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Symmetric Heyting relation algebras

with applications to hypergraphs

John G. Stell1

School of Computing, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT

United Kingdom

Abstract

A relation on a hypergraph is a binary relation on the set consisting of all the
nodes and the edges, and which satisfies a constraint involving the incidence
structure of the hypergraph. These relations correspond to join preserving map-
pings on the lattice of sub-hypergraphs. This paper introduces a generalization
of a relation algebra in which the Boolean algebra part is replaced by a Heyting
algebra that supports an order-reversing involution. A general construction for
these symmetric Heyting relation algebras is given which includes as a special
case the algebra of relations on a hypergraph. A particular feature of symmet-
ric Heyting relation algebras is that instead of an involutory converse operation
they possess both a left converse and a right converse which form an adjoint
pair of operations. Properties of the converses are established and used to
derive a generalization of the well-known connection between converse, comple-
ment, erosion and dilation in mathematical morphology. This provides part of
the foundation necessary to develop mathematical morphology on hypergraphs
based on relations on hypergraphs.
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1. Introduction

The notion of a relation on a set U is well-known and the study of prop-
erties of these subsets of U × U has led to the abstract notion of a relation
algebra [1]. Relations on U can be identified with the join preserving functions
on the Boolean algebra of subsets of U . Practical applications of this iden-
tification include mathematical morphology [2, 3] where taking U to be a set
of pixels, the subsets correspond to monochrome images. In this context the
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structuring elements used in image processing correspond to certain relations
on U , and some of the basic properties of morphological operations appear as
special cases of facts about relations on the set U .

A number of authors [4, 5, 6, 7] have proposed approaches to mathematical
morphology on subgraphs of a graph, or of a hypergraph, as an extension to
operations on subsets of a set. While the lattice theoretic basis of set-based
mathematical morphology has long been understood [8, 3], this is not the case
when we move to graphs and hypergraphs.

Previous work [9, 10] has shown how to characterize join preserving functions
on the lattice of subgraphs as relations of a particular kind. Further algebraic
properties of these relations were investigated in [11], which showed that the fa-
miliar involutory converse operation for relations on a set becomes two weaker
operations forming an adjunction or a Galois connection. The algebraic struc-
ture of a bi-Heyting algebra which is used in [9] also appears in a different
application to mathematical morphology in the work of Perret [12].

In the present paper, the constructions in [11], are extended to a more gen-
eral setting by moving from the concrete case of the full relation algebra on U to
a relation algebra. This clarifies both the features which are essential in these
constructions, and also the relationship between the two converse operations
and the two complement-like operations, the pseudocomplement and its dual.
A relation algebra consists of a Boolean algebra equipped with additional op-
erations which include converse and composition. When dealing with relations
on a hypergraph we no longer have a Boolean algebra, but we have a symmetric
Heyting algebra. A notion of ‘symmetric Heyting relation algebra’ (SHRA) is
proposed, and constructions which generate such algebras are identified. These
constructions include the relations on a hypergraph.

The structure of the paper is as follows. Section 2 reviews some well-known
basic concepts that we need later. Section 3 introduces hypergraphs and some
basic properties of relations on a hypergraph. These relations are not closed
under the usual operations of converse or complement, which raises the question
of whether there is a suitable generalization of relation algebra which fits the
case of relations on a hypergraph. To answer this question, Section 4 recalls the
existing notion of a symmetric Heyting algebra, that is a Heyting algebra with
an order-reversing involution. We then see that besides the pseudocomplement
and its dual found in any bi-Heyting algebra, a symmetric Heyting algebra
possesses two other unary operations which we call the left and right converses.

In Section 5 we extend symmetric Heyting algebras with an additional binary
operation to model the composition of relations. This leads to the definition of
a symmetric Heyting relation algebra, or SHRA for short. It is then justified
that these structures generalize relation algebras, and we establish some basic
properties that are used in Section 6 to provide a means of constructing SHRAs.
This construction takes an SHRA containing a pre-order element and uses this
element to find a sub-SHRA. Since a relation algebra is a special case of an SHRA
we can use this construction to obtain an SHRA inside a relation algebra. In
the special case of the full relation algebra on a set U this construction yields
the algebra of relations on a hypergraph as demonstrated in Section 7. An
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application to mathematical morphology on hypergaphs is presented in Section 8
and we end with conclusions in Section 9.

2. Preliminaries

This section provides preliminaries, to establish notation and terminology.

2.1. Lattices

Definition 1. A semilattice (A, ∗, 1) is a commutative monoid where x∗x = x
for all x ∈ A.

Definition 2. A lattice is an algebra (A,∨,∧,⊥,⊤) such that

1. both (A,∨,⊥) and (A,∧,⊤) are semilattices, and
2. for all x, y ∈ A, a ∨ b = b iff b ∧ a = a.

In a lattice we write 6 for the partial order defined by x 6 y if a∨ b = b. Given
any x, y ∈ A, the operation x 7→ x ∧ y will be denoted ∧ y. This underscore
notation will be used in a similar way for other operations.

Definition 3. A distributive lattice is a lattice satisfying the identity

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Definition 4. A Boolean algebra is an algebra (A,∨,∧, ,⊥,⊤) where

1. (A,∨,∧,⊥,⊤) is a distributive lattice, and
2. for all x ∈ A, x ∧ x = ⊥ and x ∨ x = ⊤.

2.2. Adjoints between pre-orders

We will use the category-theoretic terminology of adjunctions for situations
that are also known as Galois connections.

Definition 5. Let X and Y be sets each equipped with a pre-order (i.e. a
reflexive and transitive relation), and let f : X → Y and g : Y → X be
functions. If the condition fx 6 y ⇔ x 6 gy holds for all x ∈ X and all y ∈ Y ,
we say f is left adjoint to g.

Note that the condition fx 6 y ⇔ x 6 gy implies that both f and g are order
preserving. For if x1 6 x2 we have x2 6 gfx2 since fx2 6 fx2, and hence
x1 6 gfx2 so that fx1 6 fx2.

The notation f ⊣ g is used to mean that f is left adjoint to g, or equivalently
that g is right adjoint to f . The idea [13, p152], of viewing ⊣ as an arrow
(with the horizontal dash as the shaft of the arrow, and the vertical dash as
the head of the arrow) proceeding from the left adjoint to the right adjoint is
also adopted in diagrams where ⊣ may appear rotated as an arrow between two
other arrows as follows.

