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Abstract: Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data

lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges,

that still allows useful de�nitions of various properties and concepts from morphological theory. It turns

out that some of the existing work on “pseudo-morphology” for non-scalar data can in fact be considered

“proper” mathematical morphology in this new framework, while other work cannot, and that this correlates

with how useful/intuitive some of the resulting operators are.

Keywords:mathematical morphology, pseudo-morphology, weakly associative lattices, sponges

1 Introduction
Lattice theory has brought mathematical morphology very far when it comes to processing binary and

greyscale images. However, for vector- and tensor-valued images lattice theory appears to be overly restric-

tive [7, 15, 32, 43]: vectors and tensors simply do not seem to naturally �t a lattice structure. For example, we

cannot have a lattice that is compatible with a vector space structure while also behaving in a rotationally

invariant manner [32]. And having a lattice that can deal with periodic structures is equally impossible (due

to it being based on an order relation).

Some attempts have been made to still apply mathematical morphology to vector- and tensor-valued im-

ages by letting go of the lattice structure while still having something resembling the in�mumand supremum

operations [2, 4, 5, 9, 10, 13, 14, 27, 48]. However, over the years, mathematical morphology has developed a

host of concepts that (in their usual formulation) rely on a lattice structure. Take away the lattice structure

and all these concepts make very little sense any more. For example, a dilation is de�ned as an operator that

commutes with the supremum of the lattice. And some pseudo-morphological operators can indeed lead to

unintuitive (and undesired) behaviour [31].

Recently, we introduced a novel theoretical framework which generalizes lattices [33], while retaining

some crucial properties of in�ma and suprema. This more �exible structure, which we call a “sponge”, is

inspired by the vector levelings of Zanoguera and Meyer [48] and the tensor dilations/erosions by Burgeth

et al. [9, 12, 14], and is e�ectively a variant of what is known as a “weakly associative lattice” or “trellis”

[24, 25, 44]. We also show that sponges are closely related to preorders (also known as reduced orderings or

R-orderings).

In this paper, the relation between sponges and lattices, and the earlier generalizations, are discussed

and examples are shown of existing and new methods that are not interpretable in a traditional lattice theo-

retic framework, but that do lead to sponges. Themethod proposed by Burgeth et al. [9], on the other hand, is

shownnot to lead to a sponge (which can be linked to the issuewe raised earlier [31, Fig. 5]).We hope this new

framework will be useful in guiding future developments in non-scalar morphology, and that it will provide

more insight into the properties of operators based on such schemes.
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Compared to the the original paper [33], we present an extended analysis of the properties of sponges, as

well as more examples of sponges. We also provide a much more detailed analysis of how one might be able

to de�ne openings on sponges, and show how one of these approaches can be used to construct (candidate)

openings that are anti-extensive and idempotent on a certain class of sponges (that is bigger than the class

of lattices, and contains some of our examples). The direct translation of structural openings to sponges

falls within this framework. In addition, we discuss how it might be possible to replace increasingness by a

di�erent property in the abstract de�nition of an opening.

2 De�nitions
Given a binary relation ‘R’ on a set S, we then say that this relation is

re�exive if a R a for all a ∈ S,
antisymmetric if a R b and b R c =⇒ a = b for all a, b, c ∈ S,
transitive if a R b and b R c =⇒ a R c for all a, b, c ∈ S, and
total if a R b or b R a for all a, b ∈ S.

A preorder is a relation that is both re�exive and transitive. A partial order (typically denoted by ‘≤’) is a

preorder that is also antisymmetric. A total order is a partial order that is also total. A lattice [8] can now be

de�ned in two ways:

1. A partial order in which every pair of elements has a unique greatest lower bound (in�mum) and a

unique least upper bound (supremum).

2. A set with two (binary) operators called meet (denoted by ‘∧’) and join (‘∨’) such that the operators are

commutative and associative, and satisfy the absorption property: the join of an element with themeet

of that same element with any (other) element is always equal to that �rst element (the dual statement

should also hold).

It is well-known that these de�nitions are equivalent. Also, it can be shown that one can always extend the

join and meet to �nite sets. A lattice is complete if one can determine the join and meet of every subset of the

lattice (including the empty set and the entire lattice). A conditionally complete lattice is one in which the

join (meet) can be determined of every non-empty subset that has a common upper (lower) bound.

A commonly used type of a lattice is a so-called function lattice Fun(E,L) [36, Ex. 2.10], where L is a

lattice, and E some set. Such a lattice contains all functions whose domain is E and whose range is L. The

join and meet are computed point-wise: for all f , g ∈ Fun(E,L) and x ∈ E

(f ∧ g)(x) = f (x) ∧ g(x).

Given an operator ψ on a lattice L, we say this operator is

anti-extensive if ψ(a) ≤ a for all a ∈ L,

extensive if a ≤ ψ(a) for all a ∈ L,

idempotent if ψ(ψ(a)) = ψ(a) for all a ∈ L, and

increasing if a ≤ b =⇒ ψ(a) ≤ ψ(b) for all a, b ∈ L.

The �rst three are readily generalized to sponges, the last one will prove to be more problematic. An operator

(on a lattice) is called

an erosion if it commutes with taking the meet (ψ(a ∧ b) = ψ(a) ∧ ψ(b)),
a dilation if it commutes with taking the join (ψ(a ∨ b) = ψ(a) ∨ ψ(b)),
an opening if it is anti-extensive, idempotent, and increasing, and

a closing if it is extensive, idempotent, and increasing.
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An important class of erosions (dilations) is formed by the so-called structural erosions (dilations). Such op-

erators are de�ned on function lattices, for which the domain E has some sort of neighbourhood structure;

they compute the minimum (maximum) within the neighbourhood for each point in the domain E. For every
erosion there is a complementary dilation [36, §3.2], such that �rst applying the erosion and then the dilation

constitutes an opening (and the converse process a closing).

3 Related work
If we step away from lattices, what options do we have? Some attempts at developing speci�c methods that

still behave much like a traditional lattice include non-separable vector levelings by Zanoguera and Meyer

[48], morphology for hyperbolic-valued images by Angulo and Velasco-Forero [4, 5], and the Loewner-order

based operations by Burgeth et al. [9]. All these methods support the concepts of upper and lower bounds,

as well as some sort of join and meet (in�mum and supremum), but do not rely on a lattice structure. The

framework presented in this work will be shown to encompass some of these methods, but not all.

Below we will present a generalization of a partial order that will be called an oriented set, as a starting

point for our generalization of a lattice. An oriented set is so named because it can also be considered an

oriented graph¹ and vice versa. Also, if all elements in some subset of an oriented set are comparable, this

subset can be called a tournament (analogous to a chain). This structure was already used, under di�erent

names, as the basis for a subtly di�erent generalization of a lattice: a weakly associative lattice (WAL), trellis,

or T-lattice [24, 25, 44].

Based on oriented sets we will introduce a generalization of a lattice called a sponge, which supports

(partial) join and meet operations on sets of elements. A sponge is a lattice if the orientation is transitive and
the join and meet are de�ned for all pairs (as a consequence of being a lattice they must then also be de�ned

for all �nite sets). If the latter condition does not hold the result would still be a partially ordered set with

a join and meet de�ned for all �nite subsets that have an upper/lower bound (which is a bit more speci�c

than the concept of a partial lattice used by [29, Def. 12]). On the other hand, a weakly associative lattice

[24, 25, 44] is de�ned in almost the exact same way as a sponge. The di�erence is that a weakly associative

lattice requires the join and meet of every pair of elements to be de�ned, while not guaranteeing that the

existence of an upper/lower bound implies the existence of the join/meet of a (�nite) set of elements [23]. The

concept of a partial weakly associative lattice seems to be no more powerful than that of an oriented set [26,

Lemma 1]².

Imagine a variant of a sponge where the join and meet only need to be de�ned for all pairs (rather than

all �nite sets) with upper/lower bounds. If (against our better judgement, since the concept is more general

than a sponge) we call such structures 2-sponges, then (as captured in Fig. 1 and proven in Appendix A)

– WALs, sponges and partially ordered sets generalize lattices,

– there are WALs that are not sponges (and vice versa),

– a WAL that is also a partial order is a lattice (and thus also a sponge),

– a partially ordered set that is also a 2-sponge is a sponge,

– there are partially ordered sets that are not 2-sponges (and vice versa),

– 2-sponges are strictly more general than both WALs and sponges,

– oriented sets are strictly more general than 2-sponges and partial orders.

Sincemanymorphological operators and concepts are based on joins andmeets of sets, sponges provide

a much more natural framework for generalized morphology than WALs. Also, WALs require the join and

meet to be de�ned for all pairs of elements, and all our examples violate this property. Partial WALs on the

1 Fried and Grätzer [26] called an oriented graph a directed graph.

2 The de�nition of a partial weakly associative lattice is a little vague, but it seems clear that at least any oriented set gives rise to a

partial weakly associative lattice.
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WALs

oriented sets

p.o. sets

sponges

lattices

2-sponges

Figure 1: An Euler diagram of the oriented and ordered structures discussed in the text. The shaded area is empty, but all other
areas are not. The set of all lattices is the (hatched) intersection of WALs and p.o. sets.

other hand provide too few guarantees to really be useful. As a consequence, we believe sponges are the right

choice in the current context.

4 Sponges
Wewill �rst give two (equivalent) de�nitions of what a sponge is. Roughly speaking, sponges are lattices that

let go of transitivity, or, equivalently, the associativity of the join and meet.

4.1 Sponges as oriented sets

Wede�ne a (partially) oriented set³ to be a set with a binary relation ‘�’ – a (partial) orientation⁴ – that is both

re�exive and antisymmetric. An orientation that is also transitive is thus a partial order. If an orientation is

total, the set is said to be totally oriented and is called a tournament. We also write A � B for subsets A and

B of S if and only if [∀a ∈ A, b ∈ B : a � b]. We sometimes omit braces around explicitly enumerated sets to

be able to write a � b, c instead of {a} � {b, c}. Also, for reasons of simplicity, we will say that a is less than

or equal to b (or a lower bound of b) if a � b, even though the relation need not be a (partial) order.

We now de�ne a sponge as an oriented set in which there exists a supremum/in�mum for every non-

empty and �nite subset of S which has at least one common upper/lower bound. Here a supremum a of a

subset P of S is de�ned as an element in S such that P � {a} and a � b for all b such that P � {b}; the
in�mum is de�ned analogously. Note that antisymmetry guarantees that if a supremum/in�mum exists, it is

unique.⁵

4.2 Algebraic de�nition of sponges

Analogous to the algebraic de�nition of a lattice, we now de�ne a sponge as a set S with partial functions J
(join) and M (meet) de�ned on non-empty �nite subsets of the set S, satisfying the properties (with a, b ∈ S
and P a non-empty �nite subset of S)

3 Fried [23] called an oriented set a partial tournament.

4 Rachůnek [42] called an orientation a semi-order, while Skala [44] and Fried and Grätzer [26] called it a pseudo-order.

