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Abstract

This thesis describes a set of image analysis tools developed for the purpose of

quantifying the distribution of chromatin in (light) microscope images of cell nuclei.

The distribution or pattern of chromatin is influenced by both external and internal

variations of the cell environment, including variations associated with the cell cycle,

neoplasia, apoptosis, and malignancy associated changes (MACs). The quantitative

characterisation of this pattern makes possible the prediction of the biological state

of a cell, or the detection of subtle changes in a population of cells. This has

important application to automated cancer screening.

The majority of existing methods for quantifying chromatin distribution (texture)

are based on the stochastic approach to defining texture. However, it is the premise

of this thesis that the structural approach is more appropriate because pathologists

use terms such as clumping, margination, granulation, condensation, and clearing

to describe chromatin texture, and refer to the regions of condensed chromatin as

granules, particles, and blobs. The key to the structural approach is the segmenta-

tion of the chromatin into its texture primitives. Unfortunately all of the chromatin

segmentation algorithms published in the literature suffer from one or both of the

following drawbacks: (i) a segmentation that is not consistent with a human’s per-

ception of blobs, particles, or granules; and (ii) the need to specify, a priori, one or

more subjective operating parameters. The latter drawback limits the robustness of

the algorithm to variations in illumination and staining quality.

The structural model developed in this thesis is based on several novel low-, med-

ium-, and high-level image analysis tools. These tools include: a class of non-linear

self-dual filters, called folding induced self-dual filters, for filtering impulse noise;

an algorithm, based on seeded region growing, for robustly segmenting chromatin;

an improved seeded region growing algorithm that is independent of the order of

pixel processing; a fast priority queue implementation suitable for implementing the
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watershed transform (special case of seeded region growing); the adjacency graph

attribute co-occurrence matrix (AGACM) method for quantifying blob and mosaic

patterns in the plane; a simple and fast algorithm for computing the exact Euclidean

distance transform for the purpose of deriving contextual features (measurements)

and constructing geometric adjacency graphs for disjoint connected components; a

theoretical result establishing an equivalence between the distance transform of a

binary image and the grey-scale erosion of its characteristic function by an elliptic

poweroid structuring element; and a host of chromatin features that can be related

to qualitative descriptions of chromatin distribution used by pathologists.

In addition, this thesis demonstrates the application of this new structural model

to automated cervical cancer screening. The results provide empirical evidence that

it is possible to detect differences in the pattern of nuclear chromatin between sam-

ples of cells from a normal Papanicolaou-stained cervical smear and those from an

abnormal smear. These differences are supportive of the existence of the MACs

phenomenon. Moreover the results compare favourably with those reported in the

literature for other stains developed specifically for automated cytometry. To the

author’s knowledge this is the first time, based on a sizable and uncontaminated data

set, that MACs have been demonstrated in Papanicolaou stain. This is an impor-

tant finding because the primary screening test for cervical cancer, the Papanicolaou

test, is based on this stain.
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Chapter 1
Introduction

The known is finite, the unknown infinite; intellectually we stand on an

islet in the midst of an illimitable ocean of inexplicability. Our business

in every generation is to reclaim a little more land, to add something to

the extent and the solidity of our possessions

T. H. Huxley, On the Reception of the Origin of Species, 1887

The research detailed in this thesis was conducted at the University of Queensland

node of the Cooperative Research Centre for Sensor Signal and Information Pro-

cessing (CSSIP)1. It constitutes part of a larger research initiative known as the

Cytometrics Project. The project’s name stems from cyto- which is a word ele-

ment referring to cells and metric which pertains to measurement. The aim of the

project is to develop computer algorithms to automate, or assist cytoprofessionals2

with, the screening of slide specimens for the presence of biological abnormalities.

Since its inception in 1993, the project has focused on cervical cytology3 and the

Papanicolaou (Pap) test in particular. The Pap test is the primary screening test

1 The CSSIP was established in 1992 under the Cooperative Research Centres program of the
Australian Commonwealth Government. The parties in CSSIP are the following: The Univer-
sity of Adelaide, The University of South Australia, The Flinders University of South Australia,
The University of Melbourne, The University of Queensland, Commonwealth of Australia (De-
fence Science and Technology Organization), Telstra Corporation Limited, Compaq Computers
Australia Pty Limited, CEA Technologies Pty Limited, and RLM Systems Pty Limited.

2 Cytoprofessionals are cytotechnologists and cytopathologists. “Cytotechnologists and cy-
topathologists are technical and medical laboratory specialists who possess the knowledge and
skill required to make diagnostic interpretations of cellular specimens” (Greening, 1994, p. 328).

3 Cytology is the scientific study of cells; particularly in relation to form, structure, and function.



2 Introduction

for cervical cancer. In the United States alone, approximately 70 million Pap smears

are screened annually (Greer, 1997, p. 248)4. Cibas (2003, p. 1) states that:

In the 1930s, before screening was introduced, cervical cancer was the

most common cause of cancer deaths in women in the United States.

Today it is not even one of the top ten.

Nevertheless, in the United States about 13000 cases of cervical cancer are diag-

nosed, and more than 4000 women die of the disease each year (ACS, 2002, p. 16)5.

Anderson & Runowicz (2001, p. 753) state that:

Although most cases of invasive cervical cancer [in the United States]

occur in the unscreened population, nearly one third of cases can be

attributed to screening failure. . . : either unsatisfactory collection of the

sample or misinterpretation of cervical cytology.

Whilst improved collection and smear preparation standards can reduce the num-

ber of errors due to inadequate (unrepresentative) smears, “using the conventional

methodology of Pap smear examination, it may be difficult to reduce the errors

attributable to faulty interpretations” (Grohs, 1994, p. xii). Human errors in Pap

smear interpretation occur for a variety of reasons including (Grohs, 1994, p. xii):

fatigue, habituation, inexperience and lack of knowledge, and the limitation of the

subjective microscopic examination. A major objective of the Cytometrics Project

is to reduce the error rate attributable to misinterpretation by supplementing, or

even replacing, the subjective interpretation of smears with objective quantitative

measurements.

The remainder of this chapter is organised as follows. Section 1.1 presents a brief

overview of Pap smear cytology and the problems inherent in seeking to automate

the screening of Pap smear slides. Section 1.2 discusses a phenomenon, known as

malignancy associated changes (MACs), which current research world-wide suggests

has the potential to overcome these problems. MACs have been demonstrated, in the

quantitative cytology literature, to be subtle subvisual changes in otherwise normal-

appearing cells on cervical atypical smears. The features (measurements) reported

4 In Australia approximately 2.7 million Pap smears are screened annually (Pieris-Caldwell et al.,
2002, p. xiii).

5 In Australia, statistics for 1987-1998 show that about 1000 cases of cervical cancer are diagnosed
each year (Pieris-Caldwell et al., 2002, p. 57), and statistics for 1989-1999 show that about 300
women die each year from the disease (Pieris-Caldwell et al., 2002, p. 66).
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to have the the most discriminatory power are texture features. The feature-based

approach to discrimination and classification is known as statistical pattern recog-

nition. Section 1.3 presents a brief overview of the statistical pattern recognition

approach used in the field of computer vision. Section 1.4 then presents an overview

of the different approaches to quantifying texture (texture feature extraction) pub-

lished in the literature. Section 1.5 outlines the research problem addressed in this

thesis. Section 1.6 then presents the aim and objectives of the thesis and Section 1.7

outlines the scope of the research described in this thesis. Finally Section 1.8 de-

scribes the structure of this thesis.

1.1 The Papanicolaou test

This section briefly reviews the Papanicolaou (Pap) test. The review includes a

description of the origin and nature of the Pap test, a discussion of the accuracy of

the conventional Pap test, and a discussion of the state-of-the-art in automated Pap

smear screening.

1.1.1 The origin and nature of the Papanicolaou smear

Dr. George Nicholas Papanicolaou is credited with the conception and development

of the Pap smear or Pap test (Cibas, 2003, p. 2). In 1928 he reported “that cancer

cells derived from the uterine cervix may be observed in human vaginal smears”

(Koss, 1989, p. 737). However, this observation was initially poorly received (Kline,

1997, p. 205). Several years later Papanicolaou revived the method, in collaboration

with Herbert Traut, resulting in the publication of a major paper (Papanicolaou &

Traut, 1941) and a monograph (Papanicolaou & Traut, 1943). Several subsequent

studies in the 1940s, on small groups of women, documented that vaginal or cervical

smears could lead to the discovery of occult cancers of the uterine cervix and to

precancerous changes (Koss, 1992, p. 3). This paved the way for the introduction

of large-scale cervical cancer screening programs in the late 1950s (Grohs, 1994, p.

xi). In the industrialised world (Greer, 1997, p. 246):

cytologic screening for cancer of the cervix and precancerous lesions and

the subsequent treatments of these lesions have been effective in reducing

the incidence and mortality of cervical cancer. . . In the highly screened

population, the cervical cancer rate is 79% lower than the rate in the

unscreened population.
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The Pap smear procedure or Pap test consists of the following steps: (i) collecting a

sample of cells from in and around the cervix using a cotton swab, wooden spatula,

or cervical brush; (ii) pressing the cells on a glass slide; (iii) applying a fixative6

to preserve the sample; (iv) staining7 the sample (to visualise the different cell

components); and (v) visually inspecting the slide under a microscope for signs of

abnormality (Hale, 1989; Patlak, 1996). The collection and fixing steps are usually

performed by a medical practitioner who then sends the specimen to a cytology

laboratory for staining and interpretation.

1.1.2 Accuracy of the Pap test

The conventional Pap test “is a uniquely labor-intensive complex process, the out-

come of which depends entirely on human judgment and is not machine generated”

(Koss, 1989, p. 737). A single smear can contain from 50 000 to 300 000 cells (Koss,

1989, p. 738). “An abnormal smear may contain only a few abnormal cells scattered

through the thousands of normal cells” (Greer, 1997, p. 248). The careful screening

of a Pap smear is, therefore, a time-consuming task, even for a very-well-trained

cytotechnologist (Koss, 1989, p. 738). Potentially, fatigue or a lack of concentration

can lead to a false interpretation. Unfortunately (DeMay, 1997, p. 229):

no cytology laboratory, no matter how well run, is completely free of

diagnostic errors, the most important being false negatives [reports that

fail to identify abnormal cells]. False negatives occur at a low, but well

documented and probably irreducible rate of at least 5% to 10%, ie, at

least 1 in every 10 to 20 positive cases will be missed in routine screening.

In a 1997 press statement the World Health Organization stated that in addition

to the “inappropriate interpretation of results”, the other principal cause of false

negatives is “the poor quality of samples”. Either abnormal cells don’t make it

onto the slide or they are obscured by overlapping cells, blood, mucus, and other

debris (Linder, 1994, p. 26). In its press release the WHO states that the issue of

6 Fixation immobilises, kills, and preserves the cells. Moreover fixation “makes cells permeable
to staining reagents and cross-links their macromolecules so that they are stabilized and locked
in position” (Alberts et al., 2002, p. 554).

7 “Worldwide, the most commonly used cytological staining technique in gynecology is the Pa-
panicolaou (Pap) stain, which was introduced as a routine staining method for cervical smears
by George Papanicolaou in 1942. Many modifications of the original Pap stain have been de-
scribed in the relevant literature, but the overall staining pattern is rather similar amongst the
various methods” (Schulte & Wittekind, 1994, p. 201).
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false negatives “can be overcome through improved sampling and the introduction

of automated [screening] devices that can detect 30% to 50% more false negatives

than humans”.

1.1.3 Automated screening

“The need to automate the screening of the cervical Pap smear was recognized

in the 1950s by Dr. Papanicolaou and co-workers” (Linder, 1994, p. 25). Indeed

there has been a concerted effort since the 1950s to develop a viable automated

cytometer. Numerous systems were developed including (Cibas, 2003; Husain, 1994):

the Cytoanalyzer (1950s), TICAS (1968), Quantimet B (1960s), CERVIFIP (1970),

CYBEST (1972), DIASCANNER (1976), FAZYTAN (1978), LEYTAS (1978), and

BioPEPR (1981).

Early attempts at automation were unsuccessful for three principal reasons (Linder,

1994, p. 25):

1. The nature of the Pap smear.

“The conventional Pap smear includes a large and variable number of epithelial

cells that are admixed with blood, inflammatory cells, and mucous. Cells and

background material on the smear frequently overlap each other, making it

difficult to identify diagnostically important cells” (Linder, 1997, p. 282).

2. Limited computing power.

3. An incomplete conceptual understanding of morphologic abnormalities.

It is perhaps not surprising, therefore, that it was only in September 1995 that

the first automated system—the AutoPap 300 QC developed by NeoPath Inc.—was

granted approval by the United States Food and Drug Administration8 (FDA) for

commercial use; and then only for the purpose of screening slides already screened

by humans (re-screening) (FDA, 1995). Another system—Papnet developed by Neu-

romedical Systems Inc.—was granted approval for the same purpose less than two

months later (FDA, 1996). Cibas (2003, p. 5) gives the following summary of the

present state of automated screening:

8 The U.S. Food and Drug Administration is an agency of the United States government’s De-
partment of Health and Human Services.
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Although European investigators largely lost interest in cytology au-

tomation in the 1990s, researchers in the United States and Canada,

supported primarily through venture capital, retained their enthusiasm,

resulting in advances in research and development. Foremost in the

field in recent years have been AutoCyte Inc. (formerly Roche Image

Analysis Systems), Cytyc Corp., Neopath Inc., and Neuromedical Sys-

tems, Inc. An important three-way merger took place in 1999, when

AutoCyte, after purchasing the intellectual property of Neuromedical

Systems, merged with Neopath to form a new company called TriPath

Imaging. In 1998, the FDA approved the AutoPap System (now called

FocalPoint� )(TriPath Imaging, Burlington, NC) as a primary screener

for cervicovaginal smears.

Whilst “advances in computer-processing power and software design have permitted

cytology automation to occur. . . , a more significant factor has been the perception

by both the cytology profession and the society at-large that cytology automation

will improve the quality of cytology services” (Linder, 1997, p. 282). At the time

of writing, all of the FDA approved Pap smear automated screeners are diagnostic

cell screeners; i.e. they exhaustively examine all of the cells on a slide for the (rare)

occurrence of diagnostic cells. They improve the quality of conventional cytology

services in the sense that, in comparison to human screeners, they provide both ob-

jective classification and an improved sensitivity to the detection of abnormal cells—

e.g. in a prospective clinical trial FocalPoint� “detected significantly more abnormal

slides. . . than conventional practice (86 vs 79%)” (Cibas, 2003, p. 6). Although

these systems can reduce the number of false negatives attributed to “inappropriate

interpretation of results”, the problem remains that they cannot reduce the number

of false-negatives associated with “poor quality samples”. DeMay (1997, p. 230)

states that “many, perhaps most, false negatives represent sampling errors, where

a sample of abnormal cells from the patient fails to make it onto the glass slide”.

These machines, like human screeners, cannot label a smear as suspicious if there

are no abnormal cells on the slide. However, a phenomenon known as malignancy

associated changes (MACs) may offer a solution to this problem.

1.2 Malignancy associated changes

This section provides a brief overview of the MACs phenomenon. A recent and

comprehensive review of the history and significance of the MACs phenomenon can
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be found in the Ph.D. thesis of Hallinan (2000).

The expression MACs was coined by Nieburgs, Zak, Allen, Reisman & Clardy (1959)

to describe distinct visual changes in the nucleus of apparently normal cells“adjacent

to or distant from malignant tumours” (Nieburgs & Goldberg, 1968, p. 35). The

phenomenon itself was first reported more than forty years earlier by Gruner (1916).

The work of Nieburgs et al. (1959) initiated a flurry of research throughout the 1960s

seeking to verify the existence of MACs, and also to refine the list of its characteristic

visual features or cues. Unfortunately by the close of the decade, the significance

and definition of MACs was still unresolved. The first quantitative study of the

phenomenon, using computer image analysis techniques, was undertaken by Klawe

& Rowiński (1974) using the Quantimet B (see Section 4.3). Using a quantitative

parameter consistent with the description of MACs by Nieburgs et al., they were able

to show“a significant difference between the nuclei of buccal cells of healthy children

and those from children with benign malignant tumours”(Palcic & MacAulay, 1994b,

p. 157). MACs, in modern usage, refers to the following phenomenon (Nordin &

Bengtsson, 1994, p. 44):

In the early 1980s, several researchers found evidence of subvisual [ital-

ics added] alterations in intermediate cells from cervical atypical smears:

Cells which were considered normal when analyzed visually through a mi-

croscope differed slightly in appearance if taken from a smear containing

cancer cells compared with cells from wholly normal smears. These al-

terations are too insignificant to be analyzed [measured] on a cell-by-cell

basis; instead, populations of cells must be analyzed and the population

parameters (means, variances) used to classify the smear.

The measurements or features that appear to have the most discriminatory power

“are those describing DNA organization and its distribution in the cell nuclei” (Palcic

& MacAulay, 1994b, p. 158). The most prominent of these features are texture

features (Palcic, 1994, p. 41).

Formally, the feature-based approach to discrimination/classification is known as

statistical pattern recognition. Statistical pattern recognition is the most widely

used approach to pattern recognition in the field of Computer Vision.
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Problem domain

Low−level processing

Intermediate level processing

High−level processing

Result

Preprocessing

acquisition

Knowledge base

Image

Segmentation
Representation
and description

interpretation
Recognition and

Figure 1.1: The elements of an image analysis system (adapted from Gonzalez & Woods
(1992, p. 573)).

1.3 Statistical pattern recognition in computer vi-

sion

This section provides a brief overview of statistical pattern recognition in computer

vision. A more detailed treatment of statistical pattern recognition is given in Chap-

ter 6.

Computer vision is a “branch of the field of artificial intelligence concerned with

developing algorithms for analyzing the content of an image” (Castleman, 1996).

The objective of computer image analysis is to endow a computer with the ability

to discover, identify, and understand patterns in images that are relevant to the

performance of an image-based task (Gonzalez & Woods, 1992). An example of

such a task is the sorting of letters according to postcode in a postal sorting centre.

Here the patterns are sequences of digits hand-written or typed on an envelope. A

more relevant example is of course the recognition of textural changes in the nuclei

of individual cells or populations of cells taken from Pap smears. The fundamental

elements of a computer image analysis system are depicted in Figure 1.1. Broadly

speaking, these elements fall into three categories (Gonzalez & Woods, 1992, p. 572):

(1) low-level processing: image acquisition and preprocessing; (2) intermediate-level

processing: image segmentation, and representation and description; and (3) high-

level processing: pattern/object recognition and interpretation.

Low-level processing encompasses all those operations concerned with acquiring a

digital image and processing it to correct for degradations such as noise and blurring.

These operations require no intelligence on the part of the image analysis system
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in the sense that no recognition or interpretation of the contents of the image is

required.

Intermediate-level processing is concerned with locating and isolating objects of in-

terest in an image (segmentation) and with their characterisation (representation

and description). Robust autonomous segmentation invariably requires some level

of in-built intelligence in order to be able to cope with anomalies such as gaps in

extracted contours, or the presence of artefacts. Gonzalez & Woods (1992, p. 413)

state that “the [segmentation] process determines the eventual success or failure of

the analysis”. The segmentation process yields a raw image in which either the re-

gions are delineated by boundary pixels, or the pixels comprising each region are

assigned a unique label. Depending on the nature of the images under study, this

data may be further processed to obtain a simplified representation of the regions

suitable for further processing. Such representations include: using a chain code to

represent the boundary of each region, approximating regions by polygons, reducing

the boundary of each region to a signature (one dimensional functional represen-

tation of the boundary), decomposing the boundary into segments, and reducing

each region to its skeleton. Once a suitable representation has been established, de-

scriptors can be derived for each of the regions. Such descriptors include: area and

perimeter, and quantitative parameters that characterise properties such as shape,

texture, and colour.

High-level processing involves the recognition and interpretation of the contents (seg-

mented regions) of an image. The recognition step is classically referred to as pattern

recognition. Pattern recognition by computer entails assigning patterns to classes

without human intervention. The term pattern refers to the object or entity of in-

terest; e.g. a Pap smear. The most widely used approach to pattern recognition in

computer vision is statistical pattern recognition (an overview of statistical pattern

recognition is given in Chapter 6). This approach involves: (i) computing numerical

parameters, called features, for each pattern; and (ii) using these to assign patterns

to classes. Features include quantitative measurements of object attributes, i.e. de-

scriptors, and derived numerical parameters; e.g. combinations (usually linear) of

descriptors.

1.4 Texture features

This section briefly reviews the different approaches to texture feature extraction

published in the literature. Recent and comprehensive reviews of texture analysis
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methods can be found in the Handbook of Pattern Recognition and Computer Vision

(Tüceryan & Jain, 1999) and the Ph.D. thesis of Smith (1998, Chapter 2).

1.4.1 Defining texture

Texture analysis has been the subject of serious study since the late sixties and early

seventies (Levine, 1985, p. 423). It is remarkable, therefore, that there still does

not exist a universally accepted general definition of texture (Smith, 1998, p. 1).

Tüceryan & Jain (1999, p. 219) state that:

the intensity variations in an image which characterize texture are gener-

ally due to some underlying physical variation in the scene (such as peb-

bles on a beach or waves in water). Modelling this physical variation is

very difficult, so texture is usually characterized by the two-dimensional

variations in the intensities present in the image. This explains the fact

that no precise, general definition of texture exists in the computer vision

literature.

In practice (Tüceryan & Jain, 1999, p. 208):

the “definition” of texture is formulated by different people depending

upon the particular application.

Smith (1998, p. 3) states that:

despite the lack of a universally agreed definition of texture, all re-

searchers agree on two points. Firstly, within a texture there is sig-

nificant variation in intensity levels between nearby pixels; that is, at

the limit of resolution, there is non-homogeneity. Secondly, texture is a

homogeneous property at some spatial scale larger than the resolution

of the image.

These points of consensus imply that a texture possesses both shift (translation)

invariance and local structure. Shift invariance means that “visual perception is

basically independent of position in the image pattern” (Levine, 1985, p. 423).

Local structure refers to the existence of texture primitives (basic patterns or shapes

repeated over and over as in the case of a chessboard), or of more subtle dependencies
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between the intensity of a pixel and the intensities of its near-neighbours. The

following definition of texture, by Francos et al. (1993, p. 2665), encapsulates all of

these ideas:

texture can be defined as a structure which is made up of a large ensemble

of elements that resemble each other to a great extent, with some kind of

“order” in their locations, so that there is no one element which attracts

the viewer’s eye in any special way. The human viewer gets an impression

of uniformity when he looks at a “texture”.

Unfortunately this definition does not facilitate a quantitative characterisation of

texture. Rather, a precise algorithmic formulation of the definition of texture is

needed. Two such computational approaches to the definition of texture have been

the mainstay of the texture analysis literature: the structural approach and the

stochastic approach (Smith, 1998, p. 5).

1.4.1.1 Structural approach

The structural approach assumes that a texture is composed of texture primi-

tives and that these primitives are arranged according to certain placement rules

(Tüceryan & Jain, 1999, p. 226). The “primitives may be of varying or determin-

istic shape, such as circles, hexagons, or even dot patterns” (Cross & Jain, 1983, p.

25). “The placement rule may be deterministic for periodic and very well structured

textures, or stochastic for more random structures” (Francos et al., 1993, p. 2666).

The structural approach is suited to describing textures such as a brick wall, tilings

of the plane, and cellular structures such as tissue samples (Cross & Jain, 1983, p.

25). Examples of such textures are shown in Figure 1.2.

1.4.1.2 Stochastic approach

The stochastic approach assumes that a texture is a realisation of a (discrete)

stochastic process9 governed by a set of parameters (Paget, 1999, p. 4). Usually

the stochastic process is considered to be two-dimensional (2D); i.e. it is a random

field. The stochastic approach is used to describe textures such as sand, grass, and

water (see Figure 1.3). “The key feature of these images is that the primitives are

very random in shape and cannot be easily described” using a structural model

(Cross & Jain, 1983, p. 25).

9 A discrete stochastic process is an indexed sequence of discrete random variables.
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(a) (b)

Figure 1.2: Textures that can be modelled using the structural approach. (a) Steel
mesh. (b) Cells in tissue.

(a) (b)

Figure 1.3: Textures that can be modelled using the stochastic approach. (a) Grass.
(b) Sand.
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1.4.2 Texture feature extraction

Early surveys of texture analysis methods—such as Haralick (1979) and Levine

(1985, Chapter 9)—categorise texture analysis methods as either structural or sta-

tistical. These categories correspond to the structural and stochastic definitions of

texture respectively. In the structural methods (Francos et al., 1993, p. 2666):

the texture is characterized by a description of its primitives and their

placement rules. Hence the purpose of the first stage of the analysis

procedure is to define the local attributes which characterize the texture

basic cell–the primitive. The primitives may be connected regions with

some tonal property, which are described in addition by their geometric

properties like shape, area, directionality, and by degree of homogeneity

of these properties. The higher level of structural analysis methods is

concerned with describing the placement rules and the spatial relations

between primitive cells. The placement rule may be deterministic. . . or

stochastic.

In the statistical approaches, the texture is characterised“by a collection of statistics

of selected features” (Francos et al., 1993, p. 2666). In the simplest case, one

can compute statistics—such as the mean, variance, skewness, and kurtosis—of the

grey-level histogram. These statistics are called first-order statistics because they

“depend only on individual pixel values and not on the interaction or co-occurrence

of neighbouring pixel values” (Tüceryan & Jain, 1999, p. 211). Second- and higher-

order statistics, however, do take into account spatial interactions that may exist

between two or more pixels. The concept of first-, second-, and third-order statistics

can be explained (Levine, 1985, p. 434):

in terms of “dropping” a point, a line, and a triangle, respectively, at

random on an image pattern. In the first case we collect statistics on

which pixel (monopole) gray level has been hit and represent the prob-

ability distribution in terms of a histogram. Second-order statistics are

computed by randomly dropping a needle (dipole) of varying length and

orientation and considering the gray levels at the two extremities. Sim-

ilarly, the third-order distribution is obtained by examining the three

vertices of triangles with arbitrary dimensions.
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Figure 1.4: The interrelation between the various second-order statistics (reproduced
from Tüceryan & Jain (1999, p. 222)).

Examples of second-order statistics include: difference statistics, co-occurrence ma-

trix features (see Section 5.7.1), autocorrelation function features, spectral features,

and autoregression model parameters. As Figure 1.4 shows, these statistics are not

independent.

Second- and higher-order interactions can be modelled by Markov random field

(MRF) models10. “These models assume that the intensity at each pixel in the image

depends on the intensities of only the neighboring pixels” (Tüceryan & Jain, 1999, p.

227). More specifically, the intensity of each pixel p is modelled as a random variable

Xp such that the probability that Xp = xp is conditional upon the values of those

pixels neighbouring p. The Hammersley-Clifford theorem, also called the MRF-Gibbs

equivalence theorem, establishes the form of the local conditional probability density

function (LCPDF) necessary to define a valid MRF (Paget & Longstaff, 1998, p.

926). In particular, the theorem requires the neighbourhoods to “be symmetrical

and self similar for homogeneous MRFs” (Paget, 1999, p. 39). Examples of such

neighbourhoods are shown in Figure 1.5. The MRF-Gibbs equivalence theorem

expresses the form of the LCPDF with reference to the local clique set associated

with each neighbourhood (see Figure 1.6).

More recent surveys of texture analysis methods refine and expand the statisti-

cal/structural taxonomy:

1. Reed & du Buf (1993) categorise texture feature extraction methods as:

10 Picard (1991) has established a theoretical link between grey-level co-occurrence matrices and
Markov random field models.
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(a) (b) (c)

Figure 1.5: Examples of symmetrical MRF neighbourhoods (pixel p is shaded): (a)
First-order (not statistical order) neighbourhood; (b) Second-order (not statistical order)
neighbourhood; and (c) Eighth-order (not statistical order) neighbourhood.

� Feature-based

This category is essentially the classical statistical category excluding

model-based methods such as autoregressive and MRF methods.

� Model-based

This category includes all those methods that “hypothesize underlying

processes for textures” (Reed & du Buf, 1993, p. 359). Such methods in-

clude fractal models, autoregression models, and MRF models. “Since

model parameters are used as texture features, model-based methods

could be considered a subclass of feature-based methods”(Reed & du Buf,

1993, p. 359).

� Structural

This category is identically the classical structural category.

2. Tüceryan & Jain (1999) categorise texture feature extraction methods as:

� Statistical

This category includes co-occurrence matrix features, autocorrelation fea-

tures, power spectrum features, and difference statistics.

� Geometrical

This category includes methods based on a “definition of texture as being

composed of ‘texture elements’ or primitives” (Tüceryan & Jain, 1999,

p. 223). This category is essentially the classical structural category
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(a)

(b)

Figure 1.6: Cliques: (a) Local clique set corresponding to a first-order neighbourhood;
(b) Cliques types for a second-order neighbourhood (the first 3, from left to right, are
the clique types for a first-order neighbourhood).
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with the addition of Voronoi tessellation features. Given a finite set of

distinct points in the Euclidean plane, the Voronoi tessellation or diagram

(see Section 5.2) is a partitioning of the plane into regions, each of which

contains the set of points closest to a particular point in the point set. The

concept can be extended from points (pixels) to more complex primitives

which must be “extracted from the gray level images using some low-level

processing” (Tüceryan & Jain, 1990, p. 211).

� Model based

This category includes MRFs and fractals. Fractals model the “statisti-

cal quality of roughness and self-similarity at different scales” that are

exhibited by many natural textures (Tüceryan & Jain, 1999, p. 229). A

texture that can be modelled as a fractal can be characterised by a single

parameter called the fractal dimension. Fractal methods are methods for

estimating this dimension.

� Signal processing

This category primarily includes methods that “compute certain features

from filtered images” (Tüceryan & Jain, 1999, p. 231). The category in-

cludes methods based on spatial domain filters, frequency domain filters,

Gabor filters, and wavelets.

3. Smith (1998) categorises non-structural texture feature extraction methods as:

� Parametric PDF (probability density function) methods

This category includes autoregressive methods, Gauss MRFs, and clique

MRFs.

� Non-parametric PDF methods

This category includes grey-level co-occurrence methods, grey-level differ-

ence methods, and texture spectrum methods. With regard to the latter

class of methods, Smith (1998, p. 27) writes that:

Texture Spectrum methods use PDF models which are sensitive

to high-order interactions. Typically, Texture Spectrum methods

use a histogram model in which the partitioning of the intensity

space is sensitive to high-order interactions between pixels. This

sensitivity to high-order interactions between pixels is made fea-

sible by quantizing the intensity values to a small number of

levels.
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� Harmonic methods

This category includes Fourier power spectrum and autocorrelation meth-

ods.

� Primitive methods

This category includes methods that “measure the density of a set of tex-

ture primitives, such as lines, edges and intensity extrema, in a texture”

(Smith, 1998, p. 31). The category coincides with the signal processing

category of Tüceryan & Jain (1999).

� Blob and mosaic methods

This category includes methods that “segment the image into small re-

gions” (Smith, 1998, p. 35). Such a “method models the image as com-

posed of one simple but variable primitive; the features measured model

the variations of the primitive found in the image” (Smith, 1998, p. 36).

� Fractal methods

This category is a sub-category of the model-based categories of both Reed

& du Buf (1993) and Tüceryan & Jain (1999).

� Line methods

This category includes methods that measure“features from one-dimensional

(though possibly curved) subsets of the texture” (Smith, 1998, p. 38).

Smith (1998, p. 7) states that the emerging consensus in the literature is “that

texture is a locally structured 2-D homogeneous random field”. Recall from Sec-

tion 1.4.1.2 that a random field is a two-dimensional stochastic process (each pixel

is a random variable Xp). The adjective homogeneous is synonymous with stationary

and refers to the property that P (Xp = xp | the neighbours of p) depends only on

the neighbourhood configuration and not on the location of p. What this means is

that the local statistics (with respect to the neighbourhood configuration)—mean,

variance, etc.—are the same for each pixel in the texture.

1.5 Problem definition

As noted in Section 1.2, nuclear texture features appear to be the most useful in

detecting MACs. These features characterise the distribution of chromatin. Chro-

matin is the substance in the cell nucleus that forms the chromosomes or DNA and

can be readily stained. Rousselle et al. (1999, p. 63) note that “most of the existing
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methods used to quantify nuclear texture are based on the statistical or probabilistic

assessment of the grey levels distribution in the image”. The underlying assump-

tion is that chromatin texture is suitably modelled as a two-dimensional, locally

structured, homogeneous random field. As Figure 1.7 illustrates, the validity of this

assumption is questionable. Wolf et al. (1995, p. 25) state that there are a num-

ber of inherent difficulties in trying to describe chromatin structure as (stochastic)

texture:

(1) nuclear patterns are mixtures of texture and structure (nucleoli [small

rounded bodies]) in changing amounts; (2) the chromatin texture may

vary within the nucleus; for example, there could be irregularly formed

regions of dense chromatin; and (3) the nuclear texture is given on a

small area, and boundary effects play an important role.

A major criticism of the features derived from the statistical/stochastic approach

is that they “usually cannot be interpreted in terms of chromatin organization such

[as] compaction and distribution” (Rousselle et al., 1999, p. 63). Hence they are

difficult to relate to the terms and adjectives—such as heterogeneity, granularity,

margination, condensation, compaction, clearing, clumping, clod-like, diffuse, blobs,

particles, granules, and particles—used by cytologists to describe chromatin (a de-

tailed examination of the appearance and structure of chromatin as visualised by

light microscopy is presented in Chapter 4). All of these observations suggest that

chromatin texture is more suitably modelled using a structural approach, and more

specifically a blob and mosaic method. The key here is the segmentation of the

chromatin into its primitives.

Several algorithms for chromatin segmentation have been published in the literature

and are reviewed in Chapter 4. The algorithms can be categorised according to

the underlying segmentation methodology used: global thresholding, top-hat trans-

form, grey-scale thinning, local adaptive thresholding, and region growing/merging

(an overview of segmentation methods is also provided in Chapter 4). The algo-

rithms based on global thresholding make no use of spatial information and cannot

ensure the segmentation of the chromatin into regions consistent with what a cyto-

professional might perceive to be blobs or particles. Moreover, global thresholding is

notorious for its lack of robustness to noise and/or uneven and variable illumination.

All of the algorithms, with the exception of those based on threshold decomposition

(thresholding over all possible grey levels) and grey-scale thinning, have in com-

mon that one or more operational parameters must be specified a priori. Moreover
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these need to be tuned to the particular application. As a consequence none of

these methods can be robust to changes in, or non-uniformity of, illumination and

staining. This in turn affects the quality of the chromatin features computed from

such segmentations. In summary, a better structural model of nuclear chromatin

(as visualised by light microscopy) is needed.

A strong motivation for pursuing the structural approach to modelling chromatin

texture is that it can potentially offer features with discriminatory power superior

to the statistical/stochastic texture features. Hallinan (2000, p. 57) has pointed

out that it is highly unlikely that the MACs phenomenon described by Nieburgs

and his colleagues in 1959, hereinafter referred to as classical MACs, is the same

phenomenon as that detected quantitatively using computers and texture features.

Descriptions of classical MACs support a structural model:

� “irregular intranuclear chromatin clumping and nuclear background clearing”

(Romsdahl et al., 1964, p. 1403);

� “coarse irregular chromatin clumps; irregularly prominent nuclear membrane;

multiple regular areas of chromatin clearing with central pinpoint chromatin

condensation; nuclear lobulation, folding and layering” (Chomet et al., 1966,

p. 197).

A study group was formed in November 1966 at the 14th Annual Scientific Meeting

of the American Society of Cytology to investigate the significance of the classical

MAC phenomenon. The group convened several times in 1967 and 1968. The

findings of the group were reported at the 16th Annual Meeting of the American

Society of Cytology. In particular the group concluded that a MAC positive nucleus

must possess the following eight characteristics (Meisels, 1969, p. 476):

1. Pale areas between chromatin bands

2. Areas are circular

3. Circular areas are of uniform size

4. Chromocenters are small and their attached chromatin bands surrounding cir-

cular areas are curved

5. Chromocenters and the curved chromatin bands have uniformity of diameters

and staining quality
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Figure 1.7: Nuclei from several Papanicolaou-stained cervical cells as visualised by light
microscopy. The nuclear chromatin has the appearance of a patchwork or mosaic of dark
and light regions.

6. The chromocenters and chromatin bands are not pyknotic

7. All or 5 of 6 circular areas are lightly stained

8. Four of the circular areas are present in a row and two appear together with

two of the circular areas of the row in a quadrant formation of four circular

areas of clusters of circular areas occupying an entire lobule.

1.6 Aim and objectives

In light of the comments and criticisms outlined in the previous section, the primary

aim of the research described in this thesis was to develop a structural model of

chromatin (as visualised by light microscopy) from which features can be defined

that can be directly related to the terms and adjectives used by cytoprofessionals

to describe chromatin distribution/texture. A secondary aim was to demonstrate

that such features can be used to detect nuclear changes during neoplasia11, and

malignancy associated changes. To this end the research was undertaken with the

following objectives:

1. To develop a class of non-linear self-dual filters for the purpose of attenuating

impulse-type noise in digital images;

11 A tumour or neoplasm is “a relentlessly growing mass of abnormal cells” (Alberts et al., 2002,
p. 1314). Tumour growth is called neoplasia.
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2. To develop a robust algorithm for segmenting the chromatin in a digitised

image of a cell nucleus (as visualised by light microscopy);

3. To develop a representation and description of the segmented chromatin that

characterises the spatial relationship between chromatin regions and addition-

ally incorporates scalar feature parameters associated with these regions;

4. To demonstrate that features derived from this representation and description

can be related to the descriptive terms used by cytoprofessionals to describe

chromatin distribution; and

5. To demonstrate that features so-derived can be used to discriminate between

normal and abnormal Papanicolaou-stained cervical cytology slides.

These objectives address low-, intermediate-, and high-level processing tasks associ-

ated with an image analysis system (see Figure 1.1).

1.7 Scope of the research

A major impediment to the progress of the research outlined in this thesis was the

lack of cell-image data suitable for developing a chromatin segmentation algorithm

and for training and testing a classifier. Given that, ideally, at least 500 measurable

cells per slide are needed to accurately estimate the means and standard deviations

of most cell features on a slide (Palcic & MacAulay, 1994a, p. 59), and that there

needs to be at least ten times as many slides per class as the number of features

(discussed in Section 6.3.1), it would take hundreds of hours of painstaking work by

a cytoprofessional to compile the requisite database. The associated cost, and the

commercial sensitivity of MACs-based research in general, precluded the possibility

of obtaining a database of images from a third party. Consequently the Cytometrics

Project purchased a cytometer and adapted it for use with the Papanicolaou stain

(this is detailed in Chapter 6). The associated delays and uncertainties are reflected

in the theoretical and algorithmic emphasis of Chapters 2-5 of this thesis.

The research described in this thesis is concerned with the preprocessing of cell nuclei

images to remove noise, the segmentation of the chromatin within these images,

the representation and description of the segmented chromatin, the extraction of

features describing the distribution of the chromatin, and the classification of slides

(populations of cells) using these features. Cell scene segmentation and nucleus

segmentation (see Figure 1.8) are not the subject of this thesis. Details of these
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Table 1.1: Ph.D. research contributing to the overall research initiative in the Cyto-
metrics Project.

Researcher Area of research

Bradley (1996) Machine learning / classification
Walker (1997) Texture analysis
Smith (1998) Texture analysis

Bamford (1999) Scene and nucleus segmentation
Hallinan (2000) Classification
Jones (2001) Texture analysis

steps can be found in Bamford & Jackway (2001), Bamford & Lovell (1999), and

Bamford (1999).

As noted at the beginning of the chapter, the research outlined in this thesis con-

stitutes part of a larger initiative to develop an automated image analysis system

(cytometer) for screening Papanicolaou-stained cervical smears. The research of sev-

eral Ph.D. students within CSSIP has contributed toward this goal (see Table 1.1).

1.8 Structure of this thesis

This chapter has:

� Described the rationale for undertaking the research described in this thesis

and the environment in which this research was undertaken.

� Provided an overview of Pap smear cytology, including the motivation for au-

tomated Pap smear screening, and the difficulties associated with developing

such a screener: in particular the difficulty identifying the rare occurrence of

diagnostic cells on a slide because of the nature of the Pap smear, and sampling

error. The literature suggests that the MACs phenomenon—subtle subvisual

changes in otherwise normal-appearing cells on atypical smears—has the po-

tential to solve these problems. MACs-based screening eliminates the need to

exhaustively scan a slide looking for diagnostic cells. The phenomenon has

been demonstrated in the literature on the basis of quantitative measurements

(features) made on populations of cells. The literature suggests that the most

discriminatory features are nuclear texture features.

� Provided an overview of statistical pattern recognition—a feature/measurement-

based approach to classification—in computer vision.
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Pap−stained slide

free−lying cell

nucleus

cytoplasm

(scene)
microscope field of view

segmented nucleus
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Figure 1.8: Scene and nucleus segmentation. (a) The cytometer automatically captures
scenes from the deposition area on the slide according to a predefined pattern. (b) In
each scene the cytometer identifies the locations of nucleus-like objects. (c) For each
location identified, the cytometer captures an in-focus image containing the nucleus-like
object and then segments the nucleus-like object from this image.
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� Provided an overview of the different approaches to texture feature extraction

published in the literature. Two computational approaches to the definition of

texture have been the mainstay of the texture analysis literature: the structural

approach and the stochastic approach.

� Identified that the stochastic approach to quantifying chromatin texture has

predominated in the literature and that the efficacy of this approach is ques-

tionable because: (i) chromatin texture exhibits structure—clumping, margina-

tion, granulation, condensation, clearing—which is not compatible with the

definition of texture as a locally-structured two-dimensional homogeneous ran-

dom field; and (ii) statistical/stochastic features are difficult to relate to the

terms and adjectives used by cytoprofessionals to describe chromatin distribu-

tion.

� Defined the aim, objectives, and scope of this research.

The remainder of the thesis is organised as follows:

Chapter 2 This chapter establishes the theoretical framework—fundamental con-

cepts, definitions, and notation—used throughout the thesis. The chapter

serves to acquaint the reader with sets and ordering (essential to the exposi-

tion in Chapter 3), complete lattices (variously used in this thesis to model

binary and grey-scale images, the components of an abstract space of folded

functions, and binary and grey-scale graphs), metric spaces, and mathematical

morphology for complete lattices.

Chapter 3 This chapter deals with the topic of noise filtering, and in particular

with attenuating impulse-type noise that can be induced by camera/frame-

grabber electronics when acquiring digital images. Noise filtering typically

precedes image segmentation. The chapter presents a review of existing ap-

proaches to constructing non-linear self-dual filters based on morphological

operators, and proffers a new theoretical approach to constructing non-linear

self-dual filters from morphological operators defined on an abstract space

called fold space. Self-dual filters, in general, are of interest in image analy-

sis because they treat the dark and light areas of an image in an equivalent

manner. This is useful when trying to remove salt-and-pepper noise or more

generally when trying to filter images such as textures for which there is no

distinction between foreground and background. Non-linear self-dual filters

based on morphological operators offer several advantages over linear filters:
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they do not induce ringing and blurring, they can be designed such that they

do not reduce the high frequencies and dynamic range in the image, they can

be designed such that they do not introduce new grey values into the image,

and they can be designed to be independent of monotone changes in intensity.

Chapter 4 This chapter deals with the problem of segmenting chromatin as vi-

sualised by light microscopy. The chapter presents an overview of grey-scale

image segmentation methods published in the literature; an overview of the

nature of chromatin and in particular its appearance and structure as revealed

by light microscopy; a review of chromatin segmentation methods published

in the literature; a new algorithm for the segmentation of chromatin based on

seeded region growing; a new seeded region growing algorithm that retains the

advantages of that proposed by Adams & Bischof (1994) but is independent

of the order of pixel processing; and proffers a new ascending priority queue

for use in implementing the watershed transform (a particular case of seeded

region growing).

Chapter 5 This chapter deals with the problem of representing and describing

objects—e.g. chromatin particles—in the plane. In particular the chapter ex-

amines the notions of adjacency, distance, and measurement. The chapter

presents an overview of (geometric) adjacency graphs; a review of the Voronoi

diagram and the graphs related to it; a review of the area Voronoi diagram;

a review of distance transform algorithms published in the literature; a new

theoretical result concerning the distance transform of a binary image, where

the underlying distance is based on a positive definite quadratic form, and

the erosion of its characteristic function by an elliptic poweroid structuring

element; a new algorithm for computing the exact Euclidean distance trans-

form on the hexagonal grid; an overview of the skeleton by influence zones,

the region adjacency graph, and the perceptual graph; a generalisation of the

grey-level co-occurrence matrix method to vertex-weighted adjacency graphs;

and an overview of the types of parameters (attributes) that can be measured

for image objects.

Chapter 6 This chapter discusses the application of the material in the preced-

ing chapters to the problem of screening cytology slides. In particular the

chapter discusses the motivation for designing a MACs-based classifier for

cytological screening; presents an overview of statistical pattern recognition,

including important issues such as the curse of dimensionality, dimensional-

ity reduction, classifier design, and classifier evaluation; and presents a case
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study in which features derived from the representation and description of

the segmented chromatin are used to build several MACs-based classifiers for

screening Papanicolaou-stained cervical smears.

Chapter 7 This chapter reviews the thesis, summarises its key contributions and

findings, and discusses the implications of these results. In addition, the chap-

ter outlines the limitations of the research undertaken, and the opportunities

for further research.

Chapters 3–6 address the aim and objectives outlined in Section 1.6. These are

summarised in the flowchart shown in Figure 1.9. This flowchart is reproduced at

the beginning of each of these middle chapters to remind the reader of the aim and

objectives, and to identify which part or parts of the flowchart are addressed by the

respective chapter.
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Chapter 4

Chapter 5

Chapter 3

Chapter 6

Noise
filtering

Chromatin
segmentation

Measurement
Adjacency and
distance

Classification

Features

Figure 1.9: Flowchart summarising the aims and objectives of the thesis and the cor-
responding chapters in which each is discussed and developed.



Chapter 2
Theoretical Framework

There cannot be a language more universal and more simple, more

free from errors and obscurities, more worthy to express the invariable

relations of natural things [than mathematics]

Jean Baptiste Joseph Fourier, Analytic Theory of Heat , 1822

The purpose of this chapter is to acquaint the reader with fundamental concepts

and definitions that are used in subsequent chapters of this thesis. The first three

sections of this chapter deal with sets and ordering. The concept of ordering in sets

is central to the exposition on folding induced self-dual filters (FISFs) presented in

the next chapter. Section 2.4 discusses lattices and in particular, complete lattices.

The complete lattice, which is in essence an ordered set equipped with a supre-

mum and infimum, is the algebraic framework that underlies all of the theoretical

chapters in this thesis. In this thesis complete lattices are variously used to model

binary and grey-scale images, components of an abstract space of folded functions

(Chapter 3), and binary and grey-scale graphs (Chapter 5). Section 2.5 deals with

operators on complete lattices (of which an FISF is an example). Section 2.6 dis-

cusses mathematical morphology for complete lattices. Mathematical morphology is

a non-linear theory “concerned with the processing and analysis of images, using op-

erators and functionals based on topological and geometrical concepts” (Heijmans,

1994a, preface). The complete lattice framework represents the most general alge-

braic framework in which mathematical morphology can be defined and studied. The

adoption of this framework eliminates the need to replicate definitions and results

for different objects spaces: binary images, grey-scale images, graphs, etc. Neverthe-

less, from an image analysis point of view the complete lattice is not in itself a rich
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enough structure to describe the useful morphological operations. It is necessary

to endow the complete lattice with certain geometrical and topological properties

such as translation invariance and connectivity. In the case of binary and grey-scale

images, for example, this permits the definition of mathematical morphology oper-

ators that “satisfy, besides the usual algebraic properties. . . , geometrical invariance

properties (translation invariance) also” (Heijmans, 1994a, p. 14). For this reason

Sections 2.7–2.10 give a brief treatment of mathematical morphology for binary im-

ages, grey-scale images, metric spaces, and graphs. The material in this chapter is

drawn primarily from the following monographs: Serra (1988d), Heijmans (1994a),

Birkhoff (1948), Donnellan (1968), and Szász (1963).

2.1 Sets and binary relations

A binary relation, defined on an arbitrary set, is a rule that prescribes a relationship

between pairs of elements. Formally, a binary relation is defined as follows.

Definition 2.1.1 (binary relation). Let S be an arbitrary set and let R be a

subset of S × S. The set R is called a binary (or dyadic) relation on S. If the

ordered pair (X, Y ) ∈ R then we write XRY and say that “the relation R holds

between X and Y ”.

Example. Consider the set of natural numbers N = {1, 2, 3, . . .} and the relation

“is the immediate predecessor of”. This relation is explicitly

R = {(1, 2) , (2, 3) , (3, 4) , . . .} .

One can associate with each binary relation another relation called the converse

relation.

Definition 2.1.2 (converse relation). If R is a binary relation defined on a set

S then the converse relation is the relation R′ such that XR′Y if and only if Y RX.

Example. The converse of the relation R in the previous example is the relation “is

the immediate successor of”. This relation is explicitly R′ = {(2, 1) , (3, 2) , (4, 3) , . . .}.

The following definition lists some important properties used to characterise binary

relations.

Definition 2.1.3 (properties of binary relations). A binary relation R defined

on a set S is said to be
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1. reflexive if XRX for all X ∈ S;

2. irreflexive if XRX for no X ∈ S;

3. transitive if XRY and Y RZ ⇒ XRZ for all X, Y, Z ∈ S;

4. symmetric if XRY ⇒ Y RX for all X, Y ∈ S; and

5. anti-symmetric if XRY and Y RX ⇒ X = Y for all X, Y ∈ S.

The symbol “=”used in the definition of anti-symmetry denotes the equality relation

which is the binary relation defined as follows.

Definition 2.1.4 (equality relation). Given a set S with elements X, Y, Z, . . .,

the binary relation R = {(X, X) , (Y, Y ) , (Z, Z) , . . .} is called the equality relation.

2.2 Equivalence relations

The equality relation is a special example of a type of binary relation known as an

equivalence relation.

Definition 2.2.1 (equivalence relation). A binary relation R defined on a set S
is said to be an equivalence relation if it is reflexive, transitive, and symmetric.

Examples.

1. Let S be the set of all triangles in the plane. The relation “is similar to” is an

equivalence relation.

2. Consider the set of natural numbers N. The relation xRy ⇔ x = y, for all

x, y ∈ N is a special equivalence relation known as the equality relation. This

relation is explicitly R = {(1, 1) , (2, 2) , (3, 3) , . . .}.

A feature of equivalence relations is that they induce a partition of the set on which

they are defined into disjoint non-empty sets called equivalence classes. The rela-

tionship between equivalence relations and equivalence classes is characterised in the

following theorem.

Theorem 2.2.2 (Donnellan (1968, p. 14)). Any equivalence relation R defined

on a non-empty set S induces a partition of S into disjoint non-empty subsets, called

equivalence classes, which contain all the elements of S. Conversely, any partition

of S into disjoint subsets such that every member of S is contained in some subset

and no member of S is in more than one subset, induces an equivalence relation on

S.
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2.3 Order relations

The equality relation is also an example of a type of binary relation known as a

partial order relation.

Definition 2.3.1 (partial order relation). A binary relation R defined on a set S
is said to be a partial order relation if it is reflexive, transitive, and anti-symmetric.

Remark. The equality relation is the only relation that is both an equivalence relation

and a partial order relation (Szász, 1963, p. 14).

Example. The relation “is less than or equal to” defined on the set of natural

numbers N is a partial order relation. The ordered pair (3, 7) is an element of this

relation and we usually write that 3 ≤ 7.

An arbitrary set, together with a partial order relation defined on it, is known as a

partially ordered set or poset.

Definition (partially ordered set). Let R be a partial order relation defined on

a set S. The pair (S, R) is called a partially ordered set or poset.

Example. The pair (N,≤) is a poset.

A poset for which the partial order relation defines an ordering for all pairs of

elements is called a chain.

Definition 2.3.2 (chain). Let (S, R) be a poset. If XRY or Y RX or both for all

X, Y ∈ S then (S, R) is said to be totally or linearly ordered and the poset is called

a chain.

Example. The poset (N,≤) is a chain. It is totally ordered because for every pair of

distinct elements x, y ∈ N we can write that x ≤ y or y ≤ x. The poset (P (R2) ,⊆),

on the other hand, is not a chain—there exist many pairs of distinct elements (sets)

X, Y ∈ P (R2) such that X � Y and Y � X.

2.3.1 Hasse diagrams

If (S, R) is a poset and S is non-empty and finite then the partial order relation on

S can be represented graphically as a Hasse diagram. Each element of S is drawn

as a labelled dot in the plane. If X and Y are two distinct elements of S and XRY

then the dot representing Y is drawn above the dot representing X. If, in addition,

there does not exist another element Z ∈ S such that XRZ and ZRY , then a line

segment is drawn between the dots representing X and Y . Some examples of Hasse

diagrams are shown in Figure 2.1.
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2

1

(a)

{1,2,3}

{2,3}{1,3}{1,2}

{1} {2} {3}

{}

(b)

Figure 2.1: Hasse diagrams. (a) The Hasse diagram for the chain (S,≤) where S =
{1, 2, 3, 4}. (b) The Hasse diagram for the poset (P (S) ,⊆) where S = {1, 2, 3}.

2.3.2 The principle of duality with respect to order

A feature of partial order relations is that their corresponding converse relations are

also partial order relations.

Theorem 2.3.3 (Birkhoff (1948, p. 3)). The converse of any partial ordering is

itself a partial ordering.

Remark. The implication of this theorem is that if (S, R) is a poset then (S, R′),

where R′ is the converse relation, is also a poset. Moreover, for every statement,

definition, or property pertaining to (S, R), a corresponding one is obtained for

(S, R′) by simply interchanging the role of R and R′. This is known as the principle

of duality with respect to order. The poset (S, R′) is said to be the dual of (S, R)

and vice versa.

2.3.3 Quasi-ordering

A binary relation that is reflexive and transitive is called a relation of quasi-ordering.

Definition 2.3.4 (quasi-ordering). A binary relation R defined on a set S is said

to be a relation of quasi-ordering if it is reflexive and transitive.

Remark. The difference between a relation of quasi-ordering and a partial order

relation is that the latter is also anti-symmetric (we know a priori a relation of

equality) (Donnellan, 1968, p. 264).
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A relation of quasi-ordering can be used to define an equivalence relation as follows.

Theorem 2.3.5 (Schröder’s theorem (Birkhoff, 1948, p. 4)). Let R be a

relation of quasi-ordering defined on a set S. The relation E defined

XEY if and only if XRY andY RX

is an equivalence relation.

A relation of quasi-order together with an equivalence relation defined on the same

set can be used to define a partial order relation on the equivalence classes as follows.

Theorem 2.3.6 (Donnellan (1968, p. 265)). Let Q be a relation of quasi-order

defined on a set S (with elements x, y, z, . . .), and let E be an equivalence relation

defined on S that partitions it into classes X, Y, Z . . . of equivalent elements. Let T
be the set {X, Y, Z, . . .}. If we define a dyadic relation ≤ on T as follows:

X ≤ Y if and only if xQy

for some x ∈ X and some y ∈ Y , then (T ,≤) is a poset.

2.3.4 Isomorphism

An isomorphism is an order preserving mapping between two posets, and a dual

isomorphism is an order reversing mapping between two posets. Formally they are

defined as follows.

Definition 2.3.7 (isomorphism and dual isomorphism). Let (S,≤) and (T ,
)

be two posets. Let the mapping Ψ : S → T between the two posets be a bijection

(it is one-to-one and onto, i.e. there is a one-to-one correspondence between the

elements of S and the elements of T ). If both Ψ and its inverse Ψ−1 are order

preserving, i.e.

X ≤ Y if and only if Ψ (X) 
 Ψ (Y )

for all X, Y ∈ S then Ψ is said to be an isomorphism. If both Ψ and its inverse Ψ−1

are order reversing, i.e.

X ≤ Y if and only if Ψ (Y ) 
 Ψ (X)

for all X, Y ∈ S then Ψ is said to be a dual isomorphism.
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Remarks.

1. If an isomorphism exists between two posets then the posets are said to be

isomorphic.

2. An isomorphism between a poset and itself is called an automorphism.

3. A dual isomorphism between a poset and itself is called a dual automorphism.

Example. The familiar real number line is the poset (R,≤). The negation operator,

−, is a dual automorphism.

2.4 Lattices

A lattice may be looked at in two distinct ways: (i) as a poset (in the context of set

theory), or (ii) as an algebra (in the context of algebra theory).

2.4.1 Set theory definition of a lattice

The set theory definition of a lattice first requires that the infimum and supremum

of a poset be defined.

Definition 2.4.1 (infimum). Let (S, R) be a poset and let T be a non-empty

subset of S. A lower bound of T is an L ∈ S such that LRX for every X ∈ T . A

greatest lower bound (infimum, inf, or
∧

) of T is a lower bound L0 such that LRL0

for every other lower bound L ∈ S.

Definition 2.4.2 (supremum). Let (S, R) be a poset and let T be a non-empty

subset of S. An upper bound of T is a U ∈ S such that XRU for every X ∈ T . A

least upper bound (supremum, sup,
∨

) of T is an upper bound U0 such that U0RU

for every other upper bound U ∈ S.

A lattice is a poset for which every pair of elements has a supremum and an infimum.

Definition 2.4.3 (lattice). Let (L,≤) be a poset. If every pair of elements X, Y ∈
L has an infimum (written X ∧Y ) and a supremum (written X ∨Y ) then the poset

is said to be a lattice.

When only the infimum or only the supremum exists for each pair of elements then

the poset is called a semilattice.
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Definition 2.4.4 (semilattice). Let (L,≤) be a poset. If every pair of elements

X, Y ∈ L has an infimum (written X ∧ Y ) then the poset is said to be an inf

semilattice. If every pair of elements X, Y ∈ L has a supremum (written X ∨ Y )

then the poset is said to be a sup semilattice.

Remark. A lattice is both an inf and sup semilattice.

2.4.2 Algebra definition of a lattice

“A set closed with respect to one or more specified finitary operations [i.e. n-ary

operations where n is finite] is called an algebra” (Donnellan, 1968, p. 10). Hence a

lattice can be defined as follows.

Definition 2.4.5 (Birkhoff (1948, p. 18)). A lattice L is an algebra with two

binary operations (symbolised by ∨ and ∧) satisfying for all X, Y, Z ∈ L

1. idempotence: X ∧X = X and X ∨X = X;

2. commutativity: X ∧ Y = Y ∧X and X ∨ Y = Y ∨X;

3. associativity: X ∧ (Y ∧ Z) = (X ∧ Y ) ∧ Z and X ∨ (Y ∨ Z) = (X ∨ Y ) ∨ Z;

4. absorption: X∧(X ∨ Y ) = X and X ∨ (X ∧ Y ) = X.

Remarks.

1. L is an algebra because it is closed with respect to the operations ∨ and ∧;

i.e. X ∧ Y ∈ L and X ∨ Y ∈ L for all X, Y ∈ L.

2. The partial order relation associated with this lattice is given by X ≤ Y ⇔
X ∧ Y = X, or equivalently X ≤ Y ⇔ X ∨ Y = Y (Szász, 1963, p. 38).

The algebra definition of a semilattice is as follows.

Definition 2.4.6 (Szász (1963, p. 38)). A semilattice is an algebra with one

binary operation that is idempotent, commutative, and associative.

Remark. A lattice is both a semilattice with respect to the operator ∧ and a semi-

lattice with respect to the operator ∨.
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2.4.3 Properties of lattices

Definition 2.4.7 (properties of lattices). In any lattice (L,≤) the following

inequalities hold true for all X, Y, Z ∈ L (Szász, 1963, pp. 79–86):

1. modular inequality: X ∨ (Y ∧ Z) ≤ (X ∨ Y ) ∧ Z if X ≤ Z; and

2. distributive inequality: X ∨ (Y ∧ Z) ≤ (X ∨ Y ) ∧ (X ∨ Z).

Remarks.

1. The modular inequality is self-dual.

2. Applying the principle of duality with respect to order, the dual of the dis-

tributive inequality must also hold true, namely:

X ∧ (Y ∨ Z) ≥ (X ∧ Y ) ∨ (X ∧ Z) .

2.4.4 Modular and distributive lattices

A lattice is said to be modular if the modular inequality holds true when the (first)

inequality (≤) is replaced by an equality (=).

Definition 2.4.8 (modular lattice). A lattice (L,≤) is said to be modular if it

satisfies

X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ Z if X ≤ Z

for all X, Y, Z ∈ L.

Remark. This identity is self-dual.

A lattice is said to be distributive if the distributive inequalities are in fact equalities.

Definition 2.4.9 (distributive lattice). A lattice (L,≤) is said to be distributive

if

X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ (X ∨ Z) ,

X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z)

for all X, Y, Z ∈ L.

Remark. Every distributive lattice is modular but, in general, the converse is not

true (Serra, 1988d, p. 124).
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A feature of distributive lattices is that

if X ∧ Z = Y ∧ Z and X ∨ Z = Y ∨ Z then X = Y.

This property also holds true for modular lattices when X and Y are comparable;

i.e. when either X ≤ Y or Y ≤ X (Serra, 1988d, p. 37).

2.4.5 Complete lattices

The complete lattice is the algebraic framework in which the theory of mathematical

morphology is defined and studied.

Definition 2.4.10 (complete lattice). A lattice (L,≤) is said to be complete if

every subset K of L has both a supremum (written
∨
K) and an infimum (written∧

K).

Remarks.

1. If K has only a finite number of elements X1, X2, . . . , Xn then we write X1 ∧
X2 ∧ . . . ∧ Xn or

∧
i Xi in place of

∧
K (the notation for the supremum is

similarly expressed).

2. Implicit in this definition is existence of a greatest element U called the uni-

versal element and a least element O called the null element.

3. “In a complete lattice every element is both an upper bound and a lower bound

of the empty set” (Heijmans, 1994a, p. 20). Consequently U =
∨
L =

∧
∅

and O =
∧
L =

∨
∅.

4. Not every lattice is complete (Heijmans, 1994a, p. 20). Consider the interval

(0, 1]. It is a lattice (and also a chain) for the usual partial ordering. However

it is not a complete lattice because, for example, the set
{
1, 1

2
, 1

3
, 1

4
, . . .
}

does

not have a lower bound (this set is actually the infinite sequence
{

1
n

}∞
1

for

which limn→∞ 1
n

= 0).

Example. The finite set {0, 1, . . .m} is a complete lattice for the usual partial

ordering. The sets R and Z are not complete lattices because they each do not have

a universal and null element. However, the extended sets R = R ∪ {−∞, +∞} and

Z = Z ∪ {−∞, +∞} are complete lattices.

The complete Boolean lattice and the power lattice are two important types of com-

plete lattice that are used in image analysis.
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2.4.5.1 Complete Boolean lattice

Definition 2.4.11 (complete Boolean lattice). A complete lattice (L,≤) is said

to be a complete Boolean lattice if

1. it is distributive; and

2. for each X ∈ L, there exists a unique Xc ∈ L (called the complement of X)

such that X ∨Xc = U and X ∧Xc = O.

Example. Let S be an arbitrary set. The pair (P (S) ,⊆) is a complete Boolean

lattice with null element ∅ and universal element S. Set complementation is the

complement operator.

Remark. In image analysis the complete Boolean lattice (P (S) ,⊆) serves as a math-

ematical model for binary images (in which case S is usually Zn or Rn representing

the space of pixel coordinates) and binary graphs (in which case S is a finite set of

vertices).

2.4.5.2 Power lattice

Definition 2.4.12 (power lattice). Let S be an arbitrary non-empty set and let

(T ,≤) be a complete lattice. Let T S denote the space of all mappings of the set

S into the set T 1. The partial ordering on T can be used to define the following

partial ordering on T S :

f ≤ g if f (x) ≤ g (x) ∀x ∈ S,

for f, g ∈ T S . The pair
(
T S ,≤

)
is a complete lattice called a power lattice.

Remarks.

1. For simplicity, the same symbol ≤ is used for both the lattice (T ,≤) and(
T S ,≤

)
.

2. This lattice inherits many of the properties of the lattice (T ,≤). Importantly,

if (T ,≤) is distributive then
(
T S ,≤

)
is also distributive. Similar conclusions

hold for other properties such as modularity (Heijmans, 1994a, p. 27).

1 “A mapping of a set A into a set B is a subset of A×B in which each element of A occurs once
and only once as the first component in the elements of the subset” (Ayres, 1965, p. 6). Such
a mapping is better known as a function.
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3. When T = {0, 1} the power lattice
(
T S ,≤

)
is isomorphic to the complete

Boolean lattice (P (S) ,⊆).

4. In image analysis the power lattice
(
T S ,≤

)
serves as a model for grey-scale im-

ages and grey-scale graphs. When dealing with grey-scale images S is usually

taken to be Rn or Zn (representing pixel coordinates) and when dealing with

grey-scale graphs S is taken to be a finite set of vertices V = {v1, v2, . . . , vn}.
The set T defines a set of grey-levels that each element (e.g. pixel) of the do-

main space may map to. In image processing T is typically one of the infinite

sets R = R∪{−∞, +∞} or Z = Z∪{−∞, +∞}, or the finite set {0, 1, . . . , m},
each of which is a complete lattice for the usual partial order relation ≤.

A comparison between the lattices (P (S) ,⊆) and
(
T S ,≤

)
is shown in Table 2.1.

