is carried out in a full hierarchical structure to send the optimal value of the 

cost function Jss,o as targets to the intermediate dynamic RTO layer, as well as, in the Static 

RTO+NMPC structure to pass optimal set points to the control layer. 

 

Dynamic Optimization : 

 

A non-linear Model Predictive Controller (NMPC) is proposed to obtain the optimal operating to be sent 

to the control layer. The optimization problem solved by the NMPC each sampling time Teco is the 

following: 

 

       ,
( );0 1

min min | , |
u

y u
u

eco eco ss o
k i i N

J k J k j k k i k J
   

                          (8) 

s.t. 
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 min max| 1, ,y y y yk j k j N                                    (9) 

 min max| 0, , 1u u u uk i k i N                                    (10) 

 

where Ny and Nu are the prediction and control horizons respectively. 

 

Note that the prediction and control horizons in this layer (Ny and Nu) are different from those at the 

control layer (Hp and Hc), due to the different time scales considered. 

 

The function Jeco represents the economic costs regarding the medium to fast time scale operation, and it 

depends on the values of the manipulated variables u, disturbances d and outputs y for the period Teco, 

where x is the vector of measured or estimated states, u the manipulated variables vector, and y the 

vector of controlled variables f  and g are vector functions that represent the mathematical model or the 

process (non-linear differential equations), y and x  are the predicted outputs and states.  

 

As mentioned, before the objective of this layer is to provide optimal set points ysp , and the 

corresponding manipulated variables usp, to the direct control layer. The values are taken at the end of 

the prediction horizon, allowing for the stabilization of the process and assuming a constant set point 

policy satisfying all variable and process constraints and ensuring that the computed set points are 

reachable, since the whole control sequence is evaluated. 

 
 
 

ˆ |

1|

y y

u u

sp y

sp u

k N k

k N k

 

  
                                      (11) 

 

When the D-RTO is included in the full hierarchical structure, the value of Jss,o is updated each Tss to 

consider the optimization of the long term objectives by the upper static RTO. In the Dynamic 

RTO+NMPC structure, the Jss,o is a fixed value corresponding to the global optimum respect to the 

inputs average for the whole operation horizon. 

 

Note that, either in the stationary or dynamic RTO, all the information concerning to the optimal 

operating point is used to update the process information in the subsequent layer. On the other hand, the 

different time scales considered in the problem make necessary the use of different sampling times for 

each layer, satisfying the following inequality: 

MPC eco ss
T T T                                          (12) 

 

The different hierarchical control structures that combining static and dynamic Real Time Optimization 

(RTO) and Non-linear Model Predictive Control (NMPC) technology are evaluated and compared in a 

systematic way in order to determine if it is worthwhile using them. The criteria for evaluating the 

advantages of the implementation of the different architectures are the tradeoff between economic 

benefit, process performance, and complexity of the control structure. The performance evaluation 

criteria is the indicated in the BSM1 protocol for WWTPs.  

 

III. N-REMOVAL PROCESS DESCRIPTION AND CONTROL 

Process description. 
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The most important Biological treatment in a WWTP is the nitrogen removal process (N-removal 

process). The goal is the elimination of nutrients and organic matter in the wastewater to reach the limits 

imposed by the environmental regulations. The activated sludge process (ASP) is commonly selected for 

the biological treatment. In the ASP, the organic matter is oxidized and the nitrification is achieved by 

the biological conversion of ammonium to nitrates in aerobic conditions. The denitrification process, 

that is the reduction of nitrates to nitrogen gas (N2), occurs in anoxic conditions.  

 

The typical values of effluent quality requirements imposed to WWTPs are shown in Table 1. The N-

Removal process variables are presented in Table 2. 

 

Table 1. Effluent Quality Requirements 

 

Variable Bound 

Total Nitrogen (Nt)** < 22grN/m3 

Chemical Oxygen Demand 

(COD,e) 

<125 

grCOD/m3 

Ammonium concentration 

(SNH,e) 
<4 grN/m3 

Nitrate concentration (SNO,e) <10 grN/m3 

              **Real value 18 grN/m3 

 

 

Table 2. N-Removal process variables 

 

