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Abstract

Photonic quantum information processing is a pivotal aspect of the emerging quantum tech-

nology landscape, with a wide range of applications in quantum computing, communication,

simulation and sensing. The use of single photons for these applications is of immense interest,

but requires both the generation of single photons and the ability to interact them separately,

often relying on probabilistic processes.

The first part of this thesis showcases work on the generation of single photons, utilizing an

organic molecule, Dibenzoterrylene (DBT), doped into an anthracene (Ac) crystal. We will in-

troduce a comprehensive theoretical framework for characterizing these molecules, and present

experimental results where the wavlength of emission from DBT is tuned through three dif-

ferent tuning mechanisms. Additionally, we will explore techniques for enhancing the emission

properties of DBT, before finally demonstrating single photon emission from DBT in a novel

host matrix: para-Terphenyl.

In the second part of this thesis, we shift our focus to quantum memories - critical devices

capable of storing and on-demand recall of quantum states of light, required to overcome the

limitations of probabilistic photon-photon interactions. We will derive equations of motion

governing the memory interaction with single photons and an ensemble of atoms. Next, we will

explore methods for optimizing the memory interaction, while increasing the complexity of our

model to more accurately resemble an interface between photons emitted from DBT/Ac and

a rubidium (Rb) vapour, near resonant with the DBT/Ac. Finally, we will present the major

challenges facing these systems and potential avenues for overcoming them.

The results presented in this thesis pave the way for interfacing photons emitted from DBT

with quantum memories based on a Rb ensemble.
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Chapter 1

Introduction

1.1 Quantum Technologies

The goal of quantum technologies is to harness quantum mechanics to build devices that can

outperform their classical counterparts. Non-intuitive notions such as superposition, where a

quantum object can exist in more than one state at once, and entanglement, where two quantum

objects can have non-local correlations, theoretically allow improvements in computational

time [1,2,3], information security [4,5,6] and measurement sensitivity [7] when compared with

today’s classical state of the art. The field of quantum technology has exploded over the past

few decades, but more recently we have seen many startup companies being founded, with

ever growing commercial investment1. This suggests that these technologies will soon have an

impact in the real world.

1.1.1 Computation

The holy grail of the field is to build a universal quantum computer; universal meaning that

the computer could run any quantum algorithm (and coincidentally any classical algorithm).

1In 2017 and 2018, the amount of investment raised by quantum startups worldwide increased by 4 times
compared with the previous two years, though since information on private funding deals in China is lacking,
global investment is believed to be much higher [8]
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2 Chapter 1. Introduction

A quantum algorithm performs the same tasks as a classical algorithm, but leverages quantum

physics in order to potentially complete the task more efficiently [2, 9, 10, 11]. The quantum

computing framework most analogous to classical computation is the quantum circuit model,

where in much the same way as an everyday classical computer uses bits (ones and zeros) on

which it successively applies logical gates (OR, XOR, AND etc.), a circuit model quantum

computer uses qubits and quantum logic gates. Qubits are similar to bits in that they can be

zero or one, yet due to their quantum nature, may be in a superposition of both states, as well

as be entangled to one another, allowing the measurement of one qubit to influence the states

of the others. An array of qubits defines an exponentially larger space than the same number of

classical bits. Just as any classical computation can be performed provided we can apply single

bit gates and NAND gates to pairs of bits, universal quantum computation also only requires

single qubit gates, allowing a qubit to be placed into an arbitrary superposition, and two-qubit

gates, to facilitate entanglement [12,13].

In the quantum circuit model, to realise a particular algorithm, we initialise our qubits into some

known state, apply a sequence of logic gates, and then measure the final output, thus collapsing

any superposition into a ‘classical’ answer. This procedure is not guaranteed to yield the correct

answer, due to the probabilistic nature of measurement and therefore might require multiple

tries of the algorithm, however for certain problems where the solution is hard to compute but

easy to check, a quantum computer has been proven to provide an exponential speed up. One

such example is Shor’s algorithm, which computes the prime factors of an integer in polynomial

time (the time scales as Nk where N is the input integer and k is a positive constant) [2].

The best known classical factoring algorithm, the general number field sieve, works in sub-

exponential time (grows faster than polynomial but slower than exponential). The classical

‘hardness’ of the factorisation problem led to much of the internet security being based upon

it, such as the RSA cryptosystem [14]. Some other algorithms shown to have a quantum

advantage are Grover’s algorithm [9], for search of an unordered database, or algorithms for

data fitting [15] and linear solvers [16].

Equivalently to the quantum circuit model we have just described, quantum computing may also

be performed using measurement based protocols. Here the array of qubits is first initialised into
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a large cluster state (a network of highly entangled qubits), on which single qubit measurements

and operations are then performed, with the outcomes used in a feedforward manner to inform

subsequent measurements and operations [17, 18, 19, 20]. This alternative approach swaps out

the difficult task of performing many high fidelity multi-qubit gates, as is the case in the circuit

model, for the difficult task of preparing a large cluster state. While preparing a cluster state

also requires performing many entangling gates, we can post select on the successful generation

of the cluster state.

1.1.2 Simulation

One of the most promising short-term applications of a quantum computer would be to ef-

ficiently simulate quantum systems [21]. Currently, around one third of all supercomputing

time is spent solving problems in quantum chemistry and material science [22]. For this use

case, a quantum simulator would not necessarily need to be a universal quantum computer.

For interesting quantum systems that are difficult to study directly, instead we can construct

an analogous and experimentally more achievable quantum system; its dynamics can then be

studied and used to infer the dynamics of the target system [23]. One such example is Boson

sampling being used to generate molecular vibrational spectra [24].

Alternatively, some NP hard problems can be reduced to finding the ground state of a certain

Hamiltonian [25, 26]. This is known as quantum annealing and begins by preparing a quan-

tum system with a known Hamiltonian in the ground state, before adiabatically evolving the

system Hamiltonian into the desired one. Provided the evolution continues to be adiabatic,

the system will remain in the ground state, allowing the final Hamiltonian ground state to

be determined [27]. Examples of such problems include a variety of optimisation problems,

such as training deep neural networks [28] and simulating complex molecules [29,29]. In fact,

quantum annealing has been shown to be capable of universal quantum computation [30]. An-

other simulation approach is Trotterisation, where the desired Hamiltonian is approximated by

a sequence of small operations [31,32]
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1.1.3 Communication

Quantum communication deals with the distribution of quantum information to remote places.

One use would be to link multiple quantum computers or simulators with a quantum channel,

creating a quantum network or internet [33, 34, 35]. Another hugely pursued area is quantum

key distribution (QKD). This is a technique for allowing the distribution of a private key2 over

a quantum channel between two parties, commonly named Alice and Bob. Using the fact that

measurement of a quantum system irrevocably alters it, a key can be distributed between Alice

and Bob in such a way that it is impossible for a third party, Eve, to learn information about

the shared key without Alice and Bob knowing. Once the key has been shared and provided

the key was generated at random, it can be used to encrypt and send a message over a public

classical channel. Eve could then intercept the message, but without access to the private key,

Eve cannot hope to decrypt the message. After the key has been used, it is discarded so that

no one message can yield information about any other. This protocol is known as the one time

pad. In this way, QKD allows for perfectly secure messages to be distributed [4, 6, 36].

So far, QKD has been demonstrated over a distance of 1203km using satellites [37], while

421km has been reached in optical fiber [38].

1.1.4 Metrology

In classical estimation theory, the error in estimating a parameter scales as n−1/2, where n

is the number of measurements made using a classical probe. Using a quantum system as a

probe, it is possible to improve upon this bound and reach the Heisenberg limit of n−1 [7], or

further still, if there are interactions between successive quantum probes, the so called super-

Heisenberg scaling can be achieved: theoretically a k-particle interaction could achieve a scaling

of n−k [39, 40].

Some key applications of quantum metrology are phase and amplitude estimation. Phase esti-

mation is useful for a wide variety of tasks, such as magnetometry [41,42] or spectroscopy [43].

2By key we mean a string of bits which can be used to encrypt and decrypt a message.
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A relative phase between two paths carrying quantum states can be introduced by way of a

Mach-Zehnder interferometer in which the detection probabilities at the outputs are dependent

on the relative phases. Alterations to one or both of the two paths, such as from a changing

magnetic field [44] or gravity [45], results in a measurable change at the output of the interfer-

ometer, with a greater precision than could be achieved using purely classical probe states [46].

One use case of amplitude estimation is thermometry, where a quantum probe, such as an

atomic two level system, is brought into thermal contact with the target system and allowed

to thermalise. The temperature can then be read out from the steady state of the probe [47].

1.2 Platforms for quantum technologies

There are a whole host of physical systems to choose from when trying to build the technologies

we have just described, each with their advantages and disadvantages. When trying to con-

struct a system for quantum information processing (QIP), such as for a quantum computer or

simulator, we need to be able to perform one and two qubit gates with a high fidelity, and we

would like to be able to perform many of these gates before our system decoheres3. We should

be able to initialise and read out the state of each qubit, and the physical system should be

scalable [48]. Together, these requirements are known as the DiVincenzo criteria.

Systems based on neutral atoms and ions can have very high gate fidelities of over 99% [49,50,51]

but face challenges in scaling up the qubit array size (2D arrays of berylium ions have reached

numbers of around 345 [52] and 256 rubidium atoms have been successfully trapped in a 2D

lattice [53]). Gates can take of order a microsecond to perform [51], with decoherence rates

ranging from Hz for trapped ions, limited by stray magnetic fields [54], to ∼mHz for neutral

atoms trapped in an optical lattice [55]. IonQ [56] and Quantinuum [57] are both pursuing

trapped ions as an architecture for quantum computing, with the number of qubits available

for complex algorithms currently around 30 [56]. QuEra recently revealed a 256 neutral atom

quantum simulator [53].

3Decoherence is the loss of a definite phase relationship between the quantum states of interest.
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Trapped atoms are also promising as magnetomoeters, where the Zeeman effect results in a

precession of the atomic spin [58], as well as gravimeters, using interference of matter waves to

measure acceleration [59].

Solid state platforms such as superconducting qubits [60,61] and spin defects [62,63,64,65,66]

can leverage the already established semiconductor industry and so are more scalable in prin-

ciple. However, for defects located in macroscopic lattices, such as phosphorus implanted in

silicon, the semiconductor lattices have to have a high isotropic purity to reduce the decoher-

ence due to the spin background of the surrounding lattice [67,68]. Even with highly pure and

well engineered substrates, superconducting [69, 70] and spin qubits [67, 68] require cryogenic

temperatures to operate, which can create further scaling issues. Superconducting qubits can

achieve above 99% single and two qubit gate fidelities [69] on timescales of hundreds of nanosec-

onds, though coherence times are on the order of a hundred microseconds [70]. Phosphorus

donor electron spin qubits in silicon have shown > 99.9% fidelity single qubit control [66] and

two-qubit gates of 94% on time-scales of ∼ 1ns at 50 mK [65].

Both IBM [71] and Google [72] have shown quantum processors of 20 and 53 qubits respectively,

with Google recently claiming quantum supremacy [72].

Solid state platforms are another potential avenue for quantum sensing, as the sensitivity of

spins housed within lattices can be used to monitor the surrounding environment. One example

is nitrogen-vacancy centers combining strong electronic and magnetic moments and achieving

high defect densities, where their quantum state can be optically read out [73, 74]. These

defects can also be made very stable at room temperature, allowing their use in a larger range

of environments. However, high density ensembles suffer from low detection efficiency and short

coherence times [75].

Superconducting quantum interference devices (SQUIDs) are some of the longest researched

magnetic sensors [76], and some of the most sensitive [77]. Quantum superpositions of su-

perconducting qubits are associated with large electric and magnetic moments and have also

demonstrated a variety of quantum sensing protocols [78].
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Then we have photonics. Photonics is a natural candidate for quantum communication due to

the photons inherent speed and information capacity as a result of their large bandwidth [79]

and many degrees of freedom [80,81,82,83,84].

Unlike the other systems mentioned, photons are somewhat resistant to decoherence because of

their weak interactions. However, their greatest strength is also a major weakness when trying

to realise two-qubit gates: photons aren’t just weakly interacting with their environment but

also weakly interacting with each other.

The Knill, Laflamme and Milburn (KLM) scheme [85] showed how linear optical elements,

single photon detectors and ancillary photons are sufficient to realise two-qubit gates, albeit

probabilistically. With this scheme, it is possible to do all of the photon processing we require

at room temperature, which significantly reduces the technical overhead required compared

with other systems. Yet, due to the probabilistic nature of the two qubit gates, in order to

scale up this technology, some form of multiplexing is required probabilistically [86]. Spatial

multiplexing attempts many two-qubit gates in parallel, then uses fast detection and switching

to send the successful outputs into the next stage of the processor. This requires a huge amount

of resources and necessitates the detectors to be cryogenic to improve their efficiency, as well as

be located close to the switching electronics, to reduce the feed-forward time. The result is that

the photonic chips now need to be cryogenically cooled and the chip tolerances become very

strict. Alternatively, temporal multiplexing repeatedly attempts the same two-qubit gate until

successful and then stores the success in some form of quantum memory. Once enough two-

qubit gates have been completed, the successes can be recalled from their respective memories

and move along to the next processing stage. This solution requires the memory to be very

efficient in storage and retrieval over the timescale of interest.

Rather than using linear optics to realise two qubit gates, a second approach is to use high single-

photon non-linearities, such as non-linear crystals, to perform deterministic two-qubit gates

[87]. Alternatively, the photon coherence can be mapped onto a highly interactive medium,

such as neutral atoms [88] or another one of the previously discussed architectures [89, 90].

Once the entanglement has been completed, the coherence can be mapped back to an optical
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photon.

This leads us naturally to the idea of a hybrid platform: one which combines the advantages

of multiple systems connected together with a quantum network or quantum internet [91].

Photons are naturally suited to the role of connecting different static systems together via

photonic links [92,93].

Photons are also a useful resource for sensing. Quantum correlations between photons have

allowed superesolution imaging beyond the diffraction limit of telescopes [94], microscopes [95]

and lithography [96]. Macroscopic squeezed states of light have famously been employed to

measure gravitational waves at LIGO [97], along with spatial correlations of light fields being

used to image an object using light that never physically interacted with the object, known as

ghost imaging [98].

For a hybrid platform, it is likely that the static quantum system will generate photonic flying

qubits needed to link many nodes. However, when using photons for quantum computing,

long distance quantum communication and quantum metrology, an on-demand source of single

photons will be a useful technology4. The next section will discuss the ideal characteristics for

a single photon source and review some of the sources found in the literature.

1.3 Photon Sources

Given that we wish to use photons as qubits, or as flying-qubits linking stationary quantum

nodes, we need an on demand source of photons. Photon sources can in general be split into

two camps: probabilistic and deterministic. A probabilistic source is one that uses a non-

linear interaction with a medium (such as parametric down conversion or four wave mixing)

to produce a pair of photons [102]. The detection of one of the photons heralds the existence

of the other. For current photon-pair sources, the probability of producing a photon for a

4It’s worth noting that the technologies mentioned can also employ macroscopic states of light, such as
continuous variables (CVs) [99]. CV schemes rely on squeezing and can be deterministic but often have lower
gate fidelities than single-photon technology [100]. Hybrid approaches between CV and single photons have
been proposed [101].
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(a) (b)

Figure 1.1: (a) Excited state population as a function of time for an emitter with lifetime
τ = 1ns, after being excited at t = 0ns. (b) Far-field dipole emission pattern of a dipole.
Lighter colour indicates higher probability of emission in this direction.

given input pulse must be kept low to minimise the chance of producing multiple photons. We

can overcome this nonideality through multiplexing [103,104,105,106] as mentioned previously

when discussing solutions to probabilistic multi-qubit gates. Given enough multiplexing, a

heralded probabilistic source can approach an on demand source of photons.

Alternatively, deterministic sources can be constructed from the fluorescent decay of a two-

level system (TLS), illustrated in Fig. 1.1a. Here we send a fast trigger (fast relative to the

decay time of the emitter) at τ = 0 ns to excite the TLS and expect to collect a photon at

some specified time later. With such systems, it is possible to have a high probability of single

photon generation with negligible chance of multiphoton emission. We define the efficiency of

our source as the probability of collecting a photon, given that we have triggered the source.

Most of the quantum applications described have a minimum efficiency requirement in order

to be feasible. For example, quantum computing error correction schemes require efficiencies

of above 93% [106]. We can further separate efficiency η into four parts: excitation efficiency

ηe, quantum yield Q, branching ratio α and collection efficiency ηc,

η = ηeQαηc . (1.1)

Excitation efficiency refers to the probability that the excitation method successfully drives the

emitter into the excited state. This will be discussed in more detail in the Chapter 2 but in
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general, with a suitable choice of excitation scheme, this can approach unity [107]. Quantum

yield quantifies the probability that the emitter decays via fluorescence to the ground state,

rather than a non-radiative process. Here again, we want to choose a system where this is near

unity. Aside from quantum yield, photoemitters will typically have multiple fluorescent decay

pathways. The ratio of fluorescence on the desired transition to all other transitions is termed

the branching ratio, and is another important parameter to consider. Collection efficiency

measures the probability that the emitted photon is collected into a given spatial mode, which

is where two level emitters tend to fall short of their probabilistic cousins. The radiation

pattern of TLSs is naturally spread over a wide angular range (see Fig. 1.1b) which can lead to

low collection efficiencies on the order of 1% [108, 109, 110], resulting in deterministic sources

also becoming probabilistic. The collection efficiency can be improved through placing the

emitter in a photonic structure to selectively enhance emission into a particular spatial mode

[109, 111, 112]. These structures can also enhance or suppress decay on particular frequency

modes, referred to as Purcell enhancement, leading to improved quantum yield and branching

ratio of the emitter. The Purcell factor is the ratio of modified spontaneous emission rate, to

the emission rate in the absence of a photonic structure. Section 3.1.3 will examine some of

these structures in more detail.

There are many candidates for deterministic photon sources based on a TLS [113,114] and the

following section will discuss the optical properties of the ideal photon source derived from such

a scheme.

1.3.1 Ideal Photon Source

Firstly the wavelength of the photons, determined by the energy difference between two energy

levels used in photoemission. Shorter wavelength photons are typically easier to detect with high

efficiencies, owing to their larger energies [115]. On the other hand, longer wavelength photons,

particularly in the telecommunications band, benefit from low-loss transmission through optical

fibers [116,117] and silicon chips [118]. Aside from detection efficiency, if we want the emitted

photons to interact with another system, such as a quantum memory, we need the photons to
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BS

(a) (b)

Figure 1.2: (a) Schematic of a Hanbury-Brown-Twiss interferometer. A photon is split by
the beamsplitter (BS) but can only be detected at one of the detectors. After measuring a
photon at one of the detectors, the probability of simultaneously measuring a photon at the
other detector is zero for a true single photon source. (b) A plot of normalised second-order
correlation functions (Eq. 1.2) for a thermal (red), coherent (green) and antibunched (purple)
photon source, after detecting a photon at τ = 0. The photon source used in this simulation
had a lifetime of 1ns and was excited using a continuous wave laser.

be compatible with the available transitions in the partner system [119,120,121].

In terms of scalability, a solid state source is advantageous. Trapped atoms or ions offer the

necessary TLSs to realise on demand photon generation but suffer from experimental complexity

of trapping and cooling. In addition, these sources are often inefficient, owing to the difficulty

in collecting the emitted photons [115]. Solid state sources allow photonic structures to be

patterned around the emitter to improve its optical properties [109, 111, 112], whereas clouds

of laser-cooled atoms require being dropped through an optical cavity [122, 123, 124]. It is

also technically easier to place a lens or fiber optic close to the solid state emitter to improve

collection, along with having emitters directly on chip, where the photon can be immediately

coupled to waveguides and connected to later processing elements.