X

f
>

⊥
<

g

Y
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2.3. Heyting algebras

Definition 6. A Heyting algebra is an algebra (A,∨,∧,→,⊥,⊤) such that

1. (A,∨,∧,⊥,⊤) is a lattice, and

2. for all x, y, z ∈ A, x 6 y → z iff x ∧ y 6 z.

The basic results in Proposition 1 and Proposition 2 are proved in [14].

Proposition 1. An algebra (A,∨,∧,→,⊥,⊤) is a Heyting algebra iff

1. (A,∨,∧,⊥,⊤) is a lattice, and

2. the following identities hold for all x, y, z ∈ A.

(i) x → x = ⊤ (ii) x ∧ (x → y) = x ∧ y

(iii) y ∧ (x → y) = y (iv) x → (y ∧ z) = (x → y) ∧ (x → z)

�

Definition 7. A co-Heyting algebra is an algebra A = (A,∨,∧,�,⊥,⊤)
such that

1. (A,∨,∧,⊥,⊤) is a lattice, and

2. for all x, y, z ∈ A, x � y 6 z iff x 6 y ∨ z.

Note that a co-Heyting algebra with the ordering reversed will yield a Heyting
algebra, but the implication operation in this algebra will be x → y = y � x
and not x� y. The operation �, with a different notation, is called ‘subtraction’
by Lawvere [15, p9].

Definition 8. A bi-Heyting algebra is an algebra (A,∨,∧,�,→,⊥,⊤) such
that

1. (A,∨,∧,→,⊥,⊤) is a Heyting algebra, and

2. (A,∨,∧,�,⊥,⊤) is a co-Heyting algebra.

The properties of the Heyting implication and the co-Heyting subtraction can
be written as adjunctions:

∧ y ⊣ y → , and � y ⊣ y ∨ .

Every Boolean algebra is a bi-Heyting algebra by defining

x → y = x ∨ y and x � y = x ∧ y,

and x is equal both to x → ⊥ and to ⊤ � x. In an arbitrary bi-Heyting algebra
however, these two expressions provide distinct weaker versions of the comple-
ment which play an important role later in the paper. They are known as the
pseudocomplement: ¬x = x → ⊥ and the dual pseudocomplement: ¬x = ⊤�x.

Proposition 2. A Heyting algebra is a Boolean algebra iff ¬¬x = x holds for

all x. �
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Proposition 3. Let A be a bi-Heyting algebra and x ∈ A. Then ¬x 6
¬x. The

equality ¬x = ¬x holds for all x iff A is a Boolean algebra.

Proof. From ¬x∧x = ⊥ we get (¬x∧x)∨¬x = ¬x so that (¬x∨¬x)∧(x∨¬x) =
¬x and thus ¬x ∨ ¬x = ¬x.

If ¬x = ¬x holds then the operation satisfies both the requirements for a
complement. Conversely, in a Boolean algebra w ∧ x 6 y iff w 6 x ∨ y, so by
uniqueness of adjoints x → y = x∨ y and hence ¬x = x. Similarly x� y = x∧ y
and ¬x = x. �

2.4. Relation algebras

The notion of a relation algebra can be given in many equivalent ways. We
recall here the definition due to Chin and Tarski as presented in [16, p3] although
we have numbered the equations differently.

Definition 9. A relation algebra is an algebra A = (A,∨,∧, ,⊤,⊥, ; , 1, ˘ )
such that:

1. (A,∨,∧, ,⊤,⊥) is a Boolean algebra,

2. (A, ; , 1) is a monoid, and

3. the following hold for all x, y, z ∈ A:

(RA-i) (x ; y)˘= y̆ ; x̆, (RA-ii) ˘̆x = x, (RA-iii) (x ∨ y)˘= x̆ ∨ y̆,

(RA-iv) x ; (y ∨ z) = (x ; y) ∨ (x ; z), (RA-v) x̆ ; x ; y 6 y.

Note that we use the notation 1 rather than 1′ for the identity element for the
composition operation ; and that 0 is used for the complement of 1. The top
and bottom elements will always be denoted ⊤ and ⊥.

Every x ∈ A gives rise to an operation ;x on A which has a right adjoint,
namely the operation / x defined by y / x = y ; x̆. Composition on the left
also has a right adjoint. The operation x ; has the operation x\ as its right
adjoint where x\y = x̆ ; y. The two adjunctions ;y ⊣ /y and x ; ⊣ x\
mean that

x ; y 6 z iff x 6 z / y and x ; y 6 z iff y 6 x \ z.

3. Hypergraphs

3.1. Basic concepts

A hypergraph can be defined as consisting of a set N of nodes and a set
E of edges (or hyperedges) together with an incidence function i : E → PN
from E to the powerset of N . This approach allows several edges to be incident
with the same set of nodes, and also allows edges incident with the empty set of
nodes. An example is shown on the left in Figure 1 (adapted from [10]) where
the edges are drawn as curves enclosing the nodes with which they are incident.
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Figure 1: Left hand side: hypergraph with edge set E = {a, b, c, d, e, f} and node set N =
{s, t, u, v, w, x, y, z}. On the right: the corresponding relation ϕ on N ∪ E.

hypergraph subgraph K ¬K ¬K

Figure 2: Example showing the pseudocomplement and dual pseudocomplement of a subgraph

When studying relations on these structures it is more convenient to use an
equivalent definition, in which there is a single set comprising both the edges
and nodes together. This has been used in [9, 10] and is based on using a similar
approach to graphs in [17].

Definition 10. A hypergraph consists of a set U and a relation ϕ ⊆ U × U
such that for all u, v, w ∈ U ,

1. if (u, v) ∈ ϕ then (v, v) ∈ ϕ, and

2. if (u, v) ∈ ϕ and (v, w) ∈ ϕ then v = w.

From a hypergraph described in this way we can obtain the edges as those u ∈ U
for which (u, u) /∈ ϕ, whereas the nodes satisfy (u, u) ∈ ϕ. Figure 1 shows an
example. A subgraph of (U,ϕ) is defined as a subset K ⊆ U for which k ∈ K
and (k, u) ∈ ϕ imply u ∈ K. The dual hypergraph of (U,ϕ) is (U,ϕ∗), where
ϕ∗ = ϕ ∧ (1 ∨ ϕ̆). In the dual the edges and nodes are interchanged.