2.5 Operators on a complete lattice

The following definition characterises some important properties of operators defined

on a complete lattice.

Definition 2.5.1. Let (L,≤) be a complete lattice and let O (L)—or simply O
when the context is clear—be the set of all operators ψ : L → L. An operator

ψ ∈ O is said to be

1. increasing if X ≤ Y ⇒ ψ (X) ≤ ψ (Y ) ∀X, Y ∈ L;

2. extensive if X ≤ ψ (X) ∀X ∈ L;

3. anti-extensive if ψ (X) ≤ X ∀X ∈ L;

4. idempotent if ψ (ψ (X)) = ψ (X) ∀X ∈ L;

5. a negation2 if it is a dual automorphism and satisfies ψ (ψ (X)) = X ∀X ∈ L;

6. self-dual if ψ (X) = [ψ (X∗)]∗ ∀X ∈ L, where ∗ denotes a negation;

7. a dilation if it commutes with the supremum, i.e. ψ (
∨

i Xi) =
∨

i ψ(Xi) for

every family {Xi} of elements in L;

2 A complete lattice may or may not have a negation. The existence of this operator depends
entirely upon the nature of L. The set of all closed subsets of R2 together with the partial order
relation ⊆ is an example of a complete lattice that does not possess a negation (Heijmans,
1994a, p. 13).
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Table 2.1: Complete lattices in image analysis.

Complete Boolean
lattice (P (S) ,⊆)

Power lattice(
T S ,≤

)

Set all subsets of S all functions f : S → T

Elements A, B, . . . ∈ P (S) f, g, . . . ∈ T S

Partial
order
relation

⊆ f ≤ g if
f (x) ≤ g (x) ∀x ∈ S

Universal
element

S u (x) =
∨
T

Null
element

∅ o (x) =
∧
T

S is an arbitrary set
(T ,≤) is a complete lattice
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8. an erosion if it commutes with the infimum, i.e. ψ (
∧

i Xi) =
∧

i ψ(Xi) for

every family {Xi} of elements in L;

9. an opening if it is increasing, anti-extensive and idempotent;

10. a closing if it is increasing, extensive and idempotent.

Remarks.

1. Dilation and erosion are dual notions; i.e. they satisfy the principal of duality

with respect to order.

2. Opening and closing are also dual notions. In the literature these operators

are sometimes called algebraic opening and closing (e.g. Serra (1988d)) or

generalised opening and closing (e.g. Haralick (1989)), respectively.

The partial ordering of the complete lattice of operands (L,≤) induces a partial

ordering on O (L). Moreover O (L) is a complete lattice for this partial ordering.

Proposition 2.5.2. The partial ordering of the lattice (L,≤) induces the following

partial ordering on the set of operators O (L):

ψ ≤ η if ψ (X) ≤ η (X) for all X ∈ L

where ψ, η ∈ O (L). Moreover the pair (O (L) ,≤) is itself a complete lattice (Hei-

jmans, 1994a, p. 45). The null element of this lattice is the operator o ∈ O that

maps every element of L onto the null element of (L,≤); i.e. o (X) = O for all

X ∈ L. The universal element of this lattice is the operator u ∈ O that maps every

element of L onto the universal element of (L,≤), i.e. u (X) = U for all X ∈ L.

Remarks.

1. O (L) is in fact the power lattice LL.

2. To keep the notation simple the same symbols are used to represent the partial

ordering, the supremum, and the infimum as are used for the complete lattice

of operands (L,≤). Hence, for example, if I denotes the identity mapping—

i.e. I(X) = X for all X ∈ L—then the extensive property of definition 2.5.1

can be written: ψ ∈ O is extensive if I ≤ ψ (here the symbol ≤ refers to the

partial order relation on the complete lattice (O (L) ,≤) rather than (L,≤)).
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If the lattice of operands has a negation then the lattice of operators also has a

negation.

Definition 2.5.3 (negative of an operator). If (L,≤) is a complete lattice with

a negation, then the negative of an operator ψ ∈ O is defined

ψ∗ (X) = [ψ (X∗)]∗ .

Remark. In operator notation, the self-dual property of definition 2.5.1 can be writ-

ten: ψ ∈ O is self-dual if ψ = ψ∗.

The following proposition lists several key properties concerning an operator and its

negation.

Proposition 2.5.4 (Heijmans (1994a, p. 46)). If (L,≤) is a complete lattice

with a negation and ϕ, ψ, ψi ∈ O (L) then

1. ψ is increasing if and only if ψ∗ is increasing;

2. ϕ ≤ ψ if and only if ψ∗ ≤ ϕ∗;

3. (
∧

i ψi)
∗ =
∨

i ψ
∗
i and (

∨
i ψi)

∗ =
∧

i ψ
∗
i ;

4. (ϕψ)∗ = ϕ∗ψ∗.

2.6 Mathematical morphology for complete lat-

tices

The monograph Image Analysis and Mathematical Morphology by Serra (1982) is

generally considered to be the first systematic treatment of mathematical morphol-

ogy as an approach to image analysis. The main theoretical foundations of the

theory, however, were established years earlier in the monograph Random Sets and

Integral Geometry by Matheron (1975). These monographs “discuss a number of

mappings on subsets of the Euclidean plane (which serve as a model for continuous

binary images), which have in common that they are based on set-theoretical op-

erations (union, intersection, complementation) as well as translations” (Heijmans,

1994a, p. 15). Subsequently Matheron and Serra extended the theory of mathe-

matical morphology to arbitrary complete lattices. This theoretical advancement

is discussed in volume 2 of Image Analysis and Mathematical Morphology (Serra,



44 Theoretical Framework

1988d). Their work has since been extended by other researchers, most notably Henk

Heijmans and Christian Ronse. Heijman’s monograph Morphological Image Opera-

tors (Heijmans, 1994a) presents a rigorous mathematical treatment of mathematical

morphology on complete lattices that encompasses the pioneering work of Matheron

and Serra as well as its more recent extensions. This section serves to present only

a very brief overview of mathematical morphology; as much as is needed to support

the remainder of this thesis. In what follows, (L,≤) is assumed to be a complete

lattice with universal element U and null element O.

2.6.1 Adjunctions

“From a theoretical point of view, the adjunction is the most important notion

in mathematical morphology” (Heijmans, 1994a, p. 12). It is a notion that is as

fundamental to mathematical morphology as the concept of linearity is to traditional

signal processing.

Definition 2.6.1 (adjunction). Let δ, ε ∈ O (L). The pair (ε, δ) is called an

adjunction on (L,≤) if

δ (Y ) ≤ X ⇐⇒ Y ≤ ε (X) ,

for all X, Y ∈ L.

The following theorem establishes that δ is a dilation and that ε is an erosion.

Theorem 2.6.2 (Heijmans (1994a, p. 51)). If (ε, δ) is an adjunction on (L,≤)

then ε is an erosion and δ is a dilation.

From the definition of an adjunction it is easy to prove the following.

Proposition 2.6.3. If (ε, δ) is an adjunction on (L,≤) then3

1. the composition δε is an opening;

2. the composition εδ is a closing;

3. the composition εδε = ε;

4. the composition δεδ = δ.

3 In this thesis we follow the convention that the composition product δε means the application
of ε followed by the application of δ.
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Remark. “The study of openings and closings on complete lattices was initiated

by Matheron and Serra in the early eighties” (Heijmans, 1994a, p. 215). In the

monograph (Serra, 1988d) Matheron and Serra refer to adjunctional openings and

closings as morphological openings and closings.

2.6.2 Representation theorem for increasing mappings

Dilations, erosions, openings, and closings are increasing mappings. The following

theorem establishes a general representation for all increasing mappings.

Theorem 2.6.4 (representation of increasing mappings (Serra, 1988d, p.

20)). Every increasing operator ψ ∈ O (L) for which ψ (O) = O can be written as

a supremum of erosions in O (L).

Remark. Applying the principle of duality with respect to order it follows that every

increasing operator ψ ∈ O (L) for which ψ (U) = U can be written as an infimum

of dilations in O (L).

2.6.3 Morphological filters

The study of morphological filters on lattices was pioneered by Matheron and Serra

(Serra, 1988d). Morphological filters are defined to be increasing and idempotent

operators on a complete lattice. Openings and closings are simple examples of mor-

phological filters. Indeed “pedagogically speaking, openings and closings represent

the basic material that is constantly used to generate all other [morphological] filters”

(Serra, 1988d, p. 105).

Definition 2.6.5 (morphological filter (Serra, 1988d, p. 104)). An operator

ψ ∈ O (L) that is both increasing and idempotent is called a morphological filter.

Remark. Prior to the generalisation of mathematical morphology to the complete

lattice algebraic framework, the expression morphological filter was used by some

authors to denote an image operator that is increasing and translation invariant;

for example Giardina & Dougherty (1988). Translation invariance is a geometric

property rather than an algebraic property. Translation invariant operators and

morphological filters are discussed in Sections 2.7–2.10 in the context of binary

images, grey-scale images, and graphs.

Unfortunately the class of morphological filters is not closed under composition,

supremum, and infimum; i.e. if ψ and η are morphological filters then in general
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ψ ◦ η, η ◦ ψ, ψ ∨ η, ψ ∧ η are not morphological filters (Serra, 1988d, p. 105). This

led Matheron to establish the following result.

Proposition 2.6.6 (composition of morphological filters (Serra, 1988d, p.

118)). If ψ, η ∈ O (L) are two morphological filters such that ψ ≤ η then

1. ψ ≤ ψηψ ≤ ηψ ∧ ψη ≤ψη ∨ ηψ ≤ ηψη ≤ η;

2. ψη, ηψ, ηψη, and ψηψ are morphological filters.

This in turn led Matheron to introduce other classes of operators, such as under-

filters and overfilters, as part of the necessary theoretical framework in which to

comprehensively study morphological filters (Heijmans, 1994a, p. 410).

2.6.3.1 Overfilters, underfilters, inf-overfilters, sup-underfilters,

inf-filters, sup-filters, strong filters

Definition 2.6.7 (Heijmans (1994a, p. 410)). If (L,≤) is a complete lattice

then an increasing operator ψ ∈ O (L) is called

1. an overfilter if ψ ≤ ψψ;

an underfilter if ψψ ≤ ψ;

2. an inf-overfilter if ψ (I ∧ ψ) = ψ;

a sup-underfilter if ψ (I ∨ ψ) = ψ;

3. an inf-filter if it is a morphological filter that satisfies ψ (I ∧ ψ) = ψ;

a sup-filter if it is a morphological filter that satisfies ψ (I ∨ ψ) = ψ;

4. a strong filter if it is both a sup-filter and an inf-filter.

From this definition one can establish the following properties.

Proposition 2.6.8 (Heijmans (1994a, p. 410)).

1. Every extensive operator is an inf-overfilter.

Every anti-extensive operator is a sup-underfilter.

2. If ψ is an overfilter, then ψn is an overfilter for every n ≥ 1.

If ψ is an underfilter, then ψn is an underfilter for every n ≥ 1.
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3. If ψ is an inf-overfilter, then ψn is an inf-overfilter for every n ≥ 1.

If ψ is a sup-underfilter, then ψn is a sup-underfilter for every n ≥ 1.

4. If ψ is an inf-overfilter, then I ∨ ψ is an opening.

If ψ is a sup-underfilter, then I ∨ ψ is a closing.

5. Every opening and every closing is a strong filter.

2.7 Mathematical morphology for binary images

From the point of view of mathematical morphology, a binary image is a set (of

points or pixels) contained within some universal set S. In other words the space of

all binary images is the power set P (S); i.e. the set of all subsets of S. Importantly,

(P (S) ,⊆) is a complete Boolean lattice. From the point of view of image analysis

it is often desirable to imbue S with additional structure: “it may be a group, a

vector space, a metric space, a topological space, or a graph, just to mention a few

structures relevant in the context of mathematical morphology”(Heijmans, 1994a, p.

72). Indeed several of these structures make an appearance in subsequent chapters

of this thesis. In this section S is taken to be either the Euclidean space Rn or

the discrete space Zn. The former is a vector space whilst the latter is a module4.

Hereinafter the notation En is used to denote either space. The remainder of this

section presents a very brief overview of mathematical morphology for binary images.

In image analysis particular interest is paid to operators that are translation invari-

ant. Translation invariance is defined as follows.

Definition 2.7.1 (translation invariance). An operator ψ : P (En) → P (En) is

said to be translation invariant if

ψ (Ah) = [ψ (A)]h ,

where A ∈ P (En), h ∈ En, and Ah = {a + h | a ∈ A} is the translate of A along the

vector h.

The only translation invariant dilations on (P (En) ,⊆) are Minkowski additions and

the only translation invariant erosions are Minkowski subtractions.

4 A module is conceptually very similar to a vector space. Indeed, most of the rules of vector
manipulation hold.
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Definition 2.7.2 (Minkowski addition and subtraction). Let A, B ∈ P (En).

The Minkowski addition ⊕ and the Minkowski subtraction � are defined as follows:

A⊕B =
⋃
b∈B

Ab,

A�B =
⋂
b∈B

A−b.

Remarks.

1. Minkowski addition and Minkowski subtraction satisfy the following duality

with respect to complementation:

(A⊕ B)c = Ac � B̆ and (A�B)c = Ac � B̆

where B̆ = {−b | b ∈ B}.

2. Minkowski addition appeared for the first time in 1903 in the work of Minkowski

(1903). Surprisingly, Minkowski did not define its dual: Minkowski subtrac-

tion. It is only much later in the work of Hadwiger (1950) that Minkowski

subtraction is defined.

3. The definition of Minkowski subtraction given here is consistent with the def-

inition originally given by Hadwiger (1950). However, Serra (1982) defines

Minkowski subtraction as A � B =
⋂
b∈B

Ab. Although this definition coincides

with that used by Matheron (1975), it is not Hadwiger’s original definition.

This has led to much confusion in the literature (Heijmans, 1994a, p. 84).

Definition 2.7.3 (dilation and erosion). Let A, B ∈ P (En). The operators

δB, εB ∈ O (P (En)) defined

δB (A) = A⊕B,

εB (A) = A�B,

are, respectively, a dilation and an erosion. The set B is called a structuring element.

The following result characterises all translation invariant adjunctions on P (En).

Proposition 2.7.4 (Heijmans (1994a, p. 133)). For every B ∈ P (En) the

pair (εB, δB) is a translation invariant adjunction. Conversely, every translation

invariant adjunction is of this form.
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2.7.1 Representation theorem for increasing and translation

invariant mappings

The following theorem is a stronger version of Theorem 2.6.4.

Theorem 2.7.5 (representation of increasing and translation-invariant op-

erators (Heijmans, 1994a, p. 86)). If ψ ∈ O (P (En)) is an increasing and

translation invariant operator then

ψ (A) =
⋃

B∈ker(ψ)

A� B =
⋂

B∈ker(ψ∗)

A⊕ B̆

where ker (ψ) = {A ⊆ En | 0 ∈ ψ (A)} is called the kernel of the operator ψ.

Remark. This theorem was originally established by Matheron (1975) for increasing

mappings on P (Rn). Consequently this theorem is often called Matheron’s repre-

sentation theorem for increasing mappings.

2.7.2 Three dualities for binary dilations and erosions

There exist three types of duality between binary dilation and erosion:

1. adjunction:

δB (X) ≤ Y ⇐⇒ X ≤ εB (Y ) ;

2. duality with respect to order:

A dilation (respectively erosion) on the complete lattice (P (En) ,⊆) is an

erosion (respectively dilation) on the complete lattice (P (En) ,⊇) and vice

versa;

3. duality with respect to complementation:

(δB (A))c = εB̆ (Ac) and (εB (A))c = δB̆ (Ac) .

2.8 Mathematical morphology for grey-scale im-

ages

In classical (linear) image processing grey-scale images are modelled as functions of

the form f : En → T . Adopting the notation of Heijmans (1994a), let Fun (En, T )
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denote the set of all such functions. The domain space represents image points or

pixel coordinates and the codomain T is either Z or R representing grey-levels. The

sum f + g and the scalar multiple λf are defined:

(f + g) (x) = f (x) + g (x)

(λf) (x) = λf (x) ,

where f, g ∈ Fun (En, T ) and λ ∈ T . The set Fun (Rn, R) equipped with these

operations is a vector space V 5. Of particular interest in signal processing is a class

of linear operators6 on V called filters. In this context the term filter is “commonly

defined as any operator that is linear, continuous and invariant under translation”

(Serra, 1988d, p. 102). Every linear filter can be expressed as the “convolution

product f ∗ ϕ of a signal f by a (generalized) function ϕ” (Serra, 1986, p. 288).

From the point of view of mathematical morphology grey-scale images are likewise

modelled as elements of the set Fun (En, T ). However, the codomain T is typically

taken to be one of the infinite sets R = R ∪ {−∞, +∞} or Z = Z ∪ {−∞, +∞},
or the finite set {0, 1, . . . , m}, each of which is a complete lattice for the usual

partial order relation ≤. This ensures that (Fun (En, T ) ,≤) is a power lattice.

When T is the finite set {0, 1, . . . , m} then this lattice possesses the unique negation

f ∗ (x) = m − f (x), and when T is one of the infinite sets R or Z the lattice

possesses many negations (usually ∗ is defined to be f ∗ (x) = −f (x)). The lattice

is not, however, a complete Boolean lattice because, although it is distributive and

possesses one or more negations, it does not possess a complement operator7. A

comparison between linear and morphological image processing is shown in Table

2.2.

In classical signal processing translation invariance refers to spatial translation in-

variance. Indeed convolution is spatially translation invariant (Serra, 1988d, p. 184).

Spatial translation invariance is defined as follows.

5 In contrast the set Fun (Zn, Z) is not a vector space. It is a module. A module is conceptually
very similar to a vector space. Indeed, most of the rules of vector manipulation hold. In a
module, the coefficients are taken from a ring rather than a field. A ring is a more general
algebraic object than a field. The set R is both a ring and a field, whilst Z is only a ring.

6 An operator ψ : V → V is said to be linear if (i) ψ (f + g) = ψ (f)+ψ (g) for all signals f, g ∈ V
and (ii) ψ (λf) = λψ (f) for all f ∈ V and all scalars λ.

7 Consider, for example, the case when T is the set R and f∗ (x) = −f (x). The lattice then has
universal element u (x) = +∞ and null element o (x) = −∞ and in general f (x)∨f∗ (x) �= u (x)
and f (x) ∧ f∗ (x) �= o (x).
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Table 2.2: Comparison between linear and morphological image processing.

Linear image
processing

Morphological
image processing

Image model Vector space:
set of vectors V ,
set of scalars K

Complete lattice:
set of functions
Fun (En, T ),
partial order relation ≤

Fundamental
laws

Addition,
scalar multiplication

Supremum
∨

,
infimum

∧

Useful
operations

Those that preserve the
structure of the vector
space and commute
with the laws, i.e.
convolutions
φ (
∑

i aifi) =∑
i aiφ (fi)

Those that preserve the
structure of the
complete lattice and
commute with the laws,
i.e. dilations
φ (
∨

i fi) =
∨

i φ (fi)
and erosions
φ (
∧

i fi) =
∧

i φ (fi)
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Definition 2.8.1 (spatial translation invariance). An operator ψ : Fun (En, T )

→ Fun (En, T ) is said to be spatially translation invariant if

ψ (fh) = (ψ (f))h

for all h ∈ En, where f ∈ Fun (En, T ) and fh(x) = f (x− h) is the translate of f

along the vector h.

Adopting the terminology of Heijmans (1994a), these operators are hereinafter called

H-operators (i.e. horizontally translation invariant operators). In mathematical mor-

phology, however, it is possible to define operators that are grey-scale translation

invariant in addition to being spatially translation invariant. Grey-scale translation

invariance is defined as follows.

Definition 2.8.2 (grey-scale translation invariance). An operator ψ : Fun(En,

T )→ Fun (En, T ) is said to be grey-scale translation invariant if

ψ (f + v) (x) = ψ (f (x)) + v

for all v ∈ T , where f ∈ Fun (En, T ).

Once again, adopting the terminology of Heijmans (1994a), operators that are both

spatially translation invariant and grey-scale translation invariant are hereinafter

called T-operators (i.e. translation-invariant operators).

In image analysis it is common practice to change the relative scale of the grey values;

e.g. to improve contrast or to suppress certain ranges of grey-values (Heijmans,

1994a, p. 104). Serra (1982) coined these transformations anamorphoses.

Definition 2.8.3 (anamorphosis (Heijmans, 1994a, p. 104)). An anamor-

phosis is a function ν : R→ R which is continuous and increasing.

Remark. Examples of commonly applied anamorphoses are (Serra, 1982, p. 435):

f (x) → af (x) + b for a, b > 0; f (x) → log (f (x)); f (x) → (f (x))2; and f (x) →√
f (x).

Sternberg (1979) is responsible for extending Minkowski addition and subtraction

to functions.
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Definition 2.8.4 (Minkowski addition and subtraction). Let f, g ∈ Fun (En, T ).

The Minkowski addition ⊕ and the Minkowski subtraction � are defined as follows:

(f ⊕ g) (x) =
∨

h∈En

{f (x− h) + g (h)} ,

(f � g) (x) =
∧

h∈En

{f (x + h)− g (h)} .

Remark. These operators are ill-defined for the finite set T = {0, 1, . . .m} because

this set is not closed under addition and subtraction; i.e. the subtraction or addition

of two elements can generate a value that is outside of the set.

Analogous to the binary case, Minkowski addition is a dilation and Minkowski sub-

traction is an erosion.

Definition 2.8.5 (dilation and erosion). Let f, g ∈ Fun (En, T ). The operators

δg, εg ∈ O (Fun (En, T )) defined

δg (f) = f ⊕ g,

εg (f) = f � g,

are, respectively, a dilation and an erosion. The function g is called a structuring

function.

Remark. If one adopts a truncation policy, i.e. truncating values below 0 and above

m, then these operators can be applied to the case where f ∈ Fun (En, {0, 1, . . .m})
and g ∈ Fun (En, Z). Moreover δg is then a dilation and εg is an erosion on

Fun (En, {0, 1, . . .m}) (Heijmans, 1994a, p. 385). However, the pair (εg, δg) is not

in general an adjunction (see also the remarks following Proposition 2.8.6).

The following result characterises all H-adjunctions on (Fun (En, T ) ,≤).

Proposition 2.8.6 (Heijmans (1994a, p. 373)). If (eh, dh) is an adjunction on

T for every h ∈ En then the pair of operators (E, Δ) defined

Δ (f) (x) =
∨

h∈En

dh (f (x− h)) ,

E (f) (x) =
∧

h∈En

eh (f (x + h)) ,

is an H-adjunction on Fun (En, T ). Moreover, every H-adjunction on Fun (En, T )

is of this form.
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Remarks.

1. When T = R or T = Z then the pair (eh, dh) defined

dh (t) = t + g (h) ,

eh (t) = t− g (h) ,

where g ∈ Fun (En, T ), is an adjunction on T . The operator Δ is then identi-

cally the dilation δg and the operator E is identically the erosion εg.

2. When T = {0, 1, . . . , m} then dh (t) = t + g (h) and eh (t) = t − g (h) are

ill-defined. Moreover, if one adopts a truncation policy then, surprisingly, the

pair (eh, dh) is not in general an adjunction (Heijmans, 1994a, p. 385). The

situation is remedied if one redefines the addition and subtraction operators

such that whenever t ∈ T takes on the value 0 this value cannot be changed by

addition, and whenever t takes on the value m this value cannot be changed

by a subtraction (see Heijmans (1994a, p. 386) for details).

When T is either R or Z then Minkowski addition and subtraction are T-operators.

The following result characterises all T-adjunctions on Fun (En, T ).

Proposition 2.8.7 (Heijmans (1994a, p. 151)). For every g ∈ Fun (En, T ),

where T is either R or Z, the pair (εg, δg) is a T-adjunction. Conversely, every

T-adjunction is of this form.

When the structuring function only takes on the value 0 on its domain then it suffices

to represent the function by a set (its domain). The expressions for δg and εg then

simplify to the following.

Definition 2.8.8 (flat dilation and erosion). Let f ∈ Fun (En, T ) and B ∈
P (En). The operators δB, εB ∈ O (Fun (En, T )) defined

δB (f) = f ⊕ B

=
∨
h∈B

{f (x− h)} ,

εB (f) = f � B

=
∧
h∈B

{f (x + h)} ,
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are, respectively, a (flat) dilation and a (flat) erosion. The set B is called a struc-

turing element or flat structuring function.

2.8.1 Representation theorems for increasing and transla-

tion invariant mappings

The following two theorems are stronger versions of Theorem 2.6.4. The first pertains

to the representation of increasing T-operators and the second to the representation

of increasing H-operators.

Theorem 2.8.9 (representation of increasing T-operators

(Heijmans, 1994a, p. 109)). If ψ ∈ O (Fun (En, T )), where T is either R or Z,

is an increasing T-operator then

ψ (f) =
∨

g∈ker(ψ)

f � g =
∧

g∈ker(ψ∗)

f ⊕ ğ,

where ğ (x) = g (−x), and ker (ψ) = {g ∈ Fun (En, T ) |ψ (g) (0) ≥ 0} is called the

kernel of the operator ψ.

Remark. This theorem is an extension of Matheron’s representation theorem (The-

orem 2.7.5) to grey-scale functions. Matheron’s original theorem was extended to

grey-scale functions independently by Maragos (1989) (with the requirement that f

is upper semi-continuous), and by Giardina & Dougherty (1988). In both cases the

proofs rely upon the umbra transform (Heijmans, 1994a, p. 376) and Matheron’s

original theorem. Crombez (1990) established an independent proof of this theorem

without using the umbra transform or Matheron’s representation theorem.

Theorem 2.8.10 (representation of increasing H-operators

(Heijmans, 1994a, p. 375)). Every increasing H-operator ψ ∈ O (Fun (En, T ))

that satisfies ψ (u) = u, where u (x) =
∨
T , can be represented as a supremum of

H-erosions.

Remark. Applying the principle of duality with respect to order it follows that every

increasing H-operator ψ ∈ O (Fun (En, T )) that satisfies ψ (o) = o, where o (x) =∧
T , can be represented as an infimum of H-dilations.

2.8.2 Three dualities for grey-scale dilations and erosions

There exist three types of duality between grey-scale dilation and erosion (Heijmans,

1994a, p. 108):
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1. adjunction:

δg (h) ≤ f ⇐⇒ h ≤ εg (f) ;

2. duality with respect to order:

A dilation (respectively erosion) on the complete lattice (Fun (En, T ) ,≤) is

an erosion (respectively dilation) on the complete lattice (Fun (En, T ) ,≥) and

vice versa;

3. duality with respect to negation:

(δg (f))∗ = εğ (f ∗) and (εg (f))∗ = δğ (f ∗) .

2.9 Mathematical morphology for metric spaces

The concept of a metric space is relevant to the discussion on graph morphology in

the section to follow and also to the exposition in Chapter 5. A metric is essentially a

generalisation of the concept of distance. In geometry distance is an essential notion

(Preparata & Shamos, 1985, p. 4). In particular, the familiar Euclidean distance

d (x, y) =

√
(x1 − y1)

2 + (x2 − y2)
2 + · · ·+ (xn − yn)2

is used to quantify the nearness of x = (x1, x2, . . . , xn) to y = (y1, y2, . . . , yn) in Rn.

This in turn permits the definition of continuity and convergence in Rn (DePree &

Swartz, 1988, 241). In real analysis the concept of a metric is used to extend the

notions of continuity and convergence to the more abstract metric space.

Definition 2.9.1 (metric space). Let E be a non-empty set. The function d :

E×E → R is called a metric if it satisfies the following properties for all x, y, z ∈ E:

1. d (x, y) ≥ 0 and d (x, y) = 0 if and only if x = y (positive definite);

2. d (x, y) = d (y, x) (symmetry);

3. d (x, y) ≤ d (x, z) + d (z, y) (triangle inequality).

The pair (E, d) is called a metric space.

Examples. The following are metric spaces:

1. (R, d), where d = |x− y|.
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2. (C ([a, b] , R) , d), where C ([a, b] , R) is the set of all real-valued continuous

functions on [a, b] and

d (f, g) = max
t∈[a,b]

|f (t)− g (t)| .

3. (Rn, dp), where dp is the Minkowski metric of power p (Okabe et al., 1992, p.

185). The Minkowski metric, also called the Lp metric, is in fact a parame-

terised family of metrics defined as follows for p = 1, 2 . . . ,∞:

dp (x, y) =

{
(
∑n

i=1 |xi − yi|p)1/p
, if 1 ≤ p <∞,

max {|xi − yi| | 1 ≤ i ≤ n} , if p =∞.

When p = 1 the Minkowski metric is called the Manhattan or city-block or

taxi-cab metric. When p = 2 it is the familiar Euclidean distance. When

p =∞ the Minkowski metric is called the supremum or dominance metric.

Definition 2.9.2 (open and closed balls). Let (E, d) be a metric space, x ∈ E,

and r ∈ R+. The sets

B◦ (x, r) = {y ∈ E | d (x, y) < r}

and

B (x, r) = {y ∈ E | d (x, y) ≤ r}

are called, respectively, the open ball and the closed ball of radius r and centre x.

Example. Consider the metric d2 (i.e. the Euclidean metric) defined on the space

Rn. When n = 1, the open ball is an open interval, when n = 2 it is an open disk,

and when n = 3 it is a sphere without its boundary. Other metrics defined on Rn,

however, lead to rather different balls as Figure 2.2 shows.

Definition 2.9.3 (metric dilation (Heijmans, 1994a, p. 293)). Let (E, d) be

a metric space. The operator δr : P (E)→ P (E), for r ≥ 0, defined

δr (A) =
⋃
x∈A

B (x, r)

is a dilation called the metric dilation of size r.
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(a) (b) (c)

Figure 2.2: Closed balls in R2 with respect to: (a) the Minkowski metric L1 (the city-
block metric), (b) the Minkowski metric L2 (Euclidean distance), and (c) the Minkowski
metric L∞ (the dominance metric).

Remarks.

1. When E is Zn or Rn then the metric dilation of size r > 0 can be written as

δr = A⊕ B ⊕ · · · ⊕ B︸ ︷︷ ︸
r terms

.

where B = B (0, 1); i.e. the closed unit ball centred at the origin.

2. The adjoint erosion of size r is defined

εr (A) = {x |B (x, r) ⊆ A} .

2.9.1 Discrete metric spaces

The notion of a discrete metric space arises in the context of digital images. A

discrete metric space is defined as follows.

Definition 2.9.4 (discrete metric space (Heijmans, 1994a, p. 326)). A

metric space (E, d) is called discrete if for every x ∈ E and for r > 0 sufficiently

small, the closed ball B (x, r) contains only finitely many points.

The domain space of a digital image is Zn (the space of pixel coordinates). Un-

fortunately Zn is not isomorphic to Rn. This means that there are several ways of

interpreting (visualising) a digital image in Rn. In the case of a two-dimensional

digital image, the space Z2 is usually interpreted as either a square or a regular

hexagonal lattice8 of points in the Euclidean plane R2. In the former case the points,

8 The term lattice here has nothing to do with lattice theory.
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pixel
grid point

grid edge

(a)

pixel
grid edge

grid point

(b)

pixel
grid edge

grid point

(c)

Figure 2.3: Interpretations of Z2 in R2: (a) points on a hexagonal grid; (b) points on
a 4-connected square grid; and (c) points on an 8-connected square grid.

corresponding to the centres of pixels, are deemed to be the integer points in R2. In

the latter case, assuming that the vertical spacing is 1, the points are deemed to be

the points au + bv where u =
(

2√
3
, 0
)
, v =

(
1√
3
, 1
)

where a, b ∈ Z. The choice of

interpretation is usually “made at the moment of discretization” (Heijmans, 1994a,

p. 325).

In the case of the hexagonal lattice, the six points surrounding a given point are

equidistant from that point and are deemed to be connected to it. This connectivity

can be explicitly shown by drawing an edge between each point and its six neigh-

bours. This yields the hexagonal grid shown in Figure 2.3(a). In the case of the

square lattice not all eight neighbours of a given point are equidistant from it and

this gives rise to two possibilities: the 4-connected square grid and the 8-connected

square grid as shown in Figure 2.3(b)-(c).

Given any two grid points x and y it is possible to define at least one path between

them consisting of a sequence of grid points such that every pair of successive points

is connected by an edge. The number of edges comprising the shortest path between

them is denoted d (x, y). It is easy to show that d is a metric. It follows that the

pair (Z2, d) is therefore a (discrete) metric space. Figure 2.4 shows closed balls in Z2

for the discrete metric induced by the hexagonal grid, the 4-connected square grid,

and the 8-connected square grid.

A set of pixels X ⊆ Z2 on a grid is said to be connected if for any two pixels

x, y ∈ X there exists at least one path connecting them such that all of the pixels

on the path are elements of X. The notion of a connected set leads to the definition

of a connected component or flat zone.
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(a) (b) (c)

Figure 2.4: Closed balls in Z2: (a) pixels arranged on the hexagonal grid (hexagonal
metric); (b) pixels arranged on the 4-connected square grid (discrete city-block metric);
and (c) pixels arranged on the 8-connected square grid (discrete chessboard metric).

Definition 2.9.5 (connected component). A connected component is a con-

nected set whose pixels have the same value. For grey-scale images, connected

components are also called flat zones.

2.10 Mathematical morphology for graphs

In image analysis graphs are often used to model the topological connectedness of

and the geometric structure in the image under study (see Chapter 5). Formally,

a graph is defined as follows (for a more detailed exposition on graph theory the

reader is directed to the classic treatise The Theory of Graphs and its Applications

by Berge (1962)).

Definition 2.10.1 (graph (Beineke & Wilson, 1997)). A graph G consists of

a finite non-empty set V (G) of elements called vertices or nodes, and a finite set

E (G) of distinct unordered pairs of distinct elements of V (G). The elements of

E (G) are called edges. The set V (G) is called the vertex set and the set E (G) is

called the edge set. It is convenient to abbreviate these two sets to V and E and to

write that G = (V, E).

Remarks.

1. The elements of E are unordered pairs so that (v, w) is the same element as

(w, v).

2. There are numerous variations on the basic definition of a graph. In particular:
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(a) on replacing unordered with ordered in the definition of a graph, one

obtains the definition of a directed graph (this is a graph in which each

edge has a direction; e.g. (v, w) is an arrowed edge from v to w);

(b) by removing the restriction that the elements of E (G) must be distinct,

one obtains the definition of a multigraph (this is a graph in which two

or more edges may join pairs of vertices);

(c) by removing the restriction that the pairs in E (G) consist of distinct

elements, one obtains a graph with loops (a multigraph with loops is

called a general graph).

A graph consistent with the above definition is also called a simple graph9 because

it has no self-loops and no multiple or directed edges.

If e = (v, w) is an edge of a graph then e is said to join the vertices v and w and

these vertices are said to be adjacent. Furthermore the vertex w is said to be a

neighbour of the vertex v and vice versa. In general the neighbourhood of a vertex

is defined as follows.

Definition 2.10.2 (vertex neighbourhood (Beineke & Wilson, 1997)). Let

G = (V, E) be an arbitrary graph. The neighbourhood N (v) of a vertex v is defined

N (v) = {w ∈ V | (v, w) ∈ E } .

The notion of neighbours leads to the definition of paths and connectedness.

Definition 2.10.3 (path). Let G = (V, E) be an arbitrary graph. Let v and w be

two distinct vertices. A path between v and w is defined to be a sequence of distinct

vertices such that every pair of successive vertices are neighbours (i.e. are joined by

an edge).

Definition 2.10.4 (connected graph). Let G = (V, E) be an arbitrary graph.

If there exists a path between every pair of distinct vertices then G is said to be

connected.

Geometrical realisations of graphs in the plane are fundamental to the exposition in

Chapter 5. The following definition characterises such graphs.

9 The edge set of a simple graph can be viewed as an irreflexive and symmetric binary relation
defined on the vertex set.
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Definition 2.10.5 (plane and planar graphs (Wilson, 1985, p. 59)). A graph

that can be drawn in the plane in such a way that no two edges (or rather, the curves

representing them) intersect geometrically except at a vertex to which they are both

incident is called a plane graph. A planar graph is a graph that is isomorphic to a

plane graph.

In his pioneering work on graph morphology Vincent (1989) extended many mor-

phological transformations—metric dilation and erosion, distance transforms (see

Section 5.4), watershed transform (see Appendix B)—to simple graphs by mod-

elling the graphs as elements of the complete Boolean lattice (P (V (G)) ,⊆) and

introducing the following discrete metric on G.

Proposition 2.10.6. Let G = (V, E) be an arbitrary connected and simple graph.

Let v and w be two distinct vertices and define d (v, w) to be the length (number of

edges) of the shortest path between v and w. The pair (G, d) is a discrete metric

space.

Remark. The distance d can be applied to a graph that is not connected by adopting

the convention that the distance between two unconnected vertices is ∞. However,

d is then technically no longer a metric.

Hereinafter the notation X|G is used to denote a (binary) graph so that it is clear

that X ∈ P (V (G)). Graph dilation and graph erosion are defined to be metric

dilation and metric erosion, respectively, as follows.

Definition 2.10.7 (binary graph dilation and erosion). Let G = (V, E) be a

connected simple graph. The operator δr : P (V (G))→ P (V (G)) defined

δr (X |G) =
⋃
v∈X

Nr (v)

is called graph dilation of size r and the operator εr : P (V (G))→ P (V (G)) defined

εr (X |G) = {v ∈ X |Nr(v) ⊆ X }

is called graph erosion of size r, where r ∈ Z+, Nr (v) is the closed ball B (v, r) =

{w ∈ V (G) | d (v, w) ≤ r}, and X ∈ P (V (G)).

Remarks.

1. N1 (v) = N(v) ∪ v = B (v, 1).
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(a) (b) (c)

Figure 2.5: Elementary graph dilation and erosion: (a) binary graph X |G (filled ver-
tices); (b) δ (X |G ); and (c) ε (X |G ).

2. In contrast to mathematical morphology for digital images, the number of

vertices (points) contained in the neighbourhood (ball) N1 (v) depends on the

vertex v.

3. When r = 1 the dilation and erosion are denoted δ and ε respectively. Moreover

they are called elementary dilation and erosion (see Figure 2.5).

4. δr = δ ◦ δ · · · ◦ δ︸ ︷︷ ︸
r times

and εr = ε ◦ ε · · · ◦ ε︸ ︷︷ ︸
r times

.

Vincent (1989) extended these definitions to grey-scale graphs. A grey-scale graph is

a simple connected graph whose vertices are assigned grey-values. Hence a grey-scale

graph can be modelled as an element of the power lattice (Fun (V (G) , T ) ,≤), where

T is typically one of the infinite sets R = R ∪ {−∞, +∞} or Z = Z ∪ {−∞, +∞},
or the finite set {0, 1, . . . , m}. Formally a grey-scale graph is defined as follows.

Definition 2.10.8 (grey-scale graph). Let G = (V, E) be a connected simple

graph. The function f ∈ Fun (V (G) , T ), also written f |G , is called a grey-scale

graph.

Remark. When T = {0, 1} the power lattice (Fun (V (G) , T ) ,≤) is isomorphic to

the complete Boolean lattice (P (V (G)) ,⊆).

The dilation and erosion operations for grey-scale graphs are as follows.
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Definition 2.10.9. Let G = (V, E) be a connected simple graph. The operator

δr ∈ O (Fun (V (G) , T )) defined

δr (f |G) (v) =
∨

w∈Nr(v)

f (w)

is called grey-scale graph dilation of size r and the operator εr ∈ O (Fun (V (G) , T ))

defined

εr (f |G) =
∧

w∈Nr(v)

f (w)

is called grey-scale graph erosion of size r, where f ∈ Fun (V (G) , T ).

2.10.1 Structuring graphs

Heijmans, Nacken, Toet & Vincent (1992) generalised Vincent’s metric approach

to defining graph morphology by introducing the notion of structuring graphs or

s-graphs.

Definition 2.10.10 (s-graph (Heijmans et al., 1992, p. 28)). A structur-

ing graph A is a simple graph GA = (VA, EA) together with two non-empty sets

BA, RA ⊆ VA called the buds and the roots respectively.

Remark. The graph GA need not be connected and the buds and roots may coincide.

The idea of an s-graph is analogous to that of a structuring element. The concept

of a root corresponds to that of the origin (although an s-graph can have several

roots). At each vertex v of the graph G under study an embedding of the s-graph is

sought. An embedding is a mapping GA into G such that one of the roots coincides

with v and such that all of its vertices and edges coincide with vertices and edges

in G. Those vertices of G that specifically coincide with the buds of the s-graph

constitute part of the neighbourhood of v generated by the s-graph. The complete

neighbourhood is determined by seeking all possible embeddings of the s-graph at

v. Formally, the neighbourhood associated with an s-graph is defined as follows:

Definition 2.10.11 (neighbourhood function of an s-graph (Heijmans et

al., 1992, p. 29)). Let G = (V, E) be a simple graph and let A be an s-graph.

The s-graph A defines a neighbourhood function, denoted NA, on P (V (G)) as

follows:

NA (v |G) =
⋃
{θ (BA) | θ is an embedding of A into G at v}
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Figure 2.6: Structuring graph defining the elementary neighbourhood N1 (arrow indi-
cates the root, and both vertices are buds).

where v ∈ V .

Remarks.

1. Mathematically speaking, an embedding θ is a homomorphism of GA into G

(i.e. a mapping that preserves the vertices and edges of the graph).

2. The neighbourhood function N1 associated with Vincent’s elementary graph

dilation and erosion is defined by the s-graph shown in Figure 2.6.

This neighbourhood function can then be used to define adjunctions on (P (V (G)) ,

⊆) as follows.

Proposition 2.10.12 (Heijmans et al. (1992, p. 30)). Let G = (V, E) be a

simple graph and let A be an s-graph. The pair (εA, δA) defined

δA (X |G) =
⋃
v∈X

NA (v |G) ,

εA (X |G) = {v ∈ V |NA (v |G) ⊆ X } ,

where X ∈ P (V (G)), is an adjunction on the complete Boolean lattice (P (V (G)) ,

⊆).

These definitions extend to grey-scale graphs also.

Proposition 2.10.13 (Heijmans & Vincent (1993, p. 191)). Let G = (V, E)

be a simple graph and let A be an s-graph. The pair (εA, δA) defined

δA (f |G) (v) = sup
{

f (w) |w ∈ N̆A (v |G)
}

,

εA (f |G) (v) = inf {f (w) |w ∈ NA (v |G)} ,

where N̆A (v |G) = {w ∈ V (G) | v ∈ NA (w |G)}, is an adjunction on the power

lattice (Fun (V (G) , T ) ,≤).
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2.11 Summary

This chapter has established the fundamental definitions and concepts underlying

the remainder of this thesis. This chapter has:

� Reviewed sets and binary relations, and ordering in sets: total, partial, and

quasi-ordering.

� Defined the concept of a lattice from both a set theory point of view and as an

algebra, and its properties; defined modular and distributive lattices; defined

complete lattices, and in particular the complete Boolean lattice and the power

lattice because of their importance in image analysis; and defined important

properties and types of operators on a complete lattice.

� Reviewed the theory of mathematical morphology for complete lattices, in-

cluding adjunctions, a representation theorem for all increasing mappings, and

morphological filters.

� Briefly reviewed mathematical morphology for binary and grey-scale images,

metric spaces, and graphs.



Chapter 3
Folding Induced Self-dual Filters

(c) 2004 The M.C. Escher Company - the Netherlands (www.mcescher.com). All rights reserved. Used by permission.

M.C. Escher’s “Day and Night”
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invariant under translation” (Serra, 1988d, p. 102). An operator ψ is said to be

linear if ψ (f + g) = ψ (f) + ψ (g) for all signals f and g. These transformations

“preserve addition, and, beyond addition, the notion of group structure, thereby

making reversibility an important feature” (Serra, 1988d, p. 10). An image de-

graded by motion blur, for example, can be modelled as a convolution (a linear

operation) of the original image with a blurring function. If the blurring function

can be derived analytically or can be estimated then inverse filtering (Gonzalez &

Woods, 1992, p. 272) can be used to recover the original image from the degraded

image (reversibility). When the phenomena are linear in nature, then the use of

linear filters is justified; examples include the attenuation of specific frequencies

in acoustic signals, the attenuation of additive noise, and correcting out-of-focus

images. The most common types of linear filter are:

� low-pass: these filters attenuate the high frequencies, leaving low frequencies

intact;

� high-pass: these filters attenuate the low frequencies, leaving high frequencies

intact; and

� band-pass: these filters attenuate all but a selected band of frequencies.

For visual signals, (spatial) frequency is related to the perceived geometric detail. In

a digital image, for example, high spatial frequency corresponds to a rapid change

in brightness across image pixels and is synonymous with object edges and noise,

whilst low spatial frequency corresponds to a gradual change in intensity. Heijmans

& Ronse (1990, p. 247) state that:

workers in image processing have attempted to apply linear techniques to

the analysis of images. One thought, for example, [was] that the global

structure of an image would be derived from a low-pass filtering and the

finer details from a high-pass filtering.

In reality, whilst some signals (such as acoustic signals) combine linearly by super-

position, visual signals do not (Heijmans, 1994a, p. 6). The reason for this is that

the world around us is composed of opaque objects. When one object is placed

in front of another the light waves reflected from both objects do not sum (Serra,

1988b, p. 102). On the contrary, the object in front blocks the light emanating from

the object behind it. This basic observation is the basis of a non-linear approach to
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image filtering using operators from mathematical morphology (Serra, 1982, 1988d).

Morphological filters (Definition 2.6.5) are increasing (preserve order relationships

between signals) rather than linear. In addition, morphological filters are idempo-

tent. This means that repeated application of the filter has no additional effect;

in the context of linear filtering this corresponds to the notion of an ideal filter.

Idempotence is a desirable property because after applying an idempotent filter the

practitioner is not faced with the dilemma of whether or not to apply the filter a

second or indeed several times more.

Every linear filter can be expressed as the “convolution product f ∗ϕ of a signal f by

a (generalized) function ϕ” (Serra, 1986, p. 288). Convolution satisfies the property

f ∗ϕ = − (−f ∗ ϕ) for all signals f . This property is known as self-duality. Self-dual

filters are of interest because they treat both the light and dark areas of an image

in an equivalent manner. They are well suited to situations where the aim is to

“separate two components, one of which is sometimes lighter and sometimes darker

than the other” (Serra, 1988a, p. 159). The elimination of salt-and-pepper noise is a

prime example. Other examples include the filtering of images of natural scenes and

textures for which there is no clear distinction between foreground and background.

This is exactly the situation one encounters in relation to the filtering of digitised

photomicrographs of Papanicolaou-stained cell nuclei; there is no obvious notion of

foreground and background in relation to the chromatin texture in a cell nucleus.

Whilst all linear filters are self-dual, only some non-linear filters possess this prop-

erty; the median filter is perhaps the best known example. Non-linear self-dual

filters offer several advantages over their linear counterparts. Firstly, an increasing

non-linear self-dual filter, such as the median filter, does not reduce the dynamic

range and high frequencies in the image. This is in contrast to convolutions—

weighted moving averages—which are by their very nature smoothing operations

(Serra, 1988a, p. 159). Secondly, it is possible to construct non-linear self-dual

filters that are independent of monotone changes in intensity called anamorphoses

(see Definition 2.8.3). Thirdly, non-linear self-dual filters can be constructed such

that no new grey values are introduced in the image. Finally, it is possible to con-

struct non-linear self-dual filters that are idempotent but do not induce the ringing

degradation (Gonzalez & Woods, 1992, p. 205) that is characteristic of ideal linear

filters.

Given that self-duality is not an intrinsic property of non-linear filters, how does

one construct a self-dual non-linear filter? Remarkably, the generalisation of math-

ematical morphology to the complete lattice framework has been the catalyst for
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most of the research on this question: Serra (1988a, 1989); Serra & Vincent (1992);

Heijmans (1994b, 1996); Evans et al. (1997); Ronse & Heijmans (1998); Heijmans

& Ronse (1999). Evans et al. (1997) introduced a particularly novel approach moti-

vated by the desire to attenuate salt-and-pepper noise using a single morphological

closing. The approach involves the imposition of an alternative ordering, which they

call folded ordering, on the image grey-values. Application of a morphological clos-

ing to this image and the subsequent re-imposition of the original ordering produces

a self-dual filter. Evans et al. note, however, that although this approach makes

the closing self-dual, folded ordering actually inhibits the filter’s ability to atten-

uate salt-and-pepper noise. They subsequently abandon this ordering in favour of

another that induces only approximate self-duality.

This chapter proffers a new theoretical approach to constructing non-linear self-

dual filters from morphological meta-operators defined on an abstract space called

fold-space. Fold-space represents a generalisation of the folded ordering proposed

by Evans et al. (1997) (hereinafter referred to as the ESJ folded ordering). Self-

dual operators that can be constructed from fold-space operators are called folding

induced self-dual filters (FISFs). The ESJ folded closing turns out to be a particular

type of FISF. Importantly, however, other types of FISF can be designed that do

not suffer the limitations of the ESJ folded closing in relation to the attenuation of

salt-and-pepper impulse noise.

The remainder of this chapter is organised as follows. In the next section the various

lattice-theoretical approaches to constructing non-linear self-dual filters are briefly

reviewed. Section 3.2 then introduces the new approach: folding induced self-dual

filters. Finally Section 3.3 presents a summary of the chapter.

3.1 Review of non-linear self-dual operators and

filters

The generalisation of the theory of mathematical morphology to the complete lattice

algebraic framework in the 1980s, was the catalyst for much of the research into non-

linear self-dual filtering. A summary of the principal literature is as follows:

� Serra (1988a) introduces the notion of activity ordering and based on this the

notion of the morphological centre. The morphological centre is an operator

that is constructed from an arbitrary family of operators. When the family
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consists of a collection of operators and their duals, then the centre is self-

dual. Moreover, Serra (1988a, p. 166) proposes a criterion which, if satisfied,

guarantees that after a finite number of iterations of the morphological centre

idempotence is achieved (for digital images).

� Serra (1989) introduces the concept of a toggle mapping. The simple thresh-

olding operator is a trivial example of a toggle mapping. The morphological

centre is a more sophisticated example. Although “toggle mappings are not

necessarily self-dual. . . they can always admit a self-dual version” (Serra &

Vincent, 1992, p. 95).

� Serra & Vincent (1992, p. 99) establish a theoretical link between the mor-

phological centre, the median and weighted median filters.

� Heijmans (1994b) introduces the notion of a switch operator as a tool for

constructing self-dual increasing operators on P (Zn). Moreover he proposes

a means of modifying any increasing self-dual operator—using an approach

based on Serra’s morphological centre operator and the activity ordering—so

that its iteration leads to idempotence (and hence a morphological filter).

� Heijmans (1996) refines and extends his work based on the switch operator. In

particular he derives a general formula for translation invariant self-dual oper-

ators on P (Z2). Moreover he makes the observation that this formula extends

to grey-scale images (this follows from the fact that every increasing opera-

tor on P (En) can be extended to grey-scale functions on En by thresholding

(Heijmans, 1994a, p. 110)).

� Evans et al. (1997) introduce self-dual and approximate self-dual filters based

on the notion of alternative orderings.

� Heijmans & Ronse (1999) introduce the concept of an annular operator on

P (E) where E = Zn or E = Rn. This operator is defined in terms of two

structuring elements. Heijmans & Ronse show that if the structuring elements

satisfy some additional conditions then the annular operator can be made

to be idempotent and/or self-dual. Moreover they show that binary annular

operators extend to grey-scale images by thresholding. In a companion paper

Ronse & Heijmans (1998) extend the theory of annular filters (idempotent

annular operators) to lattices, and in particular complete lattices.

In the remainder of this section, each of the different approaches to constructing

self-dual operators and filters are reviewed: self-dual operators based on the activity
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ordering, self-dual toggle mappings, self-dual operators based on the switch operator,

self-dual operators based on the ESJ folded ordering, and self-dual annular operators.

3.1.1 Self-dual operators based on the activity ordering

The activity ordering is an invention of Serra (1988a). The activity ordering is an

ordering that can be defined on the set of operators O (L) of a complete Boolean lat-

tice (L,≤). The ordering makes it possible to “compare the impact of two operators

on an object X ∈ L” (Heijmans, 1994a, p. 63). It is defined as follows:

Definition 3.1.1 (activity ordering (Heijmans, 1994a, p. 64)). Let (L,≤)

be a complete Boolean lattice and let ψ, η ∈ O (L). The operator ψ is said to be

more active than η, written η 
 ψ, if

I ∧ ψ ≤ I ∧ η,

I ∨ η ≤ I ∨ ψ

where I is the identity operator, i.e. I(X) = X for all X ∈ L. The relation 
 is

called the activity ordering.

Remarks.

1. The activity ordering defines a partial ordering on O (L) (Heijmans, 1994a, p.

64).

2. The definition above defines the activity ordering in terms of the identity

operator. It is possible to replace the identity operator with any other operator

to define different types of activity ordering (Heijmans, 1994a, p. 64), (Serra,

1988a, p. 168).

3. The symbols � and � are used to denote the supremum and infimum, respec-

tively, with respect to the activity ordering 
.

The definition of the activity ordering extends to the power lattice Fun (E, T ), where

E is an arbitrary non-empty set and T is a complete chain (Heijmans, 1994a, p. 68).
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Proposition 3.1.2. When (L,≤) is

1. a complete Boolean lattice then the activity ordering is a partial ordering and

(O (L) ,
) is a complete lattice with the identity mapping as the null element

and the complement operator as the universal element (Heijmans, 1994a, pp.

66).

2. the power lattice L = Fun (E, T ), where E is an arbitrary non-empty set and T
is a complete chain, then the activity ordering is a partial ordering (Heijmans,

1994a, p. 68) but (O (L) ,
) is only an inf semilattice (Serra, 1988a, p. 164).

3.1.1.1 The centre operator

The (morphological) centre operator is defined to be the infimum, with respect to the

activity ordering, of an arbitrary family of operators defined on a complete Boolean

lattice (L,≤). It is a centre mapping in the sense that if ψ1, ψ2 ∈ O (L) are two

increasing operators such that ψ1 ≤ ψ2, then the centre operator with respect to ψ1

and ψ2 is an operator β that satisfies ψ1 ≤ β ≤ ψ2 (Heijmans, 1994a, p. 69).

Definition 3.1.3 (centre and anti-centre (Heijmans, 1994a, p. 67)). Let

(L,≤) be a complete Boolean lattice and let {ψi} be a family of arbitrary operators

in O (L). The infimum of this family of operators, with respect to the activity

ordering, is called the centre of the operators and is given by

�iψi =

[
I ∧
(∨

i

ψi

)]
∨
(∧

i

ψi

)
.

The supremum of this family of operators, with respect to the activity ordering, is

called the anti-centre of the operators and is given by

�iψi =

[
ν ∧
(∨

i

ψi

)]
∨
(∧

i

ψi

)
,

where ν is the complement operator ν (X) = Xc.

Remarks.

1. If all of the operators ψi are increasing then the centre is an increasing operator.

However, the same is not true for the anti-centre (Heijmans, 1994a, p. 67).
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2. The centre also extends to the power lattice L = Fun (E, T ). However, the

anti-centre does not because in this case the lattice (O (L) ,
) is only an inf

semilattice.

The following proposition prescribes the manner in which self-dual centre and anti-

centre operators can be constructed.

Proposition 3.1.4 (Heijmans (1994a, p. 67)). If {ψi} is a family of operators

such that for every ψi its negative ψ∗
i is also a member of the family, then both the

centre and anti-centre are self-dual operators.

Example. Consider the lattice
(
Fun

(
Z2, Z

)
,≤
)

(and assume that the underlying

grid is the square grid). Let B be a 3 × 3 square structuring element and let

ϕB = εBδB (an adjunctional closing) and let γB = δBεB (the dual adjunctional

opening). Consider the family {ϕBγBϕB, γBϕBγB}. From proposition 2.5.4 it follows

that (ϕBγBϕB)∗ = ϕ∗
Bγ∗

Bϕ∗
B =γBϕBγB and hence the family satisfies the above

proposition. From proposition 2.6.6 it follows that γBϕBγB ≤ ϕBγBϕB because

γB ≤ ϕB. Hence the centre � {ϕBγBϕB, γBϕBγB} = (I ∧ ϕBγBϕB) ∨ γBϕBγB is an

increasing self-dual operator.

3.1.1.2 Finite iterations of increasing centres and the middle filter

The centre operator, like the median filter, is not idempotent. What this means is

that after its application the practitioner is faced with the dilemma of whether or

not to apply it one or several times more. Worse still, repeated application to a

digital image may lead to oscillatory or periodic behaviour (Serra & Vincent, 1992,

p. 99). In the case of the lattice Fun
(
E, R

)
, a centre β, of a family of primitives

{ψi}, does not oscillate under iteration if and only if (Serra & Vincent, 1992, p.

100):

f (x) ≤ (βf) (x) ≤ (ββf) (x) ≤
(
β3f
)
(x) ≤ · · ·

or

· · · ≤
(
β3f
)
(x) ≤ (ββf) (x) ≤ (βf) (x) ≤ f (x)

for every f ∈ Fun
(
E, R

)
, and for all x ∈ E . This dictates that the successive

powers βn of β be increasing with respect to the activity ordering, i.e. β 
 ββ 

β3 
 . . . βn−1 
 βn (Serra & Vincent, 1992, p. 100). This criterion is formalised in

the following proposition.
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Proposition 3.1.5 (Serra (1988a, p. 166)). Let (L,≤) be a completely distribu-

tive lattice1 and let {ψi} be a family of increasing operators in O (L). Let η =
∨

i ψi

and ξ =
∧

i ψi, and let β be the centre of the family {ψi}, i.e. β = (I ∧ η) ∨ ξ.

The sequence of successive powers βn of β is increasing with respect to the activity

ordering, i.e. β 
 ββ 
 . . . 
 βn and βn, if for all integers 0 < n <∞

ξn ≤ ηn,

where

ηn =

n−1∧
k=0

ηβk = η ∧ ηβ ∧ . . . ∧ ηβn−1

and

ξn =

n−1∨
k=0

ξβk = ξ ∨ ξβ ∨ . . . ∨ ξβn−1.

Moreover βn is then written

βn = (I ∧ ηn) ∨ ξn.

Remarks.

1. Although in theory iterations βn are not necessarily bounded by a majorant

with respect to the activity ordering, “in practice, as any numerical precision

must be finite, there always exists an n0 < ∞ such that βn0+1=βn0” (Serra,

1988a, p. 168). This maximal iteration βn0 is then both increasing and idem-

potent and therefore a morphological filter.

2. Examples of activity increasing sequences βn can be found in Serra (1988a)

and Heijmans (1994a).

Serra (1988a, p. 175) states that when the lattice (L,≤) is finite—such as the

complete lattice of grey-scale digital images whose“spatial and numerical resolutions

are finite and their extensions bounded” (Serra, 1988b, p. 111)—the idempotent

limit of iterations of the centre of an inf-overfilter η and a sup-underfilter ξ, such

that η ≤ ξ, yields a unique strong filter called the middle filter. The middle filter is

characterised by the following theorem.

1 P (E) and Fun (E, T ), where E is an arbitrary non-empty set and T is a complete chain, are
completely distributive lattices (Heijmans, 1994a, p. 26).
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Theorem 3.1.6 (middle filter (Heijmans, 1994a, p. 428)). Let (L,≤) be a

modular complete lattice. If η, ξ ∈ O (L) are respectively an inf-overfilter and a

sup-underfilter, such that η ≤ ξ, then there exists a unique strong filter α, called the

middle filter, that satisfies η ≤ α ≤ ξ.

The relationship between the centre and the middle filter is characterised by the

following proposition.

Proposition 3.1.7 (Serra (1988a, p. 174)). Let (L,≤) be a modular complete

lattice. If η, ξ ∈ O (L) are respectively an inf-overfilter and a sup-underfilter, such

that η ≤ ξ, and β is the centre of η and ξ, then the function n → βn is increasing

with respect to the activity ordering. When (L,≤) is finite then the idempotent limit

βn0 of βn is the middle filter α.

Remark. When the centre is self-dual then the middle filter is also self-dual.

3.1.2 Self-dual toggle mappings

Toggle mappings are the invention of Serra (1989). The notion encompasses several

classes of mappings including the morphological centre. Toggle mappings are defined

with reference to the power lattice
(
Fun

(
E, R

)
,≤
)

where E is an arbitrary non-

empty set. The idea of a toggle mapping is that one associates with an image

f ∈ Fun
(
E, R

)
1. a family {ψi} of mappings in O

(
Fun

(
E, R

))
called primitives and

2. a toggling criterion (decision rule) that determines at each point x, the best

value from among the candidates ψi (f) (x).

A simple example of a toggle mapping is thresholding (see Section 4.1). In this case

there are two primitives—one that maps every image pixel to a foreground pixel, and

the other that maps every image pixel to a background pixel—and the decision rule

is nothing more than a comparison of the value of an image pixel with a constant

(the threshold value). In this example, the two primitives are defined independently

of f . However, this is not always the case; e.g. in the case of the morphological

centre, “the primitives are themselves transformations acting on the initial image”

(Serra & Vincent, 1992, p. 102). Formally, the toggle mapping is defined as follows.
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Definition 3.1.8 (toggle mapping (Serra & Vincent, 1992, p. 102)). Let

{ψi} be a family of mappings in O
(
Fun

(
E, R

))
called primitives. Any mapping

ω ∈ O
(
Fun

(
E, R

))
is called a toggle mapping of the primitives {ψi} if

1. At each point x, ω(f) (x) is equal to one of the ψi (f) (x), or f (x).

2. The decision rule that selects one of the ψi (f) (x), say ψi0 (f) (x), depends

only on the various ψi (f) (x), the value of f (x), and possibly one or more

constants.

3. If at point x, at least one of the various ψi, say ψi0 (f) (x), coincides with f (x)

then

ω (f) (x) = f (x) = ψi0 (f) (x) .

Toggle mappings are not necessarily self-dual. However, it is possible to define a self-

dual toggle mapping by extending the family of primitives to include their duals—

i.e. starting with the family {ψi} define the family {ψi, ψ
∗
i }—and“symmetrizing the

toggling criteria with respect to duality” (Serra & Vincent, 1992, p. 95).

Example. A simple algorithm for contrast enhancement of a digital image is as

follows (Serra, 1982, p. 476). For a given pixel x0 find the maximum and minimum

values in a neighbourhood centred on it. Replace f (x0) in the output image with

the value of the maximum or minimum depending on which value f (x0) is closer to.

This mapping is explicitly the toggle mapping:

ω (x) =

{
δB (f) (x) if δB (f) (x)− f (x) < f (x)− εB (f) (x) ,

εB (f) (x) otherwise,

where B is the elementary square or hexagon (depending on the underlying grid).

Unfortunately this toggle mapping is not self-dual. A self-dual version can be defined

as follows:

ω′ (x) =

⎧⎪⎨⎪⎩
δB (f) (x) if δB (f) (x)− f (x) < f (x)− εB (f) (x) ,

f (x) if δB (f) (x)− f (x) = f (x)− εB (f) (x) ,

εB (f) (x) if δB (f) (x)− f (x) > f (x)− εB (f) (x) .

By design toggle mappings generate jumps. It follows, therefore, that an idempo-

tent toggle mapping offers a degree of control over this phenomenon; on successive

application such a mapping cannot create any further jumps. The reader is directed

to Theorem 5.5 in Serra & Vincent (1992) for a characterisation of a comprehensive
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class of idempotent toggle mappings. Serra & Vincent (1992) also provide examples

of a variety of toggle mappings, including contrast mappings (Meyer & Serra, 1989),

combined toggles, and amplifier toggle mappings.

3.1.3 Self-dual morphological operators based on the switch

operator

The switch operator is an invention of Heijmans (1994b). The basic idea underlying

the switch operator approach is, in the words of Heijmans (1996, p. 16),

“to construct self-dual operators ψ which are not necessarily idempo-

tent, but which do satisfy the (weaker) constraint that they are activity-

extensive. The latter means that the sequence of iterates ψ, ψ2, ψ3, . . . is

increasing with respect to the. . . activity ordering”.

Formally, a switch operator is defined as follows.

Definition 3.1.9 (switch operator (Heijmans, 1994a, p. 468)). An anti-

extensive operator σ : P (E)→ P (E) is called a switch operator if it satisfies

1. σ (Y ) ∩X ⊆ σ (X) if X ⊆ Y ⊆ E;

2. σ (X ∪ {h})∩σ (Xc ∪ {h}) = ∅, for h ∈ E, X ⊆ E.

Remarks.

1. The first condition dictates that a point h ∈ Y that is switched—i.e. its state

changes from 1 to 0—by application of σ to Y , must also be switched by

application of σ to a subset X of Y that also contains h.

2. The second condition dictates that“two complementary configurations centred

at a point h cannot both force a switch of h” (Heijmans, 1994a, p. 469).

Proposition 3.1.10 (Heijmans (1994a, p. 469)). To every increasing, self-

dual operator ψ there corresponds a unique switch operator σ, and vice versa. This

relationship is given by

ψ (X) = (X \ σ (X)) ∪ σ (Xc) ;

σ (X) = X ∩ ψ (Xc) .
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The expressions in Proposition 3.1.10 can be written as ψ = Ψ (σ) and σ = Σ (ψ),

respectively, where Σ and Ψ are defined as follows.

