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Abstract Mathematical morphology (MM) offers a wide techniques in terms of interval-valued fuzzy image process
range of tools for image processing and computer visioning.

MM was originally conceived for the processing of binary Keywords Mathematical morphologycomplete lattice

images and later extended to gray-scale morphology. E)ff.,-fuzzy sets interval-valued fuzzy setsAtanassov’s
tensions of classical binary morphology to gray-scale mor:

hol includ hes based on f t th th|rituitionistic fuzzy sets LL-fuzzy mathematical morphol-
phology Include approaches based on fuzzy et theory %gy~ LL-fuzzy connectives inclusion measureduality -
give rise to fuzzy mathematical morphology (FMM). From negation adjunction
a mathematical point of view, FMM relies on the fact that
the class of all fuzzy sets over a certain universe forms a
complete lattice. Recall that complete lattices providetie 1 |htroduction
most general framework in which MM can be conducted.

The concept oL-fuzzy set generalizes not only the con- Recently, Type-2 and intuitionistic fuzzy set theoriesdav
cept of fuzzy set but also the concepts of interval-valueghecome increasingly important in applications in ruledshs
fUZZy set and Atanassov’s intuitionistic fUZZy set. In addi systems and approximate reasoning [26,83,84] Both Type_
tion, the class ofL-fuzzy sets forms a complete lattice when- 2 and intuitionistic fuzzy set theory extend Zadeh's fuzzty s
ever the underlying sét constitutes a complete lattice. Basedheory [1,88,89].
on these observations, we develop a general approach to- Recall that a conventional or Type-1 fuzzy set has crisp
wardslL-fuzzy mathematical morphology in this paper. Ourmembership degrees that reside in the unit inteffzal]. In
focusis in particular on the construction of connectives fo contrast, a Type_2 fuzzy set allows for membership degrees
interval-valued and intuitionistic fUZZy mathematical mo that are Type-]_ fuzzy sets onthe unive{(Sé]’ i.e., aType-Z
phologies that arise as special, isomorphic casésfolzzy  fuzzy setd represents a function from a sktto the class of
MM. As an application of these ideas, we generate a COTTTfype_]_ fuzzy sets oiﬂ’ 1]_ An element: € X is mapped to
bination of some well-known medical image reconstructiorg Type-1 fuzzy sefi(x) which is called thesecondary mem-
bership functionat = . A particular class of Type-2 fuzzy
sets arises if, for every € X, the secondary membership
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ping A from X into the class of intervalgu, u2] C [0,1].  conjunction onl.! or L*. Each pair of connectives should
Thus,A(z) = [u1(x), u2(z)] for everyz € X. Evidently, if  be linked in terms of a duality relationship of adjunction
w1 (x) equalsus(z) for all z € X then the interval fuzzy set and/or negation. In view of these considerations, Section
reduces to a (Type-1) fuzzy set. Interval-valued fuzzy setd is devoted to the construction of interval-valued or intu-
have been used successfully by J. M. Mendel to implemeritionistic fuzzy connectives that may serve as a basis for a
Zadeh'’s paradigm of computing with words [50]. particular approach towards interval-valued or intuiistic
Intuitionistic fuzzy sets (IFSs) generalize Zadeh's orig-FMM. In Section 5, we consider a specific pair of interval-
inal definition by defying the law of the excluded middle valued fuzzy connectives consisting ofianorm and an im-
which claims that ifz belongs to a degreg to a fuzzy plication onlL! that are both adjoint and dual with respect
set thenz does not belong to this fuzzy set to the extentto the standard negation di. This t-norm and this im-
v =1—pu[1,3]. InIFS theory, the degree of membership ofplication onL/ give rise to respectively an interval-valued
x and the degree of non_membershirx([fo not have to add fuzzy dilation and an interval-valued fuzzy erosion that ca
up to1. Instead, IFS theory only requires that the pair conbe employed to compute the interval-valued morphological
sisting of the membership degre@nd the non-membership gradient of interval-valued fuzzy images. Indeed, we adopt
degreev of z in a satisfies the inequality + v < 1. this strategy for generating the interval-valued morpbblo
Atanassov coined the technical term "intuitionistic fuzzy @l gradient of an interval-valued fuzzy representation of
set" since intuitionistic logic also rejects the law of the e Combination of results produced by three well-known med-
cluded middle [2]. As Dubois et al. have pointed out [31],ic@l image reconstruction methods. After some appropriate
this terminology is unfortunate and misleading. ThereforePOSt-processing, the mean of the upper and lower envelopes

these prominent researchers have advocated a change in t@fthe interval-valued morphological gradientimage isa

set" in view of the fact that the term "bipolarity” captureet ~constructed images obtained from the individual recoestru

separate handling of positive and negative aspects of-infofion algorithms are segmented in a similar way. The seg-
mation. However, we would like to stress that the concept oféntation results produced by the individual methods and
"bipolar fuzzy set" had already been previously introducedY the interval-valued combination of these methods can be
by W.-R. Zhang et al. [91,92]. Although Zhang's work on visually compared by taking the segmention of the original
bipolar fuzzy sets is also concerned with two sides of a matimage as the ground truth.

ter or positive and negative aspects of information, higbip ~ The paper is organized as follows. The first section deals
lar fuzzy sets are formally different from Atanassov’s IFSs with general mathematical concepts. Specifically, after re
For instance, the bipolar fuzzy space is given[by, 0] x viewing the mathematical background of MM on complete
[0, 1] which represents the set of pairs having a negative sid@ltices, we investigate the properties efuzzy logical con-

as well as a positive side. Based on these observations, iggctives that we employ to deritefuzzy inclusion and in-
prefer to adhere to the nomenclature "intuitionistic fuzzytersection measures. In Section 3, we introduce the general
set" so as to be in agreement with the terminology that prénathematical framework éi-fuzzy MM as a generalization

vails in the literature and in the premier conferences omyjuz Of FMM. Section 4 focusses on the special cases of interval-
sets and systems. valued and intuitionistic FMMs, in particular on the con-

gtruction of the underlying interval-valued and intuitien
of L-fuzzy mathematical morphology. Unlike previous pa_tic.fuzzy logical connectives. Section 5 appligs the com_:ep
pers on interval-valued and intuitionistic fuzzy mathemat ©f interval-valued FMM that we developped in the previous
ical morphology [10,11,58,59], this paper treats interval sections to generate_a combination ofdlstlnct.medlcal anag
valued and intuitionistic FMMs as special cased.dizzy ~ 'econstruction algorithms and to process the intervalaal
MM. This approach not only allows for a top-down view of images that correspond to this c_omblnatlon. Finally, we f_|n-
the corresponding mathematical frameworks but also for thish the paper with some concluding remarks and suggestions
construction ofl.-fuzzy MMs for other particular instances for further research.
of complete lattices..

Special attention is given to extensions of FMM that are General Mathematical Concepts
known as interval-valued and intuitionistic FMMs in which
case the complete lattices in question are denotédland 2.1 The Complete Lattice Framework of Mathematical
L* [27,59]. In analogy to the fuzzy case [56,80], we stipu-Morphology
late that a certain approach towards interval-valued arint
itionistic FMM depends on the choice of interval-valued orMathematical MorphologyMM) is a theory that uses con-
intuitionistic fuzzy inclusion and intersection measuttest ~ cepts from set theory, geometry and topology to analyze
are determined by pairs consisting of an implication and geometrical structures in an image [37,48,68,69]. MM has

This paper investigates a number of theoretical aspec



Interval-Valued and Intuitionistic Fuzzy Mathematical Nbologies as Special Caseslefuzzy Mathematical Morphology 3

found wide-spread applications over the entire imagingspe  The following well-known properties of adjunctions [37,
trum [16, 35, 36,44,62,73,74]. MM was originally invented 69] will turn out to be extremely useful throughout the paper
in the early 1960s by Georges Matheron and Jean Serra asSaecifically, the following statements are valid for magsin
tool for the automatic analysis of binary images [47,67}. Af 0 : . — M ande : M — L, wherelL. andM are complete
ter Sternberg and Serra extended MM to gray-scale imagédattices:
[68,75], Serra observed that complete lattice theory repre ) . . ) . )
sents the appropriate algebraic framework for MM [37,64,1' If. (53 ¢) is an adjunction then is an erosion and is a
69]. Recent research results of Heijmans and Keshet have dilation. o ) ) )
extended this framework to complete inf-semilattices [38] 2. For apy dllatlprﬂ there IS a Ur_"que eroslmjsugh that
Recent expositions on the lattice-theoretical framewdrk o (€+9) IS an adjunction. The adjoint erosion is given by
MM include [14,65].

The fact that the unitintervél, 1) represents a complete ely) = \/ {zel:of@) <y}, “)
lattice has played a crucial role in the developmerfuaizy for everyy € M.

mathematical morpholog§FMM) which can be viewed as 3. For any erosion there is a unique dilatiosi such that

an extension of binary MM to gray-scale MM [20-24,32, (. ) is an adjunction. The adjoint dilation is given by
41,46,56,59,80]. In this context, note that a fuzzy set cor-

responds to afL-fuzzy set wherd. = [0, 1] [33]. The com- §(x) = /\ {yeM:e(y) >}, (5)
plete lattice setting allows for an algebraic definition toé t

elementary operators of MM, namely erosion, dilation,-anti ~ for everyz € L.

erosion, and anti-dilation [37,69]. An (algebra@psionis

. . The preceding observations clarify that there is a unique
defined as an operateffrom a complete lattic& to a com- P 9 fy q

. . - . erosion that can be associated with a certain dilation, and
plete latticeM that commutes with the infimum operation. . . . . . . :
vice-versa, in terms of either negation or adjunction. Adjo

Similarly, an (algebraicyjilaton is defined as an operator __. . o Lo .
) ; pairs of erosions and dilations also give ris@peningsand
L. — M that commutes with the supremum operation. For-

L Do closings[37].
mally, an erosion is an operater: . — M satisfying the 95(37]
left side of Equation 1 and a dilatian: . — M is an oper-
atore : . — M satisfying the right side of Equation 1. 2.2 Logical Operators on a Complete Lattice and
Relationships of Duality
E(/\Y) = /\ e(y) , (5(\/Y) = \/ O(y) VY CL.
yey yey Fuzzy logical operators are well-known extensions of Boo-

(1) lean logical operators. These operators associate elsmient
[0, 1] with elements of0, 1] or - in the case of negation -
map the unitintervegD, 1] into [0, 1]. Instead of the complete
lattice [0, 1], we can take any complete lattiteand define
logical operators of. as.?> — L or L. — L mappings. This
strategy yields the following definitions [25]:

Anti-erosions and anti-dilations arise from negations; er
sions, and dilations [85]. Recall that a negation on a lattic
is an involutive bijection that reverses the partial ordgri

Two important notions of duality permeate Misldjunc-
tion andnegation The operators of erosion and dilation can
be linked by means of negation. L&tbe an operator map- pefinition 1 Let L be a complete lattice with smallest ele-
ping a complete lattick into a complete latticBl and letyy, ment0;. and largest element; .
anduy; be negations o andM, respectively. The operator

v given by — A conjunctionon L or L-fuzzy conjunctioris defined
as an increasing mapping : L. x L. — L that sat-
wy(x) =M (W (V]L(‘T))) V€ Lv (2) isfies C(O]L,O]L) = C(O]L, 1]L) = C(l]L,O]L) = O and

C(1y,1y) = 1L. In particular, a commutative and asso-

is called thenegatiorof ¥ (with respect tay, andwy). Thus, A ! ) o
d ciativelL-fuzzy conjunctiorf” : L x . — L that satisfies

we have that the negation of an erosion is a dilation, an _ ;
vice-versa [37]. T(x_, 11,) = « for everyzx € L is calledtriangular norm
Several prominentresearchers [24, 39, 37,46,64] consider ors.lnjplyttnormonIL. . . .
adjunctionto be the most important notion of duality in — A d|SJunc.t|on0n]L or L-fuzzy d|SJunpt|9rrs an Increas-
MM. Consider two arbitrary operatows : . — M and ing mappingD : L x L — L that satisfies)(0., 0.) =
e : M — L for some complete lattices and M. We say O andD(0g, 1p) = D(1y,0) = D(Ir, 1) = 1p. In

that the pair(e, 0) forms anadjunctionor thate andé are _partic_:ular, a commutative and as_so_ciat]Néuzzy dis-
adjointif and only if we have junctionS : L x L — L that satisfiesS(z,01) = =

for everyxz € [0y, 1] is calledtriangular co-normor
)<y r<ely) Veel,VyeM. 3) s-normon L.
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— Anoperator] : L x L — L that is decreasing in the first employ Equation 5 to form the adjoint dilatiafi(z, .) of
argument and that is increasing in the second argumemi erosiorn/(z, .) where! is a implication oriL. The condi-
is called animplication on IL. or IL-fuzzy implicationf  tions stated in Theorem 1 and 2 guarantee that the respective
the equationd (0y,,01.) = I(0p, 1) = I(1L,1L) = 1. adjoint operators affle-fuzzy implications and conjunctions.
andI(1y,,0r) = 0g, are satisfied. The definition ofl- in Theorem 1 generalizes the definitions

) . of intuitionistic and interval-value@-implicators provided

Recall that we already reviewed the concept of negatior}, [18].
on a complete lattic& in the previous section. We will also
speak of arl.-fuzzy negation. Thé.-fuzzy connectives on Theorem 1 Let C be anlL-fuzzy conjunction. Suppose that
the complete lattic), 1] are known as fuzzy conjunctions, I~ : L2 — L is defined as follows:
disjunctions, implicationg-norms,s-norms, and negations.

A logical connective can be associated with another log-
ical connective orL in terms of a duality relationship of Ic(zy) = V{zeL: Cza)<y}Vzyel
negation or adjunction. Let us introduce the following def-

(10)

initions that extend the respective definitions for the com-
plete lattice[0, 1].

1.

The following statements hold true.

The mappind¢ is decreasing in the first argument, in-

Definition 2 Let C' be a conjunctionD a disjunction, and
I an implication orlL.. Moreover, letN be a negation oh.

— We say that” andD aredual (operators) with respect to
N if and only if the following equation holds for every
x,y € L:

C(x,y) = N (D(N(z), N(y)) - (6)

We say that andI aredual (operators) with respect to
Nifandonly if C(z,-) andI(z, -) are dual with respect
to N for all z € L. In this case, we have the following
equation for allz, z € L:

C(z,2) = N(I(z,N(z))). @

We say that and D aredual (operators) with respect to
N if and only if the following equation holds for every
x,y € L:

In contrast to a pair of operators that are dual with re-

spect to negation, a pair of adjoint operaterandé has

the advantage that is guaranteed to represent an erosion
and that is guaranteed to represent a dilation in the lattice-

algebraic sense of Equation 1.

Definition 3 LetIL be a complete latticéAn L-fuzzy impli-
cation] and anlL-fuzzy conjunctiod’ form an adjunctiorif
and only ifI(z,-) andC(z, -) form an adjunction for every
z € L. In this case, the following statement is true for all
x,y,z € L:

C(z,x)gy & mgl(z,y). (9)

Note that if an implication and a conjunctio on L
are adjoint therC(z, ) is a dilation and thaf (z, -) is an
erosion for everyz € L. Also note that we can employ
Equation 4 to form the adjoint erosidiz, .) of a dilation
C(z,.) whereC'is a conjunction oriL.. Conversely, we can

creasing in the second argument, and satisfies the con-
ditions

Ic(01,0L) = Ic(0p, 1) = Io(1p, 1) = 1y, . (11)

. The mappindc represents aii.-fuzzy implication if and
only if C(1p,x) > 0g, forall z € L\ {O}. In this case,
the implicationlc is referred to as thez-implicationof
C.

Conversely, we are able to derivelasfiuzzy conjunction
Cr from anL-fuzzy implication/ under certain conditions
that are stated in the following theorem.

Theorem 2 Let I be anlL-fuzzy implication. Suppose that
Cr : (L)? — Lis defined as follows:

Cf(z,x):/\{yE]L c I(z,y) > ax}Vz, zel. (12)

The following statements hold true.

1. The mapping’; is increasing and satisfies the condi-

tions

C1(0L,00) = Cr(0, 1) = Cr(11,01) = 0. (13)

2. The mapping_’; represents arl.-fuzzy conjunction if
and only ifI(1y,y) < 1 forall y € L \ {1r.}. In this

case, we say that; is the R-conjunctionof I.

The following theorem deals with successive applica-
tions of Equations 10 and 12

Theorem 3 Let C be anlL-fuzzy conjunction that satisfies
C(1p,x) > 0 for all z # 0Op. If I, the R-implication
of C, satisfieslc(1y,,y) < 1p for all y # 1, then theR-
conjunction ofl is bounded from above .

Similarly, letI be anlL-fuzzy implication that satisfies
I(1p,y) < 1, for all y # 1p. If Cy, the R-conjunction
of I, satisfiesC(1y,,z) > 0y, for all z # 0O, then theR-
implication ofC; is bounded from below b
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Note that the inequalitief(1y,,y) < 1y forally # 1, and intersection measure [7,45,71,72,88]. Large cladses o
are in particular satisfied for the classloffuzzy implica-  fuzzy inclusion measures and fuzzy intersection measures
tions such thatf (11,,y) = y for all y € L. Similarly, the can be constructed in terms of fuzzy implications and con-
inequalitiesC(1y,x) > 0, for all z # 0y, are in particu- junctions [80].
lar satisfied for the class df-fuzzy conjunctions such that The notion oflL-fuzzy set on a univers& was intro-
C(1L,z) = zforallz € L. The latter class encompasses theduced by Goguen as natural extension of the notion of fuzzy
class ofl.-fuzzy t-norms. Extending well-known nomencla- set. AnlL-fuzzy set on the univers¥ is anX — L. mapping
ture, we say that an application of Equation 10 td afuzzy ~ wherel. is a complete lattice that is equipped with a nega-
t-norm7 results in theR-implication ofT". tion onlL [33]. The class of.-fuzzy sets on the universg

Theorems 1 and 2 reveal that some care has to be takevhich is generally denoted using the symBol(X) encom-
when trying to generate d-fuzzy implication from ariL.-  passes the classes of interval-valued fuzzy seiX and in-
fuzzy conjunction by means of Equation 10 orlaffuzzy tuitionistic fuzzy sets oiX. In Sections 4 and 5, we will dis-
conjunction from afL.-fuzzy implication by means of Equa- cuss these special cases. Note fRafX) represents a com-
tion 12, respectively. Fortunately, the constructiofudfizzy  plete lattice whose partial ordering is induced by the phrti
operators from anothdr-fuzzy operator using negation en- ordering on the complete lattide i.e. fora, b € 7, (X) we
tails no complications: havea < b if and only ifa(x) < b(x) Vx € X.

Generalizing the construction of approaches towards
Theorem 4 Let N be a negation ofi.. Suppose thatthe-  E\vv [56,80], this paper presents a general scheme for con-
fuzzy operatorg’ and are related in terms of Equation 7, structing approaches towarfisfuzzy MM. To this end, we
i.e.,C'and are dual with respect t&V. We have that' is  need to introduce a notion &ffuzzy inclusion measure that
a conjunction orlL if and only if / is an implication onL.  ¢gn be employed to define the concepiLefuzzy erosion.
Similar statements hold true for Equations 6 and 8. Clearly, anL-fuzzy inclusion measurénc;. should act on
F1.(X) x F1.(X) and should extend the notions of intuition-
istic, interval-valued, and conventional fuzzy inclusiopa-
sures. As Cornelis and Kerre have explained, an intuitionis
tic fuzzy inclusion measure should associate a pair of IFSs
with an element of.* = {(u,v) € [0,1]* : p+v < 1}
[19] and therefore an interval-valued fuzzy inclusion mea-
sure should associate a pair of IVFSs with an element of
LY = {[z,y] C [0,1]}. These considerations lead us to the
following definition ofL-fuzzy inclusion measure:

Consider Equatiol in the special case where the dis-
junction is ans-norm onlL that is denoted using the symbol
S. Extending the notions of strong implications or, for short
S-implications both in conventional as well as in interval-
valued and intuitionistic fuzzy set theories [18], the impl
cator] given byI(z,y) = S(N(x),y) forall z,y € L is
called anS-implication onL.