The photon purity of the source refers to the likelihood that only one photon is emitted at

once. This is a key requirement for secure quantum communication and error free quantum

computation [92]. Experimentally this is measured through a Hanbury Brown and Twiss

interferometer [94], depicted in Fig. 1.2a. Emitted photons are collected and directed at a beam

splitter, with two single photon detectors at the output. The correlation between detecting a
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BS
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decoherence rate
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(a) (b) (c)

Figure 1.3: (a) Schematic of Hong-Ou-Mandel (HOM) interference. When two identical photons
arrive at the two input ports, bunching occurs at the output, resulting in a zero probability
of simultaneously detecting photons at both detectors at the same time. (b) Coincidence
probability around zero time delay for a HOM measurement, where the emitter is excited by
a pulsed laser. As Γ∗

2 is increased, successive photons show a shorter time in which they are
indistinguishable (where the coincidence probability drops to zero) (c) .Frequency spectrum of a
photon emitted through fluorescent decay as dephasing (Γ∗

2) is increased, causing the linewidth
to broaden.

photon at one detector at time t, followed by detecting another photon at time t + τ , is given

by the second-order correlation function,

g(2)(τ) =
⟨I(t)I(t+ τ)⟩
⟨I(t)⟩2

, (1.2)

where I(t) is the intensity of the light field at time t. The angle brackets denote the cycle-average

of the contained quantities. Setting τ = 0 gives the probability of detecting a photon at both

detectors simultaneously. A true single photon emitter will emit antibunched light and have a

g(2)(0) = 0, illustrated in Fig. 1.2, provided all other nearby emitters and background can be

rejected. For τ > 0, antibunched light will show an increasing probability of a coincident count

which follows the decay envelope of the emitter. Coherent states, such as those emitted from

a laser, show no correlations between successive photons, displaying g(2)(τ) = 1 for all delay

times. Individual modes of thermal light sources, including incandescent light bulbs, display

bunching and are more likely to emit multiple photons at once. These display g(2)(0) > 1.

For quantum information applications, we require that each emitted photon is indistinguish-

able [125, 126]. The indistigiushability of two photons can be verified through a two-photon

interference effect, first demonstrated by Hong, Ou and Mandel [127]. The general principle

is illustrated in Fig. 1.3a. Two photons are made to be incident on the two input ports of
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a 50 : 50 beam splitter. If the two photons are perfectly indistinguishable, their probability

amplitudes on the two output ports of the beam splitter interfere to cause both photons to exit

from the same port (the photons are actually in a superposition of both exiting from the top

port and both exiting from the bottom port) [128]. That is, if a single photon detector where

placed at each of the outputs, the probability of recording a coincidence count would be zero

for zero time delay - similarly to the antibunched photon source when measuring the photon

purity [112,129]. An illustration of such a measurement is shown in Fig. 1.3b in dark blue, for

a photon source with a decay rate of 4 ns excited by a pulsed laser.

Two photons emitted by the same type of source, may be rendered distinguishable for many

reasons, such as due to variations in the local environment from nearby charges or spins, caus-

ing the central frequency of the photon to fluctuate, known as spectral diffusion. In addition,

interactions with phonons in the local environment can bring about an increase in the deco-

herence rate of the emitter, also resulting distinguishable photons. In this case, the central dip

seen in the dark blue plot of Fig. 1.3b will become increasingly sharper until it is impossible to

resolve the dip, indicated by the grey and lighter grey plots. A larger decoherence rate will also

broaden the spectral linewidth of the photons, as shown in Fig. 1.3c. Cryogenic temperatures

can freeze out many of the phononic modes in a solid state system, reducing the dephasing

rate to an acceptable level, allowing the Fourier-limited bandwidth to be reached - the smallest

bandwidth possible for a photon of a particular temporal duration and shape [130, 131]. An

ideal source should have long-term stability in emission frequency and minimal dephasing, such

that emitted photons are Fourier-limited.

The repetition rate of our source is another important consideration. Fluorescence from a TLS

follows an exponential decay, as shown in Fig. 1.1a, with a lifetime τ = 1/Γ where Γ is the decay

rate of the excited state. This decay limits the repetition rate of our source, as the excitation

rate must be slow when compared with Γ. Therefore a higher bandwidth source may be excited

at a higher repetition rate, allowing for more information per unit time to be transmitted.

The choice of solid state system will impact the bandwidth of the photons, as we shall see in

Section 1.3.2, but additionally to this, Purcell enhancement may be used to increase the decay
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rate of the emitter, and thus increase the bandwidth. This has the added benefit of reducing

the opportunity for dephasing from the environment to occur during the spontaneous emission

process.

It is important when choosing a solid state system, that the bulk material containing the dopant

emitters, protects the emitters from unwanted chemical reactions or nearby impurities, which

otherwise could lead to degradation of the emitter optical properties. However, even for a

perfect combination of host and dopant, the differing environments around each emitter will

give rise to an inhomogeneous distribution of emission wavelengths and excited state lifetimes.

In order to interfere photons from separate emitters, or to bring an emitter onto resonance

with another system, an ability to tune the photoemission frequency is desirable. This can be

achieved for example through Stark tuning, where an electric field alters the energy difference

between the two levels of an emitter [132, 133], or strain tuning, where a strain field modifies

the bulk material [134,135]. There will be more on this in Section 3.1.2.

The next section will review the current state of the art in solid state TLS single photon sources.

1.3.2 State of the art

Quantum Dots

A quantum dot (QD) is an artificial atom, where three dimensional confinement of electron

wavefunctions gives rise to a discrete energy level structure. The spatial confinement is con-

structed by having a nano-island of lower band-gap semiconductor surrounded by a larger

band-gap semiconductor material, forming a potential trap for electrons and holes5 [115]. A

photon is generated through excitation of the QD to a higher energy level, where an electron

is promoted from the valence band to the conduction band, leaving behind a hole within the

valence band. This can be done using either an optical [136,137] or electronic pulse [138], with

high excitation probability. Following this, the recombination of the electron-hole pair leads to

photoemission, with potentially high quantum yields and low g(2)(0) values [139,140]. QDs have

5A positive quasi-particle, representing the absence of an electron.
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also shown deterministic generation of entangled photon-pairs [141] and GHZ states6 [143].

Fabrication of QDs is typically done through epitaxial growth on a semiconductor substrate, or

synthesized in solution to produce colloidal QDs. Both epitaxial [129,136,144,145,146,147,148]

and colloidal QDs [149,150,151] have been used as bright single photon emitters. Epitaxial QDs

are more frequently used due to the relative ease through which they can be integrated into other

solid state devices, such as micro pillar cavities [139] and photonic crystal waveguides [152].

Photonic structures have been very successful at improving the collection efficiency, particularly

when the structures have been deterministically placed around pre-fabricated QDs [153, 154].

On the other hand, colloidal QDs have also shown potential as single photon sources, with

photon purities of g(2) < 0.05 shown at room temperature [155], but have not yet shown

fourier-limited emission, even at cryogenic temperatures [156].

A variety of emission wavelengths can be tailored, from 350nm to 1550 nm [114, 149, 157, 158,

159, 160], depending on the materials used and size of the QDs. QDs fabricated from III-

V semiconductors7 seem to perform best, owing to their strong optical dipoles, allowing large

coupling to optical modes [114,161]. These typically sit around 900 nm, with radiative lifetimes

of order 1 ns [162,163,164]. An ensemble of QDs present an inhomogeneous distribution of tens

of nanometers due to their differing sizes and environments, which presents a problem when

trying to tune separate QDs onto resonance using Stark fields [147] . Strain fields have been

used to tune InAs QDs over the full inhomogeneous range [129]. Improved synthesis can

reduced the size of the inhomogeneous broadening down to a much more manageable span of

a few nanometers [165].

Ideally, for pulsed laser excitation, a non resonant laser would be used to excite the QDs, as

this could be spectrally filtered out, leaving just the emitted photons. Non-resonant excitation

has demonstrated collection efficiencies of 80% and photon purities of g(2)(0) = 0.009. Unfortu-

nately, this excitation scheme limits the indistinguishability of successively emitted photons to

6A GHZ state, named after Greenberger, Horne and Zeilinger [142], is a three-qubit entangled state |GHZ⟩ =
(|000⟩+ |111⟩)/

√
2, from which arbitrary large cluster states for universal quantum computation can be created

[126].
7A III-V semiconductor is a compound made from a semiconductor with three valence electrons, and one

with five valence electrons, respectively. Examples include InP, InAs, GaAs, GaN, and InSb.
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75% [153]. When integrated into a photonic cavity, the increased radiative decay rate (caused

by Purcell enhancements between 5 − 20) can begin to approach the non-radiative decay rate

used in non-resonant excitation. This results in a timing jitter of the emitted photons com-

parable to their temporal duration, limiting the achievable indistinguishability [114, 166]. An

additional limitation can come from excess charge carriers produced in the surrounding bulk

and wetting layers. Through carrier collisions, interaction with phonons and strong Coulomb

interactions, the generated photons undergo fast dephasing [114].

Resonant excitation is more challenging to filter out, but can be accomplished through spa-

tially decoupling the excitation and emission optical modes, and through a crossed polarization

scheme [136]. Using resonant cross polarized excitation, collection efficiencies of 66% have

been reached, along with photon purities of g2(0) = 0.009 and HOM dips with visibility of

96.4 ± 2% [167]. Coalescence probability measured using photons from two different QDs,

tuned onto resonance with each other through the quantum-confined Stark effect, yielded a

visibility of 93% [168].

Alternatively, electric pulses have been shown to drive QDs to emit photons through electro-

luminescence [146,147]. For electrically driven systems, a g2(0) = 0.03±0.01 has been measured

[147]. Indistinguishabilities are on the low side, at around 60% [169, 170]. Overall efficiencies

are comparable to optically excited QDs [138].

1.3.3 Colour centres

Color centres are impurities or crystallographic point defects within a generally wide bandgap

semiconductor, resulting in energy levels residing within the bandgap. A commonly used host

semiconductor is diamond [113,115,171,172], containing defects such as nitrogen-vacancy (NV)

[173,174], silicon-vacancy (SiV) [175],germanium-vacancy (GeV) [176] and tin-vacancy centres

[177]. These are generally produced through ion implantation and annealing [113,171,176,178,

179], and show narrow emission at cryogenic temperatures [113, 171, 180], with wavelengths

typically ranging from 600−750 nm [174,175,176]. SiV and GeV centres show superior optical

properties when compared the NV centres. SiV and GeV complexes exhibit inversion symmetry
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which makes them more robust to spetral diffusion caused by electric fields and local strain

variation [181]. They also show a more favourable branching ratio (around 90% [182] and

70% [176] for SiV and GeV respectively) when compared to NV centres (∼ 3.2% [183]).

Due to low quantum efficiency attributed to a large non-radiative decay rate and the high refrac-

tive index of diamond, these single-photon sources typically present low intrinsic efficiencies.

This can be mitigated through using sub-wavelength nanocrystals and engineering photonic

structures near or around the defects, leading to an increased collection efficiency [115]. Nan-

odiamonds grown on iridium containing negatively charged SiV centres showed count rates of

up to 6.2 Mcounts/s, due to reducing the non-radiative decay rate and less total internal reflec-

tion [175]. Single photon purities of g2(0) < 0.1 [184] and HOM dip visibilities of 72±5% [185]

have been shown. It is possible to electrically drive diamond, though due to a high defect con-

centration and lack of control of the charged state, this typically leads to a higher background

level [113].

An alternative bulk material is silicon carbide (SiC), with emission ranging from 520−1388 nm,

lifetimes from 1−170 ns and quantum efficiencies up to 70% [171,186,187,188]. Nanofabrication

techniques of SiC are well established and it can be doped with donors and acceptors in order

to allow efficient electrical driving of the vacancies to the excited state. Another advantage is

that SiC is an indirect bandgap semiconductor and so has low background luminescence when

driven electrically. SiV centres in SiC have shown HOM dip visibilities of 90% at 5 K [189].

Rather than point defects in bulk materials, it is also possible to engineer colour centers in

2d materials. Emitters in hexagonal boron nitride (hBN) show emission from 302 − 825 nm

[190,191,192] with brightness ∼ 4 Mcounts/s without any additional immersion lenses or Purcell

enhancement [191]. However, the atomic structure of these emitters is not yet well understood.

Samples of hBN typically display a large inhomogeneous broadening, with lifetimes spaning 1

to 10 ns [192]. Some emitters are observed to be to be photostable, and as the mechanisms

governing these defects are better understood, it is expected that their optical properties will

improve. The atomically thin films allow easy incorporation into cavties, with Purcell en-

hancements of 2.3 being reported [193]. Defects in carbon nanotubes have been placed within
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plasmonic nanocavities, with quantum yields equal to 74% and single photon purities of near

unity at 1320 nm.

1.3.4 Organic Molecules

Organic crystal matrices doped with single polycyclic aromatic hydrocarbons (PAHs) are an-

other potential source of on demand photons. Larger PAHs lead to longer wavelength fluores-

cence [194], ranging from 200−800nm [195], as well as increasing quantum yield of fluorescence.

Near unity excitation efficiencies have been demonstrated, and quantum yields above 95% have

been reported [196,197], along with branching ratios of up to 50% [121,198].

PAH molecules that have shown single photon emission include pentacene, terrylene (Tr), pery-

lene, dibenzanthanthrene (DBATT) and dibenzoterrylene (DBT) [195]. Both resonant and

non-resonant excitation can be used, with excited state lifetimes on the order of a few nanosec-

onds. A single photon purity of g2(0) = 0+0.03
−0.00 has been recorded for DBATT [199]. PAHs

embedded within an organic matrix show indefinitely photo-stable emission, over a inhomoge-

neous broadening of several GHz [200], capable of being excited over a trillion times without

photo-bleaching. Molecules are somewhat protected from lattice phonons owing to the organic

molecules being held within the host by van der Waal forces, in contrast to QDs and colour

centers which are strongly coupled to the surrounding crystal [201]. Even so, molecular systems

require liquid helium temperatures (∼ 4 K) to produce Fourier-limited photons [202]. Photons

emitted from DBATT have reached indistinguishabilities of 97% [199].

Integration with solid state devices is more challenging for molecules, compared with QDs and

colour centers. Organic molecules can be degraded by conventional fabrication techniques and

post processing of structures is limited due to high sublimation rates and low-melting points of

the organic host matrices. Nevertheless some progress has been made in this area [203, 204].

Wang et al. [205] realised a DBT doped Anthracene crystal in an open micro-cavity. Through

tuning the cavity frequency mode to the transition of interest, they were able to increase

the branching ratio from α ≈ 33% to 95%, resulting in a photon generation efficiency of 95% -

though the collection efficiency from the cavity was poor. Coupling molecules to waveguides has
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been shown at room temperature with collection efficiencies of 42% [206], as well as cryogenic

temperatures with collection efficiencies of 7% for evanescent coupling [201], or up to 9% when

the emitter was placed within a nanogap between two waveguides [207]. DBT has also been

coupled to titanium-dioxide ring-resonators, showing Purcell factors of 11 and coupling into

the waveguide of 3.5% [208]. Collection efficiencies of close to 100% have been shown using a

planar antenna with high-numerical-aperture optics at room-temperature [209].

Both Stark [132] and strain tuning [135] have been demonstrated, with the former demonstrat-

ing tuning over > 200 GHz. A third tuning method has also been reported, where intense laser

light can cause a permanent red tuning of the molecule optical wavelength, without the need

for any nanofabrication steps [210].

In Chapter 3 will discuss DBT doped into two different host matrices: Ac and para-terphenyl.

1.4 Quantum Memories

We have previously discussed how photons are an excellent candidate for quantum technologies,

but how they can suffer from probabilistic processes and weak interactions. We have also alluded

to the idea of a quantum memory (a device that can store and retrieve a quantum state) being

used to temporally multiplex probabilistic multi-photon gates. The storage is required to be

coherent and involve no measurement of the input state, otherwise the retrieved state would

be altered. In this section we will discuss how a quantum memory can circumvent many of the

challenges faced by a photonic platform and what metrics are important for judging a quantum

memory, before finally reviewing the current state of the art.

1.4.1 Applications

Temporal multiplexing and filtering

Photon generation and multi-qubit photonic gates both suffer from being probabilistic. Prob-

abilistic photon generation can be turned into on-demand generation if the heralded photon is
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Figure 1.4: (a) Schematic of N parametric down conversion sources, pulsed by a laser from the
left. At each pulse there is some small probability of a photon pair being generated. Quantum
memories (QM) can be used to synchronise the N probabilistic sources. (b) The average waiting
time to produce a N -photon state from N photon sources with photon generation probability
of 1% (purple), operating at a rep rate of 1GHz. When combined with quantum memories to
temporally multiplex the sources, the waiting time becomes more feasible. Here we simulated
a memory with a memory lifetime 1000 times longer than the photon lifetime and a total
efficiency of 50% (red) and 90% (green) [214].

saved until needed [211,212,213]. For example, a photonic quantum computer with millions of

qubits requires millions of photons generated all at once. The likelihood of this many photons

being probabilistically generated is vanishingly small. However, if we were to store photons af-

ter they have been heralded and wait until all of the photons have been generated successfully,

then we no longer need all of the photon sources to be successful at the same instant. Provided

the storage lifetime is much longer than the repetition period of the source, it is possible to

store all successes in a particular time window, and then retrieve all of the photons at the end of

the window, represented in Fig. 1.4a. The combined affect is something akin to a deterministic

photon source, with an efficiency equal to the probability of a photon being generated within

the time window, multiplied by the efficiency of the memory over that time window8 [214]. In

Fig.1.4b, we show the average waiting time to generate an N -photon state on a log-scale. While

deterministic photon sources will most likely produce a higher rate of photons, combining an

optical memory with a probabilistic photon source can drastically increase the probability of

generating multiple photons at the same time [214].

The same argument of saving successful outcomes can be applied to entangling gate operations

8We will quantify efficiency in Section 1.4.2.



1.4. Quantum Memories 21

using linear optical elements, as in the KLM scheme [85] described in Section 1.2. Performing

the gate multiple times on an auxiliary system while the target qubits are stored in memory,

we can then use quantum teleportation [215] to teleport the gate operation onto the two target

qubits.

For deterministic sources, quantum memories could function as a filter. Many processes could

result in successively emitted photons being distinguishable. By carefully tuning the parameters

of our memory, we could allow the storage of only certain modes; the rest would pass straight

through the memory and be lost. The overall efficiency of the memory would take a hit, but

the retrieved photons would then show a higher degree of indistinguishability, improving the

probability of multi-photon gates [216].

Quantum state manipulation

Quantum memories are time non-stationary due to an auxilary control field mediating the

interaction, as opposed to passive linear optical elements as are used in schemes such as KLM,

and as such can be viewed as a beam-splitter between travelling light modes and stationary spin

wave modes, allowing manipulation of time-bins [217,218], in contrast to a usual beam-splitter

which acts on spatial modes. A quantum memory scheme has been used to perform a two

mode squeezing operation, which was shown to be sufficient for generating and manipulating

continuous-variable cluster states, and therefore sufficient for universal quantum computation

[219].

Quantum memories may also utilise atomic Rydberg states, which are highly excited energy

levels - the excited electron has a very high principle quantum number n. This results in the

electron occupying a comparatively large average distance from the nucleus. Because of this,

other atoms nearby the Rydberg atom experience a dipole interaction which shifts their energy

levels, preventing them interacting with previously near-resonant optical fields. This is known as

the Rydberg blockade. As a result, Rydberg atoms demonstrate a strong non-linearity [220,221]

which has been used to demonstrate cross-phase modulation of single photon level pulses [222],

and single photon collisions [223].
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Quantum Repeaters

In Section 1.1.3, we mentioned how distributing quantum information between remote parties

can allow for quantum networks and secure communication. However physical channels are

lossy. Photons travelling through commercial optical fibers are limited to transmission over

tens of kilometers due to attenuation [224]. In classical communication channels, a repeater

measures and amplifies the signal, allowing for transmission over global distances. However

for quantum signals, measurement of the signal will irrevocably alter it and it is impossible to

deterministically copy an arbitrary unknown quantum state9.

Rather than transmit our quantum information directly over the network, one alternative is to

share part of an entangled resource [215]. Distributed entanglement can be used for quantum

teleportation, allowing quantum states to be delivered to a remote place without sending them

through a lossy channel. Distributed entanglement can also be consumed as a resource for

QKD, allowing secure communication over arbitrary distances.

However, this just replaces the problem of transmitting quantum information directly over

the network to the problem of distributing entangled resources, which still suffer from the

same attenuation losses. Yet, while it is impossible to copy an arbitrary quantum state, it is

possible to swap entanglement from one quantum particle to another. This is the basis for a

quantum repeater [225]. By subdividing the transmission link into multiple short segments

where we can faithfully distribute entanglement with acceptable loss, we can then swap the

entanglement between adjacent nodes [226]. This is illustrated in Fig. 1.5, where we wish to

share an entangled resource between QM1 and QM4.