5 In fact, Fried [23] already showed that in any orientation the set of “least upper bounds” of a set is either empty or a set of just

one element.
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idempotence: M({a}) = a,
absorption: if M(P) is de�ned, then

[
∀a ∈ P : J({a,M(P)}) = a

]
,

part preservation:
[
∀a ∈ P : M({a, b}) = b

]
=⇒ M({M(P), b}) = b,

and the same properties with J substituted for M and vice versa. Since J and M are operators on (sub)sets,

they preserve the commutativity of lattice-based joins and meets, but not necessarily their associativity. In a

lattice L, idempotence follows from absorption: a ∧ a = a ∧ (a ∨ (a ∧ b)) = a for all a, b ∈ L. In a sponge,

on the other hand, the join and meet need not be de�ned for all pairs of elements in the sponge, and this

argument breaks down (but we still need it, so it is included as a separate property). Part preservation⁶ is

essentially “half” of associativity, in the sense that if the implication was replaced by a logical equivalence,

J and M would be associative. In some cases we wish to write down M(P) or J(P) without worrying about

whether or not it is actually de�ned for the set P. We then consider M or J to return a special value when the

result is unde�ned. This value propagates much like a NaN: if it is part of the input ofM or J, then the output

takes on this “unde�ned” value as well.

It is important to note that if a (�nite) subset P of a sponge has a common lower (upper) bound b, the
premise of part preservation is true, and Pmust thenhave ameet (join), or the left-hand side of the conclusion

would be unde�ned.

From now on, we will omit braces around explicitly enumerated sets whenever this need not lead to any

confusion (as this greatly enhances readability). So we will write M(a, b) and P � a rather than M({a, b})
and P � {a}.

4.3 Equivalence of de�nitions

We now proceed to show that both de�nitions above are, in fact, equivalent. For example, part preservation

can be interpreted as: b � P implies b � M(P).

Theorem 1. An oriented set-based sponge gives rise to an algebraic sponge, in which the partial functions J
and M recover precisely the suprema and in�ma in the oriented set.

Proof. Since the supremum is unique whenever it is de�ned, we can construct a partial function J that gives
the supremum of a (�nite) set of elements; we constructM analogously. Due to re�exivity the resulting J and
M must be idempotent. Part preservation also follows, as by de�nition any upper bound of a set of elements

is an upper bound of the supremum of those elements (note that by de�nition, if there is an upper bound,

there must also be a supremum).

To see that our candidate sponge also satis�es the absorption laws, suppose that the set P has a common

lower bound, so its in�mum inf(P) is de�ned. By de�nition, a � a as well as inf(P) � a for any a ∈ P.
Since the two elements share an upper bound (a), the supremum of a and inf(P)must be de�ned. Again by

de�nition, we must have that a � sup(a, inf(P)), but also that sup(a, inf(P)) � a (since a is an upper bound

for all of the arguments). Due to the antisymmetry of the orientation sup(a, inf(P))must thus equal a. Since
the same can be done in the dual situation, the J andM induced by ‘�’ must give rise to an algebraic sponge,

in which J and M recover the suprema and in�ma in the oriented set.

Theorem 2. An algebraic sponge gives rise to an oriented-set-based sponge, such that a �nite set has a supre-
mum (in�mum) if and only if J (M) of the set is de�ned, and if it is, J (M) gives the supremum (in�mum).

6 The name of this property was taken from the analogous property on binary joins/meets given by Skala [44], and presumably

refers to the meet (join) preserving all joint lower (upper) bounds (“parts”).
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Proof. We de�ne a � b if and only if M(a, b) = a. Note that the absorption laws guarantee that it does not

matterwhetherwe base the relation� onM or on J, as they imply thatM(a, b) = a ⇒ J(a, b) = J(M(a, b), b) =
b (the dual statement follows analogously).

SinceM is idempotent, the induced relation ‘�’ must be re�exive. Also, asM is a (partial) function, a � b
and a ≠ b together imply b � ̸ a (a function cannot take on two values at the same time). In other words: the

relation ‘�’ is antisymmetric, and we can thus conclude that ‘�’ is an orientation.

Wewill now show that every �nite set with a common upper (lower) bound (according to ‘�’) has a supre-

mum (in�mum) if and only if J (M) is de�ned for that set, and that if it exists, the supremum (in�mum) is given

by J (M). Due to the absorption and part preservation properties, the join provides every �nite set that has

a common upper bound with a supremum. Thus, the relation ‘�’ induced by J and/or M is a sponge. Fur-

thermore, we cannot have any �nite subsets for which J (M) is not de�ned but a supremum (in�mum) does

exist, as J and M must be de�ned for all �nite subsets with a common upper/lower bound (due to the part

preservation property). This concludes our proof.

4.4 Lower/upper bounds and preorders

Based on the de�nitions above, we can de�ne a function L : S→P(S) on a sponge S de�ned by a ∈ L(b) ⇐⇒
a � b, such that (when M(P) is de�ned):

M(P) ∈
⋂

a∈P
L(a) and

⋂
a∈P

L(a) ⊆ L(M(P)).

We can also conclude that a ∈ L(b) and b ∈ L(a) together imply a = b.
Suppose that we have a sponge S such that the transitive closure of the corresponding orientation is a

partial order relation ‘≤’ (that is, antisymmetry is preserved). Clearly, we have a � b ⇒ a ≤ b and a ≺ b ⇒
a < b. Now consider equivalence classes of elements, based on

a ∼ b ⇐⇒ a < ̸ b and b < ̸ a and ∀c ∈ S \ {a, b}
[
(c ≤ a↔ c ≤ b) and (a ≤ c↔ b ≤ c)

]
. (1)

Here ‘↔’ is used to denote the “if and only if” relation used within a statement, as opposed to ‘⇐⇒ ’, which

is used to denote the logical equivalence of two statements. In other words, two elements are in the same

equivalence class if they are incomparable and from the point of view of all other elements they are the same

in terms of the partial order ‘≤’. Note that it can be seen that the transitive closure of a sponge’s orientation

preserves antisymmetry if and only if the sponge is acyclic (that is, there are no cycles in the orientation other

than self-loops).

Denoting the equivalence class containing a as [a], we de�ne

[a] ≤ [b] ⇐⇒ a ∼ b or a < b.

Note that this is perfectly consistent, since any two elements in an equivalence class are indistinguishable

in their comparisons to elements outside the equivalence class. Instead of de�ning a partial order on equiva-

lence classes,we can consider a preorder on the elements of the sponge.Wewill call this preorder the preorder

induced by the orientation of the sponge (or orientation preorder), and denote it by ‘≤

*

’:

a ≤* b ⇐⇒ [a] ≤ [b].

We can conclude that a � b ⇒ a ≤* b, and thus thatM(a, b) ≤* a, b. In fact, Corollary 1 shows that in any

sponge, the meet and join can be de�ned in terms of sets of lower/upper bounds and the induced preorder.

Proposition 1. For all a in an acyclic sponge S, all lower bounds of a that are not equal to a come strictly before
a in the preorder induced by the orientation of the sponge.

Proof. Given any a ∈ S and b ∈ L(a) di�erent from a, we note that b < a must hold (due to b ≺ a), and as

a consequence they cannot be in the same equivalence class. This then leads us to conclude that [b]must be
strictly smaller than [a], and by extension b <

* a. This concludes the proof.
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Corollary 1. Given an acyclic sponge S and two elements a and b in S, M(a, b) (when de�ned) is the unique
maximum in L(a)∩ L(b) with respect to the preorder induced by the orientation of the sponge.

Proof. IfM(a, b) is de�ned, it is located in the (non-empty) intersection of L(a) and L(b), and its set of lower

bounds is a superset of this intersection. Given Proposition 1 we can clearly conclude that M(a, b) is the

unique maximum in L(a)∩ L(b) with respect to the preorder.

There are two reasons the above is relevant. The �rst is that the orientation preorder turns out to be fairly

intuitive for two of the examples given below (it boils down to a preorder on radius or height). The second

is that preorders are well-understood compared to sponges, and might aid in proving certain convergence

properties. In particular, if one has a sequence of anti-extensive operators, their composition might not be

anti-extensive from the point of view of the orientation relation, but it will be anti-extensive from the point

of view of the preorder.

4.5 Tournaments and the reduction operator

Chains are totally ordered sets [8, p. 2], and typically subsets of some lattice or partial order. These are of

particular interest in the study of (hyper)connectivity [47]. Since we are ultimately interested in developing

a similar theory for sponges, we will now show some potentially useful properties of totally oriented sets:

tournaments. Finite tournaments by themselves were studied in some detail by Harary and Moser [35]. We

start by replicating one of their results (part of Corollary 5a) in the current (more general) context.

Proposition 2. An acyclic tournament is a chain.

Proof. First note that a tournament is a total orientation, so it is re�exive, antisymmetric, and total. Now, if

a � b and b � c, with a, b, and c elements of the tournament, then we must have a � c. This is because

a and c must be comparable, and c � a would create a cycle. This means the tournament is a re�exive,

antisymmetric, transitive, and total relation: a total order or chain.

We now proceed to show some statements where maximality plays a role. It is important to note that some

care should be taken in applying Proposition 3 to tournaments that are part of a larger orientation or sponge.

The statement shows that themaximal element (if it exists), is a supremum in the tournament, not necessarily

in the larger orientation or sponge. In the lattice context this type of issue is often addressed by considering

sublattices: sets of elements closed for joins/meets (in the original lattice). In fact, it should be clear that if

the tournament is a “subsponge”, then the supremum in the tournament coincides with the supremum in the

sponge.

Proposition 3. A tournament never has more than one maximal (minimal) element, and if it has a maximal
(minimal) element it is the supremum (in�mum) of the tournament.

Proof. We will prove the statement for maximal elements, the minimal case can be shown analogously. As-

sume that a tournament has more than one maximal element. Then there are two (distinct) elements that

are not less than any other elements (including each other). However, this cannot be, since in a tournament

any two elements must be comparable, so one of the elements must be less than the other (note that due to

antisymmetry they cannot be equal in the relation). There can thus be at most one maximal element.

If there is a maximal element, it must be an upper bound for all of the elements in the tournament. Fur-

thermore, there cannot be any other element (in the tournament) that is anupper bound for all of the elements

in the tournament, so it is indeed a supremum. This concludes the proof.

We nowproceed to give a generalization of (a particular formulation of) a “Hausdor�’sMaximal Principle” [8,

§VIII.7]. The original principle tells us that any chain contained in a partially ordered set can be extended to

a maximal chain. We will use “totally oriented subset” to denote a tournament whose elements are a subset
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of a (larger) orientation, in which the relation is given by the larger orientation. In the proof we will assume

the original principle holds (it is equivalent to the axiom of choice [8, §VIII.14]).

Proposition 4 (Hausdor�’s Maximal Principle for orientations). Every totally oriented subset T of an orien-
tation O is contained in a maximal (in the sense of set inclusion) totally oriented subset M.

Proof. Consider the set A = {R | T ⊆ R ⊆ O and R totally oriented} of totally oriented subsets of O that

contain T. This set is partially ordered by set inclusion. As such, because of the original Hausdor�’s maximal

principle, it must contain a maximal chain P of totally oriented subsets. If we take M =

⋃
P, then clearly M

contains T. Also, M can be seen to be totally oriented. In addition, it must be maximal, since if there was a

larger subset of O that was totally oriented, it would have been in A, and by extension P. This concludes the
proof.