2.3 L-Fuzzy Inclusion and Intersection Measures Definition 4 An LL-fuzzy inclusion measudgefined as a func-

i L tion I'ncy, : FL(X) x FL(X) — L that satisfies the follow-
In Section 2.1, we presented the formal definitions of an erol—ng properties for alk, b € Py (X), wherePL(X) = {a €

sion and a dilation within the complete lattice framework of]_- (X) : a(x) = 0, or a(x) = 1; Vx € X}.
MM. As mentioned before, these and other connections to
lattice algebra were discovered by Serra and Heijmans only
at later stages of the development of MM [37,69]. The ori-al < b= Inc(a,b) = 1 anda £ b = Inci(a,b) = 0.
gins of MM lie in certain types of applications of set theory — ’ ’

and of geometry to image processing. In binary MM, an im- (14)
agea : X — {0,1} is viewed as a subset & which can
be assumed to be either the Euclidean sfitter the dig-
ital spaceZ?. The fundamental operation of binary erosion

yields the set of points for which a translated structuring e pefinition 5 An L-fuzzy intersection measui®a function

ement is contained in the input image [68]. The thresholdse,, . FL(X) x FL(X) — L that satisfies the following
approach and the umbra approach to grayscale MM emplqyroperties foralh, b € P (X).

straightforward extensions of this basic idea to the gralgsc

case [68, 75]. In a similar vein, the fundamental operation o

dilation is defined in terms of intersection of sets. aAb # 0r (x) = SecL(a,b) = 1r, (15)
Thus, the concepts of set inclusion and set intersectiog, A 1, — 07, (x) = Seci(a,b) = 0p . (16)

lie at the root of MM. Researchers in fuzzy mathematical

morphology (FMM) have devised fuzzy inclusion and inter-  Evidently, anlL-fuzzy implication/ gives rise to ar.-

section measures by relaxing the notions of crisp inclusiofuzzy inclusion measuréncy, and anlL-fuzzy conjunction

Extending the concept of fuzzy intersection measure to
thelL-fuzzy domain leads to the following definition:



Peter Sussneret al.

C gives rise to ari.-fuzzy intersection measurgecy, if we
definelncy, andSecy, as follows for alla, b € Fy. (X):

We refer to€ = as afuzzy erosiofif Incz(s,-) commutes
with the infimum operation for a € F(X). In this case,

the operato€r(-,s) represents an erosion for every SE

Iney(a,b) = /\ I(a(x), b(x)). 17) Given afuzzif_ied set intersectiasiec » su_ch thatSecz(s, )
veX commutes with the supremum operation, we obtainzay

dilation Ax : F(X) x F(X) — F(X) via the following

Seci(a,b) = X\E/XC@(X% b(x)). (18)  gefinition (note thas, (y) = s(y—x) = s(x—y) ¥y € X):

We will refer to the operatofncr, in Equation 17 a.-
fuzzy Inf-I1 inclusion measurend we will refer to the op-
erator Secy, in Equation 18 ad.-fuzzy Sup-C intersection Recall that almost all approaches towards fuzzy math-
measure The next section reviews the construction of ap-ematical morphology employ inclusion measures based on
proaches to fuzzy MM based on fuzzy Inf-I inclusion mea-infimums of fuzzy implications to generate fuzzy erosions as
sures and Sup-C intersection measures. Approachks to Well as intersection measures based on supremums of fuzzy
fuzzy MM arise as obvious extensions of this construction. conjunctions to generate fuzzy dilations [80]. The follogi

section generalizes this strategy to ihéuzzy setting.

Ar(a,s)(x) = Secr(sx, a) . (21)

3 From Fuzzy Mathematical Morphology to L.-Fuzzy

Mathematical Morphology 3.2 Some Basic Concepts and General Resulfs-tuzzy

, , Mathematical Morphology
3.1 Some Basic Concepts of Fuzzy Mathematical

Morphology GivenL-fuzzy inclusion and intersection measures, it is easy

to construct operatotg,, Ay, : F.(X) x FL(X) = FL(X)

A certain approach to FMM is determined by certain def—in analogy to equations 20 and 21 as follows:

initions of fuzzy erosion and dilation since a fuzzy anti-

dilation and anti-erosion can be constructed by combining

a fuzzy erosion or a fuzzy dilation with a fuzzy negation. To & (a, s)(x) = Incy(sx,a)

maintain the consistency with the complete lattice frame-,

work for mathematical morphology we say that a function

er : F(U) — F(V) is afuzzy erosionf and only if ¢ 7 is In particular, if thelL.-fuzzy inclusion and intersection

an erosion in the sense of Equation 1. Similarly, we say thaneasures occurring in Equations 22 and 23 are induced by

an operatobr : F(U) — F(V) is afuzzy dilationif and  anIL-fuzzy implicationI and anlL-fuzzy conjunctionC' in

only if it satisfies Equation 1. terms of Equations 17 and 18. We obtain the following ex-
Let us leave these purely mathematical considerationgressions for the operatafg and Ay

aside for a moment. Intuitively speaking, the notion of ero-

sion, dilation respectively, is meant to extract some rele-

(22)
(23)

)

L(a,s)(x) = Secp(5x, a) .

vant information on the shape and form of objects by meansfi.(a,8)(x) = /\ I(sx(y),a(y)) vx € X, (24)
of a structuring elemen{SE) [68]. Hence, a fuzzy erosion yex
er + F(X) = F(X), afuzzy dilationdr : F(X) =  Ag(a,s)(x) = \/ C«(y) aly)) ¥x e X. (25)
F(X) respectively, is generally given by a rule that com- yeX

bines an input fuzzy set € F(X) with an arbitrary, but

fixed fuzzy structuring elemeste F(X) and generates an
output fuzzy sey € F(X). Recall thatsy, the translation

of s by x, ands, the reflection ok around the origin, are
defined as follows:

Here, thelL-fuzzy seta plays the role of the image and
the L-fuzzy sets plays the role of the structuring element.
We refer to the operatdfy,, Ar, respectively, using the ter-
minology IL-fuzzy erosionlL-fuzzy dilationrespectively, if
&L(.,s) represents an erosion in the sense of Equation 1 for

sx(y) =s(y —x), 8(y) =s(~y), Vy € X. (19)

The valuelncx(a, b) can be interpreted as tliegree
of subsethood or inclusiauf the fuzzy set in the fuzzy set
b. Various researchers have presented fuzzy inclusion me

sures [7,45,71,72,88]. A certain fuzzy inclusion measuré!

Incr induces an operatdir : F(X) x F(X) —» F(X)
via the following definition [56]:

Er(a,s)(x) = Incr(sx, Q). (20)

every SEs € F1.(X), if AL(.,s) represents an dilation in the
sense of Equation 1 for every SE¢ F,(X), respectively.
In this case, we refer t6,(a, s) as thdL-fuzzy erosion of the
imagea by the SEs and we refer toA (a, s) as thel-fuzzy
ilation of the imagea by the SEs.

Theorem 5 Let the operato&y, be induced by an Inf-In-
clusion measure,i.e&L, is given by Equations 22 and 24.
The following statements are equivalent.
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1. The operatorgy,(.,s) are erosions for alk € F,(X). 4 Connectives for Interval-Valued and Intuitionistic
2. The operatorgncy (s, .) are erosions foralk € 71.(X).  Fuzzy Mathematical Morphologies
3. The operatord(s, .) are erosions for alk € L.
4.1 Introduction and Basic Concepts of Interval-Valued and
The following, similar theorem conceriisfuzzy dila-  Intuitionistic Fuzzy Sets
tions.
In this paper, we are especially interested in intervaligel
Theorem 6 Let the operatord;. be induced by a Sug*in- and intuitionistic fuzzy mathematical morphologies which

tersection measure. The following statements are equitale W& Will treat as special cases @tuzzy MM. This line
of reasoning is made possible by the facts that the classes

1. The operators\, (., s) are dilations for alls € F(X). of interval-valued and intuitionistic fuzzy sets form com-
2. The operatorSecy (s, .) are dilations for alls € F.(X). plete lattices. In fact, these complete lattices are isqimior
3. The operator€(s, .) are dilations for alls € L. [27]. Before going into details, let us briefly review intatv

valued and intuitionistic fuzzy sets.
In MM, erosions and dilations usually occur in pairs As the name indicates, interval-valued fuzzy sets (IVFSSs)

whose constituents are dual to each other with respect & @ ?niversé( are mappingst : X — L'. Here, the sym-
either adjunction or negation. Note that a negaféon L bolL* denotes the set of all closed subintervalfoi]. An
induces a negatio" on i, (X) by means of the equations ntuitionistic fuzzy set (IFS) is a mapping’ : X — QL
N(a)(x) = N(a(x)), wherea € Fi.(X) andx € X. For where the symboL* denotes the sef(u,v) € [0,1]* :

simplicity, we introduce the following nomenclatures. p+v < 1}. Both IVFSs and IFSs belong to the class of
LL-fuzzy sets wheré. is a complete lattice [27,30]. The par-

tial ordering on[0, 1] induces a partial ordering on the set

Definition 6 Let&, andAy, be]-']L(X) X ]:[L(X) — ]:[L(X) LI — {[1’ y] c [0 1]} as follows:

mappings. We say that the pd#y., Ar) forms an adjunc-
tion if and only (&.(., s), AL(.,§)) forms an adjunction for

i [u,v] < [z,y] & u<zandv <y. (26)
every SEs € F,(X). We say thaty, and 4y, are dual with
respect to a negatiov on L if and only if £&.(.,s) and If the symbol0, : denotes\ .’ and1,: denotes\/ !
Ay(.,s) are dual with respect to the corresponding negatiofhen we have); ; = [0,0] and1y: = [1,1]. The complete
N on 7 (X) for every SEs € Fi.(X). lattice L* = {(z,y) : = +y < 1} is endowed with the

following partial ordering:
Our focus is on operato&, and Ay, that are built from

LL-fuzzy connectives by means of Equations 24 and 25. Théu,v) < (z,y) @ u <z andv > y. (27)
following theorem links a duality relationship betweén . o
and A;, to the corresponding duality relationship between! N€ least element Gt*, denoted by -, is given by(0, 1)

the underlyingL-fuzzy connectiveg andC. and the greatest elementlbf, denoted by -, is given by
(1,0). From now on, we will refer to the complete lattice of

interval-valued fuzzy sets oX using the symbolL;y rg
and we will refer to the complete lattice of intuitionistic
fuzzy sets orX using the symbdlL;gs.