Photons can be entangled in many degrees of freedom. Here we will discuss implementation

of a quantum repeater while using photon number to encode information. Suppose we have a

photon source which emits a photon into either the left or right path, shown in light blue in

Fig. 1.5. The state can be written as the Bell state,

|ψ⟩ =
1√
2

(|0⟩L |1⟩R + |1⟩L |0⟩R) , (1.3)

9No-cloning theorem.



1.4. Quantum Memories 23

QM1 QM2BSM

Source Source

QM3 QM4BSM

Source Source

BSM

Figure 1.5: Schematic of simple quantum repeater protocol. A single photon source emits a
photon either to the left or right. One path is connected to a quantum memory (QM), while the
other is sent to a Bell-state measurement (BSM) device. Detection of one photon at the output
of the beamsplitter means the BSM was successful and the two neighbouring QMs become
entangled. The process is repeated for QM2 and QM3, which if successful, results in QM1 and
QM4 being entangled.

where |0⟩i and |1⟩i indicate the absence and presence of a photon in the i’th channel respectively.

The state described by Eq. 1.3 is an entangled photon number state. Before detection, the

photon is in an equal superposition of travelling in either the left or right path. Detection of

the photon in one of the paths immediately signifies the absence of a photon in the alternative

path.

Now say we have two of these sources, both producing the entangled state described by Eq. 1.3.

To perform a Bell-state measurement (BSM) and thus swap the entanglement to the two outer

paths, we direct one of the paths from each source to a 50 : 50 beamsplitter with the two

output modes sent to a pair of single-photon number-resolving detectors. By number-resolving

we mean that two photons incident of the detector would yield a different signal than if there

was only one photon. Such a detector could be built using multiple non-number-resolving

detectors, where the measurement channel is split through multiple beam-splitters, such that

the probability of two photons following the same path becomes vanishingly small, and the now

many channels are each sent to a non-number-resolving detector. The beam-splitter shown in

Fig. 1.5 (not involved in the number-resolving detection) acts to remove information from our
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system. If we detect one photon at either of our detectors, but not the other one, we cannot

know from which source it originated. This projects the quantum state of the two arms not

involved in the BSM to exactly that of Eq. 1.3. Detection of no photons, or of two at the same

detector, does not result in entanglement swapping. For this particular scheme the success

probability is 50%.

After a successful BSM, the two arms originating from the adjacent sources which were not sent

to the BSM, are now entangled. These are each saved in a pair of remote quantum memories

(QM1-QM2 and QM3-QM4), thereby entangling the quantum memories: one of the memories

contains a photon, and one does not. Photons contained within the two central nodes (QM2

and QM3) are then recalled and a BSM is performed on them, which if successful, results in

QM1 and QM4 being entangled. In this demonstration, each photon has only travelled an

eighth of the total distance, yet we have distributed entanglement across the full network.

As BSMs are probabilistic, the probability of each node successively swapping entanglement

becomes exceedingly small as the number of nodes is increased. In much the same way as

quantum memories can save successful gate operations, as discussed in Section 1.4.1, here too

we can save successful entanglement swapping operations until the adjacent nodes have also

been successful. We then obtain a similar speedup as shown in Fig. 1.4b. Attempting multiple

entanglement swapping operations in parallel is also useful to increase the success probability.

We will discuss this more in Section 1.4.2.

Alternatively to using separate photon sources and memories, we can instead integrate the

photon source and memory. The Duan, Lukin, Cirac, Zoller (DLCZ) protocol [5] spontaneously

generates a heralded spin wave matter excitation, depicted in Fig. 1.6a. Firstly, an intense

control laser generates entanglement between a photon and an atomic excitation in an ensemble

of atoms, through Raman scattering. Photons from two DLCZ memories are then directed to a

BSM node. The probability of a photon being generated at any one time, in the required spatial

mode to be sent to the BSM, is small, but a photon detection heralds that one of the DLCZ

memories is primed with an excitation, without any information as to which one, illustrated in

Fig. 1.6c. We have now established the entangled state described by Eq. 1.3, with |0⟩ and |1⟩
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Figure 1.6: (a) Write stage of the Duan, Lukin, Cirac, Zoller (DLCZ) protocol [5]. A control
laser Ωc, incident on an atomic ensemble, spontaneously scatters an anti-stokes photon ÊAS.
Each atom within the ensemble is now in a collective entangled state of having scattered the
control field and thus now populating |s⟩. The coherence of this entanglement is represented
by the purple highlight. (b) The read stage of the DLCZ protocol. Another control field reads
out the stored excitation from the ensemble into a well defined spatial mode, producing a
stokes photon ÊS and returning all of the atoms to state |g⟩. (c) Illustration of a Bell-state
measurement (BSM) between two DLCZ quantum memories. The detection of one photon at
the output of the beamsplitter results in the two quantum memories being entangled.

representing the absence or presence of a memory stored excitation respectively, which can be

stored until the neighbouring nodes have also established entanglement. We then proceed by

recalling the stored excitation as a photon (Fig. 1.6b) and performing further BSMs.

The distribution of entanglement over large distances is also a valuable tool for testing existing

theories of non-locality over large distances [227].

Metrology

Quantum memories have primarily been explored as means to improve the scaling of proba-

bilistic operations. Another avenue of research is in using the transfer of optical coherence to

matter coherence as a means to improve or facilitate quantum sensing. Through applying a

spatially varying field to an atomic ensemble, we can not only store and retrieve light, but map

different frequency components within the photon to different spatial components within the

spin wave. This allows a physical analogue of the Fourier transform to be performed, which

can be exploited to improve the frequency resolution of detectors [228].

Instead of mapping frequency to space, researchers have also used a protocol known as an

atomic frequency comb (AFC - see Section 1.5) which causes different frequency components to
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be retrieved at different times [229]. This, when used in combination with ultrasound imaging,

improved the ultrasound detection sensitivity.

Quantum memories have also been combined with a ghost imaging protocol [230] to store idler

photons and release them upon detection of a signal photon, allowing real-time generation of

the image. Here the authors used the DLCZ protocol discussed previously to generate time

delayed Bell states, made up of a signal and idler photon, which were correlated in position but

anti-correlated in momenta. The signal photon is detected via a ‘bucket’ detector (multimode

fibre coupled to a single photon detector) which then gates the detection of the remaining idler

photon via a spatially-resolving camera. In this way, the resulting image acquired of the idler

photons by the camera can be used to infer a corresponding image for the signal photons, which

were detected by a non spatially resolving detector. The signal photon can be made to interact

with an object while an image is constructed by measuring the spatial distribution of the idler

photons, which have not interacted with the object. The memory in this instance allows the

idler to be stored until an electrical trigger has been received from detection of a signal photon,

which simplifies the experimental setup.

1.4.2 Figures of Merit

The requirements for a quantum memory will vary depending on which of the above applications

it is being used for [231]. Just as with single photon sources, in order for the quantum memory

to be compatible with other components, the wavelength of operation should be considered.

Here we identify some key metrics and discuss the importance of each metric with regards to

the applications previously mentioned.

Efficiency

One of the most frequently cited metrics is efficiency. Efficiency quantifies the ratio of energy

in the retrieved pulse to the energy in the input pulse. Specifically for photons, efficiency

refers to the probability of storing a photon and then retrieving a photon after the required
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time [232,233]. Efficiency (or total efficiency η) can be split into several parts,

η = ηsηrηsetup (1.4)

quantifying the efficiency of storage ηs, retrieval ηr and the overall efficiency of the ηsetup, which

includes losses introduced by optical components.

If ηsetup is known, we can determine ηs by measuring the probability of a photon traversing

through the memory after we have attempted storage. With the total efficiency, ηsetup and ηs,

we can then determine ηr, which will in general be time dependant.

For quantum computation and quantum communication, a higher total efficiency means a lower

waiting time for the required operations to be complete, see Fig. 1.4b. Typically an efficiency of

90% is quoted as the required benchmark [234]. For other applications such as sensing, there

may be a less stringent threshold for a memory to still be useful.

Chapters 5 and 6 will be mainly concerned with optimising ηstorage and ηretrieval for two distinct

schemes of quantum memory. We will also discuss how the different configurations investigated

might impact ηsetup.

Fidelity

The fidelity of the memory measures how closely the output state resembles the input state,

or equivalently, the overlap of the photonic wave functions for the input and output photon

[212, 233]. Mathematically we can define the fidelity between the input state ρin and output

state ρout as,

F (ρin, ρout) = Tr

[√√
ρinρout

√
ρin

]
, (1.5)

where Tr denotes the trace. This definition gives a monotonic metric between 0 and 1 of how

similar the two states are. However, fidelity can often miss an important concept: that is if the

retrieved state is related to the stored state by some unitary, while the states may be completely

orthogonal (resulting in F = 0), this discrepancy can be easily adjusted for provided it is known

and consistent. Rather than measuring the fidelity, an often performed simpler measurement
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is the purity of the output quantum state, which doesn’t require the full tomography of the

output state [233].

Noise level

Directly impacting the purity of the output state and memory fidelity is the level of noise

photons produced in the memory interaction. Storage of coherent states involving a large

photon number are less susceptible to these noise processes, but for the case of a single photon,

any noise photons will contaminate the signal [235,236] and may be impractical or impossible

to filter out (as is the case in four-wave mixing noise [44,237], see Chapter 5). We can quantify

the amount of noise in a qunatum memory µ, by the signal to noise ratio at the output of the

memory [238],

µ =
⟨Nnoise⟩

η
≈ 1

SNR
, (1.6)

where ⟨Nnoise⟩ is the average number of noise photons produced. For an input signal of average

photon number equal to one, µ = 1
SNR

.

However, even a small amount of noise can drastically harm the memory fidelity if the variance

is large. The SNR is only a first order measure and doesn’t offer any information on the

retrieved photon correlations. Here the single photon purity at zero time delay g2(0) is a good

measure, as described in Section 1.3.1. Given that we have stored a single photon, we ideally

find that the retrieved photon state continues to have a g2(0) = 0.

While there is some fault tolerance in fidelity when these systems are combined with error

correction [212], any noise introduced by the memory must be compensated at some point to

outperform direct transmission. How much tolerance will again depend on the specific situation.

For example, error correction using surface code is tolerant up to a 1% error rate [239]. If the

goal is to simply preserve nonlocal correlations of a maximally entangled pair of photons such

as in the Bell-states defined in Eq. 1.3, fidelities of over 85% are compatible with long distance

Bell tests or QKD [240].

Lifetime

We can define the memory lifetime, τmem as the time it takes for the retrieval efficiency to de-
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crease by some factor, most commonly 1/e or 50%. Once the input photon has been mapped to

an atomic coherence, various dephasing processes will cause the retrieval efficiency to decrease.

These will be discussed in Chapter 5 and 6 in more detail.

For applications such as quantum repeaters we would need high efficiencies on time scales

of milliseconds to seconds [234]. For the case of local synchronisation, these long lifetime

requirements may be somewhat relaxed to microseconds [214].

Spectral Bandwidth

In general, as we increase the spectral bandwidth, B, of the input photon, the memory efficiency

will decrease [241]. Given that we would like our memory efficiency above some threshold value,

this puts a limit on the maximum achievable bandwidth for a given system and therefore limits

the rate of information processing possible by the memory.

Time-bandwidth product

If the memory application is synchronisation, often a more useful metric than lifetime and

bandwidth is the time-bandwidth product, β = τmemB. This metric quantifies how many

storage attempts can be made within the lifetime of the memory and so how many successive

photons the memory can synchronise [242]. A β > 1000 offers a sizeable advantage when used

for temporal multiplexing of photon sources or multi-photon gates, as plotted in Fig. 1.4b [214].

Modal Capacity

Modal capacity quantifies how many optical modes can be stored in parallel, such as spatial

[243,244,245], temporal [246,247,248] or spectral modes [249,250]. This is of particular use in

a quantum repeater, where if a memory can store N modes, this allows for a factor N increase

in entanglement swapping probability, thereby reducing the overall number of memories needed

[246]. Conversely, a single mode memory can be used as a filter, only storing a particular mode

from the input signal and so enhancing the purity or indistinguishability of single photons [216].

Scalability

Even with a large multimode capacity, for a given application, many quantum memories will
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be required and so our choice of memory architecture should be feasible to produce on mass.

Therefore, it’s advantageous for memories to operate at conventional wavelengths, such as near-

infrared or in a telecommunications band, and for any preparation of the memory preceding

storage to be technically simple. While some degree of cooling will likely be required for

memory lifetimes above a microsecond, memories with minimal preparation and simple storage

mechanisms will be preferable.

1.5 Memory schemes

Now that we have established the usefulness and the means by which to judge a quantum

memory, we will now review some of the proposed schemes seen in the literature.

The simplest implementation is a delay line, such as a loop of optical fiber [251] or cavity

[252]. Delay lines can be low loss, have a broad wavelength of operation and do not contribute

additional noise. However, the delay is predetermined and so does not allow on-demand retrieval

of the photon - though for some applications this may be sufficient. Combining shorter delay

lines with fast switches can allow for a finer choice of storage times, provided the switch is

low-loss to enable long storage times and fast enough to permit high clock rates of photons.

Such a scheme has been demonstrated with Pockels cells [253], though scaling this device up

would be challenging.

Alternatively, light can be stored as a stationary matter excitation, which has potential for on-

demand readout. Naturally we might imagine using a single TLS to store the optical coherence.

A photon, near resonant and incident with a stationary TLS, can couple through an electric

dipole transition and be absorbed, exciting the TLS from its ground state to an excited state.

However, there are a few major drawbacks with this approach.

Firstly, just as a photon can interact with a TLS, the TLS is constantly interacting with

the surrounding reservoir of electromagnetic field modes, depicted in Fig. 1.7a. The effect of

these surrounding modes is to cause the excitation to decohere and decay in the form of a

spontaneously emitted photon. The stronger the coupling of the TLS dipole to our input
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Figure 1.7: (a) Illustration of a two-level system coupled to a continuum of modes. (b) Ap-
plying a control field Ωc and stimulating emission to a dark state, coupling of the emitter to
the surrounding reservoir of modes can be suppressed. The purple highlight represents the
coherence between the states |g⟩ and |s⟩. (c) The coherence between |g⟩ and |s⟩ can be mapped
back to the optical transition by reapplying Ωc, therefore recoupling the emitter to the reservoir
of modes.

photon, the stronger the coupling of the TLS to the reservoir of modes, leading to a faster

decay [254]. To overcome this, we can use an auxiliary control laser to transfer the stored

coherence (initially between the ground, |g⟩ and excited state, |e⟩), to a coherence between

the ground and a third longer lived state, known as the storage state, |s⟩. This is shown in

Fig. 1.7b. We can then use a similar control pulse to convert the stored coherence back into an

optcial coherence, allowing on-demand readout. Schemes based off this mechanism will be the

focus of Chapters 5 and 6.

Secondly, the incident photon is not well mode matched to the dipole of the TLS [108], as dis-

cussed in Section 1.310. When exciting a TLS with intense laser light, this is not as important.

Yet to have a high probability for one photon to interact with one TLS, we require engineering

similar to that used to improve the collection from TLS single photon sources [255]. Surround-

ing the TLS with a cavity and focusing the incident photon to increase the interaction strength

is a viable strategy to realising a quantum memory, though this presents considerable engineer-

ing challenges as the TLS must be cooled and trapped within these structures [256,257,258], or

contained within a host material which will need to be cryogenically cooled to reduce dephasing

10The wide angular distribution of the dipole emission from a TLS not only applies to emission, but to any
interaction with light.
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due to phonons [259].

Single atoms in cavities have shown total efficiencies of 9%, with fidelities of 93% and memory

lifetimes of 180µs [256]. Trapped ions demonstrated slightly larger fidelities of 95% but with

a heralded efficiency below 0.5%, even with high numerical aperture collection optics [260].

Single NV centers in diamond have reported entanglement between a single photon and the

electronic [261] or nuclear spin [262] - the latter has potential coherence times on the order of

a second. Entanglement over three meters has recently been shown using NV centers [263].

Rather than use a single TLS, we can use an ensemble of TLSs where the input photon only

has a low probability of interacting with any one TLS. As we increase the number of TLSs

the overall interaction increases and so we can approach unity coupling of the photon to the

ensemble, without the need for cavities or focusing optics [264]. During storage, every TLS

participates in the interaction, with each one retaining the spatial phase information resulting

from the interference of the signal and control fields. After the control field is turned back on,

constructive interference between the stored coherence and the control field result in retrieval

of the stored photon into a well-defined mode.

Let’s consider an ensemble of atoms with a Λ-configuration of energy levels, as shown in Fig. 1.7b

and c, where the input photon is resonant with levels |g⟩ → |e⟩, and the control field is co-

propagating with the signal field, as well as being resonant with the transition |s⟩ → |e⟩. If we

consider energy conservation, absorption of the input photon is accompanied by one atom in

the ensemble transitioning to |e⟩. Transfer of the coherence from |g⟩ ⟨e| to |g⟩ ⟨s| is accompanied

by stimulated emission of a photon into the control field, causing the excited atom to transition

to state |s⟩. Since every atom contributes to the interaction, the ensemble is in a collective

superposition were each atom has some probability of being in state |s⟩. The atomic excitation

is said to be de-localised across the ensemble. Mathematically we can write the collective state
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of the ensemble containing N atoms after storage as11,

|ψ⟩ =
1√
N

j=N∑
j=1

ei(ks−kc)·rj |g1, g2, ...sj, ..., gN⟩ , (1.7)

where ks and kc represent the wavevectors of the signal and control field respectively, and rj

denotes the position of the j’th atom. After the retrieval control field with wavevector k′
c, the

atoms are returned to the collective state |ψ⟩ = 1√
N

∑j=N
j=1 e

i(ks−kc+k′
c−k′

s)·rj |gj⟩, with k′
s the

wavevector of the retrieved photon. The probability of emission into the direction defined by

k′
s is given by,

P (k′
s) =

1

N

j=N∑
j=1

l=N∑
l=1

ei(ks−kc+k′
c−k′

s)·(rj−rl) , (1.8)

which becomes significant only if k′
s = ks− kc + k′

c. Hence, by manipulating kc and k′
c we can

control the direction of re-emission. In the literature, it is common to refer to forward retrieval

as k′
c = kc resulting in k′

s = ks (the retrieved photon propagates in the same direction as the

initial photon). Backward retrieval is where k′
c = −kc and so k′

s = −ks (the retrieved photon

propagates in the opposite direction to the initial photon).

An ensemble also has the advantage of being inherently multimoded [243,244,245,246,248,249,

250]. We can see that the above treatment12 allows for multiple spatially separated excitations

which will remain spatially separated upon retrieval [243]. Some protocols, as will be discussed

later in this section, use an inhomogeneously broadened ensemble to facilitate storage [248,

265,266,267,268,269,270]. In this case, different frequency modes can also be stored.

Memories based upon ensembles of TLSs have received a huge amount of interest through the

years. A multitude of different physical systems have been considered, including rare-earth

ion-doped solids (REIDS), diamond colour centers, alkali metal vapours and molecules. As

well as different platforms, there are multiple different memory protocols employed. Memory

protocols typically fall into two main approaches: photon-echo and optically controlled (like

the scheme described above).

11We have assumed that each atom is equally likely to interact with the photon, which in reality is never true.
The spatial mode of the signal photon/control field or any inhomogenous broadening of the atoms, will result
in different atoms experiencing differing strengths of coupling to the photon.

12This is valid provided the number of excitations is small compared to the number of atoms.
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Photon-echo

Photon-echo based protocols rely on applying an inhomogeneous broadening across the en-

semble to the transition resonant with the incoming photon, see Fig. 1.8a. As the photon is

absorbed, generating a coherence between the ground and excited states, different frequency

classes (located at different spatial positions within the ensemble) undergo dephasing at a dif-

ferent rate, leading to a suppression of re-emission. By controlling when the atoms rephase, we

can control when the photon is re-emitted, known as a photon-echo [273].

Gradient echo memory (GEM) [271] applies a continuous inhomogeneous broadening along the

propagation direction of the photon. After the photon is absorbed, the ensemble is allowed to

dephase for some time T , before the applied broadening is flipped, causing the different fre-

quency classes to accumulate phase in the opposite direction. The atoms will then rephase after

a total time 2T and the signal is retrieved. This is illustrated in Fig. 1.8b, where the position

of the arrow on the circle circumference represents the relative phase of a particular frequency

class. When the phases re-align, the different frequency classes interfere constructively and the

stored photon is emitted.