A subset A of a sponge S is tournament-sup complete (A ∈ Ptsc(S)) if and only if J(T) ∈ A for every non-empty

tournament T ⊆ A for which J(T) exists. Although this not completely analogous to the usual de�nition of

chain-sup completeness (which requires that the join of any non-empty chain in A exists and is in A), the
current formulation makes some of our analysis easier (or at least a lot less verbose), and the di�erence is

relatively benign, as it disappears whenever the sponge (or lattice) is complete, which is the usual setting.

We now get the following result.

Proposition 5. A maximal totally oriented subset of a tournament-sup complete subset of a sponge contains
its supremum, if it exists (in the sponge).

Proof. If the supremum of a totally oriented subset exists, adding it to this totally oriented subset gives an-

other (larger) totally oriented subset. Hence, if we have amaximal totally oriented subset of a tournament-sup

complete subset of sponge, then its supremum must be in the tournament-sup complete subset, and as a re-

sult in the maximal totally oriented subset. This concludes the proof.

We are now in a position to introduce the concept of non-redundancy and the so-called reduction operator

used byWilkinson [47] in the context of (hyper)connected openings. In sponges it turns out this is useful even

for other types of openings.

De�nition 1 (Non-redundancy). Any subset A of a sponge S is said to be non-redundant if

a � b ⇒ a = b, ∀a, b ∈ A.

Equivalently (using Proposition 4), A is non-redundant if all maximal totally oriented subsets contained in A
have cardinality one. The set of all non-redundant subsets of S is denoted byN(S).

De�nition 2 (Re�nement relation). The re�nement relation (re�exive, not antisymmetric or transitive) on

P(S) for some sponge S is denoted by ‘v’ and is de�ned by

A v B ⇐⇒ ∀a ∈ A ∃b ∈ B : a � b.

De�nition 3 (Reduction operator). The reduction operator ψN : P(S)→N(S) (with S a sponge) is de�ned by

ψN(A) = {a | a ∈ A and @b ∈ A : a ≺ b}.

Note that in a complete lattice, one also has J(A) = J(ψN(A)) if A is chain-sup complete. In a sponge, the

analogous statement need not be true, but there do appear to be situations inwhich it does hold. For example,

Theorem 7 can be seen to imply something to this e�ect for the set Q used in the proof. Similarly, although in

general we cannot assume that A v ψN(A) holds (even for tournament-sup complete A), Theorem 8 shows

that there are non-trivial sets for which it does hold. It remains to be seen whether these results are related

and what properties of sponges and sets are relevant. Also, it may be possible to de�ne alternative notions of

non-redundancy and/or alternative reduction operators.
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Finally, we prove two basic statements about tournament-sup completeness.

Proposition 6. In a conditionally complete sponge, the set of lower bounds L(a) is tournament-sup complete
for any a in the sponge.

Proof. Suppose we have a tournament T contained in L(a), this tournament has a common upper bound (a),
so it must have a supremum J(T). Due to part preservation, the join of T must be a lower bound of a. This
concludes the proof.

Proposition 7. The intersection of two tournament-sup complete subsets of a sponge is tournament-sup com-
plete.

Proof. Suppose the statement is not true. We then have two tournament-sup complete subsets A and B of

a sponge, such that there is a totally oriented subset of A∩ B which does not have a supremum in A∩ B.
However, this tournament is clearly also contained in A and B, so its supremum (according to the original

sponge) must be in both A and B, meaning that it is also contained in A∩ B, proving the statement.

4.6 Further properties

The property shown to hold in sponges in Proposition 8, is related to associativity in the sense that if a sponge

is associative, the inequality would become an equality. The property itself could be interesting in the context

of semisponges (discussed below), but it is also of interest when we would like to compute the meet of a set

based on takingmanymeets of smaller sets. In particular it can be used to show that we would not overshoot

our goal.

Proposition 8. For any �nite set of �nite subsets P
1
, P

2
, . . . of a sponge, and another subset P that is a superset

of all the others, we have M(P) � M(M(P
1
),M(P

2
), . . .), assuming M(P) exists (and similarly for joins).

Proof. We have M(P) � P (absorption). Now, since Pi ⊆ P, M(P) is a lower bound of all elements of Pi (for
any i), and thus ofM(Pi) as well (part preservation). The lemma now follows from another application of part

preservation (since we have established that M(P) is a lower bound of all the Pi).

In a sponge the join of a �nite set exists if (and only if) there is a common upper bound of that set. Like with

lattices, a conditionally complete sponge guarantees that this is true for all non-empty sets (�nite or other-

wise) that have at least one common upper bound, and similarly for the meet. A complete sponge would be a

sponge for which all sets are guaranteed to have a join and a meet. All of the examples given in Section 5 are

conditionally complete, and most of them have a smallest element (so all non-empty meets exist). We expect

conditionally complete sponges with a least element to play a role analogous to that of complete lattices in

traditional morphological theory. In such a sponge themeet of any set is well-de�ned, as is the join of any set

with a common upper bound, making something similar to a structural opening well-de�ned (see Section 6).

Analogous to semilattices, we can de�ne semisponges: a meet-semisponge is an oriented set such that

any �nite set with a lower bound has an in�mum (a join-semisponge can be de�ned analogously). We can

consider a meet-semisponge to have an operatorM (the meet) that gives the in�mum of a set. As the in�mum

is de�ned as the unique lower bound that is an upper bound of all lower bounds, M would still satisfy the

part preservation property, as well as a modi�ed form of the absorption property: if M(P) is de�ned, then[
∀a ∈ P : M(a,M(P)) = M(P)

]
. Note that at this point we do not give a (complete) algebraic characterization

of a semisponge.

Theorem 3. If S is a conditionally complete meet-semisponge it is a conditionally complete sponge (by duality
the same holds for a conditionally complete join-semisponge).
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Proof. If S is a conditionally complete meet-semisponge, this means that the meet is de�ned for all (non-

empty) sets that have a lower bound. We can now de�ne J as giving the meet of the set of all upper bounds of

a given set. For anynon-empty setwith a commonupper bound, the set of all (common)upper bounds is again

non-empty, and bounded from below by the original set, so its in�mum is well-de�ned. As a consequence, if

this construction turns S into a sponge, then this sponge is conditionally complete. Due to part preservation,

the meet of the set of all upper bounds of a set is still an upper bound of the original set, and due to the

absorption property it must also be a lower bound of all the upper bounds of the original set. In other words,

J can indeed be interpreted as giving the supremum of any (non-empty) subset of S with an upper bound. We

can thus conclude that S is a conditionally complete sponge.

If a conditionally complete meet-semisponge has a least element we can give meaning to the meet of all non-
empty subsets, as well as the join of the empty set (which would give the least element).

Another interesting property that sponges can have is that the meet of a set of lower bounds is still a

lower bound (and dually for upper bounds/joins). It is possible to construct sponges that do not have this

property, but the examples given in Section 5 do all have this property. An immediate consequence is that in

these sponges the join and meet preserve both upper and lower bounds: a � P and P � b imply a � M(P)
and M(P) � b (and similarly for the join).

A property that seems related (but not equivalent) to sets of lower bounds being closed for meets – in the

sense that it is related to transitivity – is the property that guarantees that (for all a, b in some sponge and all

P in the power set of that sponge)

a � J(P) and P � b ⇒ a � b or [∃p ∈ P : a � p] . (2)

The property clearly holds in any lattice, but it does not hold in every sponge. As Theorem 7 shows, it is

an important ingredient in making openings work. In Proposition 9 it will be shown that the inner product

sponge satis�es this property in 2D (but not in higher dimensions).

5 Examples

5.1 Inner product sponge

Inspired by the vector levelings developed by Zanoguera and Meyer [48], we can consider a vector a in some

Hilbert space as “less” than (or equal to) another vector b if and only if a · (b − a) ≥ 0. This does not give rise

to a partial order, or even a preorder, as the relation is not transitive. However, it can be checked that it does

give an orientation, and we will show that it even gives rise to a sponge (Fig. 2 illustrates the orientation and

a meet and join in a toy example).

The relation a � b ⇐⇒ a · (b − a) ≥ 0 implies that the set of upper bounds of some element a is the

half-space de�ned by a · b ≥ ‖a‖2. We now de�ne the meet of a set of elements as the element closest to the

origin in/on the closed convex hull of the set. If the convex hull includes the origin, this is the origin itself

(and in this case there is indeed no other lower bound of the entire set). If the origin is outside the convex hull,

themeet is still well-de�ned (minimization of a strictly convex function over a convex set) andmust lie on the

boundary of the convex hull. It is possible to see that the original points must thus be upper bounds of the

meet. Also, since the meet is in the closed convex hull of the original points, and the set of upper bounds of

any element is closed and convex, any elementwhichwas a lower bound of all of the original pointsmust still

be a lower bound of the meet. Based on Theorem 3, we can now conclude that – based on the meet described

above – we have a conditionally complete sponge with the origin as its least element.

It is interesting to note that, if we ignore the origin, the inner product sponge allows for a negation (an

involutive dual automorphism, [36, Def. 2.29]): the mapping a 7→ a/‖a‖2 reverses the orientation in the sense

that a � b ⇐⇒ b/‖b‖2 � a/‖a‖2 (as long as a and b have non-zero norm).We can verify that it is equivalent
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a

b

M(a, b)

J(a, b)

Figure 2: Computing the meet and join of the points a and b in the 2D (Euclidean)
inner product sponge. The line segment between a and b is the convex hull of those
two points. Each point has an associated circle enclosing all of its lower bounds
(the dark dot represents the origin). The thick, dashed lines show the boundaries
of the half-spaces of upper bounds for a and b. The shaded area below the meet is
the intersection of the lower bounds of a and b, and is a subset of the set of lower
bounds of the meet, consistent with part preservation.

to say a � b ⇐⇒ ‖a‖2 b � ‖b‖2 a, and then show that if a and b are vectors with non-zero norm

a � b ⇐⇒ a · (b − a) ≥ 0 ⇐⇒ ‖b‖2 a · (b − a) ≥ 0 ⇐⇒ ‖b‖2 a · b − ‖a‖2 ‖b‖2 ≥ 0
⇐⇒ b · (‖b‖2 a − ‖a‖2 b) ≥ 0 ⇐⇒ ‖a‖2 b · (‖b‖2 a − ‖a‖2 b) ≥ 0 ⇐⇒ ‖a‖2 b � ‖b‖2 a.

We will now see that the inner product sponge satis�es Eq. (2) in 2D, allowing for anti-extensive and

idempotent “openings” (Theorem 7).

Proposition 9. The inner product sponge on a 2D Hilbert space (on the reals) satis�es Eq. (2) (as well as the
analogous statement for the meet).