Several researchers have pointed out that the notions of
interval-valued fuzzy sets and intuitionistic fuzzy sete a

Theorem 7 Let I be anL-fuzzy implication and” be an
LL-fuzzy conjunction. The paid, C') forms an adjunction if
and only if the corresponding paf€L, Ar) given by Equa-
tions 24 and 25 forms an adjunction. SimilarlyandC are

dual with respect to af-fuzzy negatiotV if and only if the

correspondingFi.(X) x Fi(X) — Fi(X) mappingsés rr:athe|m§t|c§llyeqU|va:je£t[5,87].Mostlmp;]qrtgntly,ttmrc;]
and A, are dual with respect toV. plete latticedL;y ps andL;rgs are isomorphic because the

underlying complete latticels’ andLL* are isomorphic [27,

For now, Theorem 7 concludes our investigation of the-3o] in terms of¢ given as follows:

oretical aspects of generatfuzzy MM. The results of this LD Lt
section can be applied to any particular choicé.of/hich (z,y] = (z,1—1y)
are of practical interest, in particular to the classestefrival-

valued, intuitionistic, and bipolar fuzzy sets. Note thaeT The lattice isomorphisng induces a lattice isomorphism
orem 7 refers to two possible approaches for constructing : L;yrs — L;pg that maps an IVFSA with A(x) =
pairs consisting of an erosion and a dilation. In some recertd(x), A(x)] for all x € X to the IFS A’ that satisfies
papers, Isabelle Bloch has established links between thes(x) = (A(x),1 — A(x)). The inverse ofy associates an
two approaches for the special cases of fuzzy sets and bipelement(y, v) € L* with [u, 1 — v] € L! and induces the

lar fuzzy sets [12,13]. lattice isomorphisn®—! fromL;rs to Ly Fs.

(28)
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Note that elements db), 1] can be identified with ele- additionally require negations dt and onlL! to be involu-
ments ofLL! of the form [z, 2] and with elements of.* of tive in accordance with our definition of negation in Section
the form(z, 1 — x) = ¢([z, z]). In other words, the unitin- 2.1. Deschrijver, Cornelis, and Kerre have completely char
terval [0, 1] can be considered a subsetldf as well as of acterized (involutive) negations @ and onlL! [25,26]. In
LL*. Therefore, the class of fuzzy sefX) over the uni- particular, the standard negatioN§ onL* and s onL!
verseX is contained in the class of interval-valued fuzzy are given as follows:
setsL;y rs as well as in the class of intuitionistic fuzzy sets

L;rs overX.

In the remainder of this section, we focus our attentionVs (1) = (ug,u1) Yu € L*, (36)
on operations on the complete latticer s, citing some spe-
cific examples of intuitionistic fuzzy operations that have/Ns(x) = [1 — 22,1 —z1] Yx e L'. (37)

appeared in the literature. Generalizations of the Gédel im
plication I, are given by the following intuitionistic impli-
cationsZy,, 73 -, andZg [19,6,18]:

Note that, given an implicatioh*, a conjunctiorC*, and
a negation\* on IL*, we are able to construct a specific
approach to intuitionistic FMM. Intuitionistic fuzzy inal
{hu ifu<v sion and intersection measuréscy- and Secp- immedi-
Ty(u,v) = - (29) ately arise as the irff* inclusion measure and the sap-
v otherwise. intersection measure defined in Equations 17 and 18. Then,

1. T Equations 24 and 25 Ieaq to _intuitionistic fuzzy operators

. ) - &~ and Ap-. Theorem 7 implies thaf* andC* are dual
Thig(u,v) = q (v1,0)  if uy >0 andug > vz, (30) i respect toV* if and only if &.. and A are dual with

(vi,v2) if up > v and ug < v . respect to\V*. Moreover,Z* andC* are adjoint if and only

if &L« andAp- are adjoint. Similar remarks can be made in
the interval-valued fuzzy case.

1]L* if u S v,
I*( ) (1—U2,U2) if u < and Ug < V2,
s\, V) = . . - .
(v1,0) if wy >wv; and ug > vy, 4.2 Construction of Interval-Valued and Intuitionistic
A if uy >wv; and us < vy. Fuzzy Operators

(31) . :
The development of various approaches to interval-valued o

In contrast to intuitionistic and interval-valued implica intuitionistic FMM based on interval-valued or intuiticstic
tions, general intuitionistic or interval-valued fuzzyngonc-  Inf-I inclusion and Sup-C intersection measures presumes
tions have not been extensively studied in the literature. | the availability of interval-valued or intuitionistic infipa-
stead, researchers have concentrated on the specialsclasens and conjunctions. Ideally, researchers and pragtiti
of intuitionistic and interval-valuettnorms [25,26,29]. Ex- ers have a variety of interval-valued and intuitionistiglim
amples of intuitionisti¢-norms include the following [4,18, cations and conjunctions at their disposal including dete
26,29]: that facilitate the choice of a particular approach to weér
valued or intuitionistic FMM that is suited for a given ap-
plication [57-59]. As a first step in this direction, this sec

Tur(w,v) =uAv = (ug Avi,uz Vva), B2)  fion presents several strategies for constructing newniake
Tw(u,v) = (0V (ur +v1 = 1), 1A (uz + v2)), (33)  valued and intuitionistic fuzzy operators.

Ti(a,v) = (ugv1, ug + va — ugve), (34)

Tr(u,v) =0V (ug + vy — 1), 4.2.1 Operators Derived from the Lattice Isomorphism

LA (ug +1—v)A(ve+1—u)). (35) betweerl.” andLL*

As far as the definition of a negation dof or " is  The following theorems reveal that there is a natural one-
concerned, several researchers have left away the inw@luti to-one correspondence between operatorsoand opera-
ness requirement [18,26,30]. Thus, these definitions @eith tors onlL’ that allows for the construction of interval-valued
comply with the definition of a negation in the complete lat-fuzzy connectives from intuitionistic fuzzy connectivesla
tice framework of mathematical morphology [37] nor with vice-versa. Recall thap denotes the lattice isomorphism
the types of negations that have been used by researchgrs —, [* that was defined in Equation 28.
in fuzzy mathematical morphology [15, 56, 70, 80]. Since we
view interval-valued and intuitionistic FMMs both as spe- Theorem 8 Consider the following mapping! that asso-
cial cases ofL.-fuzzy MM and as extensions of FMM, we ciates functionsF* : (L*)?> — L* with functionsF =
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M(F*) (L)% — L where F = M(F*) is defined as
follows for allx, y € L.

‘F(Xv y) = ¢7_1(]:*(¢(X)7 ¢(Y))) . (38)

The inverse ofM is given by

MTHF)(u,v) = F*(u,v) = 6(F(67" (), 67" (v))).

(39)
Moreover, the following statements are satisfied.

1. The operatofF* is an implication orilL* if and only if F
is an implication onlL”. The corresponding statements
also hold true for conjunctions and disjunctions.

. The operatoF* is a t-norm onlL* if and only if F is
at-norm onl.!. The operatotF* is ans-norm onlL* if
and only if 7 is ans-norm onlL’.

. An implicationZ* on L* and a conjunctiorC* on L*
are adjoint if and only if the respective implicatidh=
M(Z*) on! and the respective conjunctiGn= M (C*)
onL! are adjoint.

In Equations 29 to 31, we presented three intuitionistic

fuzzy extensions of the Godel implicatidy;. An applica-

tion of Theorem 8 yields three interval-valued fuzzy impli-

cations that extend the Gédel implicatify} . First, note that

if ¢(x) <oly) &x<y,
otherwise.

1p

Th (¢(x), ¢(y)) = {¢(y)

(40)

ThereforeZ;, corresponds to the following implication
Ty onL!:

IM(XaY) :{

In a similar way, we derive the interval-valued implica-

1 if x<y,

y

) (41)
otherwise.

tion Z4¢ corresponding to Atanassov’s and Gargov'’s intu-

itionistic implication and the interval-valued implicati Zs
corresponding to the intuitionistic implicaticfg,. We ob-
tain:

Ipr if z1 <y,
Tac(x,y) = [y1,1] if 21 >y andag <y, (42)
y if x>y.
1p: if x<y,
Yo, Y if x1 <y and 2o > yo,
To(x,y) = { vl T swrands >us,
[y1,1] if x>y and zp < o,

y if x>y.

An application of Theorem 8 to the intuitionistic fuzzy
t-norms listed in Equations 32 to 35 yields the following
interval-valued-norms7ys, Tw, T4, and7y:

Tu(x,y) = = [z1 Ay1, 22 AN y2], (44)
Tw(x,y) = [ (561 +y1—1),0V (22 +y2 —1)], (45)
Ta(x,y) = [x1y1, T292] , (46)
To(x,y) =[0V (21 + 41 — 1),

OV(za4+y1 — 1)V (y2+21 —1)]. 47)

The fact that[0, 1] constitutes an infinitely distributive
lattice [9] implies that the intuitionistic-norm7;; is a dila-
tion in both arguments. Therefore, the adjoint erosiofiLbn
can be constructed by using Proposition 1. This procedure
gives rise to th&-implicatorZ;, of 7;; onL*. By Theorem
1, the R-implicatofZ3- of an intuitionistict-norm7™* can be
computed as follows:

Zr(u,w) = \/{v el : T"(u,v) <w}Vu wel"
(48)

Since Cornelis et al. have shown that the R-implicator of
Tir, whereT; (u,v) = uAvforallu,v € L*, is given by
the intuitionistic fuzzy implicatiorf of Equation 31 [18],
we have thaiZy and7,; are adjoint. Therefore, Part 3 of
Theorem 8 implies that the interval-valued implicatibg
and the interval-valuettnorm 7, are adjoint as well. Fi-
nally note that the intuitionistic maximuii;, corresponds
to the interval-valued maximur§,;, whereSy, (x,y) =
xVy.

Theorem 9 The following mapping® defines a bijection
between the set of negations @i and the set of nega-
tions onlL’. If N* is an intuitionistic fuzzy negation then
an interval-valued fuzzy negatiosf = P(N*) is given as
follows.

N(x) = (N*(9(x))), yx e L. (49)

The inverse dP associates an interval-valued fuzzy nega-
tion A/ with an intuitionistic fuzzy negatioh™ = P~1(\)
which can be computed as follows.

N*(u) = p(N (¢ (n))), Yu e L*. (50)

A brief glance at Equations 36 and 37 reveals that the
bijection” mapsNs to NV¢.

Theorem 10 Let M and?P be as in Theorems 8 and 9. Two
intuitionistic fuzzy connective™* and G* are dual with
respect to an intuitionistic fuzzy negatidvi* in the sense
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of Definition 2 if and only if the corresponding interval-

valued fuzzy connective = M(F*) andG = M(G*) ,
are dual with respect to the interval-valued fuzzy negauor?c cr(%,¥) = [Cla1, 1), C' (22, 4o)] - (54)
N =P(N*).

A disjunctionD on ! is called C-representable iD
equalsDy, ,,, for some fuzzy disjunction® and D’ where

The following equalities reveal that the intuitionisticrmi ~D,D’
Dp,p is defined as follows:

imum 7, and the intuitionistic maximur§;, are dual with
respect to the standard intuitionistic fuzzy negat@r.