Definition 3.1.11. Let the mappings Σ, Ψ : O (P (E))→ O (P (E)) be defined by

Σ (ψ) = I ∧ ψν, where ψ ∈ O (P (E)) ,

Ψ (σ) = (I ∧ νσ) ∨ σν, where σ ∈ O (P (E)) ,

where ν is the complement operator; i.e. ν (X) = Xc for all X ∈ P (E).

Remark. If σ is anti-extensive then Ψ (σ) is the centre of νσ and σν (Heijmans, 1996,

p. 19).

Theorem 3.1.12 (Heijmans (1996, p. 25)). Every translation invariant switch

operator σ : P (Z2)→ P (Z2) is of the form σ = σA, where

σA (X) = X ∩
⋃
A∈A

Xc � A

and A is a collection of structuring elements satisfying 0 /∈ A and A ∩ B �= ∅, for

A, B ∈ A. The corresponding self-dual operator ψA = Ψ (σA) is given by

ψA (X) =

(
X ∩

⋂
A∈A

X ⊕ Ă

)
∪
⋃

A∈A
X �A.

Remark. In other words, the above theorem states that ψA is the centre of the

increasing operator
∨

A∈A
εA and its negation

∧
A∈A

δĂ (Heijmans, 1996, p. 25).

3.1.3.1 Construction of morphological filters from switch operators

Proposition 3.1.13 (Heijmans (1994a, p. 474)). Let σ ∈ O (P (En)) be a

switch operator and let ψ be the corresponding self-dual operator. Assume that

ψ is continuous (this is true, e.g., when σ uses only finite structuring elements).

Let A1, A2, . . .Ap be finite structuring elements which satisfy σ (Aj) = ∅. If γ =
p⋃

j=1

δAj
εAj

and ϕ = γ∗ then the operator

π = (I ∧ ψϕ) ∨ ψγ

is self-dual and activity-extensive; i.e. π 
 ππ 
 . . . 
 πn. Moreover the sequence

πn converges to a strong self-dual filter.
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255

254

253

2

1

0

(a)

127,128

126,129

2,253

1,254

0,255

(b)

125,130

Figure 3.1: Hasse diagrams showing (a) natural ordering defined on the grey-level set
{0, 1, . . . , 255}; and (b) folded ordering, with the median as the fold point, defined on the
set in (a).

Remarks.

1. The operator π is the centre of ψϕ and ψγ.

2. Heijmans (1996) proffers a more refined methodology based on the notion of

persistent structuring elements.

3.1.4 Self-dual operators based on folded ordering

Evans et al. (1997) introduced the idea of imposing alternative orderings on the

set of grey-levels for the purpose “of allowing a single idempotent morphological

closing to filter both salt and pepper noise from an image” (Evans et al., 1997, p.

177). Of particular interest is an ordering they introduce, called folded ordering, that

permits the construction of a self-dual filter from a single morphological closing. The

ordering, defined on the finite grey-level set {0, 1, . . . , m}, is simply a reversal of the

natural ordering about some chosen grey-value called the fold point. Effectively,

grey-values that are equidistant from the fold point are assigned the same rank (see

Figure 3.1).

When the fold point is chosen to be the median of the set of grey-levels then the

folded ordering is self-dual and can be used to construct a self-dual filter from a mor-
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phological closing in the following manner. The original grey-values are folded about

the median (see Figure 3.2), a morphological closing is applied to the folded image,

and then the folding is inverted (this requires the use of a template image that indi-

cates the locations of the grey-values originally affected by the folded ordering). The

process of folding about the median guarantees that regardless of whether the image

or its negative are folded, the result is the same (the respective template images,

however, will be different—each is the complement of the other). Consequently, a

morphological closing—or indeed any operator—applied to the folded image yields

a self-dual operation.

3.1.5 Self-dual annular filters

Serra (1988b, p. 107) introduced the annular opening γ : P (Rn)→ P (Rn) defined

γ (X) = (X ⊕ B) ∩X,

where B is a symmetric structuring element2 that does not contain the origin. The

annular opening is a translation-invariant algebraic opening (see Definition 2.5.1).

In Z2 the behaviour of the operator is to remove isolated connected components

(grains) in a set. The dual operator, the annular closing ϕ, is defined

ϕ (X) = (X � B) ∪X.

In Z2 the behaviour of the operator is to “add to a set isolated points of the back-

ground Xc, in other words to remove isolated hole points” (Heijmans & Ronse, 1999,

p. 1330). Heijmans & Ronse (1999) introduce the annular operator as a generalisa-

tion of the annular opening and closing. The behaviour of this operator is to remove

“isolated points both in the foreground X and in the background Xc” (Ronse &

Heijmans, 1998, p. 49). The operator has the form

ψ (X) = (X ∩ (X ⊕ A)) ∪ (X � B) ,

where A and B are symmetric structuring elements. The operator is characterised

in the following proposition.

2 A structuring element B is said to be symmetric if B = B̆ (see the remarks following Defini-
tion 2.7.2).
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(a) (b)

(c) (d)

(e)

Figure 3.2: Illustration of folded ordering. (a),(b) Original 8-bit grey-scale image (sine-
wave corrupted with salt-and-pepper noise) and its rendering as a surface. (c),(d) The
folding of the original image about the median and its rendering as a surface. (e) Template
image needed to invert folding.
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Proposition 3.1.14 (Heijmans & Ronse (1999)). Let A, B ∈ P (Z2) be two

symmetric structuring elements. The annular operator ψ (X) = (X ∩ (X ⊕ A)) ∪
(X �B) is

1. a morphological filter if and only if A ∩B ∩ (A⊕ B) �= ∅;

2. a self-dual morphological filter if additionally A = B; and

3. a strong filter if A ∩B �= ∅ and A ∪B ⊆ A⊕B.

Heijmans & Ronse (1999, p. 1338) demonstrate that annular operators can be ex-

tended to grey-scale images using the fact that “every increasing operator on P (E)

can be extended to grey-scale functions. . . on E by thresholding”. In a companion

paper Ronse & Heijmans (1998) extend the theory of annular filters to the more

general setting of a modular lattice.

3.2 New approach: Folding induced self-dual fil-

ters

Evans et al. (1997) devised the folded closing, hereinafter called the ESJ folded

closing, for the purpose of removing salt-and-pepper noise from an image. Unfortu-

nately, they note that this operator does not allow image values less than the fold

point to be replaced by values greater than the fold point and vice versa. Conse-

quently it “can not completely remove pepper noise from a light area or salt noise

from a darker region” (Evans et al., 1997, p. 179). The behaviour of the filter—and

indeed any other constructed in the same manner—is constrained by the fact that

it operates only on the image of folded grey-values and does not take into account

the template image (the template image is used only to invert the folding – see

Figure 3.2). In this section a new approach is presented based on the concept of the

folding operator which generalises the notion of folded ordering in the case when the

fold point is the median. The operator maps an image into an abstract space called

fold-space. Effectively every image value is mapped to an ordered pair comprising

a folded value and a template (indicator) value. Two operations, a meta-supremum

and a meta-infimum are defined on this space such that they act as the usual supre-

mum and infimum respectively on the folded image values, but at the same time

operate on the indicator values. This makes possible, for example, the definition of

meta-dilation and meta-erosion operators on fold-space. Again, these operators act
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as the usual dilation and erosion on the folded values but do some extra housekeep-

ing with respect to the indicator values. The notion of fold-space and the folding

operator makes possible the definition of self-dual operators on the original image

space called folding induced self-dual filters (FISFs). The ESJ folded closing repre-

sents one example from this class of operators. In this section it is shown that it

is possible to design other types of FISF that overcome the limitations of the ESJ

folded closing with respect to the filtering of salt-and-pepper impulse noise.

The core of the material in this section was presented at the fifth International

Symposium on Mathematical Morphology and was published in volume 18 of the

Computational Imaging and Vision series published by Kluwer Academic Publishers:

Mehnert & Jackway (2000). The paper has since been cited in Heijmans & Keshet

(2002) and Heijmans & Keshet (2001).

3.2.1 Fold-space and the folding operator

Folded ordering is a distance ordering (Barnett, 1976) defined on the finite grey-

value set {0, . . . , m}. A distance ordering, sometimes used in statistical analysis, is

an ordering of univariate data according to their absolute deviation or distance from

some reference value.

Definition 3.2.1 (distance ordering). Let S ∈ P
(
R
)

and let ρ ∈ R. The binary

relation Dρ defined

aDρb if and only if |a− ρ| ≤ |b− ρ| ,

where a, b ∈ S, is called the distance ordering of S with respect to ρ.

Remarks.

1. When ρ ≤ inf S then Dρ is equivalent to the partial order relation ≤.

2. When ρ ≥ sup S then Dρ is equivalent to the partial order relation ≥.

3. When ρ is a value in the interval (inf S, sup S) then Dρ is only a relation

of quasi-order; it is not anti-symmetric because aDρb and bDρa �⇒ a = b

(because a and b may be two distinct values the same distance either side of

ρ).
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By Theorem 2.3.5 this ordering defines an equivalence relation on the set S:

a ≡ b if and only if aDρb and bDρa,

where a, b ∈ S. In other words, a and b are equivalent if and only if they are

equidistant from the reference value. By Theorem 2.3.6 this leads to the definition

of a partial ordering on the set of equivalence classes. For example, in the case

of ESJ folded ordering, two grey-values are deemed to be equivalent if they are

equidistant from the fold point. This then defines the partial ordering (and in fact

a total ordering) shown in Figure 3.1.

In order to formalise the idea of folded ordering, and to extend its definition to

the power lattice (F ,≤), where F = Fun (E, T ), we now introduce the concept of

fold-space and the folding operator. Hereinafter it is necessary to assume that the

complete lattice (T ,≤), associated with the power lattice (F ,≤), is totally ordered;

i.e. it is a complete chain (see Definition 2.3.2). Indeed this is the case when T is one

of the sets R, Z, or {0, 1, . . . , m} commonly used as the grey-level set for grey-scale

images.

LetH = Fun
(
E, T̃

)
be the set of all functions f̃ : E → T̃ where T̃ = T ×{−1, 0, 1}.

The set {−1, 0, 1} is arbitrary in the sense that it can be any chain of three elements

(they are indicator values only). Hereinafter H is called fold-space. The folding

operator is defined as follows.

Definition 3.2.2 (folding operator). Let σ : F → H be the folding operator

defined point-wise as follows:

σ (f) (x) =

⎧⎪⎨⎪⎩
(f (x) , 1) , if f (x) < f ∗ (x)

(f (x) , 0) , if f (x) = f ∗ (x)

(f ∗ (x) ,−1) , if f (x) > f ∗ (x) ,

where ∗ denotes a negation on F .

Remark. When T is the finite set {0, 1, . . . , m}, the lattice (F ,≤) possesses the

unique negation f ∗ (x) = m − f (x). When T is one of the infinite sets R or Z,

the lattice possesses multiple negations (Heijmans, 1994b, p. 31). In grey-scale

morphology special attention is paid to the negation f ∗ (x) = −f (x) wherein it is

seen as the counterpart to set complementation on a boolean lattice.

The folding operator maps a function f ∈ F to a pair f̃ = (f1, f2) ∈ H comprising

the folded function f1 ∈ F and an indicator function f2 : E → {−1, 0, 1}. The
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folding operator is a one-to-one mapping of F into H; i.e. the image of every distinct

element f of F is a distinct element f̃ of H. The unfolding operator σ−1 : H → F
is defined point-wise as follows:

σ−1
(
f̃
)

(x) =

⎧⎪⎨⎪⎩
f1 (x) , if f2 (x) = 1

c, if f2 (x) = 0

f ∗
1 (x) , if f2 (x) = −1,

where f̃ = (f1, f2), f1 ∈ F , f2 : E → {−1, 0, 1}, and c ∈ T such that c = c∗. The

constant c is called the crease and its existence and value are solely determined by

the negation operator; e.g. when T is the infinite set R, then the negation f ∗(x) =

−f(x) + k on the lattice (F ,≤) prescribes the value of the crease to be k/2 (see

also the comments in Section 3.2.5). The unfolding operator is the inverse of the

folding operator when applied to the range of the folding operator. However, the

set T̃ associated with the space H contains ordered pairs of the form (a, 0), where

a �= c, that are not images of any element of the set T associated with the space F .

As defined, the unfolding operator maps all such pairs to the value c and is thus a

many-to-one mapping for this set of pairs.

From the definitions of the folding and unfolding operators, it is easy to prove the

following properties.

Proposition 3.2.3 (properties of the folding and unfolding operators).

1. If σ (f) = (f1, f2) then σ (f ∗) = (f1,−f2) where f ∈ F .

2. σ−1
(
f̃
)

= [σ−1 ((f1,−f2))]
∗

where f̃ = (f1, f2) ∈ H.

3.2.2 Fold-space meta-operators

The folding operator maps a value t ∈ T into an ordered pair (a1, a2) ∈ T̃ . The

folded value a1 is itself an element of T . The indicator value a2 is an element of

{−1, 0, 1}. In keeping with the underlying idea of the ESJ folded ordering we can

define the following equivalence relation on the set T̃ :

a ≡ b if and only if a1 = b1

where a = (a1, a2) and b = (b1, b2) are elements of the set T̃ . This relation is defined

in terms of the equality relation defined on the first component of the elements of

T̃ , i.e. the folded values. These folded values are elements of the complete chain
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(T ,≤). The partial order relation ≤ on T can be used to define the following order

relation on T̃ :

a� b if and only if a1 ≤ b1.

Unfortunately, however, the relation � is not itself a partial order relation. It is

only a relation of quasi-ordering because although it is reflexive and transitive, it

is not anti-symmetric; e.g. if T = {0, 1, . . . , m} then it is clear that (2, 0) � (2, 1)

and (2, 1)� (2, 0) but that (2, 0) �= (2, 1). Consequently,
(
T̃ ,�

)
is not a complete

lattice3. This in turn means that H is not a complete lattice. The definition of the

equivalence relation above can equally be defined:

a ≡ b if and only if a� b and b� a.

This relation induces a partition of T̃ into the subsets (equivalence classes) X =

{(x,−1) , (x, 0) , (x, 1)}, Y = {(y,−1) , (y, 0) , (y, 1)}, . . . where x, y, . . . ∈ T (Theo-

rem 2.2.2). If we let S be the set of equivalence classes X, Y, . . . then the relation �
defined

X � Y if and only if a� b,

for some a ∈ X and b ∈ Y , is a partial order relation (by Theorem 2.3.6). It follows

that the pair (S, �) is a complete lattice. In fact � defines a total ordering and so

(S, �) is a complete chain.

The problem with the ESJ folded closing is that, because it is defined on the complete

chain of folded (grey) values, it is not possible to map (x,−1) to (x, 1) or vice versa.

The solution is to define two meta-operators on
(
T̃ ,�

)
that act as a supremum and

infimum on the folded values but at the same time operate on the indicator values

(this is discussed further in Section 3.2.4). The meta-infimum and meta-supremum

then make possible the definition of morphological meta-operators. Again, these

operators are not morphological operators on fold-space, but rather on the space of

folded values.

The range of operations permitted on the indicator values is dictated by the con-

straint that the resulting operation on F must be self-dual. This motivates the

definition of an FISF.

3 T̃ is the product of two lattices and so it is possible to define a partial ordering called the
product ordering (see (Heijmans, 1994a, p. 23)) such that T̃ is a complete lattice. However,
this ordering presupposes that the ordering of the indicator set {−1, 0, 1} is important. For
the purpose of generalising folded ordering this is not the case: it does not make sense to rank
(a1,−1) above (a1, 1) or vice versa.
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3.2.3 Folding induced self-dual filters

Definition 3.2.4 (folding induced self-dual filter). The product σ−1Γσ ∈
O (F), where Γ ∈ O (H), is called a folding induced self-dual filter (FISF) if for

all f ∈ F ,

σ−1Γσ (f) =
[
σ−1Γσ (f ∗)

]∗
.

Theorem 3.2.5. Let Γ ∈ O (H). The product σ−1Γσ ∈ O (F) is an FISF if Γ
(
f̃
)

=[
Γ
(
f̃∨
)]∨

for all f̃ ∈ H where f̃∨ = (f1,−f2) when f̃ = (f1, f2).

Proof. By definition σ−1Γσ is an FISF if σ−1Γσ (f) = [σ−1Γσ (f ∗)]∗ for all f ∈ F .

If we let f̃ = (f1, f2) = σ (f) then we can write the LHS as σ−1Γ ((f1, f2)). Using

property 1 of Proposition 3.2.3 we can write the RHS as [σ−1Γ ((f1,−f2))]
∗
. If

we let g̃ = (g1, g2) = Γ ((f1, f2)) and h̃ = (h1, h2) = Γ ((f1,−f2)) we can then

write σ−1 (g̃) =
[
σ−1
(
h̃
)]∗

. Using property 2 of Proposition 3.2.3 this can be

written as σ−1 ((g1, g2)) = σ−1 ((h1,−h2)). Hence if Γ ((f1, f2)) = (g1, g2) then

Γ ((f1,−f2)) = (g1,−g2), i.e. Γ
(
f̃
)

=
[
Γ
(
f̃∨
)]∨

.

Remark. This result in essence states that Γ must be an operator that is self-dual

with respect to the second component of its argument; i.e. the indicator function.

3.2.4 Constructing FISFs

The ESJ folded closing can be written as the product σ−1Γσ where Γ
(
f̃
)

(x) =

(φB (f1) (x) , f2 (x)), and φB ∈ O (F) is the closing φB = εBδB where δB, εB ∈
O (F) are respectively a dilation and an erosion by a structuring element B (see

Definition 2.8.8). This filter acts only on the first component of f̃ . Hence according

to Theorem 3.2.5 the ESJ folded closing is an FISF. We call FISFs constructed in

this manner type 1 FISFs.

It is precisely because the ESJ folded closing does not take into account the second

component of f̃ that it performs poorly as a filter for salt-and-pepper noise. Values

of the first component that are less than the fold point (crease) cannot be replaced

by values greater than the fold point and vice versa. Consequently the ESJ folded

closing “can not completely remove pepper noise from a light area or salt noise

from a darker region” (Evans et al., 1997, p. 179). This then is the motivation

for introducing the following definitions of the meta-supremum and meta-infimum

operators respectively:
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.∨
{a, b} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a, if b1 < a1

b, if a1 < b1

(a1, 0) , if a1 = b1 and a2 �= b2

a, if a1 = b1 and a2 = b2,

.∧
(a, b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a, if a1 < b1

b, if b1 < a1

(a1, 0) , if a1 = b1 and a2 �= b2

a, if a1 = b1 and a2 = b2,

where a, b ∈ T̃ . These operators act as the usual supremum and infimum, respec-

tively, on the first component; i.e..

.∨
{a, b} =(a1 ∨ b1, ·) and

.∧
{a, b} =(a1 ∧ b1, ·).

However, the second component is determined such that the meta-supremum or

meta-infimum of two distinct but equivalent elements of T̃ is always the equiva-

lent element with the second component equal to zero. The fold-space meta-closing

Γ = EBΔB, where

ΔB

(
f̃
)

(x) =
.∨

y∈B

{
f̃ (x− y)

}
, and EB

(
f̃
)

(x) =
.∧

y∈B

{
f̃ (x− y)

}
,

satisfies Theorem 3.2.5 and can thus be used to construct a FISF. Like the ESJ

folded closing this operator acts as a closing on the first component of f̃ . For this

reason we call Γ simply a fold-space closing even though it is not actually a closing

on H (H is not even a complete lattice). We call FISFs constructed in this manner

type 2 FISFs. Figure 3.3 demonstrates the effectiveness of this FISF in removing

salt-and-pepper noise.

Unfortunately, as Figure 3.4 shows, both the ESJ folded closing and type 2 FISFs

based on the fold-space closing perform poorly when large areas within the image

are at either grey-value extreme. This then is the motivation for introducing the fol-

lowing alternate definitions of the meta-supremum and meta-infimum, respectively,

.∨
{a, b, . . .} =

{
(α, μ) if μ is unique

(α, 0) otherwise,

.∧
{a, b, . . .} =

{
(β, ν) if ν is unique

(β, 0) otherwise,
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(a) (b)

(c) (d)

Figure 3.3: Demonstration of noise filtering of a natural scene. (a) Original 8-bit grey-
scale image. (b) Image corrupted with 60% salt-and-pepper noise (pixels randomly set
to 0 or 255). (c) Result after applying a 5×5 median filter to the noisy image. (d) Result
after applying a type 2 FISF, based on a fold-space closing with a 5× 5 flat structuring
element, to the noisy image.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Demonstration of noise filtering when significant parts of the image are at
either extreme of the grey-value range. (a) Original 8-bit image with grey-value bands
at 0, 128, and 255. (b) Original image corrupted with 50% salt-and-pepper noise (pixels
randomly set to 0 or 255). (c) Result after applying an ESJ folded closing with a 5× 5
flat structuring element to the noisy image (type 1 FISF). (d) Result after applying a
5 × 5 median filter to the noisy image. (e) Result after applying a type 2 FISF, based
on a morphological closing with a 5× 5 flat structuring element, to the noisy image. (f)
Result after applying a type 3 FISF, based on a morphological closing with a 5× 5 flat
structuring element, to the noisy image.

where α =
.∨
{a1, b1, . . .}, μ = mode {x | (α, x) ∈ {a, b, . . .}}, β =

.∧
{a1, b1, . . .},

and ν = mode {y | (β, y) ∈ {a, b, . . .}}. Again, these operators act as the usual

supremum and infimum, respectively, on the first component. The operator Γ =

EBΔB defined in terms of these definitions satisfies Theorem 3.2.5. Again this

operator acts as a closing on the first component of f̃ and we call it a fold-space

closing. We call FISFs constructed in this manner type 3 FISFs. The behaviour of

this FISF is illustrated in Figure 3.4.

More generally the meta-supremum and meta-infimum permit the definition of fold-

space morphological meta-operators. Again, these operators are not morphological

operators on fold-space, but rather on the space of folded functions.
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3.2.5 Implementation issues

The implementation of fold-space morphological (meta-)operators for digital images

differs from the implementation of conventional grey-scale morphological operators

only in that the supremum and infimum operations (either between two pixels or

over a window of pixels) must propagate a template value in addition to a grey-

value. Given that a digital image is typically represented using a finite number

of grey-values {0, 1, . . . , m} where m is a power of 2, the crease does not exist.

However, the symmetric point with respect to the ordering does exist and so we

can set c = m/2. Unfortunately c is not a representable grey-value. This presents

a problem in the case of type 2 and type 3 FISFs when it comes to applying the

unfolding operator. One possible solution is to replace any pixel values that would

map to the crease with the grey-value of the preceding or succeeding representable

grey-value (though the resulting filter is now only approximately self-dual). Two

other possible solutions, which preserve self-duality, are: (1) to use only an odd

number of grey-values, and (2) at the unfolding step, to replace any pixel values

that would map to the crease with the corresponding pixel produced by applying a

median filter (or indeed any other self-dual filter) to the original image.

A program to implement fold-space (meta-)dilation and (meta-)erosion (for type 2

FISFs) in MICROMORPH version 1.34 is given in Appendix C. The implementation

and example programs and images can be downloaded from the CSSIP anonymous

ftp server: ftp://ftp.cssip.uq.edu.au/pub/other/fold.zip.

3.3 Discussion and summary

A discussion of several additional mathematical morphology approaches to con-

structing non-linear self-dual filters can be found in Soille (2003). These include

methods based on area openings and closings, and morphological filters by recon-

struction. Soille (2003, p. 263) also shows that the representation of self-dual,

increasing and translation-invariant operators devised by Heijmans (1996) (see The-

orem 3.1.12) can in fact be expressed as the anti-centre of a dual pair of thinning

and thickening5. Soille (2003, p. 263) also comments on the recent inf-semilattice

approach of Heijmans & Keshet (2001) stating that it is an “approach to the design

4 Software developed by the Centre for Mathematical Morphology, Paris School of Mines, and
marketed by TRANSVALOR S.A., Paris France.

5 Thinning and thickening are defined in terms of the hit-or-miss transform which is itself defined
in terms of the intersection of two erosions with suitably defined structuring elements (see Soille
(2003, p. 140) for further details).
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of self-dual morphological filters by defining a grey tone reference image so that a

filter is applied if the current value of the input image is above that of the reference

image and its dual otherwise”. The approach is presented more recently in Heij-

mans & Keshet (2002). The paper discusses an alternative theoretical framework

(Heijmans & Keshet, 2002, p. 55):

for morphological image processing that gives rise to image operators

which are intrinsically self-dual.. . . this alternative framework is entirely

based upon the definition of a new self-dual partial ordering.

This partial ordering was introduced by Keshet (formerly Kresch) in Kresch (1998)

and Keshet (2000). Heijmans & Keshet (2002) also discuss the folding induced self-

dual filter (FISF) approach, presented in this chapter, and describe its relation to

their approach. The reader is referred to Heijmans & Keshet (2002) for the details.

This chapter has:

� Discussed the rationale behind the desire to construct non-linear self-dual fil-

ters. In summary, such filters offer several advantages over their linear coun-

terparts: they do not induce ringing and blurring, they can be designed such

that they do not reduce the dynamic range and high frequencies in the image,

they can be designed such that no new grey values are introduced in the image,

and they can be designed such that they are independent of anamorphoses.

� Reviewed the principal lattice-theoretical approaches to constructing self-dual

morphological operators and filters.

� Presented a new method for the construction of self-dual operators, called

folding induced self-dual filters (FISFs), from arbitrary morphological (meta-)

operators defined on an abstract space called fold-space; demonstrated that

the folded closing proposed by Evans et al. (1997) is a particular type of FISF;

demonstrated that other types of FISF can be designed that overcome the

limitations of the folded closing with respect to the filtering of salt-and-pepper

impulse noise; and discussed software implementation issues.
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Chapter 4
Chromatin Segmentation

Nuclear chromatin is visualized by light microscopy

as a mosaic of interchanging regions of low and

high optical density (O.D.). The regions of high

O.D. are well-defined as chromatin particles; features

characterizing these particles enable the description of

chromatin structure and the recognition of its changes

during neoplasia

Dymitr Komitowski and Gerhard Zinser, 1985

The present chapter deals specifically with the problem of

Measurement
Adjacency and
distance

Classification

Features

Noise
filtering

Chromatin
segmentation

accurately and robustly segmenting the chromatin in digi-

tised light microscopy images of cell nuclei. Conceptually,

segmentation is the process of partitioning the domain of an

image into subsets corresponding to the objects or features

to be measured and/or classified. “In general, autonomous

segmentation is one of the most difficult tasks in image pro-

cessing. This step in the process determines the eventual

success or failure of the analysis. . . For this reason, consid-

erable care should be taken to improve the probability of

rugged segmentation” (Gonzalez & Woods, 1992, p. 413).

The remainder of this chapter is organised as follows. Section 4.1 presents an

overview of grey-scale image segmentation methods that have been published in the
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literature. Section 4.2 presents an overview of the nature of chromatin and, in partic-

ular, the manner in which it is visualised using a light microscope, and its appearance

and structure under the light microscope. Section 4.3 reviews and evaluates existing

approaches to chromatin segmentation. The conclusion is that existing methods typ-

ically require the specification of one or more operational parameters—and are thus

not robust to changes in, or non-uniformity of, illumination and staining—and/or do

not produce a segmentation consistent with what a human observer would perceive

as chromatin structure. Consequently in Section 4.4 a new method of chromatin

segmentation is proposed that redresses these deficiencies. The new chromatin seg-

mentation algorithm is based on the seeded region growing approach to segmenta-

tion. In Section 4.5 the seeded region growing algorithm proposed by Adams &

Bischof (1994) is examined in detail wherein it is shown to be inherently dependent

on the order of pixel processing. In Section 4.6 an improved seeded region growing

algorithm is proffered that retains the advantages of the Adams & Bischof (1994)

algorithm—fast execution, robust segmentation, and no tuning parameters—but is

pixel order independent. In Section 4.7 a new fast ascending priority queue imple-

mentation is proposed that is suitable for implementing the marker-based watershed

algorithms (particular cases of seeded region growing) of Meyer (1991). This per-

mits the implementation of a fast watershed transform that is well suited for use in

automated cytometry where near real-time processing is needed for an economically

viable screening device. Finally, Section 4.8 presents a summary of the chapter.

The material in Section 4.6 has been published in Pattern Recognition Letters:

Mehnert & Jackway (1997). The material in Section 4.4 is the subject of a pending

International Patent Application: Mehnert & Jackway (2002).

4.1 Segmentation methods

The purpose of this section is to acquaint the reader with the various approaches

to grey-scale image segmentation published in the literature. This will provide the

necessary background for the review of chromatin segmentation methods to follow.

For a more detailed overview of image segmentation methods the reader is referred

to the surveys by Borisenko et al. (1987), Haralick & Shapiro (1985), and Fu & Mui

(1981), and the reviews by Bamford (1999) and Pal & Pal (1993).

In his treatise Image Analysis and Mathematical Morphology Serra (1982, p. 456)

states that:
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the classical meaning in image analysis of segmenting a [grey-scale] pic-

ture, is to partition its support1 into subsets inside which the picture

has a homogeneous texture. We say that the picture has a homogeneous

texture in a zone Z when it can be represented as a realization of a sta-

tionary random function with a range (of the covariance) that is small

with respect to the dimensions of Z. However, this definition itself is not

particularly operational since there is no suggestion as to how the zones

Z might be detected. The question of segmentation is an exceedingly

complex one. The problem becomes more precise (and thus accessible)

when one knows a physical interpretation for the words “homogeneous

textures”. They can be cells of a certain type in a tissue, petrographic

phases in a mineral, ridge lines in a relief, [chromatin particles in a cell

nucleus] etc. . .

One of the most simple and popular techniques for image segmentation is thresh-

olding (Pal & Pal, 1993, p. 1279). The technique is applicable when each of the

zones is composed of a distinct range of grey-levels. Thresholding (also called grey-

level thresholding) is the partitioning the density function (grey-level histogram) of

the image such that each partition corresponds to a zone. In the simplest case the

histogram is bimodal—it has two dominant peaks: one corresponds to the zone of

interest (the foreground) and the other to the background—and a suitable threshold

value lies somewhere in the valley between the two peaks (see Figure 4.1). Numerous

parametric and non-parametric methods for automatically locating this value in the

grey-level histogram have been published in the literature (Abutaleb, 1989). The

threshold value determined using any of these methods is called a global threshold

because its value is determined solely from the grey-level histogram (Gonzalez &

Woods, 1992, p. 444). A drawback of global threshold methods is that they may

“fail to detect thresholds if these are not properly reflected as valleys in the his-

togram” (Pal & Pal, 1993, p. 1280). In this case a local threshold method may be

more appropriate. Local thresholding methods determine the value of the threshold

using additional information derived from some local property of the image pixels;

e.g. the mean value in a neighbourhood surrounding each pixel (Gonzalez & Woods,

1992, p. 444), or the modulus of the gradient (Serra, 1982, p. 457).

In principle many of the methods of threshold selection developed for bi-level thresh-

olding can be extended to the case where the grey-level histogram is multi-modal.

However, multi-level thresholding “is generally less reliable than its single-threshold

1 The support of a function (image) is the domain in which the function takes defined values.
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Figure 4.1: Illustration of global thresholding. (a) Original image of the nucleus of a
Papanicolaou-stained cervical cell. (b) Grey-level histogram of the original image. (c)
Thresholding with respect to the value 135 (value selected after a visual inspection of the
histogram). (d) Thresholding with respect to the value 144 (value chosen automatically
such that the entropy of the resulting foreground and background histograms is max-
imised (Abutaleb, 1989, p. 23)). (e) Binary opening δBεB where B is a disk of radius 5
pixels (to remove small artefacts).
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counterpart” (Gonzalez & Woods, 1992, p. 444). The reason for this is that as

the number of different zones increases, it becomes increasingly more difficult to

distinguish the peaks in the grey-level histogram (Rosenfeld & Kak, 1981, p. 66).

For many images, that at first glance would seem to be amenable to global threshold-

ing methods, it is not possible to find a partitioning of the grey-level histogram that

yields a satisfactory segmentation. This is true in particular for images that contain

shadows, or noise, or that have been captured under non-uniform illumination, or

that contain very small and sparse objects so that the image is almost entirely back-

ground and the objects produce imperceptible peaks in the histogram. In this situ-

ation more elaborate segmentation techniques need to be employed. One approach,

which is an extension of global thresholding, is to use an adaptive threshold method2.

Typically such methods partition the image into small non-overlapping blocks and

a threshold is determined for each block independently (Pratt, 1991; Pal & Pal,

1993). When a block contains both foreground and background then the histogram

will be bimodal and a threshold can be readily determined. However, “if a block

contains objects only, or background only, it will not have a bimodal histogram. . . ;

but a threshold can still be assigned to it by interpolation from the. . . thresholds

that were found for nearby bimodal blocks” (Rosenfeld & Kak, 1981, p. 70).

When the zones in an image are connected regions of pixels that have only a small

grey-level variation then a high grey-scale variation between two adjacent pixels is

likely to indicate that the pixels belong to two different zones. It should then be

possible to segment these zones using some neighbourhood properties (Soille, 2003,

p. 268). However, when the zones to be segmented are each highly textured then

it may be the case that the grey-level variation within a zone is greater than that

occurring at the boundary of two zones. In this case “local texture measurements

can be performed so as to obtain similar values for pixels belonging to similar tex-

tures and therefore high variations between two neighbour pixels belonging to two

different regions [zones]” (Soille, 2003, p. 268). Reviews of texture analysis and

texture segmentation methods, as well as an original method based on zero cross-

ings information, can be found in the Ph.D. thesis of Smith (1998). A treatment

of texture analysis and segmentation, based on mathematical morphology, can be

found in Soille (2003).

Literally hundreds of segmentation techniques have been published in the literature

(Pal & Pal, 1993, p. 1278) and“this number continually increases each year” (Zhang,

2 Some inconsistency in terminology exists in the literature. Some authors use local thresholding
to mean adaptive thresholding (Pal & Pal, 1993, p. 1279). Adaptive thresholding is also called
dynamic thresholding.
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1996, p. 1335). The reason that there are so many image segmentation techniques

is that no general theory of image segmentation has yet been developed and as

a consequence no universal method of segmentation has emerged (Pratt, 1991, p.

597). The practitioner is thus faced with the situation where no single algorithm is

applicable to all images and where, for a given class of images, not all algorithms

are equally suitable (Pal & Pal, 1993, p. 1278). To further complicate matters,

no universal quantitative metric of segmentation performance has yet been devised

(Pratt, 1991, p. 597). Often, the performance of a newly developed algorithm is

subjectively compared with that of a handful of existing algorithms using only a few

test images (Zhang, 1996, p. 1335).

Although no universal theory of image segmentation exists, several taxonomies of

segmentation methods have been published in the literature. Recent taxonomies

include: Zhu & Yuille (1996), Pal & Pal (1993), and Gonzalez & Woods (1992,

Chapter 7). Gonzalez & Woods (1992) broadly classify segmentation algorithms

into two categories:

1. Discontinuity methods

These methods identify abrupt changes in the grey-levels within an image and

use these as the basis for determining a partition of the image. Such abrupt

changes (discontinuities) are characteristic of edges, points, and lines. The

most common approach to detecting discontinuities is to centre a square or

rectangular mask3 (e.g. 3× 3) over each pixel in turn and to compute the sum

of products of the mask coefficients and the corresponding image pixel grey-

levels (Gonzalez & Woods, 1992, p. 414). Mask coefficients are chosen such

that the sum of products (response) is zero when all of the image pixels covered

by the mask have the same grey-level value. Ideally, the resulting response

should be high for pixels that lie on the boundary between zones in the image.

Well known masks include the Roberts, Prewitt, and Sobel operators (gradient

estimators) and the Laplacian (second-order derivative estimate). In practice,

however, the boundaries may be incomplete or contain breaks, and spurious

edge pixels are likely to be present because of factors such as noise and non-

uniform illumination. Edge linking and other boundary detection methods

are then typically used to assemble meaningful boundaries from the detected

edge pixels. Other discontinuity methods include the Hough transform which

3 The shape of the mask is dictated by the underlying grid. Thus hexagonal masks are used on
the hexagonal grid.
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can be used to link pixels that lie on a curve of specified shape (Gonzalez &

Woods, 1992, p. 432).

2. Similarity methods

These methods seek to partition an image into regions (zones) of similar grey-

level. These methods include thresholding, region growing, and region splitting

and merging. Region growing methods begin with a set of seed regions—single

pixels or connected components (see Definition 2.9.5)—and grow these into

larger aggregates by appending neighbouring pixels that have similar prop-

erties. The watershed transform—a segmentation method originating from

mathematical morphology—is a special case of seeded region growing (see Ap-

pendix B). Splitting and merging methods begin with an arbitrary partitioning

of the image and then merge and/or split these regions in an iterative fashion

in an attempt to create regions of pixels with similar properties.

Pal & Pal (1993) classify (grey-scale) image segmentation methods into five4 cate-

gories:

1. Grey-level thresholding

2. Iterative pixel classification

These methods include relaxation, MRF (Markov random field), and neural

network methods. Relaxation methods iteratively add neighbouring pixels to

regions (classes) on the basis of compatibility. The compatibility is assessed

using either a probabilistic or fuzzy set theory approach. MRF methods use

Markov random field or Gibbs random field models to model the spatial inter-

actions in the digital image. Neural network methods are based on training

a neural network (NN)—e.g. a feed-forward NN (multi-layer perceptron) or a

Hopfield-type NN—to segment an image; e.g. the histograms of a sample of

images can be used as the input to the NN and the desired threshold value

corresponding to each used as the output.

3. Surface based segmentation

Algorithms developed for range image segmentation. These algorithms assume

that the image data can be “interpreted as noisy samples from a piece-wise

smooth surface function” (Pal & Pal, 1993, p. 1282)

4 Pal & Pal (1993) actually include an additional category for colour images.
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4. Edge detection

The mask-based methods in the discontinuity methods category of Gonzalez

& Woods (1992) exemplify the methods in this category.

5. Methods based on fuzzy set theory

These methods include fuzzy thresholding, fuzzy clustering, and fuzzy edge

detection.

Zhu & Yuille (1996) classify image segmentation methods into four categories:

1. Local filtering (edge detectors)

These methods correspond to the mask-based methods in the discontinuity

methods category of Gonzalez & Woods (1992). A problem with local filtering

methods is that they cannot guarantee closed unbroken contours (hence the

need for edge-linking methods).

2. Snakes and balloons

These methods belong to the class of deformable contour models (also called

active contour models). A deformable contour is a planar curve (usually closed)

and an associated energy function. The initial position of the contour must be

specified; e.g. it might be initialised manually such that it roughly surrounds

the object of interest. The aim is to minimise the energy of the contour. If

the energy function is appropriately defined, and the contour appropriately

initialised, then a minimum energy is achieved when the contour exactly en-

closes the object (region) of interest. The snake is an active contour model

introduced by Kass et al. (1987). In the words of Jain et al. (1998, p. 111):

a snake is modeled as being able to deform elastically but any de-

formation increases its internal energy causing a ‘restitution force’

which tries to bring it back to its original shape. But at the same

time, the snake is immersed in a potential energy field (created by

the image) which causes a force acting on the snake. These two

forces [energies] balance each other and the contour actively adjusts

its position and shape until it reaches a local minimum of the energy:

Esnake =

∫ 1

0

{Eint (v (s)) + Eimage (v (s)) + Econ (v (s))} ds,
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where s is the parameterization of the contour, v (s) is a point on

the contour.

The internal energy term imposes smoothness. It is usually defined in terms

of the first and second-order derivatives of the contour. The image energy

term attracts the contour to the desired object. For example, this might be

defined in terms of the magnitude of the image gradient so that the contour

is attracted to the salient edges in the image. The external constraint energy

term permits an external constraint to be placed on the contour. For example,

Kass et al. (1987) use this term to add, interactively using a graphical user

interface, spring and repulsive forces to selected points on the contour. This

can be used to move the snake out of one local energy minimum into another.

Indeed a snake is sensitive to its initial position and to image noise, and can

become trapped in a local minimum (Jain et al., 1998, p. 112). The balloon

model of Cohen (1991) introduces an additional energy/force term to the snake

that can push the contour in or out along its normal. This helps the contour

to “trespass spurious isolated weak image edges, and counters its tendency

to shrink” (Jain et al., 1998, p. 112). As a consequence the balloon is less

susceptible to noise and to initial position.

3. Region growing and merging

The methods in this category are the region growing and region splitting and

merging methods in the similarity methods category of Gonzalez & Woods

(1992).

4. Global optimisation

These methods determine a segmentation of the image domain into regions

corresponding to distinct objects by minimising an energy function designed

in conjunction with Bayes’s theorem (Kervrann, 2001, p. 163). The input

image f is modelled as “being a degraded version of an ideal image which is

assumed to be piecewise smooth” (Zhu & Yuille, 1996, p. 886). The underly-

ing probability model consists of two parts: a prior model and a data model

(Mumford, 1994, p. 135) The prior model is a model of possible image seg-

mentations. The model should capture prior knowledge about the boundaries

and regions and any other scene structures that may be relevant. If S denotes

the description of a particular segmentation, then the prior model is specified

by the probability distribution p (S) giving the probabilities for all possible S.

The data model is a model of all of the images that are consistent with the
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prior model. It is specified by p (f,S) for all possible images f and all possible

S. Together they define (Freund, 1984, p. 131) the conditional probabilities

p (f |S ) of any image f given the segmentation S:

p (f |S ) =
p (f,S)

p (S)
.

From Bayes’s theorem (Freund, 1984, p. 140) it follows that:

p (S |f ) =
p (S) p (f,S)

p (f)

∝ p (S) p (f,S)

which is the probability of obtaining the segmentation S given the image f

(called the posterior probability of S). The most likely segmentation is the one

that maximises this probability. This is equivalent to minimising the energy

functional E (S) defined (Mumford, 1994, p. 136):

E (S) = − log (p (S |f ))

= − log (p (S))− log (p (f,S))

= Ep (S) + Ed (f,S) .

The first term, Ep, is a measure of how reasonable each segmentation model

is. Lower values indicate that the segmentation is more common, and higher

values less common. The second term, Ed, is a fidelity term that describes

the interaction between the observed data and the data model (Kervrann,

2001, p. 163). Morel & Solimini (1995, p. xii) argue that “most segmentation

algorithms try to minimize, by several very different procedures, one and the

same Segmentation energy” and that this energy is that associated with the

Mumford-Shah model. Morel & Solimini summarise the model as follows (Ω

denotes the domain of the image):

The Mumford-Shah model defines the segmentation problem as a

joint smoothing/edge detection problem: given an image g (x), one

seeks simultaneously a “piecewise smoothed image” u (x) with a set

K of abrupt discontinuities, the “edges” of g. Then the “best” seg-

mentation of a given image is obtained by minimizing the functional

E (u, K) =

∫
Ω\K

(
|∇u (x)|2 + (u− g)2

)
dx + length (K).
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The first term imposes that u is smooth outside the edges, the second

that the piecewise smooth image u (x) indeed approximates g (x),

and the third that the discontinuity set K has minimal length (and

therefore in particular is as smooth as possible).

The first and third terms together constitute Ep and the second term is Ed.

Minimisation of the functional is usually very difficult requiring computation-

ally expensive algorithms such as simulated annealing (Zhu & Yuille, 1996, p.

886).

A relatively new approach to image segmentation, called the level-set approach, is

not addressed in any of the taxonomies above. The method is described by Medioni

et al. (2000, p. 25) as follows:

The main idea is to describe a curve Γ (or a surface) as the zero level

set of a function of higher dimension Φ. . . Then, instead of evolving the

curve Γ, we consider the evolution of the function Φ and extract the zero

levels to see the results. This method permits to easily handle topology

changes, and has proved to be a powerful tool.

The reader is referred to Sethian (1999) and Osher & Fedkiw (2003) for an intro-

duction to level-set methods and their application in computer vision. The level-set

formulation of the classical snake is described in Osher & Fedkiw (2003, Chapter

12). The formulation depends on the image gradient to stop the evolution. Another

active contour model formulation described in Osher & Fedkiw (2003, Chapter 12)

uses a stopping criterion based on the Mumford-Shah segmentation technique.

Bamford (1999, p. 73) points out that, although (these) classifications of segmenta-

tion methods provide “useful summaries, and convenient methods for labelling, new

and existing techniques. . . [they] have limited practical use in matching algorithms

to applications”. Moreover, in lieu of any universal theory of image segmentation,

and therefore of any guiding principles for solving a particular image segmentation

problem, it remains the case that (Bamford, 1999, p. 198):

the development of a solution to a specific image segmentation problem

is often a fairly arbitrary process, depending upon the person developing

it and their background.



106 Chromatin Segmentation

4.2 The nature of chromatin

This section presents an overview of what chromatin is, the manner in which it

is visualised using a light microscope, and its appearance and structure under the

light microscope. This provides the necessary background for the review of previous

approaches to chromatin segmentation presented in the next section.

Every human—and more generally mammalian—cell has three main components:

cell membrane, cytoplasm, and nucleus (Koss, 1992, p. 15). The nucleus and cy-

toplasm can be seen in Figure 4.2. The cell membrane encloses the cytoplasm and

“acts as a selective barrier that enables the cell to concentrate nutrients gathered

from its environment and retain the products it synthesizes for its own use, while

excreting its waste products” (Alberts, Johnson, Lewis, Raff, Roberts & Walter,

2002, p. 11). The cytoplasm contains all of the other cell organelles and is the site

where most of the cell’s intermediary metabolism occurs (Alberts et al., 2002, p.

660). “Within the cytoplasm, enclosed in its own membrane or envelope, there is a

smaller, approximately spherical dense structure–the nucleus” (Koss, 1992, p. 15).

The nucleus of a cell occupies about 10% of the total cell volume and contains nearly

all of its DNA (deoxyribonucleic acid) (Alberts et al., 2002, p. 197). DNA consists of

large molecules with a three-dimensional structure of a double helix (Alberts et al.,

2002, p. 193). It governs “the genetic and functional aspects of cell activity” (Koss,

1992, p. 15). In particular it carries the genes—“the information that specifies all

the proteins that make up an organism” (Alberts et al., 2002, p. 198). The complete

DNA sequence5, or genome, is divided between a set of thread-like structures called

chromosomes. “Each chromosome consists of a single, enormously long linear DNA

molecule associated with proteins that fold and pack the fine DNA thread into a

more compact structure. The complex of DNA and protein is called chromatin”

(Alberts et al., 2002, p. 198). The word chromatin stems from the Greek chroma

meaning coloured. Chromatin is so-named because of its ability to take on stain.

4.2.1 Fixation and staining

Cells or tissues are nearly invisible when viewed under a conventional light micro-

scope (Schulte & Wittekind, 1994, p. 200). Consequently they are usually fixed and

stained prior to microscopic examination. The fixation process principally serves to

preserve the biologic material and to prepare it for the uptake of dye (Giroud, 1994,

5 The nucleus of a human cell is about 6μm in diameter and yet it “contains approximately 2
meters of DNA if stretched end-to-end” (Alberts et al., 2002, p. 198).
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Figure 4.2: Papanicolaou-stained cervical cells.

p. 186). The staining process serves “to enhance the contrast of cells and tissues ver-

sus the unstained background” (Schulte & Wittekind, 1994, p. 200). Although other

contrast enhancement techniques—such as polarisation microscopy and interference

contrast microscopy—exist, “these methods are not frequently used in routine cytol-

ogy and do not have the importance of conventional staining in diagnostic practice”

(Schulte & Wittekind, 1994, p. 200).

4.2.2 Absorbance, extinction, optical density

Staining is a physicochemical process that adheres colour to cells and tissues (Schulte

& Wittekind, 1994, p. 200). As light passes through the stained material its intensity

(power per unit area) is reduced. A measure of this reduction is given by the

parameter absorbance (A) which is defined:

A = − log

(
I

I0

)
,

where I0 is the intensity of the incident light and I is the intensity of the transmitted

light. Absorbance is also called extinction (E) or optical density (O.D.) in the

older literature (James & Tanke, 1991, p. 144). The Beer-Lambert law relates the

absorbance of a stain, i.e. an aqueous or alcoholic solution of powdered dye, to its

concentration (James & Tanke, 1991, p. 144):

A = k.c.l, (4.1)
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where k is a constant called the extinction coefficient (which is a characteristic of

the dye), c is the concentration of the solubilised dye, and l is the length of the path

that the light travels as it passes through the stain. The Beer-Lambert law shows

that concentration is not linearly related to intensity, but rather to absorbance. For

stoichiometric stains—stains for which the amount of stain uptake in the nucleus is

proportional to the amount of DNA—it is preferable to work with a digital image

for which the grey-values represent optical density rather than intensity.

4.2.3 Chromatin structure as visualised by light microscopy

Chromatin is visualised by light microscopy as a mosaic of interchanging dark and

light regions (Komitowski & Zinser, 1985, p. 178). “Light-microscope studies in the

1930s distinguished between two types of chromatin in the interphase nuclei. . . of

cells: a highly condensed form, called heterochromatin, and all the rest, which is

less condensed, called euchromatin” (Alberts et al., 2002, p. 222). Giroud (1994,

p. 191) states that:

three kinds of information can be extracted from chromatin patterns as

they appear after fixation and staining. The first, defined as condensa-

tion, is the degree of chromatin coiling, considering that chromatin ar-

chitecture ranges from condensed, typically representing the genetically

inactive heterochromatin, to decondensed, representing the transcrip-

tionally active euchromatin. The second, defined as distribution, is the

amount of chromatin in the various degrees of chromatin condensation.

The third, defined as organization, concerns the topographic arrange-

ment of chromatin at the various levels of chromatin condensation.

Koss (1992, p. 46) states that:

in well-fixed and stained cells, within the homogeneous background of

the nucleus (sometimes referred to as nuclear “sap”), one can observe

a fine network of thin, threadlike linear condensations, known as the

linin network. Located at various points in the network are small, dark

granules of odd shapes, the chromocenters.

These granules of condensed chromatin are also described in the literature as par-

ticles (Sandritter et al., 1974; Danielsen et al., 1989; Komitowski & Zinser, 1985),

and blobs (Smeulders et al., 1978).
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Doudkine et al. (1995, p. 286) state that:

in cytopathology chromatin is typically referred to as“coarsely-clumped”

or “finely-clumped”, as having a “salt-and-pepper” or “smooth” appear-

ance, or as having a “cart-wheel-like” or “clockface” distribution.

Beil (1992, p. 129) states that:

chromatin structure is caused by various cellular processes, such as chro-

matin condensation, configuration of nucleoli.. . . Pathologists use adjec-

tives like granular, clod-like, diffuse, etc. for the characterization of chro-

matin “textures”.

4.3 Review of previous approaches to chromatin

segmentation

This section reviews chromatin segmentation algorithms that have been published in

the literature. The key approaches are identified, described, and critiqued. Related

algorithms are also discussed.

The invention of the Taxonomic Intra-cellular Analytic System (TICAS) by Wied

et al. (1968) spawned the first quantitative studies—e.g. Bartels et al. (1968) and

Bartels et al. (1969)—of cell texture by means of digital image analysis6. However,

Rowiński et al. (1972) appear to have been the first to attempt to quantify nuclear

texture using a structural approach; i.e. based on the segmentation of chromatin into

texture primitives. Remarkably, as Table 4.1 shows, only a handful of researchers

have since attempted this mode of analysis. This section reviews the different algo-

rithms that have been devised for the segmentation of chromatin. In the discussion

that follows, a variety of stains are mentioned. Some of these stain only the nu-

cleus, whilst others—most notably the Papanicolaou stain—stain both the nucleus

and the cytoplasm. From the point of view of chromatin segmentation, the type of

stain used is irrelevant. However, from the point of view of nucleus segmentation

(not reviewed here) the type of stain used is relevant: it is more difficult to segment

nuclei from images in which both nuclei and cytoplasm are stained.

6 An earlier system, CYDAC (Cytophotometric Data Conversion), was able to discriminate be-
tween five different types of leukocytes (white blood cells) on the basis of cytomorphologic
features. However, the TICAS was able to “distinguish between cells without appreciable mor-
phological differences, on the basis of differences in the. . . absorption pattern” (Bartels et al.,
1968, p. 205).
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Table 4.1: Chromatin segmentation algorithms published in the literature.

Algorithm Brief description Related algorithms

Rowiński et

al. (1972)

Multiple grey-level thresholds to generate several binary im-

ages.

Klawe & Rowiński (1974)

Sprenger et

al. (1973)

Single grey-level threshold to detect condensed chromatin. de Campos Vidal et al.

(1973), Sandritter et al.

(1974), Al et al. (1978),

Danielsen et al. (1989)

Smeulders et

al. (1978)

Region growing/merging from local maxima (with respect to

optical density).

Smeulders et al. (1979)

Meyer (1978) Top-hat transform used to detect chromatin particles and

interchromatinic channels.

Meyer (1980), Giménez-Mas

et al. (1995)

Rodenacker

et al. (1983)

Ricefield transformation: Independent grey-scale thinning

and thickening. Thinning (resp. thickening) yields a skele-

ton that divides the image into a mosaic of connected com-

ponents; one for each minimum (resp. maximum).

Rodenacker et al. (1987),

Rodenacker (1992)

Komitowski

& Zinser

(1985)

Local adaptive thresholding to detect regions of high optical

density.

Kondo &

Taniguchi

(1986)

Partitioning the image into regions each containing a single

local maximum (with respect to optical density) followed

by local adaptive thresholding to segment a particle of high

optical density within each region.

Young et al.

(1986)

Partitioning the grey-level histogram into 3 parts and using

this to to label each nucleus pixel as low, medium, or high

optical density.

Madachy & Fu (1988),

Doudkine et al. (1995),

Palcic et al. (2000)

Tanaka et al.

(1987a)

Unspecified algorithm in the CYBEST Model 4; most likely

grey-level thresholding.

Tanaka et al. (1987b)

Beil (1992) Region growing and merging.

Wolf et al.

(1995)

Watershed of the gradient followed by region merging. Beil et al. (1995)

Albregtsen et

al. (1995)

Region growing.

Walker &

Jackway

(1996)

Thresholding over all possible grey-levels to generate a stack

of binary images.

Jones (2001)

Jackway

(1996)

The original image is decomposed into a set of multiscale

images. For each multiscale image, the watershed of the

gradient is computed using the regional minima (for negative

scales) or maxima (for positive scales) of the multiscale image

as markers.
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Segmentation algorithm of Rowiński, Pieńkowski & Abram-

czuk

Rowiński et al. (1972) used the Quantimet B Image Analysis Computer (Metals

Research7, Cambridge, England) to quantitatively characterise the morphology of

the chromatin of Feulgen-stained lymphocytes8. “In this instrument the microscopic

image is projected onto the screen of a television camera, [and] the detected signal

passes into the computer” (Rowiński et al., 1972, p. 76). The algorithm devised by

Rowiński et al. to segment the chromatin involves:

1. aligning the image of a single nucleus in the measuring frame of the Quantimet;

and

2. globally thresholding the digitised optical density image for several different

threshold values.

The first threshold value is the one that detects all of the chromatin (i.e. the entire

nucleus). The second and subsequent thresholds are defined to be the value of

the preceding threshold plus a fixed constant. The threshold value for which no

chromatin is detected is used as the reference optical density level. The resulting

segmentation effectively consists of a collection of binary images corresponding to

intervals of optical density. The drawbacks of this algorithm are that:

1. it is based on global thresholding and is thus sensitive to noise and to non-

uniformity of illumination and/or staining;

2. a step value must be specified; and

3. the result is a stack of binary images rather than a single partitioning of the

grey-scale image.

Klawe & Rowiński (1974) applied the same segmentation method (also using the

Quantimet B) to the nuclei of cells from buccal (oral) smears.

7 Metals Research Limited later merged with Cambridge Instruments which in turn was incorpo-
rated into Leica.

8 Lymphocytes are “mononuclear cells that are the predominant cells in immune organs” (Knox
et al., 1994, p. 1037)
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The segmentation algorithm of Sprenger, Moore, Naujoks,

Schlüter & Sandritter

Sprenger et al. (1973) used the EPERC (equiprobable extinction range contours)

computer program, written by Bartels et al. (1968), to quantitatively characterise the

chromatin pattern in Feulgen-stained cells from cervical smears. For each digitised

image of a nucleus, a fixed threshold value was used to isolate the nucleus from the

background. The algorithm devised by Sprenger et al. to segment the chromatin

involves:

1. choosing a single threshold value (with respect to optical density) that repre-

sents the cut-off between weakly-stained (non-condensed) and densely-stained

(condensed) chromatin; and

2. globally thresholding the grey-level image to produce a binary image of the

condensed chromatin.

Sprenger et al. choose the threshold value to be that value for which a predetermined

proportion of the nucleus area (namely, 80%) is labelled as non-condensed. The main

drawbacks of the algorithm are that:

1. it is that it is based on global thresholding and is thus sensitive to noise and

to non-uniformity of illumination and/or staining; and

2. it artificially imposes a fixed value on the proportion of the nucleus that should

be labelled as non-condensed.

De Campos Vidal et al. (1973) used the method of Sprenger et al., and two variations

on the method, to quantitatively characterise the differences in nuclear structure in

liver cells as visualised by the Feulgen, Giemsa, toluidine blue, and gallocyanin

staining methods. The two variant methods differ from that of Sprenger et al. only

in terms of the method used to select the threshold value. In the first case a fixed

threshold is used. In the second, a “squares ratio” procedure (see de Campos Vidal

et al. (1973) for details) is used.

The algorithm of Sandritter et al. (1974) is another variation on that of Sprenger et

al. The algorithm was devised to segment condensed chromatin in digitised images

of the nuclei of Feulgen-stained breast epithelium and glandular cells. The first

steps of the algorithm are exactly the same as that of Sprenger et al., namely that a
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fixed threshold-value is chosen and the image is thresholded to obtain the condensed

chromatin. However, in addition, the original image is thresholded a second time,

using a “somewhat lower fixed value” (with respect to optical density), and all those

pixels that lie adjacent to a pixel detected by the first threshold are also labelled as

condensed chromatin.

The segmentation algorithm of Al et al. (1978), implemented on the Leyden Tele-

vision Analysis System (LEYTAS)9, is yet another variation on that of Sprenger et

al. The algorithm was devised to segment the chromatin structure in digitised im-

ages of the nuclei of cervical cells stained according to the acriflavine-Feulgen-SITS

method. The LEYTAS permits the processing of multiple cell nuclei in a digitised

field of view. An initial threshold is used to detect all of the pixels in the nuclei

and none in the background. A second threshold is applied to the original image

to detect areas of high optical density (this step is equivalent to the algorithm of

Sprenger et al.). Subsequent steps in the algorithm use binary opening δBεB (see

Definition 2.5.1, Proposition 2.6.8, and Definition 2.7.3), binary dilation, and set

differencing to produce three binary images: one containing nuclei with hyperchro-

matic chromatin (large optically dense areas of chromatin), one containing nuclei

of coarse chromatin (i.e. particles of optically dense chromatin), and one containing

nuclei with hypochromatic chromatin (weakly-stained chromatin).

The segmentation algorithm of Danielsen et al. (1989) is the same as that of Sprenger

et al. except that the threshold value is chosen interactively. Danielsen et al. used

the method to segment the heterochromatin (densely-stained) particles in digitised

electron micrographs (electron microscopy) of ultra-thin tissue sections prepared

from biopsies from mice livers. The boundary of each nucleus was defined interac-

tively.

Segmentation algorithm of Smeulders, Cornelisse, Vossepoel

& Ploem

The segmentation algorithm devised by Smeulders et al. (1978) partitions a nucleus

image into a number of sub-regions that visually correspond to chromatin aggre-

gates (blobs). The image data used by Smeulders et al. are digitised photographic

negatives of nuclear absorption images of cervical cell nuclei stained with acriflavine-

Feulgen-stilbene. These images were processed, with software developed by van der

9 Developed in Leiden by Professor Ploem and his colleagues in collaboration with the Leitz
company (Husain, 1994, p. 9).
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Ploeg et al. (1977), to isolate the nucleus and eliminate the background in prepara-

tion for chromatin segmentation. Smeulders et al. (1978, p. 221) give the following

description of their chromatin segmentation algorithm:

The method used starts by searching for a local greylevel maximum.

From here those points on the slopes are added to the blob, which present

continuously decreasing greylevels. The size of the blob is restricted by

a minimum greylevel and a minimal greylevel gradient. The procedure

is repeated through the entire image. Finally blobs superimposed on the

slope of a second blob are merged by a nonlinear algorithm.

From this description it is clear that the algorithm consists of a region growing step,

initiated from a set of seed regions, followed by a region merging step. The seed

regions are the local maxima of the input image. These correspond to the local

minima in the original photomicrograph. Smeulders et al. do not give any details

concerning the region merging step. An example of the segmentation produced by

the algorithm is shown in Figure 4.3. The algorithm has two major drawbacks:

1. The seed regions are not grown in parallel. Rather, the input image is scanned

(presumably in raster order) until a local maximum is found and this region

is then grown in an iterative fashion. At each iteration all of those pixels

that border the growing region are examined. Those pixels that are of lesser

or equal grey-value are added to the region. The growth continues until ei-

ther there are no more candidate neighbouring pixels, or the candidate pixels

have grey-values that fall below a predefined minimum grey-level, or the cor-

responding modulus of the gradient evaluated for each candidate pixel falls

below a predefined value. This procedure is repeated for each local maximum.

As a consequence the regions are not permitted to grow in competition. This

is likely to lead to different results depending on the order in which the input

image is scanned.

2. Two parameters must be specified a priori: a minimum grey-level value and a

minimum grey-level gradient.

The segmentation algorithm described by Smeulders et al. (1979) appears to be

essentially the same as that of Smeulders et al. (1978). Indeed the algorithm operates

on the same type of image data and the same nucleus isolation preprocessing step

is required. In the words of Smeulders et al. (1979, p. 200), the algorithm
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(a) (b)

Figure 4.3: Illustration of the segmentation algorithm Smeulders et al. (1978). Repro-
duced from Smeulders et al. (1978) with the permission of the publisher. (a) Nucleus
from a cervical cell stained with acriflavine-Feulgen-stilbene. (b) Line printer represen-
tation of the segmented regions (only 16 blobs are shown). The aspect ratio distortion
is an artefact of the line printer representation.
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involves the segmentation of the regions with relative high optical densi-

ties in the image starting from local O.D. maxima (starting points) which

are found by scanning the digitized image from top left to bottom right.

The segmentation procedure is restricted to a fixed percentage of the nu-

clear area by an O.D. threshold computed for each nucleus individually

from the intranuclear histogram. Only picture points with O.D. values

above this threshold are included in the segmentation procedure. The

individual segments are found by a dilatation from the starting points

to the adjacent points with continuously decreasing O.D. values. Dilata-

tion stops when the threshold O.D. value is reached or when the slope

in O.D. is no longer declining10.

Presumably overlapping regions are merged as a post-processing step.

Segmentation algorithm of Meyer

The segmentation algorithm devised by Meyer (1978) segments a nucleus image

into either chromatin particles (dark regions) or interchromatinic channels (light

regions). Meyer illustrates the algorithm on a digitised image of the nucleus of a

Feulgen stained cervical cell. The algorithm is well-known today as the top-hat

transform11 and finds more general use as a segmentation tool (see, for example,

Gonzalez & Woods (1992) and Soille (2003)). The top-hat transform is defined to

be the arithmetic difference f−ψ (f) where f ∈ Fun (En, T ) and ψ ∈ O (Fun (En, T ))

is an opening (see Definition 2.5.1). This difference is non-negative on the domain

of f because the opening operation is anti-extensive. Meyer (1978) uses the opening

ψ = δBεB (see Definition 2.8.8) where B is a disk (or rather its digital equivalent) of

sufficient size. If the grey-scale nucleus image is viewed as a topographic landscape

(the light pixels corresponding to high areas and the dark pixels to low areas), this

opening removes positive peaks that are thinner than the diameter of the disk. Con-

sequently the arithmetic difference f − ψ (f) yields an image containing only these

peaks. Negative peaks can be obtained by applying the transform to the negative of

the image, or equivalently by computing the arithmetic difference ψ∗ (f)− f where

ψ∗ is the dual closing. To obtain a binary mask of the chromatin particles (respec-

tively interchromatinic channels), the top-hat (respectively inverted top-hat) image

10 Dilatation is the term used by Matheron (1975) to denote the Minkowski sum A⊕ B̆. When B
is symmetric about the origin, i.e. B = B̆, then this operator is identical to the more modern
definition of binary dilation. As used by Smeulders et al. (1979) dilatation means iterative
dilation by the unit ball B.

11 The term top-hat does not appear in Meyer (1978). It appears later in Meyer (1979).
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must be thresholded and intersected with the nucleus mask. Meyer’s algorithm is

illustrated in Figure 4.4. Meyer (1978) gives no details concerning the segmenta-

tion of the nucleus. However he discusses the problem in several subsequent papers

including: Meyer (1979), Meyer (1980), and Meyer (1986).

The major drawback of the Meyer algorithm is that the size of the disk (width of

the top-hat) and the threshold value (height of the top-hat) must be tuned to the

application. Indeed Meyer (1980, p. 165) states that it is necessary to “heuristically

search for the dimension which gives the best visual segmentation. . . [and] once these

parameters have been found, they remain the same for the whole study”.

The segmentation algorithm of Giménez-Mas et al. (1995) is a trivial variation on

that of Meyer (1978). It involves the computation of several independent top-hat

transforms. The height (threshold) of each top-hat is kept the same, but the width

(size of the disk structuring element) is made to vary. In the words of Giménez-Mas

et al. (1995, p. 41), the steps involved are:

(1) opening, consecutively using a structuring element size of one, two,

four, six and eight pixels; (2) subtracting each of these images from its

original grey level image; and (3) densitometrically thresholding the re-

sulting images, from 10 to 255. These operations. . . [result] in a sequence

of binary images.