Proof. We will �rst prove the statement for the meet: M(P) � a and b � P implies b � a or [∃p ∈ P : p � a].
The dual statement then follows through using the negation developed above. IfM(P) = 0, bmust be zero as

well, and the statement is trivially true, so from now onwe assume thatM(P) is non-zero. Also, ifM(P) = p for

some p ∈ P, the statement is again trivially true, so we will assumeM(P) is on some segment of the boundary

of the convex hull of P.
Now, note that the set of upper bounds of an element a, U(a) = {b | a · b ≥ a · a}, is a (closed) half-space

such that a � b ⇒ a � λ b for all λ ≥ 1. As a result, we can assume without loss of generality that a is on

the line bounding the set of upper bounds ofM(P):M(P) · a = M(P) ·M(P). Since the meet is the point on the

convex hull closest to the origin, this line must pass through the two elements p
1
and p

2
in P that de�ne the

segment of the convex hull boundaryM(P) is on. Since b � P, the segment of the line that coincides with the

boundary of the convex hull must consist of upper bounds of b, so if a is in this segment the statement holds.

Now assume a = M(P) + λ (p
1
−M(P))with λ ≥ 1 (this describes the part of the line that is beyond p

1
from the

point of view of p
2
). Using p

1
·M(P) = M(P) ·M(P), ‖p

1
‖ > ‖M(P)‖, and λ ≥ 1, we now �nd that

p
1
· (a − p

1
) = p

1
· (M(P) + λ (p

1
−M(P)) − p

1
)

= p
1
· ((λ − 1) (p1 −M(P))) = (λ − 1) (‖p

1
‖2 − ‖M(P)‖2) ≥ 0.

Something similar can be concluded for the segment of the line beyond p
2
, covering the entire line. We can

now conclude that the statement holds for the meet. The dual statement now follows:

a � J(P) and P � b ⇒ M(PC) � aC and bC � PC

⇒ bC � aC or

[
∃p ∈ P : pC � aC

]
⇒ a � b or [∃p ∈ P : a � p] .

This concludes the proof.

Note that it is possible to give a counter example (violating Eq. (2)) for an inner product sponge on a 3DHilbert

space on the reals, so the restriction to 2D in Proposition 9 is necessary.
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5.1.1 Deriving the inner product sponge

The inner product sponge described above was originally proposed [48] on heuristic grounds. That is, al-

though using a “box” for the set of lower boundsmight have led to a (semi)lattice, it was suggested that using

a sphere might be advantageous, as it gives rotation-invariant results. Here we demonstrate that (in hind-

sight), the sphere-based approach can be derived from the “box-based” approach in a principled manner by

enforcing rotation invariance.

The box-based approach is based on saying that a ≤r b (or that a separates r and b) if and only if a ∈
BoxOp(r, b), where BoxOp(r, b) is the smallest axis-aligned box containing r and b (or, equivalently, the axis-

aligned box having the line segment rb as diagonal). This de�nition assumes the value space is a vector space

V with an orthogonal basis {ek}k∈K. It can be seen that this de�nition is equivalent to saying that a separates

r and b if and only if each coe�cient ak is closer to rk than bk for all k ∈ K. More generally, we can regard

this as a particular instance of the meet-semilattice approach described by Heijmans and Keshet [37, p. 63]. It

is worth noting that in the current context ‘≤r’ is (indeed) a partial order giving rise to a meet-semilattice for

any r in the vector space. In the remainder we will assume the value space is not just any vector space, but a

�nite-dimensional Hilbert space on the real numbers.

Lemma 1. If a ≤r b, then (a − r) · (b − a) ≥ 0.

Proof. First note that for all k ∈ K, bk ≤ ak ≤ rk or rk ≤ ak ≤ bk. As a consequence, ak − rk has the same

sign as bk − ak for all k ∈ K. Now, since the basis used for the vector space is assumed to be orthogonal, the

inner product (a − r) · (b − a) can be written as the sum (over all k ∈ K) of the products (ak − rk)(bk − ak).
Combining the last two observations we see that the inner product must indeed be non-negative, concluding

the proof.

Lemma 2. If (a − r) · (b − a) ≥ 0, then there is some rotation ρ ∈ SO(V), such that ρ(a) ≤ρ(r) ρ(b).

Proof. First consider the two re�ections given by τ
1
(c) = c−2 (û ·c) û and τ

2
(c) = c−2 (v̂ ·c) v̂, with u equal to

a−r, v equal to û+ ê, û equal the unit-length normalization of u (v̂ is de�ned analogously), and ê an arbitrary

unit-length basis vector that is not parallel to a − r. Note that we assume a ≠ r, since otherwise the statement

is trivially true. If we now pick ρ to be τ
2
◦ τ

1
, then the result can be veri�ed to be a rotation (an orthogonal

linear operator with determinant 1), and we have

ρ(û) = τ
2
(τ

1
(û)) = τ

2
(û − 2 û) = τ

2
(−û) = −û + 2 (v̂ · û) v̂

= −û + 2((û + ê) · û) (û + ê)
(û + ê) · (û + ê) =

2 (1 + ê · û) (û + ê) − 2 (1 + ê · û) û
2 (1 + ê · û) = ê.

In other words: ρ rotates a − r to be parallel to ê. As a consequence, the coe�cients of ρ(a) are the same as

those of ρ(r), except for the one corresponding to ê. Observe that since (a − r) · (b − a) ≥ 0, we also have

(ρ(a)− ρ(r)) · (ρ(b)− ρ(a)) = λ ê · (ρ(b)− ρ(a)) ≥ 0, with λ a positive scalar. We can now see that the coe�cients

of bmust all be farther from the corresponding coe�cients of r than those of a. This concludes the proof.

Theorem 4. We have (a− r) · (b−a) ≥ 0 if and only if there is some rotation ρ ∈ SO(V) such that ρ(a) ≤ρ(r) ρ(b).
The set of upper bounds of an element a in the inner product sponge can be described by

⋃
ρ∈SO(V){b | ρ(a) ≤ρ(0)

ρ(b)}, and the set of lower bounds by
⋃
ρ∈SO(V){b | ρ(b) ≤ρ(0) ρ(a)}.

Proof. This follows from Lemma 2 and Lemma 1, observing that, due to the rotation invariance of the inner

product, the latter indeed allows us to conclude that if there is some rotation ρ such that ρ(a) ≤ρ(r) ρ(b), then
(a − r) · (b − a) ≥ 0. The expressions for the upper and lower bounds in the inner product sponge follow by

equating r with the origin 0. This concludes the proof.
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r

s

P(s)

Figure 3: Stereographic projection projects points on the unit circle (hypersphere) onto a line (hyperplane) through the origin
(smallest black dot) along lines emanating from the antipode of the reference point r.

5.2 Hyperbolic sponge

The “upper half-plane geodesic ordering” (an orientation in our terminology) of the hyperbolic upper half-

plane given by Angulo and Velasco-Forero [5, §12.4.4] [4] considers a point less than another point if they are

both on the same half of the semicircle through those two points (whose center is on the horizontal axis),

and the �rst point is higher. The semicircle represents the geodesic through those two points. It can be seen

that this is not a transitive relation, and thus not a partial order (nor a preorder). It is, however, re�exive and

antisymmetric, and thus an orientation.

The meet of a set of points can be de�ned as the top of the smallest semicircle (centered on the hor-

izontal axis) that encloses all of the points. We can verify that this gives rise to a conditionally complete

meet-semisponge (essentially along the same lines as in the previous example, except that the “origin” lies

at in�nity, and instead of the convex hull we have the intersection of all x-axis centered closed semidisks

that contain the given points). Again, we can de�ne the corresponding join as the meet of all common upper

bounds of a set, resulting in a proper sponge.

This sponge could be useful for imageswhere each value corresponds to a normal probability distribution

[5, 19]. Also, if it can be altered to have a di�erent point of reference, it could be interesting for �ltering values

in the chromatic plane as well [21].

5.3 Spherical sponge

Consider the set of “lower bounds” of a point a on a (hyper)sphere to be the set of points on that sphere as

close to the midway point between a and whatever we consider the reference point as a is. The antipode of

the chosen reference point will be considered to have all points as lower bounds, just like the reference point

has all points as upper bounds. This gives rise to a binary relation�S, which is at least re�exive. It is also not

too di�cult to see that the relation is antisymmetric, but instead of showing this relation is an orientation and

a sponge from the ground up, we will simply show that it is isomorphic to the inner product sponge under

stereographic projection.

A set of “lower bounds” as just described corresponds to a so-called spherical cap: the intersection of the

sphere with a half space (whose boundary always goes through the chosen reference point). The point whose

lower bounds are described by such a spherical cap is the point farthest from the reference point. Note that

the largest spherical caps we consider cover less than one hemisphere, considering the set of lower bounds

of the point opposite the reference point to be the entire sphere. This is not unlike the structure of the inner

product sponge, where for every point the set of upper bounds is a half space, except for the origin, which is

a lower bound for the entire space.

Consider the (generalized) stereographic projection (see Fig. 3) and its inverse

P(s) = s − (s · r) r
1 + s · r , and P−1(a) = 2 (a + r)

1 + ‖a‖2 − r,

where r is the chosen reference point on the unit (hyper)sphere in some (�nite-dimensional) Hilbert space,

s an arbitrary unit vector, and a a vector on the hyperplane of points orthogonal to r. Clearly, P projects the

hypersphere onto a hyperplane, such that P(r) equals the origin (P(−r) can be considered the point at in�nity).
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Lemma 3. Distance from r on the hypersphere is a strictly increasing function of distance from the origin in the
hyperplane (and vice versa).

Proof. We note that the distance on the hypersphere from r is a strictly decreasing function of the inner prod-

uct with r. The statement now follows from inspecting the de�nitions of P and P−1.

Theorem 5. Under the stereographic projection, the set of lower bounds of an element s on the hypersphere
projects to the set of lower bounds in the hyperplane (using the inner product sponge) of P(s).

Proof. Let us �rst examine the representation in the plane of a general (hyper)spherical capde�nedby s·c ≥ λ:

P−1(a) · c ≥ λ ⇐⇒
(
2 (a + r)
1 + ‖a‖2 − r

)
· c ≥ λ ⇐⇒ 2 (a · c + r · c)

1 + ‖a‖2 ≥ λ + r · c

⇐⇒ 2 (a · c + r · c) ≥ λ + r · c + (λ + r · c) ‖a‖2 ⇐⇒ r · c ≥ λ + (λ + r · c) ‖a‖2 − 2 a · c

⇐⇒ r · c − λ ≥ (λ + r · c) ‖a‖2 − 2 a · P(c) ⇐⇒ R2 ≥ ‖a‖2 − 2 a · c′ + ‖c′‖2 = ‖a − c′‖2,

with R2 = r·c−λ
r·c+λ +‖c

′‖2, and c′ = P(c)/(r ·c+λ). Note that in our context λ = r ·c, so R = ‖c′‖, and c′ = P(c)/(2 λ),
so sets of lower bounds on the sphere project to “hyperdisks” in the hyperplane with the origin on their

boundary. By Thales’ theorem we can see that the latter correspond to sets of lower bounds in the inner

product sponge. It now remains to show that the projection of s indeed has the set of lower bounds that

corresponds to the projection of the set of lower bounds of s. The easiest way to see that this is true is to

consider that in both domains a point has the largest distance to the reference point/origin of all its lower

bounds, and then invoking Lemma 3. This concludes the proof.