Efficiencies of up to 87% have been demonstrated using GEM in a warm rubidium vapour, with

a memory lifetime of a few µs [266]. There was no added noise observed on the output, verified

by heterodyne detection, though the input light was bright pulses with peak powers of less

than 2 mW. In cold atoms, the memory lifetime was increased to 195µs, while maintaining a

high efficiency of 80% [265]. The downside of this protocol is that to absorb a high bandwidth

photon, the inhomogeneous broadening needs to be spread across the entire photon spectrum.

So to have a sufficient number of atoms in each frequency class to absorb the photon with high

efficiency, requires a large optical depth. Typically only MHz bandwidth signals have been

stored efficiently and so β is limited. GEM has also shown utility in quantum sensing, allowing

a more precise measurement of the frequency separation between two spectrally overlapped

photons [228].

Rather than a continuous inhomogeneous broadening, an atomic frequency comb (AFC) uses

a periodic spectrum of absorption lines, each separated by a predetermined amount, δ. This
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Figure 1.8: (a) Illustration of an ensemble of two level systems (TLSs), with an inhomogeneous
broadening. (b) Representation of the phase evolution experienced by different frequency classes
within the inhomogeneous broadening. The black arrows around the circumference of the circles
denote the direction of phase evolution for increasing time. Within the circles, the darkest blue
arrows indicate the phase after some time T . Atoms with a more detuned transition frequency
experience a faster phase precession. Reversing the inhomogeneous broadening, causes the
phase to precess in the opposite direction, ending with the ensemble rephasing at time 2T and
emitting a photon. (c) An ensemble with a periodic inhomogeneous broadening. An auxiliary
control laser Ωc can be applied to map the coherence to between two dark states, effectively
freezing any phase precession. (d) A mock absorption spectrum that might be observed when
employing gradient echo memory (GEM) [228,265,266,271] and atomic frequency comb (AFC)
[247,270,272] memory protocols. For the AFC spectrum, the pictured splitting of δ = 1.2MHz
will result in periodic rephasing every 5.2µs.
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is illustrated in Fig. 1.8c and d. Due to the periodicity, the ensemble will rephase every 2π/δ

seconds.

AFC has been implemented in REIDS [247], as well as recently in a room temperature cesium

vapour [270], and efficiences of 58% have been demonstrated [272]. To use AFC in an on-

demand manner, after storage an auxiliary control field can be applied to transfer the excitation

to a optically dark state, effectively freezing the rephasing process, shown in Fig. 1.8c. When

required, the control field can trasfer the coherence back to the original transition, and the

rephasing continues. This is sometimes refered to as the full AFC protocol [274, 275, 276] and

has shown efficiencies up to 12% [277]. Photon-echo memories are also intrinsically multimode

[271,276,278].

Optically-controlled

For optically-controlled protocols, as the photon is absorbed, generating an atomic coherence, a

control field maps the coherence to a longer lived transition. The photon can then be retrieved

on demand by reapplying the control field to map the coherence back to the original transition

[241,279,280,281,282].

There are two main regimes of operation, characterised by how detuned the photon is away

from resonance, ∆. For near-resonance, ∆ ∼ Γ where Γ is the linewidth of the transition

(see Fig. 1.9a), the control field leads to a transparency window in the absorption profile of

the atomic medium. This is illustrated in Fig. 1.9b. By turning off the control field while the

photon is contained within the medium, the photon coherence can be mapped to a long-lived

atomic coherence [211,212,283,284,285].

There are two mechanisms behind the transparency window: destructive interference between

the two dressed states created by the control field and AC stark splitting [284,285,288]. As the

intensity of the control is increased, the spectral width of the window is also increased, allowing

for higher bandwidths of photon to be stored. For a narrow transparency window (low control

field intensities), destructive interference is the dominant mechanism and is accompanied by a

strong dispersive feature (shown in Fig.1.9b), leading to an appreciable slowing of the photon
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Figure 1.9: (a) Energy level diagram for near-resonant optically controlled memories, such as
electromagnetically induced transparency (EIT) [205,286,287,288,289,290] and Autler-Townes
Splitting [235,288,291] protocols. The input photon is mapped to a collective excitation between
the two ground states, indicated by the purple highlight. (b) Plot of normalised dispersion and
absorption for the case of no control field applied (grey), and a control field at zero detuning
for EIT (blue) and ATS (red) regimes.

group velocity. By adiabatically reducing the control field intensity, the dispersion increases

leading to an ever slowing photon until the transparency window is closed and the coherence

is mapped to a stationary excitation of the atoms. This is dubbed the electromagnetically

induced transparency (EIT) protocol.

For a wide transparency window, AC stark splitting dominates and the dispersion is much

smaller. Here the two resulting dressed states absorb the photon coherence. The coherence

proceeds by oscillating between the original transition and the long-lived transition. Storage is

achieved by sharply turning off the control field when the coherence in the long-lived transition

is maximised. This is known as the Autler-Townes splitting (ATS) protocol.

EIT memories have been demonstrated in warm [286] and cold atomic vapours [205, 287] as

well as REIDS [289]. Efficiences of 90.6% have been achieved with fidelities exceeding 99%

in cooled rubidium atoms [205] and storage times of up to one minute have been reached in

REIDS [290]. The EIT protocol has also been extended to invoke Rydberg excitations [292],

allowing manipulation of the stored coherence.

ATS has been demonstrated in cold rubidium atoms, showing an efficiency of 23% for a 5 MHz
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Figure 1.10: Energy level diagram for (a) The Raman [242, 294, 295, 296, 297, 298] memory
protcol. The input photon is mapped to a collective excitation between the two ground states,
indicated by the purple highlight. (b) The off resonant cascaded absorption (ORCA) [236]
protocol, where the photon coherence is mapped to a coherence between the ground state and
the double excited orbital state.

bandwidth photon, along with a memory lifetime of 650 ns [235], giving β ≈ 20. Cooling down

the atoms even further to form a Bose-Einstein condensate allowed 7 MHz photons to be stored

and retrieved with an efficiency of 30% and a memory lifetime of 15µs [293]. Theoretically

ATS is better suited to large bandwidths and should be able to reach the same efficiencies as

demonstrated for EIT (above 90%), while requiring a lower optical depth [288, 291]. We will

discuss this in more detail in Chapter 5.

For ∆ ≫ Γ, we enter the Raman regime, illustrated in Fig. 1.10a. The Raman regime allows

for storage of higher bandwidths at the expense of requiring a higher optical depth and control

field intensities [242,294,295,296,297,298]. It is also particularly well-suited to room tempera-

ture media, where the large detuning overcomes complications arising from the inhomogeneous

broadening. Bandwidths of GHz have been stored in warm alkali vapours with efficiencies up

to 82% being reported [237]. Bandwidths of THz have been stored in diamond [299], though

with efficiencies of only 0.9% and considerable noise. Storage times of 1.5µs in a warm caesium

vapour resulted in β ≈ 2500 [300].

Often near-resonant and Raman memories are plagued by four-wave-mixing noise, which will

be discussed in Chapter 5. Recently a Raman protocol has been developed that is immune
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to such noise processes: off-resonant cascaded absorption (ORCA) [236], also known as fast

ladder memory (FLAME) [301]. Here a ladder configuration of levels is used, rather than

the traditional Λ−configuration. This allowed for no change in the photon statistics after the

memory process: g(2)(0) = 0 before and after [236]. A lifetime of 86 ns was demonstrated in

rubidium [301], with a maximum efficiency of 25% for photons of bandwidth 90 MHz, leading

to β ∼ 50. We will discuss ladder based memories in more detail in Chapter 6.



Chapter 2

Dibenzoterrylene as a Single Photon

Source: Fundamentals

2.1 Theory

In the previous chapter, we discussed how polycyclic aromatic hydrocarbons (PAHs) are a

promising candidate for single photon generation. Hosting large PAHs within a solid ma-

trix made up of smaller PAHs allows for stable photo-emission, which is not absorbed by the

surrounding host crystal. Provided the dopant is well incorporated into the host matrix, by

replacing a few host molecules, and the host matrix is of a high enough purity, photo-bleaching

and spectral wandering can be minimised. In this chapter we will look at the PAH dibenzoter-

rylene (DBT). We will begin by discussing the general properties of DBT, without referring to

a specific host crystal. We will then move on to discussing a theoretical framework which when

combined with fluorescence measurements will allow us to determine important characteristics

of the emitters. Following this, we explain how to perform measurements on these systems.

40
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2.1.1 Dibenzoterrylene

DBT [302] has the formula C38H20 and absorbs both blue and red light, thereby appearing

green. For single photon generation, we are interested in the red transitions. In particular

the transition between the ground S0 and excited S1 singlet electronic states, corresponding

to a single electron from the pair of outer-most π-electrons, transitioning to a higher energy

orbital [303]. Crucially for this transition, the total spin of both π-electrons remains zero and

so is dipole allowed. Between the two singlet states lies a triplet state manifold T1, containing

three excited energy levels where the total spin is equal to one1. Transitions between singlet

states and triplet states are dipole forbidden, making the triplet states typically much longer

lived, though transitions can happen and is often referred to as intersystem crossing. For single

photon generation using transitions between the two singlet levels, transitions to the triplet

state will result in a blinking of the retrieved stream of photons and thus a reduced source

efficiency. However, for use as a quantum memory, molecular triplet states are a potential

resource [304].

As well as electronic degrees of freedom, intra-molecular vibrations of the guest molecule result

in a manifold of vibrational levels for each electronic state [305]. For the nth vibrational mode of

electronic level i, we label the state as Si,n. Transitions from a vibrational state can either occur

non-radiatively to another vibrational mode within the same electronic state, or radiatively, to

a vibrational mode in a different electronic state. However, the vibrations of the guest molecule

are strongly coupled to the surrounding matrix, which absorbs the vibration on the order of

picoseconds, in comparison to typical electronic state lifetimes of order nanoseconds. As a

result, the majority of fluorescence originates from S1,0
2 [303].

Decays from S1,0 to S0,n>0 follow a two step process: emission of a photon, followed by fast

relaxation of the resulting molecular vibration, which is an incoherent process [306]. The

emitted photon is then broadened by the rate of the additional non-radiative decay, and the

extra dephasing will cause the photon to be distinguishable from subsequently emitted photons.

1For two electrons, there are three configurations which give a total spin equal to one. They are |↑↑⟩,
1√
2
(|↑↓⟩+ |↓↑⟩) and |↓↓⟩. As for a total spin of zero, there is one state, given by 1√

2
(|↑↓⟩ − |↓↑⟩).

2This is known as Kasha’s rule.



42 Chapter 2. Dibenzoterrylene as a Single Photon Source: Fundamentals

Transitions from S1,0 to S0,0 occur solely through fluorescence and as a result, the linewidth

is only limited by the lifetime of S1,0. This spectral line is referred to as the zero phonon line

(ZPL) and is suitable for producing indistinguishable photons. The ratio of emission on the

ZPL compared with all emission from S1,0 is quantified by the Franck-Condon factor [305]. A

simplified energy level diagram of DBT embedded in Ac is presented in Fig. 2.1a. In Fig. 2.1b

a modelled spectrum is shown, where the dark blue outline illustrates the component of the

spectrum originating from vibrational transitions.

In addition to quantised vibrations of the guest molecule, vibrations of the surrounding crystal

can also interact with the dopant emitter. Generation of a photon can be accompanied by

creation and/or annihilation of lattice phonons, which dephase the coherence between the

ground and excited electronic states, reducing the photon indistinguishability. The result is a

broader ZPL linewidth and a red shifted fluorescence, referred to as the phonon sideband, with

a more continuous characterisitic shape compared with the discrete vibrational lines associated

with dopant molecule vibrations [130]. The phonon sideband is shown outlined with dark green

in Fig. 2.1b. The total resulting spectrum is shown in grey. The ratio of emission on the ZPL

to emission within the phonon sideband is quantified by the Debye-Waller factor [131]. This

ratio is temperature dependent. As such, the ZPL only becomes the dominant emission line at

cryogenic temperatures.

2.1.2 Resonant spectroscopy

Equations of motion

In this section we will derive a simple theoretical framework which we will use to analyse

molecular measurements described later in Chapter 3. We are interested in a single molecule

interacting with a classical probe laser. To characterise this interaction, we append the molec-

ular Hamiltonian Hmol with the electric dipole Hamiltonian, HED, describing the interaction

of an external light source and an electric dipole, as well as the optical free-field Hamiltonian,
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Figure 2.1: (a) Energy level diagram of dibenzoterrylene (DBT) embedded in an anthracene
(Ac) host matrix. The singlet electronic level i and vibrational sub-level n are denoted by
Si,n. Transition wavelengths shown are approximate and vary from molecule to molecule. The
triplet level is also included, though the transition wavelength is unknown. The colours of the
arrows indicate the different types of transition and do not reflect the relative energies of the
transition. Fast picosecond non-radiative decays between the vibrational states are illustrated
by the grey arrows. (b) Simulated emission spectrum from a single DBT molecule, shown in
grey. Inset is the chemical structure of DBT. The zero-phonon line and molecular vibrational
transitions are shown in dark blue, while the contribution from the phonon sideband is shown
in dark green, assuming a temperature of ≈ 4 K.
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HL. We can write the full Hamiltonian as,

Ĥ = Ĥmol + ĤED +HL (2.1)

The Hamiltonian of the molecule is diagonal and given by,

Ĥmol = ℏ
∑
j

ωjσjj (2.2)

where ωj is the resonant frequency of the j’th state and σjj = |j⟩ ⟨j| is the population in that

state. The electric dipole Hamiltonian is off-diagonal (it couples different states together) and

can be written as,

HED = −µ̂ ·E (2.3)

with the electric dipole operator denoted as µ̂ and the electric field of the laser, E. The optical

free-field Hamiltonian can be written as,

HL =
ϵ0
2

∫
dt(E2 + c2B2) , (2.4)

where B is the magnetic field of the probe laser and ϵ0 is the vacuum permittivity.

If we first only consider the states S0,0 and S1,0, we can write the dipole operator as µ̂ =

µ01σ01 + h.c.3, where σjk = |j⟩ ⟨k| is a flip or transition operator. Assuming that the probe

field is sufficiently intense that it is not affected through its interaction with the molecule, we

can describe the electric field classically and write,

E = vLEL cos (ωLt) = vL
EL
2

exp[iωLt] + c.c. (2.5)

with vL denoting the polarisation vector of the laser field.

We’ll now use the Heisenberg equation to find the time evolution of each σjk. The Heisenberg

3For DBT, µ is real valued and so emitted photons will be linearly polarised, orientated to align with the
transition dipole moment [302]
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equation reads,

ℏ∂τσjk = i[σjk, HA +HED +HL] (2.6)

in which the square brackets denote the commutator. The optical free-field Hamiltonian always

commutes with the atomic coherences and so we will not deal with it going forward. Note that

we have excluded spontaneous decay and dephasing for now, and will add these in later. This

gives us the following initial equations for molecular coherences,

ℏ∂tσ11 = −iE · (µ∗
01σ10 − h.c.)

ℏ∂tσ01 = iℏω10σ10 − iE · µ∗
10(σ00 − σ11)

∂tσ00 = −∂tσ11

∂tσ10 = ∂tσ
∗
01 .

(2.7)

In the equation for ∂tσ01, the leading term iℏω10σ10 describes a rapid oscillation. The laser field

is also oscillating rapidly and so the resulting dynamics will contain terms oscillating at the sum

and difference of the two frequencies. We are considering near resonant spectroscopy, so the

detuning of the laser frequency from the molecule resonant frequency is small and the resulting

sum frequencies will be many orders of magnitude larger than the difference frequencies. Over

our timescales of interest, these sum frequencies will average to zero and can be ignored. This

is known as the rotating wave approximation.

We will move to a frame rotating with the laser frequency, ωL by defining the rotating coher-

ences,

σ̃jk = σjk exp[−iωLt]

∂tσ̃jk = (∂tσjk) exp[−iωLt]− iωLσjk exp[−iωLt]

∂tσ̃jj = ∂tσjj

(2.8)



46 Chapter 2. Dibenzoterrylene as a Single Photon Source: Fundamentals

which results in the equations,

ℏ∂tσ11 = −iE · (µ∗
01σ̃10 − h.c.) exp[+iωLt]

ℏ∂tσ̃01 = −iℏ∆σ̃01 − iE · µ∗
01(σ00 − σ11)

∂tσ00 = −∂tσ11

∂tσ̃10 = ∂tσ̃
∗
01

(2.9)

where we have defined ∆ = ωL − ω10 as the laser detuning from the S0,0 → S1,0 transition.

Now including the expression for E, we find terms where the oscillating exponentials cancel

and those which oscillate at 2ωL which we neglect,

∂tσ11 =
i

2
Ω(σ̃01 − σ̃10)

∂tσ̃01 = −i∆σ̃01 +
i

2
Ω(σ11 − σ00)

∂tσ00 = −∂tσ11

σ00 + σ11 = 1

σ̃10 = (σ̃01)
∗ .

(2.10)

The coupling strength of the laser field to the molecule is characterised by the Rabi frequency

Ω =
µ∗
01·vLE∗

L

ℏ which we will assume is real. In general the Rabi frequency is a complex number

representing the magnitude and phase of the electric field. For the equations we have just

derived, phase variation due to detuning of the laser field from the resonant transition is ac-

counted for by the term −i∆σ̃01. By forcing the Rabi frequency to be real, we have assumed

no other phase variation, such as from sidebands or chirping of the laser field.

We now need to include decay from spontaneous emission and dephasing due to coupling to

the environment. We will also include the vibrational states of the molecule. Since we are near

resonant with the molecule transition, it is reasonable to ignore the excited state vibrational

manifold for now (the vibrational states are typically separated by THz [121, 130, 307]), but

decays from the excited state to the vibrational manifold of the ground electronic state need to

be included [306]. We represent the population in S0,n>0 as σnn and decays from S1,0 to S0,n
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are denoted by Γ1,n. Dephasing of the coherence σ̃01 is given by [130]

Γ2 =
∑
n

(
Γ1,n

2
+ Γ∗

2

)
(2.11)

where n is summed over all vibrational transitions and Γ∗
2 is the pure dephasing rate, related

to the magnitude of energy fluctuations in the system. Γ∗
2 is temperature dependent which for

molecules doped into organic crystals, can be modelled as [308,309],

Γ∗
2(T ) = A exp

(
−Ea

kBT

)
(2.12)

with T as temperature, kB the Boltzmann constant, Ea the activation energy associated with

creation/annihilation of local phonons and A is a proportionality constant quantifying the

electron-phonon interaction. Adding in the ground electronic state vibrational manifold, decay

and dephasing, we arrive at [310],

∂tσ11 =
i

2
Ω(σ̃01 − σ̃10)−

∑
n

Γ1,nσ11

∂tσnn = Γ1,nσ11 − Γnσnn

∂tσ00 = − i
2

Ω(σ̃01 − σ̃10) + Γn

∑
n

σnn + Γ1,0 σ11

∂tσ̃01 = −(Γ2 + i∆)σ̃01 +
i

2
Ω(σ11 − σ00)

σ00 + σ11 +
∑
n

σnn = 1

σ̃10 = (σ̃01)
∗ ,

(2.13)

where we have defined the decay from vibrational state σnn as Γn. Typically for molecules,
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Γn ≫ Γ1,n [303] and we can reduce the above equations to,

∂tσ11 =
i

2
Ω(σ̃01 − σ̃10)− Γ1σ11

∂tσ00 = −∂tσ11

∂tσ̃01 = −(Γ2 + i∆)σ̃01 +
i

2
Ω(σ11 − σ00)

σ00 + σ11 = 1

σ̃10 = (σ̃01)
∗ ,

(2.14)

in which we have defined Γ1 =
∑

n Γ1,n leaves us with the usual optical-Bloch equations for a

two-level system but with modified decay.

Steady state solution

We can find the steady state solutions of Eqs. 2.14 by setting ∂tσjk = 0 for all j and k, to

give [310],

σ11 =
1

2

S

(∆/Γ2)2 + 1 + S

σ00 = 1− σ11

σ01 = −1

2

Γ1

Ω

S

(∆/Γ2)2 + 1 + S

(
∆

Γ2

+ i

)
σ̃10 = (σ̃01)

∗ ,

(2.15)

where we have defined the saturation parameter S = |Ω|2
Γ1Γ2

= I cos2(θ)
Isat

, with θ as the angle between

the molecule dipole moment µ01 and vL, and Isat = ϵ0cℏ2
2

Γ1Γ2

|µ01|2 is the saturation intensity of the

transition.

