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ABSTRACT

Today, the theoretical framework of mathematical morphology is phrased in terms of complete lattices and

operators de�ned on them. That means in particular that the choice of the underlying partial ordering is of

eminent importance, as it determines the class of morphological operators that one ends up with. The duality

principle for partially ordered sets, which says that the opposite of a partial ordering is also a partial ordering,

gives rise to the fact that all morphological operators occur in pairs, e.g., dilation and erosion, opening and

closing, etc. This phenomenon often prohibits the construction of tools that treat foreground and background

of signals in exactly the same way. In this paper we discuss an alternative framework for morphological image

processing that gives rise to image operators which are intrinsically self-dual. As one might expect, this

alternative framework is entirely based upon the de�nition of a new self-dual partial ordering.
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1. Introduction

The e�ect of morphological operators is triggered by the speci�cation of a partial ordering on
the underlying image space, or, to phrase it in image processing terms, the choice of what is
foreground and what is background. This choice which, most of the times, is not made explicit
and for that reason usually goes unnoticed, causes that morphological operators always come
in pairs [4, 10]. This phenomenon is best understood when it is rephrased in terms of the
Duality Principle for partially ordered sets: see x 2.4 below. Well-known examples are the
dilation-erosion and the opening-closing pair. As a result, most of the operators encountered
in mathematical morphology are not self-dual.
The classical way of de�ning self-duality is as follows. An operator  on a set of images

is called self-dual when  (f) = ( (f�))�, for every image f . Here f� is the dual (or com-
plementary) image obtained by interchanging the role of foreground and background (e.g.,
f� = �f). Self-duality is a desirable property in many applications, in particular in image
�ltering, where it amounts to an identical treatment of bright and dark objects. But unfortu-
nately, self-dual morphological operators are quite rare. Nevertheless, it is possible to design
self-dual operators in classical morphology; see e.g. Serra [10, chapter 8] and Heijmans [5].
The resulting class, however, is quite small and its applicability is limited.
This paper follows an entirely di�erent approach. By choosing a di�erent paradigm aban-

doning the a priori distinction between foreground and background, we are able to build a
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morphology which is intrinsically self-dual; refer to [6, 9] for some previous work by one of
us. But there is a price to be paid: the resulting approach is no longer compatible with the
complete lattice framework for morphology that has become widely accepted over the past
decade. Instead, we have to take recourse to a slightly more general framework, namely that
of complete inf-semilattices. This means in particular that the supremum does not always
exist for every collection of images. This has some major consequences, as we shall see later.
The key idea introduced in [6, 9] is to provide grey-scale functions with a partial ordering

� which is self-dual, that is, if f � g then f� � g� and vice versa. This property clearly
does not hold for the classical pointwise partial ordering where the negation f 7! f� reverses
the ordering. In this paper we outline two di�erent ways to provide such a partial ordering:
(i) an explicit construction, and (ii) a construction based on the concept of lattice ordered
groups.
This paper is mostly concerned with the theoretical foundations of self-dual morphology,

but some �rst results in the area of noise removal are given. In [9] one of us has outlined
some other potential applications in the area of motion detection and innovation extraction.
We conclude this introduction with an overview of the paper. In Section 2 we discuss the

theory of adjunctions on posets and complete lattices. In Section 3 we introduce the notion
of a complete inf-semilattice or cisl. Special attention will be given to so-called reference

semilattices. Subsequently, in Section 4 we characterise erosions and other operators, which
are translation invariant. Another, closely related, approach towards the construction of self-
dual morphological operators is based on the theoretical notion of a lattice ordered group.
This approach is discussed in Section 5. In a recent paper [7], Mehnert and Jackway, have
presented a di�erent approach towards the construction of self-dual morphological operators.
We will briey outline their approach in Section 6 and indicate the relation with the approach
presented here. We end with some conclusions in Section 7.

2. Adjunctions on Posets

The theory of adjunctions, as outlined in x 2.3 is well-established. It is also possible, however,
to obtain similar results in the much more general context of a poset, as will be explained
in x 2.2. In x 2.4 we will formalise the concepts of a negation and discuss the notion of
duality in the context of mathematical morphology. We start with a short exposition on
poset operators.

2.1 Operators on posets

Consider two posets (partially ordered sets) L and M with partial orderings �L and �M,
respectively. If no confusion about the partial orderings seems possible, we will delete the
subindices L andM indicating the underlying space.
An operator (i.e., mapping)  : L !M is called increasing (or isotone) if x �L y implies

 (x) �M  (y). It is called decreasing if x �L y implies  (y) �M  (x). If  is a bijective
operator between L and M such that both  and its inverse  �1 are increasing, then  is
called an isomorphism (automorphism if L =M). A bijective operator � for which both � and
its inverse ��1 are decreasing is called a dual isomorphism (respectively, dual automorphism

if L = M). An automorphism � on L with � 6= idL and �2 = idL, where idL denotes the
identity operator on L, is called a �-negation. A dual automorphism with �2 = idL is called
an involution or �-negation. Thus, the di�erence between a �-negation and a �-negation is
that the �rst operator is increasing whereas the second is decreasing. In many cases (e.g. if
L is a chain) there do not exist �-negations on L. Let IR be endowed with the usual partial
ordering, then the mapping � : IR! IR given by �(t) = �t is a �-negation.
In the sequel, the following notation will be used. If � is an �-negation on L, then we

denote �(x) by x�, for x 2 L, when no confusion is possible as to which �-negation is meant.
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Similarly, if � is a �-negation we denote �(x) by x�. If both L andM possess a �-negation
and  is an operator between L andM, then the �-negative of  is de�ned as the operator
between L andM given by

 �(x) = ( (x�))�; x 2 L: (2.1)

Similarly, if L andM possess a �-negation, then the �-negative of  is the operator between
L andM given by

 �(x) = ( (x�))�; x 2 L: (2.2)

When using the notation  �, resp  �, it is tacitly assumed that there do exist �-negations,
resp. �-negations, on the underlying sets L andM. It is easy to verify that both  � and  �

are increasing i�  is increasing. Furthermore,

( �)� =  and ( �)� =  ;

for every operator  : L !M.
If x 7! x� is a �-negation on L and  is an operator between L and M, then  is called
�-self-dual if

 =  �:

The concept of a �-self-dual operator is de�ned analogously. The range of an operator  ,
denoted by ran( ), is de�ned as ran( ) = f (x) j x 2 Lg.

2.2 Adjunctions on posets

2.1. De�nition. Assume that L and M are posets and that " : L ! M and � : M ! L
are operators. The pair ("; �) is called an adjunction between L andM if

�(y) �L x () y �M "(x); x 2 L; y 2M:

If L =M, then ("; �) is called an adjunction on L.

We list some basic properties. The proofs are rather straightforward (see also [4, Chapter 3])
and therefore omitted.

2.2. Proposition. If ("; �) is an adjunction then both " and � are increasing. Furthermore

�" � idL and "� � idM

"�" = " and �"� = �

2.3. Proposition. If  : L !M is an isomorphism, then ( ; �1) is an adjunction.

2.4. Proposition. If ("1; �1) is an adjunction between L andM and ("2; �2) is an adjunction

between M and N , then ("2"1; �1�2) is an adjunction between L and N .

2.5. Proposition. Assume that ("; �) is an adjunction between the posets L and M.

(a) Suppose that L;M both have a �-negation, then ("�; ��) is an adjunction between L and

M.

(b) Suppose that L;M both have a �-negation, then (��; "�) is an adjunction between M
and L.

The next result states that the pairing between the operators " and � in an adjunction is
unique.



4

2.6. Proposition. Let " be an operator from L intoM, letM1;M2 �M, and assume that
ran(") �M1 \M2. Let �i be an operator from Mi into L such that ("; �i) is an adjunction

between L and Mi, for i = 1; 2. Then �1(y) = �2(y) for y 2M1 \M2.

Proof. Assume that y 2 M1 \M2, then

�1(y) � x () y � "(x) () �2(y) � x ;

for every x 2 L. Choosing x = �1(y) at the left yields �2(y) � �1(y). Similarly, choosing x = �2(y) at

the right gives �1(y) � �2(y). Thus we arrive at our conclusion.

We point out that the Duality Principle, which says that L provided with the relation x �0 y
i� y � x is a poset as well, implies an analogue of Proposition 2.6 concerning the uniqueness
of the erosion that forms an adjunction with a given dilation.
In general, a subset of the poset L does not have a supremum (least upper bound) nor in�-

mum (greatest lower bound) in general. In this respect, the following results are remarkable.

2.7. Proposition. If ("; �) is an adjunction between L and M then fx 2 L j y � "(x)g has
in�mum �(y), for every y 2 M. Dually, fy 2 M j �(y) � xg has supremum "(x), for every

x 2 L.

Proof. First, since �(y) � x if y � "(x), we get that �(y) is a lower bound of fx 2 L j y � "(x)g. Now

suppose that a is a lower bound of this set, then in particular, a � �(y) since y � "�(y). This proves

the result.

2.8. Proposition. Assume that ("; �) is an adjunction between L and M.

(a) Suppose that the family fxi j i 2 Ig � L has in�mum a, then f"(xi) j i 2 Ig has

in�mum "(a) in M.

(b) Suppose that the family fyi j i 2 Ig � M has supremum b, then f�(yi) j i 2 Ig has

supremum �(b) in L.