Description Variable 

Readily biodegradable substrate concentration 

 (gr COD/m3) 
SS 

Active heterotrophic biomass concentration (gr COD/m3) XB.H 

Active autotrophic biomass concentration (gr COD/m3) XB,A 

Dissolved oxygen concentration (gr/m3) SO 

Nitrate and nitrite concentration (gr N/m3) SNO 

NH4+ + NH3 concentration (gr N/m3) SNH 

Dissolved oxygen concentration (gr/m3) SO 

Influent flow rate Qin 

Organic matter concentration SS,in 

Ammonium compounds concentration SNH,in 

Internal recycle flow Qa 

Oxygen transfer coefficient KLa 

Oxygen saturation concentration SO,sat 

Tabla con formato

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: NormalSil, Derecha:  0 cm

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: NormalSil, Derecha:  0 cm

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: NormalSil, Derecha:  0 cm

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: NormalSil, Derecha:  0 cm

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: NormalSil, Derecha:  0 cm

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: NormalSil, Derecha:  0 cm

Con formato: Fuente: 12 pto, Cursiva, Inglés (Estados
Unidos)

Con formato: Fuente: 12 pto, Cursiva, Color de fuente:
Negro, Inglés (Estados Unidos)

Con formato: NormalSil, Derecha:  0 cm

Tabla con formato

Con formato: Fuente: 12 pto, Cursiva

Con formato: Fuente: 12 pto, Subíndice 
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Heterotrophic max. specific growth rate H  

Half saturation coefficient for heterotrophs Ks 

Oxygen saturation coefficient for heterotrophs KO,H 

Ammonia saturation coefficient for heterotrophs KNH 

Oxygen saturation coefficient for autotrophs KO,A 

Heterotrophic yield YH 

Autotrophic yield YA 

Nitrogen fraction in biomass  iXB 

Anoxic reactor volume  V1 

Aerobic reactors volume V2 

 

 

 

Process model. 

 

The WWTP process selected as a case study follows the specifications given in the Benchmark 

Simulation Protocol (BSM1) (Alex et al., 2008) which are widely accepted by the scientific community. 

However, the model focuses on the N-Removal process.  The Benchmark Simulation Model (BSM1) 

has been widely applied to test control strategies for the Activated Sludge Process (ASP) in wastewater 

treatment plants. It consists of 5 bioreactors: 2 anoxic and 3 aerobic. In the simplified model considered 

in this work, only the significant variables of the BSM1 model on a medium time scale are taken into 

account. The processes with slow variations in time (the growth of autotrophic and heterotrophic 

microorganisms and hydrolyse processes) are neglected. The BSM1 representation is reduced to one 

anoxic and one aerated reactor as shown in Figure 5. The volumes of the two tanks are 2000m3 and 

3999m3, to make them equivalent to total volumes of the anoxic and the aerobic compartments in the 

BSM1. 

 

 

 
Figure 5.Schematic representation of the plant. 

 

Thus, the biological processes considered in the model are described by the following equations: 
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,
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3 ,

,

NHi Oi
i A B A

NH NHi O A Oi

S S
X

K S K S
 

  
          

         (15) 

 

where i:1,2. The index 1 refers to the anoxic tank and index 2 to the aerobic. 

 

The differential equations describing the model are: 

 

 1
2 1 11 21 31

1

1 1
( )   
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
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 1
2 1 11 21

1

1 1 1
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(18) 
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          (23) 

 

The values of the kinetic and physical parameters are assumed to be the same as for BSM1 (Alex et al., 

2008).  

 

Influent profiles. 

 

The  different influent profiles of the Benchmark Simulation Model (BSM1) are used to study the effect 

of the multilayer structure over economics in the plant operation in this study. In this influent strong 

variations in the flow and concentrations are observed during the rain event and storm events. A long-

term influent profile has been prepared. This input profile mixes different zones of the BSM1’s rain 

weather and storm weather influent profiles. The first 10 days are characteristic of dry weather with 

normal influent flow and periods of  reduced loads , a period of heavy rain occurs between the second 

and third week. The last ten days combine periods of storms with low influent flow.   
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Figure 6. Long term influent flow profile for a 28 days operation horizon 

 

 

 

 
Figure 7. Long term influent concentrations profile for a 28 days operation horizon 

 

 

For the two layer optimization strategies and for the controller performance evaluation, a portion of the 

influent profile that concentrates the most significant changes in the inputs (Figure 7) has been selected 

for simulations and it has been denominated short test influent. 
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Figure 8. Short test influent profile. 

 

 

Control problem 

For an efficient N-removal in the activated sludge process, the typical controlled variables are the 

dissolved oxygen concentration in the aerated zone SO2 (DO) and the nitrate concentration in the anoxic 

zone SNO1. The manipulated variables are: the internal recycle flow (Qa) and the oxygen transfer 

coefficient (KLa). The disturbances are: the influent flow (Qin), the organic matter concentration, (SS,in) 

and the ammonium concentration (SNH,in) in the influent. 