The spontaneous emission rate, R, is then simply,

R = Γ1σ11 =
Γ1

2

S

(∆/Γ2)2 + 1 + S
(2.16)

The steady state solutions given by Eqs. 2.15 are plotted in Fig. 2.2a. Initially population in the

excited state increases linearly with S but then saturates at σ11 = 0.5 as S →∞. We can also

see how R has a Lorentzian lineshape, where the peak counts (at ∆ = 0) follows a saturation
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curve,

R∆=0 = R∞
S

1 + S
, (2.17)

where R∞ = ηcolΓ1/2, which is the collection efficiency multiplied by the maximum spontaneous

emission rate for resonant excitation. The width of the Lorentzian is given by,

∆ω = 2Γ2

√
1 + S . (2.18)

The increase in linewidth as the intensity of the laser field is increased is termed power broad-

ening. As S is increased, for laser light resonant with the transition, the population begins

to saturate. For the same S, detuned light will cause less saturation, so the returned counts

will see a bigger increase for the same increse in S, resulting in a broader lineshape. Fig. 2.2b

shows how the Lorentzian lineshape changes with S, while Fig. 2.2c and Fig. 2.2d show R and

∆ω plotted against S respectively.

This relatively simple model is useful in the lab for measuring the properties of an emitter. By

resonantly exciting a molecule with a continuous wave (cw) laser, we can collect the returned

fluorescence and filter out the excitation laser, leaving behind only the red shifted fluorescence

originating from decays to S0,n>0. Varying the laser power then allows us to determine Γ2 and

Isat from the above relations. We can also determine the maximum count rate from the emitter,

R∞, which can be useful in characterising the collection efficiency.

Second-order correlation function

In Section 1.3.1 we discussed how measurement of the second-order correlation function at

zero time delay g(2)(0) is a useful measure of the single photon purity. For cw excitation, the

statistical properties of the system are constant and we can express g(2) as a function of time

delay between detection events, τ ,

g(2)(τ) =
⟨â†(t)â†(t+ τ)â(t+ τ)â(t)⟩

(⟨â(t)⟩)2
(2.19)

where â† and â are the photon creation and annihilation operators respectively. For τ = 0, this
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(a) (b)

(c) (d)

Figure 2.2: (a) Plot showing how the steady state of each σjk varies with the saturation pa-
rameter S. (b) Spontaneous emission rate R as a function of laser detuning ∆, normalised to
R∞ = ηcolΓ1/2, where ηcol is the photon collection efficiency and Γ1 is the excited state popu-
lation decay rate. Shown is the characteristic Lorentzian lineshape for a particular S. As S is
increased, we see the maximum count rate increase as well as the Lorentzian width increasing
demonstrating power broadening.(c) Saturation curve (again normalised to R∞), showing the
maximum count rate as S is increased on a log scale. (d) Power broadening of the resonance
linewidth ∆ω as S is increased.
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reduces to,

g(2)(τ) ≈ 2P (2, τ ∈ T )

P (1, τ ∈ T )
, (2.20)

where T is the time interval given by the experimental resolution and P (n, T ) is the probability

of finding n photons within a time interval T . We require T to be small enough such that

g(2)(T/2) ≈ g(2)(0), which requires T ≪ 1/Γ1. After detection of a photon, the molecule is

projected to the ground state, so g(2)(τ) is proportional to the excited state population σ11(τ)

given initial condition σ11(0) = 0.

The steady state solutions derived previously deal with molecule dynamics over time scales

longer than lifetime of excited state. To derive an expression for g(2)(τ) we require equations

of motion for the transient behaviour of DBT. We can then write,

g(2)(τ) =
σ11(τ)

σ11(∞)
, (2.21)

where σ11(∞) is the steady state value of σ11.

We set ∆ = 0 and define,

u = σ̃01 + σ̃∗
01 = σ̃01 + σ̃10

v = −i(σ̃01 − σ̃∗
01)

(2.22)

which are the real and imaginary components of σ01 respectively4. This leads to,

∂tσ11 =
Ω

2
v − Γ1

∂tv = −Ω(σ11 − σ00)− Γ2v

∂tσ00 = −σ11 .

(2.23)

We can use the Laplace transform to remove the partial differentials and then solve the result-

ing algebraic equations [198, 311]. Applying the inverse Laplace transform, we arrive at the

4We can also understand u and v as the components of the induced molecular dipole that are in-phase or
π/2 out of phase in the rotating frame.
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expressions,

σ11 =
1

2

Ω2

Γ1Γ2 + Ω2

(
1− p+ q

2q
exp [−(p− q)τ ] +

p− q
2q

exp [−(p+ q)τ ]

)
σ00 = 1− σ11

σ01 = − iΩΓ1

Γ1Γ2 + Ω2

(
1 +

d− q
2q

exp [−(p− q)τ)]− d+ q

2q
exp [−(p+ q)τ ]

)
σ̃10 = (σ̃01)

∗ ,

(2.24)

where we have defined,

d =
Ω2

Γ1

− Γ1 − Γ2

2

p =
Γ1 + Γ2

2

q =

√(
Γ1 − Γ2

2

)2

− Ω2 ,

(2.25)

The transient solution for σ11 is plotted in Fig. 2.3a. We see the populations approach 0.5

for time scales longer than the lifetime of the excited state, as we found in the steady state

solutions. However, on shorter time scales, we see an oscillatory behaviour known as Rabi

oscillations, caused by absorption and subsequent stimulated emission. This becomes more

pronounced at higher S. Over time, spontaneous emission and coupling to the environment

cause the dephasing of the transition dipole, which causes the oscillations to be damped. This

is shown in Fig. 2.3b where σ11 is plotted for different magnitudes of dephasing.

Using the transient solution of σ11 we can derive an expression for g(2) under resonant excitation

[202],

g(2)(τ) = 1− p+ q

2q
exp [−(p− q)|τ |] +

p− q
2q

exp [−(p+ q)|τ |] . (2.26)

In Fig. 2.3c, simulated g(2)(τ) curves are plotted as S is increased, leading to a narrowing of

the central antibunching dip due to an increasing likelihood of quickly re-exciting the emitter.

We also see the signature of Rabi oscillations. Shown in Fig.2.3d are simulated g(2)(τ) curves

as Γ2 is increased and any Rabi oscillations are washed out. As Γ2 is temperature dependent,

in order to see Rabi oscillations the emitter must be at cryogenic temperatures. Notice that

g(2)(0) = 0 for any choice of parameters, signifying a single photon emitter. By experimentally
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(a) (b)

(c) (d)

Figure 2.3: Plot showing transient solution of excited state population σ11 as a function of time
(a) for differing saturation parameter values S while Γ2/Γ1 = 1, and (b) for differing levels of
dephasing Γ2 relative to the spontaneous emission rate Γ1, with S = 10. Plots showing second-
order correlation function g(2)(τ) (c) while varying S for Γ2/Γ1 = 1, and (d) while varying
Γ2/Γ1 with S = 10.
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measuring g(2)(τ), we can deduce S, Γ1 and Γ2.

2.1.3 Non-resonant spectroscopy

So far, we have dealt with resonantly exciting the molecule on the ZPL line. Instead, we may

excite to a third state – an excited vibrational state of the excited electronic state, S1,ν>0. As

mentioned in Section 2.1.1, excitation to S1,ν leads to fast non-radiative decay to S1,0, followed

by fluorescent decay to the ground electronic state manifold, where the photons will be emitted

with minimal time uncertainty [312]. Photons emitted on the ZPL transition will also be

spectrally distinguishable from the excitation laser, which makes it experimentally easier to

isolate the emitted photons. To describe the resulting dynamics, we now need to include the

third state.

Three-level equations

We label the third state S1,ν as |2⟩, with a corresponding population σ22 = |2⟩ ⟨2|. The non-

radiative decay Γnrad from S1,ν → S1,0 is incoherent, so if we assume that the molecule begins

in the ground state and is only excited to S1,ν , we can set the coherences σ21 = σ10 = 0. We

can further simplify our equations by noting that the decay from |2⟩ → |1⟩ is much faster than

|2⟩ → |0⟩, and so we may neglect decay from |2⟩ to |0⟩. This leads to the following modified

set of equations,

∂tσ22 =
i

2
Ωblue(σ̃20 − σ̃02)− Γnradσ22

∂tσ11 = Γnradσ22 − Γ1σ11

∂tσ00 = − i
2

Ωblue(σ̃02 − σ̃20) + Γ1σ11

∂tσ̃02 = −(Γ2,blue + i∆)σ̃02 +
i

2
Ωblue(σ22 − σ00)

σ00 + σ11 + σ22 = 1

σ̃20 = (σ̃02)
∗ ,

(2.27)

where Γ2,blue = Γnrad

2
+ Γ∗

2,blue is the decoherence rate of state |2⟩, with Γ∗
2,blue the temperature

dependent pure dephasing rate of this transition, analogous to Γ∗
2 in the previous section. We

have also defined Ωblue = µ02·vLEL
2

, with µ02 denoting the transition dipole moment between
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states |0⟩ and |2⟩.

We are mainly interested in σ11, as this is the only population that gives rise to photons. The

steady state solution is,

σ11 =
Sblue

1 + Sblue

(
2Γ1

Γnrad
+ 1
)

+
(

∆
Γ2,blue

)2 (2.28)

for Sblue =
Ω2

blue

Γ1Γ2,blue
. At cryogenic temperatures, Γnrad ≫ Γ∗

2,blue so the Lorentzian width becomes

2Γ2,blue

√
1 + Sblue → Γnrad

√
1 + Sblue (i.e. much broader than the resonant linewidth). Through

non-resonant excitation, we can reach full population inversion (σ11 = 1) in the steady state

due to the fast dephasing of σ02 preventing stimulated emission. The caveat of this is that

Sblue ≈ (Γ2/Γnrad)S and so to reach the same saturation as resonant pumping, we require much

larger laser intensities.

Transient solution

Equations 2.27 can be solved using the Laplace transform as in the previous section. However a

simpler solution can be found by noting that Γnrad ≫ Γ1 and so over the timescales of interest,

any coherence will have dephased. This leaves us with the following rate equations for the

populations,

∂tσ22 = Γ1Sblueσ00 − Γnradσ22

∂tσ11 = Γnradσ22 − Γ1σ11

∂tσ00 = −Γ1Sblueσ00 + Γ1σ11 ,

(2.29)

Given that Γnrad ≫ Γ1, we can write the transient solution as,

σ11(t) =
Sblue

1 + Sblue

(1− exp [−Γ1(1 + Sblue)t]) (2.30)

which results in the non-resonant pumping second-order correlation function g
(2)
blue(τ),

g
(2)
blue(τ) = 1− exp [−Γ1(1 + Sblue)|τ |] (2.31)
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Figure 2.4: (a) Plot showing excited state population σ11 as a function of time for varying sat-
uration parameter values Sblue, where the excitation laser is resonant with a higher vibrational
mode of the excited state. (b) Plot of second-order correlation function g(2)(τ) resulting from
this excitation scheme, for varying Sblue.

Note that Eq. 2.26 for resonant pumping g(2)(τ) tends to Eq. 2.31 as dephasing Γ2 →∞.

Fig. 2.4a shows a simulation of how the excited state population σ11 varies in time, as Sblue is

increased. In Fig. 2.4b we see how the antibunching feature of g
(2)
blue(τ) narrows for larger Sblue,

due to an increase in the likelihood of a molecule being re-excited in a shorter period of time.

As a result of a large Γ2,blue, we do not see any Rabi oscillations.

2.2 Measurement

In this section, we describe the general experimental details of probing fluorescenece from DBT

molecules. We begin by describing the workings of a confocal microscope, the workhorse for

much of the data presented in the next chapter.

2.2.1 Confocal microscopy

In all the experiments described in the Chapter 3, we used confocal microscopy to characterise

the emitters. We used one of three home-built confocal microscope setups: one for room

temperature measurements and two for cryogenic temperature measurements. In all cases, the
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general setup is the same and is illustrated in Fig. 2.5. Individual component details will be

given in the next chapter when discussing specific experiments.

Fluorescence confocal microscopy is a common technique used to study solid state single photon

sources. It relies on two paths: an excitation path and a collection path. For excitation, a

collimated laser is focused onto the sample by means of of an objective lens (L3 in Fig. 2.5).

The position of the laser spot relative to the sample can be varied through either translating the

sample or by changing the angle of the laser incident on the objective. Any fluorescence from

the sample, along with any scattered laser light, is then collected and focused back through

the objective lens. A second imaging lens is used to focus the collected light onto the image

plane, as shown in the inset of Fig. 2.5. By placing a pinhole in the imaging plane, any out of

focus signal is rejected, increasing the axial resolution of the microscope beyond what can be

achieved through spatially selective excitation of a laser spot.

The excitation is provided from one of several laser sources available in the lab (the exact source

will be detailed when the data is presented). Around 1% of the light from the excitation beam is

split onto a photodiode by a beam-splitter (BS1) to monitor and correct for power fluctuations.

A polariser (Pol.) is used to clean up the laser polarisation and a half-wave plate (HWP) is

used to set the polarisation at the sample. A bandpass filter (F1) is used to remove any light

other than the laser, such as Raman scattering from the fibre. The light is then directed to a

90 : 10 beamsplitter (or potentially a dichroic mirror for some experiments) which is used to

overlap the collection and excitation paths. This results in 90% of the excitation light being

thrown away but this can easily be compensated for by turning up the laser power.

A pair of steering mirrors GM (Scanning Galvo Mirror System, Thorlabs) are used to control

the angle and position of the laser into a 4-f lens configuration, made up of L1 (focal length of

f1) and L2 (focal length of f2). The distance from GM to L1 is f1, from L1 to L2 is f1 + f2 and

from L2 to the back aperture of the objective lens L3 is a distance of f2. The 4-f configuration

allows for the angle of the laser beam to be varied while still passing through the centre of the

objective lens.

Signal light from the sample is focused through L3 and travels back along the same path as
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Figure 2.5: The main image sketches the standard layout of the confocal microscopes used
in the Chapter 3. Blue represents the excitation light, purple the overlap of excitation and
collected light and red the fluorescence after the excitation light has been removed through
spectral filtering. White light illumination is also shown in yellow, and the collected light in
pink. BS: beam-splitter, PD: photodiode, HWP: half-wave plate, Pol: linear polariser, F: filter,
M: mirror, GM: scanning galvo mirrors, WL: white light source, L:lens, CCD: charge-coupled
device camera. Inset illustrates the working principle of a confocal microscope. The excitation
laser (shown in blue) is focused by an objective lens. The resulting fluorescence (thin purple
lines) is collected by the objective lens and focused by an imaging lens onto the image plane
where a pinhole is placed. Fluorescence originating from outside the focal plane is rejected by
the pinhole.



2.2. Measurement 59

the excitation light until reaching BS2 (the 90 : 10 beamsplitter). Here 90% of the collected

light is directed to the detection part of the setup, with the remaining 10% lost. The collected

light then propagates through a long pass filter, to remove any elastic scattering of the pump

light, before being collected by an optical fibre - the fibre mode acting as the required pinhole

for confocal imaging. For measuring count rates, the collected light can be detected by a

silicon single-photon avalanche diode, SPAD (SPCM-AQRH, Perkin Elmer), which quotes a

detection efficiency of around 50% for 800 nm. Alternatively, the fluorescence can be sent to a

spectrometer (Shamrock 303i, Andor) and an electron-multiplying charge-coupled device (CCD)

camera (iXon, Andor) for detection. This allows for an integrated spectrum of fluorescence to

be constructed, with a resolution of 0.2 nm.

Inelastic scattering of the excitation beam, such as from other dopant molecules or from Raman

scattering in the surrounding crystal, can result in light resonant with emitted fluorescence that

cannot be filtered out spectrally. This background can be kept to a minimum by operating at

low laser powers, corresponding to an S ∼ 1. Also operating at cryogenic temperatures and

using resonant excitation reduces Isat, meaning lower laser powers can be used to achieve

S ∼ 1. By scanning the laser power and frequency over the molecular resonances, the resulting

fluorescence can be fitted to the equations derived earlier in this chapter in order to extract Γ2

and Isat.

In addition to laser excitation, we can perform white light imaging, useful for identifying struc-

tures and finding the focal plane. The white light source WL is placed f1 away from L1 and is

directed into the system by means of a temporary pellicle beam splitter BS3 which is removed

when performing single photon measurements to maximise the number of photons transmitted

through the setup. Back scattered light from the sample is directed by another temporary

pellicle beam splitter BS4 onto a variable zoom lens CCD camera. The whole sample stage

can be re-positioned by means of a 3-axis positioning system , which is used for relocating the

white light or laser spot in between scans.
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2.2.2 Second-order correlation function

For measuring g(2)(τ), the collection fiber is sent to a 50 : 50 fibre beam-splitter (Thorlabs)

and the two output ports are sent to two SPADs. A time-correlator card (Time-Harp 260,

PicoQuant) is triggered when a photon is detected at one of the SPADs, and records the

time delay until the other SPAD records a photon. Provided the count rate is low enough

and the probability of multi-photon generation is small, this measure closely approximates

g(2)(τ) [313,314].

For fitting to Eq. 2.26 and Eq. 2.31, we must include a visibility term (V) to include contributions

from background light and fluorescence from other nearby molecules. The equations then

become,

g(2)(τ) = 1− V p+ q

2q
exp [−(p− q)|τ |] + V p− q

2q
exp [−(p+ q)|τ |] , (2.32)

for resonant pumping and,

g(2)(τ) = 1− V exp [Γ1(1 + S)|τ |] , (2.33)

for non-resonant pumping.

To account for timing jitter of the SPADs, the above g(2)(τ) equations must be convolved with

a Gaussian of 1/e width equal to the detector jitter. For the detectors used in this thesis, we

use a Gaussian width of 320 ps, derived from separate measurements of a laser pulse using the

same setup.

As well as the single photon purity, when combined with fluorescence measurements while the

laser power and frequency are scanned, g(2)(τ) allows Γ1 to be extracted.

2.2.3 Time-correlated single photon counting

Another method for determining Γ1 is to measure the lifetime of the excited state via a time-

correlated single photon counting (TSPC) measurement. Here a timing card measures the time
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delay between a laser pulse and the detected DBT fluorescence. Performing the measurement

many times, a histogram can be constructed with number of detection events as a function of

delay time. The likelihood of detection is directly proportional to the excited state population.



Chapter 3

Dibenzoterrylene: Experiments

In this chapter we will use the theoretical framework developed in Chapter 2 to examine Diben-

zoterrylene (DBT) in two different host matrices: Anthracene (Ac) and para-Terphenyl (pT).

For DBT in Ac, we will investigate different mechanisms for tuning the emission wavelength

and methods for deterministically interfacing DBT doped Ac crystals into photonic structures.

The second section will deal with a novel host matrix pT and characterise the optical properties

of DBT in pT nanocrystals.

3.1 Dibenzoterrylene in Anthracene

In this section, we place DBT in an Ac (formula C14H10, shown in Fig. 3.1a) host matrix. Ac

forms a solid at room temperature and pressure, which is weakly held together by van der Waals

forces. This leads to a relatively low melting point of 217 ◦C and poor electrical conductivity.

An Ac unit cell is illustrated in Fig. 3.1c, where the lattice constants along the a, b and c

axes are 8.56 Å, 6.04 Å and 11.16 Å respectively, with an angle of 124.7 ◦ between the a and c

axes [303].

DBT inserts into one of two sites within Ac: the main site and the red site [302]. For the main

site, occupied 1000 times more frequently than the red site, DBT replaces three Ac molecules

62
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Figure 3.1: (a) Anthracene (Ac) molecular structure. (b) Energy level diagram for the outer-
most π−electrons of Ac, showing the ground single S0 and first excited singlet states S1, as
well as the first triplet state T1. (c) Ac unit cell.

along the crystallographic b-axis. This results in a transition dipole moment aligned along

the b-axis and thus the emitted photons have linear polarisation orientated to this axis. The

singlet transition in DBT is centered at 785 nm, with an inhomogeneous broadening of around

3 nm and an excited state lifetime of 4 ns. For the red insertion site, DBT replaces two Ac

molecules along the b-axis and one of the neighbouring molecules along the a-axis, producing a

singlet transition at 794 nm, with an inhomogeneous broadening of around 12 nm. The red site

features more interactions with the surrounding Ac host when compared with the main site,

leading to greater dephasing for the same temperature. Strains in the host crystal, such as from

structural defects originating from dislocations, grain boundaries or crystal edges, act to reduce

photo-stability and increase dephasing for both sites. The nature and frequency of these defects

will depend on the growth method used, which will be discussed in more in Section 3.1.1.