Proof. We prove (a), then (b) follows by duality. If fxi j i 2 Ig has in�mum a, then by the increas-

ingness of the operator ", "(a) � "(xi) for i 2 I . Now b is a lower bound of f"(xi) j i 2 Ig if b � "(xi),

that is �(b) � xi for i 2 I . But then �(b) � a, hence b � "(a). We conclude that "(a) is the in�mum

of f"(xi) j i 2 Ig.

2.9. De�nition. (Erosions and dilations on posets) An operator " between the posets
L andM is called an erosion if for all families fxig � L for which the in�mum

V
xi exists,

it is true that
V
"(xi) exists inM and

V
"(xi) = "(

V
xi). A dilation � is de�ned analogously

with the in�mum replaced by supremum.

It is easy to see that dilations and erosions are increasing operators. Furthermore, Proposi-
tion 2.8 yields the following result.

2.10. Proposition. If ("; �) is an adjunction between L andM, then " is an erosion and �
a dilation.

Given an erosion, we can construct a dilation such that both operators form an adjunction.

2.11. Proposition. Let " be an erosion between the posets L andM. De�neM["] �M as

M["] = fy 2M j the set fx 2 L j y � "(x)g has in�mum in Lg; (2.3)

and � :M["]! L as

�(y) =
^
fx 2 L j y � "(x)g: (2.4)

Then ("; �) is an adjunction between L and M["].
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Proof. To prove that ("; �) is an adjunction between L andM["], we must demonstrate that �(y) � x

i� y � "(x) for x 2 L and y 2 M["]. First assume that M["] is nonempty, that y 2 M["], and that
�(y) � x, that is

V
fx0 2 L j y � "(x0)g � x. Since " is an erosion, we �nd

"�(y) =
^
f"(x0) j y � "(x0)g � "(x) :

It follows immediately from this expression that y � "�(y), hence y � "(x). On the other hand,

y � "(x) in combination with (2.4) yields that �(y) � x.

The dilation given by (2.4) will sometimes be denoted by �(") to emphasise the dependence
on ". The setM["] de�ned in (2.3) can be empty as the following example shows.

2.12. Example. Let L = M be the integers with partial ordering � de�ned by m � n if
m � n andm+n even. Hence 2 � 6 and �3 � 7 but 1 6� 2. Now the mapping "(x) = 2x is an
erosion. The set fx 2 L j y � "(x)g is empty if y is odd, and this set equals f12y;

1
2y+1; : : : g

if y is even. In both cases no in�mum exists.

2.3 Adjunctions on Complete Lattices

The theory of adjunctions on complete lattices has played an important role in mathematical
morphology over the past ten years or so [4,11]. In this section we will briey recall some of
the major results, in particular those that are not generally valid in the poset framework.
First of all, it is obvious that the de�nition of erosion and dilation given in De�nition 2.9

can be simpli�ed as follows: the operator " between the complete lattices L and M is an
erosion if

"(
^
i2I

xi) =
^
i2I

"(xi);

for every family fxi j i 2 Ig in L. Note that "(>) = > by this de�nition. Here > denotes the
largest element of L; similarly, ? denotes the smallest element of L. To see this, one has to
choose the empty family and use that the in�mum of the empty set is >. A similar de�nition
holds for dilation.

2.13. Proposition. (a) To every erosion " between the complete lattices L and M there

corresponds a unique dilation � :M! L given by

�(y) =
^
fx 2 L j y � "(x)g; y 2M; (2.5)

such that ("; �) is an adjunction.

(b) To every dilation � between the complete lattices M and L there corresponds a unique

erosion " : L !M given by

"(x) =
_
fy 2M j �(y) � xg; x 2 L; (2.6)

such that ("; �) is an adjunction.

Note that the setM["] introduced in Proposition 2.11 equalsM in this case.
There is a great deal of literature where it is explained that the theory of adjunctions

on complete lattices provides the appropriate framework for various di�erent approaches in
mathematical morphology. The best known examples are binary and grey-scale morphology,
respectively. We will briey discuss both cases below.
Binary (i.e., black-and-white) images can be modeled mathematically by the complete

Boolean lattice L = P(E) comprising all subsets of an underlying universal set E, usually IR
2

or Z2 or a �nite subset of one of these sets. A binary morphological operator is then nothing
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but an operator on P(E). The complement operator, mapping a set X onto its complement
Xc, is a �-negation. The �-negative of an operator  is given by

 �(X) = ( (Xc))c ; X � E :

Grey-scale images can be modeled as elements of the power set T E, where T is the set of
grey-values and where E has the same interpretation as before. Note that we are back in the
binary case if T = f0; 1g. If T carries a partial ordering such that it has a complete lattice
structure, then T E endowed with the pointwise partial ordering also becomes a complete
lattice. In many practical cases, T is totally ordered (i.e., a chain). Note, however, that this
does not imply that T E is totally ordered. Typical choices for T are IR = IR [ f�1;+1g,
IR+ = [0;1], Z; Z+, and f0; 1; : : : ; Ng, whereN � 1 is an integer. Often, it is straightforward
to provide T with a �-negation, which can then be extended to T E by applying it pointwise.
A typical �-negation on IR (and also on Z) is given by t 7! �t. On IR+ we have a �-negation
t 7! 1=t (with 1=0 = 1 and 1=1 = 0) and on f0; 1; : : : ; Ng we have t 7! N � t. It is,
however, easy to show that there exists no �-negation on Z+.

2.4 Morphology, Operator Types, and Self-Duality

Duality plays an important role in mathematical morphology where it manifests itself in
various ways. Because of the di�erent appearances it has also given rise to confusion. To
avoid such confusion, we will make a distinction between \operators" and \operator types".
By the latter we refer to classes of operators on L which can be completely speci�ed in
terms of the underlying partial ordering and derived notions. For example, the operator type
called \opening" refers to operators  which are increasing, idempotent, and anti-extensive.
Furthermore, the operator type \erosion" has been speci�ed in De�nition 2.9. Thus we
distinguish between \erosion type" and \erosion", the latter always referring to a speci�c
instance of an operator of type erosion.
The Duality Principle, which plays an important role in mathematical morphology, can be

stated formally as follows.

2.14. Proposition. (Duality Principle) If (L;�) is a poset, then (L;�) is a poset, too,

called the dual poset. With every de�nition, property, etc., referring to (L;�) there corre-

sponds a dual one referring to (L;�).

In this formulation `�' denotes the opposite or dual partial ordering. A major consequence
of the Duality Principle is the pairwise occurrence of operator types: the dual of the \erosion
type" is the \dilation type", the dual of the \opening type" is the \closing type". However,
the Duality Principle is not constructive: given an erosion, for example, it does not say that
there exists a dual dilation. Or, to phrase it di�erently, the Duality Principle does not act
on the operator level. Moreover, given a poset, the Duality Principle does not imply that
two dual operator types play a symmetric role. An important illustration of this fact follows
later when we discuss erosions and dilations on an inf-semilattice. As we shall see, dilations
and erosions play a very asymmetric role in that case.
A second type of duality is given by negations. In fact, the existence of a �-negation does

provide a constructive tool for transforming an operator into another one of dual type. For
example, if L is a poset with �-negation � and if  is an operator of type \opening", then
 � = � � is another operator which is of type \closing".

2.15. De�nition. A poset L for which there exists a �-negation � : L ! L is called a
�-negation poset or self-dual poset.

Up to this point, our considerations have not been referring to the physical world that
our model is supposed to describe. What is missing is the observation that the �-negation
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that is being used, should map an image onto another image that may be considered as its
physical negative. We don't want to go into this matter very deeply here, as we believe that
most readers will have some intuition for the meaning of the \physical negative" of an image
(bright parts of the original image corresponding to dark parts of its negative and vice versa).
We have now reached the point that we are able to explain the phrase \self-dual morphol-

ogy" in the title of our paper. If the operator � that maps an image x 2 L to its physical
negative x� = �(x) is a �-negation, then an erosion " on L will not be self-dual in the sense
that

"(�(x)) = �("(x)); (2.7)

because the operator "� = �"� is of type \dilation". 1 Note however, that there may exist
self-dual operators in this case; refer to [5] for construction methods of such operators
If, on the other hand, the physical negation operator � is a �-negation, then "� = �"� is an

erosion i� " is one, and in this case self-duality of " is within reach; see Section 4 for speci�c
examples. In the complete inf-semilattice framework discussed later, erosions and dilations
(and also openings and closings) play a completely di�erent role. In view of the fact that
the in�mum, but not the supremum, of any subcollection of elements exists, this is not very
surprising.

3. Complete Inf-Semilattices

This section provides a comprehensive account of complete inf-semilattices, or cisl's as they
will often be called. We start with a de�nition and some simple properties in x 3.1. In x 3.2 we
discuss reference cisl's, and in x 3.3 we examine adjunctions on cisl's. In x 3.4 we investigate
adjunctions with given invariance properties, e.g., invariance under translations.

3.1 De�nitions and examples

An important instance of a poset which, in general, does not allow a �-negation is the inf-
semilattice that will be introduced now.