 

The DO concentration in the aerobic zone should be sufficiently high to supply enough oxygen to the 

microorganisms in the sludge. However, high air flow rates can produce an excess in DO concentration 

in the aerobic zone that affect negatively the denitrification process through the internal recycle and 

increases unnecessarily the energy consumption. Hence, the control of the DO concentration is crucial 

for the satisfactory operation of the activated sludge process. In the denitrification process that takes 

place in the anoxic zone, the key variable is the nitrate concentration SNO1.  

 

Performance indices. 

 

The performance assessment in BSM1 platform is made at two levels. The first level concerns the local 

control loops, assessed by ISE (Integral of the Squared Error) criteria. Basically, this serves as a proof 

that the proposed control strategy has been applied properly. The ISE is a classical index that it is used 

in process control to evaluate and to compare the control systems performance. In this study, it is 

desirable not only to minimize other objective functions but also to reduce the ISE. The second level 

performance assessment is concerned to the effluent quality index and the cost factors for operation 

given by pumping energy and aeration energy. It provides measures for the effect of the control strategy 

as such on plant performance (Alex et al., 2008). 

 

The measures used to characterize the effluent quality and energy usage during the N-removal process 

are the standard performance indices recommended in the BSM1 platform for the evaluation of control 

strategies applied to WWTPs. The Effluent Quality Index (EQ) which integrates the total amount of 

pollutants for the process with different weights depending on their severity, the Aeration Energy (AE) 

and the Pumping Energy (PE) are applied in this work. 

 

The Pumping Energy (PE) which represents the energy consumption due to pumping of the internal 

recycle, is given by: 
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  
0

1
0.004

tf

a

t

kWhPE Q t dt
dT

  
                                (24) 

 

The Aeration Energy (AE) is calculated from oxygen transfer coefficient (KLa) according to the 

following relation: 

 
0

5
,

11.8 1000

tf k
O sat

k k

kt

S
kWhAE V KLa t dt

dT





  
  

                       (25) 

where k is the number of each reactor. It takes into account parameters such as the type of diffuser, 

bubble size, and depth of submersion.  

 

The overall cost index (OCI) is a measure of the total cost related to energy consumption and sludge 

treatment. In the reduced N-Removal process describe here, the overall cost includes only the pumping 

energy and the aeration energy. 

  /OCI PE AE KWh d                                       (26) 

 

The Effluent Quality is averaged over the period of compounds data that have a major influence on the 

quality of the receiving water: 

0
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            (27) 
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    3

, ,0.25 1 0.08 /e B Ae B HeBOD X X g m                                (28) 

  3

, , /e Se B Ae B HeCOD S X X g m                                               (29) 

  3

, , /e NOe NHe XB B He B AeNt S S i X X g m                                        (30) 

  3

, , B, , , , ,0.75 /     e S e I e H e B A e P eSS X X X X X g m                              (31) 

 

The sub index e refers to the effluent discharge, where SNHe=SNH2, SNOe=SNO2, SSe=SS2. It is supposed 

that the separation in the settler produces: XB,Ae=0.0038·XB,A and XB,He=0.0038·XB,H.  

 

In this work, the violation of the constraints over ammonium compounds and total nitrogen discharges to 

the effluent are quantified by the following indices: 

  
0

2 max. max ,0   
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tf
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  
0

max. max ,0

tf
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dev Ntot S S dt

l
  
                           (33) 

The Integral Square Error (ISE) is a dynamic performance measure commonly used for evaluating 

control performance. It is calculated respect to the two controlled variables (SNO1 and SO2) to evaluate the 

control performance. 
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 
0

2

2 _ 2

tf

SO O SP O

t

ISE S S dt                                  (35) 

where SNO1_SP and SO2_SP are the set point values that can be given by the user or an upper layer 

optimizer system. 

 

In the following sections the proposed hierarchical control structures are compared to the basic NMPC 

strategy with a fixed set point 

IV. DIRECT CONTROL LAYER 

In this section, details of the NMPC implementation in the direct control layer are presented as well as 

the evaluation of process performance when applying the basic control strategy in the presence of the 

disturbances given by the short test influent profile (Figure 7).  

 

The general NMPC formulation for the direct control layer is given in eqs. (1) and (2) is applied here. 

Recall that the optimization problem solved at each TMPC is: 
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In the case of the N-Removal process, the specific NMPC variables are: 
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The bounds and model constraints are given by the process performance specifications, process 

limitations and treatment objectives. Constraints are imposed over some states and outputs as follows: 

 

 2 | 4 [ / l] 1NH pS k j k mg j H                               (36) 

 | 30 [ / ] 1tot pN k j k mg l j H                               (37) 

 20.1 | 8 [ / ] 1O pS k j k mg l j H                                (38) 

 | 100 [ / l] 1 pCOD k j k mg j H                              (39) 

 | 10 [ / ] 1 pBOD k j k mg l j H                              (40) 

  10 | 3.5 0 1        cKLa k j k h j H                           (41) 

  30 | 3850 / 0 1a cQ k j k m h j H                                 (42) 

 

The bound of Ntot  in eq. (37) was relaxed after a sensitivity study, because the value indicated in Table 1 

was difficult to meet with this simplified model. 