The subgraphs of a given hypergraph (U,ϕ) form a complete lattice which
is a sublattice of the Boolean algebra PU . This sublattice is not a Boolean
algebra as it is not closed under complementation. It is a bi-Heyting algebra
for which the special case of graphs rather than hypergraphs has been discussed
by Lawvere [18] and Reyes and Zolfaghari [19]. Figure 2 shows a subgraph K,
indicated by the unbroken edges and the nodes as solid discs, together with its
pseudocomplement and dual pseudocomplement.
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3.2. Relations on a hypergraph

The relations on a set U correspond to those functions, f , on the lattice of
subsets of U which preserve arbitrary joins. The preservation of arbitrary joins
means that f(

⋃
i∈I

Ai) =
⋃

i∈I
(fAi) for all I indexed families of subsets of U

for any I. In particular this includes the case I = ∅, so that join preserving
functions satisfy f(∅) = ∅.

To identify the ‘right’ notion of relation on a hypergraph, one approach is
to take these relations to be equivalent to the join preserving functions on the
lattice of subgraphs of (U,ϕ). This can be done, and it results in identifying the
relations on (U,ϕ) as relations on U which meet the constraints in the following
definition.

Definition 11. A relation x on U is a graphical relation on the hypergraph
(U,ϕ) when ϕ ; x 6 x and x ; ϕ 6 x.

It is, however, more convenient to work with an alternative characterization of
these relations, using what we will call h-relations, where h is a relation on U
of the following kind.

Definition 12. A relation h on U is an incidence relation if 1 6 h and
(h∧ 0) ; (h∧ 0) = ⊥. Given a set U with incidence relation h, a relation x on U
is an h-relation if x = h ; x ; h.

Writing h = (h ∧ 1) ∨ (h ∧ 0) = 1 ∨ (h ∧ 0) we can see that h ; h 6 h, so that
h is transitive as well as reflexive. In fact, h will be a poset, but antisymmetry
is not essential in what follows and we shall see later that it only needs to be a
pre-order.

The h-relations are actually a special case of the category-theoretic notion
of a distributor or a pro-functor [20, 21]. Although we do not need the full
generality of this notion here, it is worth noting that Bénabou [21] describes
distributors as “relations between (small) categories” and introduces the spe-
cial case of the categories being posets. Taking the poset h in this sense, the
distributors from h to h are exactly the h-relations.

We now consider the precise sense in which graphical relations correspond to
h-relations. It is straightforward to check that when (U,ϕ) is a hypergraph the
reflexive closure, ϕ◦, of ϕ is an incidence relation on U . Further, any incidence
relation h arises in this way since defining ϕ = (1∧ (h̆ ; (h∧ 0))∨ (h∧ 0)), gives
a hypergraph (U,ϕ) with ϕ◦ = h.

Distinct hypergraphs (U,ϕ1) and (U,ϕ2) can have (U,ϕ1
◦) = (U,ϕ2

◦) when,
for example, an element u ∈ U appears as an isolated node in (U,ϕ1) but as an
empty edge in (U,ϕ2). However, the following easily established result shows
that if (U,ϕ1

◦) = (U,ϕ2
◦) then the graphical relations on (U,ϕ1) and on (U,ϕ2)

coincide. This justifies the use of h-relations rather than graphical relations.

Proposition 4. Let (U,ϕ) be a hypergraph and x a relation on U . Then x is

a graphical relation on (U,ϕ) iff x is an h-relation where h = ϕ◦. �
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For a hypergraph (U,ϕ), the dual hypergraph (U,ϕ∗) is related to the con-
verse of the corresponding incidence relation. Clearly (ϕ∗)◦ = (ϕ◦)̆ and h is an

incidence relation iff h̆ is an incidence relation.
The subgraphs of a hypergraph given by an incidence relation h on a set U

are readily seen to be the subsets K ⊆ U such that k ∈ K and (k, u) ∈ h imply
u ∈ K.

3.3. Basic properties of h-relations

Although the following basic facts about h-relations follow from a more gen-
eral setting later in the paper, they provide a useful concrete motivation at this
point.

Lemma 5. Let h be a pre-order on U , let x and y be h-relations, and let z be

any relation on U .

1. h is an h-relation, and x ; h = x = h ; x.
2. z 6 h ; z ; h.
3. The relations U × U and ∅ are both h-relations.
4. x ∨ y is an h-relation.
5. x ∧ y is an h-relation.
6. x ; y is an h-relation.

Proof. We use basic properties of relations and the fact that h ; h = h, which
immediately establishes part 1.

2. Since 1 6 h, we have 1 ; z ; 1 6 h ; z ; h.
3. Since 1 6 h, we have U × U = h ; (U × U) ; h. Clearly ∅ = h ;∅ ; h.
4. h ; (x ∨ y) ; h = (h ; x ; h) ∨ (h ; y ; h) = x ∨ y.
5. h ; (x ∧ y) ; h 6 (h ; x ; h) ∧ (h ; y ; h) = x ∧ y. The reverse inclusion comes

from part 2.
6. Using h ; h = h and the fact that x and y are h-relations we have

h ; (x ; y) ; h = h ; (h ; x ; h) ; (h ; y ; h) ; h = x ; y. �

We use the notation h-Rel for the set of all h-relations. The special case of h = 1
includes all relations on U as h-relations. The set of all relations on U will be
denoted Rel. The above results show that h-Rel is closed under the operations
of union, intersection and composition in Rel, that h is the identity element
for composition in h-Rel, and that the greatest and least elements of h-Rel are
those in Rel. However, h-Rel is neither closed under complementation nor under
taking converses, as can be seen from the example in Figure 3. Note that in this
figure the relation h modelling the incidence structure is the reflexive closure of
the relation denoted by ϕ in the earlier discussion. This relation ϕ would not
include (a, a).

Let L denote the lattice of all subgraphs for a given (U, h). Given any
h-relation x, and any subgraph K ∈ L , we can check that defining x(K) =
{u ∈ U : ∃k ∈ K ((k, u) ∈ x)} makes the assignment K 7→ x(K) a join pre-
serving operation on L . The appropriate algebraic setting for these operations
is a quantale [22] and it is straightforward to check that we have the following
result [10].
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Figure 3: Hypergraph with edge a and node b showing the lattice of h-relations

Theorem 6. The h-relations in h-Rel form a quantale under composition of

relations, with unit h, which is isomorphic to the quantale of join preserving

functions from the lattice L to itself. �

What this result does not tell us is whether relations on a hypergraph have
analogues of the operations we find in a relation algebra, in particular converse
and complementation. We shall see that the analogue of the complement con-
sists, hardly surprisingly in view of the bi-Heyting structure of the lattice of
subgraphs, of a pseudocomplement and its dual. In addition there are two con-
verse operations which we will now explore together with their connection to
the weaker complements.