Segmentation algorithm of Rodenacker, Gais, Jütting &

Burger

The segmentation algorithm devised by Rodenacker et al. (1983), which they call the

ricefield transformation, is based on grey-scale thinning as defined by Serra (1982, p.

450). The thinning of a two-dimensional grey-scale image f ∈ Fun
(
Z2, R

)
by a pair

of disjoint flat structuring elements B = (B1, B2) is defined in terms of grey-scale

erosion and dilation (see Definition 2.8.8) as follows:

THIN (f,B) (x, y) =

⎧⎨⎩ (f ⊕B1) (x, y) if (f ⊕B1) (x, y) < f (x, y) ≤
(
f � B̆2

)
(x, y)

f (x, y) otherwise.

The ricefield transformation is specifically based on the sequential homotopic thin-

ning algorithm shown in Algorithm 1. The input image is successively thinned using

a sequence of eight pairs of structuring elements. For each Bi shown in Algorithm 1,
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(a) (b) (c)

(d) (e)

Figure 4.4: Illustration of the segmentation algorithm of Meyer (1978). (a) Nucleus
of a Papanicolaou-stained cervical cell with a disk structuring element superimposed at
the top left. (b) Binary mask of the nucleus. (c) Grey-scale closing εBδBwith the disk
structuring element B shown in (a). (d) Inverted top-hat—closing minus the original
image—within the nucleus mask. (e) Thresholding of the top-hat image.
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• denotes a pixel belonging to the first structuring element of the ordered pair, ◦ de-

notes a pixel belonging to the second structuring element of the ordered pair, and the

origin is at the centre12. Sequential thinning is repeated until idempotence. Applica-

tion to the original image yields the lower ricefield (LR) segmentation. Application

to the negative of the original image yields the upper ricefield (UR) segmentation13.

An example of the ricefield transformation is shown in Figure 4.5. Divide lines

(grey-scale skeleton) in both the LR and UR delineate flat connected components.

In the case of the LR each connected component corresponds to a local minimum of

the original image. In the case of the UR each connected component corresponds to

a local maximum of the original image. Rodenacker et al. (1983) demonstrate the

algorithm on a digitised microscope image of an epithelial cell (both nucleus and

cytoplasm). To obtain the portions of the LR and UR segmentations that corre-

spond to chromatin it is necessary to restrict their domains to that of the nucleus.

Rodenacker et al. (1983) do not discuss the issue of nucleus segmentation.

The drawbacks of the ricefield transformation algorithm are that:

1. The UR and LR segmentations do not correlate visually with what an ob-

server might perceive to be chromatin blobs, particles, or clumps. Instead they

define zones (connected components) around the image extrema. “Neighbor-

hood relations between such regions can be derived. . . [allowing] subsequent

mathematical morphological processing on an elevated level of abstraction”

(Rodenacker, 1992, p. 35).

2. The algorithm is inefficient (computationally expensive and thus slow) because

the entire set of image pixels must be scanned at each thinning step.

3. The algorithm is sensitive to noise (Rodenacker, 1992, p. 44).

Remark. A comparison of Figures 4.5(b) and (c) with Figures 4.5(d) and (e) re-

spectively shows that the grey-scale skeletons generated by homotopic thinning are

very similar to the watershed lines produced by the watershed transform (see Ap-

pendix B). Indeed it has been proved that the watersheds correspond to the closed

arcs of the grey-scale skeleton produced by homotopic thinning (Vincent & Soille,

1991, p. 586).

12 The structuring elements used here are those appearing in Rodenacker (1992). They differ
slightly from those appearing in Rodenacker et al. (1983).

13 Equivalently the UR can be obtained from sequential thickening, rather than thinning, of the
original image. See Rodenacker (1992) for further details.
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Algorithm 1 Pseudocode for the sequential thinning algorithm used in the ricefield
transformation.
1: Let

B1 =
• · ◦
• · ◦
• · ◦

, B2 =
• • ·
• · ◦
· ◦ ·

, B3 =
• • •
· · ·
◦ ◦ ◦

, B4 =
· • •
◦ · •
· ◦ ·

,

B5 =
◦ · •
◦ · •
◦ · •

, B6 =
· ◦ ·
◦ · •
· • •

, B7 =
◦ ◦ ◦
· · ·
• • •

, B8 =
· ◦ ·
• · ◦
• • ·

2: Let g be a grey-scale image of the same dimensions as f but taking the value 0
everywhere

3: while f �= g do
4: g = f
5: for i = 1 to 8 do
6: f = THIN (f,Bi)
7: end for
8: end while

(a) (b) (c)

(d) (e)

Figure 4.5: Illustration of the ricefield transformation and its comparison with the
watershed transform. (a) Nucleus of a Papanicolaou-stained cervical cell. (b) Lower
ricefield. (c) Upper ricefield. (d) Watershed transform of (a) – compare with (b). (e)
Watershed transform of the photographic negative of (a) – compare with (c).
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Segmentation algorithm of Komitowski & Zinser

The segmentation algorithm devised by Komitowski & Zinser (1985) partitions a

nucleus image into regions of high O.D. which the authors call chromatin particles.

The images used by Komitowski & Zinser (1985) are digitised photomicrographs of

cell nuclei in tissue from rat livers and from the human colon, prepared using three

different techniques: aceto-carmine staining of squash preparations, Feulgen stain-

ing of squashed tissue fragments fixed in Carnoy’s solution, and Feulgen staining

of paraffin-embedded sections. As a preprocessing step, the nucleus is isolated14 in

the input image. Komitowski & Zinser (1985, p. 179) state that their chromatin

segmentation algorithm is based on a “localization algorithm with a locally adap-

tive threshold”. Further, they state that their method“identifies local maxima of the

O.D. within the nuclear images and calculates disjunct, maximally large regions sur-

rounding them” (Komitowski & Zinser, 1985, p. 179). No further detail is given. An

example of the segmentation produced by the algorithm is shown in Figure 4.6. The

drawbacks of this algorithm are those associated with local adaptive thresholding

including:

1. the need to prescribe the manner in which the image is initially partitioned

into blocks;

2. the need to prescribe the manner in which a threshold is determined for each

block; and

3. sensitivity to noise.

Segmentation algorithm of Kondo & Taniguchi

The segmentation algorithm devised by Kondo & Taniguchi (1986)15 partitions a

cell nucleus image into regions which the authors call chromatin granules (densely

stained DNA proteins). The images used by Kondo & Taniguchi are digitised images

of cell nuclei from Pap smears. The algorithm operates only on those pixels that

constitute the nucleus. This presupposes that the nucleus has been isolated in the

input image, although Kondo & Taniguchi do not give any details of how this is

done. The chromatin segmentation algorithm itself comprises three steps: (i) the

14 Specific details concerning this step can be found in Zinser & Komitowski (1983).
15 This is a translation of a paper originally published in Japanese in September 1985. Refer to

Kondo & Taniguchi (1986) for details.
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Figure 4.6: Illustration of the segmentation algorithm of Komitowski & Zinser (1985).
Reproduced from Komitowski & Zinser (1985) with the permission of Analytical and
Quantitative Cytology and Histology. The image marked ‘A’ is a digitised image of a
cell nucleus from a rat liver (paraffin section and Feulgen staining). The image has been
preprocessed to isolate the nucleus. The image marked ‘B’ shows the segmented particles
as a binary image superimposed on the image ‘A’.

local maxima (with respect to optical density) are identified in the image (these

correspond to local minima of intensity); (ii) the input image is partitioned into sub-

images (regions), each containing a single maximum; and (iii) a chromatin granule

(densely stained blob of chromatin) is segmented from each region in turn using local

adaptive thresholding. Kondo & Taniguchi propose three different methods for the

partitioning step:

1. Partitioning using a Voronoi neighbourhood

The Voronoi neighbourhood of a local maximum comprises all those pixels

that are closer to it than to any other local maximum. The union of these

neighbourhoods constitutes a complete tessellation of the nucleus. The concept

of Voronoi neighbourhoods is treated in depth in Chapter 5.

A drawback of this method is that it does not use the topography of the

input image to determine a region around each minimum. Consequently it is

possible that the region determined around a minimum cuts through one or

more adjacent chromatin particles.

2. Area expansion by difference direction

This method relies on the property that a chromatin granule is densely stained

at the centre. The method involves an expansion (region growing) of each

local maximum in the direction of lower density. “This expansion is applied

only to the pixels which do not have more than one path from more than
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one maximum. . . In other words, if there is an ambiguity in the expansion by

density difference, this procedure is not applied; the procedure is applied only

to the pixels with certainty” (Kondo & Taniguchi, 1986, p. 13). This method

is very similar to the region growing step of the algorithm of Smeulders et al.

(1978).

A drawback of the density difference method is that the growth is not pre-

scribed by topographic distance (i.e. if the image is viewed as a landscape

then the growth is not prescribed by the topography of the landscape).

3. Region partitioning by directed tree

This method is based on a method devised by Narendra & Goldberg (1980)

for segmenting natural images (LANDSAT) into relatively uniform regions.

A drawback of the directed tree method is that it is necessary to specify, a

priori, a sensitivity parameter to control growth.

The local adaptive thresholding method of segmenting a granule from each region has

several potential drawbacks including sensitivity to noise and the need to prescribe

the manner in which the threshold value is determined for each sub-image. An

example of the segmentation produced by the algorithm is shown in Figure 4.7.

Segmentation algorithm of Young, Verbeek & Mayall

The segmentation algorithm devised by Young et al. (1986) partitions a nucleus

image into regions of low, medium, and high optical density. The algorithm pre-

supposes that the nucleus has been isolated in the input image, although Young et

al. (1986) do not give any details of how this is done. Young et al. illustrate their

method on digitised light microscope images obtained from foam cells in human

nipple aspirate fluid, and rat urothelial cells. The method of staining is unspecified.

The chromatin segmentation algorithm itself involves nothing more than partition-

ing the grey-level histogram of the nucleus image into three parts (i.e. choosing two

grey values), and then using this division to label each nucleus pixel. The result is

a segmentation comprising regions of low, medium, and high optical density. The

manner in which the partition points (threshold values) are determined must be

specified a priori. Young et al. determine these thresholds based on a fixed per-

centage of the mean grey-value in the nucleus: one is defined to be this percentage

below the mean and the other this percentage above the mean. An example of the
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Figure 4.7: Illustration of the segmentation algorithm of Kondo & Taniguchi (1986).
Reproduced from Kondo & Taniguchi (1986) with the permission of the publisher. The
image quality in the original published article is poor. Top row (from left to right): tes-
sellations produced by the Voronoi neighbourhood approach, the expansion by difference
direction approach, and the partitioning by directed tree approach respectively. Bottom
row (from left to right): local adaptive thresholding applied to the corresponding images
in the top row to yield chromatin granules.

segmentation produced by the algorithm is shown in Figure 4.8. The algorithm has

two major drawbacks:

1. It is based on global thresholding and is thus sensitive to noise and to non-

uniformity of illumination and/or staining; and

2. It requires the specification of two threshold values. The manner in which

these are chosen must be specified a priori. Moreover they must be tuned to

the particular application.

The segmentation algorithm of Madachy & Fu (1988) is identically the algorithm of

Young et al. (1986) (although the connection is not made by the authors). Madachy

& Fu apply the algorithm to digitised light microscopy images of cells from cervical

biopsy tissue. The staining method is not specified.

Doudkine et al. (1995) describe a variation of the algorithm of Young et al. (1986)—

namely in terms of the manner in which the two thresholds are determined—that

is then used to compute a class of texture features the authors call discrete texture

features. These features are included in the United States Patent of Palcic et al.

(2000).
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Figure 4.8: Illustration of the segmentation algorithm of Young et al. (1986). (a)
Nucleus of a Papanicolaou-stained cervical cell. (b) Histogram of the grey-values. (c)
Segmentation using thresholds based on 80% of the mean and 120% of the mean.
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Segmentation algorithm in the CYBEST model 4

CYBEST “is an elaborate series of high-resolution, automated cytology screening

systems for uterine cancer detection” (Husain, 1994, p. 9). The most recent model,

model 4, is described in Tanaka et al. (1987a) and Tanaka et al. (1987b). CYBEST

takes as input Papanicolaou-stained smears. Details of the nucleus and cytoplasm

segmentation methods are given in Tanaka et al. (1987a). The methods used date

back to the late 1970s and are based on grey-level thresholding. Unlike its predeces-

sors, CYBEST model 4 additionally segments the chromatin into (dark) granules.

No specific details of the algorithm used to segment the chromatin are given. How-

ever, a diagram that appears in both papers suggests that the algorithm is based on

thresholding.

Segmentation algorithm of Beil

The segmentation algorithm devised by Beil (1992) is similar to the algorithm of

Young et al. (1986) in that it segments a nucleus image into three types of region.

However, rather than segmenting purely on the basis of grey-level, Beil’s algorithm

seeks to partition the image into three topographic features: mountain, valley, and

slope. The images used by Beil are not specified. In the words of Beil (1992, p.

131), the algorithm

first. . . detects all edges between two neighbouring points Pi which are

higher than a constant value. These points Pi represent origins for a

region growing. The region growing procedure uses local operators for

the assignment of the image points to regions. After harmonizing incon-

sistencies we obtain an image containing three texton classes.

Like the algorithm of Smeulders et al. (1978), this algorithm consists of a seeded

region growing step followed by a merging step. An example of the segmentation

produced by Beil’s algorithm is shown in Figure 4.9. The major drawback of the

algorithm is that the seed points are selected by thresholding. This is likely to be

sensitive to noise and to non-uniformity of illumination and/or staining. In addition

the process of “harmonizing inconsistencies”, though not specified, is likely to involve

the comparison of attributes of abutting regions. The decision to merge two regions

is likely to be based on a threshold which must be specified a priori.
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Figure 4.9: Illustration of the segmentation algorithm of Beil (1992). Reproduced from
Beil (1992) with the permission of Image Analysis & Stereology (formerly Acta Stereo-
logica). From left to right: original image, result after an edge oriented segmentation,
gradient line representation of the original image.

Segmentation algorithm of Wolf, Beil & Guski

The segmentation algorithm of Wolf et al. (1995) partitions a nucleus image into

homogeneous regions (textons) of chromatin16. The images used by Wolf et al. are

of cervical cells, from tissue sections obtained by colposcopic biopsies, stained by

the Feulgen method. The algorithm is based on the watershed algorithm (see Ap-

pendix B) and region merging. The first step involves determining the watershed of

the gradient of the nucleus image. This is done using a modification of the classic

watershed algorithm of Vincent & Soille (1991). The result is an over-segmentation;

i.e. too many regions are delineated and as a consequence the result does not cor-

respond very well to the chromatin patches in the original image. The second step

involves selectively merging the regions segmented in the first step. Specifically, this

step involves fitting a plane to each segmented region using standard least-squares

techniques—the“plane is defined by ax+by+c = z, with (x, y) the pixel position and

z its gray level” (Wolf et al., 1995, p. 2)—and then iteratively merging neighbouring

regions based on merging criteria related to the standard deviation of grey-levels in

regions. The decision to merge two regions is based on the evaluation of a single

parameter which is then compared to a predefined threshold. An example of the

segmentation produced by the algorithm is shown in Figure 4.10. The major draw-

back of the algorithm is that a threshold value must be specified a priori. This is

likely to be sensitive to noise and to non-uniformity of illumination and/or staining.

16 The algorithm is also described in a subsequent paper by Beil et al. (1995).
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Figure 4.10: Illustration of the segmentation algorithm of Wolf et al. (1995). Repro-
duced from Wolf et al. (1995) with the permission of Analytical and Quantitative Cytology
and Histology. From left to right: original image, watershed of the gradient, and result
after region merging.

Segmentation algorithm of Albregtsen, Schulerud & Yang

The segmentation algorithm of Albregtsen et al. (1995) does not partition the nu-

cleus image into disjoint regions, but rather into overlapping regions. At each pixel

position, it segments “a region of consistent connected neighbouring pixels. . . , form-

ing a local textel of pixels belonging to the same gray level population” (Albregtsen

et al., 1995, p. 496). Features are computed for the region and then the region is dis-

carded. The image data used by Albregtsen et al. are digitised transmission electron

microscope images, at a primary magnification of 2500, of Feulgen stained mouse

liver cells. As a preprocessing step each image is 3 × 3 median filtered to remove

noise and the nucleus is isolated by manual tracing. The segmentation algorithm

itself is based on a modification of the K−Nearest Connected Neighbours (KNCN)

filter concept of Lønnestad (1988). The algorithm is applied to each pixel in turn

to generate a connected component of relatively homogeneous grey-levels. Although

Albregtsen et al. only describe their algorithm in words, it can be expressed as

pseudocode as shown in Algorithm 2. The constants Kmin, Kmax, and σmin must be

specified a priori. The constant Kmin prescribes the minimum size that the region

can have. The constant Kmax prescribes an upper limit on the size that the region

can grow. The constant σmin prescribes a lower limit on σ which is needed to ensure

that the region will grow in strictly homogeneous areas. The algorithm has two

major drawbacks:

1. The constants Kmin, Kmax, and σmin must be specified a priori and must be

tuned to the particular application.

2. The algorithm is not scan order independent: the order in which unselected

neighbours are examined can influence the size and shape of the resulting
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Algorithm 2 Pseudocode for the algorithm of Albregtsen et al. (1995).

1: select the pixel at (x, y)
2: for i = 1 to Kmin do
3: examine all of the unselected neighbours of the selected pixel(s)
4: select the pixel that is closest in grey-value to the pixel at (x, y)
5: end for
6: compute the mean μ and the standard deviation σ of the Kmin selected pixels
7: if σ < σmin then
8: σ = σmin

9: end if
10: i = 1
11: repeat
12: i = i + 1
13: examine all of the unselected neighbours of the selected pixel(s)
14: if the pixel that is closest in grey-value to μ, has a grey value that is within 2σ of

μ then
15: select the pixel and update μ and σ
16: if σ < σmin then
17: σ = σmin

18: end if
19: end if
20: until i = Kmax or no pixel was selected

region.

Segmentation algorithm of Walker & Jackway

Walker & Jackway (1996) used the statistical geometrical features (SGF) method

of Chen et al. (1995) to quantitatively characterise the chromatin in the nuclei of

Papanicolaou-stained cervical cells from cervical slides prepared using the Thin-

Prep� technique. The SGF method involves the computation of statistics “of ge-

ometrical attributes of connected regions in a sequence of binary images obtained

from a texture image” (Chen et al., 1995, p. 537). Specifically, the first step of the

SGF method involves thresholding the original image for each discrete grey-level to

generate a stack of binary images. The main drawback of this approach is that the

result is a stack of binary images rather than a single partitioning of the grey-scale

image.

Jones & Jackway (2000) introduced a novel texture representation which they call

granolds (the term is derived from granulometry of thresholds). Jones (2001, Chap-

ter 6) uses the technique to quantitatively characterise the chromatin in nuclei of
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Papanicolaou-stained cervical cells from cervical slides prepared using the Thin-

Prep� technique (the results are discussed in Section 6.4.9.1). Like the SGF method,

the first step involves thresholding the original image for each discrete grey-level to

generate a stack of binary images.

Segmentation algorithm of Jackway

The segmentation algorithm of Jackway (1996) yields a number of segmentations of

the nucleus image across different scales. Jackway illustrates the method on an image

of a Papanicolaou-stained cell from a cervical smear. The multiscale images are

produced by the multiscale-morphological-dilation-erosion defined for f : R2 → R

as

(f � gσ) (x, y) =

⎧⎪⎨⎪⎩
(f ⊕ gσ) (x, y) , if σ > 0

f (x, y) , if σ = 0

(f � gσ) (x, y) if σ < 0

where gσ : R2 → R is defined

gσ (x, y) = |σ| g
(
|σ|−1 x, |σ|−1 y

)
for all σ �= 0

and where g (x, y) is a non-positive, anticonvex, even function for all (x, y) ∈ R

with g (0, 0) = 0; e.g. g (x, y) = − (x2 + y2). A slightly modified17, but equivalent,

description of the algorithm is given in Algorithm 3 (the notions of regional minima

and maxima are explained in Definition 4.4.1 and Definition 4.4.2 respectively).

The Jackway (1996) algorithm has two major drawbacks:

1. A set of scales must be specified a priori; and

2. The segmentation at each scale does not correlate visually with what an ob-

server might perceive to be chromatin blobs, particles, or clumps.

17 The original algorithm specifies the use of homotopy modification of the gradient such that
only certain minima are retained. This modified gradient is then segmented using the classical
watershed transform (see Appendix B). However, the marker-based version of the watershed
algorithm permits the imposition of minima and the computation of the watersheds to be
combined in a single algorithm (Soille, 2003, p. 281)



4.3 Review of previous approaches to chromatin segmentation 131

Algorithm 3 Pseudocode for the Jackway (1996) algorithm.

1: select a set of scales {σk} of interest; e.g. {−1.6,−0.9,−0.4,−0.1, 0− , 0+, 0.1, 0.4, 0.9, 1.6}
2: for each σk do
3: compute f � gσk

, where f is the input image
4: locate the regional minima {Ni} (for σk ≤ 0) or the regional maxima {Mi} (for

σk ≥ 0) of f � gσk

5: compute the magnitude of the gradient |∇ (f � gσk
)|

6: compute the watershed of the gradient using {Ni} ∪ {Mi} as markers
7: end for

4.3.1 Summary and conclusion

As shown in Table 4.2, the algorithms reviewed can be categorised according to the

underlying segmentation method(s) used: global thresholding, top-hat transform,

grey-scale thinning, local adaptive thresholding, and region growing/merging. The

global thresholding algorithms range from the single threshold approach of Sprenger

et al. (1973) through to the complete threshold decomposition approach of Walker

& Jackway (1996). Local adaptive thresholding is used outright by Komitowski &

Zinser (1985), and as a secondary step in the algorithm of Kondo & Taniguchi

(1986). The top-hat transform approaches include the single top-hat of Meyer

(1978), and the multiple top-hat approach of Giménez-Mas et al. (1995). The only

approach based on grey-scale thinning is that of Rodenacker et al. (1983). Both

Kondo & Taniguchi (1986) and Smeulders et al. (1978) use region growing to de-

termine regions-of-interest around local maxima (with respect to optical density).

Beil (1992) uses region growing to grow seed pixels into regions belonging to three

texton classes. Wolf et al. (1995) use region growing—specifically the watershed

transform of the gradient image—to segment the image into candidate regions for

region merging. Albregtsen et al. (1995) uses region growing to grow a local textel

of pixels from a given pixel. Jackway (1996) uses region growing—specifically the

watershed of a homotopically modified gradient—multiple times to segment a set of

multi-scale images generated from a multi-scale decomposition of the original image.

A criticism of the threshold decomposition, grey-scale thinning, and multi-scale de-

composition algorithms is that they do not segment the chromatin into regions that

correspond visually with what a human observer would perceive to be blobs, par-

ticles, or clumps. In the case of threshold decomposition, the result is a stack of

binary images each of which contains connected components (see Definition 2.9.5).

In the case of grey-scale thinning the result is a grey-scale image of flat connected

components delineated by divide lines. In the case of the multi-scale decomposition

algorithm the result comprises several sets of watershed regions. Moreover, “the
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watershed arcs move spatially with varying scale and are not a subset of those at

zero scale” (Jackway, 1996, p. 913).

A criticism of the global thresholding algorithms is that they utilise only the grey-

level histogram and thus make no use of spatial information. Worse still, as Fig-

ure 4.8 illustrates, it is not even obvious how the grey-level histogram should be

partitioned; i.e. what the threshold value(s) should be. Moreover, under condi-

tions of uneven and variable illumination and/or staining, and the presence of noise,

thresholding is generally unsatisfactory.

The local adaptive thresholding algorithms are an improvement over the global

thresholding methods in that local pixel properties are utilised. In the case of the

algorithm by Kondo & Taniguchi (1986), for example, the nucleus image is first

partitioned into subimages, and global thresholding is applied to each in turn. The

threshold value for each subimage is derived from the minimum and maximum grey-

values in the grey-level histogram for the subimage. However, the problem remains

that the manner in which the threshold value is determined must be prescribed. In-

deed, Kondo & Taniguchi (1986, p. 18) state that thresholding “must be performed

experimentally for various subimages to determine different optimum thresholds”.

The algorithm of Meyer (1978) is an improvement over the global threshold methods

in that both geometric and grey-scale information are utilised. However, the algo-

rithm (top-hat transform) requires the specification of both a grey-level threshold

and the size of the structuring element.

The region growing algorithms seek to grow seed pixels/regions until the entire

image has been partitioned. Smeulders et al. (1978) and Kondo & Taniguchi (1986)

initiate the region growing from local maxima (with respect to optical density).

Beil (1992) initiates region growing from a set of seed points. Albregtsen et al.

(1995) initiates region growing, independently, from each image pixel. Wolf et al.

(1995) use the watershed transform to grow regions about the regional minima in

the gradient image. Jackway (1996) uses the watershed transform to grow regions

about the regional minima of homotopically modified gradient images. In each case,

however, the algorithm has one or more drawbacks (already outlined) that affect the

quality/robustness of the segmentation.

The grey-scale thinning algorithm of Rodenacker et al. (1983) is similar to the region

growing algorithms in that the resulting regions correspond to“topological properties

like path connectedness and local extrema” (Rodenacker, 1992, p. 35). However,

as outlined above, the algorithm does not yield regions that correlate visually with

what an observer might perceive to be chromatin blobs, particles, or clumps.
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Of all the approaches to chromatin segmentation, thresholding appears to be the

most popular. Indeed global thresholding is basis for the discrete texture features

documented in the United States Patent of Palcic et al. (2000). These features are

implemented in the Cyto-Savant� image cytometer18. This system has been used

in several studies into malignancy associated changes (MACs); e.g. Mairinger et al.

(1999), Hanselaar et al. (1998), Ikeda et al. (1998), Anderson et al. (1997), Poulin et

al. (1995), and Guillaud et al. (1995). The popularity of thresholding is likely due

to its simplicity. However, in view of the criticisms above, as well as the existence

of more sophisticated region growing algorithms, it is surprising that thresholding

predominates.

A characteristic that all, but the threshold decomposition algorithms and the grey-

scale thinning algorithm, have in common is that one or more operational parame-

ters must be specified: e.g. threshold values, region merging criteria, a set of scales.

Moreover, these parameters need to be tuned to the particular application. As a

consequence none of these methods are robust to changes in, or non-uniformity of,

illumination and staining. The quality of the resulting segmentations produced is

therefore questionable. This in turn affects the quality of any features subsequently

computed from these segmentations. In the next section a new algorithm is pre-

sented for chromatin segmentation. In its preferred embodiment the algorithm is

parameter-free.

4.4 New algorithm for chromatin segmentation

This section presents a new algorithm for chromatin segmentation devised by the

author. The method is the subject of an International Patent Application (Mehnert

& Jackway, 2002) filed by Fisher Adams Kelly19 on 19 July 2002 on the behalf of the

CSSIP. The author is the principal inventor. The application claims priority from

an Australian Provisional Application (Mehnert & Jackway, 2001) filed on 19 July

2001.

4.4.1 Rationale

Jain et al. (1998, p. 110) state that:

18 The original system was marketed by Oncometrics Imaging Inc. Oncometrics was acquired
by AccuMed International Inc. in 1998 and the system was renamed the AcCell-SAVANT.
AccuMed in turn was acquired by Ampersand Medical Corporation in February 2001.

19 Fisher Adams Kelly Patent & Trademark Attorneys, Brisbane, Australia.
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Table 4.2: Classification of chromatin segmentation algorithms published in the litera-
ture.

Global
thresholding

Top-hat
transform

Grey-scale
thinning

Local
adaptive
thresholding

Region grow-
ing/merging

Rowiński et al.
(1972), Klawe &
Rowiński (1974)

Meyer (1978),
Meyer (1980),
Giménez-Mas et
al. (1995)

Rodenacker et
al. (1983),
Rodenacker
(1992)

Komitowski &
Zinser (1985)

Smeulders et al.
(1978),
Smeulders et al.
(1979)

Sprenger et al.
(1973), de Cam-
pos Vidal et al.
(1973),
Sandritter et al.
(1974), Al et al.
(1978),
Danielsen et al.
(1989)

Kondo & Taniguchi (1986)

Young et al.
(1986),
Madachy & Fu
(1988),
Doudkine et al.
(1995), Palcic et
al. (2000)

Beil (1992)

Walker &
Jackway (1996),
Jones (2001)

Wolf et al.
(1995), Beil et
al. (1995)
Albregtsen et al.
(1995)
Jackway (1996)
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a model-free or structure-free image interpretation approach is doomed

by the underconstrained nature of the problem. Imperfect image data

can be augmented with extrinsic information such as geometrical mod-

els of the objects that are likely to be present in the scene in order to

facilitate object recognition.

The discussion in Section 4.2.3 suggests that chromatin structure, as visualised by

light microscopy, can be described in terms of:

1. regions of high optical density that are blob-like, particle-like, or granule-like

in appearance;

2. regions of low optical density or clearing (which can also be considered as

blob-like);

3. homogeneous background sap; and

4. the topographic arrangement of the blobs.

Although Koss (1992) states that under favourable conditions the linin network

can also be seen, in the experience of the author this is rarely true for the images

captured using the Cytometrics Project cytometer20. For this reason the proposed

algorithm is designed only to segment the dark and/or light blobs in a grey-level

image of a cell nucleus. These grey-levels may represent either intensity or optical

density. If the grey-scale image is viewed as a topographic relief, as depicted in

Figure 4.11, then the light particles correspond to mountains and the dark particles

correspond to valleys21. The dark particles are associated with the minima and the

light particles are associated with the maxima. The algorithms of Smeulders et al.

(1978), Komitowski & Zinser (1985), and Kondo & Taniguchi (1986) determine a

single dark particle for each local maximum (with respect to optical density). In

the proposed algorithm a dark particle is determined for each regional minimum

(with respect to grey-level). The difference between a regional minimum and a local

minimum is that a regional minimum is a plateau of pixels that is surrounded by

pixels of higher grey-level, whilst a local minimum is a single pixel that is surrounded

20 The cytometer uses a CCD camera (with square pixels of side length 14μm) coupled to a light
microscope (fitted with a 40× objective lens with a numerical aperture of 0.75) to acquire 8-
bit intensity images of Papanicolaou-stained cells. After digitisation, a typical nucleus image
comprises around 2000 pixels. See Section 6.4.4 for more details.

21 This topographical description coincides with the “mountain, valley, and slope”characterisation
of chromatin structure proffered by Beil (1992).
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by pixels of greater or equal grey-level. Formal definitions of local and regional

extrema are as follows.

Definition 4.4.1 (local and regional minima). Let f ∈ Fun (Zn, T ) be a grey-

scale image (see Section 2.8), then:

1. a pixel x is called a local minimum of f if

∀y ∈ δ1 ({x}) , f (y) ≥ f (x) ;

2. a pixel x is called a strict local minimum of f if

∀y ∈ δ1 ({x}) \ {x} , f (y) > f (x) ; and

3. a set of pixels M is called a regional minimum of f if{
∀x ∈M, f (x) = t,

∀y ∈ δ1 (M) \M, f (y) > t.

Remarks.

1. A strict local minimum is a regional minimum that consists of a single pixel.

2. δ1 is a metric dilation of size 1 (see Definition 2.9.3).

Definition 4.4.2 (local and regional maxima). Let f ∈ Fun (Zn, T ) be a grey-

scale image (see Section 2.8), then:

1. A pixel x is called a local maximum of f if

∀y ∈ δ1 ({x}) , f (y) ≤ f (x) .

2. A pixel x is called a strict local maximum of f if

∀y ∈ δ1 ({x}) \ {x} , f (y) < f (x) .

3. A set of pixels M is called a regional maximum of f if{
∀x ∈M, f (x) = t,

∀y ∈ δ1 (M) \M, f (y) < t.



4.4 New algorithm for chromatin segmentation 137

(a) (b)

Figure 4.11: Representing a grey-scale image as a topographic relief. (a) Grey-scale
image. (b) Topographic surface generated by considering each grey-value to be a height.

Remark. A strict local maximum is a regional maximum that consists of a single

pixel.

The proposed algorithm is similar to that devised by Kondo & Taniguchi (1986) in

the sense that it involves the steps of locating minima in the grey-scale image (which,

if the grey-values represent intensity, correspond to maxima in the optical density

image), partitioning the image into regions each containing a single minimum, and

then segmenting a single blob in each region. However, the new algorithm differs in

several respects:

1. It locates regional minima with respect to grey-level, rather than local maxima

with respect to optical density;

2. In its preferred embodiment, it grows these minima using the watershed trans-

form (see Appendix B). If the input image is viewed as a topographic landscape

then the boundaries of the regions determined by the watershed transform (the

watersheds) are guaranteed to lie between the minima as determined by the

topography of the surface; and

3. In its preferred embodiment, it segments a single blob in each region using the

watershed transform rather than local adaptive thresholding.
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4.4.2 Description of the new algorithm

A flowchart of the steps that make up the new algorithm is shown in Figure 4.12.

The input image is denoted by f on the flowchart. It is a grey-scale image22 in

which the chromatin is visualised as a patchwork of light and dark regions. The

first, optional, step is preprocessing. Depending on the quality of f , this step may

include filtering to attenuate noise, deconvolution to correct for lack-of-focus, and

up-sampling to facilitate line rendering in subsequent steps. The preprocessed image

is denoted f ′ on the flowchart. The next step is to locate the regional minima

in the preprocessed image f ′. The output from this step is a binary image M

containing connected components, each of which marks the location of a regional

minimum. Several methods for detecting regional minima exist in the literature;

e.g. the grey-scale reconstruction method of Vincent (1993, p. 184). The next,

optional, step is to filter the image M according to a priori specified contrast criteria.

This involves computing a contrast valuation, with respect to the preprocessed image

f ′, for each regional minimum, and then discarding those minima that do not satisfy

the contrast criteria. The filtered image is denoted M ′ on the flowchart. Two

particularly useful contrast measures are dynamics devised by Grimaud (1992) and

symmetrical dynamics devised by Vachier & Vincent (1995). The next step is to

compute a zone of influence (ZOI) around each of the connected components in M ′.

The image containing the ZOIs is denoted by Z on the flowchart. Depending on

the method of implementation, Z may be either a binary image of lines delineating

the ZOIs or it may be a grey-scale image in which each ZOI has its own unique

numerical label. Several different methods can be used to compute Z:

1. Application of the watershed transform to the preprocessed image f ′ using the

connected components of M ′ as markers.

2. Application of a scan-order-independent seeded region growing algorithm—

such as that of Mehnert & Jackway (1997) or Beare & Talbot (1999)—to the

preprocessed image f ′ using the connected components of M ′ as seeds.

3. Computation of the influence zone (IZ) around each connected component of

M ′ using an a priori specified metric. The IZ of a connected component is the

set of all pixels that are closer to it than to any other connected component

(Soille, 2003, p. 170). See also Definition 5.6.1.

22 The grey-values may be optical density values or intensity values. The algorithm segments dark
(with respect to grey-level) blobs. To segment light blobs the algorithm can be applied to the
photographic negative (see Section 4.4.4) of the grey-scale image.
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The next step is to segment a single blob (chromatin particle) within each ZOI in

Z. This is done using a region growing procedure. Two possibilities are:

1. Application of the watershed transform to the modulus of the gradient of the

preprocessed image f ′ using both the connected components of M ′ and the

boundary lines of Z as markers (these boundary lines may or may not include

the boundary of the entire nucleus itself). Numerous methods for computing

the modulus of the gradient exist in the literature; e.g. Rivest et al. (1993).

2. Application of a scan-order-independent seeded region growing algorithm to

the preprocessed image f ′ using both the connected components of M ′ and the

boundary lines of Z as seeds (these boundary lines may or may not include

the boundary of the entire nucleus itself).

Segmentations produced by two variants of the algorithm, including the preferred

embodiment described next, are shown in Figure 4.13.

4.4.3 Preferred embodiment

The preferred embodiment of the new algorithm is as follows:

1. The input image f is preprocessed. This involves the application of a 3 × 3

median filter (Gonzalez & Woods, 1992, p. 191) followed by up-sampling by

factor 3. The method of up-sampling by factor 3 involves nothing more than

replacing each pixel with a 3× 3 block of pixels of the same grey-value.

2. The regional minima are identified in the preprocessed image f ′.

3. The dynamics of these minima are computed but are not used to filter out

unwanted minima, but rather are retained for subsequent use as chromatin

features. Consequently M ′ = M .

4. The watershed transform is applied to the preprocessed image f ′ using the

connected components of M ′ as markers. The divide lines define Z.

5. The magnitude of the gradient of f ′ is estimated using Beucher’s gradient

(Soille, 2003, p. 85):

|∇f ′| ≈ δB (f ′)− εB (f ′)

where B is the unit ball for the grid on which f ′ is manifest.
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Figure 4.12: Flowchart showing the steps of the new chromatin segmentation algorithm.
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Demonstration of the new chromatin segmentation algorithm. (a) Isolated
nucleus image (Papanicolaou stain) after the application of a 3× 3 median filter and up-
sampling by factor 3. (b) Regional minima (superimposed in white). (c) Watershed
transform of (a) using the regional minima as markers. (d) Beucher’s gradient of (a). (e)
Watershed transform of (d) using both the regional minima in (b) and the watersheds of
(c) as markers. (f) Alternative: improved seeded region growing algorithm of Mehnert &
Jackway (1997) applied to (a) using both the regional minima in (b) and the watersheds
of (c) as seeds.
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Figure 4.14: Segmentation of dark particles using the preferred embodiment of the
proposed chromatin segmentation algorithm.

6. The watershed transform is applied to the morphological gradient of the image

f ′ using the connected components of M ′ and the divide lines of Z as markers.

An implementation of this algorithm, in DImPAL (see Appendix A), is shown in

Appendix D. A sample of segmentations produced by the algorithm is shown in

Figure 4.14.

4.4.4 Discussion

If the input image is replaced with its photographic negative23, the dark particles

segmented by the proposed algorithm will correspond to the light particles in the

original image as shown in Figure 4.15. Consequently the algorithm can be used to

segment a nucleus image into dark particles, light particles, and background. For

23 For an 8-bit grey-scale image, with grey-values ranging from 0 to 255, the photographic negative
is obtained by subtracting each pixel value from 255.
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(a) (b) (c)

Figure 4.15: Detection of light particles. (a) Original image (after noise removal and
up-sampling). (b) Photographic negative (after noise removal and up-sampling). (c)
Segmentation of the photographic negative (superimposed on the photographic positive).

an intensity image these correspond to condensed chromatin, areas of chromatin

clearing, and nuclear sap respectively.

The proposed algorithm can, in principle, be generalised to higher dimensional im-

ages, and to multispectral and other multi-valued images. This is possible because

the seeded region growing algorithms can be extended to such images. A three-

dimensional version of the watershed transform also exists: Cotsaces & Pitas (1998).

The preferred embodiment of the proposed segmentation algorithm is based on the

marker-based watershed transform of Meyer (1991). The watershed transform is

robust to slight optical changes. Indeed Wolf et al. (1995, p. 31) experimentally

compared co-occurrence texture features with texture features derived from their

chromatin segmentation algorithm (which is based on the watershed transform of

the gradient) and found that the watershed-based features had “the best robustness

against slight optical changes”.

The proposed segmentation algorithm is, in it preferred embodiment, a parameter-

free method of segmenting chromatin particles. Moreover, in comparison to existing

methods, it is the author’s opinion that the proposed algorithm produces a dis-

cernibly better segmentation of nuclear chromatin; i.e. for any given nucleus image

the method yields a segmentation of chromatin particles that corresponds well with

what a human observer might intuitively perceive to be blobs or particles24.

Seeded region growing (which includes the marker-based watershed transform) is

the cornerstone of the proposed chromatin segmentation algorithm. In the next

24 To verify this claim it would be necessary to undertake a study involving the blind testing of
several cytologists or similar experts.
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section the classical seeded region growing algorithm of Adams & Bischof (1994) is

examined in detail. It is shown that it is inherently dependent on the order of pixel

processing. This means, for example, that raster order processing and anti-raster

order processing do not, in general, lead to the same segmentation. An improved

algorithm is proffered in Section 4.6.

4.5 The Adams and Bischof seeded region grow-

ing algorithm

Adams & Bischof (1994) proposed a novel region growing algorithm called seeded

region growing (SRG). The algorithm is fast, robust, and parameter free. It takes a

grey-level image and a set of seeds—individual pixels or connected components—as

inputs. The seeds play the same role as the markers used in watershed segmentation

(see Appendix B). They mark each of the objects (regions) to be segmented. The

SRG algorithm operates on the premise that the pixels within a region are similar.

The algorithm grows the seed regions in an iterative fashion. At each iteration all

those pixels that border the growing regions are examined. The pixel that is most

similar to a region that it borders is appended to that region. Unfortunately the SRG

algorithm is inherently dependent on the order of processing of the image pixels. One

implication of this is that raster order processing and anti-raster order processing do

not, in general, lead to the same segmentation. This order dependency is particularly

evident when the regions are small and of very similar grey value. Order dependency

is clearly an undesirable property, especially when the images to be segmented have

no obvious orientation (which is the case for nuclear chromatin).

4.5.1 Description of the algorithm

The seeded region growing approach to image segmentation is to partition an image g

into regions with respect to a set of n seed regions. Each seed region is a connected

component comprising one or more pixels and is represented by a set Ai, where

i = 1, 2, . . . , n. Let T be the set of all unallocated pixels that border at least one of

the Ai, i.e.

T =

{
x /∈

n⋃
i=1

Ai |N(x) ∩
n⋃

i=1

Ai �= ∅
}

, (4.2)

where N(x) represents the set of immediate neighbours—6 for the hexagonal grid

and either 4 or 8 for the square grid—of the pixel x (see Figure 2.3). A single step
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of the algorithm involves examining the neighbours of each x ∈ T in turn. If N(x)

intersects a region Aj then a measure, δ(x), of the difference (similarity) between x

and the intersected region is calculated25. In the simplest case δ(x) is defined:

δ(x) =

∣∣∣∣g(x)−mean
y∈Aj

{g(y)}
∣∣∣∣ ,

where g(x) is the grey value of the pixel x. If N(x) intersects more than one region

then Aj is taken to be that region for which δ(x) is a minimum (alternatively, the

pixel x can be flagged as a boundary pixel for display purposes). In this way a δ

value is determined for each x ∈ T . Finally, the pixel z ∈ T that satisfies

δ(z) = min
x∈T
{δ(x)} (4.3)

is appended to the region corresponding to δ(z). The new state of the regions {Ai}
then constitute the input to the next iteration. This process continues until all of

the image pixels have been assimilated.

4.5.2 Inherent order dependencies

The SRG algorithm has two inherent pixel order dependencies. The first manifests

itself whenever, during an iteration, several x ∈ T determine the same, minimum,

δ value. Equation 4.3 then offers several possible choices for z. The particular z

chosen influences the running mean of the region that it is assigned to. This in turn

influences the δ values calculated for the x ∈ T in the next iteration, and ultimately

affects the final segmentation. This problem is illustrated in Figure 4.16. The second

order dependency manifests itself whenever the chosen z has the same δ value for

several regions that it borders. Once again resolution of the deadlock ultimately

influences the final segmentation (this would be the situation if the centre pixel in

Figure 4.16(d) was the first of the five ‘3’s, with a δ value of 2, to be processed).

4.5.3 Implementation order dependencies

In implementing the SRG algorithm Adams and Bischof utilise a data structure

called the sequentially sorted list (SSL). In their implementation the SSL is a linked

list of pixel addresses, ordered with respect to δ. A pixel can be arbitrarily inserted

into the list in the position prescribed by its δ value. However, only the pixel

25 The symbol δ used in this section does not refer to dilation.
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Figure 4.16: Order dependency of the SRG algorithm. (a) Grey value test image with
four seeds marked (the initial {Ai}). (b) Each x ∈ T is shown with its δ value as a
superscript numeral. (c) Result after 9 iterations. (d) Result after 13 iterations. (e)
Final result assuming that the ‘3’s in (d) are scanned in raster order. (f) Final result
assuming that the ‘3’s in (d) are scanned in anti-raster order.

with the smallest δ value can be removed from the SSL. Effectively, the SSL stores

the points of the set T ordered according to δ. Adams & Bischof note that their

implementation does not update previous entries in the SSL to reflect new differences

from a region whose mean has been updated. They state that“this leads to negligible

difference in the results, but greatly enhanced speed” (Adams & Bischof, 1994, p.

643). As a consequence, in addition to the pixel order dependencies induced by

the SRG algorithm, the SRG implementation is subject to two other pixel order

dependencies. The first order dependency manifests itself during the initial process

of adding the neighbours of the seed regions to the SSL. In particular, if a pixel

borders two or more seed regions it is given a δ value based on its similarity to that

seed region which happens to be first in terms of the order of processing of the image

pixels. Once inserted into the SSL the pixel position is never updated. The second

order dependency manifests itself whenever the neighbours of a newly labelled pixel

are added to the SSL. The order in which the neighbours are scanned can affect the

δ value assigned to each and hence their ordering within the SSL.
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3

3

Figure 4.17: ISRG algorithm applied to the test image in Figure 4.16(a). The unshaded
squares are unresolved ties. Note that the ‘3’s in Figure 4.16(d) have been shared equally
between the top-left and bottom-right regions.

4.6 Improved seeded region growing algorithm

This section proffers an improved seeded region growing algorithm developed by the

author. The algorithm was published in Pattern Recognition Letters: Mehnert &

Jackway (1997). The paper has subsequently been cited in Soille (2003), Hao et al.

(2001), Pitkänen (2001), and Tomori et al. (1999).

The first order dependency in the SRG algorithm is eliminated if all of the pixels

x ∈ T that have the same minimum δ value are processed in parallel. This means

that no pixel can be labelled, and therefore no region means can be updated, until

all other pixels at that priority have been examined. Thus for the situation depicted

in Figure 4.16(d) the ‘3’s (with a δ value of 2) must be assigned labels independently

of one another. Only once all the labels have been determined are the region means

updated. If a pixel cannot be labelled because it is equally similar to two or more

adjacent regions (same δ values)—the situation that gives rise to the second pixel

order dependency of the SRG algorithm—then it is marked as tied and takes no

further part in the region growing process. After all the pixels have been labelled,

the tied pixels are independently re-examined to see whether or not the ties can

be resolved. Any remaining ties can of course be resolved by imposing additional

assignment criteria if required: e.g. assigning the tied pixel to the largest region,

and failing this, assigning it to the region with the larger mean, and so on. How-

ever, this constitutes a post-processing step and is not part of the improved seeded

region growing algorithm. The behaviour of the ISRG algorithm is illustrated in

Figure 4.17. Parallel processing ensures that all pixels of the same priority are pro-

cessed on an equal basis. Consequently the ‘3’s in Figure 4.16(d) are shared equally

between the top-left region and the bottom-right region.



148 Chromatin Segmentation

4.6.1 Implementation of the ISRG

The proposed implementation of the ISRG algorithm utilises an ascending prior-

ity queue (PQ)26, and several LIFO (last-in, first-out) queues. In contrast to the

more familiar LIFO queue, the elements of an ascending priority queue are ordered

from smallest to largest. A new element can be inserted arbitrarily but only the

smallest element can be removed (Tenenbaum & Augenstein, 1986, p. 181). In the

proposed implementation the elements of the PQ are LIFO queues. Each LIFO

queue contains pixels at a specific priority; i.e. with the same δ value. When a new

pixel is inserted into the PQ it is added to the LIFO queue corresponding to the

pixel’s δ value. Instead of removing individual pixels from the PQ, the entire LIFO

queue corresponding to the smallest δ (highest priority) is removed. This permits

the processing of all the pixels at the highest priority at the same time. As each

pixel is removed from the highest priority LIFO queue its label is determined and

inserted into a LIFO queue of labels (LQ), and the pixel is inserted into a LIFO

holding queue (HQ). A pixel’s label is determined by examining its neighbours. If

those neighbours that possess a region label all have the same label then the pixel

is deemed also to have this label. If, however, the pixel is surrounded by neighbours

with several different region labels then the pixel is deemed to have the label of the

neighbour that determines the minimum δ value. In the event of a tie the pixel is

marked as tied and inserted into the priority queue with an infinite (in reality just

a very large) δ value. This guarantees that a second attempt at resolving ties is

made after all other pixels have been labelled. Any pixels that are still tied remain

unclassified (the ties can be resolved as a post-processing step if required). Once

all of the pixels in the highest priority LIFO queue have been processed, they are

labelled. This is done by successively removing a label and a pixel from the LQ

and HQ respectively, and assigning the label to the pixel. Thus all the pixels at the

highest priority are labelled independently. Ideally previous entries in the PQ should

be updated whenever the region means are updated. As a compromise between not

updating any of the of the previous entries (as is the case with the SRG implemen-

tation) and updating all of the entries (computationally expensive) the proposed

implementation does the following. As each pixel is labelled, any of its neighbours

that are either unlabelled or marked as being in the PQ are inserted—once only—

into a LIFO neighbours holding queue (NHQ). After labelling has completed each

pixel is successively removed from the NHQ and inserted into the PQ. Thus a single

pixel can be inserted into the PQ more than once. However, in the event that a pixel

26 Breen & Monro (1994) discuss and evaluate different data structures for implementing a priority
queue.
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Figure 4.18: Where two or more regions abut an arbitrary decision has to be made as
to which region’s border pixel should be flagged as a boundary pixel.

removed from the highest priority LIFO queue—removed from the PQ—already has

a region label then it is not relabelled.

The pseudocode for the proposed implementation is shown in Algorithm 4.

4.6.2 A comment on boundary flagging

The ISRG algorithm produces an image in which each individual region has a unique

numeric label. If desired, for display purposes, it is a relatively straight forward task

to flag a single pixel wide boundary between regions. This can be done either within

the algorithm or as a post-processing step. Unresolved ties are of course natural

candidates for boundary flagging. Where two or more regions abut, however, an

arbitrary decision has to be made as to which region’s border pixel should be flagged

as a boundary pixel (see Figure 4.18). This introduces an order dependency. The

implication of this is that there may be slight discrepancies in the borders produced

by a raster order processing as opposed to an anti-raster order processing.

4.6.3 Implementing a scan-order independent version of the

watershed transform

The classic marker-based versions of the watershed transform (Meyer, 1991; Beucher

& Meyer, 1993) can be seen as a particular case of seeded region growing: the seeds

are the markers and the difference measure δ is simply

δ (x) = g (x) .

Like the SRG algorithm the classic (marker-based) watershed algorithms are scan-

order dependent (Dobrin et al., 1994, p. 215). However, the ISRG algorithm can

be used to implement a scan-order independent version. This involves changing the

definition for DELTA to DELTA = grey value (pixel) and removing “or has the

label IN PRIORITY QUEUE” from the if statement on line 39 of Algorithm 4.

Moreover it is no longer necessary to maintain REGION MEAN []. The behaviour

of this scan-order independent watershed algorithm is illustrated in Figure 4.19
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Algorithm 4 Improved seeded region growing.

{see Table 4.3 for a description of the data structures and labels}

1: assign a unique label to each seed region and initialise REGION MEAN []
2: add the pixels neighbouring the seed regions to the NHQ and label them as

IN QUEUE
3: while the PQ is not empty or the NHQ is not empty do
4: while the NHQ is not empty do
5: remove pixel from the NHQ
6: examine all of its neighbours to find the minimum DELTA
7: insert pixel into the PQ, with a priority equal to the minimum DELTA, and

label it as IN PRIORITY QUEUE
8: end while
9: if the PQ is not empty then

10: remove FQ from the PQ
11: while the FQ is not empty do
12: remove pixel from the FQ
13: if pixel has the label IN PRIORITY QUEUE or the label TIED then
14: examine all of its neighbours that have a region label
15: if they all have the same label then
16: add this label to the LQ
17: else
18: examine all of its neighbours to find the minimum DELTA
19: if there is no tie then
20: add the corresponding region label to the LQ
21: else
22: add TIED to the LQ
23: if pixel is not already labelled TIED then
24: insert it into the PQ with a priority of ∞
25: end if
26: end if
27: end if
28: add pixel to the HQ and label it as IN QUEUE
29: end if
30: end while
31: end if
32: while the HQ is not empty do
33: remove label from the LQ
34: remove pixel from the HQ
35: assign label to pixel
36: if the label is not TIED then
37: update REGION MEAN [label]
38: examine all of the pixel’s neighbours
39: if a neighbour is unlabelled or has the label IN PRIORITY QUEUE then
40: add it to the NHQ and label it as IN QUEUE
41: end if
42: end if
43: end while
44: end while
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Table 4.3: Data structures and labels used in the ISRG.

PQ

Ascending priority queue: list of LIFO queues each of which con-
tains pixels of a particular priority DELTA.

DELTA

Difference (similarity) measure between a pixel and a region that it
neighbours; e.g.

DELTA = |grey value (pixel) −REGION MEAN [j]| ,

where REGION MEAN [j] is an array used to hold the running
mean grey value for the j-th region.

FQ

First (highest priority) queue in the PQ.

NHQ

Neighbours holding queue: used to hold pixels that neighbour one
or more regions.

HQ

Holding queue: used to accumulate pixels removed from the NHQ.

LQ

Labels queue: used to hold region labels corresponding to the pixels
in the HQ.

TIED

Label assigned to a tied pixel.

IN QUEUE

Label assigned to a pixel that is in the HQ or NHQ.

IN PRIORITY QUEUE

Label assigned to a pixel that is in the PQ.
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Figure 4.19: Demonstration of the scan-order independent watershed transform. The
first row shows four rotations of a test image. The test image contains four regions of
constant grey-level: 50, 100, 200, 250. The three regions in the test image with the lowest
intensity are the regional minima. The second row shows the result after applying the
scan-order independent watershed transform (ties are shown in black) using the regional
minima as markers. The third and fourth rows show the result after applying the two
versions of Meyer’s algorithm (implementation is based on the pseudocode in Dobrin et
al. (1994)) using the regional minima as markers.
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4.6.4 Summary and conclusion

The proposed improved seeded region growing algorithm offers the same benefits as

the algorithm proposed by Adams & Bischof (1994) but with the added advantage

of pixel order independence. The algorithm was initially developed in response to

an early attempt by the author to accurately segment the chromatin in images of

cell nuclei. The limited pixel resolution of these images—e.g. Figure. 4.20(a) is 88H

× 85V pixels—and the similarity of adjacent chromatin clumps meant that the SRG

algorithm produced markedly different segmentations for raster order and anti-raster

order processing (see Figure 4.20(c),(d)). In contrast, the proposed ISRG algorithm

produces a consistent segmentation because it is not dependent on the order of pixel

processing (see Figure 4.20(e),(f)). The added complexity of the ISRG algorithm,

as compared to the SRG algorithm, is reflected in increased execution time when

implemented on a computer. As part of this research the SRG algorithm and the

ISRG algorithm were implemented in C on a DEC3000 workstation by the author.

To counter floating point imprecision a threshold difference was defined below which

two δ values are deemed to be the same. The priority queue was implemented using a

binary tree. For a 256×256 8-bit test image and four small seeds, the execution time

for the SRG implementation was 3 seconds whilst that for the ISRG implementation

was 15 seconds. Further optimisation of the ISRG implementation is possible. For

example, according to Breen & Monro (1994), the speed performance of the priority

queue—and hence the ISRG implementation—is improved if a SplayQ data structure

is used.

4.7 A new fast priority queue for watershed seg-

mentation

This section presents a new ascending priority queue implementation developed by

the author that is suitable for implementing the marker-based watershed algorithms

of Meyer (1991). The advantage of the implementation is that it is based on several

static memory arrays and does not involve multiple dynamic memory allocations

and deallocations. This means that the implementation is fast.

Like the ISRG algorithm, the classic marker-based watershed algorithms of Meyer

(1991) (see Appendix B) are based on a priority queue of queues. In the case of the

ISRG algorithm, the elements of the priority queue are LIFO queues, whilst in the

case of the watershed algorithms the elements are FIFO (first-in first-out) queues.
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(a) (b) (c)

(d) (e) (f)

Figure 4.20: Order independence of the ISRG implementation. (a) High resolution
micrograph of the nucleus of a cell. (b) Seed regions (local extrema). (c) SRG imple-
mentation applied to (a) in raster order. (d) SRG implementation applied to (a) in
anti-raster order. A careful comparison with (c) reveals significant differences. (e) ISRG
implementation (boundary/tied pixels shown in white) applied to (a) in raster order. (f)
ISRG implementation applied to (a) in anti-raster order. Minor discrepancies between
(e) and (f) are an artefact of boundary flagging.
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LIFO and FIFO queues are dynamic data structures and as a consequence the prior-

ity queue of queues is itself a dynamic data structure. The implementation of such

data structures in software involves dynamic memory allocation and deallocation.

For example, when a new element is added to a LIFO queue, a block of memory

is allocated to store the element and the memory address (pointer) of the preced-

ing block of memory (holding the preceding element of the queue). The overhead

associated with dynamic memory management (usually handled by the underlying

operating system) incurs a time penalty. For the ISRG and watershed algorithms,

which involve numerous queue operations, this affects execution speed.

The priority queue used in the marker-based watershed algorithms differs from that

used in the ISRG in two respects:

1. the maximum number of elements, i.e. the number of priority levels, in the

priority queue is known a priori (equal to the number of distinct grey-levels in

the input image); and

2. the maximum length of each queue (element) within the priority queue can be

determined a priori (from the grey-level histogram).

Consequently, for the marker-based watershed algorithms it is possible to imple-

ment a priority queue of queues using a statically allocated block of memory, i.e. the

memory is allocated once at the start of processing and deallocated at the end of pro-

cessing thus eliminating the overhead of multiple memory allocations/deallocations.

To process an n-bit grey-scale image with N pixels, static memory to hold the fol-

lowing four arrays is needed:

1. heap[]

An array of length N . Each element of the array can store a pixel address

(pointer). The array is used to hold the elements of the FIFO queues.

2. head[]

An array of length 2n. Each element is a number representing an offset into the

heap[] array. The first element records the position of the first element (head)

of the FIFO queue of priority 0. The second element records the position of

the head of the FIFO queue of priority 1 and so on.

3. tail[]

An array of length 2n. Each element is a number representing an offset into the
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Algorithm 5 Pseudocode for initialising the static memory for the priority queue.

Require: heap[], head[], tail[], frequency[] to be indexed from 0
Require: frequency[] to have been initialised
1: head[0] ← frequency[0]− 1
2: rear[0]←head[0]
3: for i in {1, 2, . . . , 2n − 1} do
4: head[i]← head[i− 1] + frequency[i]
5: rear[i]← head[i]
6: end for
7: highest existing priority ← 0

heap[] array. The first element records the position of the last element (tail)

of the FIFO queue of priority 0. The second element records the position of

the tail of the FIFO queue of priority 1 and so on.

4. frequency[]

An array of length 2n. The first element is a count of the number of pixels

with grey-level 0. The second element is a count of the number of pixels with

grey-level 1 and so on.

The pseudocode for initialising this memory for use as a priority queue is shown in

Algorithm 5. A schematic showing the state of these arrays after initialisation is

shown in Figure 4.21.

As elements are added to the priority queue, the individual FIFO queues are filled

right-to-left rather than left-to-right. The reason for this is that, by definition of the

watershed algorithms, when a FIFO queue corresponding to the highest priority has

been emptied it is suppressed. If, in the future, a pixel of higher priority is added to

the priority queue then its address must be added to the highest priority FIFO queue

remaining in the priority queue. Thus the size of this highest priority FIFO queue

may exceed the size initially allocated for it. However, since the space allocated

to the previously suppressed queues is no longer in use, this highest priority FIFO

queue can safely grow into the unused space. Pseudocode for adding a pixel to and

removing a pixel from the i-th FIFO queue is given in Algorithm 6 and Algorithm 7

respectively. Pseudocode for adding a pixel to and removing a pixel from the priority

queue is given in Algorithm 8 and Algorithm 9 respectively. An implementation in

the C programming language is given in Appendix E.
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Figure 4.21: Schematic of the new priority queue for the watershed transform.

Algorithm 6 Pseudocode for adding pixel address to the i-th FIFO queue.

heap [tail[i]] ← pixel address
tail[i]← tail[i]− 1

Algorithm 7 Pseudocode for removing the next pixel address from the i-th FIFO
queue.

if head[i] = tail[i] then
pixel address← NULL

else
pixel address← heap [head[i]]
head[i]← head[i]− 1

end if

Algorithm 8 Pseudocode for adding pixel address to the priority queue.

Require: highest existing priority, pixel address, pixel priority
i← max (pixel priority, highest existing priority)
add pixel address to the i-th FIFO queue
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Algorithm 9 Pseudocode for removing the next pixel address from the priority
queue.

i← highest existing priority
remove the next pixel address from the i-th FIFO queue
while pixel address = NULL and highest existing priority < 2n do

highest existing priority ← highest existing priority + 1
i← highest existing priority
remove the next pixel address from the i-th FIFO queue

end while

4.8 Summary

This Chapter has:

� Described the various approaches to grey-scale image segmentation published

in the literature including: discontinuity-based methods, similarity-based meth-

ods, local filtering, snakes and balloons, region growing and merging, global

optimisation, and level set methods.

� Described chromatin, the manner in which it is visualised using a light mi-

croscope, and its appearance and structure under the light microscope. The

conclusion is that nuclear chromatin, as visualised by light microscopy, can be

modelled as sets of light and dark blobs arranged in a grey background sap.

Topographically speaking the blobs correspond to hills and depressions.

� Critically reviewed previous approaches to chromatin segmentation. The con-

clusion is that existing methods typically require the specification of one or

more operational parameters—and are thus not robust to changes in, or non-

uniformity of, illumination and staining—, and/or do not produce a segmen-

tation consistent with a human observer’s perception of chromatin particles.

� Presented a new algorithm for chromatin segmentation based on seeded re-

gion growing. The algorithm is, in its preferred embodiment, parameter free.

Moreover the algorithm yields a segmentation consistent with what a human

would perceive to be chromatin particles and areas of clearing. In its preferred

embodiment, the algorithm is based on the watershed transform (a special case

of seeded region growing).

� Critically reviewed the seeded region growing algorithm of Adams & Bischof

(1994). The conclusion is that the algorithm is inherently dependent on the

order of pixel processing.
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� Presented a new improved seeded region growing algorithm that retains the

advantages of the Adams & Bischof (1994) algorithm but is independent of

the order of pixel processing.

� Presented a new implementation of an ascending priority queue for use in im-

plementing the watershed transform (a special case of seeded region growing).

This permits the implementation of a fast watershed transform suitable for

use in automated cytometry where near real-time processing is needed for an

economically viable screening device.

The next chapter deals with the representation and description of segmented chro-

matin particles. This permits the quantitative characterisation of the attributes of

these particles as well as their topographical arrangement within the nucleus.
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Chapter 5
Representation and Description
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The motivation for this chapter is the need to quantita-
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tively characterise the attributes and arrangement of the

dark and/or light chromatin particles produced by the chro-

matin segmentation algorithm presented in the last chap-

ter. To this end the chapter proffers a method for charac-

terising both blob-like and mosaic patterns (texture) in the

plane. The method, called the adjacency graph attribute co-

occurrence matrix (AGACM) method, combines both struc-

tural and statistical/stochastic aspects of texture. The image

under study is first reduced to a geometric adjacency graph

with vertices corresponding to individual regions (objects)—e.g. cells, aggregated

chromatin, watershed regions, flat zones, individual pixels—and edges correspond-
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ing to an adjacency relationship between regions. When the regions are the indi-

vidual pixels of the image then the underlying grid—usually the hexagonal grid,

4-connected square grid, or the 8-connected square grid—serves as the adjacency

graph. When the regions constitute a complete partitioning of the image (see for

example Figure 4.20) then the region adjacency graph (RAG) serves as the adjacency

graph. When the regions are disjoint connected components (see Definition 2.9.5)

then the family of neighbourhood graphs—relative neighbourhood, Delaunay, and

Gabriel—stemming from the Voronoi diagram are suitable candidates for the adja-

cency graph. Next, region attributes—average grey-level, dynamic, area, perimeter,

etc.—are assigned to each vertex of the adjacency graph. The resulting vertex-

weighted adjacency graph constitutes a representation and description of the image

under study. This representation and description in turn facilitates the quantita-

tive description of the underlying pattern. For example it is possible to compute

statistics—mean, variance, etc.—of the number of neighbours each region has, of the

number of neighbours of attribute i each region has, of the shortest distance (graph

or grid) from a region to another region with attribute i and so on. It is also pos-

sible to quantitatively characterise co-occurrence; e.g. the number of times a region

of attribute i is adjacent to a region of attribute j. Further, these co-occurrences

can be summarised in a co-occurrence matrix and summary measures (co-occurrence

matrix features) derived from it. In fact, a co-occurrence matrix (AGACM) can be

defined for each attribute and for k-adjacency; e.g. 2-adjacent regions whose vertices

are joined by a path containing two edges.

The remainder of this chapter is organised as follows. In the next section the notion

of a (geometric) adjacency graph is defined and several such graphs used in image

analysis are described. Section 5.2 reviews the ordinary Voronoi diagram and the

graphs related to the planar Voronoi diagram. These graphs characterise the ad-

jacency relations existing between sets of points in the plane. Section 5.3 reviews

an extension of the planar Voronoi diagram, called the area Voronoi diagram, for

which the generators are areas (regions) rather than points. The Euclidean distance

transform (EDT) is the key to defining the area Voronoi diagram for digital images.