 

Implementation. 
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The NMPC control performance has been evaluated first considering a fixed set point for tuning 

purposes. That economical steady state optimum is calculated by solving the steady state problem for the 

average valued of Qin, SS,in and SNH,in from the BSM1 dry weather influent (Alex et al., 2008).  The 

optimum for u: (Qass,, KLass)  produces the optimum set points for  y: (SNO1 and SO2). The values of the 

optimum working point are: Qass=408 m3/h, KLass=3.87 1/h, SNO1ss=1.67 mg/l and SO2ss=2.38 mg/l.  

 

The NMPC algorithm uses the phenomenological model of the plant described in eqs. (16)-(23) for 

predictions. The fmincon method of Matlab® based on Sequential Quadratic Programming (SQP) is 

used for the optimization carried out each sampling time (TMPC) to obtain the optimal manipulated 

variables.  

 

For simplicity a control horizon Hc=1 is chosen, the prediction horizon is between Hp = 10 and  Hp = 

25, selecting Hp = 25 for the tests, and the sampling time is TMPC= 0.0104 d. After the tuning procedure, 

the selected parameters for the NMPC controller are Q=[1 0; 0 1] and S=[0.001 0; 0 50].   

 

A sequential optimization technique is used to reduce the impact of the infeasible points in the controller 

performance. The NMPC law is solved first considering the constraints given by ineqs. (36)-(42), if an 

infeasible solution is found, the optimization is repeated considering a relaxing factor (rf) in the 

ammonium constraint (NMPC-rf).  

 

 2 | 4 [ / ] 1NH pS k j k rf mg l j H                                (43) 

 

If the optimization fails at all, the value of the manipulated variables obtained in the previous 

optimization is used.  

 

The sequential optimization technique was tested with constant and variable relaxing factors. In the 

simulation of plant response during 7 days with the typical NMPC, following an constant set point 6% 

of infeasible solutions are observed. It is reduced to 0.5% with a relaxing factor rf=2 and none infeasible 

solution are observed with relaxing factor rf=4. Variable relaxing factors introduced noise in the 

response. Therefore, rf=4 is selected for the direct control layer NMPC. 

 

V. OPTIMAL OPERATION STRATEGIES APPLIED TO N-REMOVAL PROCESS 

In this section is described the implementation of the optimal operation strategies presented in section II 

particularized to the Activated Sludge Process.  

Case 1. Static RTO+NMPC  

The first strategy proposed to achieve the optimal operation of the plant is the Static Real Time 

Optimization (RTO) combined with a NMPC in the direct control layer as described in eqs. (4)-(7). Its 

application to the N-Removal process is illustrated in Figure 9. 
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Figure 9. Static RTO + NMPC structure applied to WWTP. 

 

A static RTO is performed in the upper layer to calculate the set points sent to the lower layer 

considering different economic and performance objectives. Since the plant is under high frequency 

disturbances it is not possible to achieve a real steady state condition for such variable input profiles. 

Therefore, it is defined an operating window in a range of time that varies from days to hours (Tss) and 

the average values of the inputs in that period is considered for approaching the stationary values of the 

states corresponding to the set points. In the direct control layer, the NMPC receive the optimal set 

points and compute the control signals for the appropriated set point tracking  

 

Formulation of the Static Optimization problem for the N-removal process 

The set point optimization is formulated in the upper layer to find the steady state working point 

(equilibrium point) that minimizes the energy costs given by the steady state Pumping Energy (PEss) and 

Aeration Energy (AEss) while ensuring the best possible performance of the plant. Therefore, the 

Effluent Quality (EQss) index can be introduced in the objective function and the effluent requirements 

are introduced as constraints. The decision variables are KLass and Qass, they are used to calculate the 

SNO1 and SO2 values in steady state each Tss for the average values of the input variables Qin, SS,in and 

SNH,in in the horizon given by Tss.  

 

The steady state value of all variables (manipulated, outputs and indexes) is denoted with the sub index 

ss. The optimization problem is stated as: 

 

Objective function. 