3.4. The converse-complement operation

Although h-relations are closed neither under complement nor under con-
verse, they are closed under their combination, that is whenever x is an h-
relation then so is x̆ = x̆.

Lemma 7. Let x be any relation. Then h ; x ; h = x iff h̆ ; x ; h̆ = x.

Proof. The operation h ; ; h : Rel → Rel is left adjoint to h \ / h. Hence

x 6 h \ x / h if and only if h ; x ; h 6 x. Writing h \ x / h as (h̆ ; x ; h̆) gives

h ; x ; h 6 x if and only if h̆ ; x ; h̆ 6 x. The result follows since x 6 h ; x ; h and
x 6 h̆ ; x ; h̆ by Lemma 5. �

An immediate corollary is the following which establishes the important fact
that h-relations are closed under the converse-complement.

Proposition 8. For x ∈ Rel the following four statements are equivalent

(i) x ∈ h-Rel (ii) x ∈ h̆-Rel (iii) x̆ ∈ h̆-Rel (iv) x̆ ∈ h-Rel.
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Proof. The equivalence of (i) and (ii) is immediate from Lemma 7. For the

other parts, h ; x ; h = x iff h̆ ; x̆ ; h̆ = x̆ iff h ; x̆ ; h = x̆ by Lemma 7. �

It is this converse-complement operation that is key to understanding the
algebra of relations on a hypergraph. However, the general picture is not re-
stricted to hypergraphs and we now begin to explore the more general setting
by considering Heyting algebras equipped with an order-reversing involution.

4. Symmetric Heyting algebras

The notion of symmetric Heyting algebra is due to A. Monteiro in the 1960s
and the extensive development was brought together in the substantial pa-
per [23]. Here we only need some basic concepts, but as far as we have been
able to determine the significance of these structures in the algebra of relations
on hypergraphs has not been noted before.

4.1. Basic properties

Definition 13. A symmetric Heyting algebra is an algebra (A,∨,∧,→
,⊥,⊤,a) where

1. (A,∨,∧,→,⊥,⊤) is a Heyting algebra,

2. the operation a : A → A satisfies

(a) aax = x,
(b) x 6 y ⇒ ay 6 ax where 6 is the order in the Heyting algebra.

In a symmetric Heyting algebra, the operation a will be called the symmetry.
Examples of symmetric Heyting algebras include the following.

1. Any Boolean algebra with complement as the symmetry.

2. Any relation algebra with the converse-complement as the symmetry.
Thus symmetries need not be unique.

3. The algebra of relations on a hypergraph with the converse complement
operation as the symmetry (justified by the results in Section 7).

4. If B is a Boolean algebra, consider the set

A = {(x1, x2) ∈ B ×B | x1 6 x2}.

This is a Heyting algebra with joins and meets defined componentwise and
where

(x1, x2) → (y1, y2) = ((x1 ∨ y1) ∧ (x2 ∨ y2), x2 ∨ y2).

The symmetry a(x1, x2) = (x2, x1) makes this a symmetric Heyting alge-
bra.

We gather together some basic properties of symmetric Heyting algebras.
The proofs of these are straightforward calculations.
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Proposition 9. Let (A,∨,∧,→,⊥,⊤,a) be a symmetric Heyting algebra. Then

1. a(x ∨ y) = ax ∧ay and a(x ∧ y) = ax ∨ay,
2. x ∧ y = a(ax ∨ay) and x ∨ y = a(ax ∧ay),
3. ⊤ = a⊥ and ⊥ = a⊤. �

The first part of Proposition 9 shows that the symmetry satisfies the de Morgan
laws. Symmetric Heyting algebras have also been called de Morgan-Heyting
algebras [24] because they can be defined as de Morgan algebras with additional
structure. The second and third parts of Proposition 9 show that the definition
of a symmetric Heyting algebra is somewhat redundant as some of the operations
can always be defined in terms of others using the symmetry. An alternative
but equivalent approach would be to require a structure (A,∧,→,⊤,a) where

1. (A,∧,⊤) is a semilattice,
2. the operation a : A → A satisfies

(a) aax = x,
(b) x 6 y ⇒ ay 6 ax where 6 is the order in the semilattice.

3. x ∧ y 6 z iff x 6 y → z

Proposition 10. Let � be defined by x � y = a(ay → ax). Then (A,∨,∧,→
,�,⊥,⊤) is a bi-Heyting algebra. �

4.2. Left and right converses

In any bi-Heyting algebra the operations of pseudocomplement and its dual
are well known. In the case of a symmetric Heyting algebra two other operations
are available and play a key role in what follows.

Definition 14. In any symmetric Heyting algebra the following four unary
operations can be defined.

pseudocomplement: ¬x = x → ⊥ right converse:

y

x = ax → ⊥

dual pseudocomplement: ¬x = ⊤ � x left converse:

x

x = ⊤ � ax

Proposition 11. In any symmetric Heyting algebra y � ax 6 z iff x 6 az →
ay.

Proof. y � ax 6 z holds iff a(x → ay) 6 z by definition of �. But this is
equivalent to az 6 x → ay and thus to x∧az 6 ay by the adjunction between
implication and meet. �

In particular, taking y = ⊤ we have the corollary:

Corollary 12. Left converse is left adjoint to right converse:

x

⊣

y

. �

Proposition 13. The following identities hold.

y

x = ¬ax

x

x = ¬
ax ¬x =

y

ax ¬x =

x

ax

x

x = a¬x

y

x = a
¬x ¬x = a

y

x ¬x = a

x

x

yx

x = ¬¬x

xy

x = ¬¬x ¬¬x =

yy

x ¬¬x =

xx

x
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Proof. The definitions of

x

and

y

immediately give the first row. The first
two items in the second row follow from x → y = a(ay�ax), and the remaining
ones follow from the earlier ones using the fact that a is an involution. �

Proposition 14. Let A be a symmetric Heyting algebra and x ∈ A. Then

y

x 6

x

x. The equality

y

x =

x

x holds for all x iff A is a Boolean algebra.

Proof. Using Propositions 3 and 13 we have

y

x = ¬ax 6
¬
ax =

x

x. Using
Proposition 13 again,

y

x =

x

x holds iff a
¬x = a¬x iff ¬x = ¬x. This is

equivalent to A being Boolean by Proposition 3. �

Proposition 15. For all x, y in any symmetric Heyting algebra,

(i)

x

(x ∨ y) =

x

x ∨

x

y, (iii)

x

(x ∧ y) = ¬¬(

x

x ∧

x

y),

(ii)

y

(x ∧ y) =

y

x ∧

y

y, (iv)

y

(x ∨ y) = ¬¬(

y

x ∨

y

y).