Section 5.4 reviews the distance transform and distance transform algorithms. Sec-

tion 5.5 establishes a new theoretical result concerning the distance transform of a

binary image, where the underlying distance is based on a positive definite quadratic

form, and the erosion of its characteristic function by an elliptic poweroid struc-

turing element. Moreover it is shown that the well-know EDT algorithm of Huang

& Mitchell (1994) is a special case of this result. In addition a new algorithm is

presented for computing the EDT on hexagonal grids. The algorithm is faster and
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less complex than the only other known algorithm devised by Vincent (1989). Sec-

tion 5.6 discusses the extension of the area Voronoi diagram and related graphs to

connected components of a binary digital image. Section 5.7 reviews the notions of

generalised co-occurrence, the grey-level co-occurrence matrix method of Haralick

et al. (1973), and formally defines the AGACM. Section 5.8 presents an overview

of the types of parameters (attributes) that can be measured for image objects.

In particular, the Minkowski functionals are reviewed because they constitute the

basis of any valid measurement. Estimators for two-dimensional binary and grey-

scale images are presented for both the square and hexagonal grids. These include

corrections to the literature as well as new estimators. The issue of dimensionality

of measurements on grey-scale images is also discussed. Dimensional measurements

are robust to changes to image magnification at the time of capture and to changes

in contrast/brightness. Finally, Section 5.9 presents a summary of the chapter.

The material presented in Section 5.5 has been published in the Journal of Math-

ematical Imaging and Vision: Mehnert & Jackway (1999b). The paper has subse-

quently been cited in Talbot & Appleton (2002), Staunton (2001), and Rosenfeld

(2000).

5.1 Adjacency graphs

This section briefly introduces the notion of a (geometric) adjacency graph and

describes several such graphs used in image analysis.

Recall (see Section 2.10) that the vertices of a connected simple graph G = (V, E)

are said to be adjacent if they are joined by an edge. The set of edges E defines an

irreflexive and symmetric binary relation on the set of vertices V . Hereinafter such

a relation is referred to as an adjacency relation, and a connected simple graph is

called an adjacency graph.

Adjacency graphs are used in image analysis to model both the topological connect-

edness of and the geometric structure in the image under study. The grid associated

with a two-dimensional digital image—usually the 4− or 8−connected square grid,

or the 6−connected hexagonal grid (see Section 2.9.1)—describes the connectivity

between the pixels. For an image of finite size, the grid is in fact an adjacency

graph. The vertices of the graph are the grid points and the edges are identically

the grid edges. The edges define the adjacency relation “is connected to” on the

set of vertices (representing pixels). If the image has been completely partitioned

into regions then it is possible to construct another type of adjacency graph called
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the region adjacency graph (RAG) (van der Heijden, 1994, p. 270). The RAG is

constructed by associating a vertex with each region and joining pairs of vertices if

the corresponding regions are direct neighbours (i.e. they abut). The edges define

the adjacency relation “is a direct neighbour of” on the set of vertices (representing

regions). If the image has been partitioned into disjoint regions (i.e. the regions do

not abut) then the usual notion of neighbour or adjacency is not so clear cut. This

motivates the definition of alternative adjacency relations to describe neighbourli-

ness; e.g. “is the nearest neighbour of”. Many such relations have been defined in

the literature for point sets. However, Kirkpatrick & Radke (1985, p. 223) remark

that:

if we insist that the internal structure of a point set be described by a

connected graph, then it is natural to turn to the (Euclidean) minimum

spanning tree (MST). . . as a minimal descriptor.

The MST is one of several graphs—including the Delaunay graph (DG), Gabriel

graph (GG), and the relative neighbourhood graph (RNG)—related to the Voronoi

diagram. As noted by Vincent (1989) these graphs are of interest because:

1. the adjacency relation is not defined in terms of any parameters as is the case,

for example, for k-nearest neighbour graphs;

2. they are all connected and planar1 (for point sets in the plane);

3. they are unique (except for the MST); and

4. they satisfy MST⊆RNG⊆GG⊆DG (Preparata & Shamos, 1985, p. 263).

5.2 The Voronoi diagram and related graphs

This section briefly introduces the Voronoi diagram and several graphs related to it.

The definitions in this section are adapted from Okabe et al. (1992) and Preparata

& Shamos (1985).

The Voronoi diagram is an established tool of computational geometry2. “In a sense,

a Voronoi diagram records everything one would ever want to know about proximity

1 See Definition 2.10.5.
2 Broadly speaking computational geometry “is the study of algorithms for solving geometric

problems on a computer”. The field was formally christened by Michael Shamos in 1978 in his
Ph.D. thesis (cited in O’Rourke (1993, preface)).
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to a set of points (or more general objects)” (O’Rourke, 1993, p. 168). The concept

of the Voronoi diagram is simple: “given a finite set of distinct, isolated points in a

continuous space, we associate all locations in that space with the closest member of

the point set” (Okabe et al., 1992, p. 1). The result is a partitioning of the space into

regions; one region for each point (see Figure 5.1). Formally, the ordinary Voronoi

diagram is defined as follows.

Definition 5.2.1 (ordinary Voronoi diagram). Let P = {p1, . . . , pn} be a set of

points in Rm, where 2 ≤ n <∞, and let d denote the Euclidean metric. The region

defined by

V (pi) = {q ∈ Rm | d (q, pi) < d (q, pj) ∀i �= j}

is called the (ordinary) Voronoi polyhedron associated with the point pi and the set

V = {V (p1) , V (p2) , . . . , V (pn)}

is called the ordinary Voronoi diagram generated by P .

Remark. From the definition of the Voronoi polyhedron V (pi) it is clear that it is

an open set because it does not contain its boundary. Alternatively, one can replace

the < symbol with the ≤ symbol and define the Voronoi polyhedron to be the closed

set:

V (pi) = {q ∈ Rm | d (q, pi) ≤ d (q, pj) ∀i �= j} .

Both definitions are acceptable (Okabe et al., 1992, p. 67).

The Voronoi diagram in R2 is called the planar Voronoi diagram. When the gener-

ating set P consists of at least three points and these points are not collinear, then

it is possible to construct a planar graph, called the Voronoi graph, from the planar

Voronoi diagram by:

1. associating a vertex with each intersection of Voronoi edges;

2. making an arbitrary cut along each of the infinite edges;

3. introducing a dummy vertex beyond the extent of the truncated diagram; and

4. connecting the end point of each cut edge to the dummy vertex with a line

segment.

An example of a Voronoi graph is shown in Figure 5.2.
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Figure 5.1: Ordinary Voronoi diagram in R2. The shaded region is a Voronoi polygon.
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Figure 5.2: Voronoi graph constructed from the Voronoi diagram shown in Figure 5.1.

5.2.1 The Delaunay graph

The Delaunay graph is the (geometric-) dual of the Voronoi graph (Okabe et al.,

1992, p. 101). Formally, the geometric dual of a plane graph is defined as follows

(Wilson, 1985, p. 72).

Definition 5.2.2 ((geometric-) dual graph). Given a plane graph G = (V, E),

its dual graph G∗ is constructed by:

1. choosing a single point in each face3 of G—these constitute the vertices v∗
i of

G∗; and

2. corresponding to each edge e of G, a line is drawn which crosses e (but no

other edge) and joins the vertices v∗
i which lie in the faces adjoining e—these

lines constitute the edges of G∗.

Remark. If G is both plane and connected then G∗ is plane and connected (Wilson,

1985, p. 73).

Figure 5.3 shows the construction of the dual of a graph.

3 A plane graph divides the plane into a number of regions called faces.
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GG
*

Figure 5.3: Constructing the geometric-dual of a plane graph.

The dual graph of the Voronoi diagram is isomorphic to the straight-line dual of the

Voronoi diagram. The straight-line dual is obtained by associating a vertex with each

point pi and joining two vertices if their Voronoi polygons share an edge (Preparata &

Shamos, 1985, p. 208). The Delaunay graph is thus a simple connected planar graph

(Preparata & Shamos, 1985, p. 211). If no four points of the generating set P are

cocircular (non-cocircularity assumption) then the Delaunay graph (defined as the

straight-line dual of the Voronoi diagram) is a triangulation4 called the Delaunay

triangulation (Okabe et al., 1992, p. 89). Otherwise it is called a Delaunay pre-

triangulation because it will contain one or more regions with four or more sides. A

Delaunay graph is shown in Figure 5.4.

5.2.2 Graphs related to the Delaunay triangulation

In the remainder of this section, it is assumed that the generating set P satisfies the

non-cocircularity assumption so that the Delaunay graph is a triangulation. Several

graphs are related to the Delaunay triangulation including the Gabriel graph, relative

neighbourhood graph, and the minimum spanning tree.

4 Given a set of points in the plane, if pairs of points are joined by non-intersecting straight line
segments such that every region internal to the convex hull is a triangle, the result is called a
triangulation (Preparata & Shamos, 1985, p. 189).
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Figure 5.4: The Delaunay graph derived from the Voronoi diagram of Figure 5.1. The
graph is shown superimposed on the Voronoi diagram (broken lines).
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Figure 5.5: Gabriel graph.

The Gabriel graph5 (Gabriel & Sokal, 1969) is defined by associating a vertex with

each point in P and joining pairs of points pi, pj ∈ P by an edge if and only if the

closed disk with diameter pipj, denoted D (pi, pj), contains no other point pk ∈ P

in its interior (see Figure 5.6(a)). A simple algorithm for constructing this graph

is to delete each edge from the Delaunay graph which does not intersect its dual

Voronoi edge (Preparata & Shamos, 1985, p. 263). A Gabriel graph is shown in

Figure 5.5. The edge set of the Gabriel graph is a subset of the edge set of the

Delaunay triangulation.

The relative neighbourhood graph (Toussaint, 1980) is defined such that a pair of

points pi, pj ∈ P are joined by an edge if and only if

d (pi, pj) ≤ min
k(
=i,j)

max {d (pi, pk) , d (pj , pk)} .

This is equivalent to saying that a pair of points pi, pj ∈ P are joined by an edge if

the lune formed by the intersection of two closed disks, one centred at pi and one

5 Gabriel & Sokal (1969, p. 267) describe the underlying adjacency relation as contiguity.
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(b)(a)

Figure 5.6: Gabriel and relative neighbours. (a) Two points are Gabriel neighbours if
no other point is contained in the interior (open shaded region) of their“disk of influence”.
(b) Two points are relative neighbours if no other point is contained in the interior (open
shaded region) of their “lune of influence”.

centred at pj , each of radius equal to the length of pipj, contains no other point

pk ∈ P in its interior (see Figure 5.6(b)). A relative neighbourhood graph is shown

in Figure 5.7. The edge set of the relative neighbourhood graph is a subset of that

of the Gabriel graph.

The minimum spanning tree is defined to be the connected graph with the fewest

number of edges that can be defined on P such that the sum of the lengths of the

edges is the minimum possible. A minimum spanning tree is shown in Figure 5.8.

The edge set of the minimum spanning tree is a subset of the edge set of the relative

neighbourhood graph.

5.2.3 β-skeletons

A pair of points pi, pj ∈ P are considered to be Gabriel neighbours if the interior of

their disk of influence contains no other points pk ∈ P . Similarly, they are considered

to be relative neighbours if their lune of influence contains no other points pk ∈ P .

Kirkpatrick & Radke (1985) have proposed a family of lune-based neighbourhoods

of influence N (pi, pj, β), indexed by the parameter β ∈ R+, that give rise to a family

of graphs they call β-skeletons. This family includes the GG (β = 1) , RNG (β = 2),

and the MST (β →∞).
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Figure 5.7: Relative neighbourhood graph.
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Figure 5.8: Minimum spanning tree.
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5.2.4 A comment on structural stability

Tüceryan & Chorzempa (1991) used Monte Carlo methods to study the structural

stability of the Delaunay triangulation, Gabriel graph, relative neighbourhood graph,

and minimum spanning tree under random positional noise. The Delaunay triangu-

lation was shown to be the least sensitive to such noisy conditions.

5.3 The area Voronoi diagram

“Since the early 1970s the ordinary Voronoi diagram has been extended or gener-

alized in many directions, and those generalized Voronoi diagrams facilitate many

practical applications in various fields” (Okabe et al., 1992, p. 123). One possible

generalisation is to extend the generator from a point to an area. To facilitate this

it is necessary to introduce the concept of the distance between a point and an area

(set).

Definition 5.3.1. Let (E, d) be a metric space (see Definition 2.9.1). The distance

between a point x ∈ E and a non-empty set X ⊆ E is defined

d (x, X) = inf
y∈X

d (x, y) .

Remark. The distance d (x, X) is not a metric because it does not satisfy the prop-

erties given in Definition 2.9.1. However, it plays an important role in the definition

of the Hausdorff metric (Heijmans, 1994a, p. 228). In the setting (Rn, d), where d

is the Euclidean distance, the Hausdorff metric is defined

dH (X, Y ) = sup
z∈E
|d (z, X)− d (z, Y )|

where X and Y are non-empty compact6 subsets of Rn. It is not a metric on the

space Rn but rather, the set of all non-empty compact subsets of Rn. When the two

sets X and Y each consist of a single point the Hausdorff metric coincides with the

Euclidean distance (Serra, 1988d, p. 73).

6 A subset of Rn is compact if and only if it is topologically closed (i.e. it contains its boundary)
and bounded. A subset X of Rn is said to be bounded if there exists a real number L > 0 such
that d (x, y) ≤ L for all x, y ∈ X (Heijmans, 1994a, p. 228). A closed ball with finite radius is
an example of a compact set.
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Figure 5.9: Area Voronoi diagram.

Definition 5.3.2 (area Voronoi diagram). Let A = {A1, A2, . . . , An} where

1 ≤ n <∞ and Ai ∈ P (R2). Assume that the Ai are non-empty connected7 closed

sets and that they are disjoint, i.e. Ai ∩ Aj = ∅ for all i �= j. The set

V (Ai) = {p | d (p, Ai) < d (p, Aj) for all j �= i}

is called the area Voronoi region associated with Ai and the set

V (A) = {V (A1) , V (A2) , . . . , V (An)}

is called the area Voronoi diagram generated by A.

An area Voronoi diagram is shown in Figure 5.9

In the image processing community, the distance d (x, X) is better known in the

guise of the distance transform. Importantly, the distance transform provides the

key to implementing the area Voronoi diagram in the digital image setting.

5.4 The distance transform

This section presents a brief overview of the distance transform and distance trans-

form algorithms. For a comprehensive review of distance transform algorithms, the

7 A set C is said to be disconnected if there exist a pair of topologically open sets A and B such
that (A ∩ C) ∩ (B ∩ C) = ∅. A set is said to be connected if it is not disconnected (Okabe et
al., 1992, p. 20).
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reader is referred to the Ph.D. thesis of Cuisenaire (1999), and more recently to the

papers by Maurer et al. (2003) and Lotufo & Zampirolli (2001).

The distance transform (DT) is an important tool in image processing. Its uses

include:

1. obtaining dilations and erosions of binary images by arbitrarily sized disks

(balls) (Heijmans, 1994a);

2. determining skeletons, skeletons by influence zones, conditional bisectors, and

ultimate erosions (Serra, 1982);

3. constructing shape factors (Danielsson, 1978); and

4. determining neighbourhood graphs for the purpose of studying the clustering

and spatial repartition of image objects (Vincent, 1989; Heijmans, Nacken,

Toet & Vincent, 1992).

Formally, the DT is defined as follows.

Definition 5.4.1 (distance transform). Let (E, d) be a metric space and let

X ⊆ E. The distance transform (DT) is a function DX : E → R that assigns to

each point x ∈ E its shortest distance to the set Xc:

DX (x) = d (x, Xc) .

Remark. In the literature the DT is sometimes defined to be the function x !→
d (x, X). This function is, according to the definition above, the DT of the comple-

ment of X.

The naive implementation of the DT involves computing, for each foreground pixel

in turn, its distance to every background pixel. Execution time is thus proportional

to the product of the number of background pixels and the number of foreground

pixels; i.e. for an image containing n pixels the naive implementation is of O (n2) time

complexity. Rosenfeld & Pfaltz (1966) proposed a two-pass algorithm—consisting of

a forward pass (from left to right and from top to bottom) followed by a backward

pass (from right to left and from bottom to top)—for computing the DT based on

either the city-block or chessboard metrics. The algorithm has O (n) complexity.

The underlying idea of the algorithm is that distances can be propagated locally

from one foreground pixel to its neighbouring foreground pixels. Borgefors (1984)

improved and generalised this algorithm to chamfer metrics (discussed below) and
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Figure 5.10: Propagation masks used in the two-pass sequential DT algorithm. Top
row: masks used in the forward pass on the square and hexagonal grids respectively.
Bottom row: masks used used in the backward pass on the square and hexagonal grids.

extended the algorithm to the hexagonal (also called honeycomb) metric8 on the

hexagonal grid. The distance propagation masks used in the forward and backward

passes for the square and hexagonal grids are shown in Figure 5.10. In the case

of the city-block metric a = 1 and b = +∞. In the case of the chessboard metric

a = 1 and b = 1. As Figure 5.11(a)-(d) shows, these discrete metrics are crude

approximations to the discrete Euclidean metric.

In the case of the square grid a better approximation to the Euclidean metric is

obtained by weighting the distances in the propagation masks to reflect their true

Euclidean distance; e.g. setting a = 1 and b =
√

2. This gives rise to the class

of chamfer-a-b metrics9. Borgefors (1986) proposed the chamfer-3-4 metric (integer

weights) as a good approximation to (three times) the Euclidean distance. Borgefors

(1986) also considered larger propagation masks concluding that the chamfer-5-7-11

metric (integer weights) offers a better approximation than the chamfer-3-4 met-

ric. Moreover, Borgefors (1986) concluded that it is not worth considering larger

propagation masks, e.g. 7 × 7, with integer weights because the added computa-

tional complexity does not warrant the slight improvement in approximation10. The

chamfer-a-b-c masks are shown in Figure 5.12.

8 This metric was first discussed in the literature by Rosenfeld & Pfaltz (1968), who proposed
a parallel algorithm for its implementation, and subsequently by Luczak & Rosenfeld (1976).
Borgefors & Sanniti di Baja (1988) coined the term honeycomb.

9 Theoretical results concerning chamfer metrics, as well as several efficient algorithms for imple-
menting mathematical morphology operations using ball structuring elements defined by the
chamfer metrics, can be found in Nacken (1996).

10 Butt & Maragos (1998) summarise several subsequent approaches to obtaining optimal chamfer
masks, and propose their own novel approach motivated by multi-scale considerations.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.11: Comparison of several discrete metrics. The binary image consists of all
foreground pixels with the exception of a single background pixel located 100 pixels in
from each edge. Quantisation has been applied to the grey-levels so that the closed balls
associated with each metric can be visualised. In addition, each DT has been normalised
so that the horizontal distance from the pixel is the same for each. (a) Euclidean distance.
(b) City-block distance (4-connected square grid). (c) Chessboard distance (8-connected
square grid). (d) Honeycomb distance (6-connected hexagonal grid). (e) Chamfer 3-
4 distance (8-connected square grid). (f) Chamfer 5-7-11 distance (8-connected square
grid). (g) Chamfer 3-5 distance (hexagonal grid). All of the discrete metrics (b)–(g) are
anisotropic.
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Figure 5.12: Larger propagation masks that can be used in the two-pass DT algorithm.
Top row: masks used in the forward pass on the square and hexagonal grids respectively.
Bottom row: masks used used in the backward pass on the square and hexagonal grids
respectively.

In the case of the hexagonal grid, the distances in the elementary propagation masks

already reflect their true Euclidean distance. However, Borgefors (1988, 1989) pro-

posed weighting distances in larger masks to obtain better approximation to the

Euclidean distance thus generalising chamfer metrics to the hexagonal grid. The

hexagonal chamfer-a-b masks are shown in Figure 5.12. Borgefors (1988) proposed

the hexagonal chamfer-3-5 metric (integer weights) as a good approximation to

(three times) Euclidean distance (see Figure 5.11(g)).

DTs based on the city-block, chessboard, honeycomb, and chamfer metrics have

enjoyed popular usage in the image analysis community because they are easily and

efficiently implemented; e.g. using a two-pass sequential algorithm, or the FIFO

queue algorithm of Vincent (1991b). Unfortunately, as Figure 5.11 shows, none of

these metrics are isotropic. Exact Euclidean distance is required for isotropy.

Danielsson (1980) proposed a four-pass sequential algorithm for computing a quasi-

Euclidean DT on the square grid. The algorithm is based on vector propagation.

Each pixel is initially assigned a two-component label: (0, 0) for foreground pixels

and (+∞, +∞) for background pixels. The first component records the relative

x-coordinate of the nearest foreground pixel, whilst the second component records

the relative y-coordinate of the nearest foreground pixel. During the four-pass scan,

these components, rather than distances, are propagated. The algorithm yields al-

most perfect Euclidean distance. However, non-systematic errors occur for certain

configurations of foreground pixels (see Danielsson (1980) and Vincent (1991a) for
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details). The problem is that the algorithm is based on the assumption that the dis-

tance (vector) assigned to any given pixel can be deduced from the vectors assigned

to its neighbouring pixels. Whilst this holds true for the Euclidean metric in the

continuous plane, and for the discrete metrics above, it does not in general hold true

for the Euclidean metric on the discrete grid (Cuisenaire, 1999, p. 16). The problem

is that when the Voronoi region of an area in the continuous plane is restricted to

a discrete grid, the result is not necessarily a single connected component (Vincent,

1991a, p. 521).

Yamada (1984) proposed the first exact EDT algorithm on the square grid. The

algorithm is based on the vector propagation idea of Danielsson (1980) (with some

improvements) but is a parallel rather than sequential algorithm. For a parallel

DT algorithm, in each pass through the image all of the pixels can be processed

independently and in parallel rather than sequentially. However, in contrast to

the sequential DT algorithms, a parallel DT algorithm can only propagate distance

labels at a distance prescribed by the size of the neighbourhood mask. Consequently,

parallel DT algorithms are generally much slower than sequential DT algorithms on

a general purpose computer. In contrast to the DT algorithms already discussed,

the time complexity of parallel DT algorithms is not fixed. Instead the complexity

is proportional to the product of the number of pixels and the largest distance in

the image. Hence parallel DT algorithms are of O
(
n

3
2

)
complexity (Cuisenaire &

Macq, 1999; Maurer et al., 2003).

Vincent (1991a) proposed the first sequential algorithm for computing the exact

EDT. The algorithm can be implemented on both square and hexagonal grids. Hence

it is also the first exact EDT algorithm for the hexagonal grid. The algorithm is

based on the idea of ordered propagation, as opposed to raster/anti-raster propaga-

tion. The algorithm propagates chains—data structures encoding the boundaries of

the object pixels—in the image using a set of rewriting rules. Like the algorithms

of Danielsson (1980) and Yamada (1984), vector information rather than distance is

propagated. The algorithm is more efficient than that of Yamada (1984) because it

does not require multiple complete scans of the image pixels. Its execution time is

highly dependent on the image content and thus its time complexity lies somewhere

between O (n) and O
(
n

3
2

)
. Indeed, Vincent (1991a, p. 524) concludes, experimen-

tally, that his algorithm runs in approximately half the time of the quasi-EDT of

Danielsson (1980).
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Shih & Mitchell (1992) devised an exact EDT algorithm based on grey-scale ero-

sion by an inverted conical structuring element11. The algorithm is discussed in

detail in the next section. In summary the algorithm is based on a complex dila-

tion/supremum decomposition of the (infinitely) large conical structuring element

into smaller 3×3 structuring elements. The resulting algorithm requires the compu-

tation of m(m + 1)/2 erosions by 3× 3 structuring elements, where m is the largest

distance in the image (m is of the order n
1
2 ). Each erosion involves a pass through

all n pixels, either in parallel or sequentially, and thus the resulting algorithm is of

O (n2) complexity.

Huang & Mitchell (1994) adopted the approach of Shih & Mitchell (1992) but in-

stead devised an exact algorithm for computing squared Euclidean distance based

on erosion by an inverted elliptic paraboloid. This structuring element has a simple

dilation decomposition into smaller 3× 3 structuring elements. The resulting algo-

rithm requires the computation of m erosions, where m is the largest distance in the

image. The algorithm is thus of O
(
n

3
2

)
complexity. The algorithm is discussed in

detail in the next section.

Breu et al. (1995) devised the first O (n) algorithm for computing the exact EDT on

the square grid. The algorithm is based on the idea that the EDT can be obtained as

a by-product of the generation of the Voronoi diagram in the Euclidean plane. Breu

et al. show that the Voronoi diagram of the centres (grid points) of the foreground

pixels can be constructed in linear time because of the regular arrangement of the

grid points. Their algorithm directly constructs the intersection of the Voronoi

diagram of the foreground pixels with each row of the image. This is accomplished

in two row-wise passes through the image. At the end of the two passes, each

pixel has been assigned the identity (location) of the closest foreground pixel. The

algorithm then computes the EDT from this image.

Mehnert & Jackway (1999b) proved an equivalence between the distance transform

of a binary image, where the underlying distance is based on a positive definite

quadratic form, and the erosion of its characteristic function by an elliptic poweroid

structuring element (this is presented in the next section). The algorithms devised

by Shih & Mitchell (1992) and Huang & Mitchell (1994) are particular cases of this

result. In addition Mehnert & Jackway (1999b) proposed a method for computing

the exact EDT on the hexagonal grid based on first embedding the image in a

rectangular grid and then applying the algorithm of Huang & Mitchell (1994) with

11 The idea was first proposed by Sternberg (1986), although in its dual form; i.e. as grey-scale
dilation by a sufficiently large conical structuring element.
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appropriate aspect ratio correction. These results are discussed in detail in the next

section.

Cuisenaire & Macq (1999) proposed the first, apparently, O (n) algorithm for com-

puting the exact EDT based on ordered propagation. They only verified this time

complexity experimentally. The algorithm comprises two steps. In the first step

an approximate EDT is produced using an ordered propagation scheme (the result

is similar to that produced by the algorithm of Danielsson (1980)). In the second

step the exact EDT is obtained by considering a sequence of larger neighbourhoods

restricted to the boundaries of the Voronoi regions. The algorithm does not readily

extend to rectangular and hexagonal grids.

Lotufo & Zampirolli (2001) proposed a faster implementation of the algorithm of

Huang & Mitchell (1994) based on the further decomposition of each 3×3 structur-

ing element into four one-dimensional structuring elements: two 1 × 2 structuring

elements and two 2×1 structuring elements. In addition Lotufo & Zampirolli (2001)

implement the directional erosions using fast propagation algorithms based on FIFO

queues. They claim the algorithm is faster than the linear time algorithm proposed

by Cuisenaire & Macq (1999).

Maurer et al. (2003) recently proposed an O (n) algorithm for computing the exact

EDT (the algorithm actually produces squared distances). The algorithm, like that

of Breu et al. (1995), is based on the idea that the EDT can be computed as a

by-product of the generation of the Voronoi diagram. However, in contrast to the

algorithm of Breu et al. (1995), squared Euclidean distance is computed directly

rather than from the “closest foreground pixel” image. In addition, this algorithm is

applicable to both square and rectangular pixels.

Although several exact EDT algorithms have now been devised for the square grid—

including the parallel algorithms of Yamada (1984); Chen & Chuang (1994); Em-

brechts & Roose (1996) and the sequential algorithms of Vincent (1991a); Paglieroni

(1992); Mullikin (1992); Ragnemalm (1992); Saito & Toriwaki (1994); Breu et al.

(1995); Hirata (1996); Kimmel et al. (1996); Eggers (1998); Guan & Ma (1998);

Cuisenaire (1997); Cuisenaire & Macq (1999); Lotufo & Zampirolli (2001); Maurer

et al. (2003)—, the algorithms of Vincent (1991a) and Mehnert & Jackway (1999b)

remain the only ones reported in the literature that operate on the hexagonal grid.

The algorithm of Mehnert & Jackway (1999b) has two major advantages over that

of Vincent (1991a): (i) simplicity and (ii) suitability for hardware implementation

using a pipeline architecture (because it is based on the the algorithm of Huang &

Mitchell (1994)). The algorithm is based on the idea of first embedding the hexag-
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onal grid image in a rectangular grid and then applying the algorithm of Huang &

Mitchell (1994) with the appropriate aspect ratio correction. Using the fast imple-

mentation of Huang and Mitchell’s algorithm devised by Lotufo & Zampirolli (2001)

leads to a highly efficient serial implementation. An O (n) exact EDT should also be

possible by replacing Huang and Mitchell’s algorithm with the anisotropic version

of the recent algorithm of Maurer et al. (2003). The material in Mehnert & Jackway

(1999b) is presented in the next section.

5.5 Computing the exact Euclidean distance trans-

form on rectangular and hexagonal grids

In this section a new result is proved establishing an equivalence between the dis-

tance transform of a binary image, where the underlying distance is based on a

positive definite quadratic form, and the erosion of its characteristic function by an

elliptic poweroid12 structuring element. The well-known algorithms devised by Shih

& Mitchell (1992) and Huang & Mitchell (1994), for calculating the exact Euclidean

distance transform (EDT) of a binary digital image manifested on a square grid, are

particular cases of this result. The former algorithm uses erosion by a circular cone

to calculate the EDT whilst the latter uses erosion by an elliptic paraboloid (which

allows for pixel aspect ratio correction) to calculate the square of the EDT. The

algorithm of Huang & Mitchell (1994) is arguably the better of the two because:

(i) the structuring element can be decomposed into a sequence of dilations by 3× 3

structuring elements (a similar decomposition is not possible for the circular cone)

thus reducing the complexity of the erosion, and (ii) the algorithm only requires in-

teger arithmetic (it produces squared distance). The algorithm is amenable to both

hardware implementation using a pipeline architecture and efficient implementation

on serial machines. Unfortunately the algorithm does not directly transpose to, nor

has a corresponding analogue on, the hexagonal grid (the same is also true for the

algorithm of Shih & Mitchell (1992)). In this section, however, it is shown that if

the hexagonal grid image is embedded in a rectangular grid then the algorithm of

12 The expression (negative) elliptic poweroid was coined by Jackway (1995) to describe the

parametrised family of functions gσ : Rn → R defined gσ (x) = − |σ|
(√

xTAx/ |σ|
)α

where
α > 0, σ �= 0, and A is a symmetric positive definite matrix. The expression is used herein to
mean the wider family for which A need only be positive definite (i.e. not necessarily symmet-
ric).
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Huang & Mitchell (1994) can be applied, with aspect ratio correction, to obtain the

exact EDT13 on the hexagonal grid.

The material in this section was published in the Journal of Mathematical Imaging

and Vision: Mehnert & Jackway (1999b). The paper has since been cited in Talbot

& Appleton (2002), Staunton (2001), and Rosenfeld (2000).

5.5.1 The hexagonal grid versus the square grid

The image processing community has tended to favour the use of the square grid

over the hexagonal grid because of the predominance of bit-mapped raster digitising

and display devices. The hexagonal grid is, however, superior to the square grid for

several reasons (Serra & Laÿ, 1985):

1. improved compression of Euclidean information;

2. better approximation of Euclidean isotropy;

3. the elementary neighbourhood comprises fewer elements (seven as opposed to

nine for the 8-connected square grid); and

4. for homotopy problems there is no ambiguity of connectivity (see Figure 5.13)

Borgefors (1989, p. 97) states that:

The hexagonal grid is not very common. However, for some applications

it is preferable to the square grid.. . . Natural scenes, which mostly consist

of rounded shapes, are better represented on the hexagonal grid than on

the square one, especially in low resolution. In the hexagonal grid all six

neighbors to a pixel are equally connected and have equal distance to

the central pixel. Thus the annoying 4-neighbor/8-neighbor problem in

the square grid does not occur.

In lieu of a means of acquiring a digital image on a hexagonal grid it is possible to

convert square grid images to the hexagonal grid. Serra & Laÿ (1985), for example,

have proposed a simple conversion algorithm that produces nearly identical results

for convolution, and is also satisfactory for increasing or homotopic transformations.

13 The algorithm generates squared distance. Therefore, if desired, to obtain actual distance it is
necessary to take the square root of each squared (integer) distance. This can of course be done
using a lookup table.
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Figure 5.13: Ambiguity of connectivity on the square grid. (a) For pixels arranged
in a hexagonal pattern both foreground (grey pixels) and background have the same
connectivity. (b) For pixels arranged in a square pattern, the foreground and background
cannot have the same connectivity. If both the foreground and background are assumed to
be 8-connected in the example, then paradoxically the hole in the centre of the “diamond”
(grey pixels) must be connected to the background surrounding the diamond. To resolve
this ambiguity it is usual to assign opposite types of connectivity to the foreground
(objects(s) of interest) and background pixels: e.g. 8-connectivity for the foreground and
4-connectivity for the background (Rosenfeld & Kak, 1981, p. 207).

5.5.2 An equivalence between grey-scale erosion and dis-

tance transformation

Let X be an arbitrary subset of Rn (not necessarily topologically open or closed).

Let B(λ) be a ball in Rn, centred at the origin, of radius λ ≥ 0. When d(x, y) is the

Euclidean distance then the set of points Xλ = {x | DX(x) > λ} is identically the

binary erosion of X by the ball B(λ), i.e. Xλ = X � B(λ) (Serra, 1988d; Preteux

& Merlet, 1991). In R2 it is easy to see that if these balls (disks) are stacked atop

one another, for increasing λ, the result is a cone (see the isolines of Figure 5.18(b)).

Indeed, Shih & Mitchell (1992) realised that if the set X ⊆ Z2 is represented as a

function f(x) that has the value +∞ for x ∈ X and 0 otherwise, then the EDT of

X is identically the grey-scale erosion of f by the cone g(x) = −
√

xTx, i.e. DX(x) =

(f � g) (x). More recently, Huang & Mitchell (1994) found that if f is instead eroded

by a circular paraboloid h(x) = −xTx then the result is identically the square of

the EDT of X. Both of these results are in fact particular cases of a more general

relationship that exists between DTs based on positive definite quadratic forms

(Johnson & Wichern, 1988) and erosion by elliptic poweroid structuring elements

(see Figure 5.14). The relationship and its proof follow.
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Proposition 5.5.1. Let X ∈ P (Rn) and f : Rn → R be its characteristic function14

defined

f (x) =

{
∞ if x ∈ X

0 otherwise.

Let g : Rn → R be the elliptic poweroid defined

g (x) = −
(
xTAx

)α
2

where A is an n× n positive definite matrix and α ∈ R+. If

d (x, y) =

√
(x− y)TA (x− y)

then

(f � g) (x) = [DX (x)]α .

Proof. Consider the LHS:

(f � g) (x) =
∧

y∈Rn

{f (y)− g (x− y)}

=
∧
{{f (y)− g (x− y) | y ∈ X} , {f (y)− g (x− y) | y ∈ Xc}}

=
∧{

{∞ | y ∈ X} ,
{[

(x− y)TA (x− y)
]α

2 | y ∈ Xc

}}
=

∧
y∈Xc

[
(x− y)TA (x− y)

]α
2
.

Consider the RHS:

[DX (x)]α = [d (x, Xc)]α

=

[ ∧
y∈Xc

d (x, y)

]α

=

[ ∧
y∈Xc

√
(x− y)TA (x− y)

]α

=
∧

y∈Xc

[
(x− y)TA (x− y)

]α
2
.

Hence (f � g) (x) = [DX (x)]α.

14 This definition of the characteristic function differs slightly from that used in real analysis. In
real analysis the characteristic function takes on the value 1, rather than∞, for x ∈ X (DePree
& Swartz, 1988, p. 60).
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Figure 5.14: Examples of elliptic poweroids g(x) = −
(
xTAx

)α
2 in R2. (a) Inverted

circular cone: α = 1 and A =
[

1 0
0 1

]
. (b) Inverted elliptic paraboloid: α = 2 and

A =
[

1 0.25
0.25 3

]
.

Remarks.

1. The proposition still holds true when Rn is replaced by Zn.

2. When A is the identity matrix, n = 2, and α = 1 then g is an inverted

circular cone (see Figure 5.14), d (x, y) =
√

(x1 − y1)
2 + (x2 − y2)

2 (Euclidean

distance), DX is the EDT, and (f � g) (x) = DX (x). This is the basis of the

EDT algorithm of Shih & Mitchell (1992).

3. When A =

[
m2 0

0 n2

]
, where m, n ∈ R, n = 2, and α = 2 then g is an

inverted elliptic paraboloid, d (x, y) =
√

[m (x1 − y1)]
2 + [n (x2 − y2)]

2, and

(f � g) (x) = [DX (x)]2. If m = n = 1 then g is an inverted circular paraboloid

and DX is the EDT of X. This is the basis of the EDT algorithm of Huang &

Mitchell (1994).

5.5.3 The algorithm of Huang & Mitchell

The EDT algorithms proposed by both Shih & Mitchell (1992) and Huang & Mitchell

(1994) employ structuring element decomposition (Shih & Mitchell, 1991) to reduce
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Algorithm 10 The EDT algorithm of Huang & Mitchell (1994) (rectangular grid).

1: Convert the input binary image to a grey-scale image by mapping each object
pixel (usually binary 1) to positive infinity (just a very large value) and each
background pixel (usually binary 0) to zero.

2: Set i = 1 (iteration counter).
3: Erode by the structuring element (origin at centre):

gi =

⎡⎣ −2(m2 + n2)i + m2 + n2 −2n2i + n2 −2(m2 + n2)i + m2 + n2

−2m2i + m2 0 −2m2i + m2

−2(m2 + n2)i + m2 + n2 −2n2i + n2 −2(m2 + n2)i + m2 + n2

⎤⎦
where m is the horizontal grid spacing and n is the vertical grid spacing (for
square pixels m = n = 1).

4: If the image has changed then increment i and go to step 3.
5: Replace each pixel with its square root (optional).

the complexity of the erosion by the circular cone or paraboloid, respectively, to a set

of erosions by 3× 3 structuring elements. Unfortunately in the case of the circular

cone, a complex supremum and dilation decomposition is needed (Shih & Mitchell,

1992). However, in the case of the circular paraboloid, and more generally the

elliptic paraboloid, a simple dilation decomposition is possible. This decomposition

is the basis of the algorithm by Huang & Mitchell (1994). The algorithm is shown

in Algorithm 10.

The algorithm by Huang & Mitchell (1994) works because on the rectangular grid

the elliptic paraboloid g(x) = −xTAx, for A defined in item 3 of the last remarks,

has the dilation decomposition:

g =
⊕

i

gi.

Moreover to generate [DX(x)]2 it is necessary only to erode by an elliptic paraboloid

of sufficient size (hence the algorithm iterates until no change). For example, con-

sider the binary image X depicted in Figure 5.15. If m = n = 1 then it is clear that

the domain of the circular paraboloid structuring element needed to calculate the

EDT of X is a disk equal in size to the largest disk contained wholly within X.

Huang & Mitchell (1994) prove that the pixels (distance values) that change in a

given iteration must be one of the eight neighbours of the pixels that changed in the

previous iteration. This leads to a highly efficient implementation of their algorithm

on a serial machine. The implementation is akin to the propagation algorithm

devised by Vincent (1991a).
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(a)

Figure 5.15: The domain of the circular paraboloid structuring element needed to
calculate the Euclidean distance transform of the set X is a disk equal in size to the
largest disk contained wholly within X .

5.5.4 Adaptation to the hexagonal grid

The corner stone of the algorithm by Huang & Mitchell (1994) is Pythagoras’s

theorem for right-angled triangles. This explains the formulation of each 3 × 3

structuring element gi—e.g. a11 = a12 +a21—and the reason the algorithm produces

squared Euclidean distance. The square of the Euclidean distance between two

points p = (x1, y1) and q = (x2, y2) is given by

d2(p, q) = (x1 − x2)
2 + (y1 − y2)

2 .

For both the square and hexagonal grids the difference Δy = y1 − y2 is always an

integer multiple of the vertical spacing of the respective grid. On the square grid

the difference Δx = x1− x2 is equal to an integer multiple of the horizontal spacing

(which is the same as the vertical spacing) of the square grid. Consequently it is

possible to propagate Euclidean distance on the square grid using the elementary 3×
3 square neighbourhood as Huang & Mitchell (1994) have shown. On the hexagonal

grid, however, Δx is equal to an integer multiple of half the horizontal spacing.

As a result the elementary hexagonal neighbourhood does not have sufficient point

density to be able to propagate Euclidean distance. The solution is to increase the

horizontal point density of the hexagonal grid by inserting a new point between

every pair of points in a row as shown in Figure 5.16 to form a rectangular grid.

Each new point (pixel) is labelled as foreground (binary 1). This scheme ensures
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Algorithm 11 Calculation of the exact EDT on the hexagonal grid.

1: Convert the input hexagonal grid image to a rectangular grid image by adding a
foreground pixel (binary 1) between each pair of pixels in a row. The rectangular
grid image will therefore have as many rows as the hexagonal grid image but
twice as many columns.

2: Apply the algorithm of Huang & Mitchell (1994) described in Section 5.5.3 with
m = b/

√
3 and n = b.

3: Convert the rectangular grid distance map to a hexagonal grid distance map by
omitting each distance value corresponding to a pixel added in step 1.

(a) (b)

Figure 5.16: Embedding a hexagonal grid image into a rectangular grid. (a) Hexagonal
grid image. (b) Rectangular grid image formed from (a) by adding a foreground pixel
between each pair of points in a row. Note that the transformation guarantees that the
only background points are those corresponding to the original hexagonal grid.

that the only background points on the rectangular grid are those corresponding to

the hexagonal grid. The algorithm of Huang & Mitchell (1994) can now be applied

with m = a/2 and n = b where a and b are the horizontal and vertical spacing,

respectively, of the hexagonal grid15. The EDT on the hexagonal grid is obtained

by simply discarding the distance values generated for the pixels inserted into the

hexagonal grid to form the rectangular grid. The proposed algorithm is shown in

Algorithm 11. The algorithm is illustrated in Figure 5.17.

15 For the regular hexagonal grid a = 2b/
√

3.
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(a) (b)

Figure 5.17: New algorithm for computing the exact Euclidean distance transform
(EDT) on the hexagonal grid. (a) Binary image manifested on the hexagonal grid. (b)
EDT of (a) generated by the new algorithm.

5.5.4.1 A comment on integer arithmetic

If b =
√

3 in step 2 then m2 = 1 and n2 = 3 and therefore the successive erosions

by gi require only integer arithmetic. Hence given a binary image manifested on

a hexagonal grid with vertical spacing b′ (which implies a horizontal spacing of

a′ = 2b′/
√

3) the actual distance map can be recovered simply by multiplying entries

by b′/
√

3.

5.6 Skeleton by influence zones and perceptual

graphs

This section discusses the generalisation of the area Voronoi diagram, the Delaunay

graph, and the Gabriel graph to connected components Ai ∈ P (Z2) of a binary

image.

The definition of the area Voronoi diagram, Definition 5.3.2, readily extends to con-

nected components Ai ∈ P (Z2). In image processing the Voronoi region associated



192 Representation and Description

with a connected component Ai is called an influence zone (IZ). An IZ is defined as

follows.

Definition 5.6.1 (influence zone). Let (Z2, d) be a metric space. Let X ∈ P (Z2)

be a binary image containing n ≥ 1 disjoint connected components A1, A2, . . . , An;

i.e. X =

n⋃
i=1

Ai and Ai ∩Aj = ∅ for all i �= j. The set

IZ (Ai) = {p | d (p, Ai) < d (p, Aj) for all j �= i}

is called the influence zone associated with the connected component Ai.

A simple algorithm for computing the set of influence zones is to compute the wa-

tershed transform (see Appendix B) of the distance transform of Xc using the the

connected components as markers (these correspond to the regional minima (see

Definition 4.4.1) of the distance transform). Each catchment basin defines an in-

fluence zone. The collective boundaries of the influence zones (the watersheds) is

called the skeleton by influence zones (SKIZ) of X. The algorithm is illustrated in

Figure 5.18. The RAG constructed on the set of influence zones generalises the idea

of the Delaunay graph (see Figure 5.19).

The definition of the Gabriel graph can also be extended to connected components

of a binary image (Vincent, 1989, p. 374). In image processing this graph is called

the perceptual graph (Meyer, 1982). It is defined as follows.

Definition 5.6.2 (perceptual graph). Let (Z2, d) be a metric space. Let X ∈
P (Z2) be a binary image containing n ≥ 1 disjoint connected components A1, A2, . . . ,

An; i.e. X =

n⋃
i=1

Ai and Ai∩Aj = ∅ for all i �= j. The perceptual graph is constructed

by associating a vertex with each connected component, v1 with A1, v2 with A2 etc.,

and joining a pair of vertices, (vi, vj) by an edge if and only if there exist two points

p ∈ Ai and q ∈ Aj such that

∀r ∈ X \ {p, q} , r /∈ D (p, q) ,

where D (p, q) is the closed disk with diameter pq.

Meyer (1988; 1989) proposed a general method for constructing the perceptual graph

from the distance transform of Xc that is valid for any type of digital grid and for

all types of distance transform. The method is based on the detection of saddle
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(a) (b)

(c)

Figure 5.18: Skeleton by influence zones (SKIZ). (a) The EDT of the background
between the (digitised) points shown in Figure 5.1. (b) Isolines of the EDT (compare
this with the painting at the beginning of the chapter). (c) SKIZ: watersheds of the EDT
using the regional minima as markers.

zones in the distance transform and then following downstream paths from each to

a regional minimum. The reader is referred to Meyer (1989) for further details.

Meyer (1989) in fact devised a general methodology and several algorithms for con-

structing various types of skeleton and related structures—including the SKIZ and

the perceptual graph—from binary and grey-scale digital images manifested on any

type of grid and for all types of distance transforms.

5.7 The Adjacency Graph Attribute Co-occurrence

Matrix

This section introduces the adjacency graph attribute co-occurrence matrix (AGACM).

Features derived from this matrix can be used to quantitatively characterise both
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(a) (b)

Figure 5.19: Generalised Delaunay graph. (a) SKIZ of the segmented chromatin par-
ticles shown in Figure 4.13(e). (b) Region adjacency graph (RAG). Note: the influence
zones of the particles were clipped to the nuclear mask before determining the RAG (see
Appendix D for the DImPAL program written to produce this graph).

blob-like and mosaic patterns (texture) in the plane. The AGACM method com-

bines both structural and statistical/stochastic aspects of texture. The AGACM is

a generalisation of the well-known grey-level co-occurrence matrix (GLCM) devised

by Haralick et al. (1973). The GLCM is a matrix of joint probability estimates.

The element in row i and column j is an estimate of the probability that a pair of

pixels, satisfying a particular distance or adjacency relation (co-occurrence), have

grey-value i− 1 and grey-value j − 1 respectively. Similarly, the AGACM is a ma-

trix of joint probability estimates. However, the AGACM is defined in terms of

generalised co-occurrence which is described by Haralick (1979, p. 802) as follows:

To define the concept of generalized cooccurrence, it is necessary to first

decompose an image into its primitives. Let Q be the set of all primitives

on the image. Then we need to measure primitive properties such as

mean gray tone, variance of gray tones, region, size, shape, etc. Let

T be the set of primitive properties and f be a function assigning to

each primitive in Q a property of T . Finally, we need to specify a spatial

relation between primitives such as distance or adjacency. Let S ⊆ Q×Q

be the binary relation pairing all primitives which satisfy the spatial

relation. The generalized cooccurrence matrix P is defined by:

P (t1, t2) =
# {(q1, q2) ∈ S | f (q1) = t1 and f (q2) = t2}

#S
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P (t1, t2) is just the relative frequency with which two primitives occur

with specified spatial relationship in the image, one primitive having

property t1 and the other primitive having property t2.

Specifically, the AGACM is a co-occurrence matrix defined on an adjacency graph.

The basic idea was first proposed by Toriwaki & Yokoi (1988). They extended

the definitions of Delaunay, Gabriel, and relative neighbours to disjoint connected

components of a two-dimensional digital image (they considered only the square grid

and the chessboard and city-block metrics). They proposed using these to define

generalised co-occurrence matrices. Furthermore they surmised that such matrices

could be used to quantitatively characterise the texture in a two-dimensional grey-

scale image. However, they did not address the manner in which texture primitives

might be extracted, stating only that it is necessary to “derive a suitable neighbor

graph from an input picture”.

5.7.1 The grey-level co-occurrence matrix

Only a very brief overview of the GLCM is given here. For a comprehensive review

of the GLCM method and of co-occurrence-based texture methods in general, the

reader is referred to the Ph.D. thesis of Walker (1997).

A very simple way to quantitatively characterise the texture of a grey-scale im-

age is to calculate moments of its grey-level histogram. An obvious limitation of

this approach is that it fails to take into account any spatial, i.e. second-order, in-

teractions between pixels comprising the texture. “One way to bring this type of

information into the texture-analysis process is to consider not only the distribution

of intensities, but also the positions of pixels with equal or nearly equal intensity

values” (Gonzalez & Woods, 1992, p. 508). This is the basis of the well known

GLCM method. The GLCM is a square matrix C constructed such that element

cij is the relative frequency with which a pixel of grey-level i − 1 occurs at a fixed

distance and direction from a pixel of grey-level j − 1. In other words, given a

fixed distance d and a fixed angle θ, element cij is an estimate of the joint prob-

ability p (i, j |d, θ ). Usually no distinction is made between opposite directions so

that p (i, j |d, θ ) = p (i, j |d, θ + π ) and p (i, j |d, θ ) = p (j, i |d, θ ), and hence C is

symmetric; i.e. cij = cji. The GLCM is thus an estimate of a discrete probability

density function (distribution). Classically, scalar parameters associated with this

distribution are used to quantitatively characterise the texture of the image in the

region over which the GLCM was computed. Some of the more commonly used
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Table 5.1: Commonly used GLCM features (Walker, 1997, p. 47).

Uniformity or energy
∑

i

∑
j

c2
ij

Entropy −
∑

i

∑
j

cij log cij

Homogeneity
∑

i

∑
j

1
1+(i−j)2

cij

Inertia
∑

i

∑
j

(i− j)2 cij

Correlation −
∑

i

∑
j

(i− μ) (j − μ)

σ2
cij

Shade
∑

i

∑
j

(i + j − 2μ)3 cij

Prominence
∑

i

∑
j

(i + j − 2μ)4 cij

Variance
∑

i

∑
j

(i− μ)2 cij

where μ =
∑

i

i
∑

j

cij =
∑

j

j
∑

i

cij and

σ2 =
∑

i

(i− μ)2
∑

j

cij =
∑

j

(j − μ)2
∑

i

cij .

features are listed in Table 5.1. Given that the size of the GLCM is dependent on

the range of grey-levels present in the image, in practice the grey-levels are usually

requantised to yield a more manageable matrix.

5.7.2 The adjacency graph attribute co-occurrence matrix

To compute a GLCM both a fixed distance and angle (i.e. a displacement vector)

must be specified. The choice of angle is of course constrained by the underlying

grid; e.g. on the (8-connected) square grid θ is typically taken to be one of 0◦, 45◦,

90◦ or 135◦. The choice of distance, too, presupposes the existence of a discrete

metric. Recall (see Section 2.9.1) that the underlying grid induces a metric: city-

block for the 4-connected grid, chessboard for the 8-connected grid, and honeycomb

for the hexagonal grid. Recall also that for a digital image of finite size, the grid

is in fact an adjacency graph. An image can thus be represented as a grey-scale

graph; i.e. an adjacency graph with real or integer vertex values. In addition, the
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regularity of the underlying grid makes it possible to assign a direction label—one of

4 directions for the 4-connected square grid, 8 directions for the 8-connected square

grid, and 6 directions for the 6-connected hexagonal grid—to each of the edges of

this graph.

Given that the GLCM is effectively nothing more than a co-occurrence matrix de-

fined on a grey-scale graph, it follows that it is possible to define such a matrix

for other types of grey-scale graph. In the case of a two-dimensional digital im-

age two obvious possibilities arise. Firstly, if the image has been segmented into

a complete mosaic of regions—e.g. labelled flat zones, or watershed regions—then

it is possible to construct a grey-scale graph from the RAG by simply assigning a

region attribute—e.g. area, volume, mean grey-value—to each vertex of the RAG.

Secondly, if the image has been segmented into disjoint regions (e.g. condensed chro-

matin particles in the nucleus of a cell) then it is possible to construct a grey-scale

graph from a neighbourhood graph—e.g. Delaunay graph, perceptual graph—by

once again assigning a region attribute to each vertex of the graph. More generally,

for any vertex-weighted adjacency graph (grey-scale graph) it is possible to construct

a co-occurrence matrix. This leads to the following definition of the adjacency graph

attribute co-occurrence matrix (AGACM) .

Definition 5.7.1. Let k ∈ N. Let f |G be a grey-scale graph (see Definition 2.10.8)

with grey value set T . Let T ′ = {0, . . . , m} represent the quantisation of T into

m + 1 levels (any finite set of m + 1 elements is isomorphic to this set) and let f̂ |G
denote the corresponding quantised grey-scale graph. Let Ak be the m×m matrix

defined such that entry aij is equal to the number of times (frequency) that a pair

of vertices v, w ∈ V (G), such that f̂ (v) = i − 1 and f̂ (w) = j − 1, are k-adjacent;

i.e. d (v, w) = k (see Proposition 2.10.6). Let Ck be the matrix formed by dividing

every element of Ak by the total number of k-adjacent pairs. The matrix Ck is

called the adjacency graph attribute co-occurrence matrix (AGACM).

Remarks.

1. An AGACM can be defined for any adjacency graph including neighbourhood

graphs associated with regions in three or more dimensions.

2. Once an AGACM has been constructed it can be treated as though it were a

GLCM and hence the usual GLCM features can be computed from it.

3. To find the k-adjacent neighbours of a given vertex v using only graph dilation

(see Definition 2.10.7):
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Table 5.2: Examples of planar grey-scale graphs (adjacency graph + attribute) for
which an adjacency graph attribute co-occurrence matrix can be defined.

Objects/regions Adjacency graph Attributes

pixels grid; e.g. 4−or
8-connected square grid,
6-connected hexagonal
grid

grey value

mosaic of regions;
e.g. flat zones, watershed
regions

region adjacency graph grey-value statistics,
Minkowski functionals,
number of neighbours,
statistics of the distance
to neighbours

disjoint connected
components;
e.g. chromatin particles

geometric adjacency
graph; e.g. Delaunay,
perceptual

grey-value statistics,
Minkowski functionals,
number of neighbours,
statistics of the distance
to neighbours

(a) construct the binary graph X |G by setting f |G equal to 1 at vertex v

and to 0 elsewhere; and

(b) compute the set difference δk (X |G) \ δk−1 (X |G).

This is illustrated in Figure 5.20

Table 5.2 lists several planar grey-scale graphs from which an AGACM can be con-

structed.

5.8 Measurement of region attributes

The quantitative measurement of image objects is a two-step process: “geometri-

cal transformations and then measurements” (Serra, 1986, p. 292). The geometric

transformations serve to partition the domain of the image, En, into disjoint sets

R1, R2, . . . , Rm ⊂ En locating the objects/regions to be measured. This is classically

referred to as segmentation (see Section 4.1). Measurement is then the process of

evaluating one or more numerical parameters associated with these regions. Such

parameters quantitatively describe various region attributes (properties). They in-

clude (Bengtsson & Nordin, 1994; van der Heijden, 1994):
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(a) (b)

(c) (d)

Figure 5.20: Example of k-adjacency for k = 3. (a) Binary graph X |G with the vertex
of interest set to Boolean 1. (b) δ2 (X |G ). (c) δ3 (X |G ) (d) The 3-adjacent neighbours
of the vertex of interest: δ3 (X |G ) \ δ2 (X |G ).
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1. Morphometric parameters for describing the geometry—shape, size, boundary,

position, and orientation—of a region. These parameters can be computed

from the binary mask (silhouette) of a region.

2. Radiometric/densitometric parameters for describing the irradiance (intensity)

or optical density of a region. These are computed from the grey-level his-

togram of the region.

3. Texture parameters for describing the spatial variation of grey-levels within a

region.

4. Relational/contextual parameters for describing a region’s relation to other

regions; e.g. the number of neighbours it has, and statistics of the distances to

neighbouring regions.

Compendia of such parameters (features) for two-dimensional grey-scale images can

be found in Bengtsson & Nordin (1994) and Palcic et al. (2000). Although these

compendia describe features for characterising the nucleus and/or cytoplasm of cells,

they can be applied more generally to other image objects including chromatin parti-

cles. However, given the large number of features that have been devised—e.g. Palcic

et al. (2000) list more than 70 different features—there must exist a high degree of

statistical dependence between sets of features. With regard to morphometric pa-

rameters and radiometric parameters, however, integral geometry provides a power-

ful result concerning measurements that satisfy a few basic properties. Specifically,

any such measurement can be written in terms of a linear combination of just a few

of them called the Minkowski functionals.

5.8.1 Minkowski functionals

“The mind imagines concepts such as surface area or width of a body, only by more

or less implicit reference to convex figures” (Serra, 1982, p. 93). Hadwiger (1957)

proved that any numerical parameter that can be defined for a compact16 convex17

set (called an ovoid), and satisfying a few strong invariance properties (discussed

below), can be expressed in terms of a linear combination of just a few of them

called the Minkowski functionals (also called the quermass integrals). In Rn there

exist n + 1 Minkowski functionals. They are defined by a recurrence relation on

16 See Footnote 6.
17 A set X ⊂ Rn is said to be convex if the line segment joining any two points of X lies wholly

within X .
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sub-dimensions of the space (see Appendix F). The k-th functional is denoted W
(n)
k .

Table 5.3 lists the functionals for the spaces R0, R, R2, and R3. The functional

N (i) (X) is 1 if X �= ∅ and 0 if X = ∅ (Serra, 1982, p. 103). The Minkowski

functionals satisfy the following properties:

� isometry invariance:

W
(n)
k (τ (X)) = W

(n)
k (X) where τ : Rn → Rn is an isometry18;

� increasingness:

X ⊆ Y ⇒ W
(n)
k (X) ≤W

(n)
k (Y );

� C-additivity:

W
(n)
k (X) + W

(n)
k (Y ) = W

(n)
k (X ∪ Y ) + W

(n)
k (X ∩ Y );

� homogeneity:

W
(n)
k (λX) = λn−kW

(n)
k (X) , λ > 0; and

� continuity:

dH (X, Y )→ 0 ⇒ W
(n)
k (X)→W

(n)
k (Y ).

where dH is the Hausdorff metric (see the remark following Definition 5.3.1) and

X, Y ∈ P (Rn) are ovoids. The Minkowski functionals in fact generalise to more

arbitrary shapes. In particular they generalise to sets formed from the finite union

of ovoids. The class of all such sets is called the convex ring. In the case of the

convex ring, the functional N (i) (X) is the Euler-Poincarè constant (connectivity

number); e.g. N (1) (X) is the number of line segments in X ⊂ R. The convex ring

serves as an archetype for binary images consisting of random collections of particles.

Importantly, Hadwiger’s characterisation result above also carries over to the convex

ring; i.e. that all measurements that possess the above properties can be written as

a linear combination of the Minkowski functionals.

18 An isometry of Rn is a mapping of Rn onto itself that preserves distances (DePree & Swartz,
1988, p. 268). Translations, rotations, and reflections (in lines) are examples of isometries in
R2 (Allenby, 1991, p. 233).
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Table 5.3: Minkowski functionals W
(n)
k in Rn (Serra, 1982, p.104).

Minkowski functional of number k

k = 0 k = 1 k = 2 k = 3

n = 3 V 1
3
S 1

3
M 4

3
πN (3)

Dimension of n = 2 A 1
2
U πN (2)

the space Rn n = 1 L 2N (1)

n = 0 N (0)

N denotes connectivity number, L length, A area,

V volume, U perimeter,

S surface area, and M norm.

5.8.2 Estimates of the Minkowski functionals for X ∈ P
(
Z2
)

Estimation of the Minkowski functionals of X ∈ P (Z2) amounts to estimating

A (X), U (X), and N (2) (X) . The estimate of N (2) derives directly from Euler’s

formula for a disconnected plane graph (Wilson, 1985, p. 66):

v − e + f = k + 1

where v is the number of vertices, e is the number of edges, f is the number of faces

(i.e. the number of regions the graph divides the plane into, including one infinite

region), and k is the number of connected components (connected graphs). In the

case of a finite set X manifested on the hexagonal grid, the grid itself is a planar

graph (the grid points are the vertices and the grid edges are the graph edges). In

the case of the square grid, if X is deemed to be 4-connected then again the grid

is a planar graph. However, if X is deemed to be 8-connected then the grid is not

a planar graph and Euler’s formula is not applicable. This is remedied if the the

diagonal edges associated with instances of
1 1

1 1
are omitted (see Figure 5.21). It is

then easy to show—e.g. Mehnert (1994, Chapter 4)—that the connectivity number
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(a) (b) (c)

Figure 5.21: Estimating the connectivity number of a finite set X (large dots) on the
square lattice. (a) The planar graph resulting if 4-connectivity is adopted. (b) The non-
planar graph resulting if 8-connectivity is adopted. (c) The modification of (b) to be
planar so that Euler’s formula can be used.

of a set X manifested on a 4-connected square grid, an 8-connected square grid, and

the hexagonal grid, respectively, can be written (Serra, 1982, p. 201):

N4 (X) = N
{

1 0

0 0

}
+N

{
1 0

0 1

}
−N

{
1 1

1 0

}
(5.1)

N8 (X) = N
{

1 0

0 0

}
−N

{
· 1

1 0

}
(5.2)

NH (X) = N
{

0 0

1

}
−N

{
0

1 1

}
, (5.3)

where N {�} means the number of occurrences of �.

To estimate A (X) it is necessary only to count the number of foreground pixels

(value ‘1’) in the set and to multiply this by the area of a single pixel: a2 on the

square grid with spacing a, and 2√
3
a2 on the hexagonal grid with vertical spacing a.

The area estimate for the square grid and the area estimate for the hexagonal grid,

respectively, can be written:

AS (X) = N {1} a2 (5.4)

and

AH (X) = N {1} 2√
3
a2. (5.5)
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Serra (1982, p. 105) estimates U (X) using a digital interpretation of Crofton’s

formula for R2. This formula relates the perimeter of X to its sections viz.

1

π
U (X) =

1

π

∫ π

0

dα

∫ +∞

−∞
N (1) [X ∩ Λ (y, α)] dy (5.6)

where Λ (y, α) is a test line with direction α and passing through the point y ∈ R2,

and the ordinate y is on an axis normal to Λ. Crofton’s formula can be written

(Serra & Laÿ, 1985, p. 11):

U (X) = π

[
1

π

∫ π

0

Dα (X) dα

]
,

where Dα (X) =
∫ +∞
−∞ N (1) [X ∩ Λ (y, α)] dy. The part of the formula within the

square brackets is an average over all possible directions α. In Z2 the number of

directions α is limited by the underlying grid. Figure 5.22 shows four possible test

directions for the square lattice and three possible test directions for the hexagonal

lattice based on the elementary (first-order) neighbourhood. The differential dy

is approximated by Δy. On the square lattice this leads to the approximations:

D∗
0 (X) = aN

{
0 1

}
, D∗

π
2
(X) = aN

{
1

0

}
, D∗

π
4
(X) = a√

2
N
{

0 ·
· 1

}
, and

D∗
3π
4

(X) = a√
2
N
{
· 1

0 ·

}
(see Figure 5.23), and to the following unbiased estimate

of U proposed by Serra & Laÿ (1985, p. 12) 19:

U∗
S (X) =

πa

4

[(
N
{

0 1
}

+N
{

1

0

})
+

1√
2

(
N
{

0 ·
· 1

}
+N

{
· 1

0 ·

})]
. (5.7)

Similarly, for the hexagonal lattice with vertical spacing a, this yields the following

estimate of U 20:

U∗
H (X) =

πa

3

[
N
{

0 1
}

+N
{

1

0 ·

}
+N

{
0 ·

1

}]
. (5.8)

19 The formula proffered by Serra (1982, p. 228, H.7.) is positively biased. It appears that the
constant π

3 ≈ 1 rather than π
4 has been used.

20 The formula proffered by Serra & Laÿ (1985, p. 12) is incorrect. It incorrectly specifies the
constant πb

3 where b = 2a√
3
.
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Δ y=a

Δ y=a

Δ y=a

Δ y=
2

__a

1 2

3

2 3

4

1

Figure 5.22: Elementary test-line directions for the square lattice and the hexagonal
lattice.
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Δ y

, α)( yΛ

D
α

Figure 5.23: Estimating Dα (X) on the square lattice. The test line Λ
(
y, π

4

)
intersects

the set X ten times. If the lattice spacing is a then Δy = a√
2

and an estimate of Dπ
4

(X)

is D∗
π
4

(X) = a√
2
N
{
· 1
0 ·

}
.