The singlet transition, in both the main and the red site, fluoresces at energies well below

the singlet transition in Ac, which has a wavelength of 375 nm as shown in Fig. 3.1b, making

Ac transparent to photons produced from DBT. The DBT singlet transition also energetically

lies below the triplet state in Ac. This reduces the probability of singlet to triplet energy

transfer from guest to host, which would otherwise increase the rate of transition to the DBT

triplet state, reducing the photon generation efficiency of the DBT [303]. As it happens, the

inter-system crossing probability for DBT doped Ac is very small, on the order of 10−7 [302],

with the lingering probability as a result of spin-orbit coupling allowing for weak transitions

between S1 and T1. These weak transitions, if radiative, could be accessed through intense laser
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light, allowing an excitation of DBT to be stored for the lifetime of the triplet state, around

40µs [302]. However to date, due to the weak coupling between S1 and T1, the exact energy

of T1 in DBT/Ac has not been determined.

As well as electronic transitions, we also have the vibrational manifold of DBT, originating

from the normal mode oscillations of the nuclei. The vibrational levels are very short lived,

decaying on the order of picoseconds to the ground vibrational state through coupling to the

surrounding crystal [303]. On top of this, interaction with phonons from the surrounding host

matrix result in a phonon side band. For DBT in Ac, the branching ratio (ratio of fluorescence

on the ZPL to all other emission) α ≈ 32% [205, 312], depending on the growth method and

local environment of the DBT molecule.

At cryogenic temperatures, DBT/Ac shows Fourier-limited emission on the zero-phonon line

(ZPL), with a bandwidth of 40 − 50 MHz [302]. We can resonantly excite on this transition

and collect decays from S1,0 → S0,n>0, in order to spectrally filter out the pump. While

these photons are not indistinguishable, these tranistions can be useful for characterising the

molecule. To collect light emitted from the ZPL while still pumping resonantly, filtering of the

pump light must be accomplished by spatially decoupling excitation and collection, or using

cross polarisers, where the excitation light polarisation is aligned as close as possible to 90◦

from the Ac b-axis, allowing polarisers to filter out most of the pump light from the emitted

photons.

Alternatively we can excite to a higher vibrational mode of the excited state S1,n>0. Since the

vibrational decay is several orders of magnitude faster than the electronic state decay [312],

there is little time-uncertainty in the preparation of S1,0. Typically for DBT, we excite to S1,3 for

non-resonant pumping as this has a higher transition dipole-moment than the other vibrational

lines - not including the ZPL [315]. This corresponds to a wavelength of 768 nm for main site

DBT, easily separable from the ZPL at 785 nm. The fast decay of the S1,3 state results in a

excitation linewidth of 25−40 GHz compared with the ∼ 40 MHz resonant excitation linewidth:

a factor of 1000 increase in pump power is needed to achieve the same level of saturation.



3.1. Dibenzoterrylene in Anthracene 65

Ac crucible
DBT crucible

Collection plate

View port

Vacuum port

b-axis

(b)(a)

Figure 3.2: Cut-through of the co-sublimation chamber, modified from Ref. [200]. Ac: An-
thracene, DBT: Dibenzoterrylene. (b) Photograph of typical Ac crystal grown using co-
sublimation with the crystallographic b-axis indicated.

3.1.1 Growth methods

We use three methods for preparing DBT doped Ac in the group, depending on the application.

These methods were developed by other members of the group and are described below.

Co-sublimation

Co-sublimation growth [200] involves heating Ac and DBT powders in a low pressure chamber,

causing them both to sublime and accumulate on a collection plate placed above the sublimating

chambers. This produces Ac crystals that have mm2 surface areas and that are micrometers

thick. Through varying the temperature of the Ac, the growth rate and overall morphology of

the Ac crystals can be controlled, while adjusting the DBT temperature controls the doping.

The doping and size of the crystals are also affected by the temperature of the collection plate

and the pressure of the chamber. The shape of the macroscopic crystals produced corresponds

to the Ac unit cell structure allowing the crystallographic axes to be determined using optical

microscope images and thus the polarisation alignment of the emitted photons. A typical

crystal is shown in Fig. 3.2b with the b-axis labelled.

A diagram of the cosublimation chamber, developed by other members of the group before the
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start of my PhD [200], is shown in Fig. 3.2a. At the bottom of the chamber sit two aluminium

crucibles, one filled with Ac (ReagentPlus 99% purity, Sigma-Aldrich) and the other with DBT

(PAH Research Institute, Greifenberg, Germany). At the top of the chamber, around 25 cm

above the two crucibles, sits a copper collection plate. Oxygen during the growth process can

become incorporated within the Ac crystals and lead to photo-bleaching of the DBT emitters,

so beforehand, the atmosphere within the chamber is first evacuated using a roughing pump and

then purged with dry-nitrogen to remove oxygen and humidity. The pump and purge process is

repeated three times, before setting the internal pressure to 225 mbar. The temperatures of the

Ac and DBT crucibles are controlled through resistive heaters and peltier elements for coarse

and fine tuning respectively. The body of the chamber is also heated to prevent deposition on

the walls.

The chamber and collection plate are heated to around 80 ◦C and 50 ◦C respectively. The Ac

crucible is heated to 140 ◦C and the DBT crucible is set in the range 170− 260 ◦C, depending

on the doping required. A typical growth takes one to two hours and the resulting crystals

are removed from the collection plate using tweezers. The crystals are placed on a substrate

and then coated with PVA (around 200 nm thick) to prevent sublimation of the Ac, protect

the crystal from the surrounding environment, as well as adhere the crystal to the substrate.

Even without the PVA, the crystal adheres to substrate quite well through weak van der Waals

forces, indicating a good thermal coupling. Crystals grown in this fashion show an inhomo-

geneous broadening of around 0.3 nm centered on 785.5 nm [302]. The narrow inhomogeneous

broadening points to a very homogeneous crystal and the stability of the DBT dopants is typi-

cally very high for crystals grown in this way. However, the collection efficiency is usually poor,

partly because of the spatial mode of the dipole emission, as discussed in Section 1.3 but also

due to total internal reflection at the crystal boundary.

Melt growth

Another method for producing a bulk crystal matrix is through melt-growth [207]. Here micro-

fluidic channels are first patterned within a substrate and then filled with a molten Ac and DBT

mixture, which is allowed to crystallise by cooling the sample to room temperature. A before
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10μm

Figure 3.3: White light images showing micro-capillaries (left) unfilled, (right) after filling with
doped anthracene. The white regions correspond to unfilled parts of the channel.

and after image is shown in Fig. 3.3, where micro-capillaries are initially unfilled on the left

and then predominantly filled on the right. The channels can be used to fill specific regions of

photonic structures with DBT/Ac.

The filling is done in a nitrogen purged environment, with typically < 0.5% O2 concentration

and humidity < 4% [315]. The DBT/Ac mixture is made by heating up DBT and Ac powders

above the melting point of Ac. Since DBT is soluble in liquid Ac, the result is a uniformly

doped solid when allowed to cool back down to room temperature. Grinding the cooled material

results in a DBT/Ac powder. To fill the channels, the powder is placed at the entry to the

channels and the substrate heated. This causes the DBT/Ac mixture to fill the channel through

capillary forces. The substrate must be heated past the melting point of Ac (usually to around

220 ◦C), however near this temperature Ac sublimes rapidly and so the overall time spent here

must be kept as short as possible. To do so, a combination of hotplate and peltier is used for

additional heating power near the Ac melting point. After filling, the sample is cooled at a

rate 5 ◦Cs−1 and any excess DBT/Ac that is not deposited in the channels is cleaned off with

toluene. The correct cooling rate is vital for obtaining stable DBT. Too fast and the Ac crystal

becomes highly disordered, leading to poor DBT stability. Too slow, and impurities in the

Ac are driven towards the edges of the crystal, resulting to DBT close to surface edges and

therefore poor stability.
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30

Figure 3.4: Diagram detailing the dibenzoterrylene (DBT) doped anthracene (Ac) nanocystal
growth procedure. 250µL of DBT/Ac in acetone/toluene solution is added to 5 mL of distilled
and degassed water. The combined solution is then sonicated for 30 minutes at 37 kHz, leading
to the formation of nanocrystals.

This growth method produces a broader inhomogeneous broadening than co-sublimated crys-

tals, equal to 4 nm with a centre wavelength around 783 nm, though the central wavelength

shifts to longer wavelengths for smaller channels. Provided the filled channels are wide enough,

the DBT shows good spectral stability, with photon emission aligned predominantly in one

direction (most likely the Ac b-axis though this has not been confirmed) [315]. Since the capil-

laries can be used to integrate DBT molecules with photonic structures, the collection efficiency

can be larger than for bare co-sublimated crystals.

Re-precipitation growth

The re-precipitation growth method [316] forms crystals with side lengths ranging from sub-

micron to 100 nm, ideal for integration into photonic structures. Firstly, a solution of DBT

in toluene is added to Ac in acetone. Through varying the concentration of DBT in the

toluene, the doping in the final crystal can be adjusted. The combined solution is added to

degassed and distilled water, which is then placed inside a sonication bath, where the acoustic

waves form cavities in the solution that promote crystal growth. The high frequency of the

cavity formation results in a high rate of nanocrystal formation in the solution [317] and the

procedure is illustrated in Fig. 3.4. These crystals can then be filtered to control the final size

distribution of the nanocrystals. The final filtered solution is deposited onto a substrate and

left to evapourate, leaving behind solid nanocrystals. Just as for crystals grown through co-

sublimation, a 200 nm layer of PVA is applied to protect the crystals and help adhere them to
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the substrate surface. However in contrast to macroscopic crystals, nanocrystals require PVA to

produce narrow emission at cryogenic temperatures, due to an increase in surface effects [311].

Typical concentrations of DBT in toluene used are 10−25µM, which is added to 10 ml of 5 mM

Ac in acetone. Of the resulting solution, 250µL is added to 5 mL of degassed, distilled water,

which is then sonicated at 37 kHz for 30 min at a temperature of 50 ◦C. Without filtering, the

nanocrystals vary from sub-micron down to ∼ 100 nm in size.

Nanocrystals show a similar inhomogeneous broadening and center wavelength to the melt

growth [311]. Compared to the co-sublimated crystals, they also demonstrate an improved

collection efficiency due to less internal reflection. Because of their small size, the doping of

DBT can be reduced to the point of having one DBT molecule on average per nanocrystal.

Rather than applying a coating of PVA, the nanocrystals can instead be coated with a poly-

methyl methacrylate (PMMA) shell, during the sonication growth [311]. The resulting nanocap-

sules do not require coating with PVA for protection or to achieve narrow linewidths at cryogenic

temperatures. The added PMMA shell results in the nanocapsules having a larger size than

uncoated nanocrystals, ranging from around 500 nm to 1500 nm, with a mean of 960± 20 nm,

which is around a factor two increase in particle volume. It may be possible to reduce the

PMMA thickness and thus the size of the nanocapsules, while still maintaining the advantages

that come with the polymer shell.

3.1.2 Tuning

Due to the differing local environments around each DBT molecule, the photon emission from

two different DBT molecules will be spectrally distinguishable. The resulting overall distribu-

tion of emission frequencies for the entire ensemble is termed inhomogeneous broadening1. We

would like a method that allows us to vary the emission frequency of a DBT molecule, without

affecting any other optical properties, in order to compensate for this spectral randomness.

1Note that this does not mean that the lineshape of an individual emitter is broadened, just that the
ensemble will display a distribution of emission frequencies. Broadening of an individual emitters lineshape,
such as through interactions with surrounding phonons leading to dephasing, is referred to as homogeneous
broadening.
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Also, for interfacing molecules with other systems, such as an ensemble of atoms, control over

the emission frequency could be advantageous to improve the coupling of the two systems.

DC-Stark tuning

Applying an electric field causes the electronic states of an emitter to change due to a mod-

ification of the overall Hamiltonian. This can be done using a DC electric field, or an AC

electric field as is the case for light. Here we will only discuss the application of DC electric

fields, but we will come back to AC Stark tuning when considering atomic quantum memories

in Chapters 5 and 6.

Applying a static external electric field EDC , modifies the molecule Hamiltonian Hmol as in

Chapter 2,

H = Hmol +HDC

H = Hmol − µ̂ ·EDC .

(3.1)

Provided the perturbation is small compared with the electric fields of the bound atoms, we

can find the shift in energy levels by second-order perturbation theory,

∆Ej = −dj ·EDC −
α̂j

2
· |EDC |2 (3.2)

with dj the permanent dipole-moment and α̂j the polarisability tensor, for the j’th state. The

two terms in Eq. 3.2 result in a linear and quadratic Stark shift respectively.

We are interested in the relative frequency shift of the ground and excited singlet states in DBT,

which is given by the difference in permanent dipole-moments (δd = d1−d0) and polarisabilities

(δα̂ = α̂1 − α̂0),

∆ω = −δd
ℏ
·EDC −

δα̂

2ℏ
· |EDC |2 , (3.3)

where 0 labels the ground state and 1 the excited state. For the ZPL transition in DBT, δd ≈ 0

as DBT is centrosymmetric and the two states involved have a well defined parity, leaving us

with a predominantly quadratic Stark shift [302].

The Stark coefficiencts of DBT in Ac have previously been measured [302] where the electric
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Figure 3.5: (a) White light image showing a co-sublimated crystal (lighter portion of the image)
on top of interdigitated spiral electrodes, with the b-axis indicated by the white dashed line. (b)
Confocal raster scan of small region of the electrodes. Bright spots correspond to fluorescence
from DBT and the white dashed line indicates the direction of the b-axis. (c) Normalised
counts averaged over a raster scan, plotted against half-wave plate (HWP) angle θ and fitted
with a cos2(θ) curve with the additional of an offset.

field was applied at an angle of 60◦ to the b-axis, measuring an average scalar polarisability

of −0.4 MHz/(kVcm−1)2. A large tuning range has also been shown over hundreds of GHz for

DBT molecules embedded in a PVA film by having electrodes separated by only ∼ 600 nm [132].

Here we aimed to map out the dependence of the polarisability tensor on the relative angle

between the static electric field and the b-axis of the crystal. To do so, we placed a highly

doped Ac crystal, grown using cosublimation, onto a substrate consisting of interdigitated gold

circular electrodes (ED-IDRA1-Au, Micrux) and applied a layer of PVA on top. By selecting

molecules at different positions along the curved electrodes, we were able to vary the relative

angle between the electric field and the b-axis. Shown in Fig. 3.5a is a white light image of

the electrodes with the Ac crystal placed on top and the direction of the b-axis indicated

- determined through averaged fluorescence polarimetry measurements described later. The

sample was cooled to 4.7 K in a closed cycle cryostat (Cryostation, Montana Instruments) so

as to be able to spectrally distinguish multiple molecules occupying the same location.

A raster scan across a portion of the electrodes using a confocal microscope of the same design

described in Chapter 2, is shown in Fig. 3.5b . A three axis positioning system (ANP101,

attocube) inside the cryostat allowed us to reposition the sample. Optical access to the sample

used an objective lens with a numerical aperture (NA) of 0.75 and focal length 1.65 mm (LD

EC Epiplan-Neofluar, Zeiss). For an excitation beam of diameter 1.5 mm, this objective lens
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results in a beam waist at the sample of ∼ 275 nm. The excitation beam was provided by a

continuous wave (cw) laser (Solstis, Msquared) which was set to 783.5 nm and filtered through

a 780± 10 nm band pass filter (Thorlabs). Each of the two lenses used in the 4f-configuration

had a focal length of 250 mm. The collected light was filtered through a combination of 792 nm

and 800 nm longpass filters (Chroma Technolgies) and focused by an asphere (Thorlabs) with

focal length 10 mm into a multi-mode fibre of core diameter 62.5µm (Thorlabs)2. A silicon

avalanche photodiode (APD, Count T, Laser Components) was used for photon detection.

We first performed polarimetry on the sample to determine the orientation of the b-axis. By

performing raster scans across a portion of the electrodes and rotating the half-wave plate

(HWP) in the excitation arm, we could observe the total collected fluorescence vary with angle.

We excited with a low power of 154 nW, allowing the fluorescent count rate, given by Eq. 2.16,

to be approximated by,

R ∼ cos2(θ) , (3.4)

where θ is the angle between the laser polarisation and transition dipole moment of the DBT.

The measured fluorescence as a function of HWP angle is plotted in Fig. 3.5c, showing a clear

cos2 dependence, along with an offset. This allowed us to determine the orientation of the

b-axis in Fig. 3.5a and b. The required offset results from unpolarised background light, such

as scatter from the gold surface.

A stable molecule was identified at 783.58 nm and linescans were performed as the laser power

was increased. The linescans at each power were fitted with lorentzians (Fig. 3.6a) to determine

their widths, peak heights and background. Fig. 3.6b shows the maximum count rate as a

function of power, which when fitted to a saturation curve (Eq. 2.17) givesR∞ = 275±11 kcnts−1

and a psat = 640± 60 nW, where S = p/psat for laser power p. After taking into account losses

through the setup, this corresponds to Isat = 0.9 ± 0.1 Wcm−2. The linewidth as a function

of power is shown in Fig. 3.6c, which can be fit using Eq. 2.18 to find a zero-power linewidth

of 2Γ2 = 290 ± 20 MHz and psat = 620 ± 50 nW, consistent with the value obtained from the

saturation fit.

2For the objective lens and asphere used here, a dipole emitter would occupy 4µm in the image plane and
so no additional axial resolution is provided by the the 62.5µm pinhole.
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Figure 3.6: (a) Measured fluorescence (grey) as a function of laser detuning, fitted with a
Lorentzian (dark blue). (b) Peak count rate (grey) as laser power is increased, determined
from Lorentzian fits to linescans. Eq.2.17 is fitted (dark blue) with R∞ = 275 ± 11 kcnts−1

and psat = 640±60 nW. (c) Resonance linewidth (grey) as laser power is increased, determined
from Lorentzian fits to linescans. Eq 2.18 is fitted (dark blue) with 2Γ2 = 290 ± 20 MHz and
Isat = 0.87 ± 0.07 Wcm−2. (d) Second-order correlation function g(2)(τ) (grey) taken with
I = 1.35 Wcm−2, corresponding to an S = 1.5, showing characteristic anti-bunching dip, along
with a small amount of Rabi oscialltion. Fitted is Eq. 2.26 (dark blue), with S = 1.5 and
2Γ2 = 290± 20 MHz held constant.
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We then measured the second-order correlation function g(2)(τ) with a power of 962 nW, cor-

responding to S = 1.5. Fig. 3.6d shows the measured g(2)(τ) which was fitted with Eq. 2.32

after convolving with a Gaussian characterising the 320 ps detector timing-jitter. Γ2 and S

were determined from the power-broadening measurements, leaving just Γ1 and V as free pa-

rameters. The data in Fig. 3.6d has been normalised to 1.0 in the wings of the plot, assuming

that for photons emitted after many lifetimes of the molecule, there will be no correlation

with photons emitted at zero time3. We measured a Γ1 = 52.9 ± 0.3 MHz, corresponding to

a lifetime of 3.0 ± 0.2 ns, and V = 70%. Typically for an isolated DBT, we would expect to

measure a higher visibility. The deviation from unity is likely to stem from the large doping

concentration, leading to some neighbouring molecules being weakly excited and some of the

emitted light being collected. Additionally, the gold electrodes resulted in a larger background

which could also contaminate the g(2)(τ) measurement. The ratio of Γ1/2Γ2 = 0.37 is also

lower than what would be typically measured in this cryostat, and implies a temperature at

the molecule of ∼ 8.5 K [202]. The extra heating is likely to have originated from the greater

thickness of the electrode sample compared to the usual sample wafers used, as well as the

electrode wires adding additional heat load. This is supported by the distribution of linewidths

shown in Fig. 3.7a where we see a mean linewdith of 371 MHz after fitting with a Weibull

distribution [307].