Dph.p/(x,¥) = [D(x1,51), D' (22, y2)] - (55)
N (SuNs(u), Ng(v))) = NgWs(w) VN5 (v)) If both C andC’ aret-norms then we refer t6 ast-
= N§((ug,u1) V (v2,v1)) = N§((uz V vz, us Avy)) representableSimilarly, if both D and D’ ares-norms then
= (ug Avi,ug V) =uAv =T (u,v). (51) we refer toD ast-representable.
Thus, by Theorem 10, the interval-valued minimiip = Obviouslyt-representable conjunctions and disjunctions

M(T;;) and the interval-valued maximugy, = M(S%,)  onlL’ constitute respectivel{-norms ands-norms onlL’.
are dual with respect to the standard interval-valued nega-et us proceed by stating conditions that yi€lerepresen-
tor Ns = P(N{). The following extensmdS* N of the table conjunctions and disjunctions b#.

Kleene-Deenes implicatdi, has been shown to be the dual . i _ i

of the intuitionistic maximum operata#;, with respect to 1 "€0rem 11 The functiorCs, ¢, defined in Equation 54 rep-

the standard intuitionistic negatio [4,6, 18]. resents a conjunction i’ if and only ifC(z,y) < C'(z,y)
for all z, y € [0,1]. Moreover, the functio®}, ,,, defined

in Equation 55 represents a disjunction bA if and only if
Lo as(u,v) = (u2 Vi, ug Av). (52)  D(z,y) < D'(x,y) forall z,y € [0,1].

By Theorem 10, forming the image 8. .. underthe The conditions of Theorem 11 are trivially satisfied if
bijection M produces the interval-valued fuzzy implication ¢ — ¢’ (orif D = D’). Thus, the tukasiewicz-norm Ty

Is,, N5 thatis the dual of the interval-valued maximum op- gives rise to the interval-valugehorm7;;, = 7y of Equa-

eratorS), with respect to the standard interval-valued negation 45 and the conjunction of Kleene and Dienes, denoted

tion V5. Thus, we obtain by Cx, gives rise to the following interval-valued fuzzy con-
junctionCy,:

ZSw N (Xv Y) = M(ISM -,Ns)(xv Y)

= ¢ (T3, ;3 (), 6()) Ck(x,y) =[Ok (1,41), Ok (2, 42)] (56)
= ¢ (T, v (21,1 = 22), (y1,1 — 42))) (53) = [z1 A Ho(z1 + 31 — 1),
= ¢ (1 —22) Vo, 1 A (1 — 1)) x2 A Ho(22 +y2 — 1)],
=[1=a2) Vyr, (1 —21) Vsl where
0,z<0,
4.2.2 Interval-Valued and Intuitionistic Operators Based Ho(z) = { 1L,z>0. Vz eR. (57)

Fuzzy Operators _
yop Itis a well-known fact that the minimumnormT’,, rep-

As we will point out in this section, a large class of intu- "€S€Nts the pointwise largeshorm [61]. Therefore, Theo-

itionistic and interval-valued fuzzy connectives can ba-co €M 11 yields the following-norm7;; ,, and the following

structed from fuzzy logical connectives @ 1]. For sim- ~ conjunctionCi ,, onlL’.

plicity, we focus on interval-valued fuzzy connectiveseirh

mtwtlonlstlc fuz_zy counterparts can be_o_b_tamed via EquaT,- (% ¥) = [Te(@1, y1), Tar (z2, 4o)]

tion 39. In particular, the following definitions dfrepre-

sentable operators dif can be related in terms of Theorem = [z1-y1,22 Ay, (58)

8 to the respective definitions @frepresentable operators Ci (%, ¥) = [Cr (w1, 91), T (22, y2)] (59)
=

onL* [17,18] xr1 N\ HO(«Tl + Y1 — 1) xro N\ yg] .

Definition 7 A conjunctionC onlL/ is calledC-representa- Definition 7 reveals thaC-representable fuzzy opera-
bleif C equalf, ., for some fuzzy conjunction§ andC”’  tors onl! can be generated by applying conventional fuzzy
whereCf, o is defined as follows: operators to the lower and upper bounds of the considered
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intervals. Definition 7 can be modified by lowering the upperinserted in Equations 22 and 23 in order to generate interval
bound (pessimistic approach) or by lifting the lower boundvalued (intuitionistic) fuzzy operato&; and A¢ that form
(optimistic approach). Generalizing previous definitiafis the basis of a particular approach to interval-valued fintu
pseudot-representable operators [25], we defaseudo€’-  itionistic) FMM. If the operators£z and A¢ form an ad-
representableoperators as follows. Here, we refrain from junction then their compositions yield (algebraic) opgsin
using two representatives since otherwise we would havand closings which in turn can be used to construct a va-
several possible definitions of pessimistic operators gnd o riety of morphological filters [37]. On one hand,&§% and
timistic operators to choose from. Ac are adjoint ther€z(.,s) is necessarily an erosion and
Ac(.,s) is necessarily a dilation for all structuring elements
s € Ly rs or, equivalentlyZ(z, .) is an erosion and(z, .)

is a dilation for allz € LL!. On the other hand, given an
implication Z on I such thatZ(z,.) are erosions for all

z € LI, we can easily construct the adjoint conjuncti®n
onl.! using Equation 12 . Conversely, given a conjunction
onL! such that’(z, .) are dilations for alk: € L7, one can
construct the adjoint implication using Equation 10. Both
schemes produce an adjunctigh, Ac).

By the following theorem, representable and pseudo-re-
presentable interval-valued connectives that are erasive
dilative in the second argument arise naturally from fuzzy
connectives having the same property.

Definition 8 Let C' be a fuzzy conjunction. Thgessimistic
conjunctionC?, and theoptimistic conjunctior®2 with rep-
resentative” is defined as follows:

Co(x,y) = [Clz1,51), Cl21,92) V C(22,91)]
Ca(x,y) = [C(a1,y2) AN C(z2,91), C(22,¥2)] -
Likewise, if D is fuzzy disjunction then thpessimistic dis-
junctionD?, and theoptimistic conjunctiorD$, with repre-
sentativeD are defined as follows:

D) (x,y) = [D(z1,91), D(21,92) V D(32,91)] ,
Dp(x,y) = [D(z1,y2) A D(22,91), D(22,92)] -

(60)
(61)

(62)
(63)

As the reader may have already perceived, the intervalfheorem 12 If C', ¢’ and I, I’ are respectively fuzzy con-
valued conjunctiorV;, of Equation 47 is given by the pes- junctions and fuzzy implications such tidtz, y) < C’(z, y)
simistic approach in conjunction with the representdfiye andI(x,y) < I'(z,y) forall z,y € [0, 1] then the following
As we have seen, humerous types(éfepresentable and statements hold true:
pseudo€’-representable conjunctions and disjunctions can
be constructed by means of Definitions 7 and 8. In a sim-1. The interval-valued conjunctior, ., and C¢, repre-

ilar vein, a large variety of -representable and pseude-
representable implications arise from the following defini
tions [25].

Definition 9 Let I andI’ be fuzzy implications such that 2.
I(z,y) < I'(z,y) for all z, y € [0,1]. We define thel-
representable implicatiod; ;, with representativeg and

I', thepessimistic implicatiod? with representativé, and

the optimistic implicationZ¢ with representativd as fol-
lows:

sent dilations in the second component for every fixed
first component € 1! if and only if the conjunction§’

and C’ represent dilations in the second component for
every fixed first componeate [0, 1].

The interval-valued implicatioris] ;, andZ represent
erosions in the second component for every fixed first
component € LL! if and only if the implicationd and

I’ represent erosions in the second component for every
fixed first component € [0, 1].

For example, the interval-valugehorms7,,, Ty, and

Ta are all dilative in the second argument because they are

I; p(x,y) = (w2, 91), I' (w1, 92)] (64)
7 (x,y) = [(z2,91), I(x1,91) V I(22,2)] , (65)
I7(x,y) = I(z1,y1) A (22,92), I (21, 92)] - (66)

respectivelyt-representable in terms of the minimum, the
tukasiewicz, and the produtinorms, which are dilative in
the second argument. Another example of an interval-valued

t-norm that is dilative in the second argument is given by

For example, the Gédel implicatiaiy; and the Goguen
implication Ip satisfy the inequalitya;(x,y) < Ip(z,y)
for all z, y € [0,1] and allow for the construction of the
I-representable implication with representativgsand/p

T, of Equation 47 sincé§7, equalsTy,, i.e., the pessimistic
conjunction with the single representatilig .

The optimistic conjunctio? does generally not yield

a dilation for fixedz € L’ even if C(z,.) is a dilation

as well as the pessimistic and optimistic implications withfor everyz € [0, 1] (the optimistict-norm 7, associated

either one of the representativeg or Ip. For simplicity,
we denote these implications using the symixdls,,, 1%,
1%, Z3,, andZy.

Clearly, representable and pseudo-representable impli-

with the minimum¢-norm represents an exception because

= Tir)- As an example consider the optimistimorm

T2 corresponding to the produehorm on|0, 1] x [0, 1].

Letz = [0.5,1], x! = [0,1], andx? = [0.5,0.7]. Let

cations and conjunctions df (onIL*, respectively) can be us show thaf3(z,x! V x?) # T5(z,x') V T2(z,x2). If
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x denotesx! v x2 = [0.5, 1] then it suffices to show the
following inequality

21@9 N 2021 # (zlz% A zzx%) Vv (zlzg A zzxf) . (67)

The left-hand side of this expression equalswhereas
the right-hand side equals/ 0.35 = 0.35. In a similar vein,
the pessimistic implicatiod? does generally not yield an
erosion for fixedz € L/ even if I(z,.) is an erosion for
everyz € [0, 1].

In this case((. . and its R-implication are adjoint if and
only if the pairs(1,C') and (I’, C") form adjunctions. Sim-
ilarly, if T and I’ are fuzzy implications such thd{z, y)

< I'(z,y)forall z,y € [0,1]andI(1,2) < 1forall z # 1
then theR-conjunction of the representable fuzzy implica-
tion Z7 ;, is given by the following expression whefeis
the R-conjunction off andC" is the R-conjunction off’.

Czy ,(x,y) = [C(z2,51),Cl22,51) V C'(21,52)] . (69)

The next two sections are concerned with the types ofn this caseZ;7 ;, and its R-conjunction are adjoint if and

interval-valued fuzzy connectives that arise in applmadi

of the duality relationships of negations and adjunction -
or, more generally, in applications of Equations 10 and 12

- to representable and pseudo-representable intervabdal
fuzzy connectives.