3.1. De�nition. A poset L is called an inf-semilattice if for every two elements x; y 2 L
their in�mum xf y exists. It is called a complete inf-semilattice, or briey, cisl if every non-
empty subset K of L has an in�mum (greatest lower bound)fK 2 L. The least element of
a cisl is denoted by ?, i.e. ? =

V
L. 2

In general, a cisl L does not have a greatest element. If it does (in which case it will be
denoted by >) then L is a complete lattice. For, in this case, every family fxi j i 2 Ig in L
has at least one upper bound, namely >. The in�mum of the set of all upper bounds de�nes
a supremum of fxig; see also [1, 4].
From now on a partial ordering on a complete inf-semilattice will be denoted by �. It

is easy to see that a (complete) inf-semilattice L which possesses a �-negation x 7! x� is
actually a (complete) lattice. Namely, the supremum of x; y is given by

xg y = (x�f y�)�:

Two simple examples of an inf-semilattice are represented by the Hasse diagrams in Fig. 1. In
the diagram at the left we have w � t; u and x � v; w, and by transitivity also x � t; u. Note
for example that tf v = x. The inf-semilattice at the right has �ve �-negations, namely:

1 Some cautionary remark is in order here: there do exist operators  which are at the same time erosion

and dilation and which do satisfy  � =  with respect to some �-negation.
2 Throughout this paper we denote the partial ordering on a cisl by �, its in�mum by f and its supremum

by g.
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t u v

w

x

t u v

yx

z

w

Figure 1: Two Hasse diagrams representing a cisl.

(1) t ! u (i.e., only t and u are interchanged);

(2) v  ! w;

(3) t ! u, v  ! w;

(4) t ! v, u ! w, x ! y;

(5) t ! w, u ! v, x ! y.

The inf-semilattice at the left of Fig. 1 has only one �-negation, namely the operator that
interchanges t and u and leaves all other elements unaltered.

The next example of a cisl will play a prominent role in the remainder of this paper. De�ne
the partial ordering � on IR as follows:

s � t if 0 � s � t or t � s � 0: (3.1)

Thus IR can be considered as the concatenation of two chains (IR�;�) and (IR+;�) intersecting
at the origin, which is the least element of the poset thus de�ned. We denote IR provided

0

IR    - IR    +

Figure 2: The cisl IR0 is a concatenation of two chains. The arrows point in the direction of

smaller elements.

with this partial ordering by IR0. There exists one �-negation on IR0, namely the operator
t 7! �t.
It s not di�cult to understand how the previous cisl-ordering can be extended to the

complex plane C. Consider C as an (in�nite) union of chains C� = frei� j r � 0g ordered by
the magnitude of the modulus. Thus, given two elements w; z 2 C, we have

w � z if argw = arg z and jwj � jzj : (3.2)

Here arg z denotes the argument of z. Evidently, the mappings z 7! �z and z 7! ei�z (where
� 2 IR) are �-negations.
One �nal example of a cisl that we want to mention here is the family of all �nite subsets

of an in�nite set E provided with the set inclusion as partial ordering.
We state some basic results concerning cisl's. The proof of the �rst result is straightforward.
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3.2. Proposition. Let E be a nonempty set and assume that (Tp;�p) is a cisl, for every
p 2 E. Then the set L comprising all mappings x : E !

S
p2E Tp with x(p) 2 Tp ordered by

x � y if 8 p 2 E : x(p) �p y(p);

de�nes a cisl.

An important special case is obtained if (Tp;�p) is the same for all p, in which case L = T E

is called the power cisl. Observe that, in the latter case, every �-negation �T on T easily
extends to a (pointwise) �-negation �L on L given by �L(x)(p) = �T (x(p)).
As an example, assume that E = IR and T = IR0. In Fig. 3 we illustrate the cisl ordering on

T E and the corresponding in�mum. The next result, the proof of which is straightforward,

x

y

0

x

y

0

Figure 3: Left: x � y in the cisl L of functions from IR to IR0. Right: the in�mum of two
signals x; y 2 L (fat grey line).

says that a bijection between a cisl L and another setM induces a cisl-structure onM.

3.3. Proposition. Assume that (L;�) is a cisl, that M is some nonempty set, and that

� : L !M is a bijection. De�ne the relation �� on M�M by

y1 �� y2 () ��1(y1) � �
�1(y2):

Then (M;��) is a cisl with in�mum given by

f
�
yi = �(f ��1(yi)):

If (L;�) and (M;�) are cisl's, then a bijective mapping � : L ! M is called an cisl-

isomorphism if
�(fxi) =f �(xi)

for every collection fxig � L.

3.2 Reference cisl's

A class of cisl's that is important for our purposes, consists of the so-called reference cisl's.
Before giving a formal de�nition we recall the concept of `in�nite distributivity' on a complete
lattice. Given a complete lattice (L;�), we say that L satis�es the in�nite distributive laws
if

y ^
_
i2I

xi =
_
i2I

(y ^ xi) (3.3)

y _
^
i2I

xi =
^
i2I

(y _ xi) (3.4)
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for an arbitrary family fxi j i 2 Ig � L and y 2 L. We call (3.3) and (3.4) the in�nite
supremum distributive law and the in�nite in�mum distributive law, respectively. It is evident
that every complete lattice in which these laws hold is distributive; the converse is not true,
however.

3.4. De�nition. Let (L;�) be a lattice. An element r 2 L is called reference element if for
every two elements x; y 2 L we have x ^ r = y ^ r and x _ r = y _ r if and only if x = y.

Obviously, the least and greatest element in a lattice, if they exist, are automatically
reference elements, but it is easy to �nd lattices which do not contain any other reference
elements. This is e.g. the case for the lattice represented by the following Hasse diagram: We

a b c

⊥

⊥

have a ^ c = b ^ c = ? and a _ c = b _ c = >, hence c is not a reference element. The same
is true for a and b.
Let L be a lattice and r 2 L a �xed element. De�ne the binary relation �r on L� L by

x �r y if

(
r ^ y � r ^ x

r _ y � r _ x :

If we choose for r the least element of L (presumed that it exists), then �r coincides with the
partial ordering �. If, on the other hand, we choose for r the greatest element of L (again,
supposed that it exists), then �r is the dual ordering � on L, also sometimes denoted by �0.

3.5. Proposition. Let L be a complete lattice for which the in�nite distributive laws hold.

If r is a reference element of L, then (L;�r) is a cisl with least element r and with in�mum

given by

f
r
xi = (r ^

_
i2I

xi) _
^
i2I

xi = (r _
^
i2I

xi) ^
_
i2I

xi : (3.5)

Proof. The second equality in (3.5) is a straightforward consequence of the distributivity of L. We
show that �r de�nes a partial ordering on L. It is evident that x �r x for x 2 L. Assume that x �r y

and y �r x. We get that x ^ r = y ^ r and x _ r = y _ r. From the fact that r is a reference element
we conclude that x = y. The transitivity of �r (i.e. x �r y and y �r z implies x �r z) is trivial and
we conclude that (L;�r) is a poset.

It remains to be shown that the expressions in (3.5) de�ne the in�mum of a family xi 2 L; i 2 I .
Let us denote the element de�ned by (3.5) by a. We must show that

(i) a �r xi for i 2 I ;

(ii) a0 �r a for every a0 with property (i).

Using the in�nite distributivity laws we get

r ^ a = r ^
_

i2I

xi =
_

i2I

(r ^ xi) � r ^ xi ; i 2 I

r _ a = r _
^

i2I

xi =
^

i2I

(r _ xi) � r _ xi ; i 2 I :
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But this yields that a �r xi, hence (i) is proved. Now if a0 �r xi for i 2 I , then a0 ^ r � xi ^ r, hence

a0 ^ r �
_

i2I

(xi ^ r) = r ^
_

i2I

xi ;

where we have used the in�nite supremum distributivity law. This yields a0 ^ r � a^ r. Similarly, we

deduce that a0 _ r � a _ r, and we conclude that a0 �r a, which was to be shown. Finally, it is easy

to see that r is the least element of (L;�r).

We mention some special cases of lattices L where the in�nite distributive laws hold and
every element is a reference element.

3.6. Proposition. For every complete chain, the in�nite distributive laws hold, and every

element is a reference element.

The proof of this result is straightforward and therefore omitted. Thus, the conclusions of
Proposition 3.5 are valid if L is a complete chain. In fact, it is easy to see that, for r 2 L,
the cisl (L;�r) is a concatenation of two chains, namely (( ; r];�) and ([r;!);�), where
( ; r] = fx 2 L j x � rg and [r;!) = fx 2 L j x � rg. Note that IR0 is an example of a
cisl that possesses this structure, apart from the fact that the least and greatest element �1
and +1 are not included.
Every complete Boolean lattice satis�es the in�nite distributive laws. Furthermore, every

element x 2 L is a reference element. Thus, Proposition 3.5 yields that (L;�r) is a cisl for
every r 2 L. Actually, we can prove a stronger result in this case. Recall that we denote the
complement of an element x of a Boolean lattice by xc.

3.7. Proposition. If L is a complete Boolean lattice, then

x �r y i� y �rc x; r; x; y 2 L :

In particular, (L;�r) is a complete lattice with least and greatest element r and rc, respec-
tively, with in�mum given by (3.5) and supremum given by

g
r
xi = (rc ^

_
i2I

xi) _
^
i2I

xi (3.6)

for fxi j i 2 Ig � L.