In other words, since P is a bijection (ignoring the antipode of the reference point at least), s �S t ⇐⇒
P(s) �I P(t). Here ‘�S’ is the relation just de�ned on the sphere, while �I indicates the relation de�ning

the inner product sponge. The relation ‘�S’ thus gives rise to a sponge that is isomorphic to the inner product

sponge (augmentedwith a point at in�nity). Thismeans that the spherical sponge inherits all of the properties

of the inner product sponge.

Note that we have mostly glossed over what happens with the antipode of the reference point. In the

inner product sponge this point can be considered to be the “point at in�nity”, being an upper bound for all

elements. Also, we note that if the antipode (rather than the reference point itself) sits on the boundary of a

spherical cap, we have −r · c = λ, in which case c′ is ill-de�ned. By a limiting process we can see that such a

spherical cap in fact corresponds to a half space in the hyperplane. Conversely, sets of upper bounds on the

sphere are spherical caps, just like sets of lower bounds. This can also be seen by considering the analogue

of re�ecting in the hyperplane orthogonal to r in the inner product sponge:

P(P−1(a) − 2 (P−1(a) · r) r) = P
−1

(a) − (P−1(a) · r) r
1 − P−1(a) · r =

1 + P−1(a) · r
1 − P−1(a) · rP(P

−1

(a)) = 1 + P−1(a) · r
1 − P−1(a) · ra,

with

1 + P−1(a) · r
1 − P−1(a) · r =

2 (a · r + 1)
1 + ‖a‖2

1 + ‖a‖2
2 + 2 ‖a‖2 − 2 (a · r + 1) =

a · r + 1
‖a‖2 − a · r =

1

‖a‖2 .

In the last step we make use of the fact that a · r = 0. This means a re�ection in the hyperplane orthogonal to

r is a negation in the spherical sponge.

5.4 Hemispherical sponge

Now suppose we are only interested in the (open) hemisphere Hr de�ned by s · r > 0 for some reference point

r on the (hyper)sphere (the construction is not limited to 3D). Now consider s � t ⇐⇒ logs(r) · logs(t) ≤ 0,
where logs(t) gives the tangent vector at s of the (shortest) geodesic connecting s and t. This condition can be

seen to be analogous to the one used for the inner product sponge, but we cannot immediately assume that
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r

s P(s)

Figure 4: Gnomonic projection projects points on the unit semicircle (hyperhemisphere) onto a line (hyperplane) through (and
orthogonal to) the reference point r, along lines emanating from the origin (smallest black dot), then projecting orthogonally
onto a parallel hyperplane through the origin.

this relation forms a sponge as well. For example, if we consider the earth a sphere, with the north pole as

the reference point, then we can see that any point on the equator is “less than or equal to” any other point

on the equator.

Using the above relation, the set of upper bounds of an element s on the hemisphere is the intersection of

the hemispherewith the half space de�ned by t·n(s) ≥ 0 (so it is an intersection of two di�erent hemispheres),

with

n(s) = (s − r) − ((s − r) · s) s.

It can be veri�ed that n(s) is orthogonal to s (meaning that s is on the boundary of the set of upper bounds).

In fact, one can see that n(s) is opposite to the tangent vector at s pointing towards r.
We can now again see that the relation de�ned above is isomorphic to the inner product sponge, this time

through the gnomonic projection (see Fig. 4):

P(s) = s
s · r − r, and P

−1

(a) = a + r
‖a + r‖ .

Note that this projection is only valid for the (open) hemisphere Hr.

Theorem 6. Under the gnomonic projection, the set of upper bounds associated with s on the open hemisphere
Hr projects to the set of upper bounds (using the inner product sponge) associated with P(s).

Proof. The set of upper bounds associated with s is the intersection of Hr and the hemisphere de�ned by

t · n(s) ≥ 0. We note that the restriction to Hr is no restriction at all, since the projection only establishes a

bijection precisely between this hemisphere and the hyperplane. Now, consider the hemisphere de�ned by

t · n ≥ 0. Its projection on the hyperplane can be de�ned by

P−1(a) · n ≥ 0 ⇐⇒ a + r
‖a + r‖ · n ≥ 0 ⇐⇒ (a + r) · n ≥ 0 ⇐⇒ a · n ≥ −r · n ⇐⇒ a · P(n) ≥ −r · n.

This shows that any set of upper bounds on the sphere projects to a half-space on the hyperplane. If we set

n = n(P−1(a)), and using a · P(n) ≥ −r · n ⇐⇒ n · (a + r) ≥ 0, we can see that a is on the boundary of the

half-space:

n · (a + r) = (

a + r
‖a + r‖ − r) · (a + r) − ((

a + r
‖a + r‖ − r) ·

a + r
‖a + r‖ )

a + r
‖a + r‖ · (a + r)

= (‖a + r‖ − 1) − (1 − 1

‖a + r‖ ) ‖a + r‖ = (‖a + r‖ − 1) − (‖a + r‖ − 1) = 0.

Given that the direction of the orthogonal projection of a vector onto the hyperplane is not a�ected by

gnomonic projection, and that the direction of the orthogonal projection of s is the same as that of n(s), we

can see that the boundary of the gnomonic projection of the set of upper bounds on the sphere of P−1(a)
coincides with the boundary of the set of upper bounds of a. Since the projection of the reference point

cannot be in the set of upper bounds (for any a = ̸ 0), we conclude that the two half-spaces are in fact equal.

Since P is a bijection on the (open) hemisphere Hr, this concludes the proof.

This means we again have a sponge that is isomorphic to the inner product sponge. We expect this sponge

might be useful in the context of barycentric coordinates encoding probabilities [22] (translated to a hyper-

sphere through the mapping discussed by Gromov [30, p. 14], also see [20]), possibly through an extension

of n-ary mathematical morphology [16].
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Figure 5: From top to bottom (black arrows): The original 1D angle-valued signal (the grey arrows plus noise), the result of a
structural pseudo-erosion, the result of a structural “opening”, the result of the corresponding “closing”, and the average
of the two. The empty circle and lack of arrow in one of the circles on the second row indicate that for that position no angle
could be given as the meet, resulting in a special “bottom” value instead. The operators were computed using a flat structuring
element consisting of three adjacent positions, using periodic boundary conditions. Source code available at http://bit.ly/
1Rz8SVp.

5.5 Angle sponge

Another problem area for the lattice formalism is that of periodic value spaces, like angles. Several solutions

[3, 6, 34, 41, 45] have been proposed to deal with angles, but none of them really deal with the inherent

periodicity of angles. This is not by accident: it is impossible to have a periodic lattice.

Interestingly, we can create a periodic sponge: consider an angle a to be less than an angle b – both

considered to be in the interval [0, 2π) – if and only if b − π < a ≤ b or b − π < a − 2π ≤ b. In other words: a is

less than b if and only if a is less than 180

◦
clockwise from b.

It is clear that the above gives an orientation (the relation is re�exive and antisymmetric). Furthermore, if

a set of angles has a common upper bound, all anglesmust lie on some arc of less than 180 degrees, and there

must be a unique supremum (similarly for the in�mum). We can thus conclude that we have de�ned a (peri-

odic) conditionally complete sponge on angles. It can be veri�ed that Eq. (2) holds in this sponge (since J(P),
when de�ned, is always an element of P), so due to Theorem 8, the “opening” and “closing” demonstrated in

Fig. 5 are idempotent (interestingly, applying a closing after having applied an opening also seemed to have

no e�ect).

In practice, it might be objectionable not to be able to deal with sets of angles spanning more than 180

◦
.

An easy method for making this work is to add a “smallest” and a “largest” element that are given as meet

or join when the angles do span more than 180

◦
, e�ectively encoding the lack of a clear smallest or largest

angle.

5.6 A non-sponge: The Loewner order

The Loewner order [9] considers a (symmetric) matrix A less than or equal to another (symmetric) matrix B if

the di�erence B−A is positive semide�nite. This is a partial order compatible with the vector space structure

of (symmetric) matrices, but it does not give rise to a lattice, or even a sponge. Any join/meet based on the

Loewner order cannot satisfy both the absorption property andpart preservation at the same time (we gave an

example where part preservation breaks down in previous work [31]). As a partial �x, Burgeth et al. originally

[12] computed the meet as the matrix inverse of the join of the inverses, so at least positive semide�niteness
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would be preserved. However, matrix inversion does not reverse the order, and this still does not solve the

problem that no upper bound of two matrices can be a lower bound of all common upper bounds.

In later work Burgeth et al. compute both the join andmeet in a way that is compatible with the Loewner

order [10, 11], but as a result they have to be careful not to get values outside the original range. The resulting

structure is likely to be a χ-lattice [38], but it is not yet clear how important this is from a morphological

perspective. Similarly, perhaps it is possible to (for example) design proper openings and closings through

some other means than directly translating the traditional lattice-based de�nitions. However, based on the

arguments presented by Pasternak et al. [40] and some preliminary experimentation, we expect it could be

interesting to simply use the inner product sponge directly on the vector space of symmetric tensors (which

would still preserve positive semide�niteness).

6 Operators
One of the main advantages of the lattice-theoretical framework is that it allows us to classify operators into

various categories based on certain lattice-related properties, and that these classes often have useful and in-

tuitive interpretations. Although it remains to be seen to what extent existing classes carry over to the sponge

case, here we show that at least one crucial property is preserved when we directly translate so-called “struc-

tural openings” (and in the process, that we can reason about such things for sponges in general). We also

consider levelings.

6.1 Openings

We can try to translate structural dilations and erosions on images de�ned on a (translation-invariant) do-

main E to the sponge case. We then get a dilation-like operator de�ned by δA(f )(x) = J({f (y) | x ∈ Ay}) and
an erosion-like operator εA(f )(x) = M({f (y) | y ∈ Ax}) (where x ∈ E and Ay is taken to be the structuring

element translated by y). These operators need not commutewith taking the join ormeet, respectively, nor do

they need to satisfy δA(f ) = M({g | f ≤ εA(g)}) like in a complete lattice [36, Prop. 3.14]. It is an open question

whether there exist di�erent de�nitions that recover a bit more of the traditional properties (while remaining

compatible with the lattice case). Nevertheless, we can use these operators to de�ne an operator that behaves

a bit like a lattice-based structural opening (and is a structural opening if the sponge is a lattice):

γA(f )(x) = δA(εA(f ))(x) = J({M({f (z) | z ∈ Ay}) | x ∈ Ay}).

It is immediately obvious that the resulting operator is still guaranteed to be anti-extensive (due to each of

the M({f (z) | z ∈ Ay}) being a lower bound of f (x)), something which is not guaranteed by Loewner-based

operators [31]. The operator may no longer be idempotent though. Increasingness is also potentially violated,

but this is mostly due to the meet and join not necessarily being increasing in a sponge, so it maymake sense

to look for a di�erent property. In any case, the above shows that for any image, the set of lower bounds that

can be written as a dilation of some other image is non-empty, so it should be possible to implement some

sort of projection onto this set, giving an operator that would clearly be anti-extensive and idempotent.