4.2.3 Construction of Operators Using Adjunction

Under certain conditions stated in Theorem 1, we can d
rive the R-implication of a given interval-valued fuzzy con-
junctionC and theR-conjunction of a given interval-valued
fuzzy implicationZ. As mentioned above, this construction
leads to an adjunctiofZ, C) if we are given a conjunction
C on ! that constitutes a dilation in the second argume
or an implicationZ on! that constitutes an erosion in the
second argument. Some of the special cases discussed in
previous section are especially easy to deal with:

Theorem 13 If C'is a fuzzy conjunction such tha{(1, z) >
0 forall z # 0 then theR-implication of the pessimistic con-
junctionC¢, is given by the optimistic implicatiah where
1 is the R-implication of C. In this case, we also have that
77 andCy, are adjoint if and only iff andC are adjoint.
Conversely, if is afuzzy implication such th#t1, z) <
1 for all « # 1 then theR-conjunction of the optimistic
implicationZ¢ is given by the pessimistic conjunctiGf
where C' is the R-conjunction of!. In this case, we also
have thatZy andC¢, are adjoint if and only iff andC are
adjoint.

For example, the adjoint implication of, = T}, is
given byZg,, i.e., the optimistic implication with the rep-
resentativey, and the adjoint implication a#?. is given by
¢, i.e., the optimistic implication with the representative
Ik, wherelx denotes the Kleene implicator.

Theorem 14 If C' and C” are fuzzy conjunctions such that
C(z,y) < C'(x,y) forall z,y € [0,1] andC’'(1,2) > 0
for all x # 0 then theR-implication of the representable
fuzzy conjunctior€(, .. is given by the following expres-
sion wherel is the R-implication of C and I’ is the R-
implication ofC":

Ier

c,c’

(x,y) = [I(z1,91) AN (22,92), I' (x2,92)] . (68)

e

n

t

only if the pairé(], C) and(I’,C") form adjunctions.

Let us apply Theorem 14 to the interval-valued mini-
mum operatoffy; = 7;;. Recall that the fuzzy minimum
Ty is adjoint to the Godel implicatof,,. Therefore, The-
orem 12 reveals that thB-implication of 7,, forms an ad-

junction with 7;,. By Theorem 14, we obtaifir,, (x,y) =

(Unr(z1,y1) A Ing(22,92), Iar(22,92)]. Closer inspection
shows that the latter expression boils down to the interval-

valued implicatiorZs that was introduced in Equation 43.

The R-implications of optimistic conjunctions and the
R-conjunctions of pessimistic implications are also neithe
representable nor pseudo-representable. Let us for oestan
gerive theR-implication of the optimistic conjunctiod’g.
with representative”. The conditionC(1,z) > 0 for all
ghgé 0 guarantees the existence of tlilsmplication that is
given as follows in terms of th&-implication! of the fuzzy
conjunctionC":

Teo (z,y) = \/{x € L' : C&(z,x) <y} =

Vix e L2 [Cler, ) A Cleg, 1), Clez,e2)] < [y, e}

= \/{X €L’ : (Cz1,22) <y10rC(z2,z1) < y1)
andC'(z2,x2) < ya }

= \/{x e : (C(z1,22) < yrandC(za, o) < o)
or (C(z2,x1) < ypandC(zz,z2) < y2) }

= \/{x e : (C(z1,21) <yrandC(zo, 1) < 2
andC'(z1, z2) < y1andC(z2, z2) < ya2)
or(C(z2, 21) < y1andC(z2, 2) < y2) }

= \/{x e : C(z1,21) < y1andC(zz, 1) < yo
andC(z1,x2) <y andC(za,x2) < ya }

\/\/{X el : C(zo,21) < y1andC(zy, x2) < yo }

= [\/{xl €10,1] : C(z1,21) < ypandC(zz2,21) < yo },

V{22 €[0,1] 1 C(z1,22) < y1andC(z2, 22) < y2 }]
VIV{z1 € 10,1] 1 Claz,21) <},

\/{w2 € [0’ 1] : C(ZQ’x2) < Y2 }]
(70)
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Note thatC,; is not at-norm onL!. Moreover, the unary

Co oLt Ir =~ Lecon operator<,(z, .) do not represent dilations for all € 1.1
A\ Reoon™ Ty, = Ice \// R Crp =Cpp which can be seen as follows. Fer= [0.3,0.8], x! =

e _ [0.2,1], andx? = [0.4,1], letx = x* v x> = [0.4,1]. We
ce, — - 7 e haveCy(z,x) = z = [0.3,0.8] # [0.4,1] = Cas(z,x") V

Cn(z,x?). ThereforeZ,, andCy, are not adjoint.
Fig. 1 Relationships between some representable and pseudo- 1h€ NeXt section is concerned with the construction of
representable logical connectives bh and theirR-implications and  interval-valued operators from given interval-valued repe
R-conjunctions. tors using the duality relationship of negation.

4.2.4 Construction of Operators Using Negation
= [I(z1,91) AN (22,2), I(z1,y1) N I(22,92)] P g Neg

VI[I(22,91), I(22,92)] By Theorem 4, we can employ interval-valued negations
= [(I(22,y1) V I(21,41)) in order to build new interval-valued implications, congun
A (z2,y1) V I(22,92)), (22, 2)] tions, and d|SJunct|0ns from_glven mterval-val.ued fuzpy o
erators. Although this section focusses on interval-\dlue
= [z, 91) A (22, 92), (22, 92)] - (71) implications and conjunctions (the underlying operatdrs o
Similarly, if I(1,z) < 1forall z # 1 thenCI}o, the R- interval-valued fuzzy MM) the subsequent results can be
Conjunction of the pessimistic |mp||cat|ﬁf is given by the easily extended to include interval-valued disjunctic[blse
following expression wheré' is the R-conjunction ofI: to the isomorphism betwedil andLL*, applications of The-

orems 9 and 10 yield analogous results for the intuitionisti
. _ I fuzzy case.
Oz (2 %) = [0z, m), Oz, 22)VO (21, ma)] Vo x €L - According to Deschrijver, Cornelis, and Kerre [25,26],
(72) every negationV’ on L/ is determined by a fuzzy negation
N, called representative g¥. Specifically, every negation
on L’ can be written in the formVy where Ny (x) =
O[_N(xg), N(x1)] for everyx € 1.

First, let us take a look at th&y-dual operators of rep-
resentable and pseudo-representable operatdis onlL’.
This issue has already been addressed by Deschrijver and
Cornelis who have formef-implicators of optimistic, pes-
simistic, and-representable-norms with a single represen-
tative [25].

Note thatC;, andC¢ possess the samg-implications
and thatZ} andZ? possess the sanfe.conjunctions. These
facts do not contradict the uniqueness property of the a
joint operator since - as mentioned beforég(z,.) gen-
erally does not constitute a dilation and sifG&z, .) does
generally not constitute an erosion. Eve@ifz, .) are dila-
tions andI(z, .) are erosions for alt € [0, 1] we have that
generally neithec? and its R-implication norZ¥ and its
R-conjunction form an adjunction.

However, a fuzzy conjunctiofi with dilative partial map- Theorem 15 Let N be a fuzzy negation. I and C’ are
pings C(z,.) induces theC-representable conjunctiaff,  fuzzy conjunctions suchth@i(z,y) < C’(z,y) forall z,y €
whose partial mapping¥-(z, .) are also dilations according [0, 1] and if7 andI’ are fuzzy implications such th&t(z, y) <
to Theorem 12. Thu€l;;, and itsR-implicationZcy, = Zce,  I(w,y) for all z,y € [0,1] then the following statement
form an adjunction and th&-conjunction ofZc:, is given  holds true:
by CZ.. In addition, Theorem 3 implie§7. < Cg. Similar TheC-representable conjunctiafy, ., and thel-repre-
comments can be made with respectZio Z7, and their  sentable implicatiod7, ; are dual with respect to the interval-
commonR-conjunction provided thaf has erosive partial valued fuzzy negatioy if and only ifC and I as well as
mappingsl (z, .) for all z € [0, 1]. Figure 1 illustrates these C’ andI’ are dual with respect tdv.
observations.

. . From now on, lef'  andI,; denote respectively the Re-
Of course, the construction schemes based on Equatlo?csnenbach and the Godel implicators. By Theorem 15, the
10 and 12 can also be applied to logical connectives’oor P - oY '

y . airs(7.,, %), (TH,Z%), (T, Iy, and(C., Z5,) exem-
LL* that are neither representable nor pseudo—representabﬁ?ﬁy [()a]i\?wi ;é ) d(u zﬁ o ge)rz;tovrvs WVI‘&: resp(ec{f toht[h)e standard
For example, forming th&-conjunction of the implication i : . : .
; h . X . ; . interval-valued negatioN/s having a single representative.

Zn given in Equation 41 yields the following-conjunction h . , - d(cr ” id
Cur: The palrs( P_’M,IK_’R) an (CK_’M,.IK_’G) provide exam-

' ples of pair-wise dual operators with respect\fg having
two distinct representatives.

x if x<y, (73) Theorem 16 Let C be a fuzzy conjunction, Igtbe a fuzzy

y else. implication, and let\V be a fuzzy negation. The pessimistic

Cu(xy) = {
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conjunctionC?, and the optimistic implicatiody are dual  versions of the watershed transforms. In practice, therwate
with respect toNy if and only if C and I are dual with  shed transform is often applied to the (morphological) grad
respect toN. The optimistic conjunctiog? and the pes- entof the originalimage [55]. In addition, some pre- or post
simistic implicationI? are dual with respect tdVy if and  processing techniques are ususally employed to avoid over-
only if C and I are dual with respect tav. segmentation. In all the gradient and filtering techniques w
applied in the following experiments we used $aeonnected
Theorem 16 leads to the following pairs of dual opera-disk with radiusl as a structuring element.

tors with respect toVs: Two of the most widely used watershed algorithms are

the flooding algorithm of F. Meyer based on the concept

= (Tar Zi). (T8, Zg), (T, iy ), and(Ch, I3 ); of topographical distance and the recursive immersion al-
= (T3, Ti): (T8, I). (i, Ty ), and(C, Iy, ). gorithm of Vincent and Soille [54, 86]. In the following ex-