Proof. It su�ces to prove the �rst equivalence relation as the other results are easy consequences of
this fact. Now x �r y means

x ^ r � y ^ r and x _ r � y _ r :

In the �rst equality we take at both sides the supremum with rc, and in the second equality we take
at both sides the in�mum with rc. Thus we get

(x ^ r) _ rc � (y ^ r) _ rc and (x _ r) ^ rc � (y _ r) ^ rc ;

which, by using distributivity, can be rewritten as

x _ rc � y _ rc and x ^ rc � y ^ rc :

But this means y �rc x, as we wanted to show.

Later, in Section 5, we will discuss another family of lattices, the so-called lattice-ordered

groups, for which the assumptions in Proposition 3.5 are valid.
We conclude this section with an example. Let E be a nonempty set and let T = Z or

IR with the usual ordering. Consider the complete lattice (T E;�), where � denotes the
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pointwise ordering of functions. It is easy to show that this complete lattice satis�es the
in�nite distributive laws and that each of its elements is a reference element. Thus, following
Proposition 3.5, we conclude that (T E ;�r) is a cisl for every reference function r 2 T E . We
will denote this cisl by Fr. The mapping x 7! x� on Fr given by

x�(p) = 2r(p)� x(p) (3.7)

de�nes a �-negation. Observe that Fr can be regarded as a special case of Proposition 3.2,
where Tp = T for all p 2 E and �p on T is the partial ordering �r(p). An illustration is
given in Fig. 4. The operator �r given by �r(x) = x � r de�nes a cisl-isomorphism between

x

y

r
x

y

r

Figure 4: Left: x � y in the cisl Fr. Right: the in�mum (in grey) of two signals x; y 2 Fr.

the cisl's Fr and F0, and more generally, between Fr+s and Fs. This leads to the following
intertwining diagram for operators on Fr and operators on F0.

Fr
 
�! Fr

x 7!x�r

??y x??x 7!x+r
F0

 0
�! F0

Intertwining diagram:  (x) =  0(x� r) + r.

The inverse ��1r is given by ��1r (x) = ��r(x) = x + r, and it is a cisl-isomorphism between
F0 and Fr, and more generally, between Fs and Fs+r. The operators in the diagram above
are related by

 = ��1r  0�r :

It is easy to verify that  is increasing on Fr i�  0 is increasing on F0. Later we will use this
intertwining diagram to de�ne erosions on Fr.

3.3 Adjunctions on cisl's

In Section 2 we have de�ned erosions, dilations and adjunctions on general posets. As we
shall see below, the various expressions become simpler in the case of cisl's. First of all, we
observe that an operator " : L !M, where both L andM are cisl's, is an erosion if

"(f
i2I

xi) =f
i2I

"(xi);

for every nonempty collection fxig � L. The setM["] de�ned in (2.3) is now given by

M["] = fy 2M j 9x 2 L : y � "(x)g ;

and the dilation � = �(") is the same as in (2.4), i.e.,

�(y) =ffx 2 L j y � "(x)g; y 2M["] :
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Note that the in�mum exists since the set over which the in�mum is taken is nonempty. It
is evident that ? 2M["] and that �(?) = ?.
The following proposition is concerned with composition of adjunctions.

3.8. Proposition. Let L;M be cisl's and N a poset. Assume that "1 : L ! M and "2 :
M!N are erosions, and that " = "2"1. Then " is an erosion from L into N and

(i) N ["] � N ["2];

(ii) �("2) maps N ["] into M["1];

(iii) �("1)�("2) = �(") on N ["].

Proof. We write �i = �("i) for i = 1; 2 and � = �(").
(i) z 2 N ["] means that z � "2"1(x) for some x 2 L. But this implies z � "2("1(x)), and therefore

z 2 N ["2].
(ii) We show that �2(z) 2 M["1] for z 2 N ["]. Now z 2 N ["] means z � "2"1(x) for some x 2 L.

Furthermore,
�2(z) =ffy 2M j z � "2(y)g;

and since "1(x) is an element of the set at the right hand-side we derive that �2(z) � "1(x), which
yields that �2(z) 2 M["1].

(iii) For x 2 L and z 2 N ["] we have

z � "2"1(x) () �2(z) � "1(x) [since z 2 N ["1] by (i)]

() �1�2(z) � x [since �2(z) 2M["1] by (ii)]

where we have respectively used that ("2; �2) forms an adjunction between M and N ["2], and that
("1; �1) is an adjunction between L and M["1]. On the other hand,

z � "2"1(x) = "(x) () �(z) � x :

This yields that � = �1�2 on N ["].

We now give a simple example.

3.9. Example. Let L =M = N = [�3; 3] and de�ne "1 = "2 as in Fig. 5 below. We have
M ["1] = [�2; 2] and N ["] = [�1; 1]. Note that the dilations �("1);�("2) cannot be extended
beyond [�2; 2].

The next result is concerned with the �-negative of an erosion; see (2.1) for the correspond-
ing de�nition.

3.10. Proposition. Assume that L a cisl, that M is a poset, and that both sets have a

�-negation. If " is an erosion between L and M then "� is an erosion between L and M too

and we have

M ["�] = (M["])� = fy� j y 2M["]g

�("�) = (�("))�

Proof. That "� is an erosion follows immediately from the fact that (fi2I xi)
� =fi2I xi

� for every
family fxi j i 2 Ig � L. Furthermore,

y � "(x) () y� � "(x)� = "�(x�) ;
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ε1
ε2

-3

-2

-1

0

1

2

3

Figure 5: Composition of two erosions.

which yields that M ["�] = (M["])�. Finally, for y 2M ["�] we have

�("�)(y) = f
i2I

fx 2 L j y � "�(x)g

= f
i2I

fx 2 L j y � ("(x�))�g

= f
i2I

fx 2 L j y� � "(x�)g

= f
i2I

fx� j x 2 L and y� � "(x)g

=
�
f
i2I

fx j x 2 L and y� � "(x)g
�
�

= (�(")(y�))� ;

which proves that �("�) = (�("))�.

The space of operators mapping a set L into a cislM can be regarded as a power cislML

(see Section 3). Thus the in�mum of an arbitrary collection of operators between L andM
exists. The following result is concerned with the in�mum of erosions.

3.11. Proposition. Let "i, i 2 I, be erosions between the poset L and the cislM, and de�ne

" =fi2I "i. Then " is an erosion between L and M with

M["] �
\
i2I

M ["i] (3.8)

�(") = g
i2I

�("i) onM["] : (3.9)

Proof. It is evident that " is an erosion and that (3.8) holds. To prove (3.9), observe that �(")(y) =

ffx 2 L j y � "(x)g. If y � "(x), then y � "i(x) for all i 2 I , and therefore

�(")(y) �ffx 2 L j y � "i(x)g = �("i)(y) :

Thus �(")(y) is an upper bound of f�("i)(y) j i 2 Ig. Assume that �("i)(y) � a for i 2 I . Then

y � "i(a) for i 2 I , which yields that y �fi2I "i(a) = "(a). But this means that �(")(y) � a, and

we conclude that �(")(y) is the least upper bound of f�("i)(y) j i 2 Ig. This proves (3.9).
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The inclusion in (3.8) may be a strict inclusion as we show by means of an example.

3.12. Example. Let L = f0; 1; 2; : : : g with the following partial ordering: n � m if n = 0
or if n +m is even and n � m. Thus L consists of two chains which are connected at the
origin: 0 � 1 � 3 � 5 � � � � and 0 � 2 � 4 � 6 � � � � . Consider the erosions "1 = id and
"2(n) = n� 1 (with "2(0) = 0) from L into L. Then L["1] = L["2] = L but ("1f "2)(n) = 0
for every n, thus in particular L["1f "2] = f0g. For the sake of completeness we mention
that �1 = id and that �2 is given by �2(n) = n+ 1 for n > 0 and �2(0) = 0.

3.4 Invariance properties

Consider the cisl T = IR0 with the partial ordering � as de�ned in the previous section.
De�ne the family of mappings �v; v 2 IR, on IR0 by

�v(t) =

8><
>:
t+ v if t; t+ v > 0

t� v if t; t� v < 0

0 otherwise.

(3.10)

Note that the erosion "1 in Fig. 5 coincides with ��1 (restricted to the interval [�3; 3]).
We can establish the following properties.

3.13. Proposition. The family �v satis�es the following properties:

(a) �0 = id;

(b) �w�v = �v+w if v; w � 0;

(c) ��w��v = ��v�w if v; w � 0;

(d) ��w�v = �v�w if v � w � 0;

(e) (�v)
� = �v for all v.

The proof of this result is not very di�cult and we leave it as an exercise for the reader.

3.14. Proposition. For every v � 0, the pair (��v; �v) de�nes an adjunction on IR0.

Proof. We must show that
�v(t) � s () t � ��v(s) ;

for s; t 2 IR0. Assume �rst that �v(t) � s. Without loss of generality we may assume that t � 0. If
t = 0 the result follows immediately. If t > 0 then t + v � s hence t � s � v = s + (�v) = ��v(s).
This yields that t � ��v(s).

Assume on the other hand that t � ��v(s). Without loss of generality we may assume that s � 0.

If 0 � s � v then ��v(s) = 0, hence t = 0 as well and the result follows. If s > v, then ��v(s) = s� v

and t � ��v(s) means that 0 � t � s� v, hence t+ v � s. This implies that �v(t) � s.

For v > 0 we write:

t _+ v = �v(t) and t _� v = ��v(t); for t 2 IR0: (3.11)

It is easy to see that all the previous result remain valid on Z0 (with also v 2 Z0).