Serra (1982, p. 222) suggests a possible refinement to these estimates based on a

doubling of the number of test directions. To do this it is necessary to consider a

second-order neighbourhood as shown in Figure 5.24. This leads to the following

estimates of U (not published in the literature) for the square and hexagonal grids

respectively:
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U∗∗
S (X) =

πa

8

⎡⎢⎣(N { 0 1
}

+N
{

1

0

})
+

1√
2

(
N
{

0 ·
· 1

}
+N

{
· 1

0 ·

})
+

1√
5

⎛⎜⎝N
⎧⎪⎨⎪⎩
· 1

· ·
0 ·

⎫⎪⎬⎪⎭+N
{
· · 1

0 · ·

}
+

N
{

0 · ·
· · 1

}
+N

⎧⎪⎨⎪⎩
0 ·
· ·
· 1

⎫⎪⎬⎪⎭
⎞⎟⎠
⎤⎥⎦ (5.9)

and

U∗∗
H (X) =

πa

6

⎡⎢⎣(N { 0 1
}

+N
{

1

0 ·

}
+N

{
0 ·

1

})
+

1√
3

⎛⎜⎝N
⎧⎪⎨⎪⎩

1

· ·
0

⎫⎪⎬⎪⎭+N
{

· 1

0 ·

}
+N

{
0 ·
· 1

}⎞⎟⎠
⎤⎥⎦ . (5.10)

Serra (1982, p. 222) notes that the quality of estimation afforded by doubling the

number of directions is not necessarily any better because of the bias introduced by

considering a larger elementary neighbourhood.

5.8.3 Grey-scale images and dimensional measurements

Recall that a two-dimensional grey-scale image f , with non-negative grey-values,

can be represented as a topographic relief if each grey-level is considered to be a

height (see Figure 4.11). The points lying on and below the surface of the relief

constitute a three-dimensional set called the subgraph of f . Formally, the subgraph

of a two-dimensional grey-scale image f ∈ Fun
(
R2, R+

0

)
, where R+

0 = R+ ∪ {0}, is

defined:

SG(f) �
{

(x, t) ∈ R2 × R+
0

∣∣ 0 ≤ t ≤ f (x)
}

.
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Δ y=

Δ y=

__a

5

__a

3

5
1 3

4

6

78
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1 2

3

4

5

6

Figure 5.24: Doubling the test-line directions for the square lattice and the hexagonal
lattice.



5.8 Measurement of region attributes 209

Equivalently, the SG (f) can be seen as a stacking of all of the cross-sections of f .

The cross-section of f at level t is defined:

Xf (t) �
{
x ∈ R2 |f (x) ≥ t

}
.

Given that SG (f) ⊂ R3 it is possible to compute the four Minkowski functionals

V , S, M , and N (3). If the grey-level axis represents a third spatial dimension—this

situation occurs, for example, when studying a geographical relief (Serra, 1988c,

p. 314)—then the space in which SG (f) resides is physically homogeneous (all the

dimensions have the same physical meaning). In this case the Minkowski function-

als all have physical meaning. If, as is usually the case, the grey-scale dimension

represents the response of a sensor (light intensity, electrical intensity, etc.) then

the space in which SG (f) resides is not physically homogeneous and not all of the

Minkowski functionals nor all image measurements have physical significance. This

problem has tended to be “overlooked by the computer vision community” (Rivest

& Soille, 1995, p. 751). To be physically significant Rivest et al. (1992) and Soille

et al. (1992) argue that a measurement should possess an additional property called

dimensionality. A measurement on a grey-scale image is said to be dimensional if it

can be related to the same measurement applied to this image after a scaling of the

image plane and an independent scaling of the grey-scale axis (Soille et al., 1992, p.

127). If Λ1 represents a scaling (magnification) of the image plane or domain of defi-

nition by a factor λ1, and Λ2 represents a linear scaling of the grey-scale values with

gain λ2 and offset o, i.e. (Λ2f) (x) = λ2f (x) + o, then a measurement W : Rn → R

is said to be dimensional if (Soille & Rivest, 1996, p. 218):

W (Λ1Λ2f) = λk1
1 λk2

2 W (f) + λk1
1 koW (φ) ,

where k1, k2 ∈ R, ko ∈ {0, 1} and φ is a two-dimensional grey-scale image, with

the same domain as f , but only taking on the value o, i.e. φ (x) = o. Dimensional

measurements are robust to changes to image magnification at the time of capture

and to changes in contrast/brightness. “In practice, however, this is only true for a

given range of parameter modifications because both spatial and amplitude quanti-

sations occur when sensing a continuous object” (Soille, 2003, p. 51). The volume V

and the connectivity number N (3) of SG (f) are dimensional measurements. When

the domain of f resides in Z2 the estimate of the volume V is simply the sum of

the grey-scale values. As for the connectivity number, Serra (1988c, p. 314) pro-
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poses that N (3) (f) be computed by summing the connectivity number N (2) over all

cross-sections:

N (3) (f) =

∫ ∞

0

N (2) (Xt (f)) dt.

Furthermore he proffers formulae for the hexagonal and square grids that permit

the calculation of N (3) (f) without having to threshold the image.

Rivest & Soille (1995, p. 752) note that an often used method for computing the

surface area of a three-dimensional object, based on approximating it by planar

triangles, is not dimensional. A dimensional method for computing the surface area

is to compute the volume of the morphological gradient21 (also called Beucher’s

gradient) of f (Rivest & Soille, 1995, p. 752):

S (f) = V (δB (f)− εB (f)) (5.11)

where B is the structuring element representing the unit disk.

The histogram of grey-levels of an image derives from the notion of V (f) (Rivest et

al., 1992, p. 140) and hence statistics of the histogram are dimensional.

5.8.4 Other parameters/functionals

Serra (1982, p. 110) notes that the C-additivity property should be thought of as

the link needed to extend the Minkowski functionals to the convex ring, and “not a

sine qua non condition for experiments”. The P2A shape factor defined

P2A (X) =
[U (X)]2

4πA (X)
,

for example, is a widely used quantitative measure of shape (normalised to be 1 for

a circle) and yet it is not C-additive22. Other such functionals include (Rivest et al.,

1992, p. 138): convexity number, roughness, and fractal dimension23.

21 The morphological gradient is itself dimensional (Soille et al., 1992, p. 133).
22 The ratio or product of two Minkowski functionals is not C-additive.
23 Soille & Rivest (1996) review several alternative algorithms for computing the fractal dimension

and identify those that are dimensional.
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5.9 Summary

This Chapter has

� Presented an overview of (geometric) adjacency graphs—region adjacency graph

and graphs stemming from the Voronoi diagram—used in image processing.

� Reviewed the ordinary Voronoi diagram and graphs related to the planar

Voronoi diagram: Delaunay graph, Gabriel graph, relative neighbourhood

graph, minimum spanning tree, and β-skeletons.

� Reviewed a generalisation of the ordinary Voronoi diagram called the area

Voronoi diagram. It was noted that the (Euclidean) distance transform is

the key to extending the area Voronoi diagram to connected components of a

binary image.

� Reviewed distance transform algorithms published in the literature.

� Established that the erosion of the characteristic function of a binary image

X ∈ P (Rn) by the elliptic poweroid structuring element g(x) = −
(
xTAx

)α
2 ,

where A is n × n positive definite and α ∈ R+, is equivalent to finding the

distance transform of X, based on the distance d (x, y) =

√
(x− y)TA (x− y),

raised to the power α. Moreover it was shown that the EDT algorithm of

Huang & Mitchell (1994), for binary images manifested on the square grid,

corresponds to the case when n = 2 and α = 2.

� Presented a new method for computing the EDT on the hexagonal grid. The

method is a procedural extension to the EDT algorithm of Huang & Mitchell

(1994). The extension involves embedding the input binary image, manifested

on a hexagonal grid, in a rectangular grid. Huang and Mitchell’s algorithm

can then be applied, with the appropriate aspect ratio, to obtain the distance

transform on the rectangular grid. The EDT on the hexagonal grid is then

obtained by discarding those distance values that do not correspond to a point

on the original hexagonal grid. The algorithm is both amenable to hardware

implementation using a pipeline architecture and efficient implementation on

serial machines. Moreover the algorithm requires only integer arithmetic.

� Presented an overview of the skeleton by influence zones (which is the area

Voronoi diagram for connected components in a binary image), the RAG con-

structed on the influence zones (which generalises the Delaunay graph), and

the perceptual graph (which generalises the Gabriel graph).
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� Presented a generalisation of the well-known grey-level co-occurrence matrix

method (GLCM) to vertex-weighted adjacency graphs (grey-scale graphs).

The image under study is first reduced to an adjacency graph with vertices

corresponding to individual regions (objects) and edges corresponding to an

adjacency relationship between regions. Next, region attributes—average grey-

level, area, perimeter, etc. —are assigned to each vertex of the adjacency graph.

Finally, for each attribute a co-occurrence matrix—called an adjacency graph

attribute co-occurrence matrix (AGACM)—is defined. Co-occurrence matrix

features can then be used to quantitatively describe the arrangement of the

regions. Of particular interest is that the AGACM method can be used to

characterise blob-like and mosaic patterns in the plane; e.g. chromatin parti-

cles.

� Presented an overview of the types of parameters (attributes) that can be

measured for image objects. The convex ring—the class of sets in Rn whose

elements are finite unions of compact convex sets—provides a realistic Eu-

clidean model for digital images. The Minkowski functionals form the basis of

any valid measurement that can be made on compact convex sets. Estimators

for the Minkowski functionals for two-dimensional binary and grey-scale im-

ages were presented for both the square and hexagonal grids. Corrections to

the literature, as well as new estimators for the perimeter were proffered.



Chapter 6
Application to the Automated Screening

of Cytology Slides

There are two schools: one, of pattern recognition in which many

measurements, 20–100 per cell structure, are analyzed statistically to

find which are the best for recognizing a pattern. . .A completely different

approach [is to]. . . extract features by image transformation, and if the

feature we extract is satisfying to the eye and to the mind, then we

make the measurement

Fernand Meyer, 1980

The chromatin segmentation, representation and description

Chromatin
segmentation

Measurement
Adjacency and
distance

Classification

Features

Noise
filtering

methods presented in the preceding chapters make it possi-

ble to extract features that quantitatively describe nuclear

chromatin distribution (pattern) as visualised by light mi-

croscopy. Possible applications of these features include (Mehn-

ert & Jackway, 2002): artefact rejection, the detection of ma-

lignancy associated changes (MACs), and the detection of

nuclear changes during neoplasia. Recent research by Rous-

selle et al. (1999) suggests that chromatin segmentation fea-

tures might also be used to assess the chromatin patterns

in living cells during the cell cycle. This would make it possible to measure the

alterations in the evolving chromatin patterns that result from pathological or en-

vironmental influences.
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This chapter considers one possible application: the automated screening of cytol-

ogy slides. The aim is not to mimic the method of screening used in conventional

manual screening—i.e. to exhaustively search for biologically abnormal cells on a

slide—but rather to distinguish slides containing wholly normal cells from slides

containing abnormal cells using statistical pattern recognition and chromatin seg-

mentation features. Specifically, this chapter considers the automated screening

of Papanicolaou-stained cervical smears (for the reasons outlined in Chapter 1).

Several studies reported in the literature have demonstrated that MACs can be de-

tected in cervical smears that have been stained with a stoichiometric stain (see

Section 6.4.9.1). For a stoichiometric stain, such as Thionin-Feulgen, the amount

of stain uptake in the nucleus is proportional to the amount of DNA present. Con-

sequently it is possible to measure chromatin variation by measuring the grey-tone

(optical density) variation within the nucleus. Unfortunately, the Papanicolaou stain

is not stoichiometric (Schulte & Wittekind, 1994, p. 202). Nevertheless the Papan-

icolaou stain “is still the stain of choice for visual screening and control of. . . slides”

(Schulte & Wittekind, 1994, p. 208). Indeed, worldwide it is the most commonly

used cytological staining technique in gynaecology (Schulte & Wittekind, 1994, p.

201). Consequently there exists a significant advantage in being able to automati-

cally screen conventional Pap-stained cervical smears.

The remainder of this chapter is organised as follows. Section 6.1 examines the ra-

tionale behind a MACs-based screener (classifier). Section 6.2 examines how such a

classifier can be designed and motivates the statistical pattern recognition approach.

Section 6.3 presents an overview of statistical pattern recognition including impor-

tant issues such as the curse of dimensionality, dimensionality reduction, choice of

classifier, and evaluation of classifier performance. Section 6.4 presents a case study

involving the application of statistical pattern recognition and chromatin segmenta-

tion features to the problem of Pap smear screening. In particular the results of two

experiments, on 40 abnormal and 99 normal Pap smear slides collected as part of the

(Australian) National Cervical Screening Program, are reported. The first experi-

ment evaluates the performance of a classifier trained and evaluated using features

purposefully designed to measure chromatin margination. The second experiment

determines a subset of chromatin features that have the most discriminatory power

for the Pap smear classification problem.
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6.1 Why build a MACs-based screener?

When cytotechnologists screen a specimen (slide) for biological abnormalities they

exhaustively review all of the cells on the slide searching for perhaps only a very

few clearly abnormal cells (called diagnostic cells). If none are found the slide is

classified as negative (normal), otherwise it is classified as positive (abnormal). This

rare event (RE) approach to screening gives rise to several scenarios in which a

specimen may be incorrectly classified as negative (a false negative):

1. Diagnostic cells may be overlooked or misinterpreted by the cytotechnologist

(e.g. because of fatigue or inexperience);

2. Diagnostic cells may be obscured by other material such as blood, dust, and

mucous; and

3. No diagnostic cells may have made it to the slide from the patient in the first

place (sampling error).

“Many, perhaps most, false negatives represent sampling errors, where a sample of

abnormal cells from the patient fails to make it onto the glass slide” (DeMay, 1997, p.

230). With regard to automated screening, the RE approach presents a formidable

challenge for state-of-the-art technology and image analysis techniques (Bengtsson

& Nordin, 1994, p. 41). The hardware (robotics, camera, framegrabber, etc.) must

be able to scan a specimen with sufficient speed and produce images of sufficient

quality to permit the evaluation of the specimen within a reasonable amount of

time; e.g. “it is generally suggested, on the basis of current economic considerations,

that a [primary screening] system should take no longer than three to four minutes

to process a slide” (Bartels & Vooijs, 1999, p. 9). The software must be able to

accurately locate, focus, segment, and measure every cell on the specimen. Com-

plicating factors include the type of stain (e.g. Papanicolaou, Thionin-Feulgen) and

preparation (e.g. smear, liquid-based preparation), the presence of artefacts—such

as dust, blood, and mucous—, and coverage and registration problems associated

with scanning the slide to produce a mosaic of field-of-view images. The literature

suggests that an alternative screening approach, based on a phenomenon known as

malignancy associated changes (MACs), can be used to build an automated screener

that does not suffer from the drawbacks associated with the RE approach. MACs,

in modern usage, refers to subtle subvisual changes—predominantly textural—in

otherwise normal-appearing cells on cervical atypical smears. “These alterations are
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too insignificant to be analyzed on a cell-by-cell basis; instead, populations of cells

must be analyzed and the population parameters (means, variances) used to classify

the smear” (Nordin & Bengtsson, 1994, p. 44). Using image cytometry MACs have

been “found in different tissues, including the epithelia of the oral cavity, the gas-

trointestinal tract, the bronchial system, the hematopoietic system, and the cervix

uteri” (Kasper, Haroske, Geissler, Meyer & Kunze, 1997, p. 482).

In summary the MACs approach offers the potential for reliably classifying a cytolog-

ical specimen without the need for scrutinising all of the cells on the slide—as must

be done by a human screener or RE-based automated screener—or for detecting

any diagnostic cells that may be present. However, there is a caveat: “with cur-

rent techniques, not all cancer patients display MACs, and some apparently healthy

individuals do” (Hallinan, 2000, p. 58). Unfortunately the reason for this is not

yet understood because “the biologic nature of MACs. . . is not yet fully understood”

(Kasper et al., 1997, p. 483). The implication of this is that there may exist a

fundamental limit to the performance than can be expected from a MACs-based

classifier.

6.2 How to build a MACs-based classifier?

Conceptually, to build a classifier to discriminate between normal (not MAC-affected)

slides and abnormal (MAC-affected) slides involves testing, for a given slide, “the hy-

pothesis that the cell sample found on the slide was drawn from the gigantic popula-

tion of all normal cells” (Nordin & Bengtsson, 1994, p. 48). There are two fundamen-

tally different approaches that can be taken: “Either each cell is assigned an atypia

index and the distribution of this index is analyzed, or the distributions—perhaps

even the values—of the various [computed] cell features are analyzed” (Nordin &

Bengtsson, 1994, p. 48). The Cytometrics Project has adopted the latter approach

because (Nordin & Bengtsson, 1994, p. 48):

a single atypia index for all cell types is probably too simple a strat-

egy. . . The various types of cells found on a typical slide simply differ too

much, even if they are all normal.

In practice the aforementioned hypothesis must be tested on the basis of only a sub-

sample of the cells found on the slide. There are several reasons for this including:
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1. The fact that no automated image analysis system (cytometer) can hope to

accurately locate, segment, and measure each and every cell on the slide. This

is especially true for Papanicolaou-stained slides; and

2. For commercial viability a single slide must be processed within a fixed amount

of time—e.g. 4 minutes—and cost/hardware constraints may preclude the ex-

haustive scanning of the slide.

As noted in Chapter 1 the feature-based approach to classification is called statistical

pattern recognition. The term pattern refers to the object or entity of interest; e.g. a

cytology slide. In this approach (Jain, Duin & Mao, 2000, p. 6):

each pattern is represented in terms of d features or measurements and

is viewed as a point in a d-dimensional space. The goal is to choose those

features that allow pattern vectors belonging to different categories to

occupy compact and disjoint regions in a d-dimensional feature space.

The effectiveness of the representation space (feature set) is determined

by how well patterns from different classes can be separated.

In relation to designing a MACs-based classifier for cytology slides the pattern classes

are, in the simplest case, normal and abnormal1. The efficacy of such a classifier

depends on the discriminatory power of the MACs phenomenon and on the feature

set used to quantify it.

6.3 Overview of statistical pattern recognition

For a recent and comprehensive review of the field of statistical pattern recognition

the reader is referred to Jain et al. (2000). The classic texts on the subject include

Duda & Hart (1973), Devijver & Kittler (1982), and Fukunaga (1990). Duda &

Hart have recently released a revised and much updated second edition, Duda, Hart

& Stork (2001), of their original monograph. Other monographs on the subject

include McLachlan (1992) which is specifically a treatment of multivariate statistical

methods, and Ripley (1996) which includes treatment of neural networks within a

statistical framework.

1 If the MACs phenomenon, or the feature set used to quantify it, is sufficiently discrimina-
tory then it may be possible to design a MACs-based classifier with several pattern classes;
e.g. normal, mild dysplasia, moderate dysplasia, and severe dysplasia and carcinoma in situ.
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From the point of view of statistical pattern recognition, the problem of designing

a classifier is one of estimating density functions in high-dimensional space and

partitioning this space into the regions of interest (Fukunaga, 1990, p. 3). These

probability distributions (class densities) determine the decision boundaries that

separate the classes in feature space. If these distributions are completely specified,

i.e. the class densities and the prior probabilities are known, then the theoretically

best classifier is the Bayes classifier (also called Bayes rule) because it minimises

the probability of classification error (Fukunaga, 1990, p. 3). In practice, however,

these are usually not known and must be estimated (learnt) from a set of example

patterns (feature vectors) called the training set. The techniques used to estimate

these densities can be broadly classified into supervised and unsupervised learning. In

the former case the samples in the training set are labelled, i.e. the class membership

of each observation is known. In the latter they are not and must be “learned along

with the structure of each class” (Jain et al., 2000, p. 9). In both cases, the specific

strategy used to estimate the class densities depends on whether their particular

distributional forms are known (or can be assumed); e.g. multivariate normal. If

they are then the estimation problem reduces to one of estimating the parameters

of the distributional forms from the training data (parametric estimation). If they

are not then an unstructured approach to estimation must be used (non-parametric

estimation). Ripley (1996, p. 4) points out that:

the traditional methods of statistics and pattern recognition are either

parametric based on a family of models with a small number of param-

eters, or non-parametric in which the models used are totally flexible.

One of the impacts of neural network methods on pattern recognition

has been to [offer]. . . something in between, families of models with large

but not unlimited flexibility given by a large number of parameters.

In the case of supervised learning a common strategy for parametric estimation“is to

replace the unknown parameters in the density functions by their estimated values,

resulting in the so-called Bayes plug-in classifier” (Jain et al., 2000, p. 9). The most

commonly used such classifiers are linear and quadratic classifiers. In multivariate

statistical analysis such classifiers fall under the heading of discriminant analysis.

Discriminant analysis techniques are closely related to multivariate linear regression

models and generalised linear models (encompassing logistic regression discussed in

Section 6.4.7). With regard to non-parametric estimation in supervised learning,

two basic strategies exist: either the density functions are estimated from the train-

ing data (e.g., Parzen window approach), or the decision boundary is constructed
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directly from the training data (e.g., k-nearest neighbour rule) (Jain et al., 2000, p.

9).

In contrast to supervised learning, in the case of unsupervised learning the number

of classes are usually not a priori known and must be estimated. In addition, “un-

supervised methods are generally designed for visualization, either to show views

of the data which indicate groups, or to show affinities between the examples by

displaying similar examples close together” (Ripley, 1996, p. 287). If the particular

distributional forms of the class-conditional densities are known or can be assumed

then mixture decomposition (Jain et al., 2000, p. 30) can be used to estimate their

parameters from the unlabelled data. This approach is based on the idea that “each

pattern has been produced by one of a set of alternative (probabilistically mod-

eled) sources” (Jain et al., 2000, p. 30). Generally, however, the structure of the

class-distributional densities is unknown and other cluster analysis methods must

be used. Broadly speaking, cluster analysis methods identify clustering or group-

ing in training patterns without making assumptions about the number of classes

or the structure of each class. Classes are identified on the basis of similarity or

dissimilarity measured in terms of distances (Johnson & Wichern, 1988, p. 543). In

multivariate statistics, statistical distance d (x, y) =

√
(x− y)TA(x− y) (see also

Proposition 5.5.1) is used to measure the distance between two multivariate obser-

vations (patterns) x and y. Ordinarily A = S−1 where S is the sample covariance

matrix. However, without prior knowledge of the distinct groups (classes) the covari-

ance matrix cannot be calculated (Johnson & Wichern, 1988, p. 545). Consequently

A is often set to be the identity matrix yielding the Euclidean distance. Other dis-

tance functions can be defined, although it is advisable to use distance functions

satisfying the properties of a metric (see Section 2.9) (Johnson & Wichern, 1988, p.

545). An elementary and very popular clustering method is the k-means clustering

algorithm (Duda et al., 2001, p. 526). In its simplest form the algorithm has three

steps (Johnson & Wichern, 1988, p. 566):

1. Randomly partitioning the original data into k initial clusters (classes) and

computing the centroid (mean) for each;

2. Assigning each pattern to the cluster that has the nearest centroid (mean) and

immediately updating the centroid of the cluster receiving the pattern and of

the cluster losing the pattern; and

3. Repeating step 2 until no further assignments can be made.
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Figure 6.1: Steps involved in building a statistical pattern recognition system (adapted
from Jain et al. (2000, p. 8)).

The steps involved in building a statistical classifier (pattern recognition system)

are shown in Figure 6.1. Two modes of operation are illustrated: training (learning)

and testing (classification). The preprocessing step encapsulates all of the oper-

ations needed to establish a representation/description of the pattern (object) of

interest that is suitable for subsequent feature extraction. In the case of a cytology

slide (pattern), for example, this step might include the segmentation of all of the

cell nuclei in a set of digitised field-of-view images from a light microscope, con-

verting the grey-values to optical density values (normalisation), the computation of

nucleus features such as circularity, perimeter, area, volume, and texture features,

and the subsequent computation of slide summary statistics (e.g. mean and stan-

dard deviation) for each nucleus feature. The feature extraction step involves the

computation of new features from this representation/description “based on trans-

formations or combinations of the original feature set” (Jain et al., 2000, p. 12).

In the cytology slide example such features might include the principal components

(Johnson & Wichern, 1988, p. 340) of the slide statistics. In the training mode,

feature extraction is combined with feature selection to determine the best subset

of features for discriminating between the different pattern classes. In the case of

supervised learning, where the true class label of each pattern is known a priori, the

feedback loop permits the feature extraction/selection strategies to be optimised.

In the classification mode, a new unseen pattern is classified on the basis of feature

values computed for only the best subset of features (as determined in the training

mode).
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6.3.1 The curse of dimensionality

To build a statistical classifier it is necessary to obtain sample data with which to

train and test the classifier. The sample must contain observations representative of

each class. The size of the sample dictates the number of features that can sensibly

be used to build a classifier to discriminate between the classes. For a given, fixed,

sample size, increasing the number of features has two conflicting effects (Smith,

1998, p. 103):

1. The additional features provide more information and therefore should improve

classification performance; and

2. The feature space increases in dimensionality and as a consequence the obser-

vations in each class become less representative of that class (because more

observations are required to form a representative sample in high-dimensional

space than in low-dimensional space). As a result, classification accuracy on

the training set increases but the performance on unseen data decreases.

This phenomenon is called the curse of dimensionality (also called the peaking phe-

nomenon). It (Smith, 1998, p. 103):

has been described theoretically and observed empirically. For fixed sam-

ple size and increasing dimensionality [i.e. increasing number of features],

the usual pattern is for classification accuracy to increase to a peak, and

thence to decrease to poor accuracy. It is most significant for statisti-

cally dependent features, though it can occur in independent features.

The phenomenon occurs for all forms of features, including continuous

features, quantized features, and non-numeric discrete features. The

phenomenon occurs in both parametric and non-parametric classifica-

tion techniques.

As a general rule of thumb (Jain et al., 2000, p. 11):

it is generally accepted that using at least ten times as many training

samples [patterns] per class as the number of features. . . is a good practice

to follow in classifier design. The more complex the classifier, the larger

should the ratio of sample size to dimensionality be to avoid the curse

of dimensionality.
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6.3.2 Dimensionality reduction

There are two main reasons for wanting to reduce the dimensionality of feature space;

i.e. the number of features to be used for classification. The first is to avoid the curse

of dimensionality. The second is to reduce the measurement and computational cost.

Two commonly used approaches to feature set reduction are feature extraction and

feature selection. Devijver & Kittler (1982, p. 192) point out that “ideally, the

problem of feature selection and extraction on the one hand and the classifier design

[model selection] on the other hand should not be considered independently”. Indeed

Ripley (1996, p. 327) notes that feature selection and extraction methods “are being

supplanted by model selection methods”.

6.3.2.1 Feature extraction

The aim of feature extraction is to reduce the dimensionality of the original feature

space by combining (either in a linear or non-linear fashion) the initial set of features

(measurements). Multivariate statistical analysis is a source of several linear feature

extraction methods including principal components analysis (PCA), factor analysis

(FA), and linear discriminant analysis (LDA). PCA is an unsupervised feature ex-

traction method; i.e. class labels, if they exist, are not taken into account. FA and

LDA, on the other hand, are supervised feature extraction methods. Other linear

feature extraction methods include projection pursuit and independent component

analysis (Jain et al., 2000, p. 12). Non-linear feature extraction methods include

(Jain et al., 2000, p. 13):

1. The Kernel PCA method – The input data are mapped into a new feature

space using a prescribed non-linear mapping such as a polynomial of degree p.

Standard PCA is then performed;

2. Multidimensional scaling – The original feature space is projected into a two-

or three-dimensional space in such a way that the distance matrix of the new

feature space is as close as possible to that of the original feature space; and

3. Methods based on neural networks and self-organising maps.

6.3.2.2 Feature selection

The aim of feature selection methods is to find individual features that “are likely

to have good discriminatory power” (Ripley, 1996, p. 327). More specifically the
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aim is to find “the minimally sized feature set that is necessary and sufficient” for

the classification problem at hand (Dash & Liu, 1997, p. 132). For a feature set

containing d features the number of candidate subsets is 2d−1 (excluding the empty

set). An exhaustive search through all possible subsets of features is typically im-

practical because of the exponential increase in the number of subsets that must be

evaluated as the number of features increases. The curse of dimensionality imposes

an upper limit m, m ≤ d, on the number of features that can be used. Even so the

number of subsets to be searched is combinatorial:(
d

m

)
+

(
d

m− 1

)
+ . . . +

(
d

1

)
.

Consequently, a variety of other strategies have been devised based on heuristic or

random search methods (Dash & Liu, 1997, p. 132). Table 6.1 lists well-known

feature selection methods found in the literature. All of these procedures have three

steps in common (Dash & Liu, 1997, p. 132):

1. a generation procedure to generate the next candidate subset;

2. a criterion function to evaluate the discriminatory power of the subset under

consideration; and

3. a stopping criterion to decide when to stop.

An obvious choice for the criterion function is the classification error rate. However,

as a computational short cut, instead of fitting each new model to the data and

evaluating its classification error rate, simpler criterion functions are used. These

functions2 seek to measure the class separability afforded by a set of features. The

stopping criterion can be based on either the generation procedure or the criterion

function. In the former case, the criteria include (Dash & Liu, 1997, p. 133):

1. stopping when the desired number of features have been selected; and

2. stopping after a fixed number of iterations.

In the latter case stopping criteria include (Dash & Liu, 1997, p. 133):

2 Dash & Liu (1997) divide criterion functions into five different categories: distance measures,
information measures, dependence measures, consistency measures, and classifier error rate
measures.
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Table 6.1: Feature selection methods (adapted from Jain et al. (2000, p. 16)).

Method Property Comments

Exhaustive Search Evaluate all

(
d
m

)
possible subsets of size
m.

Guaranteed to find the optimal
subset; not feasible for even
moderately large values of m
and d.

Branch-and-Bound
Search

Uses the well-known
branch-and-bound
search method; only a
fraction of all possible
feature subsets need
to be enumerated
to find the optimal
subset.

Guaranteed to find the optimal
subset provided the criterion
function satisfies the mono-
tonicity property; the worst-
case complexity of this algo-
rithm is exponential.

Best Individual
Features

Evaluate all the d fea-
tures individually; se-
lect the best m indi-
vidual features.

Computationally simple; not
likely to lead to an optimal
subset.

Sequential Forward
Selection (SFS)

Select the best sin-
gle feature and then
add one feature at a
time which in com-
bination with the se-
lected features maxi-
mizes or minimizes the
criterion function as
the case may be.

Once a feature is retained, it
cannot be discarded; computa-
tionally attractive since to se-
lect a subset of size 2, it exam-
ines only (d− 1) possible sub-
sets.

Sequential Backward
Selection (SBS)

Start with all of the
d features and succes-
sively delete one fea-
ture at a time.

Once a feature is deleted, it
cannot be brought back into
the optimal subset; requires
more computation than se-
quential forward selection.

“Plus l-take away r”
Selection

First enlarge the fea-
ture subset by l fea-
tures using forward se-
lection and then delete
r features using back-
ward selection.

Avoids the problem of fea-
ture subset “nesting” encoun-
tered in SFS and SBS meth-
ods; need to select values of l
and r (l > r).

Sequential Forward
Floating Search
(SFFS) and
Sequential Backward
Floating Search
(SBFS)

A generalization of
“plus l-take away r”
method; the values of
l and r are determined
automatically and up-
dated dynamically.

Provides close to optimal solu-
tion at an affordable computa-
tion cost.
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1. stopping when the addition (or deletion) of a feature does not produce a better

subset; and

2. stopping when the optimal value of the criterion function has been found.

In the traditional statistical approaches to feature (model) selection the log-likelihood

evaluated at the maximum likelihood (ML) estimate is the most commonly used

measure of fit (criterion function) (Ripley, 1996, p. 60). The log-likelihood function

is the log of the likelihood function3. The likelihood function (Hosmer & Lemeshow,

2000, p. 8):

expresses the probability of the observed data as a function of the un-

known parameters. The maximum likelihood estimators of these pa-

rameters are chosen to be those that maximize this function. Thus, the

resulting estimators are those which agree most closely with the observed

data.

This method of estimation coincides with the more familiar least squares method

of estimation used in linear regression (under the additional (tentative) assumption

that the errors of the fitted model have normal distribution) (Johnson & Wichern,

1988, p. 284).

“It is often more convenient to work with the deviance, minus twice the log-likelihood

shifted to be zero for the ‘perfect’ model” (Ripley, 1996, p. 60). The deviance is

defined (Hosmer & Lemeshow, 2000, p. 13):

D = −2 ln

[
(likelihood of the fitted model)

(likelihood of the saturated model)

]
.

“A saturated model is one that contains as many parameters as there are data points”

(Hosmer & Lemeshow, 2000, p. 12). The traditional statistical approaches to feature

selection fall into two camps (Ripley, 1996, p. 60):

1. Iterative feature selection.

There are three basic approaches: forward, backward, and stepwise. Forward

selection starts with no features and progressively adds features one at a time.

Backward selection (elimination) starts with all of the features and progres-

sively removes one at a time. Stepwise selection starts with a set of features

3 Mathematically it is usually easier to work with the log of the likelihood function (Duda et al.,
2001, p. 86).
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(not necessarily all of the features) and progressively either adds or drops

a feature. “At any step in the procedure the most important variable [fea-

ture], in statistical terms, is the one that produces the greatest change in

the log-likelihood relative to a model not containing the variable” (Hosmer &

Lemeshow, 2000, p. 116). The statistical significance of the change is assessed

using a likelihood ratio test, or equivalently a difference in deviances, for some

a priori specified level of significance (Ripley, 1996, p. 60). The selection pro-

cess stops when no more variables can be added or deleted, as the case may

be.

2. Penalising fit.

These procedures are based on the idea of penalising the measure of fit accord-

ing to the size of the model because “normally we would expect the largest

models to fit best” (Ripley, 1996, p. 60). The most common such approach

is “based on the idea that the deviance will be smaller on the training set

than on a test set of comparable size, since we actually chose the parameters

to minimize the deviance on the training set” (Ripley, 1996, p. 61). To take

this into account, the deviance should be penalised. This is the basis of the

AIC4 (an information criterion). It is defined to be the deviance plus twice

the number of parameters in the fitted model. A characteristic of the AIC is

that it tends to choose models of larger and larger size as the size, n, of the

training data set is increased (Ripley, 1996, p. 61). An alternative criterion,

called the BIC (Bayesian information criterion), corrects for this tendency by

applying a penalty of logn (rather than 2) times the number of parameters

in the fitted model (Ripley, 1996, p. 65). The definition of AIC is motivated

by information theory and stems from the Kullback-Liebler distance between

distributions, whilst the definition of BIC is motivated by Bayesian theory and

stems from integrated likelihood (Li & Nyholt, 2001). Whilst in principle it is

necessary to search all models to find the best, in practice, for computational

reasons, “we may have to confine the search to only some of the models in the

family: this could even be done by a stepwise search” (Ripley, 1996, p. 60).

6.3.3 Choice of classifier

Duda et al. (2001, p. 454) state that:

4 “AIC was named by Akaike (1974) as ‘An Information Criterion’, although it seems commonly
believed that the A stands for Akaike” (Ripley, 1996, p. 34).
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If the goal is to obtain good generalization performance, there are no

context-independent or usage-independent reasons to favor one learning

or classification method over another. If one algorithm seems to out-

perform another in a particular situation, it is a consequence of its fit

to the particular pattern recognition problem, not the superiority of the

algorithm.

“In practice, the choice of a classifier is a difficult problem and it is often based

on which classifier(s) happen to be available, or best known, to the user” (Jain et

al., 2000, p. 17). This is often dictated by what is available in commercial and

public domain software such as SAS5, MINITAB6, S-PLUS7, R8, and SNNS9. An

important consideration in the choice of classifier should be whether or not the

model fits the data; i.e. whether the model assumptions are met. For example,

linear discriminant analysis is based on the assumption that the covariance matrix

for each class is the same. Another consideration is interpretability. A decision tree

is attractive because it partitions feature space in a hierarchical fashion thus making

it possible to “interpret the decision rule in terms of individual features” (Jain et

al., 2000, p. 19). There is a caveat however. Whilst classification trees are often

easy to interpret they are not amongst the highest performers (Ripley, 1996, p. 10).

Table 6.2 summarises commonly used classifiers.

6.3.4 Evaluating classifier performance

The classification error is the ideal measure of the performance of a classifier. In

practice this must be estimated from the available data. The simplest approach is to

partition the available data into two sets: a training set and a test set. The classifier

is trained using the training set and tested using the test set. The estimate of the

classification error (error rate) is then given by the proportion of misclassified test

set samples. Jain et al. (2000, p. 25) note that:

5 SAS� is commercial software developed by the SAS Institute Inc., headquartered in Cary,
North Carolina (http://www.sas.com).

6 MINITAB� is commercial software developed by Minitab Inc. (http://www.minitab.com).
7 S-PLUS� is commercial software developed by Insightful Corporation, headquartered in Seat-

tle, Washington (http://www.insightful.com).
8 R is available as Free Software under the terms of the Free Software Foundation’s (http:
//www.gnu.org) GNU General Public License in source code form. The R homepage is located
at http://www.R-project.org.

9 SNNS (Stuttgart Neural Network Simulator) is copyright University of Stuttgart. The SNNS
homepage is located at http://www-ra.informatik.uni-tuebingen.de/SNNS.
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Table 6.2: Commonly used classification methods (reproduced from Jain et al. (2000,
p. 20)).

Method Property Comments

Template matching Assign patterns to the most similar

template.

The templates and the metric have to be supplied

by the user; the procedure may include nonlinear

normalizations; scale (metric) dependent.

Nearest mean classifier Assign patterns to the nearest class

mean.

Almost no training needed; fast testing; scale

(metric) dependent.

Subspace method Assign patterns to the nearest class

subspace.

Instead of normalizing on invariants, the sub-

space of the invariants is used; scale (metric) de-

pendent.

1-Nearest neighbour rule Assign patterns to the class of the

nearest training pattern.

No training needed; robust performance; slow

testing; scale (metric) dependent.

k-Nearest neighbour rule Assign patterns to the major-

ity class among k nearest neigh-

bours using a performance opti-

mized value for k.

Asymptotically optimal; scale (metric) depen-

dent; slow testing.

Bayes plug-in Assign pattern to the class which

has the maximum estimated poste-

rior probability.

Yields simple classifiers (linear or quadratic) for

Gaussian distributions; sensitive to density esti-

mation errors.

Logistic classifier Maximum likelihood rule for logis-

tic (sigmoidal) posterior probabili-

ties.

Linear classifier; iterative procedure; optimal for

a family of different distributions (Gaussian);

suitable for mixed data types.

Parzen classifier Bayes plug-in rule for Parzen den-

sity estimates with performance op-

timized kernel.

Asymptotically optimal; scale (metric) depen-

dent; slow testing.

Fisher linear discriminant Linear classifier using MSE opti-

mization.

Simple and fast; similar to Bayes plug-in for

Gaussian distributions with identical covariance

matrices.

Binary decision tree Finds a set of thresholds for a

pattern-dependent sequence of fea-

tures.

Iterative training procedure; overtraining sensi-

tive; needs pruning; fast testing.

Perceptron Iterative optimization of a linear

classifier.

Sensitive to training parameters; may produce

confidence values.

Multi-layer perceptron

(Feed-forward neural network)

Iterative MSE optimization of two

or more layers of perceptrons (neu-

rons) using sigmoid transfer func-

tions.

Sensitive to training parameters; slow training;

nonlinear classification function; may produce

confidence values; overtraining sensitive; needs

regularization.

Radial basis network Iterative MSE optimization of a

feed-forward neural network with

at least one layer of neurons using

Gaussian-like transfer functions.

Sensitive to training parameters; nonlinear classi-

fication function; may produce confidence values;

overtraining sensitive; needs regularization; may

be robust to outliers.

Support vector classifier Maximizes the margin between the

classes by selecting a minimum

number of support vectors.

Scale (metric) dependent.; iterative; slow train-

ing; nonlinear; overtraining insensitive; good gen-

eralization performance.
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in order for this estimate to be reliable in predicting the future classifi-

cation performance, not only should the training set and the test set be

sufficiently large, but the training samples and the test samples must be

independent. This requirement of independent training and test samples

is still often overlooked in practice.

Independence is essential because when the same set is used for both training and

testing, called re-substitution or test-on-train, the resulting estimate of classifier

performance will be optimistically biased. To guarantee independence the available

data should be partitioned into two disjoint sets. Unfortunately “there are no good

guidelines available on how to divide the available samples into training and test

sets” (Jain et al., 2000, p. 25). A small training set results in a classifier that is

not likely to generalise to new unseen data. A small test set results in an error

estimate that has a large variance; i.e. if the process is repeated over and over using

different random splits of the available data, the variance of the error rate will be

large. Table 6.3 summarises common strategies for splitting the available data into

training and test sets and estimating the error rate.

A more detailed account of classifier performance, than the overall error rate, is

provided by the class-conditional error rates; i.e. the proportion of observations

from each class that are misclassified. A more detailed account still is provided by

the confusion matrix (Ripley, 1996, p. 75). Element nij of this matrix is a count of

the number of observations of class i that are classified as belonging to class j. In

the two-class case, where the two classes are denoted π1 and π2 and a classification

rule is known or has been estimated, the problem of classifying a new observation

can be formulated as a statistical hypothesis test (Fukunaga, 1990, p. 51). The null

and alternate hypotheses are:

H0 : The new observation belongs to class π1

HA : The new observation does not belong to class π1.

There are two types of error that can be made in deciding whether to accept or

reject the null hypothesis. These are summarised as follows (Freund, 1984, p. 282):

Do not reject H0 Reject H0

H0 is actually true Correct decision Type I error

H0 is actually false Type II error Correct decision
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Table 6.3: Commonly used error estimation methods (reproduced from Jain et al. (2000,
p. 26)).

Method Property Comments

Resubstitution
method

All the available data
is used for training as
well as testing; train-
ing and test sets are
the same.

Optimistically biased estimate,
especially when the ratio of
sample size to dimensionality
is small.

Holdout method Half the data is used
for training and the re-
maining data is used
for testing; training
and test sets are inde-
pendent.

Pessimistically biased esti-
mate; different partitionings
will give different estimates.

Leave-one-out method A classifier is designed
using (n− 1) samples
and evaluated on the
one remaining sam-
ple; this is repeated
n times with differ-
ent training sets of size
(n− 1).

Estimate is unbiased but it has
a large variance; large compu-
tational requirement because n
different classifiers have to be
designed.

Rotation method, n-
fold cross validation

A compromise be-
tween holdout and
leave-one-out meth-
ods; divide the
available samples into
P disjoint subsets,
1 ≤ P ≤ n. Use
(P − 1) subsets for
training and the re-
maining subset for
test.

Estimate has lower bias than
the holdout method and is
cheaper to implement than
leave-one-out method.

Bootstrap method Generate many boot-
strap sample sets of
size n by sampling
with replacement; sev-
eral estimators of the
error rate can be de-
fined (e.g., E0 and
E632) using the boot-
strap samples.

Bootstrap estimates can have
lower variance than the leave-
one-out method; computation-
ally more demanding; useful in
small sample size situations.
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The probability associated with making a type I error is denoted α and the prob-

ability associated with making a type II error is denoted β. The probability 1 − β

is called the power or sensitivity of the test. The probability 1 − α is called the

specificity of the test. In the general epidemiologic setting, where the interest is in

predicting disease, the two classes of interest π1 and π2 are negative (without dis-

ease) and positive (with disease) respectively. In this setting the confusion matrix

has the form:

True

class

Predicted class

negative positive

negative a b

positive c d

and can be used to estimate the sensitivity and specificity as well as several other

probabilities associated with classifier performance including (Bradley, 1996, p.

137):

1. The accuracy or correct classification rate (CCR) which is the proportion of

the total number of predictions that are correct:

accuracy = CCR =
a + d

a + b + c + d
.

2. The sensitivity or true positive rate (TPR) which is defined to be the propor-

tion of positives that are correctly classified:

sensitivity = TPR =
d

c + d
.

3. The specificity which is defined to be the proportion of negatives that are

correctly classified:

specificity =
a

a + b
.

4. The false positive rate (FPR) which is defined to be the proportion of negatives

that are incorrectly classified:

FPR =
b

a + b
= 1− specificity.

The confusion matrix and related measures summarise the performance of the classi-

fier for a given cutpoint. The cutpoint is the threshold at which a decision of positive
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or negative is made. A more complete summary of the performance of the classifier

is given by the area under the ROC (receiver operating characteristic) curve (Hos-

mer & Lemeshow, 2000, p. 160). The ROC curve (see Figure 6.2), which originates

from signal detection theory, is a plot of the probability of detecting a false positive

(1− specificity) against the probability of detecting a true positive (sensitivity) over

the entire range of possible cutpoints. The line from (0, 0) to (1, 1) is the ROC curve

of a completely random classifier, one that randomly allocates a new observation to

one of the two classes; e.g. in the case of equal prior probabilities10 the behaviour of

the classifier is equivalent to tossing a coin to predict class membership. The area

under the ROC curve (AUC) is a measure of the discrimination provided by a classi-

fier. A value of 0.5 corresponds to a random classifier and a value of 1 corresponds to

the perfect classifier. A qualitative description for other values of the AUC is given

in Table 6.4. An empirical ROC curve is obtained from the test set by plotting the

FPR against the TPR for a range of cutpoints of the classifier. This empirical ROC

curve has a stepped appearance (for example see Figure 6.16) because of the finite

number of observations in the test set. Numerical integration, e.g. the trapezoidal

rule (Bradley, 1997, p. 1146), provides an estimate of the AUC. A commonly used

method of estimating the variability of this estimate is to compute the standard

error of the Wilcoxon statistic (Bradley, 1997, p. 1147):

ŜE (θ) =

√
θ (1− θ) + (np − 1) (Q1 − θ2) + (nn − 1) (Q2 − θ2)

npnn
, (6.1)

where θ = ˆAUC (the estimate of the AUC), Q1 = θ/ (2− θ), Q2 = 2θ2/ (1 + θ), np

is the number of positive examples, and nn is the number of negative examples.

The AUC is“the probability that a randomly chosen positive example will be ranked

with greater suspicion than a randomly chosen normal [negative] example” (Bradley,

1996, p. 160). It is a measure of classifier performance that is invariant to the

prior probabilities of class membership (Bradley, 1997, p. 1145). This is in stark

contrast to the confusion matrix and associated measures. If two classifiers are

being compared on the basis of sensitivity and specificity, for example, differences

in performance between them might be due entirely to the population priors (or

estimates thereof) used to train each.

10 Prior probabilities, or priors, are the “probabilities specified before seeing the data, and so
based on prior experience or belief. Commonly these are the prior probabilities. . . of the classes”
(Ripley, 1996, p. 352).
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Figure 6.2: An example of an ROC (receiver operating characteristic) curve.

Table 6.4: Qualitative interpretation of the AUC (Hosmer & Lemeshow, 2000, p. 162).

AUC Meaning

0.5 no discrimination
0.7 ≤ AUC < 0.8 acceptable discrimination
0.8 ≤ AUC < 0.9 excellent discrimination
AUC ≥ 0.9 outstanding discrimination
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6.4 Case study: A MACs-based classifier for Pap

smear screening

This section describes a study, the purpose of which is to demonstrate the practical

application of the methods described in the preceding chapters. The study comprises

two experiments. The first experiment evaluates the performance of a classifier

trained and evaluated using features purposefully designed to measure chromatin

margination. The second experiment determines a subset of chromatin features,

from amongst those computed, that have the most discriminatory power for the Pap

smear classification problem. The order in which the experiments were conducted

is the order in which they are reported here. The decision to measure chromatin

margination is based on a pilot study—not reported here—based on a completely

different set of data.

6.4.1 Cancer of the uterine cervix

Cancers of the uterine cervix (neck of the womb) are “thought to derive from the

epithelium near the opening of the cervix” (Alberts et al., 2002, p. 1318). Epithelia

are the tissues that line all the cavities and free surfaces of the body (Alberts,

Johnson, Lewis, Raff, Roberts & Walter, 2002, p. 1066). As shown in Figure 6.3,

the epithelia of the cervix can be divided into two types: the squamous epithelium

of the ectocervix and the columnar epithelium of the endocervix. The area of the

junction between them is called the transformation zone and “is of considerable

importance in the genesis of carcinoma of the uterine cervix” (Koss, 1992, p. 265).

The anatomic location of the transformation zone may vary considerably and is, to

a significant extent, age dependent (Koss, 1992, p. 266).

The squamous epithelium is multi-layered. Three principal layers can be recognised

(Koss, 1992, p. 91): (1) the basal layer; (2) the intermediate layers; and (3) the

superficial layers (see Figure 6.4). Superficial cells are the most mature squamous

cells. Parabasal and basal cells, on the other hand, are immature squamous cells. In

a normal Pap smear usually only the upper few layers of the squamous epithelium are

removed and so the immature cells near the base of the epithelium are not sampled

(Cibas, 2003).

Squamous cell carcinoma is a form a cervical cancer that originates in the squamous

epithelium. Adenocarcinoma is a form that originates in the glandular (columnar)

epithelium. Eighty-five percent of all cervical cancers are squamous cell carcino-
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Figure 6.3: Epithelia of the cervix.
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Figure 6.4: Cells of the squamous epithelium (freehand adaptation of Koss (1992, Figure
3-4)).
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mas, whilst the remaining 15 percent are glandular or mixed (AHTAC, 1998, p.

4). “Screening using the Pap smear test has a much greater chance of preventing

squamous than glandular cancer” (AHTAC, 1998, p. 4).

There is excellent evidence to suggest that invasive squamous cell carcinoma de-

velops from non-invasive lesions known as carcinoma in situ (CIS) (Koss, 1992, p.

371). It is also thought that it may develop from related precancerous intraepithe-

lial abnormalities known as cervical intraepithelial neoplasia (CIN). These lesions

are graded according to the degree of abnormality. Grade I corresponds to mild dys-

plasia, grade II to moderate dysplasia, and grade III to both severe dysplasia and

carcinoma in situ (CIS)(Koss, 1992, p. 390). Precancerous intraepithelial abnor-

malities, regardless of grade, do not endanger the life of the individual per se. The

onset of danger is the moment when the process breaks out of the epithelium and

invades the surrounding tissues, and in particular the lymphatic and blood vessels,

leading to metastatic spread of the disease (Koss, 1992, p. 387). It is worth noting

that for all precancerous intraepithelial abnormalities (Koss, 1992, p. 390):

there are three possible outcomes: (1) the lesion may progress directly

to invasive epidermoid carcinoma; (2) the lesion may remain confined

to the epithelium. . . or (3) the lesion may disappear either after a minor

diagnostic procedure or spontaneously.. . . The chances for disappearance

are far higher for the CIN grade I. . . than for CIN III lesions.

In the United States, more than 90% of laboratories use the Bethesda System11, in

some form, rather than the CIN system for reporting the results of cervical cytology

(Solomon et al., 2002, p. 2114). In this system precancerous squamous lesions

are called squamous intraepithelial lesions. Mild dysplasias (CIN I) are classified

as low-grade squamous intraepithelial lesions (LSIL), whilst moderate and severe

dysplasias, and carcinoma in situ (CIN II and CIN III) are collectively classified as

high-grade squamous intraepithelial lesions (HSIL) (Solomon et al., 2002, p. 2116).

11 The Bethesda System“was developed at a National Cancer Institute (NCI)-sponsored workshop
in December 1988 to provide uniform diagnostic terminology that would facilitate communica-
tion between the laboratory and the clinician.. . . Subsequently, a second workshop was held in
April 1991 to evaluate the impact of TBS in actual practice and to amend and modify it where
needed” (Kurman & Solomon, 1994, p. ix). In April 2001 a third workshop was held which
reviewed issues regarding terminology and reporting of cervical cytology.
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6.4.2 Cells of interest for MAC analysis

Recall from Section 1.1 that a typical Pap smear contains cells sampled from in

and around the cervix. Thus the smear may or may not contain endocervical cells.

Recent studies suggest that an endocervical component is not essential to making a

diagnosis (Cibas, 2003). Indeed, according to the 2001 Bethesda system for report-

ing cervical/vaginal cytologic diagnoses, “a smear without endocervical cells is not

considered unsatisfactory, although the absence of an endocervical/transformation

zone component is mentioned as a ‘quality indicator’” (Cibas, 2003).

With regard to the MACs phenomenon Bengtsson & Nordin (1994, p. 38) state

that:

there is substantial evidence in the quantitative cytology literature that. . .

malignancy-associated changes. . . do exist.. . . They are found in interme-

diate cells, metaplastic cells, and endocervical cells.

Given that endocervical cells are likely to be absent or present only in small num-

bers on a typical Pap smear, this suggests that intermediate cells offer the best

opportunity for building a MACs-based classifier for automated Pap smear screen-

ing. Indeed, in a cervical MACs study reported by Isenstein et al. (1995, p. 90) the

authors state that:

intermediate cells were measured for MAC analysis because they are

abundant on most slides and it should be relatively easy to devise a very

accurate automatic classification scheme to detect intermediate cells.

Koss (1992, p. 258) states that:

the nuclei of the intermediate cells measures about 8μm in average di-

ameter, are round or oval, with a clearly defined nuclear membrane sur-

rounding well-preserved homogeneous nucleoplasm. Chromocenters and

sex chromatin may be observed within such nuclei.

In comparison the nuclei of superficial cells are pyknotic—i.e. condensed (dark) and

shrunken—with a nuclear diameter that is rarely more than 5μm (Koss, 1992, p.

257), and the nuclei of parabasal cells are variably sized but “usually larger than

that of an intermediate cell” (Cibas, 2003).
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6.4.3 Cytology slides

The image data used in this study originate from a set of 148 slides obtained in

late 2001 from Jenny Halford, Manager of the Cytology Department, Queensland

Medical Laboratory12 (QML). The slides are Papanicolaou-stained cervical smears.

One of the slides is shown in Figure 6.5. The slides are a sample of routine smears

processed by the QML for 143 different patients: 140 patients×1 slide, 2 patients ×3

slides, and 1 patient ×2 slides. The slides were prepared using the AutoCyte PREP�

monolayer technology rather than from direct smears of the sampled cells13. The

technology requires that, at the time of sampling, the cells on the collection device

be eluted into a phial of preservative liquid. The phial is then processed by the

AutoCyte PREP� system. The system removes a large portion of blood, mucus,

and other debris and deposits cells onto a slide in a mono/thin-layer. From the

point of view of screening, mono/thin-layer prepared slides have several advantages

(Grohs, Zahniser & Geyer, 1994, p. 182):

In thinly smeared preparations, cell overlap is minimal and the cells are

more likely to be in the same focal plane, thus requiring little focusing

even when using a 40× objective. This speeds up slide examination by

both visual and automatic techniques. The more uniform distribution of

cellular material in a thin layer makes the screening process easier.

QML’s diagnosis for each slide is given in Appendix G. In summary, of the 148

slides 101 are negative, 1 is CIN I, 34 are CIN II, 3 are CIN II/III, and 9 are CIN

III. A slide is given the diagnosis negative if it is deemed to contain wholly normal

cells. If, on the other hand, the slide is found to contain abnormal (dysplastic) cells

then it is given the diagnosis CIN and a grade from I to III. For the purpose of this

study each slide was assigned to one of two classes: class 0 (normal class) if the slide

is negative or class 1 (abnormal/suspicious class) if the slide is CIN I+.

6.4.4 Image acquisition

The Cytometrics Project custom cytometer was used to capture all of the cell nu-

clei images for this study. The cytometer is an AcCell-SAVANT�/research system

12 “QML is one of the largest pathology practices in Australia. Wholly Australian owned, QML
services an area throughout Queensland, northern New South Wales and the Northern Territory
and offers a comprehensive range of testing services” (http://www.qml.com.au).

13 In 1999, the AutoCyte PREP� System was approved by the FDA as a replacement for the
conventional Pap smear as a method for use in the screening of cervical slides.
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Figure 6.5: One of the AutoCyte slides used in the study.

installed with proprietary CSSIP segmentation software. The underlying hardware

is an AcCell� 2000 Workstation (see Figure 6.6). The system hardware components

include a robotic slide loader, a barcode reader, an Olympus14 BX40 microscope fit-

ted with a motor to control focus, an automated stage, a digital video camera15, and

a computer. The AcCell-SAVANT� was purchased from AccuMed16 International

Inc. by CSSIP in late 1999. The purchase agreement also granted CSSIP a license

to use AccuMed’s proprietary software for cell capture and analysis. The image

capture and measurement component of the software, called ACQUIRE, is designed

to scan and capture images from Thionin-Feulgen stained slides only (brightfield

microscopy). To enable CSSIP to replace the segmentation routines in ACQUIRE

with its own, AccuMed provided CSSIP with a special version of the ACQUIRE

executable. In this version all of the AccuMed segmentation code is located in a

dynamic link library (DLL)17 separate from the main executable. In 2000 CSSIP

wrote a replacement for this DLL based on its own proprietary algorithms (Bamford

14 Olympus Optical Co., Ltd, headquartered in Tokyo, Japan.
15 DALSTAR 1M15 CCD camera. The camera can capture 12-bit images with 1k × 1k spatial

resolution. The pixel size is 14μm × 14μm. The camera is marketed by DALSA Corporation
headquartered in Waterloo, Ontario, Canada.

16 AccuMed International Inc. was acquired by Ampersand Medical Corporation in February 2001.
17 A Dynamic Link Library (DLL) is a file of code containing functions that can be called from

other executable code (either an application or another DLL). Programmers use DLLs to provide
code that they can reuse and to parcel out distinct jobs. Unlike an executable (EXE) file, a
DLL cannot be directly run. DLLs must be called from other code that is already executing.
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Figure 6.6: AcCell� 2000 workstation (http://www.accumed.com).

& Lovell, 1999; Bamford & Jackway, 2001). The new DLL enables the cytometer

to scan and measure Papanicolaou stained slides using a 40× objective lens with a

numerical aperture18 of 0.75. The segmentation code requires that the cytometer

microscope be fitted with a Balzers19 FILTRAFLEX-K K55 broad bandpass filter.

The purpose of the filter is to increase the contrast of the cells. The filter has a

peak transmission of ≥ 70% at a wavelength of 550nm (green part of the visible

light spectrum) and a half bandwidth of approximately 50nm.

In January 2002 the Cytometrics Project cytometer was programmed to automat-

ically perform an exhaustive scan of each QML slide, at 40×, and to capture and

archive digitised images of the nuclei of intermediate cells. To eliminate any bias

that might be introduced by the order of scanning, each slide was assigned a unique

random integer (barcode sticker) between 0 and 147, and the slides were scanned

in barcode order: 0, 1, . . . 147 (see Appendix G). Each slide took on the order of

4 or 5 hours to scan depending on the density of the cell deposition. A histogram

showing the number of nucleus-like objects archived by the cytometer for each slide

is shown in Figure 6.7. The ACQUIRE software limited20 the maximum number of

nucleus-like objects collected per slide to 10080. Figures 6.8 and 6.9 show sample

galleries of objects collected by the cytometer for slides 0 and 1 respectively.

6.4.5 Image processing and analysis

DImPAL (see Appendix A) was used to perform all of the image processing and

analysis of the images acquired by the cytometer. In particular it was used to per-

form chromatin segmentation, artefact rejection, and feature measurement. The

18 The minimum distance δ that can be resolved by the microscope (i.e. the resolving power of the
microscope) is dictated by the numerical aperture (NA) of the objective and the wavelength λ
of the light used (Lacey, 1999, p. 6): δ = 0.61λ/NA.

19 Unaxis Balzers Ltd. Optics Div. (Formerly Balzers Thin Films) PO Box 1000 FL-9496 Balzers
Liechtenstein.

20 This appears to be a bug in the licensed portion of the software.
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Figure 6.7: Number of nuclei-like objects captured per slide by the cytometer (red bars)
and the number of objects retained after artefact rejection (blue bars).
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Figure 6.8: Sample images captured by the cytometer: the first 64 images captured
from slide 0.
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Figure 6.9: Sample images captured by the cytometer: the first 64 images captured
from slide 1.
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whole process of segmenting the chromatin particles within every nucleus-like ob-

ject archived by the cytometer, performing artefact rejection, and computing the

chromatin and nucleus features required approximately 75.7 hours of execution time

on a 450 MHz Intel21 Pentium III computer with 256MB of RAM.

6.4.5.1 Artefact rejection

“In Papanicolaou-stained cells, overlapping and/or folded cytoplasm, cellular debris,

and so on present a formidable problem in object segmentation”(Palcic & MacAulay,

1994a, p. 57). Consequently many of the objects collected by the cytometer are not

in fact intermediate cell nuclei. The cytometer guarantees only that the objects

are of approximately the right size and shape (8μm in diameter, and oval-shaped).

Bengtsson & Nordin (1994, p. 40) note that “ensuring that the object which is

analyzed really is a cell and not something else is one of the most important and

difficult problems in automated cytology”. One of the advantages of the MACs

approach to screening, as compared to the RE approach, is that it is not necessary

to analyse all of the cells collected from the slide. It is possible to reject doubtful

objects (artefacts) because of the large number of cells available for analysis (Palcic

& MacAulay, 1994a, p. 59).

In this study, a very simple strategy for artefact rejection was adopted based on (i)

the shape of the object and (ii) the number and size of dark particles it contains.

The second criterion is motivated by the observation of Koss (1992, p. 258) that

within the nuclei of intermediate cells “chromocenters and sex chromatin may be

observed”. Specifically the rejection strategy involves:

1. Computing the G-shape factor (see Appendix H) for each nucleus-like object

and rejecting those objects that do not satisfy a prescribed range of values;

and

2. Applying the (preferred embodiment of the) chromatin segmentation algorithm

(see Section 4.4.3) to each nucleus-like object in turn to segment the dark

particles (chromocentres), and discarding those objects that do not contain a

prescribed number of particles, or that contain very large particles.

In this study the minimum number of particles was chosen to be 5, the largest

permissible particle was chosen to be no more than 30% of the area of the nucleus,

21 Intel Corporation, headquartered in Santa Clara, California.
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and the value G had to satisfy: 0.8 ≤ G ≤ 1.3. These parameters were determined

by examining a few hundred objects, by eye, collected by the cytometer for slide 0.

The number of nucleus-like objects retained for each slide after applying this artefact

rejection scheme is shown in Figure 6.7. Figures 6.10 and 6.11 show sample galleries

of objects retained for slides 0 and 1 respectively. This simple artefact rejection

scheme is not perfect because it still admits a number of leukocytes (blood cells);

e.g. objects 3 and 5 in Figure 6.10. However, the majority of retained objects do

appear to be intermediate cell nuclei.

6.4.5.2 Nucleus and chromatin features

Table 6.5 lists the features measured by DImPAL for each nucleus. Table 6.6 lists

the features measured for each chromatin particle within a nucleus.

6.4.5.3 Nucleus statistics

Table 6.7 lists the blob statistics computed for each nucleus by DImPAL. For statis-

tics N21 and N22 the median and interquartile range (IQR) were computed rather

than the mean and standard deviation. The reason for this is as follows. The maxi-

mum dynamics value (Grimaud, 1992, p. 297) is defined to be the difference between

the highest grey-value and the lowest grey-value in the image. Thus small errors

in the segmentation of the nucleus (performed by the cytometer) are likely to lead

to highly variable estimates of this dynamics value. This in turn can significantly

affect the value of the mean and variance. It does not, however, affect the median

and IQR.

6.4.6 Culling of slides unsuitable for MAC analysis

Palcic & MacAulay (1994b, p. 159) state in relation to the MAC phenomenon that

for most [slide] features, a large number of cells must be measured to

achieve a constant value of the feature mean and standard deviation. The

exact number of cells that must be measured to achieve these constant

values depends on the class of cells and the nuclear feature.

They have determined experimentally that “500 cells is a minimum number of nuclei

that must be measured to achieve a relatively constant MAC determination” (Palcic
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Figure 6.10: Sample images after artefact rejection: the first 64 images retained from
slide 0.
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Figure 6.11: Sample images after artefact rejection: the first 64 images retained from
slide 1.
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Table 6.5: Nucleus measurements.

Measurement Inputs Method

N1 Area Binary mask of the
nucleus.

Equation 5.4

N2 Perimeter Binary mask of the
nucleus.

Equation 5.7

N3 3D connectivity num-
ber

Grey-scale image cor-
responding to the bi-
nary mask of the nu-
cleus.

(Serra, 1988c, p. 314)

N4 Surface area Grey-scale image cor-
responding to the bi-
nary mask of the nu-
cleus.

Equation 5.11

N5 Volume Grey-scale image cor-
responding to the bi-
nary mask of the nu-
cleus.

Sum of the grey val-
ues.

N6 Mean grey-level Grey-scale image cor-
responding to the bi-
nary mask of the nu-
cleus.

Mean of the grey val-
ues.

N7 G shape factor Binary mask of the
nucleus.

Appendix H
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Table 6.6: Blob measurements.

Measurement Inputs Method

B1 Area Binary mask of the
blob.

Equation 5.4

B2 Perimeter Binary mask of the
blob.

Equation 5.7

B3 3D connectivity num-
ber

Grey-scale image cor-
responding to the bi-
nary mask of the blob.

(Serra, 1988c, p. 314)

B4 Surface area Grey-scale image cor-
responding to the bi-
nary mask of the blob.

Equation 5.11

B5 Volume Grey-scale image cor-
responding to the bi-
nary mask of the blob.

Sum of the grey val-
ues.

B6 Mean grey-level Grey-scale image cor-
responding to the bi-
nary mask of the blob.

Mean of the grey val-
ues.

B7 Dynamics value Grey-scale image cor-
responding to the bi-
nary mask of the nu-
cleus.

The dynamics (Gri-
maud, 1992) of the re-
gional minimum asso-
ciated with the blob.

B8 Mean distance to nu-
cleus boundary

Binary mask of the
blob plus the distance
transform of the bi-
nary mask of the nu-
cleus.

Mean of the values in
the distance transform
of the nucleus that
correspond to the bi-
nary mask of the blob.
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Table 6.7: Blob statistics computed for each nucleus.