Proof. Parts (i) and (ii) are immediate since

x

is a left adjoint and

y

is a
right adjoint. For part (iii) we have

x

(x ∧ y) = ¬
a(x ∧ y) = ¬(ax ∨ay). But

in any bi-Heyting algebra ¬(a ∨ b) = ¬¬(¬a ∧ ¬b), so the result follows using
Proposition 13. The fourth part is similar. �

5. Symmetric Heyting relation algebras

5.1. A generalization of relation algebra

The next definition provides a generalization of relation algebras in which
instead of a Boolean algebra part there is a bi-Heyting algebra which arises from
a symmetric Heyting algebra.

Definition 15. A symmetric Heyting relation algebra, A, is an algebra

A = (A,∨,∧,→,⊤,⊥, ;, 1,a)

subject to conditions 1–3 below. We use 6 to denote the partial order in the
Heyting algebra, and use the derived operations

y

and

x

defined earlier.

1. (A,∨,∧,→,⊤,⊥,a) is a symmetric Heyting algebra,

2. (A, ;, 1) is a monoid,

3. the following hold for all x, y, z ∈ A.

LCV:

x

(x ; y) 6 (

x

y) ; (

x

x)

ACR: x ; y 6 z iff x 6 a(y ;az)

We will use the acronym ‘SHRA’ as a shorter form of ‘symmetric Heyting re-
lation algebra’ from now on. The condition LCV (Left ConVerse) dictates how
the left converse interacts with composition, and ACR (Adjointness of Compo-
sition on the Right) requires composition on the right to have a specified right
adjoint. Composition on the left also has a right adjoint as follows.

Proposition 16. In any SHRA, x ; y 6 z ⇔ y 6 a(az ; x).

12



Proof.

x ; y 6 z ⇔ x 6 a(y ;az) by ACR

⇔ y ;az 6 ax a reverses order and is an involution

⇔ y 6 a(az ;aax) by ACR

⇔ y 6 a(az ; x) �

It follows immediately from Proposition 16 and axiom ACR, using the comment
after Definition 5, that the composition operation ; is order preserving in both
arguments.

Proposition 17. In any SHRA (

y

y) ; (

y

x) 6

y

(x ; y).

Proof. By Corollary 12, the right converse is order preserving and we have
both x 6

yx

x and

xy

x 6 x. Using these facts together with LCV and the
order preserving property of composition, we have:
(

y

y) ; (

y

x) 6

yx

((

y

y) ; (

y

x)) 6

y

((

xy

x) ; (

xy

y)) 6

y

(x ; y). �

We now clarify the sense in which SHRAs are generalizations of relation
algebras. Given any relation algebra (A,∨,∧, ,⊤,⊥, ; , 1, ˘ ) we obtain a sym-
metric Heyting relation algebra by defining x → y = x ∨ y and ax = x̆. This
means that

x

x = x̆ =

y

x and it is then straightforward to verify the conditions
1–3 in the definition using basic properties of relation algebras. Conversely, a
symmetric Heyting relation algebra in which the Heyting part is Boolean is a
relation algebra in the following sense.

Theorem 18. Let A be a symmetric Heyting relation algebra. Suppose that

the Heyting part of A is Boolean, and let x denote the complement of x in this

Boolean algebra. If x̆ is defined by x̆ = ax then (A,∨,∧, ,⊤,⊥, ; , 1, ˘ ) is a

relation algebra.

Proof. We use the formulation of relation algebra given in Definition 9. RA-i
follows immediately from Proposition 14 together with LCV and Proposition 17.
Note that from Proposition 13 we can also use the equality of ¬ with ¬ and of

x

with

y

to obtain
x̆ = ax = x̆. (1)

Since ˘̆x =

xx

x we get RA-ii from Proposition 13. By Proposition 15 we have
RA-iii. The axiom RA-iv holds because the operation x ; is a left adjoint.

RA-v holds as y̆ ; x̆ 6 y̆ ; x̆ yields from ACR that y̆ 6 a(x̆ ; a(y̆ ; x̆)) which
implies x̆ ; a(y̆ ; x̆) 6 ay̆. Using equation (1) and the previously established
RA-i, we get x̆ ; x ; y 6 y as required. �

There are non-Boolean examples of SHRAs, in particular the algebra of
relations on a hypergraph. These examples arise from a general means of con-
structing SHRAs which is presented in Section 6 below.
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5.2. Basic properties of SHRAs

In this section we establish some facts about SHRAs that we need later.

Definition 16. In any SHRA we will denote a(ay ; x) by x \ y and denote
a(y ; ax) by x / y. The operations \ and / are called left residuation and
right residuation respectively.

Consider these two diagrams of composable adjunctions.

A

x ;
>

⊥
<

x \

A

; z
>

⊥
<

/ z

A A

; z
>

⊥
<

/ z

A

x ;
>

⊥
<

x \

A

Since composition is associative and a given left adjoint has a unique right
adjoint we have the following result.

Proposition 19. For all x, y, z ∈ A, (x \ y) / z = x \ (y / z). �

This allows us to express the right adjoint to the operation x ; ; z as x \ / z
so that for all w, x, y, z ∈ A,

x ; y ; z 6 w if and only if y 6 x \ w / z. (2)

A straightforward calculation from the definitions yields the following.

Lemma 20. In any SHRA, x \ y / z = a(z ;ay ; x). �

In any SHRA we can define the analogues of the relation algebra concepts of
the diversity element 0 and the operation of relative addition †.

Definition 17. Define 0 = a1.

Definition 18. Define x † y = a((ay) ; (ax))

The following are then easily established by direct calculation.

Proposition 21. In any SHRA,

1. ax = x \ 0 = 0 / x,

2. x † 0 = x = 0 † x. �

6. A construction for SHRAs

We now present a means of constructing an SHRA Ah from an SHRA A

and an element h ∈ A. In the case that A is a Boolean SHRA, that is a relation
algebra, the construction will in general give a non-Boolean SHRA, Ah. In
particular, when A is the full relation algebra on a set U , it can be used to
produce the SHRA of all relations on a hypergraph where the edges and nodes
together make up the set U . We use the standard notions [1, p295] of reflexive
and transitive from relation algebras.