In many practical cases our interest goes towards adjunctions with additional properties.
Here we consider adjunctions which are invariant under a given automorphism group. Let L
be a poset and T an Abelian automorphism group on L. An operator  on L is said to be
T -invariant if

 � = � ; � 2 T :

The proof of the following result is easy.
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3.15. Proposition. Assume that the erosion " : L ! L is T -invariant, then L["] is T -
invariant, i.e., y 2 L["] implies �(y) 2 L["] for every � 2 T , and �(") is T -invariant.

Below we consider a speci�c example in more detail. In the forthcoming sections we shall
be concerned with adjunctions on F0 and Fr that are translation invariant in a sense to be
speci�ed later.

3.16. Example. Consider the cisl C provided with the partial ordering de�ned in (3.2). The
mapping " : C! C given by

"(z) = E(jzj) � exp
�
iA(arg z)

�
(3.12)

de�nes an erosion if and only if E is an erosion on the cisl (IR+;�) with E(0) = 0 and
A : [0; 2�) ! [0; 2�) is an injective mapping. Let RA � [0; 2�) denote the range of A. It is
easy to verify that

C["] = fw 2 C j argw 2 RA and jwj 2 IR+[E] g:

Note that IR+[E] is of the form [0;W ] with W <1 or [0;W ) with W � 1.
The adjoint dilation � = �(") is given by

�(w) = D(jwj) � exp
�
iA�1(argw)

�
;

where D is the dilation on IR+[E] adjoint to erosion E. A simple example is given by
E(r) = cr, where c � 0, and A(') = ' + � (mod 2�). This corresponds to the erosion
"(z) = cei�z. The adjoint dilation is �(w) = c�1e�i�w if c > 0 and �(w) = 0 for all w if c = 0.
The erosion in (3.12) can be generalized to the cisl L = CS, where S = IR

d or Zd, as follows:

"(x)(s) = Es(jx(s)j) � exp
�
iAs(arg x(s))

�
(3.13)

where, for every s 2 S, Es and As satisfy the properties given above. Now consider the family
of operators M = f�q;a j q > 0; a 2 Sg on L given by

�q;a(x)(s) = qeiha ; six(s); s 2 S :

Here h� ; �i is the vector product on S � S. It is easy to see that every �q;a is a cisl-
automorphism on L and that

�q;a�r;b = �qr;a+b; q; r > 0; a; b 2 S ;

whence it follows that M is an Abelian automorphism group on L = CS . If " given by (3.13)
is required to be M -invariant, we �nd that for every s 2 S, the mappings Es and As satisfy

Es(qr) = qEs(r); q; r > 0 ;

As('+ ha ; si) = As(') + ha ; si; ' 2 [0; 2�); a 2 S:

Thus we get that Es and As are of the form

Es(r) = c(s)r; As(') = '+ �(s) ;

where c : S ! IR+ and � : S ! [0; 2�). Writing e(s) = c(s)ei�(s), we obtain that

"(x)(s) = e(s)x(s); s 2 S:

Before concluding this example, we point out the relation with linear �ltering. Taking the
Fourier transform f̂ of a signal f : IR! IR (integrable or square integrable), we end up in the
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cisl L (where S = IR). The cisl ordering on L thus induces a cisl ordering on the original space;
see e.g. Proposition 3.3. Furthermore, the Fourier transform maps translation invariance of
an operator on the original space onto invariance under modulations (the mappings �1;a)
and grey-scale invariance onto grey-scale invariance. The erosion "(x) = ex on the Fourier
transformed domain corresponds (via the inverse Fourier transform) to a linear convolution
on the original domain. These observations suggest that linear convolution operators can
be considered as erosions with respect to a very speci�c partial ordering on the underlying
space. We shall not pursue this matter further here.

4. Translation Invariance

In classical morphology, operators are often assumed to be translation invariant. In this
section, we examine the issue of translation invariant operators in th context of complete
inf-semilattices. It turns out that the problem becomes quite delicate if one works on general
reference cisl's.

4.1 Standard translations

Let T = IR0 or Z0 provided with the cisl ordering �. As before, we denote by Fr(E; T ) the
functions x : E ! T provided with cisl ordering �r; here r : E ! T is a given reference
function. When no confusion about E or T is possible, we write Fr.
The operators �v de�ned in (3.10) can be extended to the cisl F0 by pointwise application:

�v(x)(p) = �v(x(p)). Using the intertwining diagram in Section 3, these operators can also
be extended to Fr for any reference function r. The properties in Propositions 3.13 and 3.14
remain valid. An illustration is given in Fig. 6. De�ne the translation operator �h, h 2 E, on

x

ρv (x)

r

x

ρv (x)

r

Figure 6: Vertical translation for v > 0 and v < 0.

F0 as follows:
�h(x)(p) = x(p� h); x 2 F0; p 2 E:

The following properties are straightforward.

4.1. Proposition. The family �h; h 2 E; of operators on F0 has the following properties:

(a) every �h is a cisl-automorphism;

(b) �h�k = �h+k, for h; k 2 E;

(c) (�h)
� = �h, for h 2 E.

Furthermore, it is easy to verify the following commutation relation:

�h�v = �v�h; h 2 E; v 2 T : (4.1)
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In other words, the operators �v are T -invariant, T being the family of translations �h.
Let A be a subset of E and assume that eh is an erosion on T for every h 2 A. It is not

di�cult to see that the operator " : F0 ! F0 given by

" = f
h2A

eh�h ;

or alternatively

"(x)(p) = f
h2A

eh(x(p� h)) ; (4.2)

de�nes an erosion. The set F0["] comprises all functions y 2 F0 for which

y(p) � eh(x(p� h)); for all h 2 A; p 2 E;

or alternatively,
y(p+ h) 2 T [eh]; h 2 A; p 2 E:

Let dh be the dilation on T [eh] that forms an adjunction with eh, then

dh(y(p+ h)) � x(p); h 2 A; p 2 E :

We conclude that the supremum of dh(y(p+ h)) over h 2 A exists in this case, and

g
h2A

dh(y(p+ h)) � x(p); p 2 E :

The expression at the left is the dilation � = �(") adjoint to ":

�(y)(p) = g
h2A

dh(y(p+ h)) � x(p); p 2 E ; (4.3)

or alternatively,
� =g dh��h :

If we choose eh on T as (see (3.11))

eh(t) = t _� g(h) ;

where g(h) � 0 for h 2 A, then we �nd

"(x)(p) = f
h2A

�
x(p� h) _� g(h)

�
: (4.4)

The adjoint dilation is given by

�(y)(p) = g
h2A

�
y(p+ h) _+ g(h)

�
; (4.5)

presumed that y 2 F0["]. Besides being translation invariant, " and � have the following
invariance property:

"��v = ��v" and ��v = �v� ;

for every v > 0. Note that �v maps F0["] into F0["].

4.2. Remark. In the classical case where L comprises the functions from E to T = IR or Z
provided with the usual complete lattice ordering, it is true that every translation invariant
erosion " is of the form (4.2). In the cisl case discussed here this is no longer true. For
example, the operator " given by

"(x)(p) =

(
x(p); if x(p)x(p� 1) > 0 ;

0; otherwise ;

is a translation invariant erosion on F0 which is not of the form (4.2).
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An important subclass of erosions, as de�ned by (4.2), is obtained if one chooses for eh the
identity mapping, for every h in the structuring element A. Such erosions are given by

"(x)(p) = f
h2A

x(p� h) : (4.6)

In Fig. 7 we depict the erosion " and the correspond opening �" on F0 for the case where
A = f�a;�a + 1; : : : ;�1; 0; 1; : : : ; ag for a = 3. In Fig. 8 we show the same operators for

0

x

e(x)
de(x)

x

0

Figure 7: Erosion (left) and opening (right) of a signal in F0.

the cisl Fr; here we have used the intertwining construction given in Section 3. In this case
the expression for " is

"(x)(p) = r(p) + f
h2A

�
x(p� h)� r(p� h)

�
: (4.7)

In Fig. 9 we show the 2-dimensional erosion of a given input image with respect to a given

x

r

e(x)
de(x)

x

r

Figure 8: Erosion (left) and opening (right) of a signal x in Fr.

reference image. In Fig. 10 we show how to use the cisl opening for noise �ltering. Fig. 11,
which is given for the sake of curiosity, but also since it illustrates the mechanism behind the
cisl reference erosion, shows the transition from an input image to another reference image
by means of an iterative erosion.

4.2 Signed translations

In this section we introduce an alternative class of translations for discrete signals. The key
di�erence with the translations de�ned in the previous subsection is that the translations
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Figure 9: Erosion as de�ned by (4.7) of an input image (left) with respect to a given reference

image (second). The third image is the eroded image and the right-most image shows the

di�erence between the input and the output (with enhanced contrast).

Figure 10: The cisl reference opening obtained by composing " in (4.7) with its adjoint dilation
can be used to remove noise. From left to right: the input noisy image, the result after iterative

median �ltering, and the image obtained by applying the cisl reference opening to the input

image, with the median-�ltered image as reference image.

Figure 11: The two images that we start with are the input image x at the top left and the

reference image r at the bottom right. The sequence "n(x), where " is given by (4.7), converges
to r when n increases.

de�ned below do not change the sign of a function at a given point. Thus, if the function is
nonnegative at a given location, then it cannot become negative due to translation. In other
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words, the sign of the function is preserved. For that reason we call them signed translations.
Consider the cisl F0 of functions mapping Z into Z0 provided with the partial ordering �.