. . ) ﬁ)ﬂeriments we applied the MATLAB implementation of F.
This way we can construct a host of pairs that consis eyer's algorithm to the (post-processed versions of) mor-

pf dual mterval-value_d operators Wlth respect to_ a Certa'rbhological gradients of images that arose by applying three
interval-valued negation. Of course, this constructidresee |, ii_known image reconstruction techniques to the so dalle

based on negation is not Iimit.ed to representable or pseUd%'hepp-Logan phantom. In addition, we generated a single
.representable fuzzy qonngctlyes but F;an l?e appheld. 10 aierval-valued image by combining the three reconstdicte
mterval-valued fuzzy implication, conjunction, or diaj+ images and computed the mean of the upper and the lower
tion. ) . envelope of a certain interval-valued morphological gradi
~ Forexample, forming tha/s-dual of the interval-valued - gnt After some post-processing, the resulting image was
!mp_llcatlonIM mtroduc.ed |n_Equat|on 41 yields the follow- segmented using Meyer’s algorithm.
ing interval-valued conjunction: Let us now describe the details of our experiments. Fig-
ure 2 displays a discretized version of the famous Shepp-
) Logan phantom (on a56 x 256 grid) [43] as well as the
O if x <Ns(y), (74) reconstructions produced by the following algorithms [40,
y else. 82]: filtered backprojection (FBP), filter of the backprojec
tions (FOB), and Tretiak & Metz reconstruction. These al-
In conclusion, the four strategies presented in Sectiogorithms were executed in a noiseless setting ushiguni-
4.2 lead to a large variety of interval-valued and intuiisn  form views and400 equally spaced rays within each view.
tic fuzzy implications and conjunctions that can serve as thThe Ramlak filter [43] was employed in both the FBP and
building blocks for particular approaches to intervalnead  the FOB algorithm. The attenuation parameter for the Tketia
or intuitionistic FMM. The choice of an appropriate pair of Metz inversion was set t0.1. The morphological gradients
particular interval-valued or intuitionistic fuzzy corttives  of these images were calculated by subtracting the eroded
for a given application represents an open research problerimages from the respective dilated images. Subsequently,
just as in the classical fuzzy case. we filtered these gradient images by applying/ith@inima
In some previous papers [57,59], we have provided someansform withh = 0.07 [74] and computed the watershed
visual examples of applications of interval-valued dda8, segmentation corresponding to each of the individual im-
erosions, and edge detection (dilation minus erosion). Wages. The filtered morphological gradient images and the
chose to use the interval-valued fuzzy dilatidfj, that is  watershed images are shown respectively in Figures 3 and
based o7}, and the interval-valued fuzzy erosiési, that 4.
is based oy}, becaused},, and&y, are both adjoint and We also combined the three image reconstruction meth-
dual with respect td/s by Theorem 7. For the same reasons,ods mentioned above by constructing an interval-valued fuz
these interval-valued fuzzy operators were also selected fzy image as follows. The lower and upper bounds shown
the following simulations concerning tomographicimage rein Figure 5 are given by respectively the pixelwise mini-
construction methods. mum and maximum of the three reconstructed images. Then
we computed the interval-valued morphological gradient in
terms of interval-valued fuzzy dilation\};, based orf7},
5 Some Experimental Results Concerning Tomographic and the interval-valued fuzzy erosiéfj, based ol . The
Image Reconstruction difference operator that occurs in the interval-valued-mor
phological gradient was chosen as follows [25]:
The morphological watershed transform can be classified as
a region-based approach for image segmentation [63]. The
literature on morphological image processing abounds witkk —y = [z1 — o, (z1 —91) V (22 —12)] VX, y € L. (75)

CIM,/\/S (Xay) = {
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Reconstrustee image using FEP

Reconstructed! image using Tretiak and Metz's lgorithm

Fig. 2 Original Shepp-Logan phantom and reconstructions pratiuce

Watershed af Original mage

Watershed of reconstructed image using FBF.

Watershes o resanstructed image using FOE

by the FBP, FOB, and Tretiak & Metz algorithms. Fig. 4 Watershed transform of Shepp-Logan phantom and of recon-
structions produced by the FBP, FOB, and Tretiak & Metz atgors.

Morp. Grad. of Originalimage

Mar, Gra. of recanstructed image using FOB e using Tret. & etz .

Fig. 3 Morphological gradients of the Shepp-Logan phantom and of
the reconstructions produced by the FBP, FOB, and Tretiak &zM
algorithms after applications of theminima transform.

We then formed the mean of the lower and upper bounds
of the interval-valued gradientimage depicted in the tap ro
of Figure 6 and subjected it to thleminima transform us-
ing the same parameter 6f = 0.07 as above. Finally, F.
Meyer’s algorithm was applied to the resulting image which
is shown as the first image of the bottom row of Figure 6.
The image on the right side of the second row of Figure
6 illustrates the watershed segmentation corresponding to

Lower bound Uper pound

Fig. 5 Lower and upper bounds of the interval-valued represamtati
given by the pixelwise minimum and maximum of the three recon
structed images in Figure 2.

Lower bound Upprer bourid

Mean of Morp. Grad. Watershed of mean of Morp. Grad.

‘//” ‘\\\..
P —_ N
A

'rﬁ Al Ry

( (\4\%{? \aﬁ

the combination of the three image reconstruction methodsig. 6 The top row shows the lower and upper bounds of the interval-
Close visual inspection reveals that this result which ggoa  Valued morphological gradient of the image in Figure 5 basedy,

on the interval-valued combimation of the three methods

.and&y, . The image on the left of the bottom row depicts the mean of
1¥he images on top after transforming it usiigninima. The last image

slightly more similar to the segmentation of the originatim depicts the result after applying the watershed transform.

age shown in Figure 4 than the segmentation results obtained
by the individual methods.
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6 Concluding Remarks models may be achieved by means of a generalization of
the "fuzzy learning by adjunction" scheme [85]. This is-
This paper introducels-fuzzy MM whereL is an arbitrary sue appears to be promising due to the large number of
complete lattice. We have described general aspecis of applications of interval-valued typfuzzy sets in rule-
fuzzy MM such as the construction &ffuzzy erosion and based systems and approximate reasoning [26, 83, 84].

dilation based on logical connectivesbrand relationships

of duality inL.-fuzzy MM. Interval-valued and intuitionistic

FMMs arise as special caseslofuzzy MM. In this context, A Proofs of Theorems
we presented several strategies for constructing intemral
lued and intuitionistic fuzzy logical connectives. We bgk
thqt the results of this pap_er can be the starting point for1. Let us assume that the conditions of the theorem are edtifiirst,
fruitful research endeavors in the following areas: let us prove Part 1.

. . e (@) Ic(.,y) is decreasing for aly € L:
1. Applications of interval-valued and intuitionistic FMM Consider an arbitrary elemenbf L. Let us compare the sets

in image processingAs we have pointed out before [57— {t €L : Clw,z) < y}and{z € L : C(z,2) < y}
59], interval-valued and intuitionistic fuzzy set theory for arbitrary w, z € L such thatw < z. SinceC(w,z) <
enable us to model numerical and spatial uncertainty in C(z,x), we have{w € L : C(w,z) < y} 2 {z € L :
. . . . C(z,z) < y}. Hence, we are able to conclude that

grayscale images that is due to image capture, leading a

o . ) Ic(w,y)—\/{:veL : O(w,z) <y}
to specific morphological operators and related applica-
tions that have yet to be explored in detail. In previous >\{zel: Clza) <y} =Ic(zy). (76)
papers, we provided some preliminary results concern- (b) Zc(z,.) isincreasing for all- € L:

L } . - . Let z € L be arbitrary. Consider arbitrary elemepgtandw
ing interval-valued edge detection [57-59]. In this paper, of L such thaiy < w. Since the sefz € L : C(z.2) < y}

Proof of Theorem 1

we went one step further by outlining an application of is contained in the sgz € L : C(z,«) < w}, we conclude
interval-valued FMM that aims at combining different that

methods for medical image reconstruction in terms of

the watershed transform. Clearly, the approach presented Ie(zy) = \/{m €Ll : O o) <y}

in this paper only represents our first attempt to tackle < \/{m €L : C(z,2) <w} = Io(zw). (77
this problem using the emerging techniques of interval-  (¢) Equation 11 holds:

valued FMM. Nevertheless, we believe that every exist- One one hand, sinc€(0y,,1;) = 0 and1, = VL, we
ing application of gray-scale or fuzzy MM in image pro- havelc(OL,y) = V{z € L : C(0u,z) < y} = 1y for
cessing potentially lends itself to interval-valued FMM ally ¢ L, in particular fory = 0r, andy = 1. On the

. . . . . other hand, sinc€'(1y,1;,) = 15, and1y, = \/ L, we have
if some uncertainty regarding the pixel values exists. In Ic(1p, 1) =V{z €L : C(1y,z) < 1.} = 1p.

contrast to conventional morphological techniques, in-2. For the proof of Part 2, note that as defined in Equation 10 satis-
terval-valued FMM techniques are able to keep track of fies all the requirements of drfuzzy implication excepIc (11, Or.)
this uncertainty information = 0. Thus, the function s represents afi-fuzzy implication if

. . . . . .. . and onIy ifO]L = Ic(lL,OL) = \/{:B el : C(lpj,:v) < OL}.

Another interpretation of bipolar FMM (i.e., intuitionis- Equivalently, we have (1, «) > 0y for all z € L \ {00} since

tic FMM) was provided by I. Bloch who has presented o, = AL.

applications to spatial reasoning inimage processing [11,

13]. In this context, one distinguishes between positiveProof of Theorem 2

(representing what is granted to be possible) and nega- o

tive (representing what is impossible) information, whosé e proof is similar to the one of Theorem 1.

intersection has to be empty and whose union does not

necessarily cover the whole underlying space. Proof of Theorem 3
2 DeveIOpmem_ o}L-f}Jzzy MMS_ for Ot_her special cases of Let C and I be as stated above. Note that the existence ofithe

complete latticed.. Conventional, interval-valued, and impjication of C and of theR-conjunction ofI¢: follows from Theo-

intuitionistic fuzzy sets represent particular instanoks rems 1 and 2. Ic’ denotes ther-conjunction ofI thenC’ can be

information granules [8,90]. We suspect that there aréomputed as follows for ali, z € L:

other specific classes of information granules that form C'(z,2) = Ny €L : Io(zy) >z}

complete lattices and that are conducive to the applica-

. . = L : "elL:C N<yl> 78

tion of morphological tools [81]. /\{y € \/{x c (za) syt 22} 78
3. Development of.-fuzzy - in particular interval-valued Replacingy by C(z,z) in \V{z" € L : C(2,2') < y}, we realize that
this supremum is greater than or equaktbecause” is increasing.

and intuitionisiic fuzzy - extensions of existing morphO-Therefore,C(z, z) is contained in the set over which the infimum is

logical neural networks such as fuzzy morphological astaken in Equation 78 which implies that (z,2) < C(z,) for all
sociative memorigg6—79, 81, 85]: Training of these new =,z ¢ L. We omit the second, similar part of the theorem.