,KLa
min

ass ss
ss

Q
J                                         (44)

 
where 

 1 2 3 1 4 2ss ss ss ssJ w PE AE w EQ w w         
                          (45) 

 

The weights wi (i:1,..,4) can be modified to evaluate different objectives, and the terms α1 and α2 are 

included in the cost function to represent the fines for discharges which exceed the effluent quality 

limits.  
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The Pumping Energy (PEss), Aeration Energy (AEss) and Effluent Quality (EQss) in steady state are 

calculated as: 
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NOss e ss e

SS COD Nt Kg
EQ Q

dS BOD                          (50) 

 

where SSss,e, CODss,e, Ntss,e, SNOss,e, BODss,e, are obtained from equations (28)-(31) with steady state 

values of concentrations. 

 

Process constraints. 

The optimization constraints are given by the effluent regulations and process characteristics. They are 

evaluated in the steady state for the following bounds: 

2, 4 [ / ]NH ssS mg l                                     (51) 

, 22 [ / ]Ntot ssS mg l                                     (52) 

2, 8 [ / ]O ssS mg l                                      (53) 

2, 1.5 [ / ]O ssS mg l                                     (54) 

0 3.5 [1/ ] ssKLa h
                                    (55) 

3

,0 3850 [ / ] a ssQ m h                                    (56) 

, 100 [ / ]ss eCOD mg l                                     (57) 

, 10 [ / ]ss eBOD mg l                                     (58) 

max max[K / d]ssEQ EQ g                                    (59) 

 

The optimisation problem is solved in order to obtain the stationary working point: KLass, Qrss, SO2ss and 

SNO1ss containing the manipulated variables and oxygen and nitrates set points that optimize the cost 

function given in eq.  (45).  The optimal values of the indices OCIss and EQss are passed to the 

subsequent layer as targets included in Jss,o. 

 

 

Case 2. Dynamic RTO +NMPC 

In this scheme, an NMPC in the upper layer computes dynamically, as described in eqs. (8)-(11), the 

optimal set points that are sent to the immediately lower layer as shown in figure 10.  
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Figure 10.Dynamic RTO + NMPC structure applied to WWTP. 

 

The predictions of the dynamical response of the plant in a time horizon Ny are used to calculate the 

corresponding performance indices. The problem is stated as the minimization of a cost function Jeco 

with respect to a vector u containing Qr and KLa and the resulting outputs ySP (SNO1 and SO2). For 

obtaining the corresponding optimum set points, the discretized system is simulated with those inputs, 

and the set points are chosen as:  
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Formulation of the Dynamic Optimization problem for the N-removal process 

 

Objective function: 

 

The optimization problem for this layer is, at a sampling time k 

 

 ;0 1
min ( )

u u
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k i i N
J k
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                                      (60) 

 

where 

 

         1 2 ,o( ) | |u u        eco y ssJ k w AE k i k PE k i k w EQ y k N | k J                 (61) 

 
0 1ui N    

1 yj N   

 

Note that in this work the control horizon has been selected here as Nu=1, therefore the manipulated 

variables are kept constant for the rest of the prediction horizon: 

 
( | ) ( | ) 1u u yk i k k k i N     

 

The indexes AE, PE and EQ are calculated discretizing the integrals of (24)-(27), with a discretization 

time of Teco corresponding to the NMPC of this intermediate layer, and using as starting values the 

values of the previous sampling time. Then, the values considered in the cost function Jeco are the final 
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value of the performance indexes iterating in the following equations Ny times ( 0 1yj N   ), that 

represent the average values in the prediction horizon:   

 

     
1

1| | 0.004 |          
 

a eco

y eco

kWhPE k j k PE k j k Q k j k T
dN T

               (62) 

     ,

2

1
1| | |

1.8 1000
          
  

O sat

La eco

y eco

S
kWhAE k j k AE k j k V K k j k T

dN T
           (63) 
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   
 
    

e

e

e e eco

y eco

NOe

e

SS k j k

COD k j k

Kg
EQ k j k EQ k j k Nt k j k Q k j k T

dN T
S k j k

BOD k j k

  (64) 

 

where SSe, CODe, Nte, SNOe, BODe, are obtained from equations (28)-(31). 

 

The outputs and states needed for calculation of (60) are obtained using the nonlinear prediction model 

of the process.  

 

Process constraints. 

The optimization constraints are given by the effluent regulations and process characteristics. They are 

evaluated in the steady state for the following bounds: 

 

 2 | 4 [ / l] 1NH yS k j k mg j N                                (65) 

 | 22 [ / ] 1tot yN k j k mg l j N                                (66) 

  10 | 1.5 [ ] 0 1uKLa k j k h j N                                        (67) 

  30 | 3850 [ / ] 0 1a uQ k j k m d j N                                (68) 

 20.1 | 8 [ / ] 1O yS k j k mg l j N                                 (69) 

 | 100 [ / l] 1 yCOD k j k mg j N                               (70) 

 | 10 [ / ] 1 yBOD k j k mg l j N                                (71) 

  1max yEQ k j | k EQ [K g / d] j N                               (72) 

 

Preliminary Results 

 

Some preliminary tests to select critical parameters as the cost function weights in the different 

optimizations and the best sampling for each layer have been carried out using the short influent profile 

shown in figure 8. 