To investigate Stark tuning, we first picked a point on the sample, in between two electrode

annuli, and scanned a large portion of the inhomogeneous broadening (780−784 nm) at a power

of ∼ 170 nW (S < 1). We selected the largest and most isolated peaks, and repeatedly scanned

5 GHz either side of each peak as the electrode voltage was varied from −30 V to 30 V in steps

of 5 V. An example density plot of laser frequency against applied voltage in shown in Fig. 3.8a,

where we can see two initially separated molecules which can be tuned on resonance with one

another due to their different tuning rates. We see no evidence of linewidth broadening with

voltage, implying no current flow between the electrodes which would otherwise cause heating.

3Note that if there were significant blinking of the molecule emission, such as due to significant probability of
inter-system crossing to the triplet state, and we measured the second-order correlation function to timescales
comparable to the triplet state lifetime, we would see anti-bunching in the wings of the plot and therefore
normalising the wings of the plot to 1.0 would be invalid. Also if significant Rabi oscillations were present in
the entire plot, it would not be valid to normalise the wings to 1.0.
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Figure 3.7: (a) Zero-power linewidths for 409 DBT molecules. (b) Density plot showing two
bright molecular resonances tuning with applied voltage. The molecules are initially separated
but can be spectrally overlapped by applying approximately −10 V.

Each molecular emission was fit with a 2D Lorentzian of the form,

L2D =
A

(ν − [kV 2 +mV + d])2 +
(
Γ2

2

)2 +B , (3.5)

where A is the amplitude, ν is the frequency in hertz, V is the applied voltage and B is the

background. The term in the square brackets is the quadratic shifting of the central frequency,

with coefficients k, m and d characterising the curve, gradient and zero voltage central frequency

respectively.

We found that the fit was only successful if good initial parameters, particularly for m, were

provided. The parameters A, B, d and Γ2 could be determined from one dimensional Lorentzian

fits to the 0 V case. For a starting point for m, we performed a modified Radon transform, see

Appendix A. Overall, curves were fitted to a total of 409 molecules.

We then had to convert voltage to the local electric field at the molecule. Each annulus on the

electrode sample was 10µm wide with a 10µm gap. A simulation of the electric field between

the annuli and up to a 1µm above the sample (the typical thickness of a co-sublimated crystal)

showed an electric field entirely parallel to the crystal plane, provided molecules were not

chosen on the edge of the electrodes, and that the electric field strength was constant across

the gap. The strength of the field was also found to agree with the simple relation |E| = V/d
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Figure 3.8: (a) Plot of quadratic Stark coefficients against the angle of applied electric field
relative to the b-axis of the antracene (Ac) crystal. Orange points represent the mean of
the fitted coefficients at that angle, shown in grey. On the right is a histogram showing the
total distribution. (b) Plot of linear Stark coefficients against the angle of applied electric
field relative to the b-axis of the Ac crystal. On the right is a histogram showing the total
distribution.

where d is the distance between the electrodes. In the calculation of the electric field, we have

ignored any local field correction due to interaction of the Ac matrix with the external field.

The resulting histograms of quadratic and linear Stark coefficients are shown in Fig. 3.8a and

Fig. 3.8b respectively, along with plots showing the angular dependence.

The linear components of the Stark shift are centered around zero, as is to be expected for

a molecule with no permanent dipole moment. The FWHM of a fitted normal distribution is

195±7 MHz/kVcm−1, is a factor of two larger than that reported in the literature [302], possibly

due to a more inhomogeneous crystal or becuase of the larger range of angles considered. This

corresponds to dipole-moment changes of up to 390 mD. The quadratic Stark components centre

about −0.21 ± 0.06 MHz/(kVcm−1)2 with a width of 2.87 ± 0.09 MHz/(kVcm−1)2, where the

centre is consistent with values reported in the literature, though the width is roughly an order

of magnitude greater.

For the relative angle between the electric field and b-axis, the linear Stark coefficient shows

little angular dependence, although a non-zero mean is observed for angles around ±17◦. The

larger mean for +17◦ is likely to be a result of outliers in the distribution and so is probably

an exaggerated effect. The quadratic coefficient shows a small symmetrical increase when the

electric field is either side of the b-axis - though the variation in the data obscures any trend.

We observed no correlation between quadratic and linear coefficients. Additionally, we saw
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Figure 3.9: (a) Plot of quadratic Stark coefficients against the central emission frequency. (b)
Plot of linear Stark coefficients against the central emission frequency.

no correlation, over the > 400 GHz range of central frequencies investigated, between central

frequency and linear or quadratic coefficients, as shown in Fig. 3.9. The width of the ZPL also

had no relation to any of the coefficients.

Strain

An alternative method to Stark tuning is to apply strain to the Ac crystal. Here the deformation

of the molecule and surrounding host matrix acts to alter the relative energy gap between the

ground and excited states. In previous work, the effects of strain have been studied through

increasing the pressure surrounding the host crystal [318, 319], and through modulating the

fluorescence through acoustic waves [320]. In this work, published in Ref. [135], we adhere a

co-sublimated DBT/Ac crystal to a 150µm polished glass layer with PVA, which was attached

to a bending piezoelectric strip (EB-T-320, RS PRO). Application of a voltage across the piezo-

electric strip causes the Ac crystal to compress, in the case of positive voltage, or decompress,

in the case of negative voltage, as depicted in Fig. 3.10b. In order to isolate any potential Stark

effect from strain induced tuning, a second strip was made up, identical to the first, except that

it had been heated to 320 ◦C for two hours prior to placing a DBT/Ac crystal on top. The heat

treatment acts to depolarise the piezoelectric material, thereby removing any voltage induced

bending motion.

We cool the sample down to 2.6 K in a helium bath cryostat (OptiStat, Oxford Instruments)

with the top side of the crystal grounded to the inner side of the chamber. A cw excitation
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laser (Solstis, MSquared) is set to 780 nm and passes through a 785 ± 5 nm band-pass filter

(Semrock). For the 4f-lens arrangement, both lenses had focal lengths of 150 mm. An objective

lens with a NA= 0.7 and focal length 3.1 mm (C330TMD-B, Thorlabs) resulting in a excitation

spot size of 370 nm at the sample. In the collection arm, we placed a 800 nm long pass filter

(Semrock) before coupling the fluorescence into a 62.5µm core multi-mode fibre (Thorlabs) and

detecting with a silicon avalanche photodiode (APD, Laser Components, Count T).

To determine the relative orientation of the Ac b-axis to the bending axis of the piezo, we

monitor the average fluorescence (taken from four bright spots), as the HWP angle is stepped.

We find the b-axis of the Ac crystal to lie ∼ 10◦ to the piezo axis. For verifying the presence

of narrow ZPLs, we perform power broadening measurements for 32 molecules. A histogram

of zero power linewidths is plotted in Fig. 3.10a. We fit the results with a Weibull distribution

and find a mean value of 57.2 MHz with a standard deviation of 17.4 MHz, consistent with

Fourier-limited emission.

In Fig. 3.10c we see an example of tuning molecules while applying a positive voltage (com-

pression). In contrast to Stark tuning, we observe only linear tuning over the voltage range

measured, with each molecule showing a similar tuning rate. Compression of the crystal leads

to a red shifting of the ZPLs, and decompression to a blue shifting. A histogram of tun-

ing rates is shown in Fig. 3.10d. The distribution is best fit by a Student T distribution

(used for modelling a small number of samples taken from a normal distribution) with mean

−10.42 ± 0.05 MHz/V and a width of 0.45 ± 0.05 MHz/V. Also shown in Fig. 3.10d are the

tuning rates from the inactive piezo strip. There is very little variation in the ZPL frequency,

with a mean of −0.32± 0.07 MHz/V and a width of 0.30± 0.06 MHz/V, when fitted with the

same distribution as the active sample. These results are consistent with density functional

theory simulations performed by Anastasios Fasoulakis [135].

Laser induced

In Colautti et al. [321] a further scheme for tuning the ZPL of DBT was demonstrated that did

not require any additional sample fabrication beyond depositing DBT containing Ac crystals

on a substrate. By exposing a molecule to intense laser light the ZPL frequency was observed to
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Figure 3.10: (a) Histogram showing the zero power line widths for 32 Dibenzoterrylene (DBT)
molecules with no strain applied, extracted from power broadening measurements. (b) Illus-
tration of the mechanism for strain, where application of a positive voltage caused the active
piezoelectric strip to bend and compress the DBT and Anthracene (Ac) crystal. On the other
hand, application of a negative voltage resulted in a decompression of the DBT/Ac crystal. (c)
Density plot showing the intensity of the collected light as a function of laser detuning, while
the voltage applied to the piezoelectric strip was varied. (d) Histogram showing the tuning
rates for the active and inactive piezoelectric strip.
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(a) (b)

Figure 3.11: (a) Plot showing the central frequency of four dibenzoterrylene (DBT) molecules,
excited with the same laser spot at 390355 GHz (768 nm) over two days. The dashed grey
curves are fitted decaying exponentials. (b) Spectra of a different set of four DBT molecules,
where the initial spectra is shown in blue. In red, the spectra after 20 minutes of exposure with
a resonant pulsed laser centered on 384005 GHz (780.7 nm) with a full width at half maximum
bandwidth of 100 GHz, shown in grey, where we have normalised the peak power to 500 kcnts/s.
The pulsed laser peak power was set to 98µW, corresponding to full population inversion of
the molecule located at ∼ 0 GHz detuning.

red shift over time. The exact mechanism isn’t fully understood, but the authors of Ref. [321]

suggest a two photon transition, which results in one of the outer π-electrons from DBT being

ejected into the surrounding Ac matrix. The resulting hole in the DBT is filled via a different

electron donated from the Ac crystal. The final state is a separated hole and electron in the Ac,

far enough apart such that the recombination probability is very small, leading to an extremely

long lifetime. The resulting charge separation shifts the ZPL through the Stark effect. In this

study, the authors measured the ZPL over the course of 250 minutes of exposure.

We performed preliminary measurements, with the same confocal microscope used for the Stark

tuning measurements, to determine whether the laser-induced frequency tuning saturates. Four

DBT molecules, spatially overlapped but with different ZPL wavelengths, were exposed with

768 nm light over two days. Shown in Fig. 3.11a we see a clear saturation behaviour and that

the frequency shift appears to be stable. We also observed no significant change in the ZPL

widths.

The shift occurs for both resonant and non-resonant pumping, with resonant appearing to

require less laser power, supporting the claim that it is a two photon transition. We carry out

resonant pulsed laser excitation with a 100 GHz wide pulse at 780.3 nm. The peak pulse power
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was increased until a resonant molecule achieved full population inversion (98µW) and the

sample was left exposed for 20 minutes. The spectra before (blue) and after (red) are shown in

Fig. 3.11b, and the laser pulse spectral shape is shown in grey. We see tuning for all molecules

in the scan range, with the largest tuning for the resonant molecule. Contrary to the cw case,

we see a decrease in counts for the exposed DBT, though this may be due to non-optimal

realignment when switching between laser sources.

While laser induced tuning has the potential to be an extremely useful tool, allowing multiple

emitters to be tuned onto resonance without the need for any additional sample fabrication, it

is a problem for experiments requiring repeated excitation over the course of hours. For pulsed

excitation, it is possible that decreasing the bandwidth of the excitation pulse, thereby allowing

lower peak intensities to be used, could allow for full population inversion while keeping tuning

of the molecule ZPL to a minimum.

Alternatively, with an improved understanding of the mechanism responsible for the tuning,

additional lasers or DC electric fields could be employed to encourage recombination of the

separated electron-hole pair. Another possible solution is other host crystals with lower charge

mobility, thereby preventing the charge separation.

3.1.3 Photonic Structures

The dipole emission pattern of DBT has a poor overlap with single mode fibres or waveguides,

which are needed for interfacing single photon sources with fibre networks or photonic processing

elements on a chip. One solution is to use nanophotonic structures to modify the photonic

environment seen by an emitter. This results in a redirection of the emission pattern, and can

cause a speed up in the decay rate on the ZPL.

There are a huge variety of nanophotonic structures currently being considered. A common

theme amongst all of them is that, for an efficient coupling of an emitter to the photonic struc-

ture, we require a good overlap between the emitter and the mode of the structure. Therefore,

we require the emitter to be well placed inside the structure. Recent work in the group demon-
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Figure 3.12: (a) Scanning electron microscope image showing several bullseye gratings. Also
shown is a zoom in of the centre of one of the gratings. (b) Simulated electric field as a
function of distance from the central disk (X) and height above the grating (Y ). The electric
field intensity is plotted on a log scale in arbitrary units.

strated coupling of DBT molecules to waveguides using the melt growth method [207], where

capillaries were made to intersect with the middle of the waveguides. Through filling the cap-

illaries with highly doped DBT/Ac, the probability of finding a DBT molecule well coupled to

the waveguide could be increased.

Another promising photonic structure is the circular Bragg grating or bullseye grating, where

a scanning electron microscopy (SEM) image is shown in Fig. 3.12a. Bullseye gratings feature

concentric rings of material with alternating refractive index, which act as an effective mirror.

The resulting cavity causes a modest enhancement to the decay rate but efficiently redirects

emission out of the plane into a Gaussian mode, which can be efficiently coupled to a single

mode fibre [153,322,323,324]. An example of the electric field intensity as a function of distance

from the centre disk and height above the disk, is shown in Fig. 3.12b. For an efficient coupling

of the emitter to the bullseye grating, the DBT molecule should be placed in the centre of the

structure, where the electric field intensity is at its highest.

One way of ensuring that DBT molecules are located at the centre of the bullseye, is to first grow

DBT doped Ac nanocrystals, locate a DBT molecule, and then fabricate the structure around

the emitter. Preliminary work, detailed in Ref. [311] aimed to coat the nanocrystals with a
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thin PVA film and use electron beam lithography to pattern bullseye gratings into the PVA

around the nanocrystals. Repeated exposure to SEM imaging resulted in no narrow emission

from DBT molecules. However, for a sample that was imaged a single time using SEM, narrow

emission from DBT persisted. Bullseye gratings were patterned around DBT/Ac nanocrystals.

While the bullseye grating was not successively centered on the nanocrystal, therefore providing

no emission enhancement, the DBT molecules showed no discernible difference in their optical

properties when compared to unexposed DBT/Ac. The DBT molecules also survived thermal

cycling between cryogenic and room temperature, though a ∼ 4 GHz shift in the ZPL was

observed [311].

Perhaps a better approach is to incorporate nanocrystals into bullseye structures made of

materials with a higher refractive index, such as titanium dioxide (TiO2), with a refractive

index of around 2.35, compared with the PVA refractive index of 1.5. A higher refractive index

results in a greater confinement of the electric field in the guided mode. However, in sputtering

TiO2 on a sample, we require temperatures upwards of 300 ◦C and high vacuum [325]. A layer

of PVA would prevent the inclusion of the DBT into the TiO2 structure but nanocapsules

(nanocrystals coated in PMMA) allow the structure to be fabricated around them. Initial tests

showed that DBT in nanocapsules continued to fluorescence after TiO2 sputtering, but this was

only measured at room temperature and so it remains to be seen whether there is still narrow

emission [311].

Alternatively, rather than pattern the structure around the emitter, we could pre-pattern the

bullseye and then deposit the DBT doped nanocrystal at the centre of the bullseye. Fabricating

channels through the bullseye structure interupts the grating and would reduce the overall

efficiency. Moreover, while the melt growth and capillary filling technique confines the DBT/Ac

crystal in two dimensions, a filling method with control over all three dimensions is desirable.

Here we present a method to deterministically place nanocrystals inside holes fabricated on a

substrate, using capillary self-assembly. These holes could be located at the centre of a bullseye

grating, allowing the nanocrystal to be placed at the electric field maximum of the bullseye

mode (the hole also allows the DBT to sit in the plane of the device, rather than on top of it).
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Figure 3.13: (a) Diagram showing capillary filling of holes patterned into a substrate. Through
controlling the temperature of the substrate, the convective flow Jw of the suspended particles
towards the meniscus can be adjusted. At the meniscus, a capillary force acts on the particle,
the direction of which is determined by the angle between the meniscus and the substrate,
referred to as the contact angle. (b) Schematic of a chip with holes patterned in an array. On
the top right side is pictured the four sizes of holes, with a confocal raster scan below showing
fluorescence originating from only within the holes.

Deterministic capillary nanocrystal placement

The general principle is illustrated in Fig. 3.13a, where a droplet of a colloidal suspension is

sandwiched between the substrate and a retracting slide. The substrate is heated, allowing

the rate of evaporation at the droplet meniscus to be controlled. The evaporation creates a

convective flow (Jw) which drives the suspended particles towards the contact line. Depending

on the velocity of the retracting slide and hydrophobicity of the substrate, there are two regimes

of interest for particle deposition [326, 327, 328]. The first is convective assembly, and occurs

when the contact angle is below ∼ 20◦, which typically occurs on hydrophillic surfaces. Here

the shallow profile of the meniscus leads to vertical confinement of the colloids. When the

solution film reaches a comparable thickness to the colloid diameter, the colloids begin to form

a homogeneous layer or multi-layer of closely packed particles.

The second regime is capillary assembly, where the contact angle is > 20◦ and the meniscus now

provides a horizontal force large enough to prevent particles from depositing on a flat substrate.

The more hydrophobic the surface, the larger the horizontal force. However, if the meniscus is

dragged over a structure such as a hole, the walls of the hole can overcome the horizontal force,

leading to selective deposition in only the hole.

For our case, DBT/Ac nanocrystals are suspended in a distilled and degassed water solution.
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Several substrates of silicon dioxide were fabricated and coated with a PMMA (hydrophobic)

resist into which holes were etched using electron-beam lithography. Each chip consisted of four

arrays of holes arranged in a 2 × 2 grid, with each grid separated by 20µm. Each array had

a side length 1.5 mm and contained grids of 60× 60 elements, where each element consisted of

four holes of diameters: 0.25µm, 0.5µm, 0.75µm and 1µm arranged in a square. A schematic

of the chip is shown in Fig. 3.13b.

The substrate was mounted on a pelitier heater with thermal grease and preheated to a tem-

perature between 29− 30 ◦C. A solution containing DBT/Ac nanocrystals was filtered through

a 0.45µm filter and a 250µL droplet was placed on the substrate. The top slide was lowered

to 500µm above the substrate surface, forming the meniscus. The top slide was retracted at

velocities ranging from 0.5µm s−1 to 0.75µm s−1, using a motorised linear actuator (Newport,

850G-HS). Once the deposition had been completed (∼ 40 minutes), the sample was coated in

PVA to prevent sublimation of the Ac.

To determine the filling fraction of the holes and to see how selective the deposition was, we

performed room temperature fluorescence confocal microscopy. The holes were first located by

white light imaging and a set of four holes were moved to the centre of the scan. We then

switched to pulsed laser excitation at 755 nm (Picoquant) which was passed through a 760 nm

band-pass filter, a 4f-lens setup with f1 = 75 mm f1 = 250 mm and a 0.9 NA objective lens

(PlanApo 100x, Nikon) which resulted in a beam waist of 610 nm. The excitation laser was

raster scanned over the four holes, the collected fluorescence was filtered through 770 nm and

780 nm long pass filters and collected by a multimode fibre to be detected by an APD. An

example raster scan is shown to the bottom right of Fig. 3.13b.

We compared the fluorescence for both DBT containing nanocrystals and nanocrystals with-

out DBT. No fluorescence was observed from the deposition without DBT. We find the best

parameters to be a substrate temperature of 31 ◦C and retraction speed of 0.75µm s−1, though

the trend suggests higher temperatures and speeds would perform better, which were not in-

vestigated. We observed a constant filling fraction over the array, up until the edge of the chip

where the droplet eventually fully evaporated, depositing any remaining nanocrystals.
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To investigate the emission properties of the nanocrystals contained within the holes, we cooled

the sample down to 5 K in a closed cycle cryostat (Cryostation, Montana Instruments). While

fluorescence continued to be observed, no narrow spectral lines were able to be measured as a cw

laser was scanned across the inhomogeneous broadening of DBT/Ac. This most likely results

from the emission being too broad, due to large amounts of dephasing. Previous measurements

in the group have found nanocrystals require a coating of PVA to yield narrow single photon

emission. While the samples in these experiments were coated in PVA, the PVA would struggle

to surround the nanocrystals deposited in the holes. One solution to this would be to use a less

viscous PVA solution, or to instead deposit nanocrystals coated with a PMMA shell.