A slightlymore promising avenue of attackmight be de�ning an opening in terms of root signals. Suppose

γ is an opening on a complete latticeL. Its invariance domain is the set of all elements ofL that are �xed under

application of γ (also known as root signals): Inv(γ) = {a | a ∈ L and γ(a) = a}. We then have [36, Th. 3.23]:

γ(a) =
∨
{b | b ∈ Inv(γ) and b ≤ a}.

Conversely, given some subset I of L, the operator γ′(a) =
∨
{b | b ∈ I and b ≤ a} is clearly anti-extensive

and increasing. It is also idempotent, as the subset of I that is less than γ′(a) clearly contains at least all the

elements that were used for γ′(a), and we already concluded that γ′ is anti-extensive. γ′ is thus an opening

(although its invariance domain need not be equal to I).
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So what if we take the above as the de�nition of an opening? We would then have the following sponge-

based (candidate) opening (with I ⊆ S):

γI(a) = J(b | b ∈ I and b � a). (3)

The sponge-based “opening” γI de�ned above is clearly anti-extensive (J(a, γI(a)) = a), due to part preserva-

tion and the fact that we take the join of elements that are all lower bounds of the argument. Also, for any

b ∈ I we have b � a ⇒ b � γI(a), because of the de�nition above and the absorption laws. As a conse-

quence γI(γI(a))must be the join of a superset of the elements in the join used to compute γI(a). Based on the

absorption laws and subassociativity, we have J(P∪Q) � J(P) and thus γI(γI(a)) � γI(a). However, we also

already showed that γI is anti-extensive. We can thus conclude that γI as given above is both idempotent and

anti-extensive.

Again, increasingness in its original form may not hold. However, there might be alternatives. For exam-

ple, Proposition 10 shows that for identifying openings, γ(a) � b ⇒ γ(a) � γ(b) could replace increasingness

as a criterion, and this property is only slightly stronger than the property of γI that for any b ∈ I we have

b � a ⇒ b � γI(a) (since b = γI(b) for all b ∈ I).

Proposition 10. In a lattice L, the combination of anti-extensivity, idempotence, and increasingness is equiv-
alent to the combination of anti-extensivity, idempotence, and γ(a) ≤ b ⇒ γ(a) ≤ γ(b).

Proof. First assume that γ is anti-extensive, idempotent, and increasing. We then have γ(a) ≤ b ⇒ γ(γ(a)) =
γ(a) ≤ γ(b) (for all a, b ∈ L). This proves the �rst half of the statement.

Now assume that γ is anti-extensive and idempotent, and satis�es γ(a) ≤ b ⇒ γ(a) ≤ γ(b). We then have

a ≤ b ⇒ γ(a) ≤ b ⇒ γ(a) ≤ γ(b). This concludes the proof.

The above shows that we can de�nitely de�ne something that has all (most of) the hallmarks of an opening,

but having to compute the join over all elements in I that are a lower bound of the input might be a bit too

much, both because in a general sponge it might be hard to identify this set, and because it might not be

powerful enough (see Fig. 6). Instead, it might be more natural/convenient to use the maximal elements of

I ∩ L(a). This is well-de�ned as long as the sponge is conditionally complete and I is tournament-sup com-

plete. In a (complete) lattice the join of the maximal elements of a chain-sup complete set is the same as

the join of the original set [47, Prop. 1]. In a general sponge, the analogous statement is not necessarily true,

leading us to explicitly de�ne

γNI (a) = J(ψN({b | b ∈ I and b � a})). (4)

Here we assume that I is tournament-sup complete, and the underlying sponge conditionally complete. We

should also have that for every element a of the sponge, there is some lower bound of a in I. It can be veri�ed

that γNI is (still) anti-extensive, and Theorem 7 shows that under certain conditions it is also idempotent.

However, in general it is de�nitely di�erent from γI .

Proposition 11. γNI (i) = i for all i ∈ I. In other words: I ⊆ Inv(γI).

Proof. Clearly, i ∈ I ∩ L(i), and since i is also an upper bound of I ∩ L(i), it must be the only maximal element

in I ∩ L(i).

We warn the reader not to assume that I is precisely the set of invariant elements (this need not even hold

in the lattice context), nor to assume that γI = γ
Inv(γI ) (which is the case when the sponge is a lattice). It is

currently not clear whether the last equality only holds when the sponge is a lattice, or whether it holds more

generally, but for the moment we cannot assume that it holds in a general sponge.

Theorem 7. In a conditionally complete sponge satisfying Eq. (2), γNI is idempotent. The set I should be
tournament-sup complete, contain a lower bound for every element of the sponge, and satisfy I ∩ L(a) v
ψN(I ∩ L(a)) for all a in the sponge.
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f (2) = γI(f )(2)

f (1)

f (3)

γNI (f )(2)

Figure 6: Illustration of the di�erence between γI as de�ned in Eq. (3) and γN
I as de�ned in Eq. (4), using the 2D inner product

sponge. The set I is the same set used in the proof of Theorem 8, with the structuring element consisting of just two adjacent
positions. The grey area associated with f (1) is the set of weights that make the (translated) structuring element {1, 2} a lower
bound of f , the grey area associated with f (3) shows the same for the structuring element {2, 3}. Circles indicate boundaries
of sets of lower bounds of points. The origin is depicted by a small black dot.

Proof. Consider the sets P = ψN(I ∩ L(a)) and Q = I ∩ L(γNI (a)), for some a in the sponge. We then have

γNI (a) = J(P) and γNI (γ
N
I (a)) = J(ψN(Q)). We will prove that ψN(Q) = P, and by extension that γNI (γ

N
I (a)) =

γNI (a). Clearly, P ⊆ Q and P � a. Furthermore, for all q ∈ Q, we have q � J(P). Since we assumed Eq. (2)

holds in this sponge, we now have q � a or [∃p ∈ P : q � p]. If q � a, then q ∈ I ∩ L(a), and as a result

q ∈ P or q ∈ ̸ ψN(Q), since it is bounded from above by some element in P (due to the last condition on I).
Alternatively, if q �̸ a, there must be some p ∈ P (p ≠ q) such that q � p, in which case q cannot be in ψN(Q).
Summarizing, every q ∈ Qmust be either in P, or not in ψN(Q): ψN(Q) ⊆ P. Conversely, since P ⊆ Q, ψN(Q)
cannot possibly be a strict subset of P, so we have ψN(Q) = P. This concludes the proof.

The last condition on I in Theorem 7 may look at little strange, but Theorem 8 shows that there are in fact

(non-trivial) sets that do have this property. Also, Wilkinson [47, Prop. 1] has shown that it always holds in a

lattice. It remains to be seen whether this is the best way to generalize openings to sponges, but at least we

can see that it neatly generalizes a lattice-based de�nition, and that there are non-trivial sponges (that are

not lattices) and sets I to which Theorem 7 applies.

Theorem 8 (Structural “openings”). Take E to be some vector space and S a conditionally complete sponge
with a least element 0. Consider Ay to be the set {x + y | x ∈ A} for a (strict) subset A of E and all elements y of
E. The operator γA on Fun(E, S) given by γA(f )(x) = J({M({f (z) | z ∈ Ay}) | x ∈ Ay}) can be expressed as γNI
for a set I that can be used in Theorem 7. Here A ⊂ E is a so-called “�at” structuring element.

Proof. In a slight abuse of notation, we write (with a ∈ S and x, y ∈ E)

(a Ay)(x) =
{
a x ∈ Ay, and
0 otherwise.

Now, consider the set I = {a Ay | y ∈ E and a ∈ S}. Clearly, I ⊆ Fun(E, S), and since it contains x 7→ 0 (0Ay
for any y ∈ E), it contains a lower bound for every element of Fun(E, S). To see that I is also tournament-

sup complete, suppose that two elements a Ax and b Ay are comparable. Then either Ax = Ay, a = 0 or

b = 0 must hold. In the latter two cases we can assume the �rst condition holds without loss of generality.

We thus have that Ax = Ay for any two elements a Ax and b Ay in a tournament contained in I. This means

the supremum (if it exists) of such a tournament is simply Ax weighted by the supremum of the weights (if it

exists) of the elements in the tournament. Clearly (if it exists) this is again an element in I, proving that Imust

be tournament-sup complete. It now just remains to show that I ∩ L(f ) v ψN(I ∩ L(f )) holds for all f in the

sponge Fun(E, S). This follows from the analysis below, which essentially shows that I ∩ L(f ) is
⋃
y∈E{a Ay |

a ∈ S and a Ay � f}, whose maximal elements can neatly be given by {M({f (z) | z ∈ Ay})Ay | y ∈ E}. It can
be checked that the latter indeed contains an upper bound for every element of the former. I is thus suitable
for use in Eq. (4).
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We now note that γA(f ) = δA(εA(f )) is a join of elements from I: γA(f ) = J({εA(f )(y)Ay | y ∈ E}). Fur-
thermore, we have a Ay � f if and only if a � {f (z) | z ∈ Ay}. It can now be seen that the singleton set

{εA(f )(y)Ay} = {M({f (z) | z ∈ Ay})Ay} = ψN({a Ay | a ∈ S and a Ay � f}). And since a Ax and b Ay
are comparable if and only if a = 0, b = 0, or Ax = Ay, we have {εA(f )(y)Ay | y ∈ E} = ψN(I ∩ L(f )). This
concludes the proof.

Note that the above proof does not rely on Eq. (2). However, the “opening” is not (necessarily) idempotent

unless Eq. (2) holds. Also note that even though in some sponges structural “openings” are idempotent, we

still do not (necessarily) have εA ◦ δA ◦ εA = εA.

6.2 Levelings

Another interesting kind of operator is a “leveling”. This term is used both for the operator and the result of

applying such an operator. Formally, if L is a modular lattice, then g ∈ L is a leveling of f ∈ L if and only if

g = ε(g)∨(f∧δ(g)) [39] (or, equivalently, g = (ε(g)∨f )∧δ(g)). Here ε and δ are assumed to be an anti-extensive

erosion and its corresponding extensive dilation, such that together they form an adjunction.

Following Zanoguera and Meyer [48], consider g to be an A-leveling of f if and only if g = εA(g), where A
is a structuring element, and εA the corresponding structural pseudo-erosion. Here the sponge is assumed to

be set up in such a way that f is the lowest possible value. This construction can be justi�ed by going through

a meet-semilattice like the one developed by Heijmans and Keshet [37]. As an example, consider a vector-

valued image f : E→V, with V a Hilbert space. We could then set up a sponge that uses the inner product

sponge per position x ∈ E, with f (x) as the origin:

f
1
� f

2
⇐⇒

[
∀x ∈ E : (f

1
(x) − f (x)) · (f

2
(x) − f

1
(x)) ≥ 0

]
.

This precisely recovers the vector levelings de�ned by Zanoguera andMeyer [48].We can nowde�ne levelings

for any situation in which we can de�ne a family of sponges such that for each possible value there is a

(unique) sponge that has that value as smallest element.