 

First, a study of the sensitivity of the performance indicators regarding the different optimization 

objectives has been carried out. The static set point optimization is executed with different weights in 

the objective function (eq. 44) in order to observe the sensibility of the results to changes in these 
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parameters. The evolution of the performance indices considering the short influent profile as the input 

to WWTP are shown in table 3. The optimization was carried out each 8 hours (Tss=8). 

 

 

Table 3. Evaluation of the effect of different weights in the objective function with the Static RTO 

+NMPC strategy (Tss=8)  

 

 w1=1, 

w2=2 

w1=1 w3=10

00, 

w4=50

0 

w2=2 

w3=1000,w

4=500 

OCI 

(EUR/d) 

1412.1 1384.6 1759.5 2034.0 

PE 

(Kwh/d) 

89.62 90.70 110.13 108.31 

AE(Kwh

/d) 

1322.5 1293.9 1649.4 1925.6 

EQ 

(Kg/d) 

7582.8 7739.0 7350.5 7335.8 

Desv. 

NH 

2.117 3.55 0.801 0.917 

DesvNto

t 

0.828 1.283 0.749 0.757 

ISESO 0.174 0.344 0.206 0.126 

ISENO 0.336 1.131 0.129 0.350 

 

It can be noticed that accounting only energy costs in the objective function (w1=1, w2=0) leads to 

operating conditions with the minimun costs and acceptable effluent quality characteristics. The addition 

of a term (w1=1, w2=2) to penalize the Effluent Quality index (EQ) produce a solution with an slight 

increase in the costs (OCI) but improved EQ. If only the fines that penalize discharges over allowed 

limits of SNH2 and SNtot are taken into account for the calculation of the optimal set points (w3=1000, 

w4=500) an important increase in the overal costs is observed. It rises when considering the fines and the 

EQ together (w2=2, w3=1000, w4=500). This behaviour evidence a trade off between the objectives 

related to the energy costs and those related to the effluent quality in the set point optimization.The 

evolution of the OCI and EQ indices in Figures 11 and 12 respectively illustrates this effect. 
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Figure 11. Static RTO +NMPC. OCI index evolution with different weights of the objective function 

(Tss=8) 

 

 
Figure 12. Static RTO +NMPC. EQ index evolution with different weights of the objective function 

(Tss=8) 

 

 

The response of the controlled variables  ySP (SNO1 and SO2) and the evolution of the constrained 

variables (SNH2 and SNtot) static RTO+ NMPC structure with an objective function with w1=1, w2=2 is 

shown in figures 13 to 16. A Tss=8h is selected to test the performance of the structure in the presence of  

continuous set point changes. Good tracking of the direct NMPC is observed in spite of the frequent 

changes of set point and the strong variations in the loads due to the rain events. It is observed that the 

concentrations SNH2 and SNtot are below the limits most of the simulation time, however, the peaks in the 

input flow rate produces constraints violations.  
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Figure 13. Static RTO +NMPC -Nitrate concentration (SNO1) in the anoxic tank (Tss=8). 

 

 
Figure 14. Static RTO +NMPC. Oxygen (SO2), concentration in the aerobic tank (Tss=8). 

 
Figure 15. Static RTO +NMPC. Ammonium concentration (SNH2) in the effluent (Tss=8). 
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Figure 16. Static RTO +NMPC. Total Nitrogen (SNtot) in the effluent (Tss=8).  

 

The dynamic RTO + NMPC strategy is evaluated also with  weights w1=1, w2=2 in the objective 

function. In figures 17 and 18 are presented the controlled variables ySP (SNO1 and SO2) and the evolution 

of the constrained variables (SNH2 and SNtot) in figures 19 and 20. An acceptable disturbance rejection 

and good tracking is observed. The set point changes calculated dynamically are softer than those 

obtained with the Static RTO but produce a similar impact in the economic, therefore, this strategy 

seems to be effortless in terms of control movements. 

 
 

Figure 17. Dynamic RTO +NMPC -Nitrate concentration (SNO1) in the anoxic tank (Teco=8). 
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Figure 18. Dynamic RTO +NMPC. Oxygen (SO2), concentration in the aerobic tank (Teco =8). 

 
Figure 19. Dynamic RTO +NMPC. Ammonium concentration (SNH2) in the effluent (Teco =8). 

 
 

Figure 20. Dynamic RTO +NMPC. Total Nitrogen (SNtot) in the effluent (Teco=8).  