Statistic Inputs

N8 number of blobs

N9, N10 mean and standard
deviation

blob areas (B1)

N11, N12 mean and standard
deviation

blob perimeters (B2)

N13, N14 mean and standard
deviation

blob 3D connectivity numbers
(B3)

N15, N16 mean and standard
deviation

blob surface areas (B4)

N17, N18 mean and standard
deviation

blob volumes (B5)

N19, N20 mean and standard
deviation

blob mean grey-levels (B6)

N21, N22 median and in-
terquartile range

blob dynamics (B7)

N23, N24 mean and standard
deviation

blob mean distances to boundary
(B8)

N25 sum blob areas (B1)

N26 sum blob surface areas (B4)

N27 sum blob volumes (B5)

N28 sum blob mean grey-levels (B6)
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& MacAulay, 1994b, p. 160). Consequently, in the following experiments it was

decided to use only those slides for which at least 500 nuclei were measured. The

nuclei counts (after artefact rejection) for each slide are as follows (these correspond

to the blue bars on the histogram shown in Figure 6.7):

[0] 643 5169 2786 1422 1251 3792 2670 1642 1455 1145 840 1176 2823 2581 2392

[15] 1843 3305 1422 748 2911 3641 256 2808 3602 661 2442 3465 2310 5885 2478

[30] 222 2668 4102 2425 2488 2408 4051 223 1269 4685 4173 901 1476 56 5283

[45] 2152 3069 1196 1161 1303 3927 1858 3131 973 2091 1639 3510 2015 1922 2456

[60] 2263 2315 1137 4382 257 1578 2255 3301 3388 4788 2506 2593 1357 2508 3421

[77] 3522 2237 5438 4600 2254 2191 2506 1221 2787 2736 1598 3919 4664 2400 2255

[90] 3923 781 1558 1389 2023 5975 4324 2154 1028 2987 713 383 1332 2712 1669

[105] 2079 2482 4780 2472 1778 1068 3826 2785 1189 2329 999 2493 3004 1513 2276

[120] 1260 1620 1456 751 958 81 1432 1592 2972 1273 3599 3033 1362 3811 1656

[135] 2904 1527 1756 3177 1282 817 2981 4983 1103 1850 3625 1467 1511

This suggests that slides 21 (CIN 2), 30 (CIN 2/3), 37 (CIN 2), 43 (CIN 2), 64 (CIN

2), 101 (Negative), and 125 (Negative) be excluded from the experiments. Each of

these slides was visually reviewed and all, with the exception of 101, were found to

contain a scanty number of cells. The QML slides were specifically prepared for rare

event (diagnostic cell) screening and not for a MACs-based review. In this scenario,

if one or more diagnostic cells are found on the slide it does not matter that the slide

is scanty. However, if the slide is negative then scantiness suggests that the specimen

is inadequate even for rare event screening. This appears to be the case for slide

125. In the case of slide 101 the slide is not scanty. However, an intermittent bug

in the focusing algorithm in the cytometer appears to have resulted in the capture

of several thousand poorly focused objects for this slide22. Consequently very few

objects (81) were retained after artefact rejection.

Of the remaining slides, it was decided to exclude 84 (patient 99-90006) and 123

(patient 00-22697) so that the data consists of only one slide per patient (statisti-

cally independent observations). These two slides were chosen simply because the

remaining slide for each patient, 14 and 120 respectively, bears an official QML

sticker. To summarise, of the 148 slides scanned by the cytometer the following 9

slides were excluded from the experiments: 21, 30, 37, 43, 64, 84, 101, 123, and 125.

This leaves 40 abnormals and 99 normals.

22 Ideally, the slide should have been re-scanned. However, given that the slide data were processed
several months after the initial scanning, and that by this time the cytometer software had been
significantly changed, it was decided that it was simpler to omit the slide from the study.
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6.4.7 Classification using logistic regression

The sampling paradigm is the traditional view of statistical pattern recognition. In

this view (Ripley, 1996, p. 6)

the training set is regarded as a sample from a population of possi-

ble examples, and the statistical similarities of each class extracted, or

more precisely the significant differences between classes are found. A

parametric or non-parametric model is constructed for the distribution

of features for examples from each class, and statistical decision theory

used to find an optimal classification.

Another view of statistical pattern recognition is the diagnostic paradigm. In this

view the interest is not in what the classes look like but rather, given an example,

(Ripley, 1996, p. 7)

in what the distribution over the classes is for similar examples. The

main method of this approach became known as logistic discrimina-

tion. . . , but was never widely known even in statistics and. . . [before

1996] appears in no pattern recognition text. This is [also] the main

approach of the neural network school.

Logistic discrimination is the approach adopted for this study. More specifically, the

logistic regression model is used in this study as the basis for classification. Logistic

regression is popularly used in the analysis of epidemiologic data (Kleinbaum, 1994,

p. 4). There are several reasons for the attractiveness of logistic discrimination

(Anderson, 1982, p. 169):

1. few distributional assumptions are made;

2. it is applicable when the predictor variables are continuous, discrete, or both;

and

3. it is very easy to use because once the model parameters have been estimated,

the classification of a new observation requires only the calculation of a linear

function.

Logistic regression analysis is concerned with describing the relationship between a

binary or dichotomous response variable and one or more predictor (explanatory)
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variables. The fact that the response variable is dichotomous is what distinguishes

logistic regression from ordinary linear regression. In any regression problem the

key quantity is the mean value of the response variable given the values of the

predictor variables (Hosmer & Lemeshow, 2000, p. 4). Let Y be a random variable

denoting the response and let the vector xT = (x1, x2, . . . , xr) denote a collection of

r independent predictor variables. In linear regression the assumption is that the

mean of the response variable has the form

E (Y |x) = β0 + β1x1 + β2x2 + · · ·+ βrxr

where the βi are the parameters to be estimated. The term linear comes from

the fact that the mean is a linear function of the unknown parameters (Johnson &

Wichern, 1988, p. 274). Given n independent observations (xi, Yi), i = 1, 2, . . . , n,

the estimation of the parameters βi is done using the least squares estimation method

(Johnson & Wichern, 1988, p. 274). Under the tentative assumption that the

error terms associated with the fit have normal distribution, this coincides with the

maximum likelihood estimate (Johnson & Wichern, 1988, p. 284). Although it is

possible to fit this model when Y is dichotomous this violates the underlying model

assumptions and leads to impossible predicted values (see Hosmer & Lemeshow

(2000, Chapter 1) for details). Rather than trying to predict the value of the mean

response, logistic regression seeks to predict the log-odds of the response having one

particular value versus the other value. If the response variable Y is coded such

that it only takes on the values 0 and 1 then the odds of the response having the

value 1 is P (Y = 1) / [1− P (Y = 1)]. Taking the logarithm of this ratio produces a

response that can in principle vary between −∞ and ∞. This suggests the model

(Hosmer & Lemeshow, 2000, p. 31):

logit [P (Y = 1 |x)] = β0 + β1x1 + β2x2 + · · ·+ βrxr (6.2)

where the logit transform is defined

logit (x) = ln

(
x

1− x

)
. (6.3)

Equation 6.2 can be written

P (Y = 1 |x) =
e(β0+β1x1+β2x2+···+βrxr)

1 + e(β0+β1x1+β2x2+···+βrxr)
. (6.4)
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Figure 6.12: The logistic function f (x) = ex/ (1 + ex) restricted to the domain
[−10, 10].

Equation 6.4 is called the logistic regression model. Unfortunately the least squares

method cannot be used to fit this model (Hosmer & Lemeshow, 2000, p. 8). Instead

maximum likelihood estimation is used (see Section 6.3.2.2).

The function

f (x) =
ex

(1 + ex)
(6.5)

appearing on the right-hand-side of equation 6.4 is called the logistic function. Ac-

cording to Kleinbaum (1994, p. 5), one of the reasons why logistic regression is

appealing to epidemiologists is the S-shape of the logistic function (see Figure 6.12).

If the value 1 denotes disease and the value 0 no disease then f(x) represents the

risk for a given value of x. For low values of x the risk factor is minimal, but once

x exceeds some lower threshold the risk begins to sharply increase over a certain

range and to attain a maximum. “This threshold idea is thought by epidemiologists

to apply to a variety of disease conditions” (Kleinbaum, 1994, p. 7).

6.4.7.1 Using a fitted logistic regression model as a classifier

For any given observation xi the fitted logistic regression model returns an estimate

of the probability that the response is in fact 1. This estimated probability can be

used to classify the observation. To do this it necessary to define a value c, called the

cutpoint, and to compare the estimated probability with this value. If the estimated

probability exceeds c then the observation is deemed to belong to class 1; otherwise

it is deemed to belong to class 0. The most commonly used cutpoint is 0.5 (Hosmer
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& Lemeshow, 2000, p. 156). By varying the cutpoint between 0 and 1 an empirical

ROC curve can be estimated from a given set of observations.

6.4.7.2 Comparison with Fisher’s linear discriminant function

Another, widely-used, statistical approach to the two-class classification problem

is Fisher’s linear discriminant function (Johnson & Wichern, 1988, p. 473). The

method requires no distributional assumptions but does assume that the two classes

have the same covariance matrix. It is known to be optimal for multivariate normal

and some other distributions (Anderson, 1982, p. 170). However, it is also known

that Fisher’s linear discriminant function can behave very poorly when the predictor

variables are a mix of discrete and continuous variables (Johnson & Wichern, 1988,

p. 527). Consequently it can be argued, e.g. Press & Wilson (1978), that logistic

regression is more statistically robust than linear discriminant analysis.

6.4.7.3 Logistic regression analysis software

The software used to perform the logistic regression analysis in this study is R

Version 1.7.1. More specifically several R programs were written, by the author, to

perform the required analyses. Listings for these programs appear in Appendix I

(Experiment 1), Appendix J (Experiment 2), and Appendix K (ROC curve analysis).

R is very similar to S-PLUS (both have already been mentioned in Section 6.3.3).

Although there are some important differences between the two, much of the code

written for S also runs unaltered in R. Modern Applied Statistics with S-PLUS (Ven-

ables & Ripley, 1999) is the canonical reference for statistical analysis using S-PLUS

and R. ’R’ Complements to Modern Applied Statistics with S-PLUS (Venables &

Ripley, 2001) is a supplement to this reference written for users of R. The soft-

ware written to accompany the book and the data referenced in the book are freely

available for download as a package/library called MASS. Both the R software and

the MASS library can be downloaded from the CRAN (comprehensive R archive

network) mirror sites: http://cran.r-project.org/mirrors.html.
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6.4.8 Sample size considerations

If all of the data (40 abnormals and 99 normals) were used to train a classifier then

according to the rule of thumb stated at the end of Section 6.3.1, at most

n =

⌊
40

10

⌋
= 4

features could be used in the classifier. Unfortunately then there would be no way

to effectively evaluate the performance of the classifier. Testing it on the same data

used for training (the resubstitution method) is of course unsatisfactory because

the estimate of performance will be optimistically biased. An unbiased method

for estimating the performance that permits nearly all of the data to be used for

training, is the leave-one-out method. Using this method, at most

n =

⌊
40− 1

10

⌋
= 3

features can be used in the classifier (to avoid the curse of dimensionality). This is

the method used in the first of two experiments described below. The experiment

evaluates the performance of a classifier defined in terms of three a priori selected

features.

In the second experiment, for reasons explained later, the holdout procedure rather

than the leave-one-out procedure is used. In fact multiple repetitions of the holdout

procedure (called the repeated holdout method) with stratified random sampling are

used. In any given repetition a proportion h of the normals and the same proportion

h of the abnormals are held out (stratified sample). This suggests then that at most

n =

⌊
(1− h)× 40

10

⌋
features can be used in the classifier. If h = 1

4
then n = 3. The larger the holdout

proportion the smaller is n; e.g. for h = 1
3
, n = 2.

6.4.9 Experiment 1: Classification with a single nucleus-

feature histogram

The aim of this experiment was to build and evaluate a logistic classifier based

on slide features derived from a single chromatin feature purposefully designed to
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measure chromatin margination. The margination of chromatin is one of the mor-

phological changes associated with apoptosis (a form of cell death) and is charac-

terised by the packing of chromatin into smooth masses applied against the nuclear

membrane (Majno & Joris, 1995, p. 7). Young et al. (1986, p. 467) state that

chromatin “margination is a relevant indicator of the state of [a] cell in certain dis-

ease processes”. Of particular interest is the fact that chromatin margination is also

observed in the nuclei of cancer cells. Koss (1992, p. 132) states that:

fixed and stained nuclei of cancer cells examined in light microscopy often

display coarse, dense granularity that is not usually present in normal

cells. . . . The granular material may be distributed along the nuclear

envelope.

Given that disturbances in mitotic23 activity are also characteristic of precancerous

lesions (Koss, 1992, p. 142, 390), this suggests that margination might be a useful

feature for discriminating between normal and abnormal Pap smear slides. Young et

al. (1986, p. 470) proposed a method for quantifying chromatin margination based

on:

computing the average optical density per pixel in a series of concentric

“rings” that begin at the outside boundary and move inward toward the

center of the nucleus. These rings are formed by beginning with the

original nuclear contour and then considering the successive differences

between the contour and its eroded versions.

A more direct measure of margination is possible based on chromatin segmentation.

This is the motivation behind the definition of feature B8. It is computed from

the cookie-cutting-distance illustrated in Figure 6.13. This chromatin feature is a

relational/contextual feature characterising the distance of a chromatin blob to the

nucleus boundary. The median of B8 is a nucleus feature, hereinafter referred to as

feature M , characterising the chromatin margination within the nucleus. A typical

box-and-whisker plot24 of M for a slide is shown in Figure 6.14.

23 Mitosis refers to the process of “division of the nucleus of a eucaryotic cell, involving conden-
sation of the DNA into visible chromosomes, and separation of the duplicated chromosomes to
form two identical sets” (Alberts et al., 2002, p. G:23).

24 A box-and-whisker plot “is a way to look at the overall shape of a set of data. The central
box shows the data between the ‘hinges’ (roughly quartiles), with the median represented by
a line. ‘Whiskers’ go out to the extremes of the data, and very extreme points are shown by
themselves” (Venables & Ripley, 1999, p. 122).
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(a) (b) (c)

(d) (e) (f)

Figure 6.13: Obtaining the cookie-cutting-distance used to compute B8. (a) Nucleus
image from the cytometer. (b) Corresponding mask from the cytometer. (c) Chromatin
segmentation. (d) Chromatin blob masks. (e) Distance transform of the nucleus mask
displayed using a heat colour map. (f) Portions of (e) cut out by the blob masks.
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40 60 80 100 120 140

Figure 6.14: Box-and-whisker plot of the feature M computed for each nucleus on
slide 6.

Rather than computing summary statistics of a nucleus feature for a slide to obtain

slide features, an alternative is to:

1. compute a relative frequency histogram for a given feature (choosing appro-

priate bin widths); and

2. to use each bin as a slide feature.

This was done for the feature M . A relative frequency histogram was computed for

each slide using a bin width of 64 to ensure good coverage in at least three bins.

The following code fragment shows how this was done in DImPAL for slide 6:

stats = statistics(qac006_nucleus_blob_mean_distances_to_boundary)

write(histogram(byte(floor(stats.median/64+0.5)))/

attributes(qac006_nucleus_blob_mean_distances_to_boundary).number_of_layers,

"../measurements/qac006_nucleus_blob_mean_distances_to_boundary_freq.dat")

For the 139 slides used in this experiment this yielded frequencies in up to five bins.

These bins are hereinafter referred to as slide features F1, F2, F3, F4, and F5

respectively. Split box-and-whisker plots for these features (split by class) are shown

in Figure 6.15. The first three features were then used as the predictor variables

in a logistic regression classifier. To evaluate the performance of the classifier the

leave-one-out method was used. This involves:
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1. Starting with all of the 139 observations;

2. Omitting a single observation (the holdout observation);

3. Fitting the logistic regression model using the remaining 138 observations (on

three variables);

4. Using the fitted model to predict the probability for the holdout observation;

and

5. Repeating steps 1 to 4 until all 139 observations have been classified.

A listing of the R program, written by the author, to perform this analysis is show in

Appendix I. The logistic regression model is fitted in R as a generalised linear model

(glm) based on the binomial distribution with the logit transform as the canonical

link (see Venables & Ripley (1999, p. 212)). The following code fragment shows

how the logistic regression classifier is fitted:

analysis <- glm(Class~F1+F2+F3,

family=binomial(link=logit),

data=training.set,

weights=training.set.weights)

The weights argument permits a vector of weights to be passed to the fitting proce-

dure, one for each observation in the data. These are used to weight the contributions

of each observation to the maximum-likelihood estimate. When the weights are all

1 then the model is implicitly fitted using the class proportions in the training set

as estimates of the prior probabilities and with equal misclassification costs; i.e. the

penalty cost of classifying a normal as an abnormal is the same as that for classifying

an abnormal as normal. Figure 6.16 shows the resulting empirical ROC curve and

tabulated sensitivity, specificity, and correct classification rates (CCR) for a range

of cutpoints of the logistic classifier. A listing of the R program, written by the

author, to perform the ROC curve analysis is shown in Appendix K.

In reality the cost of misclassifying an abnormal is higher than that of misclassifying

a normal. Ripley (1996, p. 58) states that:

it is quite common in medical diagnosis for the abundance of the classes

in the training set not to reflect their importance in the problem. Often

when the training data are a random sample from the population, the
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vast majority of cases are ‘normals’ yet the cost of mis-classifying a

diseased case as normal is � times higher than that of a false positive. In

screening problems � can be ten or more.

To introduce this penalty in the model fitting process it is necessary to weight

the contributions of all of the normal observations (in the training set) to the log-

likelihood by a factor ω = 1/� (Ripley, 1996, p. 59). Figure 6.17 shows the resulting

ROC curve and associated classification summary when � = 10.

In reality the population (natural) priors are different from the proportions of nor-

mals and abnormals in the experimental data set. For example, in a report pub-

lished by the National Coordinating Centre for Health Technology Assessment in

the United Kingdom it is stated that “currently (data for England, 1997-98) about

8-9% of smears are considered ‘abnormal’ (any grade)” (Payne et al., 2000, p. 2). To

introduce population priors into the model fitting process it is necessary to weight

the contributions of the observations in class k (in the training set) by

ωk = Nπk/nk,

where N is the total number of observations in the training set, πk is the prior prob-

ability for the class, and nk is the number of observations for this class (Ripley, 1996,

p. 111). Figure 6.18 shows the resulting ROC curve and associated classification

summary when the prior probability of a slide being abnormal is taken to be 8% and

the misclassification costs are assumed to be equal. However, it must be stressed

that this ROC curve was estimated from the test data which, like the unweighted

training data, does not contain a proportion of normals and abnormals consistent

with the natural priors. What this means is that whilst the estimate of the AUC is

admissible (because the AUC is independent of priors), the shape of the ROC curve

is not. In particular, for any given cutpoint the CCR is not correct for the natural

priors. An estimate of the correct CCR is given by∑
k

πkck,

where ck is the proportion of observations in class k correctly classified in the test

set (Ripley, 1996, p. 67). This estimate is shown as Corrected CCR in Figure 6.18.

Figure 6.19 shows the resulting ROC curve and associated classification summary

when, in addition to using the natural priors, the cost of misclassifying an abnormal

is taken to be ten times that of misclassifying a normal. A comparison of the

AUC estimate in Figure 6.16 with that in Figure 6.18, and of the AUC estimate in
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Figure 6.15: Split box-and-whisker plots for the features F1, F2, F3, F4, and F5.

Figure 6.17 with that in Figure 6.18 confirms that the AUC is indeed independent

of priors.

6.4.9.1 Interpretation of the results of Experiment 1

Table 6.8 summarises the performance of the classifiers in this experiment with that

of several other MACs-based classifiers for cervical cancer reported in the literature.

It is difficult to compare the various results for several reasons:

1. Whilst all of the studies are based on intermediate cells, some of the studies—

Jones (2001), Kasper et al. (1997), Kemp et al. (1997)—have deliberately

excluded diagnostic cells (i.e. only normal-looking cells have been sampled

from abnormal slides), whilst others have not.

2. The composition of diagnoses for the abnormal class is not the same for each

study.

3. Different stains and preparation methods have been used.

4. Classifier performance is reported in several different ways. Two of the studies—

Kasper et al. (1997), Isenstein et al. (1995)—report classifier performance only
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Figure 6.16: The empirical ROC curve and associated classification summary for the
logistic classifier built using the sample priors and equal costs of misclassification.
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Figure 6.17: The empirical ROC curve and associated classification summary for the
logistic classifier built using the sample priors and assuming that the cost of misclassifying
an abnormal is 10 times worse than that of misclassifying a normal.
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Figure 6.18: The empirical ROC curve and associated classification summary for the
logistic classifier built using population priors and equal costs of misclassification.
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Figure 6.19: The empirical ROC curve and associated classification summary for the
logistic classifier built using population priors and assuming that the cost of misclassifying
an abnormal is 10 times worse than that of misclassifying a normal.
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in terms of the CCR. The CCR corresponds to one particular operating point

on the ROC curve. Moreover this figure does not indicate what proportion of

abnormals and what proportion of normals were misclassified. Another two

studies—Kemp et al. (1997), Garner et al. (1994)—present an ROC curve but

do not report the AUC and associated standard error. Jones (2001) reports

the AUC but no standard error.

5. Two of the studies combine MACs features with other features: Isenstein et

al. (1995) combines MACs features with cell-based contextual features, and

Garner et al. (1994) combines MACs features with the detection of diagnostic

cells.

6. None of the studies, except the present study, state misclassification costs.

This suggests that they have assumed equal costs of misclassification.

7. None of the studies, except the present study, state the priors assumed. This

suggests that they have used sample proportions as estimates of the priors.

The only other study to use the Papanicolaou stain is that of Jones (2001, Chapter

6), hereinafter called the DJ study. The reported AUC (unfortunately no SE is

reported) is very close to those AUC values reported in the present study. However

Jackway & Bamford (2000, p. 9) and Mehnert & Bamford (2002, p. 5) have noted

several problems with the slides used in the DJ study:

1. The slides were 6 years old at the time they were scanned by the Cytometrics

Project cytometer and the stain may have faded;

2. Many of the slides are scanty (with very few cells), possibly because they were

prepared with a beta-version ThinPrep� machine; and

3. Most of the abnormal slides were used in several in-house imaging experiments

and were potentially left exposed to light and dust more than the normal slides.

In contrast most of the normal slides were kept in boxes out of the light.

It is known in quantitative histochemistry that stains can fade over time when

exposed to heat and light (Pearse, 1980). The DJ study derives features from the

granold spectrum which is in turn derived from a thresholding of each nucleus image

over all possible grey-levels. As a consequence it is possible that it is the grey-tone

difference due to fading that was detected in the DJ study. The validity of using

grey-level features to detect MACs in Papanicolaou stain is, in any case, questionable
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because the Papanicolaou stain is not stoichiometric. In the present study no grey-

level features have been used.

A comparison of the present study with the remaining studies indicates a similar

level of performance. However, the present study is unique in that:

1. it demonstrates that the MACs phenomenon can be detected in Papanicolaou

stain; and

2. it does not use grey-level features.

6.4.10 Experiment 2: Feature selection

Based on the number of nuclei sampled from a slide (after artefact rejection), and the

means and standard deviations of the nucleus features N1 to N28, excluding N725,

it is possible to define a set of 55 slide features. These are listed in Appendix L.

A graphical summary—a split box-and-whisker plot—of the distribution of each

feature for both the normal and abnormal slides is shown in Appendix M. The

aim of this experiment was to determine a subset of these slide features (feature

selection) that have the most discriminatory power for the Pap smear classification

problem. The principal reasons for wanting to do this are:

1. to reduce the dimensionality of feature space in order to avoid the curse of

dimensionality; and

2. to attempt to identify biologically significant/plausible features.

In this experiment the method chosen for feature selection is that implemented by

the stepAIC procedure in the MASS library of Venables & Ripley (1999) with the

argument direction set to “both”. Used in this way the procedure, given a starting

model, iteratively adds a variable to the current model or removes a variable (feature)

from it, the choice being determined by a penalised measure of fit (the default is

the AIC). The procedure seeks to minimise the measure of fit. Johnson & Wichern

(1988, p. 529) note that:

25 Feature N7 was excluded because the artefact rejection strategy ensures that it has only a small
range of values.
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Table 6.8: Comparison of the present study with similar studies published in the liter-
ature.

Study Preparation /
Stain

Abnormal
Class

Normals /
Abnormals

Cells per
slide

CCR
(%)

AUC±
standard error

Experi-
ment 1

AutoCyte� /
Papanicolaou

CIN I,
CIN II,
CIN III

101/47 > 600 81.3
84.2
93.3
92.9

0.791± 0.046
0.811± 0.044
0.785± 0.047
0.807± 0.045

Jones
(2001)

ThinPrep� /
Papanicolaou

CIN II,
CIN III

25/9 96 82.4 0.834± 0.090∗

Kasper et
al. (1997)

LBP /
Feulgen

LSIL,
HSIL,
invasive
cancer

78/53 36 on
average

82.4 NA

Kemp et
al. (1997)

conventional
smear /
Feulgen-
Thionin

severe
dysplasia

251/144 75 from
normals,
maxi-
mum of
150 from
abnor-
mals

76.2 0.818±0.024∗∗

Isenstein
et al.
(1995)

ThinPrep� /
Thionin-
Feulgen

HGSIL,
carcinoma

70/76 40 85.7 NA

Garner et
al. (1994)

conventional
smear /
Thionin-SO2-
Feulgen

low grade
lesions
(mild
dysplasia)

training
set:
330/190
test set:
676/383

500 NA 0.770±0.016∗∗

Garner et
al. (1994)

as above high grade
lesions
(moderate
and severe
dysplasia)

training
set:
330/240
test set:
676/501

500 NA 0.834±0.012∗∗

* Standard error not reported. Equation 6.1 has been used to estimate it.
** Not reported. The AUC has been estimated by optically scanning the published ROC
curve into a computer, cropping the image to the region enclosed by the axes, scaling the
resulting image so that both axes had the same scale, flood-filling the area of interest, and
dividing the number of pixels in the area of interest by the total number of pixels. The
standard error has been estimated using Equation 6.1.
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choosing a subset of variables that seems optimal for a given data set is

especially disturbing if classification is the objective. At the very least,

the derived classification function should be evaluated with a validation

sample. As Murray [(1977)]. . . suggests, a better idea might be to split

the sample into a number of batches and determine the “best” subset

for each batch. The number of times a given variable appears in the

best subsets provides a measure of the worth of that variable for future

classification.

The latter idea is essentially the approach used in this experiment. The R program

holdout.R, listed in Appendix J, was written by the author to perform multiple

repetitions of model fitting, feature selection, and testing for different random splits

of the data into training and test data sets (repeated holdout method). In each

iteration:

1. a specified proportion of the abnormals and of the normals are randomly se-

lected (stratified random sample) and held out as a test set, leaving the re-

maining data to be used as a training set;

2. a logistic regression model consisting of the intercept only (no variables) is

fitted to the training data;

3. the BIC (see the end of Section 6.3.2.2) of the fitted model is computed;

4. a variable is then either added to the model or removed from the model, the

choice depending on which yields a smaller BIC;

5. step 4 is repeated until a model is found for which the addition or omission of

a variable does not reduce the BIC; and

6. the selected model is then used to classify the observations in the test set and

to compute the AUC of the empirical ROC curve.

At the end of the iterations:

1. the mean and variance of the computed AUC values are computed; and

2. a frequency table is output listing the number of times each feature made an

appearance in a selected model.
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Without prior knowledge of the variables that are likely to be important, there

exist two possibilities for the initial model to use in stepwise selection: (i) a model

including all of the variables; and (ii) a model including no variables (intercept only).

Epidemiologic methodologists prefer the first option because this makes it possible

to control confounding26 that may exist in the data set (this strategy is discussed

in detail in Kleinbaum (1994)). However, Hosmer & Lemeshow (2000, p. 92) state

that:

the major problem with this approach is that the model may be“overfit,”

producing numerically unstable estimates.

Hosmer & Lemeshow (2000, p. 121) also state that caution is urged when considering

a model with many variables because:

significant linear regressions may be obtained from“noise”variables, com-

pletely unrelated to the outcome variable.

For these reasons, and given that the amount of data available in this experiment for

training permits the building of a classifier with three or fewer variables (depending

on the holdout proportion chosen), it was decided to use an intercept only initial

model (no variables). In addition, it was decided to use BIC rather than AIC for

feature selection because, as noted in Section 6.3.2.2, the AIC has a tendency to

choose more and more variables as the size of the training set increases.

Ripley (1996, p. 6) notes that “sometimes good features can be found by training

a classifier on a large number of features and extracting the good ones. . . , but

most often problem-specific insights are used”. With this in mind it was decided to

exclude all of the slide features based on nucleus grey-level measurements (these are

the features not marked with an asterisk in Appendix L) based on the knowledge

that the Papanicolaou stain is not stoichiometric. To gauge the efficacy of the feature

selection it was decided to include an additional random feature, X56. This feature

consists of 139 observations drawn from a uniform distribution (generated using the

runif() command in R). The holdout.R program (Appendix J) was executed using a

holdout proportion of 1
3

and 100 iterations. A summary of the resulting AUC values

is as follows:

26 A predictor variable that is associated with both the response variable and a primary predic-
tor variable is called a confounder by epidemiologists (Hosmer & Lemeshow, 2000, p. 70).
The relationship between this predictor variable and the response variable is then said to be
confounded.
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Table 6.9: The frequency with which features were selected in the 100 repetitions of
stepwise model fitting.

X1 X2 X4 X5 X6 X7 X16 X17 X25 X26 X27 X28 X31 X53 X54 X55 X56

1 3 2 71 15 11 32 3 1 1 2 8 1 21 2 36 2

> summary(AUC)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5361 0.7244 0.7890 0.7753 0.8293 0.9161

The mean and standard deviation of the AUC values is: 0.775±0.075. The frequency

with which each feature appeared in a selected model is shown in Table 6.9.

6.4.10.1 Interpretation of the results of Experiment 2

The fact that the random feature, X56, was selected only 2 times is reassuring

because it does not have any discriminatory power whatsoever. Features X5, X16,

and X55 are of particular interest because they are the only features to appear in

more than 30% of the selected models. Feature X5 is based on nuclear area. That

this should be an important feature seems reasonable because a significant variability

in nuclear size is one of several known principal morphologic differences between

normal and cancer cells (Koss, 1992, p. 129) and because nuclear enlargement is

also characteristic of precancerous lesions (Koss, 1992, p. 390). The second feature

is based on the total blob area within a nucleus. This too seems reasonable because

hyperchromasia27 is another characteristic shared by cancerous and precancerous

lesions (Koss, 1992, p. 132, 390). The size of the total blob area relative to the

nucleus area is a measure of hyperchromasia. The last feature is a measure of

margination. Again this feature seems reasonable given the results of Experiment 1.

At this point the reader might be wondering why the three most “important” fea-

tures identified in this experiment were not used in place of F1, F2, and F3 in a

repetition of Experiment 1 (to determine the performance that could be expected

from a classifier based on the selected features). The reason is that the resulting

estimate of the AUC would be optimistically biased because the same data has al-

ready been used for feature selection. An additional validation data set is needed

to obtain an unbiased estimate.

27 A stained nucleus is said to be hyperchromatic if it is excessively stained. Such nuclei are
diffusely dark in appearance (Koss, 1992, p. 132).
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6.5 Summary and discussion

This chapter has:

� Discussed the rationale for designing a MACs-based classifier for cytological

screening, and examined how such a classifier can be designed.

� Presented a detailed overview of statistical pattern recognition, addressing

important issues such as the curse of dimensionality, dimensionality reduction,

choice of classifier, and evaluation of classifier performance.

� Demonstrated the practical application of statistical pattern recognition and

chromatin segmentation features to the problem of automated Pap smear

screening. In particular it was demonstrated that it is possible to quantify a

qualitative description of chromatin used by cytoprofessionals—margination—

using the chromatin segmentation and representation and description methods

described in the preceding chapters.

� Provided empirical evidence that it is possible to detect differences in the

pattern of nuclear chromatin between samples of cells from a normal Pap smear

and those from an abnormal Pap smear. These nuclear texture differences

are supportive of the existence of the MACs (malignancy associated changes)

phenomenon.

� Identified several nuclear features, including margination, that empirical evi-

dence suggests have the most discriminatory power for the Pap smear screening

problem.

The experimental results reported in this chapter are very encouraging. Neverthe-

less, there are several caveats:

1. It is known that the quality of the staining pattern produced by the Papani-

colaou stain can be quite variable. For example, air drying of the cytological

material prior to staining leads to reduced nuclear staining and loss of trans-

parency of the cytoplasm (Schulte & Wittekind, 1994, p. 202). Consequently,

until such time as the trained classifiers are tested on different batches of

slides from a single pathology laboratory, and between different laboratories,

the generalisability of the reported classifiers remains an open question.
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2. A number of leukocytes were not rejected by the artefact rejection procedure

and hence their presence in the data set may confound the results. Further

research is needed to determine whether this is the case. In particular this

requires the development of an improved artefact rejection algorithm.

3. Although it has been reported in the literature that at least 500 nuclei per slide

are needed to obtain stable estimates of the means and standard deviations

of nucleus features (based on experimental results), this needs to be verified

independently.

4. Diagnostic cells were not excluded from the data used in the experiments. On

the other hand they were not deliberately sought either. Consequently it is

possible that the samples of cells from the abnormal slides include both MAC-

affected and diagnostic cells. To build a classifier specifically for the purpose

of detecting MACs, it would be necessary to assemble a database of cells from

normal slides and normal-looking cells from abnormal slides. Methods for

constructing such a database include:

(a) manually selecting normal-looking nuclei from abnormal slides;

(b) developing a set of features to automatically detect and reject abnormal

cells as artefacts; and

(c) examining individual patient histories and selecting apparently normal

Pap smears preceding an abnormal one.



Chapter 7
Summary and Conclusions

The truth is rarely pure and never simple

Oscar Wilde

This chapter reviews the thesis, summarises its key contributions and findings, and

discusses the implications of these results. It also outlines the limitations of the

research undertaken, and the opportunities for further research.

7.1 Thesis review

Chapter 1 This chapter explained that the research described in this thesis con-

stitutes part of a larger research initiative called the Cytometrics Project.

A major goal of the project is to develop an automated image analysis sys-

tem (cytometer) for screening Papanicolaou-stained cervical smears. It was

noted that the conventional method of screening, the Papanicolaou (Pap)

test, is a highly labour-intensive complex process and that at least 1 in ev-

ery 10 to 20 positive cases are missed in conventional routine screening. The

two principal causes of false negatives are: (i) human misinterpretation of

smears, and (ii) sampling error. It was noted that automated screening, based

on the same rare event approach used in the conventional Pap test, can re-

duce false negatives attributable to misinterpretation but cannot address sam-

pling error. It was noted that a phenomenon known as malignancy associated

changes (MACs) may offer a solution. In modern usage MACs refers to sub-

tle subvisual changes—predominantly textural changes—in otherwise normal-
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appearing cells on cervical atypical smears. It was noted that measurements

(features) characterising nuclear texture are reported, in the quantitative cy-

tology literature, to have the most discriminatory power. The chapter then

presented an overview of statistical pattern recognition in computer vision, and

a review of the different approaches to texture feature extraction published in

the literature. It was noted that the majority of methods published in the

literature for quantitatively characterising nuclear texture (i.e. chromatin dis-

tribution) stem from the stochastic definition of texture. The chapter argued

that a structural approach to quantifying nuclear texture is more appropri-

ate because: (i) cytoprofessionals describe chromatin distribution using terms

such as clumping, margination, granulation, condensation, and clearing; and

(ii) the original qualitative description of MACs, first described by Nieburgs

et al. (1959), is of visible structural changes in chromatin distribution. It was

pointed out that the key to the structural approach is chromatin segmenta-

tion, and that all of the chromatin segmentation algorithms published in the

literature suffer from one or both of the following drawbacks: (i) the need to

specify, a priori, one or more subjective operating parameters (thus affecting

robustness to variations in illumination and staining); and (ii) segmentations

that are not consistent with what a human is likely perceive to be blobs or

particles. The chapter then stated the primary and secondary aims of the

thesis:

to develop a structural model of chromatin (as visualised

by light microscopy) from which features can be defined

that can be directly related to the terms and adjectives

used by cytoprofessionals to describe chromatin distribu-

tion/texture,

and

to demonstrate that such features can be used to detect

nuclear changes during neoplasia, and malignancy associ-

ated changes.

The chapter also presented a list of five objectives deemed necessary to meet

these aims:

1. To develop a class of non-linear self-dual filters for the purpose

of attenuating impulse-type noise in digital images;
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2. To develop a robust algorithm for segmenting the chromatin

in a digitised image of a cell nucleus (as visualised by light

microscopy);

3. To develop a representation and description of the segmented

chromatin that characterises the spatial relationship between

chromatin regions and additionally incorporates scalar feature

parameters associated with these regions;

4. To demonstrate that features derived from this representation

and description can be related to the descriptive terms used by

cytoprofessionals to describe chromatin distribution; and

5. To demonstrate that features so-derived can be used to dis-

criminate between normal and abnormal Papanicolaou-stained

cervical cytology slides.

Chapter 2 This chapter reviewed the theoretical framework used throughout the

thesis. In summary, the chapter reviewed: sets and ordering; complete lattices;

metric spaces; mathematical morphology for complete lattices, binary and

grey-scale images, and graphs.

Chapter 3 This chapter addressed the first objective as follows. The chapter dis-

cussed the rationale behind the desire to construct non-linear self-dual filters.

It was noted that whilst all linear filters are self-dual, self-duality is not an in-

trinsic property of non-linear filters. It was pointed out that the generalisation

of the theory of mathematical morphology to the complete lattice algebraic

framework in the 1980s, was the catalyst for much of the research into the

question of how to construct non-linear self-dual filters. The chapter then re-

viewed the principal lattice-theoretical approaches to constructing non-linear

self-dual operators/filters: the activity ordering, centre and anti-centre, itera-

tions of the centre and the middle filter, self-dual toggle mappings, self-dual

operators based on the switch operator, self-dual operators based on folded or-

dering, and self-dual annular filters. The chapter then presented a new method

based on the generalisation of folded ordering by means of the folding oper-

ator and fold-space. It was shown that any operator defined on this space,

that is self-dual with respect to the second component, leads to a self-dual

operator called a folding induced self-dual (FISF) on the original space. More-

over, it was shown that although fold-space is not itself a complete lattice,
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it is possible to define morphological meta-operators on this space which are

morphological operators on the first component. It was shown that the folded

closing, originally devised by Evans et al. (1997), is a particular type of FISF

and that other types of FISF can be designed with improved salt-and-pepper

noise attenuation properties. It was noted that Heijmans & Keshet (2002)

have related the FISF approach to their, more recent, theoretical framework

for morphological image processing based on complete inf-semilattices.

Chapter 4 This chapter addressed the second objective as follows. The chapter

presented an overview of the various approaches to grey-scale image segmen-

tation published in the literature. The chapter then described the nature of

chromatin as visualised by light microscopy. This was followed by a criti-

cal review of previous approaches to chromatin segmentation published in the

literature. It was noted that all of the algorithms suffer from one or more

drawbacks. The chapter then presented a new algorithm for chromatin seg-

mentation, based on seeded region growing, that (in its preferred embodiment)

overcomes these drawbacks. The chapter then presented a critical review of

the seeded region growing algorithm of Adams & Bischof (1994), concluding

that the algorithm is inherently dependent on the order of pixel processing. A

new improved seeded region growing algorithm was then presented that over-

comes this drawback. The chapter also presented a new implementation of

an ascending priority queue for use in implementing the watershed transform

(a particular case of seeded region growing). It was noted that the algorithm

permits the implementation of a fast watershed transform suitable for use in

automated cytometry where near real-time processing is required for an eco-

nomically viable screening device.

Chapter 5 This chapter addressed the third objective as follows. The chapter

presented an overview of (geometric) adjacency graphs used in image pro-

cessing: connectivity grid, region adjacency graph, and graphs related to the

Voronoi diagram. This was followed by a review of the ordinary Voronoi dia-

gram and related graphs—Delaunay graph, Gabriel graph, relative neighbour

graph, β-skeletons—used to characterise the geometric adjacency of points

in the plane. The chapter then reviewed the area Voronoi diagram, a gen-

eralisation of the ordinary Voronoi diagram, where the generators are areas

rather than points. It was noted that the distance transform is the key to im-

plementing the area Voronoi diagram in the digital setting. The chapter then

presented a review of distance transform algorithms published in the literature.
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The chapter then proved an equivalence between the distance transform of a

binary image, where the underlying distance is based on a positive definite

quadratic form, and its erosion by an elliptic poweroid structuring element.

The chapter also presented a new algorithm, based on this result, for comput-

ing the exact Euclidean distance transform of a binary image manifested on

the hexagonal grid. The chapter then described the generalisation, by means

of the distance transform, of the area Voronoi diagram, the Delaunay graph,

and the Gabriel graph to connected components of a binary image. Next, the

chapter presented a generalisation of the well-known grey-level co-occurrence

matrix method to vertex-weighted adjacency graphs (grey-scale graphs). The

generalisation involves: (i) reducing the image under study to an adjacency

graph with vertices corresponding to individual objects/regions and edges cor-

responding to an adjacency relationship between regions; (ii) assigning region

attributes—average grey-level, area, perimeter, etc.—to each vertex of the

adjacency graph; and (iii) computing a co-occurrence matrix—called an ad-

jacency graph attribute co-occurrence matrix (AGACM)—for each attribute.

It was noted that AGACM features can be used to quantitatively characterise

blob-like and mosaic patterns in the plane such as chromatin particles. The

chapter finally presented an overview of the types of parameters (attributes)

that can be measured for image objects. It was noted that the convex ring—the

class of sets in Rn whose elements are finite unions of compact convex sets—

provides a realistic Euclidean model for digital images. It was also noted that

the Minkowski functionals form the basis of any valid measurement that can

be made on compact convex sets. Estimators for the Minkowski function-

als for two-dimensional binary and grey-scale images were presented for both

the square and hexagonal grids. Corrections to the literature, as well as new

estimators for the perimeter were also proffered.

Chapter 6 This chapter addressed the last two objectives as follows. The chapter

discussed the rationale for designing a MACs-based classifier for cytological

screening, and examined how such a classifier can be designed. Next it pre-

sented a detailed overview of statistical pattern recognition, addressing im-

portant issues such as the curse of dimensionality, dimensionality reduction,

choice of classifier, and evaluation of classifier performance. The chapter then

presented a case study demonstrating the practical application of statistical

pattern recognition and chromatin segmentation features to the problem of

automated cervical cancer screening. It was shown that it is possible to quan-

tify a qualitative description of chromatin used by cytoprofessionals, namely
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margination, using the chromatin segmentation, and representation and de-

scription methods presented in the preceding chapters. It was noted that

the results provide empirical evidence that it is possible to detect differences

in the pattern of nuclear chromatin between samples of cells from a normal

Papanicolaou-stained cervical smear and those from an abnormal smear. It

was noted that these nuclear texture differences are supportive of the exis-

tence of the MACs (malignancy associated changes) phenomenon. It was also

noted that the experimental results compare favourably with those reported in

the literature for other stains developed specifically for automated cytometry.

7.2 Key contributions and findings

� A new and general method for constructing non-linear self-dual operators. The

operators, called folding induced self-dual filters (FISFs), are constructed from

arbitrary morphological (meta-) operators defined on an abstract space called

fold-space. The folded closing, originally devised by Evans et al. (1997), is

a particular type of FISF. Importantly, however, other types of FISF can be

designed with improved salt-and-pepper noise attenuation properties.

� A new chromatin segmentation algorithm based on seeded region growing that

is, in its preferred embodiment, parameter-free. Moreover the algorithm yields

a segmentation consistent with what a human would perceive to be chromatin

particles.

� A new seeded region growing algorithm that is independent of the order of

pixel processing.

� A new implementation of an ascending priority queue that permits the imple-

mentation of a fast version of the watershed transform.

� A new theoretical result establishing that the erosion of the characteristic

function of a binary image X ∈ P (Rn) by the elliptic poweroid structuring

element g(x) = −
(
xTAx

)α
2 , where A is n × n positive definite and α ∈ R+,

is equivalent to finding the distance transform of X, based on the distance

d (x, y) =

√
(x− y)TA (x− y), raised to the power α.

� A new algorithm for computing the exact Euclidean distance transform of a

binary image manifested on a hexagonal grid. When originally published, the

algorithm had two major advantages over the only other known algorithm
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devised by Vincent (1991a): (i) simplicity and (ii) suitability for hardware im-

plementation using a pipeline architecture (because it is based on the algorithm

of Huang & Mitchell (1994)).

� A new generalisation of the well-known grey-level co-occurrence matrix method

to vertex-weighted adjacency graphs. The method, called the adjacency graph

attribute co-occurrence matrix (AGACM) method, can be used to characterise

blob-like and mosaic patterns in the plane.

� Corrections to formulae published in the literature and two new formulae for

estimating the Minkowski functional W
(2)
1 (perimeter) for digital images man-

ifested on square and hexagonal grids.

� A structural model of chromatin texture from which it is possible to define

features that can be directly related to the terms and adjectives, used by

cytoprofessionals, to describe chromatin distribution.

� New features—in particular margination—for the purpose of quantifying the

distribution of nuclear chromatin.

� Empirical evidence that it is possible to detect differences in the pattern of nu-

clear chromatin between samples of cells from a normal Papanicolaou-stained

cervical smear and those from an abnormal smear using these new features.

These differences are supportive of the existence of the malignancy associ-

ated changes (MACs) phenomenon. The classification results are based on 99

normal and 40 abnormal Pap-stained cervical slides collected as part of the

(Australian) National Cervical Screening Program. Moreover the results com-

pare favourably with those reported in the literature for other stains developed

specifically for automated cytometry. To the author’s knowledge this is the

first time that MACs have been demonstrated in Papanicolaou stain based on

a sizable and uncontaminated data set.

7.3 Implications

New EDT algorithm

The new EDT algorithm presented in Chapter 5 is based on the idea of first embed-

ding the hexagonal grid image in a rectangular grid and then applying the algorithm
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of Huang & Mitchell (1994) with the appropriate aspect ratio correction. Conse-

quently, as noted in Chapter 5, (i) a highly efficient serial implementation is possi-

ble based on the fast implementation of Huang and Mitchell’s algorithm devised by

Lotufo & Zampirolli (2001); and (ii) an O (n) exact EDT should also be possible by

replacing Huang and Mitchell’s algorithm with the anisotropic version of the recent

algorithm of Maurer et al. (2003). Hence the new EDT algorithm presented in this

thesis is also the fastest available for the hexagonal grid.

MACs in Papanicolaou stain

The experimental results of Chapter 6 provide empirical evidence that it is possi-

ble to detect malignancy associated changes in Papanicolaou-stained cervical slides.

Moreover, the reported classifier performance is on a par with the performance of

similar classifiers reported in the literature for stoichiometric stains. Unfortunately

these stoichiometric stains, whilst they are useful in automated cytometry, are are

not acceptable to cytoprofessionals for visual screening. This is because “the Pa-

panicolaou staining pattern contains a great deal of diagnostic information which

is useful for the cytotechnologist, even if the computer does not always use that

information” (Schulte & Wittekind, 1994, p. 208). Consequently there is significant

advantage in being able to automate the screening of Papanicolaou-stained slides

because there is no need for additional preparatory steps necessary to permit both

automated screening using a stoichiometric stain and manual interpretation using

the Pap stain.

7.4 Limitations

Folding induced self-dual filters

With regard to noise filtering, folding induced self-dual filters (FISFs) are, by virtue

of the notion of folding, limited to filtering salt-and-pepper impulse noise. Referring

to Figure 3.2, it is clear that positive impulse spikes must be of value greater than

the crease and that negative impulse spikes must be of value less than the crease

(fold point) so that folding will cause all of the impulse spikes to be negative.

Again, by virtue of the notion of folding, FISFs are generally not increasing.

Fold-space, as defined in Chapter 3, is not a complete lattice. This means that it is

not possible to define mathematical morphology operators on this space, but only to
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define meta-operators that are morphological operators on the embedded space of

folded values. However, the meta-supremum and meta-infimum operators associated

with type 2 FISFs suggest the following approach to constructing a fold-space that

is a complete lattice. The approach involves extending the set of indicator values

from three elements {−1, 0, 1} to four elements {∓,−, +,±} and defining the partial

ordering on the set T̃ = T ×{∓,−, +,±} shown in Figure 7.1. The space Fun
(
E, T̃

)
is then a complete lattice. The folding operator β : Fun (E, T ) → Fun

(
E, T̃

)
is defined as before (but with the indicator values −1, 0, 1 replaced with −,∓, +

respectively):

β (f) (x) =

⎧⎪⎨⎪⎩
(f (x) , +) , if f (x) < f ∗ (x)

(f (x) ,∓) , if f (x) = f ∗ (x)

(f ∗ (x) ,−) , if f (x) > f ∗ (x) .

The ordered pairs of the form (·,±) result from application of the supremum or

infimum on Fun
(
E, T̃

)
. In keeping with the idea underlying type 2 FISFs, the

supremum or infimum of a pair of distinct but equivalent elements, i.e. two ele-

ments with the same folded value but different indicator values, is the equivalent

element that will map back to the crease. This suggests the unfolding operator

Υ : Fun
(
E, T̃

)
→ Fun (E, T ) defined

Υ ((f1, f2)) (x) =

⎧⎪⎨⎪⎩
f1 (x) , if f2 (x) = +

c, if f2 (x) = ∓ or f2 (x) = ±
f ∗

1 (x) , if f2 (x) = −.

A similar approach is not possible for type 3 FISFs.

Chromatin segmentation

The implementation of the preferred embodiment of the chromatin segmentation al-

gorithm, as described in Chapter 4, uses the divide lines of the watershed transform

to determine a zone of influence (ZOI) around each regional minimum. The nature

of digital space dictates that there will be slight discrepancies in the placement of the

divide lines when the watershed transform is applied to the same input image with

a different grid orientation, e.g. if the image is first rotated 90◦, 180◦, or 270◦ on the

square grid (see Section 4.6.2). An alternative approach, that would permit indepen-

dence of pixel order processing, would be to determine the ZOIs without rendering
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Figure 7.1: Hasse diagram showing the partial ordering on T × {∓,−, +,±} for the
case T = {0, 1, 2}.
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boundary lines—i.e. label the catchment basins of the watershed transform—and

then sequentially and independently segment a chromatin particle in each.

Experimental results

Features

The size of the data set used in Experiment 1 of Chapter 6 limited the number

of features that could be used to train and evaluate a classifier, for the purpose of

discriminating between normal and abnormal Papanicolaou-stained cervical slides,

to three features (using the leave-one-out method). Consequently only one nucleus

feature, margination, was used to define three slide features. With more data, e.g. an

order of magnitude larger, it would be possible to evaluate other features based on

the chromatin segmentation, and representation and description methods presented

in this thesis.

Generalisability

It is known that the quality of the staining pattern produced by the Papanicolaou

stain can be highly variable. The Papanicolaou staining method uses a natural

dye called hematein to stain the nucleus. Hematein is currently not synthesised in

chemical laboratories and as a consequence “the quality of the Pap staining pat-

tern depends largely on the quality of the commercially available hematein batches”

(Schulte & Wittekind, 1994, p. 202). In addition, hematein solutions have a limited

shelf life and deteriorate on standing (Schulte & Wittekind, 1994, p. 203). Conse-

quently it is not yet clear whether the proposed chromatin segmentation features are

robust to variations between batches of slides from a single pathology laboratory,

and between different laboratories.

7.5 Opportunities for further research

Additional features

Of particular interest is the possibility of segmenting both dark and light particles

in a nucleus and to compute an adjacency graph for the dark particles only (see
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Figure 7.2), the light particles only, and for both types of particle. Both adja-

cency graph attribute co-occurrence matrix (AGACM) features (introduced in Sec-

tion 5.7) and other graph-based features (discussed below) could then be computed

from these. An obvious choice of attribute for constructing an AGACM is the type

of particle: dark or light. Based on an adjacency graph defined on both dark and

light particles, for example, a 2× 2 AGACM could be constructed for each nucleus.

The elements of this AGACM would represent: the relative frequency with which

two light particles are adjacent, two dark particles are adjacent, and a dark and a

light particle are adjacent. In fact several such matrices could be defined for vari-

ous orders of adjacency—1-adjacency, 2-adjacency, etc.—and for different adjacency

graphs; e.g. perceptual and Delaunay. Other features that could be derived from

the adjacency graphs include:

� the number of dark particle neighbours a dark particles has;

� the mean distance between a dark particle and its dark particle neighbours;

� the number of light particle neighbours a light particle has;

� the mean distance between a light particle and its light particle neighbours;

� the number of dark particle neighbours;

� the mean distance to dark particle neighbours;

� the number of light particle neighbours;

� the mean distance to light particle neighbours;

� the number of particle neighbours; and

� the mean distance to particle neighbours.

Another source of features stems from the histogram of the values in the distance

transform of the binary mask of the background between segmented particles (see

Figure 7.2). Three masks are possible: (i) the background between dark particles,

(ii) the background between light particles, and (iii) the background between both

types of particle. An interesting possibility here is to use the method of Russ (1999,

p. 504) to extract a feature that characterises the clustering of the particles. The

method involves:
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1. computing the cumulative frequency histogram of the Euclidean distance trans-

form of the background between the particles; and

2. fitting a least-squares straight line to the central 80% of the values of the

distribution.

The slope of the fitted line is then a feature characterising the clustering of the

particles.

The segmentation of chromatin into dark and light particles partitions the nucleus

into three sets of pixels: (i) pixels belonging to dark particles, (ii) pixels belonging

to light particles, and (iii) pixels belonging to the background between the particles.

This is conceptually similar to the segmentation produced by the algorithm of Young

et al. (1986) (described in Section 4.3). Hence the features proposed by Young et al.

can be also be used for the chromatin segmentation algorithm proposed in this thesis.

For example, Young et al. measure the homogeneity of the chromatin distribution

using the following feature:

hetero =
NB + NW

NB + NG + NW

,

where NB is the number of pixels belonging to the dark (black) regions, NW is the

number of pixels belonging to the light (white) regions, and NG is the number of

pixels belonging to the background (grey) between the dark and light regions. It is

important to realise, of course, that the exact meaning of this feature is different

for the two segmentation methods, because the two segmentation approaches are

fundamentally different.

Variations on these approaches to feature extraction, as well as several other possi-

bilities for computing features are described in Mehnert & Jackway (2002).

Invariance to Papanicolaou staining quality

Further research is needed to determine whether the proposed chromatin segmen-

tation features are robust to variations in Papanicolaou-staining between batches of

slides from a single pathology laboratory, and between different laboratories.

Quantitative stains

The experiments in this thesis dealt solely with the Papanicolaou stain. It is likely

that the chromatin segmentation method will perform at least as well on a stoichio-
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Figure 7.2: Compendium of images and graphs derived from the chromatin segmenta-
tion algorithm.
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metric stain such as Thionin-Feulgen. Moreover, stoichiometric stains open up the

possibility of investigating the discriminatory power of grey-level features; e.g. the

median and interquartile range of the distribution of dynamics values of the dark

particles in the nucleus.

Number of nuclei sampled from each slide

The slide-based features used in the experiments were computed from all of the

nuclei-like objects retained for each slide after artefact rejection. In the worst case,

features were computed from 643 nuclei (slide 0), and in the best case, from 5975

nuclei (slide 95). As noted in Section 6.4.6, the literature suggests that at least

500 nuclei are necessary for robust estimation of means and standard deviations.

Further research is needed to determine what is the minimum number needed. This

will impact on the speed with which a slide can be automatically screened.

Multi-class classification

The experiments in this thesis considered only two classes: normals and abnormals.

Further research is needed to determine whether it is possible to classify a slide

according to the grade of abnormality; e.g. CIN I, CIN II, and CIN III.

Combination of features

As noted in Chapter 1, the research described in this thesis constitutes part of a

larger initiative within the Cytometrics Project. Further research is needed, on a

larger data set, to determine whether better discrimination is possible using a com-

bination of chromatin segmentation features, other novel features within the Cyto-

metrics Project such as granold features, and/or conventional features published in

the literature.

Other cancers

The experiments in this thesis dealt only with the problem of screening for cervical

cancer. However, as noted in Section 6.1, MACs have been detected in other tissues.

Two particularly interesting avenues for further research include: (i) lung cancer

screening based on sputum samples (see, e.g. Payne et al. (1997)), and (ii) oral

cancer screening based on buccal smears.
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Chromatin patterns in living cells

Recent research by Rousselle et al. (1999) suggests that chromatin segmentation

features might also be used to assess the chromatin patterns in living cells during

the cell cycle. This would make it possible to measure the alterations in the evolving

chromatin patterns that result from pathological or environmental influences.

Novel new research

The encouraging experimental results obtained in Chapter 6, based on chromatin

segmentation features, suggests that there is merit in returning to the original qual-

itative descriptions of MACs. Recall from Section 1.5 that the findings of a MAC

study group, reported at the 16th Annual Meeting of the American Society of Cy-

tology in 1968, were that a MAC positive nucleus must possess eight characteristics,

one of which is that: “four of the circular areas are present in a row and two appear

together with two of the circular areas of the row in a quadrant formation of four

circular areas of clusters of circular areas occupying an entire lobule” (Meisels, 1969,

p. 476). This suggests the possibility of employing the concept of a structuring

graph (see Section 2.10.1) to detect such configurations in a geometric adjacency

graph constructed on both the light and dark particles.



Bibliography

Abutaleb, A. S. (1989), ‘Automatic thresholding of gray-level pictures using two-

dimensional entropy’, Computer Vision, Graphics, and Image Processing 47, 22–

32.

ACS (2002), ‘Cancer facts & figures 2002’, http://www.cancer.org. American

Cancer Society.

Adams, R. & Bischof, L. (1994), ‘Seeded region growing’, IEEE Transactions on

Pattern Analysis and Machine Intelligence 16(6), 641–647.

AHTAC (1998), Review of automated and semi-automated cervical screening de-

vices, Technical report, The Australian Health Technology Advisory Committee

(AHTAC), Commonwealth of Australia, Canberra. ISBN 0 642 36755 8.

Al, I., Cornelisse, C. J., Pearson, P. L. & Ploem, J. S. (1978), ‘Automated chro-

matin analysis using the Leyden Television Analysis System (LEYTAS)’, Acta

Histochemica. Supplementband 20, 211–215.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. (2002),

Molecular Biology of the Cell, fourth edn, Garland Science, New York.

Albregtsen, F., Schulerud, H. & Yang, L. (1995), Texture classification of mouse liver

cell nuclei using invariant moments of consistent regions, in S. Hlavác, ed., ‘CAIP

’95 Proceedings’, Vol. 970 of Lecture Notes in Computer Science, Springer-Verlag,

Berlin, pp. 496–502.

Allenby, R. B. J. T. (1991), Rings, Fields and Groups: An Introduction to Abstract

Algebra, second edn, Edward Arnold, London.

Anderson, G., MacAulay, C., Matisic, J., Garner, D. & Palcic, B. (1997), ‘The use

of an automated image cytometer for screening and quantitative assessment of



292 Bibliography

cervical lesions in the British Columbia Cervical Smear Screening Programme’,

Cytopathology 8, 298–312.

Anderson, J. A. (1982), Logistic discrimination, in P. R. Krishnaiah & L. N. Kanal,

eds, ‘Classification, Pattern Recognition, and Reduction of Dimensionality’, Vol. 2

of Handbook of Statistics, North-Holland Publishing Company, Amsterdam, chap-

ter 7, pp. 169–191.

Anderson, P. S. & Runowicz, C. D. (2001), ‘Beyond the Pap test: New techniques

for cervical cancer screening’, Women’s Health in Primary Care 4(12), 753–758.

Ayres, Jr., F. (1965), Modern Abstract Algebra, Schaum’s Outline Series, McGraw-

Hill, New York.

Bamford, P. C. (1999), Segmentation of Cell Images with Application to Cervical

Cancer Screening, PhD thesis, School of Information Technology and Electrical

Engineering, The University of Queensland, Australia.

Bamford, P. C. & Jackway, P. T. (2001), ‘Unsupervised scene segmentation’, Inter-

national Patent Application. Number PCT/AU01/00787. Priority date 30 June

2000.

Bamford, P. C. & Lovell, B. C. (1999), ‘Method of unsupervised cell nuclei segmen-

tation’, International Patent Application. Number PCT/AU99/00231. Priority

date 3 April 1998.

Barnett, V. (1976), ‘The ordering of multivariate data’, Journal of The Royal Sta-

tistical Society Series A 139(3), 318–354.

Bartels, P. H. & Vooijs, G. P. (1999), ‘Automation of primary screening for cervical

cancer: Sooner or later?’, Acta Cytologica 43(1), 7–12.

Bartels, P. H., Bahr, G. F. & Wied, G. L. (1969), ‘Cell recognition from line scan

transition probability profiles’, Acta Cytologica 13(4), 210–217.

Bartels, P. H., Wied, G. L. & Bahr, G. F. (1968), ‘Cell recognition from equiprobable

extinction range contours’, Acta Cytologica 12(3), 205–217.

Beare, R. & Talbot, H. (1999), Exact seeded region growing for image segmentation,

in ‘Proceedings of the Fifth International/National Biennial Conference on Dig-

ital Image Computing, Techniques, and Applications’, Curtin University, Perth,

Western Australia, pp. 132–137.



Bibliography 293

Beil, M. (1992), ‘Description of chromatin structures in cell nuclei’, Acta Stereol

11, 129–134.

Beil, M., Irinopoulou, T., Vassy, J. & Wolf, G. (1995), ‘A dual approach to structural

texture analysis in microscopic cell images’, Computer Methods and Programs in

Biomedicine 48(3), 211–219.

Beineke, L. W. & Wilson, R. J., eds (1997), Graph Connections: Relationships

Between Graph Theory and Other Areas of Mathematics, Vol. 5 of Oxford Lecture

Series in Mathematics and its Applications, Clarendon Press, Oxford.

Bengtsson, E. & Nordin, B. (1994), Densitometry, morphometry, and textural anal-

ysis as tools in quantitative cytometry and automated cancer screening, in H. K.

Grohs & O. A. N. Husain, eds, ‘Automated Cervical Cancer Screening’, IGAKU-

SHOIN Medical Publishers, New York, chapter 3, pp. 21–51.

Berge, C. (1962), The Theory of Graphs and its Applications, John Wiley & Sons,

New York.

Beucher, S. & Lantuejoul, C. (1979), Use of watersheds in contour detection, in

‘International Workshop on Image Processing: Real-time Edge and Motion De-

tection/Estimation’, Rennes, France, pp. 2.1–2.12.

Beucher, S. & Meyer, F. (1993), The morphological approach to segmentation: The

watershed transformation, in E. R. Dougherty, ed., ‘Mathematical Morphology in

Image Processing’, Marcel Dekker, New York, chapter 12, pp. 433–481.

Birkhoff, G. (1948), Lattice Theory, Vol. 25 of American Mathematical Society Col-

loquium Publications, revised edn, American Mathematical Society, New York.

Borgefors, G. (1984), ‘Distance transformations in arbitrary dimensions’, Computer

Vision, Graphics, and Image Processing 27, 321–345.

Borgefors, G. (1986), ‘Distance transformations in digital images’, Computer Vision,

Graphics, and Image Processing 34, 344–371.

Borgefors, G. (1988), Distance transformations in hexagonal grids, in V. Cantoni,
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Serra, J. & Laÿ, B. (1985), ‘Square to hexagonal lattices conversion’, Signal Pro-

cessing 9, 1–13.

Serra, J. & Vincent, L. (1992), ‘An overview of morphological filtering’, Circuits,

Systems and Signal Processing 11(1), 47–108.

Serra, J., ed. (1988d), Image Analysis and Mathematical Morphology. Volume 2:

Theoretical Advances, Academic Press, London.



312 Bibliography

Sethian, J. A. (1999), Level Set Methods and Fast Marching Methods: Evolving

Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and

Materials Science, Vol. 3 of Cambridge Monographs on Applied and Computational

Mathematics, second edn, Cambridge University Press, Cambridge, U.K.

Shih, F. Y.-C. & Mitchell, O. R. (1991), ‘Decomposition of gray-scale morphological

structuring elements’, Pattern Recognition 24(3), 195–203.

Shih, F. Y.-C. & Mitchell, O. R. (1992), ‘A mathematical morphology approach

to Euclidean distance transformation’, IEEE Transactions on Image Processing

1(2), 197–204.

Smeulders, A. W. M., Cornelisse, C. J., Vossepoel, A. M. & Ploem, J. S. (1978), ‘An

image segmentation approach to the analysis of nuclear texture of cervical cells’,

Acta Histochemica. Supplementband 20, 217–222.

Smeulders, A. W. M., Leyte-Veldstra, L., Ploem, J. S. & Cornelisse, C. J. (1979),

‘Texture analysis of cervical cell nuclei by segmentation of chromatin patterns’,

The Journal of Histochemistry and Cytochemistry 27(1), 199–203.

Smith, G. M. (1998), Image Texture Analysis Using Zero Crossings Information,

PhD thesis, School of Information Technology and Electrical Engineering, The

University of Queensland, Australia.

Soille, P. (2003), Morphological Image Analysis: Principles and Applications, second

edn, Springer-Verlag, Berlin.