Interval-Valued and Intuitionistic Fuzzy Mathematical Nbologies as Special Caseslefuzzy Mathematical Morphology

17

Proof of Theorem 4

Assume thaf is anLL-fuzzy implication. LetC be given by Equation
7. Note that the action of on the set{0., 1.} determines the action
of C on the same set. The operat@iis increasing in both arguments

becausd is decreasing in the first argument and increasing in the sec- Y€X

ond argument and becausginverts the partial order. The rest of the
theorem can be demonstrated in a similar way.

Proof of Theorem 5

The equivalence of the first two statements follows from #ut thate;,
is an erosion in the first argument if and only if the followieguations
are satisfied for all index sefs, ay, s € Fi.(X), andx € X:

SN 290 = A Elans)(x). (79)

keK keK

Equivalently, we havency(sx; Apei ar) = Apex IncL(sx, ax)
for all index setsK, for all ag, s € F.(X), and for allx € X, i.e., the

From the definitions o€, and Ap, and the fact that the bijection

N reverses the partial ordering, we have thatand Ay, are dual with

respect taV if and only if

V Clsx(y),a) = N( \ (sx(y), N(a()))

yexX

(82

=\ (N(I(sx(¥), N(a(y))) Vs,a € FL(X), ¥x € X,
yeX

Equation 82 reveals that ifandC' are dual with respect to dio-
fuzzy negationV then&, and A, are dual with respect t&v. For the
proof of the other direction, consider arbitrarya € L. Assume that
Equation 82 holds for ali, a € 7y,(X) and for allx € X. It suffices to
show thatC(s,a) = N(I(s,N(a))). Let us choose constant functions
s anda such thas = s and such thaa = a. Let x be an arbitrary ele-
ment of the point seK. We are able to finish the proof of the theorem
as follows:

C(s,a) = \/ Cls(x~v).a(y))

yexX

inclusion measuréncy, represents an erosion in the second argument. = A (a,s)(x) = N (&L(N(a),s))(x)

Now, assume thakncy (s, .) are erosions for ab € 7 (X). Let
us show thaf (s, .) are erosions for af € L. In other words, we want
to show that7 (s, A, c x ax) = Apcx I(s,ax) for all I and for all
s,ay, € L. Consider arbitrary elementsanda;, of I wherek € K for
some index sek . Lets anda,, be respectively the constdntfuzzy SE
and the constarit-fuzzy images such tha(z) = s andag(z) = ay,
forallz € X andk € K. The following sequence of equalities reveals
that7 is an erosion in the second argument:

1(s, Ake e @) = Ncex 1(8(3)s (Aek ar(x)))
= IncL(s; Apex ak) = Apeg IncL(s,ar) =

/\kEK(/\xeX I(s(x),ar(x))) = /\kEK I(s,ay) .

Finally, suppose that is an erosion in the second argument. It

(80)

=N( A I(s(y =), N(a(y))) = N(I(s, N(a))) - (83)

yeX

Proof of Theorem 8

Direct verification reveals tham—1! is given by Equation 39. The
proofs of Partl and 3 follow immediately from the fact thap and
¢~ 1 are isomorphisms. The proof of Paradditionally uses the com-
mutativity and associativity af-norms and-norms onlL* to infer the
commutativity and associativity of the corresponding apens onlL!
and vice-versa.

suffices to prove thafncy, represents an erosion in the second argu-Proof of Theorem 9

ment to finish the proof of the theorem. Note thiét, A, ., ar) =
Nrex I(s,ax) forall K and for alls, a;, € L.

Lets,a, € Fi(X) be arbitrary. We conclude the proof of the
theorem as follows

Inecs, \ a) = A\ 160, ( A\ 1))

keK xeX keK
= A Isx), A arx) = A (A I(s(x),ax(x)))
xeX keK xeX kEK
= N\ (A I6x),ar(x) = J\ Incu(s,ar). (81)
ke K xeX keK

Proof of Theorem 6

The proof is similar to the one of Theorem 5.

Proof of Theorem 7

The first part of Theorem 7 represents a generalization abpgsition
that appeared in [24]. We proceed by proving the second patteo
theorem. First note that the following statements are edgt:

&L and Ay, are dual with respect t;

&L(.,s)andAL(.,s) are dual with respect & for all s € F,(X);
AL(.,8) = &L(,s)V forall s € Fi(X);

Ap(a,8) = N(E(N(a),s) forall s,a € Fi(X);

The proof of Theorem 9 resembles the proof of Theorem 8.

Proof of Theorem 10

First note that Definition 2 refers to conjunctions, disjtioes, and im-
plications. Therefore, each of the intuitionistic fuzzynoectivesr*

andg* is either an intuitionistic fuzzy conjunction, disjunaticor im-
plication.

Let us consider a pair of intuitionistic fuzzy connectivesisisting
of an implicationZ* onIL* and a conjunctio®* onL* such thaC* is
the dual ofZ* with respect to some negatigvi* onL*. Consequently,
we haveC*(w,u) = N*(Z*(w,N*(u))) for all w,u € L* which
implies

(84)
(85)

C(x,y) = ¢~ 1 (C"(¢(x),6()))
= ¢~ W (T (9(x), N (6())))) , Vx,y € LT .

ReplacingZ* by M~1(Z) andN* by P~1(N) leads to the de-
sired equalitie€ (x,y) = N(Z(x,N(y))) for all x,y € LI. The
proof of the converse direction of the theorem concernireg dtate-
ment “if C andZ are dual with respect t&/ thenC* andZ* are dual
with respect toV*" is similar.

Finally, similar arguments can be applied to pairs of inbmistic
fuzzy connectives consisting of a conjunction and a digjoncor an
implication and a disjunction.
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Proof of Theorem 11

The proof is left as an excercise to the reader.

Proof of Theorem 12

First, note that Theorem 12 can be applied in particular ¢ostecial
cases wher€ = C’ andI = I'. In these cases, we simpy writg,
instead ofC, C.or andZj instead otZI e

The suff|C|ency direction of both statements follows imnaeely
by considering intervals of length, i.e. intervals of the forniz, =],
which can be identified with elements [0f 1]. The necessity direction
follows by applying the commutativity properties of theadibnsC

andC’ and the erosiong andI’ at the respective sides of the intervals.

Proof of Theorem 13

First note thatx # 0, ; if and only if z2 # 0. Consequently, for all
x # 0 we have thab < C(1, z2) which implies that?, (1, 1,x) >
0,r and thus Theorem 1 can be applied to form émplication of
the conjunctiorc?,. Let 7 denote thek-implication of the conjunction
C%,. In other wordsZ(z,y) is given as follows for alk,y € L%

I(z,y) = \[{x €L : Cl(z,x) <y} =

Vix el [c(

=\/{x €L : C(z1,21) < y1andC(z1,22) < ya
andC/(z2,z1)] < y2 }

=[\/{z1 €10,1] : C(21,21) < y1aNdC(22,71) < y2},
\/{z2 €[0,1] : C(21,22) < y2}]

= [I(z1,51) A I(22,92), I(21,92)] = I7(2,y) -

Thus the first statement of Theorem 13 holds true. Given #tuk &in
application of Theorem 12 shows thag andC?, are adjoint if and

z1,71),C(z1,22) V O(22,21)] < [y1,y2]}

(86)

only if I andC are adjoint. We omit the proof of the second part of the

theorem.

Proof of Theorem 14

As mentioned before, we hawe# 0, ; if and only if z2 # 0. Thus,
the following statements are equivalent for fuzzy conjior such
thatC(z,y) < C'(z,y) forall z,y € [0, 1].

Cg’c/(l]Lva) > O]LI Vx # O]LI (87
& [C(1,21),C'(1,22)] > 01 Vx # Oy s (88)
@C,(l,mg) >0Vrs #0. (89)

Therefore, the condition”(1,z) > 0 for all z # 0 implies that
we can construct th&-implication of C7, oo according to Theorem
1. Equation 68 follows directly from Theorem 1 of [49] and shue
obtain the first statement of Theorem 14.

Under the same conditions, an application of Theorem 1Xlead
the second statement of Theorem 14, lZ§ y» and itsR-conjunction
are adjoint if and only if the pairel, C) and([’ C’) form adjunctions.

The proof of the second part of the theorem is based on a simila

line of reasoning. Note that Theorems 13 and 14 generalzgoBition
5 of [25] and Theorem 6.6 of [28], respectively.

Proof of Theorem 15

On one hand, suppose th@atandI as well asC’ and I’ are dual with
respect tav. If Z denotes the dual aitc o with respect toV then

we have the following equalities for afl x € I.':

Z(2,x) = NN (CL o (2, NN (x)))

= Nn(CE,cr (2, [N(z2), N(z1)]))
= Nn([C(21, N(22)), C' (22, N(21))]) (90)
= [N(C'(22,N(z1)), N(C(21, N(22))))]
= [I'(22,21),I(21,22)] = 17, ;(z,%).
On the other hand, the assumption thggc, andZy, , are dual with

respect taNy leads to the following identities that are valid for all
z,x € LI

N (€, (5. Ny () = T 45, oy
& [N(C' (22, N(z1)), N(C(z1, N(z2))))]
= [I'(22,21), I(21,22)] . (92)

Therefore, we conclude that and I well asC’ and I’ are dual
with respect tav.

Proof of Theorem 16

On one hand, let us assume tliaand I are dual with respect ty. If
7 denotes theVy-dual implication ofcg then we obtain the following
identities for allx, y € LZ:

I(x,y) = Nn(CE (%, NN (¥)))

= Nn (C&(x, [N(y2), N(y1)]))

= Nn([C(21,N(y2)),C(z1, N(y1)) V C(22, N(y2))]) =

[N(C(z1,N(y1)) Vv C(z2,N(y2))), N(C(z1, N(y2)))] =

[N(C(21,N(y1))) AN(C(22,N(y2))), N(C(z1, N(y2)))]

= [I(z1,y1) A (22, y2), I(z1,y2)] = I7(x,y) . (93)

On the other hand, 7, andZ? are dual with respect t&/y then we
have the following equalities for a}t,y € L.!:

[N(C(z1,N(y1))) AN(C(z2, N(y2
= [I(z1,y1) A (z2,y2), [(z1,y2)] -

This fact implies thatC and I are dual with respect t&v. The
proof of the second part follows a similar line of reasoning.

), N(C(z1, N(y2)))]
(94)
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