7 Conclusion
There is a need formathematicalmorphology beyondwhat can be donewith lattices. To this end,we have pro-

posed a novel algebraic structure (closely related to the notion of a weakly associative lattice). This structure

generalizes lattices not by forgoing (unique) meets and joins, but rather by letting go of having a (transitive)

order. It preserves the absorption property though, as well as a property called “part preservation”. These

properties are important in the intuitive interpretation of joins and meets: absorption guarantees that the

meet of a set is a lower bound of the set, while part preservation guarantees that a meet is truly the “greatest”

lower bound, in the sense that it is an upper bound of all other lower bounds.

To demonstrate the potential relevance of sponges, some existing methods are shown to fall within this

new framework, while the Loewner-order is shown to fall outside it (correlating with some of the issues it

has). All in all, we present the following (kinds of) sponges:

Inner product Based on a previously existing vector leveling scheme [48], this type of sponge is applicable

to any Hilbert space, and provides rotation- and scale-invariant joins and meets.

Hyperbolic Previously presented as a pseudo-morphologicalmethod for �ltering imageswhose pixel values

are normal distributions [4, 5], we show that it is in fact a sponge, and suggest it may also be interesting

for colour images if a di�erent reference point can be used.

Spherical We present a new sponge that can be used on any (hyper)sphere, as long as we can pick a partic-

ular point as the minimal point. This sponge turns out to be isomorphic to the inner product sponge.

Bereitgestellt von | University of Groningen
Angemeldet

Heruntergeladen am | 06.11.17 16:15



38 | Jasper J. van de Gronde and Jos B. T.M. Roerdink

Hemispherical Also isomorphic to the inner product sponge, this type of sponge might be useful wherever

the value space consists of (discrete) probability distributions.

Angle Our simplest sponge is arguably the sponge on angles. It demonstrates that sponges can be periodic,

something which is utterly impossible with lattices.

One advantage of recognizing these as sponges rather than ad-hoc constructions is that sponges guarantee

relatively intuitive interpretations of joins and meets. Also, sponges allow us to reason about the structure

itself. For example:we can recognize conditionally complete semisponges and see that any conditionally com-

plete semisponge is a full (conditionally complete) sponge. It may also be possible to give characterizations

of certain classes of sponges, as has been done for weakly associative lattices [42].

A start is made in showing how sponges might allow reasoning about operators, similar to how this is

typically done in lattice-basedmorphology. So far, especially openings and levelings appear to be reasonably

compatible with sponges, while erosions and dilations may require some rethinking. In particular, openings

allow generalization to sponges in the sense that certain de�nitions of openings in the lattice context give

rise to operators that are anti-extensive on all sponges, and idempotent on some sponges (in particular the 2D

inner product sponge).We suspect these operatorsmayalso satisfy a property that can replace increasingness.

It may also be possible to de�ne “openings” in terms of projections onto certain sets.

In terms of future work, the �eld is wide open: are sponges the “right” generalization of lattices? What

kinds of sponges give what opportunities? What classes of operators can be de�ned? The list of open ques-

tions is endless. Also, it would be interesting to see if additional (useful) sponges can be constructed or found

in the literature. For example, onemaywonder whether some of themore algebraicmethods given by Angulo

[2], Burgeth et al. [13] give rise to sponges. In addition, itwouldbeuseful to establish “recipes” for constructing

sponges that agree with a given preorder, as an alternative to a lexicographical cascade or other disambigua-

tion methods [1, 6, 17, 18, 46]. It may even be interesting to combine the concept of h-adjunctions [28] with

sponges.
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vector levelings. We would also like to thank Emmanuel Chevallier for numerous discussions on the prop-

erties and possible applications of sponges, as well as recognizing that the two de�nitions of sponges are

equivalent.

This research was (partially) funded by the Netherlands Organisation for Scienti�c Research (NWO),
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A Algebraic structures
In this appendix we give an extendedmotivation for the statements and accompanying Euler diagram (Fig. 1)

in Section 3.

Proposition 12. WALs, sponges and partially ordered sets generalize lattices.

(a) (b) (c)

Figure 7: (a) An orientation of six elements that is a WAL, but not a sponge (arrows point in the direction of larger values). There
are two cycles, with every element in the right cycle being an upper bound of every element in the left cycle. (b) An orientation
that is not a 2-sponge. (c) A sponge that violates weak transitivity.
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Proof. That partially ordered sets generalize lattices is well-known. That WALs generalize lattices is fairly

straightforward, since they satisfy the same properties as lattices, except for associativity, which is replaced

by weak associativity or, equivalently, part preservation. It is fairly straightforward to check that part preser-

vation is implied by associativity.

Proposition 13. There are WALs that are not sponges (and vice versa).

Proof. Figure 7a provides an example of a WAL that is not a sponge. The orientation is set up such that any

two elements have a join (being one of the elements, and that the set of three elements in the leftmost cycle

has three common upper bounds, but no join. As a consequence, it is a WAL but not a sponge. Conversely,

the inner product sponge is a clear example of a sponge that is not a WAL (not every pair of elements has a

join).

Proposition 14. AWAL that is also a partial order is a lattice (and thus also a sponge).

Proof. This follows from the fact that a WAL guarantees that any pair has a join/meet. Since a lattice is pre-

cisely a partial order with that guarantee, a WAL that is also a partial order must be a lattice (and thus also a

sponge, since sponges generalize lattices).

Proposition 15. A partially ordered set that is also a 2-sponge is a sponge.

Proof. If a partially ordered set is a 2-sponge, any pair of elements with a common upper bound must have a

join. Now consider a �nite set of more than two elements (with a common upper bound): P={a
1
, a

2
, . . . , an}.

Assume j = jn, with j
1
= a

1
and ji = J(ji−1, ai) for 1 < i ≤ n. If we have p ≤ u for all p ∈ P, then, by a similar

reasoning as in Proposition 8, ji ≤ u for all i between 1 and n. This also means j is well-de�ned. And due to

transitivity, jmust be an upper bound of every element in the set P. It is now clear that j is the supremum (or

join) of P. As in�ma can be shown to exist analogously, we have now shown that any partially ordered set

that is also a 2-sponge is in fact a sponge.

It should be noted that a “partially ordered 2-sponge” need not be a lattice, as not all pairs of elements

necessarily have a join.

Proposition 16. There are partially ordered sets that are not 2-sponges (and vice versa).

Proof. It is easy to construct a partial order in which two elements have precisely two common upper bounds,

neither of which is an upper bound of the other. Clearly this is not a 2-sponge. Conversely, any 2-sponge

(or sponge in general, which is also a 2-sponge) whose orientation lacks transitivity is clearly not a partial

order.

Proposition 17. 2-sponges are strictly more general than both WALs and sponges.

Proof. Consider an oriented set with three elements a, b, and c, such that a � b, b � c, but nothing else

(apart from the relations implied by re�exivity) holds. For any pair of elements with a common upper bound

there exists a supremum (and likewise for the in�mum), but there is no supremum for the pair (a, c), and
there is also no supremum for the entire set of three elements.

Proposition 18. Oriented sets are strictly more general than 2-sponges and partial orders.

Proof. That oriented sets are strictly more general than partial orders can be seen from the example used in

Proposition 17 (in a partial order we would necessarily also have a � c). The orientation shown in Fig. 7b

demonstrates that an orientation need not be a 2-sponge: the two elements on the left clearly have common

upper bounds, but no supremum.

Proposition 19. There are sponges that are also a WAL, but not a lattice.

Bereitgestellt von | University of Groningen
Angemeldet

Heruntergeladen am | 06.11.17 16:15



40 | Jasper J. van de Gronde and Jos B. T.M. Roerdink

Proof. The spherical sponge provides an example.

Proposition 20. Not all sponges have sets of lower bounds that are closed for meets (so a, b � c ⇒ M(a, b) �
c may not hold).

Proof. Figure 7c provides an example of a sponge that violates the mentioned property.

References
[1] Angulo J. Morphological color processing based on distances. Application to color denoising and enhancement by centre

and contrast operators. In The IASTED International Conference on Visualization, Imaging, and Image Processing. 2005
pages 314–319

[2] Angulo J. Supremum/In�mum and Nonlinear Averaging of Positive De�nite Symmetric Matrices. In F. Nielsen, R. Bhatia,
editors, Matrix Information Geometry, pages 3–33. Springer Berlin Heidelberg, 2013. 10.1007/978-3-642-30232-9_1

[3] Angulo J., Lefèvre S., Lezoray O. Color Representation and Processing in Polar Color Spaces. In C. Fernandez-Maloigne,
F. Robert-Inacio, L. Macaire, editors, Digital Color Imaging, chapter 1, pages 1–40. John Wiley & Sons, Inc, Hoboken, NJ, USA,
2012. 10.1002/9781118561966.ch1

[4] Angulo J., Velasco-Forero S. Complete Lattice Structure of Poincaré Upper-Half Plane and Mathematical Morphology for
Hyperbolic-Valued Images. In F. Nielsen, F. Barbaresco, editors, Geometric Science of Information, volume 8085 of LNCS.
Springer Berlin Heidelberg, 2013 pages 535–542. 10.1007/978-3-642-40020-9_59

[5] Angulo J., Velasco-Forero S. Morphological Processing of Univariate Gaussian Distribution-Valued Images Based on Poincaré
Upper-Half Plane Representation. In F. Nielsen, editor, Geometric Theory of Information, Signals and Communication
Technology, pages 331–366. Springer International Publishing, 2014. 10.1007/978-3-319-05317-2_12

[6] Aptoula E., Lefèvre S. On the morphological processing of hue. Image Vis. Comput., 2009. 27(9), 1394–1401.
10.1016/j.imavis.2008.12.007

[7] Astola J., Haavisto P., Neuvo Y. Vector median �lters. Proc. IEEE, 1990. 78(4), 678–689. 10.1109/5.54807
[8] Birkho� G. Lattice theory, volume 25 of American Mathematical Society Colloquium Publications. American Mathematical

Society, 1961
[9] Burgeth B., Bruhn A., Didas S., Weickert J., Welk M. Morphology for matrix data: Ordering versus PDE-based approach. Image

Vis. Comput., 2007. 25(4), 496–511. 10.1016/j.imavis.2006.06.002
[10] Burgeth B., Kleefeld A. Morphology for Color Images via Loewner Order forMatrix Fields. In C.L. LuengoHendriks, G. Borgefors,

R. Strand, editors, Mathematical Morphology and Its Applications to Signal and Image Processing, volume 7883 of LNCS,
pages 243–254. Springer Berlin Heidelberg, 2013. 10.1007/978-3-642-38294-9_21

[11] Burgeth B., Kleefeld A. An approach to color-morphology based on Einstein addition and Loewner order. Pattern Recognit.
Lett., 2014. 47, 29–39. 10.1016/j.patrec.2014.01.018

[12] Burgeth B., Papenberg N., Bruhn A., Welk M., Feddern C., Weickert J. Morphology for Higher-Dimensional Tensor Data via
Loewner Ordering. In C. Ronse, L. Najman, E. Decencière, editors, Mathematical Morphology: 40 Years On, volume 30 of
Computational Imaging and Vision, pages 407–416. Springer Netherlands, 2005. 10.1007/1-4020-3443-1_37