14



Definition 19. An element h in an SHRA is

1. reflexive if 1 6 h,

2. transitive if h ; h 6 h,

3. a pre-order if it is both reflexive and transitive.

Note that when h is a pre-order, h ; h = h. From now on we will always use h
to denote a pre-order in an SHRA.

Definition 20. An element x ∈ A is h-stable if x = h ; x ; h. The set of all
h-stable elements in A is denoted Ah.

Note that h is itself h-stable. Since h is reflexive and composition is order
preserving in both arguments we have that x 6 h ; x ; h for any x. This means
that x ∈ Ah iff h ; x ; h 6 x. Using equation (2) above we can also express
h-stability by x ∈ Ah iff x 6 h \ x / h.

Lemma 22. The inclusion of Ah in A has both a left adjoint and a right ad-

joint. These are respectively h ; ; h and h \ / h.

Proof. Let x ∈ A and y ∈ Ah, then we have the following calculations.
For the left adjoint, h ;x ;h 6 y implies x 6 y as x 6 h ;x ;h, and conversely,

x 6 y implies h ; x ; h 6 h ; y ; h = y. For the right adjoint, y 6 h \ x / h iff
h ; y ; h 6 x iff y 6 x. �

From the adjoints identified in Lemma 22 we have two corollaries that follow
from general properties of adjunctions. Note that the first of these means that
x being h-stable is equivalent to x = h \ x / h.

Corollary 23. For any x ∈ A, h \ x / h 6 x. �

Corollary 24. Ah is closed under all joins and meets which exist in the Heyting

part of A. In particular, ⊥,⊤ ∈ Ah and if x, y ∈ Ah then x ∨ y ∈ Ah and

x ∧ y ∈ Ah. �

General properties of adjunctions also tell us that for any x ∈ A, the elements
h;x;h and h\x/h are respectively the least h-stable element greater than or equal
to x and the greatest h-stable element less than or equal to x. Symbolically,

h ; x ; h =
∧

{y ∈ Ah | x 6 y}, (3)

and
h \ x / h =

∨
{y ∈ Ah | y 6 x}. (4)

Next we see that the h-stable elements are closed under the symmetry a

in A as well as under composition and under the operations \, / and † from
Definitions 16 and 18.

Proposition 25. Let x, y ∈ Ah, then:

15



1. ax ∈ Ah

2. x ; h = x = h ; x

3. x ; y ∈ Ah

4. x \ y ∈ Ah

5. x / y ∈ Ah

6. x † y ∈ Ah

Proof.

1. ax ∈ Ah iff ax 6 h \ (ax) / h iff ax 6 a(h ; x ; h), by Lemma 20, iff
h ; x ; h 6 x.

2. x ; h = h ; x ; h ; h = x = h ; h ; x ; h = h ; x

3. h ; (x ; y) ; h = (h ; x) ; (y ; h) = x ; y

4. x \ y = a(ay ; x) which lies in Ah by parts 1 and 3.

Parts 5 and 6 are similar to part 4 because / and † are expressible in terms of
a and ;. �

The h-stable elements are not closed under the implication, →, but they do
support their own implication which is defined by means of the right adjoint to
the inclusion of Ah in A.

Definition 21. The operation
h
→ in Ah is defined by

x
h
→ y = h \ (x → y) / h.

Proposition 26. Ah = (Ah,∨,∧,
h
→,⊤,⊥,a) is a symmetric Heyting algebra.

Proof. Since (A,∨,∧,⊤,⊥) is a lattice, Corollary 24 implies that the h-stable
elements form a lattice (Ah,∨,∧,⊤,⊥). To show that we have a Heyting algebra,
consider the following adjunctions.

Ah

⊂ >
⊥

<
h \ / h

A

∧ y
>

⊥
<
y →

A

h ; ; h
>

⊥
< ⊃

Ah

Composing the adjunctions shows h ; ( ∧ y) ; h ⊣ h \ (y → ) / h, but for any
x, y ∈ Ah, we have h ; x ∧ y ; h = x ∧ y so that ∧ y ⊣ h \ (y → ) / h. �

Definition 22. In the symmetric Heyting algebra (Ah,∨,∧,
h
→,⊤,⊥,a) the

symbols
h

�,
h x

,
h y

,
h

¬,
h¬ will denote respectively the dual implication, the left

converse, the right converse, the pseudocomplement and the dual pseudocom-
plement.
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Proposition 27. In the symmetric Heyting algebra (Ah,∨,∧,
h
→,⊤,⊥,a), the

operations
h

�,
h x

,
h y

,
h

¬,
h¬ can be expressed in terms of the structure in A:

x
h

� y = h ; (x � y) ; h,

h x

x = h ;

x

x ; h,
h y

x = h \

y

x / h,

h¬x = h ; ¬x ; h,
h

¬x = h \ ¬x / h.

Proof. For the dual implication, by Proposition 10 we have to show that x
h

�y =

a(ay
h
→ax) which is a straightforward calculation using Lemma 20. The other

four parts are similar calculations. �

Theorem 28. The structure Ah = (Ah,∨,∧,
h
→,⊤,⊥, ;, h,a) is an SHRA.

Proof. By Proposition 26, (Ah,∨,∧,
h
→,⊤,⊥,a) is a symmetric Heyting alge-

bra, and by Proposition 25, (Ah, ;, h) is a monoid.

To verify LCV we need
h x

(x;y) 6 (
h x

y);(
h x

x). Using Proposition 27 we have
h x

(x ;y) = h ;(

x

(x ;y));h 6 h ;(

x

y ;

x

x);h 6 (h ;

x

y ;h);(h ;

x

x ;h) =
h x

y ;
h x

x.
The condition ACR is immediate as it holds in A. �

7. The special case of relations on a hypergraph

7.1. Boolean-specific properties of the construction

In the special case that the SHRA, A, in the last section is Boolean (equiv-
alently, is a relation algebra in the sense of Definition 9) we find that the con-
struction of Ah has some additional properties. In this section we use B to
denote a relation algebra, and Bh the SHRA constructed from a pre-order h in
B as described in the last section.

Proposition 29. If h is a pre-order in B then h̆ is also a pre-order. �

We note in passing that when x is a pre-order in a general SHRA, neither

x

x
nor

y

x need be a pre-order. It is straightforward to construct examples from
the case of relations on a hypergraph where

y

x = ⊥ holds (so is not reflexive)
and where

x

x need not be transitive.

Proposition 30. If x ∈ Bh then x ∈ B
h̆
and x̆ ∈ B

h̆
.

