39 research outputs found

    Inf-semilattice approach to self-dual morphology

    Get PDF
    Today, the theoretical framework of mathematical morphology is phrased in terms of complete lattices and operators defined on them. That means in particular that the choice of the underlying partial ordering is of eminent importance, as it determines the class of morphological operators that one ends up with. The duality principle for partially ordered sets, which says that the opposite of a partial ordering is also a partial ordering, gives rise to the fact that all morphological operators occur in pairs, e.g., dilation and erosion, opening and closing, etc. This phenomenon often prohibits the construction of tools that treat foreground and background of signals in exactly the same way. In this paper we discuss an alternative framework for morphological image processing that gives rise to image operators which are intrinsically self-dual. As one might expect, this alternative framework is entirely based upon the definition of a new self-dual partial ordering

    Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology

    Get PDF
    Mathematical morphology (MM) offers a wide range of tools for image processing and computer vision. MM was originally conceived for the processing of binary images and later extended to gray-scale morphology. Extensions of classical binary morphology to gray-scale morphology include approaches based on fuzzy set theory that give rise to fuzzy mathematical morphology (FMM). From a mathematical point of view, FMM relies on the fact that the class of all fuzzy sets over a certain universe forms a complete lattice. Recall that complete lattices provide for the most general framework in which MM can be conducted. The concept of L-fuzzy set generalizes not only the concept of fuzzy set but also the concepts of interval-valued fuzzy set and Atanassov’s intuitionistic fuzzy set. In addition, the class of L-fuzzy sets forms a complete lattice whenever the underlying set L constitutes a complete lattice. Based on these observations, we develop a general approach towards L-fuzzy mathematical morphology in this paper. Our focus is in particular on the construction of connectives for interval-valued and intuitionistic fuzzy mathematical morphologies that arise as special, isomorphic cases of L-fuzzy MM. As an application of these ideas, we generate a combination of some well-known medical image reconstruction techniques in terms of interval-valued fuzzy image processing

    Generalized Morphology using Sponges

    Get PDF
    Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological theory. It turns out that some of the existing work on “pseudo-morphology” for non-scalar data can in fact be considered “proper” mathematical morphology in this new framework, while other work cannot, and that this correlates with how useful/intuitive some of the resulting operators are

    Image analysis for the study of chromatin distribution in cell nuclei with application to cervical cancer screening

    Get PDF

    Symmetric Heyting relation algebras with applications to hypergraphs

    Get PDF
    A relation on a hypergraph is a binary relation on the set consisting of all the nodes and the edges, and which satisfies a constraint involving the incidence structure of the hypergraph. These relations correspond to join preserving mappings on the lattice of sub-hypergraphs. This paper introduces a generalization of a relation algebra in which the Boolean algebra part is replaced by a Heyting algebra that supports an order-reversing involution. A general construction for these symmetric Heyting relation algebras is given which includes as a special case the algebra of relations on a hypergraph. A particular feature of symmetric Heyting relation algebras is that instead of an involutory converse operation they possess both a left converse and a right converse which form an adjoint pair of operations. Properties of the converses are established and used to derive a generalization of the well-known connection between converse, complement, erosion and dilation in mathematical morphology. This provides part of the foundation necessary to develop mathematical morphology on hypergraphs based on relations on hypergraphs
    corecore