 

 

In order to compare the economic efficiency of the proposed strategies, the performance of the plant 

with the hierarchical strategies is compared with fixed set point operation in terms of the overall cost 

index, effluent quality and ISE. The evolution of the Overall Cost Index (OCI) in the whole operation 

horizon (Tss=Teco=8 hours) is presented in Figure 21. The performance indices are reported in Table 4. 
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Figure 21. OCI index evolution with hierarchical strategies and constant set point (Tss=Teco=8 hours) 

 

The hierarchical strategies are superior to fixed sep point operation in terms of economics in this 

particular case study the OCI index. Comparing Static and Dynamic RTO, the last one exhibits the best 

economic performance. In figure 21 the OCI index corresponding to the  Dynamic RTO structure 

operation is below the others in most of the operation horizon. According to the indices shown in Table 

9, a 19.4% saving in the operational cost (OCI) is achieved, mainly related to a significant reduction in 

the aeration energy. An improvement in the effluent quality (EQ) with hierarchical strategies is observed 

also. However, the control performance indices (ISE) get worse due to the continuous changes in the set 

points. 

 

 

Table 4. Comparison of Performance Indices obtained with the different strategies: constant set point, 

Static RTO +NMPC and Dynamic RTO +NMPC optimization (Teco=Tss=8h). 

 

 Fixed SP Static Dynam

ic 

OCI 

(EUR/d) 

1734.8 1412.1 1397.5 

PE 

(Kwh/d) 

84.87 89.62 82.95 

AE(Kwh/

d) 

1649.9 1322.5 1314.6 

EQ (Kg/d) 7734.8 7582.8 7680.2 

Desv. NH 0.79 2.117 2.619 

DesvNtot 0.74 0.828 0.216 

ISESO 0.086 0.174 0.195 

Con formato: Fuente: 12 pto, Inglés (Estados Unidos)

Tabla con formato

Con formato: Fuente: 12 pto, Sin Cursiva

Con formato: Fuente: 12 pto, Sin Cursiva

Con formato: Fuente: 12 pto, Sin Cursiva

Con formato: Fuente: 12 pto, Sin Cursiva

Con formato: Fuente: 12 pto, Sin Cursiva

Con formato: Fuente: 12 pto, Sin Cursiva

Con formato: Fuente: 12 pto, Sin Cursiva
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ISENO 0.078 0.336 0.283 

 

 

Another important aspect in the implementation of the hierarchical structure is the selection of the 

frequency to update the set points. The performance of the hierarchical structures considering different 

sampling times  (Tss and Teco) is evaluated, the results are presented in table 5.  

 

Table 5. Performance indices for different optimization sampling times (Topt) with the Static RTO 

+NMPC strategy 

 
According to the information presented in table 6. In the time horizon considered (1d-4h) the sampling 

time variations seems to have a low effect over the Overall Costs. It is possible that the process is slow 

enough to satisfy the steady state assumption in the static RTO, even with Tss=4h.  The dynamic RTO 

with Teco=8h is the best option in terms of economy. Computationally, performing RTO each 4h is 

inefficient.   

 

In the next section, a more interesting scenario for the application of the hierarchical multilayer 

structures to the N-Removal is presented. The long term scenario, with a long horizon influent profile 

exhibiting seasonal variations, rain and storm events is studied.According to the results of the 

preliminary tests, w1=1 and w2=2 as well as Teco=8h are selected for the dynamical optimization in the 

dynamic RTO+NMPC and the full hierarchical estructure.    

 

VI. FULL HIERARCHICAL CONTROL STRUCTURE AND LONG TERM PERFORMANCE EVALUATION 

 

A long-term influent profile (Figures 6 and 7) has been prepared to study the effect of the proposed 

multilayer structures over economics in the plant operation.  

 

 

Formulation of the Full Hierarchical Optimization problem for the N-removal process 
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Figure 22.Full hierarchical structure applied to WWTP. 

 

The full hierarchical strategy implemented to the N-Removal process is represented in Figure22. In the 

upper layer, the static RTO described in eqs. (44)-(59) is performed to update the process working point 

regarding long time horizon disturbances.  The weights for the objective function given in eq. (44) are 

w1=1, w2=0, w3=0, w4=0. The sampling time is Tss=3d, it correspond to the different seasons in the 

influent profile. The optimization is carried out to obtain the optimum steady state operating point in Tss 

and, in this particular implementation the optimal OCI value is passed as a target to the Dynamic RTO 

in the subsequent layer. 