Proof. As x ∈ Bh, we have x = h ; x ; h = h̆ \ x / h̆, so x ∈ B
h̆
. The fact that

x̆ ∈ B
h̆
is immediate from properties of the converse. �

Corollary 31. The following are equivalent:

1. x ∈ Bh
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2. x ∈ B
h̆

3. x̆ ∈ B
h̆

4. x̆ ∈ Bh �

To summarize, we have the following, which in part re-states Proposition 27
in convenient notation in the special case that A is a relation algebra.

Theorem 32. In a relation algebra B = (B,∨,∧, ,⊤,⊥, ; , 1, ˘ ), the set of all

h-stable elements forms an SHRA Bh = (Bh,∨,∧,→,⊤,⊥, ;, 1,a) where → is

defined in terms of the operations in B by

x → y = h \ (x ∨ y) / h.

In addition, the derived operations are expressible as follows.

x � y = h ; (x ∧ y) ; h,

x

x = h ; x̆ ; h,

y

x = h \ x̆ / h,
¬x = h ; x ; h, ¬x = h \ x / h. �

7.2. Relations on a hypergraph

Suppose we have a hypergraph as in Section 3 consisting of a set U and
a relation h on U which is an incidence relation in the sense of Definition 12.
Taking the full relation algebra on U to be B, then the elements of Bh are
precisely the h-relations from the same definition. Thus the relations on a
hypergraph constitute an SHRA and in particular the two converses are given
by the expressions in Theorem 32. The extent to which these converses are
weaker than the classical converse can be seen in the following specific examples.

1. In the case shown in Figure 3 we can use the expressions in Theorem 32
to construct

y

h and

x

h. We find that

y

h = ⊥ and

x

h = ⊤.

2. Taking U = {u, v, w, x, y} and defining h to be the reflexive closure of
the relation {(x, u), (x, v), (y, v), (y, w)}, we find that (u, v) ∈

x

h and
(v, w) ∈

x

h but (u,w) 6∈

x

h so that

x

h is not transitive.
We also find in the same example that (x,w) ∈

x

h but that (w, x) 6∈

x

h
although we do have (w, x) ∈

xx

h. Since h is the identity for composition
we thus have 1 6=

x

1 and

xx

1 6=

x

1 and

xx

1 6= 1.

3. We can construct an example of an h-relation x where not only is the
iterated left converse

x2 x =

xx

x strictly greater than x, but repeat-
edly applying this operation produces an infinite sequence of successively
strictly greater relations. Consider the graph with edges {2n+ 1 : n ∈ Z}
and nodes {2n : n ∈ Z} and where edge 2n+1 is incident only with nodes
2n and 2n + 2. This means we have U = Z and, denoting the identity
relation on U by 1U ,

h = 1U ∪ {(2n+ 1, 2n) : n ∈ Z} ∪ {(2n+ 1, 2n+ 2) : n ∈ Z}.
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Define x to be the relation {(1, 2)}. It can be checked that (−1, 4) ∈

x2 x,
that (−3, 6) ∈

x4 x. In general

xn+2 x is strictly larger than

xn x for all
n.
Similarly, the right-converse can be repeated on a suitable infinite relation
on the same graph to demonstrate that even powers of this operation can
become successively strictly smaller. Of course neither

xx

x nor

yy

x
is the appropriate analogue of ˘̆x, for which we need to consider

xy

x and

yx

x in view of Corollary 12.

8. Application to mathematical morphology on hypergraphs

In mathematical morphology on sets certain relationships between comple-
ment, converse, and the operations of dilation and erosion are well-known and
are used in developing the basic theory. In this section we see how the properties
of relations on a hypergraph by virtue of their SHRA structure can be used to
establish some basic properties of mathematical morphology on hypergraphs.
We start by recalling some background in the set-based case.

8.1. Mathematical morphology on sets

Given an arbitrary relation x on a set U , two operations are defined on the
powerset PU .

Definition 23. For K ⊆ U the dilation, K ⊕ x, and erosion, x⊖K, are:

K ⊕ x = {u ∈ U : ∃v ((v, u) ∈ x and v ∈ K)},

x⊖K = {u ∈ U : ∀v ((u, v) ∈ x implies v ∈ K)}.

The motivation for writing the subset on the left in dilation and on the right in
erosion comes from the identities K ⊕ (x ; y) = (K ⊕ x) ⊕ y and (x ; y) ⊖K =
x ⊖ (y ⊖K). These operations are, of course, well known and appear in many
contexts other than mathematical morphology.

Erosion and dilation by a relation x are operations on subsets of U . However,
subsets can be regarded as relations and erosion and dilation can easily be ex-
tended to operations on arbitrary relations. In this context they appear simply
as composition with x and right residuation by x. The well-known property in
mathematical morphology that K ⊕ x̆ = −(x⊖−K), where −K is the comple-
ment of K in U , is then nothing more than y ; x̆ = (y / x). However, this more
general context is not the appropriate setting for considering erosion and dilation
on subgraphs. In this case we can look for an analogue of K⊕ x̆ = −(x⊖−K) in
which the complement and the converse are each replaced by one of the weaker
operations described above. This is achieved in Theorem 37 but it only holds
when K is a subgraph and not an arbitrary relation. To do this we need to
identify subgraphs as particular relations, namely the range elements.
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8.2. Range elements

We recall the following notion from [1, p294].

Definition 24. A range element in a relation algebra B is an element x for
which ⊤ ; x = x.

The significance of range elements is that when B is the algebra of all rela-
tions on a set U , then the range elements are exactly the relations of the form
U ×K for K ⊆ U , and thus they provide one way in which subsets of U can be
identified with particular relations on U .

Lemma 33. Let y be a range element.

1. y is a range element.

2. If x is reflexive then x ; y = y.

3. If z is any element, then y ; z is a range element.

4. If z is any element, then y / z is a range element.

Proof. For (1) see [1, p316] Theorem 305. For (2) we have 1 6 x ⇒ 1;⊤ 6 x;⊤
so that ⊤ 6 x ;⊤ and thus x ;⊤ = ⊤. Then x ; y = x ;⊤ ; y = ⊤ ; y = y. Part (3)
is an immediate consequence of the definition, and part (4) follows by writing
y / z = y ; z̆ and using parts (1) and (3). �

As noted in [1, p316], the range elements of B form a subalgebra of the Boolean
part of B. This can be extended to Bh as follows.

Theorem 34. The set of all range elements in B which are h-stable forms a

subalgebra of the bi-Heyting part of Bh.