De�ne the operator " on F0 by

"(x)(n) =

8><
>:
x(n� 1) _ 0; if x(n) > 0

x(n� 1) ^ 0; if x(n) < 0

0; if x(n) = 0 .

At a given location n this operator describes a shift towards the right as long as x(n � 1)
and x(n) are both positive or both negative, i.e., x(n� 1)x(n) > 0. If x(n� 1)x(n) � 0, then
"(x)(n) = 0. Thus we can also write

"(x)(n) =

(
x(n� 1); if x(n� 1)x(n) > 0

0; if x(n� 1)x(n) � 0 :

Furthermore, we de�ne a second operator � : F0 ! F0 describing a leftward shift:

�(y)(n) =

(
y(n+ 1); if y(n+ 1) 6= 0

sign y(n); if y(n+ 1) = 0 :

Here sign t denotes the sign of t, which is de�ned to be 0 if t = 0. De�ne

F
(1)
0 = fx 2 F0 j x(n)x(n+ 1) � 0 for n 2 Zg :

4.3. Proposition. The operator " de�nes an erosion on F0 with

F0["] = F
(1)
0

and �(") = �.

Proof. First we show that ("; �) is an adjunction between F0 and F (1)
0 , that is �(y) � x i� y � "(x)

for x 2 F0 and y 2 F (1)
0 .

Assume that �(y) � x; we must show that y � "(x), i.e., that y(n) � "(x)(n) , for n 2 Z. If y(n) = 0
then this is obvious. We consider the case where y(n) > 0; evidently the case y(n) < 0 is treated
analogously. Using that �(y) � x at n�1 we get y(n) � x(n�1). Suppose x(n) = 0, then �(y)(n) = 0,
hence y(n) = 0, which contradicts our assumption that y(n) > 0. Suppose x(n) < 0, then �(y)(n) < 0.
Obviously, y(n + 1) 6= 0, for otherwise �(y)(n) = sign y(n) = 1. We get �(y)(n) = y(n + 1). From
�(y)(n) � x(n) we �nd that y(n + 1) � x(n) < 0. But then y(n)y(n + 1) < 0 which contradicts the

fact that y 2 F (1)
0 . We conclude that x(n) > 0. We have seen above that 0 < y(n) � x(n� 1), hence

"(x)(n) = x(n� 1), and indeed we have shown that y(n) � "(x)(n).
Assume that y � "(x); we must show that �(y) � x, i.e., that �(y)(n) � x(n) for n 2 Z. First

assume that x(n) = 0. Then "(x)(n) = "(x)(n + 1) = 0 and therefore y(n) = y(n + 1) = 0. This
yields that �(y)(n) = 0, and thus �(y)(n) � x(n) in this case. Thus it remains to consider the case
where x(n) > 0; the case x(n) < 0 is treated analogously. We distinguish two cases: y(n+1) = 0 and
y(n+ 1) > 0. (Again, the case y(n+ 1) < 0 is treated analogously to the case where y(n+ 1) > 0.)

(i) y(n + 1) = 0. Then �(y)(n) = sign y(n). If y(n) = 0 then �(y)(n) = 0 and the inequality
�(y)(n) � x(n) is trivially satis�ed. If y(n) > 0 then �(y)(n) = 1. Since "(x)(n) � y(n) > 0 we get
that x(n) > 0, hence �(y)(n) � x(n). If y(n) < 0 then �(y)(n) = �1 and from "(x)(n) � y(n) we get
that x(n) < 0, which then yields that �(y)(n) � x(n).

(ii) y(n + 1) > 0. Then �(y)(n) = y(n + 1) > 0. Since "(x)(n + 1) � y(n + 1) we conclude that
x(n+ 1) > 0 and x(n) � y(n+ 1) > 0, i.e., �(y)(n) � x(n).

Thus we have shown that ("; �) is an adjunction between F0 and F
(1)
0 . Thus we are left with the

task to show that
F0["] = F

(1)
0 :
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Suppose �rst that y 2 F
(1)
0 . Then y � "�(y) hence y 2 F0["]. On the other hand, let y 2 F0["]; we

must demonstrate that y(n)y(n + 1) � 0 for every n 2 Z. Assume that y(n) > 0 and y(n + 1) < 0.

Then "(x)(n) > 0, which requires that x(n�1) > 0 and x(n) > 0. But in this case also "(x)(n+1) � 0

which contradicts y(n+ 1) � "(x)(n+ 1). This concludes the proof.

The adjunction ("; �) forms the basis ingredient for a new class of translations. De�ne, for

every integer k � 1 the set F
(k)
0 � F0 by

F
(k)
0 = fx 2 F0 j x(n)x(n+ j) � 0 for n 2 Z and j = 1; 2; : : : ; kg :

One can easily show that

F
(k)
0 � F

(k�1)
0 ; for k � 1 ;

where F
(0)
0 = F0. Furthermore, " maps F

(k)
0 into F

(k+1)
0 and � maps F

(k+1)
0 into F

(k)
0 . In

fact, we have the following extension of the previous proposition.

4.4. Proposition. For every n � 0 and k � 1, the operator "k de�nes an erosion on F
(n)
0

with

F
(n)
0 ["k] = F

(n+k)
0

and �("k) = �k.

In the sequel we use the following notation:

�k = "k and � k = �k; k � 0 :

For k � 0 we de�ne �k and � k by using the erosion "0 governing translation to the left as
starting point:

"0(x)(n) =

8><
>:
x(n+ 1) _ 0; if x(n) > 0

x(n+ 1) ^ 0; if x(n) < 0

0; if x(n) = 0

It is evident that the corresponding set F0["0] equals F
(1)
0 and more generally, that F0["0

k]

equals F
(k)
0 .

In Fig. 12 we depict a signal x, its signed translate �k(x), and the inverse � k �k(x), which,
being a composition of an erosion and a dilation, is an opening. Note that the translation

0

x

translation of x

0

Figure 12: A signal x (thin line), it's signed translate �k(x) with k = 4 (left), and the opening

� k �k(x) (right).
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family �k does not have the same nice properties as the family �k introduced in the previous
section. In particular, it is not a group: we only have

�k�l = �k+l if kl � 0 :

If, however, k; l have opposite signs, then this relation fails to be true. In particular, it does
not hold that �k��k = id: signed translations are not invertible.
It is easy to verify that

�k�v = �v�k; k 2 Z; v 2 Z ;

(c.f. relation (4.1)). Furthermore, we can easily establish the following relationships:

�k�l = �l�k; k; l 2 Z

� k �l = �l�
 
k ; k; l 2 Z :

Finally, it is easy to see that

idf�1 = idf �1 ; (4.8)

and as we argue below, this relation has some important consequences.
Using the signed translation operators �k, we can de�ne a new family of erosions in the

following way: let A � Z be a �nite structuring element and de�ne K = maxfjkj j k 2 Ag.
Then

"A = f
k2A

�k (4.9)

de�nes an erosion that maps F0 into F
(K)
0 . The proof that the range of "A is contained in

F
(K)
0 is based on the observation that x 2 F

(k)
0 and y 2 F

(l)
0 implies xf y 2 F

(m)
0 , where

m = maxfk; lg. The dilation adjoint to "A is

�A = g
k2A

� k ; (4.10)

which is well-de�ned on F
(K)
0 . In Fig. 13 we compare the adjunction corresponding to the

signed translation and the adjunction deriving from the standard translation as discussed in
the previous section. We used a structuring element of the form A = f�a; ag. If A is of the
form [�a; a], both erosions yield the same output. This is a straightforward consequence of
the identity given in (4.8).
We can extend the signed translations to two dimensions by decomposition into a horizontal

and vertical component. Translation of a 2-dimensional signal over the vector (k; l) only yields
a positive (resp. negative) value at the point with coordinates (m;n) if and only if x(i; j) is
positive (resp. negative) at the entire rectangle [m� k;m]� [n� l; n].

5. Lattice Ordered Groups and Inf-Semilattices

There exists an alternative method to construct self-dual morphological operators. It is
based on a very simple idea: decompose a signal into its positive and negative part, process
both parts independently, and synthesise the resulting parts into a transformed signal. The
underlying mathematical concept, which enables the decomposition of a signal into a positive
and negative part, is that of a lattice-ordered group.
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0

x

e(x)

de(x)

x

0

e(x)

0

x

de(x)

x

0

Figure 13: Comparison between operators deriving from the standard translation (top row)

and the signed translation (bottom row). The �rst column shows the signal (thin line) and
its erosion (fat line), the second column the signal and its opening. In both cases we use

structuring element f�3; 3g.

5.1 Lattice ordered groups

An interesting construction method for cisl's uses so called lattice ordered groups. First we
will give a formal de�nition.

5.1. De�nition. A nonempty set L with an addition + and a partial ordering relation � is
called a lattice ordered group if

(i) (L;+) is a group;

(ii) (L;�) is a lattice;

(iii) the addition is isotone, i.e.,

x � y implies x+ a � y + a and a+ x � a+ y (5.1)

for a; x; y 2 L.