 

In a second layer, the dynamic RTO described in eqs. (60)-(72) is carried out to capture the medium to 

fast dynamics, considering the OCI target received from the upper layer each Teco.  The weights for the 

objective function (eq. 61) are w1=1, w2=0  and Teco=8h.  In the direct control NMPC is used to track 

those set points and to reject the faster disturbances. 

 

In Table 7, the performance indices for all the proposed strategies: Static RTO +NMPC, Dynamic RTO 

+NMPC and full hierarchical structure are compared in terms of economic performance and effluent 

quality. All the proposed hierarchical strategies produce a reduction of the overall cost index (OCI) with 

respect to the constant set point operation, in particular, the combination dynamic RTO with NMPC 

decreases de the OCI in 19%. Consequently, an slightly loss in the effluent quality is observed, the EQ 

increase around 4.7% and the ammonium discharges increase also. Nevertheless, these results 

demonstrates that Real Time Optimization can be useful for improving the economic operation of 

WWTPs with minimum losses in product quality.  

 

Regarding the temporal decomposition, both dynamical and static  RTO were effective to capture the 

slow and fast dynamics of disturbances in their corresponding time horizon .The static RTO exhibits the 

best economic performance (19% reduction in OCI) with respect to the other set point optimization 

strategies. However, the full hierarchical structure offers the best compromise between economy and 

effluent quality, with the second best OCI (17.2%) but the best EQ and ammonium discharges. In this 

particular case, it is possible to think that the benefits achieved do not compensate the increase of 

complexity of the control system. However, in the model of the WWTP used in this work the slow 

dynamics are simplified. 

The good results obtained indicate that the full hierarchical structure can be a potential solution for the 

control WWTPs when exhibiting their whole dynamics. 
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The responses and control signal of the plant applying the full hierarchical strategy are shown in Figures 

22 to 28. 

 

Table 6. Evaluation of the performance of the multilayer hierarchical strategies. 

 
 

 

 

 
Figure 23. OCI index evolution with hierarchical strategies and constant set point in the long term 

scenario (Tss=3d/Teco=8 hours). 

 
Figure 24.Full Hierarchical Structure. Nitrate concentration (SNO1) in the anoxic tank. 
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Figure 25. Full Hierarchical Structure. Oxygen (SO2), concentration in the aerobic tank. 

 

 
Figure 26. Full Hierarchical Structure. Control signal. Internal recycle flow (Qa) 
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Figure 27.  Full Hierarchical Structure. Control signal for the oxygen transfer coefficient (KLa) 

 

 
Figure 28. Full Hierarchical Structure. Ammonium concentration (SNH2) in the effluent. 
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Figure 29. Full Hierarchical Structure. Total Nitrogen (SNtot) in the effluent.  

 

 

This study demonstrate the advantages of the implementation of Real Time Optimization Strategies 

integrating NMPCs in hierarchical control structures for improving the operation of WWTPs. This 

strategies update the process operation conditions to optimal values, in agreement to the disturbances in 

the influent, even though, those occurs in different time scales. In this particular case, the 

implementation of hierarchical strategies allows for energy savings in the WWTPs while attaining the 

desired product quality. The non linear prediction model provides a good representation of the process 

behavior and constraints with a reasonable computational effort. The regulatory NMPC achieves an 

excellent disturbance rejection and an accurate tracking of the set point trajectories at the same time as it 

ensures the satisfaction of the process constraints. 

 

VII. CONCLUSION 

In this paper, a benchmarking of different hierarchical control strategies applied to the N-Removal 

process in a WWTP is presented. The strategies drive the plant to the economically optimal operating 

condition in spite of strong disturbances in the influent and they capture the multi-scale dynamics of  

disturbances. Their performances have been compared in different operating scenarios and conditions in 

order to demonstrate the advantages that the implementation of these advanced control strategies can 

produce in terms of economy and process performance.  

 

A NMPC has been implemented in the direct control layer exhibiting an excellent performance in the 

presence of strong disturbances with different time scales. The integration of the regulatory NMPC to 

the Static or Dynamic set point optimization layers have been satisfactory, exhibiting fast response and 

accurate set point tracking as well as appropriately accommodating the process constraints in the control 

algorithm. In the dynamic RTO the NMPC provides a good representation of the dynamic response of 

the plant to provide cost-efficient set points with no modeling mismatch with respect to the regulatory 

layer.  
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The application of the proposed hierarchical control strategies produces a reduction of approximately 

20% in the operational costs together with a satisfactory compromise with regard to Effluent Quality in 

the short term operation scenario as well as in the case of the long term operation scenario where 

seasonal variations affect  the optimization results. In this case study, the dynamical RTO in the upper 

layer combined with a NMPC in the regulatory layer is the best option in terms of  economy, effluent 

quality and complexity of the structure.  
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