Soille, P. & Rivest, J.-F. (1996), ‘On the validity of fractal dimension measurements

in image analysis’, Journal of Visual Communication and Image Representation

7(3), 217–229.

Soille, P., Serra, J. & Rivest, J.-F. (1992), ‘Dimensional measurements and operators

in mathematical morphology’, Proceedings of the SPIE – The International Society

for Optical Engineering 1658, 127–138.

Solomon, D., Davey, D., Kurman, R., Moriarty, A., O’Connor, D., Prey, M., Raab,

S., Sherman, M., Wilbur, D., Wright, Jr., T. & Young, N. (2002), ‘The 2001

Bethesda System: Terminology for reporting results of cervical cytology’, Journal

of the American Medical Association 287(16), 2114–2119.

Sprenger, E., Moore, G. W., Naujoks, H., Schlüter, G. & Sandritter, W. (1973),
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Appendix A
DImPAL 4.0

DImPAL1—an abbreviation for Digital Image Processing and Analysis Language—

is an interpreted language, developed by the author2, that can be used to process

and analyse digital images and graphs. DImPAL can operate on images sampled

on either square or hexagonal grids. Boolean, byte, integer and real data types

are supported for image pixels and for the vertex weights of graphs. DImPAL can

be used interactively to execute statements, one at a time, entered at the command

prompt, or it can be used to execute a program (written as a plain text file). DImPAL

supports four types of statement: command, assignment, while-endwhile, and if-

then-else. The latter two statements, however, can only be used in programs.

Variables are used to represent images (bound matrices), graphs (sets of vertices

and edges), and matrices (scalars are single element matrices). Complex expressions

can be constructed using variables, functions, constants, and arithmetic and logic

operators. Such expressions can appear on the right-hand-side of an assignment

1 Copyright 1991-2003, Andrew Mehnert. All rights reserved.
2 Version 1.2 is documented in Mehnert (1994).
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statement, in the actual parameters of a command or function, and as the condi-

tional expression associated with the while-endwhile and the if-then-else statements.

Assignment statements are used to create new variables or to overwrite old ones.

DImPAL provides a suite of functions including the C language mathematics library

functions, data type casting functions, grid conversion functions, image and graph

mathematical morphology functions, image measurement functions, neighbourhood

filters, radiometric enhancement functions, isometries, and file import functions.

Commands are also provided for variable management, display, plotting histograms

and surfaces, writing images to a variety of file formats, and executing programs.

At the time of writing, DImPAL (version 4.0) implements more than sixty functions

and a dozen commands. Its novel features include:

1. The concept of a missing value. Missing values are used to denote don’t care

values of parameters in function and command calls, and to denote undefined

real and integer values in matrices, images, and graphs. In the latter case

such values can be set explicitly, e.g. by assignment, or occur as the result of

undefined arithmetic operations such as division by zero.

2. Multi-layer variables. A variable is a collection of one or more layers. A layer

can represent an image manifested on a square grid, an image manifested on

a hexagonal grid, a matrix, a set of graph vertices, or a set of graph edges. A

grey-scale graph, for example, is defined to be a three layer variable for which

the first layer contains the vertices, the second contains the edges, and the

third contains the vertex weights.

3. Multi-layer processing convention. When a monadic operator is applied to a

variable it is actually applied to each layer in turn thus producing a result with

the same number of layers. For example, if image is a variable with two layers

then -image also has two layers.

In the case of dyadic operators (taking two arguments) only the following layer

combinations are permissible:

� n layers <operator> 1 layer

� 1 layer <operator> n layers

� n layers <operator> n layers.
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In each case DImPAL produces an n layer result. In the first case DImPAL ap-

plies the operator n times, each time with a different layer of the first operand

(the second operand—a single layer—is the same each time):

layer 1 <operator> layer 1, . . . , layer n <operator> layer 1.

In the second case DImPAL applies the operator n times, each time with a

different layer of the second operand (the first operand—a single layer—is the

same each time):

layer 1 <operator> layer 1, . . . , layer 1 <operator> layer n.

In the last case DImPAL applies the operator pairwise:

layer 1 <operator> layer 1, . . . , layer n <operator> layer n.

4. Function overloading. What this means is that a single function name (iden-

tifier) can be used to represent several different functions each valid for a

particular layer type and data type. For example, the function dilate() is used

to compute the metric dilation of an image, of a graph, or of an image by

another image (structuring element).

5. Default parameters. Many functions and commands can be called without

specifying all of their parameters. For example the rotate() function requires

four parameters: a variable, an angle, the x coordinate of the centre of rotation,

and the y coordinate of the centre of rotation. However, the latter three

parameters have defaults and so do not need to be specified.

The material presented in the remainder of this appendix is taken from the DImPAL

version 4.0 user manual.

A.1 Technical details / history

DImPAL comprises several distinct software components. These are listed in Ta-

ble A.1.



320 DImPAL 4.0

Table A.1: DImPAL’s software components.

Component Description

console handler The primary interface to DImPAL
which accepts statements typed in by
the user.

lexical analyser Extracts tokens such as variable and
function names, operators, and con-
stants from user input.

parser Uses recursive descent parsing to pro-
cess command, assignment, decision,
and looping statements.

file manager Handles all I/O between secondary
storage and memory.

symbol table manager Maintains a list of variable names and
descriptions.

command dictionary List of all commands and associated
syntax.

function dictionary List of all functions and associated syn-
tax.

Prototypes of DImPAL’s core software components—lexical analyser, parser, and

file manager—were developed in ANSI C3 under AmigaDOS4, and then MS-DOS5

in 1991 and 1992. During 1993 the software was ported to and then developed under

OS/2 version 1.36. This constituted version 1.0 of DImPAL. In 1994 DImPAL was

ported to OS/2 version 2.07 and a large number of functions and commands were

added to it. This version, version 1.2, is documented in Mehnert (1994).

In 1995 and 1996 DImPAL was ported to UNIX8—AIX9, ULTRIX10 and Digital

UNIX11—and much of the code was revised, redesigned, and rewritten. Most no-

tably:

1. internal support for the loading of images one or several lines at a time was

dropped (the virtual memory management provided by modern operating sys-

3 American National Standards Institute defined standard of the C programming language.
4 Commodore International Limited.
5 Microsoft Corporation.
6 Microsoft Corporation and International Business Machines Corporation.
7 International Business Machines Corporation.
8 Unix is a registered trademark of AT&T.
9 UNIX variant developed by International Business Machines Corporation.

10 UNIX variant developed by Digital Equipment Corporation.
11 UNIX variant developed by Digital Equipment Corporation.
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tems and compilers made this scheme for conserving memory redundant);

2. the number of data types was reduced from six to four;

3. support for hexagonal grid images was added;

4. layer types were introduced: matrix, points sampled on a square grid, points

sampled on a hexagonal grid, graph edges, and graph vertices;

5. scalar variables were introduced; and

6. the OS/2 specific graphics and window management routines were discarded

in favour of calls to third party software such as xv 12 and Gnuplot13 (making

DImPAL highly portable).

This constituted version 2.0.

Version 3.0 was developed during 1997 and 1998. Changes and extensions of note

include:

1. internal support for two-dimensional array style addressing of images;

2. internal support for padding an image with a border of pixels of specified width

and value as it is loaded into memory (simplifies internal code when dealing

with edge effects);

3. a rewrite of the left-recursive production rules so that the parser uses left-

to-right associativity for all dyadic operators (rather than right-to-left as in

preceding versions);

4. the retiring of the . operator of version 2.0 in favour of two new operators: .

operator for specifying layer references with an identifier and the # operator

for specifying layer references with an integer constant or expression;

5. the introduction of the ~ operator (for joining several layers to produce a single

variable);

6. the introduction of * as a missing value symbol that can be used as a constant

in expressions; and

12 Freely available via ftp://ftp.cis.upenn.edu/pub/xv.
13 Freely available from http://www.gnuplot.info.
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7. the introduction of the while-endwhile and if-then-else statements and the nec-

essary functions to support program execution (previous versions of DImPAL

provided only batch execution with no flow control statements).

Several commands and functions—most notably seeded region growing, watershed

transform, dynamics, reconstruction filtering, and graph morphology—were added

to this version yielding several sub-versions (3.x series). Version 4.0 was developed in

2002 and includes several bug fixes, speed improvements, and minor customisations

for processing cytometer files. Changes of note include:

1. bug fixes to the internal code supporting nested looping and conditional state-

ments;

2. implementation of fast watershed and contrast dynamics routines;

3. implementation of character string assignment, and the passing of string vari-

ables as parameters to functions and commands; and

4. extension of the declare() command to import .img files from the Cytometrics

Project cytometer.

DImPAL (versions 3.x and greater) is known to compile, using gcc14, and run under

Linux15, Tru64 UNIX 5.016, and SunOS 5.817. It also compiles, using Microsoft

Visual C++ Compiler, and runs under Windows 9818.

Although DImPAL is written in ANSI C it does use the following non-ANSI UNIX

functions: tempnam(), remove(), and fork(). The tempnam() function is used in

both the file manager and graphics routines to generate temporary file names. The

remove() function is used in the parser, file manager, and graphics routines to delete

files. The fork() function is used in the graphics routines to execute multiple in-

stances of xv and Gnuplot.

14 GCC is the GNU Compiler Collection which contains front ends and libraries for several different
languages including: C, C++, Objective-C, Fortran, Java, and Ada. The GCC homepage is
located at http://gcc.gnu.org/.

15 Red Hat Linux Version 8.0, Red Hat, Inc.
16 Hewlett-Packard Company.
17 Sun Microsystems, Inc.
18 Microsoft Corporation.
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A.2 Lexical conventions

A DImPAL statement is fundamentally a collection of small syntactic units called

tokens. There are four types of token:

1. identifiers,

2. constants,

3. operators, and

4. separators.

The lexical analyser resolves a statement into its constituent tokens. It ignores any

white space, except when it appears between double quotes, and any characters

following a semicolon (deemed to be a comment). A particular instance of a token

is called a lexeme. The stream of lexemes resolved from a statement are passed on

to the parser whose job it is to determine the syntactic validity of the statement.

If the statement is syntactically valid then it can be executed, otherwise an error

message is produced. In the remainder of this section each type of token is formally

described.

A.2.1 Identifiers

An identifier is defined to be a letter followed by a mixed sequence of letters, num-

bers, and underscores. Identifiers are case sensitive, so that Image is different from

image. Identifiers are used to denote variables, keywords, layer names, commands,

and functions. There are no restrictions on the length of an identifier except in the

case of a variable. A variable is actually stored in a file that has the same name as

the variable plus the extension .lay. This means that the length of an identifier used

for a variable cannot exceed four less than the maximum length of a file name for the

underlying file system19. It is permissible to give a variable an identifier that is the

same as that already used for a layer, command, or function. It is also permissible

to use the while, endwhile, if, else, and endif keywords as identifiers for variables

(although this is not good programming practice).

19 The ext2/ext3 filesystems used in Linux, for example, impose a limit of 255 characters on the
length of a filename.
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A.2.2 Constants

A constant is a number or a character string that can be used as a value or a

parameter in a statement. An integer (constant) is defined to be a sequence of one

or more digits (no sign). A real (constant) is defined to be an integer followed by

a period followed by another integer. Alternatively a real constant can be defined

as an integer, optionally followed by a period and another integer, followed by the

letter e (upper or lower case), followed by an integer (possibly signed). In extended

Backus-Naur form (EBNF) a real constant has the production:

<real>::=<integer>.<integer> |

<integer>[.<integer>] (E|e) [+|-] <integer>

A string constant is any sequence of alphanumeric characters surrounded by double

quotes (but not containing the double quote character itself).

A.2.3 Missing value constant

The * symbol can be used in DImPAL in the place of any real or integer constant.

The * symbol denotes the missing value constant. This constant is used in DImPAL

for several purposes including: encoding non-rectangular images, denoting don’t care

parameters in function and command calls, and to signify the result yielded by a

mathematically undefined operation.

A.2.4 Operators

All of the DImPAL operators, except ^, ., and # are a subset of the C language

operators. Table A.2 lists the DImPAL operators in decreasing order of precedence;

e.g. when evaluating an expression DImPAL will perform multiplication before ad-

dition. Parentheses can be used to override precedence.

A.2.5 Meta-operator

A pair of square brackets placed around a dyadic operator invokes the clipping meta-

operator; e.g. result = image1[+]image2. Ordinarily a dyadic operation between

two layers, both representing square grid images, or both representing hexagonal grid

images, is only valid if both layers have the same size and location in Z2. If this is
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Table A.2: DImPAL operators listed in decreasing order of precedence. Where several
operators appear on the same line they have equal precedence.

Operator Associativity Description

. # left to right layer reference operators
˜ left to right group
- ! right to left unary minus, logical negation
ˆ left to right exponentiation
* / % left to right multiplication, division, modulus
+ - left to right addition, subtraction
== != left to right equal to, not equal to
< > <= >= left to right relational operators
&& left to right logical AND
|| left to right logical OR

not the case then the clipping meta-operator can be used. The operator forces the

operation to be performed on the intersection of the domains of the operands.

A.2.6 Separators

When an identifier is followed by the left-hand round bracket it is deemed to be a

function or command name. Double quotes delimit character strings. The comma

separates actual parameters in functions and in commands that take arguments.

The semicolon marks the beginning of a comment.

A.3 Language grammar

DImPAL statements are parsed using a method known as recursive descent parsing.

A collection of recursive procedures, which in total constitute the parser, determines

the syntactic validity of a statement based on the sequence of lexemes generated by

the lexical analyser. If the statement is also semantically correct then it is evaluated

as the recursion unwinds. DImPAL statements can be described by a Class 2, also

called context-free, grammar. Class 2 grammars can be expressed in EBNF notation.

The production rules for a statement entered at the command prompt (an interactive

statement) and for a program are as follows:
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<program>::=<statement_list>

<statement_list>::=<program_statement>

.

.

.

<program_statement>::=<if_statement> |

<while_statement> |

<interactive_statement>

<if_statement>::=if <disjunction>

<statement_list>

{else

<statement_list>}

endif

<while_statement>::=while <disjunction>

<statement_list>

endwhile

<interactive_statement>::=<assignment_statement> |

<command_statement>

<assignment_statement>::=<identifier> = <disjunction> |

<identifier> = <string>

<command_statement>::=<identifier>(<parameter_list>)

<disjunction>::=<disjunction> || <conjunction> |

<conjunction>

<conjunction>::=<conjunction> && <relational> |

<relational>

<relational>::=<relational> < <equality> |

<relational> <= <equality> |
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<relational> >= <equality> |

<relational> > <equality> |

<equality>

<equality>::=<equality> == <additive> |

<equality> != <additive> |

<additive>

<additive>::=<additive> + <multiplicative> |

<additive> - <multiplicative> |

<multiplicative>

<multiplicative>::=<multiplicative> * <exponentiation> |

<multiplicative> / <exponentiation> |

<multiplicative> % <exponentiation> |

<exponentiation>

<exponentiation>::=<exponentiation> ^ <unary> |

<unary>

<unary>::= !<unary> |

-<unary> |

<group>

<group>::=<group> ~ <postfix> |

<postfix>

<postfix>::=<postfix> . <identifier> |

<postfix> # <subfactor> |

<subfactor>

<subfactor>::=<constant> |

<variable> |

<function> |

(<disjunction>)

<constant>::=<integer> |
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Table A.3: DImPAL data types.

Data type Range of values Comment

boolean {0, 1}
byte {0, 1, · · · , 255}
integer C language int INT MIN is used to represent a missing value

*

real C language double -DBL MAX is used to represent a missing
value *

<real> |

<string> |

*

<variable>::=<identifier>

<function>::=<identifier>(<parameter_list>)

<parameter_list>::=<parameter_list> , <parameter> |

<parameter>

<parameter>::=<string> |

<disjunction>

A.4 Variables and layers

The fundamental data objects in DImPAL are variables. Variables are used to store

images, matrices, and graphs. A variable is a collection of one or more layers. A

layer is simply a two dimensional array of elements. An individual layer can store

either a matrix, bound matrix (image), set of graph vertices, or set of graph edges.

Every layer has an identifier, a size (rows × columns), a data type, and a layer type.

A.4.1 Data types

There are only four data types in DImPAL. These are listed in TableA.3.
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A.4.2 Layer types

Each layer of a variable has an associated layer type. There are five possible layer

types:

1. MATRIX,

2. SQUARE,

3. HEXAGONAL,

4. VERTICES, and

5. EDGES.

A layer of type MATRIX can store a conventional matrix. Elements of the matrix

can store values in the range dictated by the data type of the layer.

A layer of type SQUARE is used to store a digital image manifested on a square

grid. More specifically the layer type SQUARE defines a bound matrix. A bound

matrix is simply a conventional matrix (of pixel values) that has location in Z2.

In other words, each element of the matrix can be indexed not only by row and

column, but also by a coordinate pair. For example, the disk function produces a

single layer variable with the origin located at the centre of the matrix. DImPAL

uses a rectangular coordinate system in which x values increase from left to right and

y values increase from bottom to top. Elements (pixels) of a layer of type SQUARE

can store values in the range dictated by the data type of the layer.

A layer of type HEXAGONAL is used to store a digital image manifested on a

hexagonal grid. A layer of type HEXAGONAL is similar to a layer of type SQUARE

in that it can store a bound matrix. However, the way in which DImPAL interprets

a HEXAGONAL bound matrix is very different to the way in which it interprets a

SQUARE bound matrix. For example:

1 5 3 1 5 3 1 5 3

7 3 8 --> 7 3 8 or * 7 3 8

1 4 6 1 4 6 1 4 6

bound matrix square grid hexagonal grid

(origin at interpretation interpretation

top-left)
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DImPAL adopts the convention that the row spacing of pixels in a SQUARE layer

and a HEXAGONAL layer is 1 unit. This implies that the horizontal spacing be-

tween points on the square grid is 1 unit whilst that for the hexagonal grid is 2/
√

3.

A layer of type VERTICES can store an array of vertices for a graph. A layer of type

EDGES can store an array of vertex neighbours (edges) for a graph. Each layer type

can have only one row. The number of columns for type VERTICES corresponds

to the number of vertices. The number of columns for type EDGES corresponds

to twice the number of edges. Internally DImPAL uses the data type integer for

elements of either layer type.

A.4.3 Creating and managing variables

In a DImPAL session or program a variable can be introduced in one of the following

ways:

1. a variable defined in a previous session can be declared using the declare com-

mand;

2. the read function can be used to create a variable from an image file (such as

a GIF file or PGM file) or from a description provided in a .dpl file (described

in the next section);

3. a new variable can be created using an assignment statement; e.g.

gradient=dilate(image,disk(1))[-]erode(image,disk(1)).

The list command prints a list of all of the variables known to DImPAL. A variable

is physically stored as a file that has the same name as the variable and the extension

.lay. For example the variable fred would be stored in the file fred.lay. The symbol

table manager maintains a binary tree of descriptors for each variable. The describe

command is used to print a description of each layer of a variable. Actual data is

only ever loaded into memory when a command or function is executed. A variable

can be removed from the symbol table using the discard command or the destroy

command. In the first case the .lay file is not deleted which means that it can be

reintroduced at a later date using the declare command. In the second case the .lay

file is permanently deleted.



A.4 Variables and layers 331

A.4.4 Creating .dpl Files

The read function is used to create DImPAL variables from standard image files such

as GIF or PGM. In addition, the function can read in a new variable that has been

defined in a DImPAL specific .dpl file (i.e. the file name must have the extension

.dpl). A .dpl file is a text file containing a description of the variable. Here is an

example of a .dpl file:

LAYERS: 7

IDENTIFIER: vertices

FORMAT: VERTICES

SIZE: 1 x 27

IDENTIFIER: edges

FORMAT: EDGES

SIZE: 1 x 68

IDENTIFIER: x_coordinates

FORMAT: MATRIX

TYPE: INTEGER

SIZE: 1 x 27

IDENTIFIER: y_coordinates

FORMAT: MATRIX

TYPE: INTEGER

SIZE: 1 x 27

IDENTIFIER: attributes

FORMAT: MATRIX

TYPE: BOOLEAN

SIZE: 1 x 27

IDENTIFIER: structuring_element_on_square_grid

FORMAT: SQUARE

TYPE: INTEGER

LOCATION: (1,-1)

SIZE: 3 x 3
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IDENTIFIER: structuring_element_on_hexagonal_grid

FORMAT: HEXAGONAL

TYPE: BOOLEAN

LOCATION: (1,-1)

SIZE: 3 x 3

0 2 4 8 12 13 18 22 24 25 29 34 37 40 41 42 44 47

51 53 56 57 58 60 63 65 67

2 3

2 5

0 1 3 5

0 2 4 6

3

1 2 6 9 10

3 5 7 10

6 11

9

5 8 16 17

5 6 15 17 18

7 12 15

11 13 14

12

12

10 11

9 17 19

9 10 16 23

10 20

16 21 22

18

19

19 26

17 24 25

23 25

23 24

22
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25 10 20 30 40 20 30 40 10 18 28 38 48

58 58 36 16 20 33 14 37 10 20 23 33 21 20

-10 -20 -20 -20 -15 -30 -30 -30 -40 -40 -42

-40 -42 -35 -49 -48 -50 -53 -53 -60 -60 -70 -70 -67 -70 -74 -80

0 0 0 0 0 1 1 8 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0

* 0 *

0 1 0

* 0 *

1 1 *

1 1 1

1 1 *

A .dpl file is used to define a variable with an arbitrary number of layers. The first

line of the file specifies the number of layers the variable has (using the LAYERS

keyword). Next, each layer is described individually. For every layer, an IDEN-

TIFIER: and a FORMAT: (one of VERTICES, EDGES, MATRIX, SQUARE, and

HEXAGONAL) must be specified. For a layer of type VERTICES or EDGES, a

SIZE: (1 row by n columns) must be specified. For a MATRIX layer, a TYPE: (one

of BOOLEAN, BYTE, INTEGER, or REAL) and SIZE: (rows by columns) must be

specified. For SQUARE or HEXAGONAL layers a TYPE:, LOCATION: (integer

coordinates of the top-left pixel), and SIZE: must be specified. After the descrip-

tions, the data are given for each layer. The * symbol is used to denote missing

values for layers with data type integer or real.

To define a graph it is necessary to define two layers: one of type VERTICES and

one of type EDGES. The layer of type VERTICES must have one row and as many

columns as there are vertices. Each element of the array is an offset into a second

array defined in the layer of type EDGES. The first value in the VERTICES layer

should be zero (pointing to the first element of EDGES). Each edge that radiates

from the first vertex is encoded by appending its opposite vertex (vertices are labelled

from 0 upward) to the end of the EDGES array. The second value in the VERTICES

array must then point to one place after the last vertex value appended to the

EDGES array. Then each edge that radiates from the second vertex is encoded, and

so on.
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A.4.5 Scalar variables

A scalar variable is a variable that has a single layer of type MATRIX and of size

1 × 1. Such a variable is created when a constant or an expression involving only

constants appears on the right hand side of an assignment statement; e.g. number=3.

A.4.6 String variables

A string variable is a variable that has a single layer of type MATRIX, of byte data

type, and of size 1× (n + 1) where n is the length of the string. Such a variable is

created by explicit assignment; e.g. filename="file.txt".

A.5 Sample program

; SYNOPSIS: VISUAL COMPARISON OF SEVERAL DISCRETE METRICS

;

; CREATE A 201x201 BOOLEAN IMAGE WITH ALL BUT THE CENTRE PIXEL

; SET TO BINARY ‘1’

image=cone(100)!=100

result=distance_transform(image,"Euclidean",1)

result=result~distance_transform(image,"cityblock",1)

result=result~(distance_transform(image,"chessboard",1))

result=result~(distance_transform(image,"chamfer34",1)/3.0)

result=result~(distance_transform(image,"chamfer5711",1)/5.0)

; RESAMPLE image TO OBTAIN A REPRESENTATION ON THE HEXAGONAL GRID

image=hexagonal_grid(translate(image,0,0))

; GIVEN THAT THE HORIZONTAL SPACING ON THE HEXAGONAL GRID IS 2/sqrt(3),

; IT IS NECESSARY TO MULTIPLY THE "honeycomb" and "chamfer35" DTs BY

; THIS FACTOR TO YIELD AN APPROXIMATION TO THE "Euclidean" DT.

; THE RESULTS OF THE INDIVIDUAL DTs ARE CONVERTED BACK TO THE SQUARE

; GRID FOR DISPLAY PURPOSES.

result=result~(distance_transform(image,"Euclidean",1))

result=result~(distance_transform(image,"honeycomb",1)*(2.0/sqrt(3)))

result=result~(distance_transform(image,"chamfer35",1)*(2.0/sqrt(3))/3.0)

; DISPLAY QUANTISED VERSIONS OF EACH DT USING THE SAME GREY-SCALE RANGE.

; THE RADII OF THE ANNULI CORRESPOND TO EQUAL DISTANCES

declare("variables/grey.lay")

log_step_grey=saturate(log(grey+1))

layer = 1

while (layer <= 5)

display(byte(byte(floor(result#layer+0.5)/16)*20),grey,(layer-1)*220,0)

layer = layer + 1

endwhile

while (layer <= 8)

display(square_grid(byte(byte(floor(result#layer+0.5)/16)*20)),grey,(layer-

6)*220,260)

layer = layer + 1

endwhile



Appendix B
The Watershed Transform

Image segmentation by watersheds was first proposed by Digabel & Lantuejoul

(1978) as a tool for the analysis of serial cross-sections of a petrographic sample (cited

in Soille, 2003, p. 2). They imagined that each cross-section—a two-dimensional

binary image—is in fact a horizontal cross-section of a topographic relief. If a drop

of rain is imagined to fall on this relief then it would, by the law of gravity, follow the

steepest path of descent until it reached a minimum. Borrowing from geographical

terminology, the set of all possible paths that a raindrop could follow to reach a

given minimum defines a catchment basin. The boundaries between adjacent catch-

ment basins are called watersheds. Digabel & Lantuejoul devised an algorithm to

automatically determine these watershed boundaries. Beucher & Lantuejoul (1979)

extended the idea to two-dimensional grey-scale images. In this case, a topographic

surface is realised if each grey-value of the image is taken to represent elevation

rather than intensity.

Unfortunately the path of steepest descent definition of catchment basins and water-

sheds, although intuitive, does not facilitate algorithm design for the computation of

watersheds in digital spaces. The reason for this is that there are several situations

where the direction of flow at a given pixel cannot be determined; e.g. plateau pixels

(Soille, 2003, p. 269). The problem is solved if instead the topographic surface is

imagined to be flooded by water coming out of the ground at various sources rather

than from falling rain. Meyer & Beucher (1990, p. 23) describe this flooding scheme

as follows:

we bore a hole in each minimum of the relief and immerse the surface in a

lake with a uniform vertical speed. The water entering through the holes

fills up the various catchment basins. We suppose that the immersion
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speed is slow enough to ensure a constant level in all the basins. In order

to avoid the confluence of the floods coming from the different minima,

we build a dam along the lines where the floods would merge. After

complete immersion only the dams [watersheds] emerge and separate

the various catchment basins.

All of the algorithms for computing the watersheds (watershed transform) published

before 1991 are notoriously slow or inaccurate (Vincent & Soille, 1991, p. 583). They

involve many iterations, each of which involves a pass through all of the image pixels,

until convergence. In 1991 Vincent & Soille proposed a fast algorithm for computing

watersheds. The algorithm eliminates the need to successively scan all of the image

pixels. “It is based on a sorting of the pixels in the increasing order of their gray val-

ues, and on fast breadth-first scannings of the plateaus enabled by a first-in-first-out

[queue] type data structure” (Vincent & Soille, 1991, p. 583). Subsequently, Meyer

(1991) proposed a more general algorithm based on a priority queue of queues. The

algorithm permits flooding to be initiated from selected markers, not necessarily

the minima. Meyer proposes two variants of the algorithm: one that renders wa-

tershed lines and labelled basins, and one that renders only the labelled catchment

basins. A description of the algorithms, in English, can be found in Beucher &

Meyer (1993). Pseudocode for both implementations can be found in Dobrin et al.

(1994). Pseudocode—in the style presented in Section 4.6—for Meyer’s watershed

line algorithm is as follows:

1: add each pixel neighbouring a marker region to the PQ with priority equal to

its associated grey-value, and label as IN QUEUE

2: while the PQ is not empty do

3: remove pixel from the PQ

4: examine all of its neighbours that have a region label

5: if they all have the same label then

6: assign this label to the pixel

7: add each unlabelled neighbour to the PQ with priority equal to its associated

grey-value, and label as IN QUEUE

8: else

9: label the pixel as WATERSHED

10: end if

11: end while.
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The reader is referred to Roerdink & Meijster (2001) for a recent review of watershed

transform algorithms.
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Appendix C
FISF Implementation for MICROMORPH

{fold.mic }

{ }

{ AUTHOR: Andrew Mehnert }

{ DATE: 17/6/99 }

{ }

{ NOTES: The following procedures are defined: }

{ }

{ (1) fold greyinout1 greyinout2 }

{ - greyinout1 initially contains the image to be folded, }

{ and after execution contains the folded grey-scale }

{ values (folded about c=127.5). }

{ - greyinout2 can initially contain anything, }

{ but after execution it contains the template }

{ (indicator) values. }

{ }

{ (2) unfold greyinout1 greyinout2 }

{ - The pair (greyinout1,greyinout2) should initially be a }

{ fold-space image (as produced by "fold", "foldmax", and }

{ "foldmin"). }

{ - After execution, greyinout1 contains the unfolded image }

{ and greyinout2 is empty. }

{ - NOTE: because ’c=127.5’ is not a representable grey- }

{ value, the value 127 is used instead. }

{ }

{ (3) foldmax greyin1 greyin2 greyout1 greyout2 size }

{ - The pair (greyin1,greyin2) should be a fold-space }

{ image (as produced by "fold", "foldmax", and }

{ "foldmin"). }

{ - After execution, the pair (greyout1,greyout2) }

{ will contain the fold-space dilation of }

{ (greyin1,greyin2). }

{ - size specifies the neighbourhood size of the dilation. }

{ }

{ (4) foldmin greyin1 greyin2 greyout1 greyout2 size }

{ - The pair (greyin1,greyin2) should be a fold-space }

{ image (as produced by "fold", "foldmax", and }

{ "foldmin"). }

{ - After execution, the pair (greyout1,greyout2) }

{ will contain the fold-space erosion of }



340 FISF Implementation for MICROMORPH

{ (greyin1,greyin2). }

{ - size specifies the neighbourhood size of the erosion }

{ }

{ (5) imextsupngb and imextinfngb are ancillary functions. }

deproc fold fold s t

syntax "fold greyinout greyinout"

int g b;

g := imalloc 8

b := imalloc 1

imthresh s 0 127 b {identify all pixels below the crease}

immask b 0 255 t {t is 255 wherever b is a 1}

imand t s g {g contains only those pixels of s less than the crease, 0 else-

where}

iminv s s {now invert the original image}

iminv t t {invert the mask}

imand t s s {s now contains the folded pixels}

imsup g s s {s contains the folded greyscale image, t the template}

imfree g

imfree b

end

deproc unfold unfold s t

syntax "unfold greyinout greyin"

int g1 g2 b;

g1 := imalloc 8

g2 := imalloc 8

b := imalloc 1

imthresh t 0 0 b {b is 1 wherever t=0}

immask b 0 255 g1 {g1 is 255 wherever t=0, 0 otherwise}

imand s g1 g1 {g1 contains all values that do not need folding, 0 otherwise}

imthresh t 255 255 b {b is 1 wherever t=255}

immask b 0 255 g2 {g2 is 255 wherever t=255, 0 otherwise}

iminv s s

imand s g2 g2 {g2 contains all the unfolded values, 0 otherwise}

imthresh t 127 127 b {b is 1 wherever t=127}

immask b 0 127 s {s is 127 wherever there is a value on the crease}

imor g1 g2 g1

imor g1 s s

imfree g1

imfree g2

imfree b

clr t

end

deproc imextsupngb imextsupngb s st d dt di

syntax "imextsupngb greyin1 greyin2 greyout1 greyout2 direction"

int w1 w2 w3 w4 w5 b;

w1 := imalloc 8

w2 := imalloc 8

w3 := imalloc 8

w4 := imalloc 8

w5 := imalloc 8

b := imalloc 1

imcopyngb s w1 di 1 0

imcopyngb st w2 di 1 0

imdiff s w1 w3 {w3 contains all pixels s>w1, 0 otherwise}

imthresh w3 1 255 b {b is 1 wherever s>w1}
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immask b 0 255 w3 {w3 is 255 wherever s>w1, 0 otherwise}

imdiff w1 s w4 {w4 contains all pixels w1>s, 0 otherwise}

imthresh w4 1 255 b {b is 1 wherever w1>s}

immask b 0 255 w4 {w4 is 255 wherever w1>s, 0 otherwise}

imor w3 w4 w5 {w5 is 255 wherever s!=w1, 0 otherwise}

iminv w5 w5 {w5 is 255 wherever s=w1, 0 otherwise}

imand w3 st w3 {w3 contains template values for s such that s>w1}

imand w4 w2 w4 {w4 contains template values for w1 such that w1>s}

imor w3 w4 w3 {w3 contains template values correct for s!=w1}

imsup s w1 d {d contains the correct values}

imdiff st w2 w1 {w1 contains all pixels st>w2, 0 otherwise}

imthresh w1 1 255 b {b is 1 wherever st>w2}

immask b 0 255 w1 {w1 is 255 wherever st>w2, 0 otherwise}

imdiff w2 st w4 {w4 contains all pixels w2>st, 0 otherwise}

imthresh w4 1 255 b {b is 1 wherever w2>st}

immask b 0 255 w4 {w4 is 255 wherever w2>st, 0 otherwise}

imor w1 w4 w1 {w1 is 0 wherever st=w2, 255 otherwise}

iminv w1 w1 {w1 is 255 wherever st=w2, 0 otherwise}

imand w1 w5 w4 {w4 is 255 wherever st=w2 and s=(former)w1}

imand st w4 w4 {w4 contains template values such that s=(former)w1 and st=w2}

imor w3 w4 w3 {merge with template values already deter-

mined for s!=(former)w1}

imthresh w1 1 255 b {b is 1 wherever st=w2}

immask b 127 0 w1 {w1 is 0 wherever st=w2, 127 otherwise}

imand w1 w5 w1 {w1 is 127 wherever s=(former)w1 and st!=w2}

imor w1 w3 dt

imfree w1

imfree w2

imfree w3

imfree w4

imfree w5

imfree b

end

deproc imextinfngb imextinfngb s st d dt di

syntax "imextinfngb greyin1 greyin2 greyout1 greyout2 direction"

int w1 w2 w3 w4 w5 b;

w1 := imalloc 8

w2 := imalloc 8

w3 := imalloc 8

w4 := imalloc 8

w5 := imalloc 8

b := imalloc 1

imcopyngb s w1 di 1 0

imcopyngb st w2 di 1 0

imdiff s w1 w3 {w3 contains all pixels s>w1, 0 otherwise}

imthresh w3 1 255 b {b is 1 wherever s>w1}

immask b 0 255 w3 {w3 is 255 wherever s>w1, 0 otherwise}

imdiff w1 s w4 {w4 contains all pixels w1>s, 0 otherwise}

imthresh w4 1 255 b {b is 1 wherever w1>s}

immask b 0 255 w4 {w4 is 255 wherever w1>s, 0 otherwise}

imor w3 w4 w5 {w5 is 255 wherever s!=w1, 0 otherwise}

iminv w5 w5 {w5 is 255 wherever s=w1, 0 otherwise}

imand w3 w2 w3 {w3 contains template values for w1 such that s>w1}

imand w4 st w4 {w4 contains template values for s such that w1>s}

imor w3 w4 w3 {w3 contains template values correct for s!=w1}

iminf s w1 d {d contains the correct values}
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imdiff st w2 w1 {w1 contains all pixels st>w2, 0 otherwise}

imthresh w1 1 255 b {b is 1 wherever st>w2}

immask b 0 255 w1 {w1 is 255 wherever st>w2, 0 otherwise}

imdiff w2 st w4 {w4 contains all pixels w2>st, 0 otherwise}

imthresh w4 1 255 b {b is 1 wherever w2>st}

immask b 0 255 w4 {w4 is 255 wherever w2>st, 0 otherwise}

imor w1 w4 w1 {w1 is 0 wherever st=w2, 255 otherwise}

iminv w1 w1 {w1 is 255 wherever st=w2, 0 otherwise}

imand w1 w5 w4 {w4 is 255 wherever st=w2 and s=(former)w1}

imand st w4 w4 {w4 contains template values such that s=(former)w1 and st=w2}

imor w3 w4 w3 {merge with template values already deter-

mined for s!=(former)w1}

imthresh w1 1 255 b {b is 1 wherever st=w2}

immask b 127 0 w1 {w1 is 0 wherever st=w2, 127 otherwise}

imand w1 w5 w1 {w1 is 127 wherever s=(former)w1 and st!=w2}

imor w1 w3 dt

imfree w1

imfree w2

imfree w3

imfree w4

imfree w5

imfree b

end

deproc foldmax foldmax s st d dt sz

syntax "foldmax greyin greyin greyout greyout size"

int w wt i;

imcopy s d

imcopy st dt

if(grid = 1) then

w := imalloc 8

wt := imalloc 8

for 1 to sz do

i := 0

imcopy d w

imcopy dt wt

for 1 to 6 do

imextsupngb d dt w wt ++ i

end

imcopy w d

imcopy wt dt

end

imfree w

imfree wt

else

for 1 to sz do

imextsupngb d dt d dt 1

imextsupngb d dt d dt 3

imextsupngb d dt d dt 5

imextsupngb d dt d dt 7

end

end

end

deproc foldmin foldmin s st d dt sz

syntax "foldmin greyin greyin greyout greyout size"

int w wt i;
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imcopy s d

imcopy st dt

if(grid = 1) then

w := imalloc 8

wt := imalloc 8

for 1 to sz do

i := 0

imcopy d w

imcopy dt wt

for 1 to 6 do

imextinfngb d dt w wt ++ i

end

imcopy w d

imcopy wt dt

end

imfree w

imfree wt

else

for 1 to sz do

imextinfngb d dt d dt 1

imextinfngb d dt d dt 3

imextinfngb d dt d dt 5

imextinfngb d dt d dt 7

end

end

end
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Appendix D
DImPAL Programs

D.1 Implementation of the new chromatin seg-

mentation algorithm

;

; ....Segment the chromatin blobs within the nucleus....

;

image = resize(filter(nuclear_images#nucleus_number,"median",3),3,3)

mask = resize(clip(nuclear_masks#nucleus_number,1,1,1,1,"relative"),3,3)!=0

nucleus = image * mask

gradient = dilate(nucleus)-erode(nucleus)

nucleus = clip(nucleus,1,1,1,1,"relative")

minima = minima(nucleus)

inner_markers = minima>0

outer_marker = watershed(nucleus,label(inner_markers||border(nucleus)),"lines")==-1

labelled_markers=label(inner_markers)

labelled_markers=labelled_markers+outer_marker*(maximum(labelled_markers)+1)

result = watershed(gradient,labelled_markers)

blobs = result>0 && result<maximum(result)

labelled_blobs = blobs * result

outline = blobs [&&] !erode(blobs)

overlay = image[*]!outline [+] 255*outline

D.2 Additional code for constructing the gener-

alised Delaunay graph

;

; ....Construct a generalised Delaunay graph on the segmented blobs....

;

measurements_of_blobs = measure(labelled_blobs)

zones_of_influence = watershed(byte(distance_transform(!blobs,"Euclidean",1)),

labelled_blobs,"regions")[*]mask

adjacency_graph = make_graph(zones_of_influence)
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coordinates = inte-

ger(measurements_of_blobs.centroid_x~measurements_of_blobs.centroid_y)*4

attributes = measurements_of_blobs.connectivity_number==1

graph_image = draw_graph(adjacency_graph~attributes,coordinates)

overlay(resize(overlay,4,4),graph_image)



Appendix E
Fast Priority Queue Implementation in C

Notes:

1. The implementation assumes that the calling (watershed) function takes an

8-bit grey-scale image as input and produces an integer image, containing the

numerically labelled catchment basins and/or watershed lines, as output.

2. The elements of the FIFO queues within the priority queue are pointers to

integers because the output image is an integer image.

#define MAX(A,B) ( ( ( A) > (B) ) ? (A):(B) )

typedef int INTEGER;

typedef struct

{

INTEGER **front;

INTEGER **rear;

} SIMPLE_QUEUE;

typedef struct

{

SIMPLE_QUEUE *queue;

INTEGER highest_priority;

} PRIORITY_QUEUE;

static void

insert_into_priority_queue (PRIORITY_QUEUE * priority_queue,

INTEGER * pixel_ptr, INTEGER priority)
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{

SIMPLE_QUEUE *queue;

INTEGER highest_priority;

highest_priority = priority_queue->highest_priority;

priority = MAX (priority, highest_priority);

queue = &priority_queue->queue[priority];

insert_into_queue (queue, pixel_ptr);

}

static INTEGER *

remove_from_priority_queue (PRIORITY_QUEUE * priority_queue)

{

SIMPLE_QUEUE *queue;

INTEGER highest_priority, *pixel_ptr;

highest_priority = priority_queue->highest_priority;

queue = &priority_queue->queue[highest_priority];

while ((pixel_ptr = remove_from_queue (queue)) == NULL &&

highest_priority < 255)

{

priority_queue->highest_priority++;

highest_priority = priority_queue->highest_priority;

queue = &priority_queue->queue[highest_priority];

}

return (pixel_ptr);

}

void

insert_into_queue (SIMPLE_QUEUE * queue, INTEGER * pixel_ptr)

{

if (queue->rear == NULL)

printf ("Overflow\n");

*queue->rear = pixel_ptr;

queue->rear--;

}

INTEGER *

remove_from_queue (SIMPLE_QUEUE * queue)

{

if (queue->front == queue->rear)

return (NULL);

else

return (*queue->front--);

}

The following code fragment shows how the priority queue is initialised in the calling

(watershed) function:
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{

SIMPLE_QUEUE queue[256];

PRIORITY_QUEUE priority_queue;

long histogram[256];

int i;

.

.

.

/* ....INITIALISE PRIORITY QUEUE AND COMPONENT SIMPLE QUEUES.... */

priority_queue.queue = queue;

priority_queue.highest_priority = 0;

queue[0].front = queue[0].rear = heap + histogram[0] - 1;

for (i = 1; i < 256; i++)

queue[i].front = queue[i].rear = queue[i - 1].front + histogram[i];

.

.

.
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Appendix F
Minkowski Functionals in Rn

Associated with every compact convex set (ovoid) X in Rn there exist n+1 Minkowski

functionals. The k-th functional is denoted W
(n)
k . The functionals are defined by a

recurrence relation on sub-dimensions of the space as follows (Serra, 1982, p. 104):

when n = 1 W
(1)
0 (X) = L (X) and W

(1)
1 (X) = 2;

when n > 1 W
(n)
0 (X) = V (n) (X) ; and

when 1 ≤ k ≤ n W
(n)
k (X) = 1

nbn−1

∫
Ωn

W
(n−1)
k−1

(
proj

Π
(n−1)
ω

(X)
)

dω,

where L (X) is the length of X, proj
Π

(n−1)
ω

(X) is the projection of X onto the

hyperplane Π
(n−1)
ω with normal ω, V (n) (X) is the n-volume of X, bn is the n-volume

of the unit ball, and Ωn is the set of directions (i.e. the unit sphere) in Rn.
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Appendix G
QML AutoCyte� Slide Diagnoses

In the following table, HPV indicates the presence of human papillomavirus. For a

description of CIN, refer to Section 6.4.1.

Patient number Imaging order

(barcode number)

Diagnosis Class Notes

99-93398 69 Negative 0

99-93622 117 Negative 0

99-93623 29 Negative 0

99-93625 44 Negative 0

99-93626 99 Negative 0

99-93971 72 Negative 0

99-94040 60 Negative 0

99-94041 147 Negative 0

99-94042 136 Negative 0

99-94167 2 Negative 0

99-94168 46 Negative 0

99-94169 5 Negative 0

99-94170 103 Negative 0
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Patient number Imaging order

(barcode number)

Diagnosis Class Notes

99-94171 25 Negative 0

99-94172 86 Negative 0

99-94173 45 Negative 0

99-94618 141 Negative 0

99-94619 107 Negative 0

99-94764 6 Negative 0

99-94765 75 Negative 0

99-94767 114 Negative 0

99-94768 31 Negative 0

99-97056 95 Negative 0

99-97057 112 Negative 0

99-97068 121 Negative 0

99-97069 94 Negative 0

99-97074 24 Negative 0

99-97092 20 Negative 0

99-97618 145 Negative 0

99-97615 126 Negative 0

99-97620 74 Negative 0

99-97617 39 Negative 0

99-97619 49 Negative 0

99-104271 142 Negative 0

99-104302 3 Negative 0
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Patient number Imaging order

(barcode number)

Diagnosis Class Notes

99-104303 101 Negative 0

99-104304 104 Negative 0

99-104372 92 Negative 0

99-104373 106 Negative 0

99-104387 82 Negative 0

99-104388 98 Negative 0

99-104498 10 Negative 0

99-104499 90 Negative 0

99-104500 128 Negative 0

99-104501 137 Negative 0

99-104514 139 Negative 0

99-104516 34 Negative 0

99-104517 81 Negative 0

99-107370 70 Negative 0

99-107369 110 Negative 0

99-107343 65 Negative 0

99-107368 93 Negative 0

99-107339 115 Negative 0

99-107375 125 Negative 0

99-107436 118 Negative 0

99-107664 113 Negative 0

99-108480 59 Negative 0
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Patient number Imaging order

(barcode number)

Diagnosis Class Notes

99-108484 47 Negative 0

99-108485 109 Negative 0

99-108487 16 Negative 0

99-108488 35 Negative 0

99-108589 19 Negative 0

99-108544 108 Negative 0

99-108584 80 Negative 0

99-108585 41 Negative 0

99-108586 0 Negative 0

99-108590 67 Negative 0

99-110708 28 Negative 0

99-110709 40 Negative 0

99-110875 33 Negative 0

99-110876 57 Negative 0

99-110878 7 Negative 0

99-110879 8 Negative 0

99-110966 89 Negative 0

99-111784 78 Negative 0

99-111894 22 Negative 0

99-111895 56 Negative 0

99-111897 127 Negative 0

99-111898 9 Negative 0
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Patient number Imaging order

(barcode number)

Diagnosis Class Notes

99-111899 143 Negative 0

99-111900 11 Negative 0

99-111902 131 Negative 0

99-111903 130 Negative 0

99-111904 146 Negative 0

99-111905 87 Negative 0

99-111906 17 Negative 0

99-111936 77 Negative 0

99-111937 15 Negative 0

99-122699 129 Negative 0

99-122700 134 Negative 0

99-122701 1 Negative 0

99-122749 53 Negative 0

99-122750 73 Negative 0

99-122751 133 Negative 0

99-122755 91 Negative 0

99-122756 119 Negative 0

99-122758 96 Negative 0

99-122759 71 Negative 0

99-123555 144 Negative 0

99-123556 135 Negative 0

99-123771 26 Negative 0
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Patient number Imaging order

(barcode number)

Diagnosis Class Notes

99-87819 124 CIN 1 1 & HPV

99-90006 14 CIN 2 1 x 3 slides

99-90006 84 CIN 2 1

99-90006 37 CIN 2 1

99-95914 48 CIN 2 1

99-94766 52 CIN 2 1

99-115853 79 CIN 3 1 & glandular

cells possible

highgrade glan-

dular epithelial

abnormality

99-122752 58 CIN 2 1

99-143943 63 CIN 2 1

99-146273 105 CIN 3 1

99-149738 76 CIN 2 1 & HPV

99-151440 61 CIN 2 1 & HPV

99-152486 55 CIN 3 1

00-19171 51 CIN 2 1 & HPV

00-22697 123 CIN 2 1 x 2 slides

00-22697 140 CIN 2 1

00-26712 32 CIN 2 1 & HPV

00-27411 102 CIN 2 1

00-42514 36 CIN 2 1

00-47504 21 CIN 2 1 & HPV x 3 slides
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Patient number Imaging order

(barcode number)

Diagnosis Class Notes

00-47504 64 CIN 2 1

00-47504 12 CIN 2 1

00-49362 18 CIN 2 1

99-125848 88 CIN 2 1 & HPV

99-128307 27 CIN 2/3 1

99-146858 23 CIN 2 1 & HPV

00-018748 13 CIN 2 1

00-59665 42 CIN 2/3 1

00-62235 116 CIN 2 1 & HPV

99-62534 38 CIN 2 1 & HPV

99-107373 85 CIN 3 1

99-110498 120 CIN 2 1 & HPV

99-122487 50 CIN 3 1

99-124494 43 CIN 2 1

00-65141 68 CIN 2 1

00-67566 122 CIN 3 1

00-74949 138 CIN 2 1

00-76940 66 CIN 3 1

00-79272 111 CIN 2 1 & HPV

00-85617 4 CIN 3 1

00-101962 54 CIN 2 1

00-103416 83 CIN 2 1
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Patient number Imaging order

(barcode number)

Diagnosis Class Notes

00-114189 30 CIN 2/3 1

00-114258 100 CIN 2 1 & HPV

00-114259 97 CIN 2 1

00-122495 62 CIN 2 1

00-130282 132 CIN 3 1



Appendix H
Danielsson’s G Shape Factor

r

�
�
�
�

dA

Danielsson (1978) devised the following shape factor for a binary image X ⊂ R2:

G =
A

9π
(
d
)2

where

d =

⎛⎝∫∫
A

r dA

⎞⎠ /A,

and A is the area of X. The shape factor is dimensionless and takes the value 1 for

a perfect circle. For a digital image, the quantity d is estimated by computing the

mean of the distance transform of X (see Section 5.4).
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Appendix I
R Program for Experiment 1

# leave_one_out.R

#

# AUTHOR: Andrew Mehnert

# DATE: May 2002

#

# HISTORY: July 2003 - added weights and priors

#

rm (list=ls())

#

# Load the ROC curve analysis code

#

source("ROC.R")

#

# Specify the population priors

#

USE.POPULATION.PRIORS <- FALSE

POPULATION.PROPORTION.OF.ABNORMALS = 0.08

POPULATION.PROPORTION.OF.NORMALS = 0.92

#

# Specify misclassification costs

#

COST.OF.MISCLASSIFYING.AN.ABNORMAL <- 1

#

# Import data

#

Class <- factor(read.csv(’../AutoCyteImagingOrder.csv’)$Classification,
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levels=c(FALSE,TRUE),labels=c("Normal","Abnormal"))

blob.distance.data.set <- read.table("../measurements/blob_distance.dat")

working.data.set <- as.data.frame(cbind(blob.distance.data.set[,1:3],

Class))

attr(working.data.set,"names")<-c(paste("F",1:(length(working.data.set)-1),

sep=""),"Class")

barcode.of.slides.to.omit <- c(21,30,37,43,64,84,101,123,125)

slides.to.omit <- barcode.of.slides.to.omit + 1

working.data.set <- working.data.set[-slides.to.omit,]

rm(blob.distance.data.set)

rm(Class)

#

# Create the sequence 1,2,3,... up to the number of observations

#

sequence <- seq(1,nrow(working.data.set))

#

# Create a vector with missing entries to hold the predicted probability

# (of belonging to the class "Abnormal") for each observation held out

#

probabilities<-numeric(nrow(working.data.set))

#

# Apply the leave-one-out (holdout) methodology

#

for (i in sequence)

{

print(i)

training.set <- working.data.set[-i,]

holdout.observation <- working.data.set[i,]

weight.for.normals <- 1.0 / COST.OF.MISCLASSIFYING.AN.ABNORMAL

weight.for.abnormals <- 1.0

if (USE.POPULATION.PRIORS == TRUE)

{

weight.for.normals <- weight.for.normals *

nrow(training.set) *
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POPULATION.PROPORTION.OF.NORMALS /

sum(training.set$Class=="Normal")

weight.for.abnormals <- weight.for.abnormals *

nrow(training.set) *

POPULATION.PROPORTION.OF.ABNORMALS /

sum(training.set$Class=="Abnormal")

}

training.set.weights <- (training.set$Class=="Normal") *

weight.for.normals +

(training.set$Class=="Abnormal") *

weight.for.abnormals

analysis <- glm(Class~F1+F2+F3, family=binomial(link=logit),

data=training.set, weights=training.set.weights)

probabilities[i] <- predict(analysis, holdout.observation,

type="response")

}

#

# (1) Plot the empirical ROC curve and label it with the AUC +/- SE

# (2) Label points on the curve corresponding to cutpoints

# 0, 0.1, 0.2, ..., 1

# (3) List the CCR, specificity, and sensitivity corresponding to the

# cutpoints

#

attach(working.data.set)

result<-make.ROC.curve(probabilities,Class)

X11()

#postscript(file="rawROC.eps",paper="special",width=8.0,height=8.0,

# horizontal=FALSE)

plot(result$rawx,result$rawy,type="l",xlab="P(False +ve)",

ylab="P(True +ve)")

axis(1,tck=1,lty=2)

axis(2,tck=1,lty=2)

for (cutpoint in seq(0,1,0.1))

{

confusion.matrix <- table(Class,factor(probabilities >= cutpoint,

levels=c(FALSE,TRUE),

labels=c("Normal","Abnormal")))

sensitivity <- confusion.matrix[2,2] / (confusion.matrix[2,1] +
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confusion.matrix[2,2])

specificity <- confusion.matrix[1,1] / (confusion.matrix[1,1] +

confusion.matrix[1,2])

CCR <- (confusion.matrix[1,1] + confusion.matrix[2,2])/

nrow(working.data.set)

if (USE.POPULATION.PRIORS)

{

CCR.corrected <- (confusion.matrix[1,1] / (confusion.matrix[1,1] +

confusion.matrix[1,2])) *

POPULATION.PROPORTION.OF.NORMALS +

(confusion.matrix[2,2] / (confusion.matrix[2,1] +

confusion.matrix[2,2])) *

POPULATION.PROPORTION.OF.ABNORMALS

cat(round(sensitivity,2),", ", round(specificity,2), ", ",

round(CCR*100,1),", ",round(CCR.corrected*100,1),"\n")

} else

{

cat(round(sensitivity,2),", ", round(specificity,2), ", ",

round(CCR*100,1),"\n")

}

points(1-specificity,sensitivity,pch="*",cex=3)

#text(1-specificity+0.03,sensitivity,paste(cutpoint))

}

text(0.7,0.1,paste("AUC = ",round(result$rawAUC,3),"+/-",

round(result$rawSE,3)))

#dev.off()
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R Program for Experiment 2

# holdout.R

#

# AUTHOR: Andrew Mehnert

# DATE: May 2002

#

# HISTORY: August 2003 - added table code for features

#

rm (list=ls())

#

# Load the Venables and Ripley MASS library --- stepAIC()

#

library(MASS)

#

# Load the ROC curve analysis code

#

source("ROC.R")

#

# Constants

#

HOLD.OUT.PROPORTION <- 1/3

NUMBER.OF.TESTS <- 100

COST.OF.MISCLASSIFYING.AN.ABNORMAL <- 1

#

# Import data

#

source("import_slide_features_from_DImPAL.R")
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# Specify features (variables) to keep (exclude grey-level features)

features.to.keep <- seq(1,56)

features.to.keep <- features.to.keep[c(seq(-8,-15),seq(-18,-23),

seq(-32,-51))]

# Include the "Class" column also

working.data.set <- working.data.set[,c(features.to.keep,

length(working.data.set))]

# omit unsuitable slides

barcode.of.slides.to.omit <- c(21,30,37,43,64,84,101,123,125)

slides.to.omit <- barcode.of.slides.to.omit + 1

working.data.set <- working.data.set[-slides.to.omit,]

#

# Construct the model formula, based on ’features.to.keep’, to be

# used in the generalised linear model

# The formula has the form: Class ~ X? + X? + ...

#

my.formula <- formula(paste("Class ~",paste("X",features.to.keep,sep="",

collapse=" + ")))

#

# Perform NUMBER.OF.TESTS trials. Each trial consists of

# (1) Randomly selecting HOLD.OUT.PROPORTION of the normals and

# HOLD.OUT.PROPORTION of the abnormals (to be used as a test set);

# (2) Fitting a logistic regression model to the remaining data using

# stepwise feature selection based on BIC; and

# (3) Classifying the test set.

#

# Notes: (a) The classifier formulae are accumulated in "list.of.formulae"

# (b) The AUCs are accumulated in "AUC"

# (c) The classification probabilities for the holdout observations

# in each trial are accumulated in "probabilities"

#

list.of.formulae <- list(NUMBER.OF.TESTS)

list.of.features <- list(NUMBER.OF.TESTS)

AUC <- numeric(NUMBER.OF.TESTS)

probabilities <- list(NUMBER.OF.TESTS)

normals <- working.data.set[working.data.set$Class== "Normal",]

abnormals <- working.data.set[working.data.set$Class== "Abnormal",]

rm(working.data.set)
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number.of.normals <- nrow(normals)

number.of.abnormals <- nrow(abnormals)

number.of.normals.to.hold.out <- trunc(number.of.normals *

HOLD.OUT.PROPORTION)

number.of.abnormals.to.hold.out <- trunc(number.of.abnormals *

HOLD.OUT.PROPORTION)

for (test.number in 1:NUMBER.OF.TESTS)

{

cat("**** Test number",test.number,"\n")

which.normals.to.use.for.testing <- sample(1:number.of.normals,

number.of.normals.to.hold.out)

which.abnormals.to.use.for.testing <- sample(1:number.of.abnormals,

number.of.abnormals.to.hold.out)

training.set <- rbind(normals[-which.normals.to.use.for.testing,],

abnormals[-which.abnormals.to.use.for.testing,])

test.set <- rbind(normals[which.normals.to.use.for.testing,],

abnormals[which.abnormals.to.use.for.testing,])

weight.for.normals <- 1.0 / COST.OF.MISCLASSIFYING.AN.ABNORMAL

weight.for.abnormals <- 1.0

training.set.weights <- (training.set$Class=="Normal") *

weight.for.normals +

(training.set$Class=="Abnormal") *

weight.for.abnormals

#

# Fit a logistic regression model to the training data and perform

# stepwise variable selection

#

my.lrm <- glm(Class~1, family=binomial(link=logit), data=training.set,

weights=training.set.weights)

# Use BIC rather than the default AIC for stepwise selection

my.step <- stepAIC(my.lrm, scope=my.formula, k=log(nrow(training.set)),

direction = "both")

#

# Record the model formula, and parse and record the list of features used

#

list.of.formulae[[test.number]] <- my.step$formula
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parsed.features <- textConnection(gsub("\\+","",gsub("X","",

paste(my.step$formula)[3])))

list.of.features[[test.number]] <- scan(parsed.features)

close(parsed.features)

#

# Evaluate the performance of the fitted logistic classifier on the

# testing data

#

probabilities[[test.number]] <- predict(my.step, test.set,

type="response")

result<-make.ROC.curve(probabilities[[test.number]],test.set$Class)

cat("AUC:",result$rawAUC,"\n")

AUC[test.number] <- result$rawAUC

}

cat("\n------------------------\n\n")

cat(paste("AUC = ",round(mean(AUC),3),"+/-",round(sqrt(var(AUC)),3),"\n"))

cat("\nFeature frequency table:\n")

print(table(unlist(list.of.features)))



Appendix K
R program for Empirical ROC Curve

Analysis

# ROC.R

#

# AUTHOR: Andrew Mehnert

# DATE: 4/2/00

#

# HISTORY: 15/8/2003 (1) Corrected (x,y) pairs for plotting. Does not

# affect AUC.

# (2) Added SE calculations.

# (3) Changed the scale for the smoothed plot.

make.ROC.curve <- function(degree.of.suspicion,class)

{

total.number.of.negatives <- sum(class=="Normal")

total.number.of.positives <- sum(class=="Abnormal")

# Order the "degree.of.suspicion" scores and create a vector

# containing the class designation of each.

sortedclass <- class[order(degree.of.suspicion,decreasing=TRUE)]

# Assuming that increasing "degree.of.suspicion" scores indicate

# increasing likelihood of being "Abnormal" (positive), record the number

# of false positives and the number of true positives as the

# decision threshold is varied (these are stored as elements

# of the x and y vectors respectively).

number.of.true.positives <- 0

number.of.false.positives <- 0

x <- 0

y <- 0
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for (i in seq(1,length(degree.of.suspicion)))

{

if (sortedclass[i]=="Abnormal")

number.of.true.positives <- number.of.true.positives + 1

else

number.of.false.positives <- number.of.false.positives + 1

y <- append(y,number.of.true.positives)

x <- append(x,number.of.false.positives)

}

# The list of x and y coordinates determines a step function.

# Calculate the area under this function.

AUC <- 0

for (i in seq(2,length(degree.of.suspicion)))

{

AUC <- AUC + (x[i]-x[i-1])*y[i-1]

}

AUC<-AUC/max(x)/max(y)

SE<-sqrt((AUC*(1-AUC)+(total.number.of.positives-1)*

(AUC/(2-AUC)-AUC^2)+(total.number.of.negatives-1)*

((2*AUC^2)/(1+AUC)-AUC^2))/

(total.number.of.positives*total.number.of.negatives))

x <- x/max(x)

y <- y/max(y)

# Rescan the x and y coordinates of the step function and

# determine a new pair of coordinates representing the

# midpoints of each vertical or horizontal step.

plotx <- 0

ploty <- 0

start <- 1

if (x[2] != x[1])

horizontal <- TRUE

else

horizontal <- FALSE

for (i in seq(2,length(degree.of.suspicion)))

{

if ((x[i] == x[i-1]) && horizontal==TRUE)

{

horizontal <- FALSE

plotx <- append(plotx,(x[i-1]+x[start])/2)
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ploty <- append(ploty,y[start])

start <- i-1

}

else

if ((y[i] == y[i-1]) && horizontal==FALSE)

{

horizontal <- TRUE

plotx <- append(plotx,x[start])

ploty <- append(ploty,(y[i-1]+y[start])/2)

start <- i-1

}

}

if (max(plotx) != max(x))

{

plotx <- append(plotx,max(x))

ploty <- append(ploty,max(y))

}

# Calculate the area under the "smoothed" function.

# This is done by summing the areas of the individual trapeziums.

plotAUC <- 0

for (i in seq(2,length(plotx)))

{

plotAUC <- plotAUC + (plotx[i]-plotx[i-1])*(ploty[i]+ploty[i-1])/2

}

plotAUC <- plotAUC/max(x)/max(y)

plotSE<-sqrt((plotAUC*(1-plotAUC)+(total.number.of.positives-1)*

(plotAUC/(2-plotAUC)-plotAUC^2)+(total.number.of.negatives-1)*

((2*plotAUC^2)/(1+plotAUC)-plotAUC^2))/

(total.number.of.positives*total.number.of.negatives))

plotx <- plotx/max(plotx)

ploty <- ploty/max(ploty)

r <-list(rawx=x,rawy=y,rawAUC=AUC,rawSE=SE,

x=plotx,y=ploty,AUC=plotAUC,SE=plotSE)

r

}
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Appendix L
Slide Features

Refer to Table 6.5 and Table 6.7 for a description of the inputs N1 to N28. The

features marked with an asterisk are not defined in terms of grey-level.

Feature identifier Statistic Inputs

X1∗ number of nuclei re-

tained after artefact

rejection

X2∗, X3∗ mean and standard

deviation

blob count (N8) for each nu-

cleus

X4∗, X5∗ mean and standard

deviation

nucleus areas (N1)

X6∗, X7∗ mean and standard

deviation

nucleus perimeters (N2)

X8, X9 mean and standard

deviation

nucleus 3D connectivity num-

bers (N3)

X10, X11 mean and standard

deviation

nucleus surface areas (N4)

X12, X13 mean and standard

deviation

nucleus volumes (N5)
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Feature identifier Statistic Inputs

X14, X15 mean and standard

deviation

nucleus mean grey-levels (N6)

X16∗, X17∗ mean and standard

deviation

total blob area (N25) for each

nucleus

X18, X19 mean and standard

deviation

total blob surface area (N26)

for each nucleus

X20, X21 mean and standard

deviation

total blob volume (N27) for

each nucleus

X22, X23 mean and standard

deviation

sum of blob mean grey-levels

(N28) for each nucleus

X24∗, X25∗ mean and standard

deviation

N9 for each nucleus

X26∗, X27∗ mean and standard

deviation

N10 for each nucleus

X28∗, X29∗ mean and standard

deviation

N11 for each nucleus

X30∗, X31∗ mean and standard

deviation

N12 for each nucleus

X32, X33 mean and standard

deviation

N15 for each nucleus

X34, X35 mean and standard

deviation

N16 for each nucleus

X36, X37 mean and standard

deviation

N17 for each nucleus

X38, X39 mean and standard

deviation

N18 for each nucleus

X40, X41 mean and standard

deviation

N19 for each nucleus
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Feature identifier Statistic Inputs

X42, X43 mean and standard

deviation

N20 for each nucleus

X44, X45 mean and standard

deviation

N13 for each nucleus

X46, X47 mean and standard

deviation

N14 for each nucleus

X48, X49 mean and standard

deviation

N21 for each nucleus

X50, X51 mean and standard

deviation

N22 for each nucleus

X52∗, X53∗ mean and standard

deviation

N23 for each nucleus

X54∗, X55∗ mean and standard

deviation

N24 for each nucleus
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Appendix M
Slide Feature Box-and-Whisker Plots
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