2,520 research outputs found

    Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble

    Full text link
    We propose a multi-mode quantum memory protocol able to store the quantum state of the field in a microwave resonator into an ensemble of electronic spins. The stored information is protected against inhomogeneous broadening of the spin ensemble by spin-echo techniques resulting in memory times orders of magnitude longer than previously achieved. By calculating the evolution of the first and second moments of the spin-cavity system variables for realistic experimental parameters, we show that a memory based on NV center spins in diamond can store a qubit encoded on the |0> and |1> Fock states of the field with 80% fidelity.Comment: 5 pages, 4 figures, 11 pages supplementary materia

    Quantum optical memory protocols in atomic ensembles

    Full text link
    We review a series of quantum memory protocols designed to store the quantum information carried by light into atomic ensembles. In particular, we show how a simple semiclassical formalism allows to gain insight into various memory protocols and to highlight strong analogies between them. These analogies naturally lead to a classification of light storage protocols into two categories, namely photon echo and slow-light memories. We focus on the storage and retrieval dynamics as a key step to map the optical information into the atomic excitation. We finally review various criteria adapted for both continuous variables and photon-counting measurement techniques to certify the quantum nature of these memory protocols

    Binary communication with Gazeau-Klauder coherent states

    Get PDF
    We investigate advantages and disadvantages of using Gazeau–Klauder coherent states for optical communication. In this short paper we show that using an alphabet consisting of coherent Gazeau–Klauder states related to a Kerr-type nonlinear oscillator instead of standard Perelomov coherent states results in lowering of the Helstrom bound for error probability in binary communication. We also discuss trace distance between Gazeau–Klauder coherent states and a standard coherent state as a quantifier of distinguishability of alphabets

    Quantum key distribution for data center security -- a feasibility study

    Full text link
    Data centers are nowadays referred to as the digital world's cornerstone. Quantum key distribution (QKD) is a method that solves the problem of distributing cryptographic keys between two entities, with the security rooted in the laws of quantum physics. This document provides an assessment of the need and opportunity for ushering QKD in data centers. Together with technical examples and inputs on how QKD has and could be integrated into data-center like environments, the document also discusses the creation of value through future-proof data security as well as the market potential that QKD brings on the table through e.g., crypto-agility. While primarily addressed to data center owners/operators, the document also offers a knowledge base to QKD vendors planning to diversify to the data center market segment.Comment: 23 pages, 7 figures, study initiated and supported by Copenhagen Fintech (see https://www.copenhagenfintech.dk/projects/using-qkd-for-data-center-security

    Roadmap on optical security

    Get PDF
    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.Centro de Investigaciones ÓpticasConsejo Nacional de Investigaciones Científicas y Técnica

    Towards interfacing single photons emitted from Dibenzoterrylene with rubidium ensemble quantum memories

    Get PDF
    Photonic quantum information processing is a pivotal aspect of the emerging quantum tech- nology landscape, with a wide range of applications in quantum computing, communication, simulation and sensing. The use of single photons for these applications is of immense interest, but requires both the generation of single photons and the ability to interact them separately, often relying on probabilistic processes. The first part of this thesis showcases work on the generation of single photons, utilizing an organic molecule, Dibenzoterrylene (DBT), doped into an anthracene (Ac) crystal. We will in- troduce a comprehensive theoretical framework for characterizing these molecules, and present experimental results where the wavlength of emission from DBT is tuned through three dif- ferent tuning mechanisms. Additionally, we will explore techniques for enhancing the emission properties of DBT, before finally demonstrating single photon emission from DBT in a novel host matrix: para-Terphenyl. In the second part of this thesis, we shift our focus to quantum memories - critical devices capable of storing and on-demand recall of quantum states of light, required to overcome the limitations of probabilistic photon-photon interactions. We will derive equations of motion governing the memory interaction with single photons and an ensemble of atoms. Next, we will explore methods for optimizing the memory interaction, while increasing the complexity of our model to more accurately resemble an interface between photons emitted from DBT/Ac and a rubidium (Rb) vapour, near resonant with the DBT/Ac. Finally, we will present the major challenges facing these systems and potential avenues for overcoming them. The results presented in this thesis pave the way for interfacing photons emitted from DBT with quantum memories based on a Rb ensemble.Open Acces

    Long-Lived and Efficient Qubit Memory for Photonic Quantum Networks

    Get PDF

    Gaussian Quantum Information

    Get PDF
    The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.Comment: 51 pages, 7 figures, submitted to Reviews of Modern Physic

    Applied Harmonic Analysis and Sparse Approximation

    Get PDF
    Efficiently analyzing functions, in particular multivariate functions, is a key problem in applied mathematics. The area of applied harmonic analysis has a significant impact on this problem by providing methodologies both for theoretical questions and for a wide range of applications in technology and science, such as image processing. Approximation theory, in particular the branch of the theory of sparse approximations, is closely intertwined with this area with a lot of recent exciting developments in the intersection of both. Research topics typically also involve related areas such as convex optimization, probability theory, and Banach space geometry. The workshop was the continuation of a first event in 2012 and intended to bring together world leading experts in these areas, to report on recent developments, and to foster new developments and collaborations
    corecore