(iv) the addition + is distributive over the supremum and in�mum, i.e.,

(x ^ y) + a = (x+ a) ^ (y + a) and a+ (x ^ y) = (a+ x) ^ (a+ y) (5.2)

(x _ y) + a = (x+ a) _ (y + a) and a+ (x _ y) = (a+ x) _ (a+ y) (5.3)

for x; y; a 2 L.
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Some background on lattice ordered groups can be found in [1{3].
Denoting the inverse of an element x with respect to the group operation + by �x we have

x � y () �y � �x:

In fact, it follows that x 7! �x is a dual automorphism on the lattice (L;�). In particular,
we have

�(x ^ y) = �x _ �y and � (x _ y) = �x ^ �y : (5.4)

In [2] the following result has been proved; see also [1].

5.2. Proposition. If (L;+;�) is a partially ordered group such that (L;�) is an inf-semilattice,

then (L;+;�) is a lattice ordered group and, moreover, the lattice (L;�) is distributive.

Throughout the remainder of this section we assume that (L;+;�) is a lattice ordered
group. Let 0 be the unit element with respect to the group operation +. De�ne the cone L+

as
L+ = fx 2 L j x � 0g:

Elements in L+ are said to be positive. It is obvious that x; y 2 L+ implies that x+ y 2 L+.
Furthermore, L+\�L+ = f0g. De�ne, for an element x 2 L the elements x+; x� 2 L+ by 3 :

x+ = x _ 0 and x� = �(x ^ 0) : (5.5)

It is easy to see that

(�x)+ = x� and (�x)� = x+ : (5.6)

5.3. Proposition. For every x 2 L we have

x = x+ � x� : (5.7)

Proof. Let x 2 L, then

x+ � x� = (x _ 0) + (x ^ 0) = (x+ (x ^ 0)) _ (0 + (x ^ 0))

= (x+ (x ^ 0)) _ (x + (0 ^ �x)) = x+ ((x ^ 0) _ (0 ^ �x))

� x+ 0 = x ;

where we have used that (x ^ 0) _ (0 ^ �x) � 0. Hence x+ � x� � x. Substituting �x for x this

yields (�x)+ � (�x)� � �x. Using (5.6) we get x� � x+ � �x which implies x+ � x� � x, whence

the assertion follows.

We de�ne the absolute value of x 2 L by

jxj = x+ + x�: (5.8)

For the proof of the following result we refer to Birkho� [1]; see also [3, Chapter V].

5.4. Proposition. For x; y 2 L the following is true:

(a) jxj > 0 if x 6= 0;

(b) x+ ^ x� = 0;

3 Observe that our de�nition of x� is di�erent from the one that is often found in the literature, namely

x� = x ^ 0
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(c) jxj = x _ �x;

(d) jx� yj = (x _ y)� (x ^ y).

5.5. De�nition. Two positive elements x; y 2 L are said to be disjoint (or orthogonal) if
x ^ y = 0.

It is easy to see that

x; y are disjoint () x _ y = x+ y : (5.9)

Namely,

x ^ y = 0 () �x _ �y = 0 () 0 _ (x� y) = x () y _ x = x+ y:

In particular this means that x+y = y+x if x; y are disjoint. Property (b) in Proposition 5.4
above says that x+ and x� are disjoint, for every element x 2 L.
We make the following additional assumption on L.

5.6. Assumption. Every nonempty subset of L which possesses a lower bound has an in�-
mum in L.

If this assumption holds, it is automatically true that every nonempty subset which has an
upper bound has a supremum. Furthermore, the relations in (5.2)-(5.4) carry over to in�nite
in�ma and suprema. For example, the �rst relation in (5.2) generalizes to

(
^
i2I

xi) + a =
^
i2I

(xi + a) :

This means that fxi j i 2 Ig has an in�mum i� fxi + a j i 2 Ig has an in�mum and the
previous relation holds.

5.2 De�ning a new partial ordering

De�ne a binary relation � on L as follows:

x � y if x+ � y+ and x� � y� : (5.10)

The following important result holds.

5.7. Proposition. (L;�) is a cisl with the in�mum of a collection fxig given by

f
i2I

xi =
^
i2I

x+i �
^
i2I

x�i : (5.11)

This in�mum satis�es

(f
i2I

xi)
+ =

^
i2I

x+i and (f
i2I

xi)
� =

^
i2I

x�i : (5.12)

The least element of (L;�) is 0.

Proof. First we show that `�' de�nes a partial ordering on L. Reexivity and transitivity are evident.
We show that `�' is anti-symmetric, i.e., that x � y and y � x implies x = y. Obviously, x � y and
y � x yield that x+ = y+ and x� = y�. But then x = y. It is also clear that 0 � x for x 2 L.

Now consider a family fxig � L and de�ne a =
V

i2I
x+
i
and b =

V
i2I

x�
i
. Evidently, a; b 2 L+ and

a ^ b =
^

i2I

(x+
i
^ x�

i
) = 0 ;
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since x+
i
^ x�

i
= 0 for every i 2 I . Subtracting b at both sides and using the distributivity in (5.2) we

get that (a� b) ^ 0 = �b, that is

(a� b)� = b =
^

i2I

x�
i
;

hence (a� b)� � x�
i
for every i 2 I . Furthermore, from the disjointness of a and b and (5.9) we derive

that
a _ b = a+ b :

Subtracting b from both sides and using the distributivity in (5.3) we get

(a� b) _ 0 = a =
^

i2I

x+
i
;

hence (a� b)+ � x+
i
for i 2 I . We have shown that (a � b)� � x�

i
and (a� b)+ � x+

i
for i 2 I , and

therefore a � b � xi for i 2 I . This means that a � b is a lower bound of fxig with respect to `�'.

Suppose that c is another lower bound; we show that c � a� b. In fact, if c is a lower bound of fxig

then c+ �
V

i2I
x+
i
= (a � b)+. Analogously we get c� � (a � b)� and thus c � a � b. We conclude

that a � b is the greatest lower bound of fxig. The equalities in (5.12) follow from the arguments

above.

Note that

x � y ) jxj � jyj: (5.13)

The converse is not true in general, however.

5.8. Example. (a) Consider once again the set L = T E where T = IR or Z provided with
the standard ordering x � y if x(p) � y(p) for p 2 E, and the addition (x+y)(p) = x(p)+y(p).
It is evident that (L;+;�) is a lattice ordered group for which Assumption 5.6 holds. The
corresponding cisl (L;�) coincides with F0 in this case.

(b) We de�ne another addition +r, where r 2 L is a given element, by

(x+r y)(p) = x(p) + y(p)� r(p) :

Again, it is not di�cult to verify that (L;+r;�) is a lattice ordered group for which Assump-
tion 5.6 holds. The unit element of the group (L;+r) is r. The cisl (L;�r) that we obtain in
this case is the reference cisl Fr.

If  is an automorphism on (L;�) with  (0) = 0, then

 (x+) =  (x _ 0) =  (x) _  (0) =  (x) _ 0 =  (x)+ :

Analogously, we get that  (x�) =  (x)�, and the following result holds.

5.9. Proposition. If  is an automorphism on (L;�) with  (0) = 0, then  is also an

automorphism on (L;�).

But also �-negations on (L;�) yield automorphisms on (L;�), as the following result
shows.

5.10. Proposition. Every �-negation on (L;�) which maps 0 onto 0 de�nes an automor-

phism on (L;�).
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Proof. Let � be a �-negation on (L;�) with �(0) = 0. We must show that � de�nes an increasing
mapping on (L;�). Assume that x � y, that is, x+ � y+ and x� � y�. From the fact that � is a
�-negation on (L;�), we derive that

�(x)+ = �(x) _ 0 = �(x) _ �(0) = �(x ^ 0) = �(�x�) :

Similarly we derive that �(x)� = �(�x+). Thus

�(x)+ = �(�x�) � �(�y�) = �(y)+ ;

as well as
�(x)� = �(�x+) � �(�y+) = �(y)� ;

and we conclude that �(x) � �(y), which �nishes the proof.

This last result holds in particular for the �-negation �(x) = �x. A combination of the two
previous results leads to the following corollary.

5.11. Corollary. If  is an automorphism on (L;�) with  (0) = 0, then  and � de�ne

automorphisms on (L;�).

5.3 Operator constructions

In what follows we shall de�ne operators  on L starting from two operators  +;  � on L+.

5.12. De�nition. A pair  +;  � of operators on L+ is called disjointness-preserving if

x ^ y = 0 )  +(x) ^  �(y) = 0; x; y 2 L+:

The operator  + is called disjointness-preserving if the pair  +;  + is disjointness-preserving.

It is easy to see that the pair  +;  � is disjointness-preserving if both operators are anti-
extensive. The converse is not true, however.
Given two arbitrary operators  +;  � on L+, we de�ne the operator  on L by

 (x) =  +(x+)�  �(x�); x 2 L:

5.13. Proposition. Assume that  +;  � are disjointness-preserving and that  is of the

form given above.

(a) If  +;  � are increasing on (L+;�) then  is increasing on (L;�).

(b) If  + =  � then  is self-dual, i.e.,  (�x) = � (x) for x 2 L.

(c) If  +;  � are anti-extensive on (L+;�) then  is anti-extensive on (L;�).

(d) If  +;  � are idempotent then  is idempotent.