[13] Burgeth B., Welk M., Feddern C., Weickert J. Morphological Operations on Matrix-Valued Images. In T. Pajdla, J. Matas,
editors, Computer Vision – ECCV 2004, volume 3024 of LNCS, pages 155–167. Springer Berlin Heidelberg, 2004. 10.1007/978-
3-540-24673-2_13

[14] Burgeth B., Welk M., Feddern C., Weickert J. Mathematical Morphology on Tensor Data Using the Loewner Ordering. In
J. Weickert, H. Hagen, editors, Visualization and Processing of Tensor Fields, Math. Vis., pages 357–368. Springer Berlin
Heidelberg, 2006. 10.1007/3-540-31272-2_22

[15] Chevallier E., Angulo J. The discontinuity issue of total orders on metric spaces and its consequences for mathematical
morphology. Technical report, Centre de Morphologie Mathématique, MINES ParisTech, 2014

[16] Chevallier E., Chevallier A., Angulo J. N-ary Mathematical Morphology. In J.A. Benediktsson, J. Chanussot, L. Najman,
H. Talbot, editors, Mathematical Morphology and Its Applications to Signal and Image Processing, volume 9082 of LNCS,
pages 339–350. Springer International Publishing, 2015. 10.1007/978-3-319-18720-4_29

[17] Comer M.L., Delp E.J. Morphological operations for color image processing. J. Electron. Imaging., 1999. 8(3), 279–289.
10.1117/1.482677

[18] Deborah H., Richard N., Hardeberg J. Spectral Ordering Assessment Using Spectral Median Filters. In J.A. Benediktsson,
J. Chanussot, L. Najman, H. Talbot, editors, Mathematical Morphology and Its Applications to Signal and Image Processing,
volume 9082 of LNCS, pages 387–397. Springer International Publishing, 2015. 10.1007/978-3-319-18720-4_33

[19] Donnelly W., Lauritzen A. Variance Shadow Maps. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and
Games, I3D ’06. ACM, New York, NY, USA, 2006 pages 161–165. 10.1145/1111411.1111440

Bereitgestellt von | University of Groningen
Angemeldet

Heruntergeladen am | 06.11.17 16:15

http://dx.doi.org/10.1007/978-3-642-30232-9_1
http://dx.doi.org/10.1002/9781118561966.ch1
http://dx.doi.org/10.1007/978-3-642-40020-9_59
http://dx.doi.org/10.1007/978-3-319-05317-2_12
http://dx.doi.org/10.1016/j.imavis.2008.12.007
http://dx.doi.org/10.1109/5.54807
http://dx.doi.org/10.1016/j.imavis.2006.06.002
http://dx.doi.org/10.1007/978-3-642-38294-9_21
http://dx.doi.org/10.1016/j.patrec.2014.01.018
http://dx.doi.org/10.1007/1-4020-3443-1_37
http://dx.doi.org/10.1007/978-3-540-24673-2_13
http://dx.doi.org/10.1007/978-3-540-24673-2_13
http://dx.doi.org/10.1007/3-540-31272-2_22
http://dx.doi.org/10.1007/978-3-319-18720-4_29
http://dx.doi.org/10.1117/1.482677
http://dx.doi.org/10.1007/978-3-319-18720-4_33
http://dx.doi.org/10.1145/1111411.1111440


Generalized Morphology using Sponges | 41

[20] Facchi P., Kulkarni R.,Man’koV.I.,MarmoG., Sudarshan E.C.G., Ventriglia F. Classical andquantumFisher information in the ge-
ometrical formulation of quantummechanics. Physics Letters A, 2010. 374(48), 4801–4803. 10.1016/j.physleta.2010.10.005

[21] Farup I. Hyperbolic geometry for colour metrics. Optics Express, 2014. 22(10), 12369+. 10.1364/oe.22.012369
[22] Franchi G., Angulo J. Ordering on the Probability Simplex of Endmembers for Hyperspectral Morphological Image Processing.

In J.A. Benediktsson, J. Chanussot, L. Najman, H. Talbot, editors, Mathematical Morphology and Its Applications to Signal
and Image Processing, volume 9082 of LNCS, pages 410–421. Springer International Publishing, 2015. 10.1007/978-3-319-
18720-4_35

[23] Fried E. Weakly associative lattices with join and meet of several elements. Ann. Univ. Sci. Budapest. Eötvös Sect. Math.,
1973. 16, 93–98

[24] Fried E., Grätzer G. A nonassociative extension of the class of distributive lattices. Paci�c J. Math., 1973. 49(1), 59–78
[25] Fried E., Grätzer G. Some examples of weakly associative lattices. Colloq. Math., 1973. 27, 215–221
[26] Fried E., Grätzer G. Partial and free weakly associative lattices. Houston J. Math., 1976. 2(4), 501–512
[27] Gomila C., Meyer F. Levelings in vector spaces. In Int. Conf. Image Proc., volume 2. IEEE, 1999 pages 929–933.

10.1109/icip.1999.823034
[28] Goutsias J., Heijmans H.J.A.M., Sivakumar K. Morphological Operators for Image Sequences. Comput. Vis. Image Underst.,

1995. 62(3), 326–346. 10.1006/cviu.1995.1058
[29] Grätzer G. General Lattice Theory. Birkhäuser Verlag, second edition, 2003
[30] Gromov M. In a Search for a Structure, Part 1: On Entropy, 2013. Retrieved on 2015-06-18
[31] van de Gronde J.J., Roerdink J.B.T.M. Frames, the Loewner order and eigendecomposition for morphological operators on

tensor �elds. Pattern Recognit. Lett., 2014. 47, 40–49. 10.1016/j.patrec.2014.03.013
[32] van de Gronde J.J., Roerdink J.B.T.M. Group-Invariant Colour Morphology Based on Frames. IEEE Trans. Image Process., 2014.

23(3), 1276–1288. 10.1109/tip.2014.2300816
[33] van de Gronde J.J., Roerdink J.B.T.M. Sponges for Generalized Morphology. In J.A. Benediktsson, J. Chanussot, L. Najman,

H. Talbot, editors, Mathematical Morphology and Its Applications to Signal and Image Processing, volume 9082 of LNCS,
pages 351–362. Springer International Publishing, 2015. 10.1007/978-3-319-18720-4_30

[34] Hanbury A.G., Serra J. Morphological operators on the unit circle. IEEE Trans. Image Process., 2001. 10(12), 1842–1850.
10.1109/83.974569

[35] Harary F., Moser L. The Theory of Round Robin Tournaments. The American Mathematical Monthly, 1966. 73(3).
10.2307/2315334

[36] Heijmans H.J.A.M. Morphological image operators. Academic Press, 1994
[37] Heijmans H.J.A.M., Keshet R. Inf-Semilattice Approach to Self-Dual Morphology. J. Math. Imaging Vis., 2002. 17(1), 55–80.

10.1023/a:1020726725590
[38] Leutola K., Nieminen J. Posets and generalized lattices. Algebra Universalis, 1983. 16(1), 344–354. 10.1007/bf01191789
[39] Meyer F. Alpha-Beta Flat Zones, Levelings and Flattenings. In H. Talbot, R. Beare, editors, Mathematical morphology, pages

47–68. CSIRO Publishing, 2002
[40] Pasternak O., Sochen N., Basser P.J. The e�ect of metric selection on the analysis of di�usion tensor MRI data. NeuroImage,

2010. 49(3), 2190–2204. 10.1016/j.neuroimage.2009.10.071
[41] Peters R.A. Mathematical morphology for angle-valued images. Proceedings of the SPIE, 1997. 3026, 84–94.

10.1117/12.271144
[42] Rachůnek J. Semi-ordered groups. Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika, 1979.

18(1), 5–20
[43] Serra J. Anamorphoses and function lattices. In E.R. Dougherty, P.D. Gader, J.C. Serra, editors, Image Algebra and Morpho-

logical Image Processing IV, volume 2030 of SPIE Proceedings. 1993 pages 2–11. 10.1117/12.146650
[44] Skala H.L. Trellis theory. Algebra Universalis, 1971. 1(1), 218–233. 10.1007/bf02944982
[45] Tobar M.C., Platero C., González P.M., Asensio G. Mathematical morphology in the HSI colour space. In J. Martí, J. Benedí,

A. Mendonça, J. Serrat, editors, Pattern Recognition and Image Analysis, volume 4478 of LNCS, chapter 59, pages 467–474.
Springer Berlin Heidelberg, 2007. 10.1007/978-3-540-72849-8_59

[46] Vardavoulia M.I., Andreadis I., Tsalides P. Vector Ordering and Morphological Operations for Colour Image Processing:
Fundamentals and Applications. Pattern Analysis & Applications, 2002. 5(3), 271–287. 10.1007/s100440200024

[47] Wilkinson M.H.F. Hyperconnections and Openings on Complete Lattices. In P. Soille, M. Pesaresi, G.K. Ouzounis, editors,
Mathematical Morphology and Its Applications to Image and Signal Processing, volume 6671 of LNCS, pages 73–84. Springer
Berlin Heidelberg, 2011. 10.1007/978-3-642-21569-8_7

[48] Zanoguera F., Meyer F. On the implementation of non-separable vector levelings. In H. Talbot, R. Beare, editors, Mathematical
morphology, pages 369+. CSIRO Publishing, 2002

Bereitgestellt von | University of Groningen
Angemeldet

Heruntergeladen am | 06.11.17 16:15

http://dx.doi.org/10.1016/j.physleta.2010.10.005
http://dx.doi.org/10.1364/oe.22.012369
http://dx.doi.org/10.1007/978-3-319-18720-4_35
http://dx.doi.org/10.1007/978-3-319-18720-4_35
http://dx.doi.org/10.1109/icip.1999.823034
http://dx.doi.org/10.1006/cviu.1995.1058
http://dx.doi.org/10.1016/j.patrec.2014.03.013
http://dx.doi.org/10.1109/tip.2014.2300816
http://dx.doi.org/10.1007/978-3-319-18720-4_30
http://dx.doi.org/10.1109/83.974569
http://dx.doi.org/10.2307/2315334
http://dx.doi.org/10.1023/a:1020726725590
http://dx.doi.org/10.1007/bf01191789
http://dx.doi.org/10.1016/j.neuroimage.2009.10.071
http://dx.doi.org/10.1117/12.271144
http://dx.doi.org/10.1117/12.146650
http://dx.doi.org/10.1007/bf02944982
http://dx.doi.org/10.1007/978-3-540-72849-8_59
http://dx.doi.org/10.1007/s100440200024
http://dx.doi.org/10.1007/978-3-642-21569-8_7

	1 Introduction
	2 Definitions
	3 Related work
	4 Sponges
	4.1 Sponges as oriented sets
	4.2 Algebraic definition of sponges
	4.3 Equivalence of definitions
	4.4 Lower/upper bounds and preorders
	4.5 Tournaments and the reduction operator
	4.6 Further properties

	5 Examples
	5.1 Inner product sponge
	5.1.1 Deriving the inner product sponge

	5.2 Hyperbolic sponge
	5.3 Spherical sponge
	5.4 Hemispherical sponge
	5.5 Angle sponge
	5.6 A non-sponge: The Loewner order

	6 Operators
	6.1 Openings
	6.2 Levelings

	7 Conclusion
	A Algebraic structures