Proof. Let Rh denote the set of all h-stable range elements in B. Since Bh is
closed under unions and intersections, and as the range elements in B are closed
under these operations too, this is true for all elements of Rh.

To show that Rh is closed under relative pseudocomplementation, suppose

that x, y ∈ Rh. We have that x → y = h̆ ; (x ∧ y) ; h̆, but since x ∧ y is a range

element and h̆ is reflexive, h̆ ; (x ∧ y) = x ∧ y. Also using the fact that x ∧ y is

a range element, we get that (x ∧ y) ; h̆ is a range element so that x → y ∈ Rh.
Closure under the dual relative pseudo-complement is shown in a similar way
using the fact that x � y = h ; (x ∧ y) ; h. �

The elements of B act on the set R of all range elements in two ways

⊕ : R×B → R where r ⊕ x = r ; x

⊖ : B×R → R where x⊖ r = r / x

and these actions satisfy r ⊕ (x ; y) = (r ⊕ x)⊕ y and (x ; y)⊖ r = x⊖ (y ⊖ r).
In the special case that B is the full relation algebra on a set U , the elements
of R correspond to subsets of U and elements of B correspond exactly to the
join preserving functions on the Boolean algebra R.

20



Now, the two actions restrict to actions of Bh on Rh by Lemma 33. We
know that for a hypergraph given in terms of h, the relations on the hypergraph
are the elements of Bh. We can now identify the subgraphs with the elements
of Rh in view of the fact that K ⊆ U is a subgraph iff (U ×K) ; h ⊆ (U ×K)
and the following result.

Proposition 35. Let r ∈ B be a range element. Then r is h-stable iff r ;h 6 r.

Proof. If r ; h 6 r then h ; r ; h 6 h ; r but h is reflexive so h ; r = r by
Lemma 33. Hence h ; r ; h 6 r. Conversely, suppose h ; r ; h 6 r. We then have
r ; h 6 h ; r ; h 6 r. �

Theorem 36. Suppose B is the full relation algebra on a set U . In this case the

elements of Bh can be identified with join preserving functions on the bi-Heyting

algebra Rh.

Proof. The known correspondence between elements of B and join preserving
functions on the set of range elements R, identifies x ∈ B with the function

; x. Now a join preserving function f on Rh extends to all of R by defining
f ′(u) = f(u ; h) for any u ∈ R as u ; h ∈ Rh by the previous result. So every
join preserving function on Rh can be represented in the form ; x for some
x ∈ B. But for any r ∈ Rh we have r ; h ; x ; h = r ; x since r is h-stable and
r ; x ∈ Rh. Thus the functions ; x and ; (h ; x ; h) agree on all h-stable
range elements and we have h ; x ; h ∈ Bh.

So every join preserving function on Rh can be expressed as ; x where
x ∈ Bh. But this expression is uniquely determined because if x, y ∈ Bh and

;x agrees with ;y on all of Rh, then for any r ∈ R we get (r ;h);x = (r ;h);y
as r ; h ∈ Rh, and hence x = y as h ; x = x and h ; y = y. �

8.3. The morphology equations

In any relation algebra, the equation y/x = y ; x̆ is equivalent to y/x̆ = y ; x
and to y ; x̆ = y / x using just the fact that complementation and conversion are
involutions. When we consider the h-stable elements we no longer have these
properties, but we can establish the following.

Theorem 37. Let B be any relation algebra, and let h be any pre-order element

of B. Let x, y ∈ Bh and assume that y is a range element. Then

1. y /

x

x = ¬(¬y ; x), and

2. y ;

x

x = ¬(¬y / x).

Proof. For (1), we have y /

x

x = y ; (

x

x)˘ = y ; h̆ ; x ; h̆ = y ; x ; h̆ as y is

h̆-stable.
Expanding the RHS of (1) we get h \ h ; y ; h ; x / h = h̆ ; h ; y ; x ; h̆ using

the h-stability of x. Now h̆ ; h is reflexive, so by Lemma 33 h̆ ; h ; y = y which
establishes (1).
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For (2) we have ¬(¬y/x) = h;(h \ y / h) ; x;h. A straightforward calculation,

making use of the h̆-stability of x̆, establishes that ¬(¬y / x) = h ; h̆ ; y ; x̆ ; h so,
by Lemma 33, ¬(¬y / x) = y ; x̆ ; h. Now, y ;

x

x = y ; h ; x̆ ; h = y ; x̆ ; h since y
is h-stable. �

We noted earlier that the identity K ⊕ x̆ = −(x⊖−K) connecting erosion,
dilation, converse and complement for a subset K and a relation x could be de-
duced immediately from the more general fact that y ; x̆ = (y / x) for arbitrary
relations x and y on a set U . To see that morphology on subgraphs of a hyper-
graph is more subtle than this consider Theorem 37 part (2). If this generalizes
to a statement about arbitrary h-relations x and y we can take x = y = h. This
leads to h ;

x

h = ¬(¬h / h) which implies

x

h = ¬¬h. But ¬¬h =

xx

h by
Proposition 13 so we would have

x

h =

xx

h, which we have seen need not be
the case in Section 7.2.

9. Conclusions

We have seen that relations on a hypergraph provide a concrete example
of a generalization of the algebraic properties of relations in which, instead
of a single converse operation that is an involution there is a pair of adjoint
operations. The notion of a symmetric Heyting relation algebra (SHRA) has
been introduced as an appropriate abstract setting for relations with this type
of structure. A general construction has been given which includes as a special
case the algebra of relations on a hypergraph.

The setting of symmetric Heyting relation algebras has been applied to math-
ematical morphology for hypergraphs by establishing a connection between the
operations of erosion and dilation and the left converse and the pseudocom-
plement and its dual. This generalizes a very basic fact linking erosion and
dilation with converse and complement for relations on sets, but in the case of
hypergraphs we saw we cannot express this link just in terms of relations: it is
necessary to consider the action of relations on range elements.

There are three directions for further work. We noted that relations on a
hypergraph are a special case of the category-theoretic notion of a distributor or
profunctor. However the weaker kinds of converse we have analysed here do not
appear to have been studied in the context of distributors, and investigating
to what extent this is possible is one direction for future work. In another
direction, the foundations for mathematical morphology on hypergraphs will
be developed by determining the extent to which more properties known in
the set-based case can be extended to hypergraphs. Finally, the left converse
operation as described in [11] has been used [25, 26] in providing semantics for
a bi-intuitionistic modal logic. Connections between modal logic and the more
general setting in the current paper remain to be investigated.
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