Proof. First we show that

[ (x)]+ =  +(x+) and [ (x)]� =  �(x�) (5.14)

for every x 2 L. Using the distributivity relation in (5.3) we get

[ (x)]+ = [ +(x+)�  �(x�)]+

= ( +(x+)�  �(x�)) _ 0

= ( +(x+) _  �(x�)) �  �(x�) :

The fact that  +(x+) and  �(x�) are disjoint in combination with (5.9) yields that this latter
expression reduces to

( +(x+) +  �(x�))�  �(x�) =  +(x+) :
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This proves the �rst relation in (5.14). The second one follows by an analogous argument.
(a) Now assume that x � y, then

[ (x)]+ =  +(x+) �  +(y+) = [ (y)]+

[ (x)]� =  �(x�) �  �(y�) = [ (y)]�

which yields that  (x) �  (y).
(b) Using that (�x)+ = x� and (�x)� = x+ we get

 (�x) =  +((�x)+)�  +((�x)�)

=  +(x�)�  +(x+)

= � (x) :

(c) For x 2 L we have ( (x))+ =  +(x+) � x+ and ( (x))� =  �(x�) � x� which yields that
 (x) � x.

(d) For x 2 L we have

 2(x) =  ( (x)) =  +(( (x))+)�  �(( (x))�)

= ( +)2(x+)� ( �)2(x�)

=  +(x+)�  �(x�) =  (x) ;

where we have used the identities in (5.14).

Combination of the results in (a); (c); (d) yields the following interesting fact.

5.14. Corollary. If  +;  � are openings on (L+;�), then  is an opening on (L;�). In

particular, if  + is an opening on (L+;�) then the operator  given by  (x) =  +(x+) �
 +(x�) is a self-dual opening on (L;�).

We now show how to construct adjunctions on (L;�) given an adjunction on L+.

5.15. Proposition. Let "+ be an erosion on (L+;�) which is disjointness-preserving, and

let " be the extension to L given by

"(x) = "+(x+)� "+(x�) ; x 2 L :

Then " de�nes an erosion on (L;�). For every y 2 L["] we have y+; y� 2 L+["+], and the
adjoint dilation � : L["]! L is given by

�(y) = �+(y+)� �+(y�) ;

where �+ : L+["+]! L+ is the adjoint dilation of "+.

Proof. First we show that y 2 L["] implies that y+; y� 2 L+["+]. Assume that y � "(x) for some
x 2 L, that is, y � "+(x+)� "+(x�). This means in particular that

y _ 0 � ("+(x+)� "+(x�)) _ 0 = ("+(x+) _ "+(x�))� "+(x�) :

Since "+(x+) and "+(x�) are disjoint, we can replace the supremum at the right hand-side by a
summation, and we �nd that y+ = y _ 0 � "+(x+), that is y+ 2 L+["+]. Similarly, we �nd that
y� 2 L+["+].

It remains to be shown that �(y) � x () y � "(x) for x 2 L and y 2 L["]. Assume �rst
that y � "(x). Then y+ � ("(x))+ = "+(x+) and y� � ("(x))� = "+(x�). This yields that
y+; y� 2 L+["+], and since ("+; �+) is an adjunction, we get that �+(y+) � x+ and �+(y�) � x�.
But this implies that �(y) � x.
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Now assume that �(y) � x, i.e., (�(y))+ � x+ and (�(y))� � x�. Since y 2 L["], we have y � "(x0)
for some x0 2 L, that is

y+ � ("(x0))
+ = ("+(x+0 )� "+(x�0 ))

+ = "+(x+0 )

y� � ("(x0))
� = ("+(x+0 )� "+(x�0 ))

� = "+(x�0 )

This yields that �+(y+) � x+0 and �+(y�) � x�0 , which means in particular that �+(y+) and �+(y�)

are disjoint. Therefore (�(y))+ = �+(y+) � x+, which yields that y+ � "+(x+). Similarly we get that

y� � "+(x�), and we �nd that y � "+(x+)� "+(x�) = "(x).

Note from Proposition 5.13(b) that the erosion " given by Proposition 5.15 is self-dual in
the sense that "(�x) = �"(x) for every x 2 L. Furthermore, L["] is invariant under the
�-negation y 7! �y, i.e., y 2 L["] i� �y 2 L["] and �(�y) = ��(y) for such y.
Note also that the previous result can easily be extended to the case where we start with

two di�erent erosions "+; "� on L+. In that case we de�ne an erosion on (L;�) by "(x) =
"+(x+)� "�(x�) for x 2 L.

5.16. Remark. We briey discuss an alternative approach for the construction of a cisl
which possesses a �-negation. The starting point for this construction is a given inf-semilattice
(L;�). For example, if we are interested in the functions IRE, then L represents the positive
part, i.e. L = IR

E
+. Denote the least element of L by 0. De�ne

M = fx = (x+; x�) 2 L � L j x+ ^ x� = 0g ;

and de�ne a partial ordering � onM by

(x+; x�) � (y+; y�) if x+ � y+ and x� � y�:

Now (M;�) is an inf-semilattice with least element (0; 0).
The mapping  given by

(x+; x�) = (x�; x+)

de�nes a �-negation onM. Given an operator  + on L that has the property

x ^ y = 0 )  +(x) ^  +(y) = 0;

then the extension  toM given by

 (x+; x�) = ( +(x+);  +(x�))

has the property
  =  ;

expressing the self-duality with respect to .

6. Relations with the folding approach

In an independent study Mehnert and Jackway [7] outline yet another method to construct
self-dual morphological operators. Their basic idea is to de�ne a so-called folded ordering

on the set of grey-values. This ordering is based on the distance of a grey-value to some
given reference value, called the crease, and amounts to a folding of the grey-value set about
the crease. Although such a folding has some useful properties, it is not compatible with a
(semi-) lattice structure of the grey-values. It is possible, however, to adapt the Mehnert-
Jackway approach in such a way that this problem is circumvented. To do this, we observe
�rst that their approach boils down to an embedding of the grey-value set T into some larger
set T 0 which can be endowed with a complete lattice or cisl structure. Thus we can construct
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morphological operators (such as adjunctions) on L0 = (T 0)E , the functions from a given
domain E into T 0. If there exists a left inverse of the embedding, then we can map back to
our original space of grey-scale images.
Let us formalize this simple idea, and show how it can be used to construct self-dual

morphological operators. We make the following assumptions:

1. T 0 has a partial ordering �0 such that (T 0;�0) is a complete lattice;

2. there exists an injective mapping � : T ! T 0 (called embedding) with a left inverse � 

(i.e., � � = id on T );

The partial ordering structure of T 0 induces a partial ordering structure on T , namely

s � t if �(s) �0 �(t) :

The supremum _0 on T 0 induces a binary operation _ on T � T :

s _ t = � (�(s) _0 �(t)) ;

which is commutative and associative, but which in most cases, does not de�ne a supremum
on T . In fact, T with partial ordering � does not form a complete lattice, in general. Given
an operator  0 on L0 = (T 0)E , we can de�ne an operator on L = T E by means of the following
relation:

 = �  0� : (6.1)

However, this construction does, in general, not preserve other properties of  0 such as
increasingness and idempotence.
As an example, consider the grey-value set T = f�(N�1);�(N�2); : : : ;�1; 0;+1; : : : ;+(N�

1);+Ng and let T 0 consist of the elements of T and the additional elements ]n for n =
0; 1; : : : ; N � 1. De�ne a partial ordering as represented by the right Hasse diagram of
Fig. 14, that is

0 �0 ]0 �0 �1;+1 �0 ]1 �0 �2;+2 �0 ]2 �0 � � � �0 ](N � 1) �0 +N :

Thus 0 is the least element and +N the greatest element of T 0. De�ne � : T ! T 0 by
�(n) = n for all n 2 T and de�ne � : T 0 ! T by

� (n) = n for n 2 T

� (]n) = +(n+ 1) for n = 0; 1; : : : ; N � 1 :

This endows T with a partial ordering as given by the left Hasse diagram of Fig. 14. Obviously,
the assumptions 1{2 above are satis�ed. It is easy to see that, indeed, T is not a lattice.
Note however that

�s _ �t = �(s _ t); s; t 2 T :

It is this property that allows a construction of self-dual operators on L by using the embed-
ding into the lattice L0.
As we observed, the construction of operators on T E through (6.1) does, in general, not

give rise to increasing operators. To guarantee that  inherits the increasingness property
of  0, we must assume that �� is an increasing operator on T 0. In the example discussed
above, this condition is not satis�ed.
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Figure 14: Embedding of the grey-value set T (left) into a larger set T 0 (right) with a lattice

structure. Here the case N = 3 has been depicted.

7. Conclusions

In classical morphology, negations that are physically meaningful, de�ne dual automorphisms,
that is, they reverse the underlying partial ordering. A major consequence of this fact is that
morphological operators occur in pairs. This may be a drawback in certain applications,
e.g. if one wants to design �lters which are self-dual, meaning that they treat foreground
and background identically. In this paper it is shown however, that self-dual morphological
operators result in a natural way if the underlying partial ordering is self-dual. There is a
price to be paid for this property: the underlying algebraic structure of the image space is
less rich. One ends up with (complete) semilattices rather than with (complete) lattices.
Fortunately, the semilattice structure is rich enough to develop powerful morphological tools,
including adjunctions.
The partial orderings discussed in this paper have a lot in common with the leveling

ordering introduced by Meyer [8]. We intend to explore these relationships in more detail in
future publications.
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