3.2 Dibenzoterrylene in para-Terphenyl

An alternative host material for DBT is para-Terphenyl (pT), pictured to the left of Fig. 3.14a,

which is another small PAH similar to Ac, with similar physical properties [329]. Some of

the first experiments studying single photon emission from pentacene [330] used pT as a host

material and later on, single photon emission from terrylene embedded in pT was demonstrated

[331]. An energy level diagram of DBT/pT is shown to the right of Fig. 3.14a, which was

deduced from the measurements detailed in this section.

The solubility of pT in water and acetone is similar to that of Ac, suggesting that the re-

precipitation technique used to grow DBT/Ac nanocrystals can be adapted to grow DBT/pT

nanocrystals. We used the same recipe as previously discussed for Ac, but increased the growth

time from 30 to 45 minutes. A histogram of pT nanocrystal root mean squared side lengths

is plotted in Fig. 3.14b. These were determined using Mathematica image recognition filters

to first ascertain the area, the square root of which is displayed. The inset of Fig. 3.14b shows

an SEM image of a typical nanocrystal. The side lengths follow a Weibull distribution, which

without any filtering gives a mean of 490 nm and a variance of 350 nm. As with Ac, to prevent

sublimation of the pT nanocrystals, we applied a layer of PVA, around 150 nm thick.
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Figure 3.14: (a) On the left, the chemical structure of para-Terphenyl (pT), the right shows
an energy level diagram of dibenzoterrylene (DBT) in pT. (b) Histogram of pT nanocrystal
side length distribution taken from scanning electron microscope images, an example of which
is shown in the inset.

3.2.1 Characterisation

Room temperature

To first verify the presence of DBT in the pT nanocrystals, we placed a highly doped sample

into the same room temperature confocal microscope used for the hole filling measurements.

The molecules were pumped using a cw Ti:Sapphire laser (Solstis, MSquared) at 730 nm with

a spot size of 720 nm in order to excite them to a higher lying vibrational state. The resulting

red shifted fluorescence was collected and sent through a 750 nm long pass filter to remove the

730 nm light. By scanning the two galvo mirros, we measured a raster scan of the molecules

and the fluorescence from a randomly chosen bright spot was sent to a spectrometer (Shamrock

303i with Newton EMCCD, Andor). The obtained spectrum is shown in Fig. 3.15a, where the

sharp step at 750 nm is due to the cutoff of the longpass filter (Thorlabs). We find the central

wavelength to be 772.1± 0.2 nm, which is close to the resonance of the potassium D1 line [332]

as well as higher lying transitions in rubidium [333].

To measure the lifetime of the excited state, a 730 nm pulsed Ti:Sapphire laser (Tsunami, Spec-

tra Physics) set to 1 mW was used to excite a bright spot, and the resulting fluorescence was

sent to an avalanche photodiode (APD Count-T LaserComponents) and timing card (Hydra-

harp, PicoQuant) to perform a time-correlated single photon counting (TCSPC) measurement,

as described in Section 2.2.3. Fitting the resulting histogram with a decaying single exponential
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(a) (b)

Figure 3.15: (a) In grey is the combined emission for many dibenzoterrylene (DBT) molecules
taken at room temperature. The sharp edge at 750 nm is due to a long-pass filter. A fitted
Lorentzian is shown in dark blue, where a step function was introduced to model the filter.
We find a central wavelength of 772 ± 0.2 nm. (b) Time-correlated single photon counting
measurement plotted in grey, measured after excitation of the DBT with a 730 nm laser pulse.
The y-axis is on a log-scale and a fitted decaying exponential is shown in dark blue which gives
a lifetime of 4.60± 0.02 ns.

(a) (b)

Figure 3.16: (a) Spectra from 10 nanocrystals (b) Frequency spectrum of single dibenzoterrylene
(DBT) molecule, excited by 745.7 nm light and where detuning is taken from 388282 GHz
(772.1 nm), plotted on a log scale. Inset: same spectrum plotted on a linear scale.

allows us to extract an excited state lifetime of 4.60±0.02 ns, which is consistent with DBT/Ac.

Cryogenic

For cryogenic characterisation we performed another nanocrystal growth which we filtered

through a 1200 nm pore size syringe filter. 5µL of the filtered solution was deposited onto

a silicon substrate which had been coated with gold and silica. The gold and silica layers act

as a back reflector to redirect emission and increase the collection efficiency. The sample was

coated in PVA and cooled to 5 K.

Again pumping using 730 nm light and collecting the fluorescence from a total of 10 nanocrys-
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tals, after filtering with a 745 nm long pass filter, we observe the spectrum shown in Fig. 3.16a.

We see multiple emission peaks, some centered around 772 nm but also many resembling ZPL

emission tens of nanometers away. Some of the observed lines, particularly those in the

780 − 790 nm region, could be attributed to vibrational transitions. Others may be due to

multiple insertion sites, resulting in different emission wavelengths and variable spectral stabil-

ity, as has been shown in previous work involving pentacene [330] or terrylene [331] doped in

pT.

To test whether this was the case here, we began by measuring the spectrum of a molecule with

ZPL centered on 772.1 nm, by exciting with 745.7 nm light. The spectrum is shown in Fig. 3.16b,

on both a log scale (main figure) and linear scale (inset), after having the background subtracted

and being normalised to the maximum count of the ZPL. We can pick out vibrational transitions

at lower frequencies, as well as a broad phonon sideband. The spectrum can be integrated to

estimate the overall branching ratio, i.e. the ratio of emission on the ZPL compared to all other

emission. This is only an estimate however, as there are vibrational transitions outside the

range of frequencies captured in Fig. 3.16b, though they are likely to have little contribution

due to their small transition dipole moment. With this method, we find a branching ratio

αpT = 0.55, larger than the branching ratio of DBT/Ac calculated in the same way (αAc = 0.46).

This calculation was performed on only one molecule and so may not be representative of the

DBT/pT in general. The same method can be used to compute the Debye-Waller factor

αDW,pT = 0.79± 0.03, compared with the slightly lower value of αDW,Ac = 0.70± 0.06 for DBT

in Ac. The phonon sideband is completely captured by the spectrum in Fig. 3.16b so this may

be a more accurate comparison.

We next performed power broadening measurements and fitted Lorentzian functions to de-

termine the linewidth and peak count rate at each power. An example linescan is shown in

Fig. 3.17a for an excitation laser power of 1680 nW, where we see a stable Lorentzian response.

The power-dependent linewidth is plotted in Fig. 3.17b from which we can determine the zero

power linewidth of 2Γ2 = 2π × 65 ± 4 MHz and a saturation power of psat = 350 ± 54 nW,

which corresponds to a saturation intensity Isat = 0.50± 0.06 Wcm−2. In Fig. 3.17c we fit the

peak count rate as a function of laser power (plotted in red), finding a maximum count rate
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(a) (b)

(c) (d)

Figure 3.17: (a) Detected fluorescence (grey) as a function of laser detuning, with 0 detuning
corresponding to 388282 GHz (772.1 nm). A Lorentzian function has has been fitted (dark
blue). (b) Linewidth (black) as laser power is increased for resonant excitation and fitted
with Eq. 2.18. A zero-power linewidth of 2Γ2 = 2π × 65 ± 4MHz and a saturation power of
psat = 350 ± 54 nW were extracted from the fit. (c) Peak count rate (black) as laser power is
increased, fitted with Eq. 2.17 for resonant (red) and non-resonant 745.7 nm (blue) excitation.
A maximum count rate of R∞ = 760 ± 30kcnts−1 and psat = 340 ± 40 nW were obtained for
resonant pumping. For non-resonant pumping R∞ = 3280±8kcnts−1 and psat = 6260±40µW.
(d) Second-order correlation function g(2)(τ) (grey) taken with 120 nW excitation power. The
data was fit with Eq. 2.32, from which we find a decay rate of Γ1 = 2π × 40 ± 2MHz and a
visibility of V = 0.97± 0.02.
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(a) (b) (c)

Figure 3.18: (a) Repeated linescans of molecule zero-phonon line (ZPL), centred at 388282 GHz
(772.1 nm), taken over 15 mins and showing long term stability. (b) Histogram of zero-power
linewidths for 26 molecules. (c) Single molecule spectrum, with a ZPL at 393428 GHz (762 nm).
Inset: Excitation linescan over ZPL, performed at 1 GHz/s, showing instability of the molecule.

R∞ = 760± 30 kcnts−1 and psat = 340± 40 nW, consistent with the value derived from power

broadening measurements.

To determine the single photon purity of the molecule, we measured a g(2)(τ) at S = 0.35

(P = 120 nW), shown in Fig. 3.17d, where we have normalised the wings of the plot to 1.0

as in Fig. 3.6d. We fit the g(2)(τ) measurement with Eq. 2.26, with S and Γ2 known from

the power broadening measurements, and find a Γ1 = 2π × 40 ± 2 MHz, corresponding to a

lifetime 4.0 ± 0.2 ns. This is shorter than the lifetime measured for the room temperature

molecule using TCSPC but within the usual range found for DBT in Ac. The g(2)(τ) visibility

is V = 0.97±0.02, showing an excellent single photon purity. The deviation from unity visibility

is likely due to unsuppressed background and detector dark counts. The ratio of Γ1/2Γ2 = 0.61

is less than unity, implying that the molecule emission is not lifetime limited. This is consistent

with thermal dephasing at a temperature of ∼ 5K. Cooling the DBT/pT crystal to ∼ 3K should

allow for fourier-limited emission.

We then switched to pumping with 745.7 nm, in order to excite to a higher lying vibrational

state S1,n>0. To measure the change in count rate as the excitation power was increased, we

performed spatial scans rather than spectral scans, due to the factor ∼ 1000 greater linewidth

than the resonant case. The background, measured from a point on the sample free of molecules,

was subtracted and the peak count rate versus laser power is fit in Fig. 3.17c (plotted in blue).

From this we calculate R∞ = 3280 ± 8 kcnts−1, approximately a factor four increase from the

resonant case and psat = 6260± 40µW (Isat = 9.38± 0.06 kWcm−2).



92 Chapter 3. Dibenzoterrylene: Experiments

Switching back to resonant excitation, repeated scanning of the ZPL over ∼ 15 minutes, plotted

in Fig. 3.18a, demonstrated continuous stable emission, with a slight variation in the central

frequency, possibly due to a similar tuning mechanism as that responsible for laser tuning

DBT/Ac. However, any variation remains much less than the ZPL width.

For the ZPLs in the range 768− 776 nm, we saw consistent stable emission. Power broadening

measurements were performed for a total of 26 molecules within this range, and a histogram

of the zero-power linewidths is shown in Fig. 3.18b. Around 40% displayed linewidths below

100 MHz, showing the potential for fourier-limited emission at lower temperatures. Some of

the molecules investigated within the ‘stable’ 768− 776 nm region showed bleaching soon after

excitation, possibly because of proximity to a crystal surface or defect. This behaviour is also

seen in DBT/Ac. The overall stability may be improved by adjustment of the crystal growth

parameters, or by using a co-sublimation growth to produce larger more homogeneous crystals.

For the majority of the features outside the 768− 776 nm range, we were unable to detect red

shifted fluorescence. However for some lines, we were able to detect fluorescence and perform

linescans, though the transition appeared unstable over the 30 seconds it takes to perform a

linescan, most likely due to the DBT dopant being poorly included in the pT matrix. An

example is shown in the inset of Fig. 3.18c, for a ZPL at 762 nm. The spectrum of this molecule

is pictured in the main part of Fig. 3.18c, showing a ZPL at 762 nm, which is comparatively

weaker than the spectrum shown in Fig. 3.16b. A couple of vibrational transitions can be seen,

as well as the phonon side band.

3.3 Conclusions

In this chapter, we have demonstrated several ways to tune the emission frequency of doped

DBT molecules. We began with DC-Stark tuning where we were able to tune individual DBT

molecules at differing rates, thereby allowing us to tune DBT molecules onto resonance with

each other, such as shown in Fig. 3.7b. The tuning was shown to be quadratic on average, as

expected from a centrosymmetric molecule like DBT, and the quadratic and linear coefficients
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were found to be consistent with what had previously been seen in the literature [302]. We

also investigated if there was any angular dependence of the applied electric field on the rate

of tuning and found no conclusive evidence of a relationship, though the large variation in the

data may have obscured a small angular dependence. Following this, we studied strain tuning

of DBT molecules, where the macroscopic Ac crystal was adhered to a bending piezo. The

frequency tuning showed a linear dependence on the voltage applied to the bending piezo. The

final tuning method we investigated was laser tuning, where we demonstrated that the effect

saturated over time, together with showing that pulsed excitation also displayed significant

tuning. This presents a significant challenge needed to be overcome if DBT is to be used as an

indistinguishable on-demand photon source.

We then moved on to describe photonic structures intended to improve the emission of DBT,

and identified one of the key challenges in integrating DBT molecules with these structures,

namely incorporating DBT at the correct position in photonic structures to show maximal

enhancement. A method to deterministically place DBT/Ac nanocrystals was developed and

showed excellent and repeatable results for depositing nanocrystals in prepatterned holes. How-

ever, this method failed to produce DBT with narrow spectral lines at cryogenic temperatures,

implying high amounts of dephasing. This was most likely due to increased surface effects due

to the PVA coating struggling to surround the nanocrystals in the holes. Using a less viscous

PVA solution, or encasing the nanocrystals in a PMMA shell before deposition are two possible

solutions.

The final section of this chapter investigated DBT doped into nanocrystals synthesised from a

novel host matrix, pT [307]. We showed narrow stable emission with high single photon purity,

at wavelengths compatible with the potassium D1 line, as well as higher lying transitions

in rubidium. Measurements suggested a more favourable branching ratio for DBT/pT when

compared with DBT/Ac.



Chapter 4

Warm Rubidium Vapour

Having discussed dibenzoterrylene as a single photon source, we will now turn our attention

to atomic ensembles as a medium for a quantum memory. Vapours of alkali metals are good

candidates for quantum memories, owing to their long-lived ground state coherence, large light-

matter coupling and high room temperature vapour pressures, resulting in large optical depths

for modest cell lengths [213,334].

Rubidium (Rb) is an alkali, commonly placed within a vapour cell and employed as a frequency

reference [335, 336, 337, 338], due to transitions available in the near-infrared where there are

a huge amount of laser sources, detectors and optics available. Rb has also been used exten-

sively in experiments for spectral filtering [339], accelerometers [340], magnetometry [341] and

quantum memories [44,205,237,266,293,297,298]. Additionally, higher lying transitions in Rb

are compatible with the telecommunication (telecom) bands, commonly used for commercial

fibre optic data transfer, and these transitions have been used to show telecom wavelength

conversion [342], as well as storage of telecom single photon level pulses [343]. Many of these

experiments have been conducted using cold Rb atoms, trapped in a magneto-optical trap

(MOT). While Rb is relatively simple to trap and cool, MOT setups add additional complex-

ity and overhead which we would ideally like to avoid. The subject of this chapter will be

warm vapours, which are technically much simpler and can reach much higher atomic number

densities than a MOT.

94
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A model predicting the absolute absorption of a Rb vapour is useful for determining the occu-

pation of different levels, overall number density and temperature of the Rb, all of which are

important parameters for memory performance, as will be discussed in Chapters 5 and 6. Also,

understanding the dynamics of the atom-light interaction can aid in optimising the signal used

for frequency stabilisation of a laser [335,344] (‘laser locking’) or for atomic clocks [345].

Doppler broadening of hyperfine transitions prevents direct monitoring of the energy levels

involved. Techniques to resolve sub-Doppler features exist for room-temperature ensembles

but traditionally these use high probe laser intensities when compared to single photon level

probes [346,347,348]. In this chapter, we will present a model for a modified sub-Doppler spec-

troscopy technique using a single-photon level probe and an independent counter-propagating

bright pump laser. This is a step towards interfacing tunable Dibenzoterrylene from the previ-

ous chapter with rubidium vapours. We then compare an experimentally measured spectrum

with the simulated spectrum from our model and find excellent agreement. These results are

published in Ref. [119]. Following this, we use the verified model to investigate different optical

pumping regimes of Rb, for preparing a warm atomic ensemble for quantum memory protocols.

4.1 Theory

In Chapter 2, we could assume that the intense probe light was not significantly affected by

interaction with the emitters. Here, we are attempting to describe the interaction of single

photons with room temperature alkali vapour, made up of billions of atoms.

We will begin by assuming that all beams propagate along the z-axis, with negligible divergence,

such that we may treat our system as one dimensional. This is the paraxial approximation and

we can neglect divergence provided the central wavelengths of the light fields involved are

much smaller than the transverse area of the beams, which is true for the transitions we will

be considering in Rb. In one dimension, the change in intensity of a weak cw probe beam,
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propagating in the +z-direction of a dilute atomic gas, follows the Beer-Lambert relation [349],

dI(ω, z)

dz
= −Nvσ(ω)I(ω, z) (4.1)

where Nv represents the number density of Rb atoms, σ(ω) is the frequency dependent ab-

sorptive cross section, with ω representing angular frequency, and I(ω, z) is the probe laser

intensity at frequency ω and longitudinal position z. The intensity exiting a medium of length

L is therefore,

I(ω, L) = I(ω, 0) exp[−d(ω)] , (4.2)

where we have introduced the optical depth d(ω) = Nvσ(ω)L. The aim of this derivation is to

compute the optical depth (or equivalently cross section) for the combined system, which will

depend on the temperature of the Rb, as well as on the population of the ground and excited

state. An incident probe beam monitors the change in absorption of the medium, due to the

counter-propagating pump beam modifying the populations.

4.1.1 Rubidium

Rb has 37 electrons with one in the outer shell, which is the only electron involved in the

transitions used in this thesis. Since the transition dynamics are the result of only one electron,

Rb has a relatively simple electronic structure. There are two naturally occuring isotopes:

87Rb [350] and 85Rb [351], with 85Rb the only stable one, though the decay rate of 87Rb is so

slow, with a half-life of 48.8 billion years, that it may be considered stable. Typical vapour cells

will contain both isotopes in their natural abundances: 0.2785 and 0.7215 for 87Rb and 85Rb

respectively [350,351].

Number density

We can determine the number density from the vapour pressure p of the Rb, using the relation,

INv =
PI

kBT
× 133.323× p , (4.3)
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where PI is the fraction of isotope I, kB is the Boltzmann constant and T is the temperature

in kelvin. The vapour pressure in Eq. 4.3 is in units of torr and the factor of 133.323 is to

convert from torr to pascal. An estimate of p can be found from the vapour-pressure model

given in [352],

log10(py) =


−94.04825− (1961.258

T
)− 0.03771678× T + 42.57526 log10(T ), for T < 312.45 K

15.88253− (4529.535
T

) + 0.00058663× T − 2.99138 log10(T ), for T ≥ 312.45 K,

(4.4)

where T = 312.45 K= 39.3 ◦C is the melting point of Rb. In Fig. 4.1a we have plotted Nv

as a function of temperature up to a limiting value of 100 ◦C. While vapour cells can survive

being heated to much higher temperatures than this, Rb vapour can react with the vapour

cell walls and the number density will decrease over time [353,354,355]. Additionally, pressure

broadening can begin to have a substantial effect at higher number densities, which we will

neglect in the derivations provided in this thesis. Also indicated with a grey dashed line is

the typical number density in a high density MOT [356]. Compared to a MOT we see an

advantage at temperatures upwards of 54 ◦C for 85Rb and above 64 ◦C for 87Rb. However the

increased temperature leads to substantial Doppler broadening, effectively spreading out the

optical depth for a range of frequencies, δDB, which denotes the Doppler width expressed as a

linear frequency.

The Maxwell-Boltzmann distribution of a one dimensional velocity vector (as we are considering

propagation only along the z-axis) is given by,

fMB(v) =

√
m

2πkBT
exp

[
−mv2

2kBT

]
, (4.5)

where m and v are the mass and velocity of a Rb atom. In the limit of δDB ≫ Γ, where Γ is the

excited state decay rate, δDB is well approximated by the full-width half-maximum of Eq. 4.5,

δDB =

√
8kBT ln(2)

mc2
f0 , (4.6)

for central frequency f0 and c is the speed of light in a vacuum.
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Figure 4.1: (a) Number density of 85Rb (blue) and 87Rb (green) with natural abundance. Shown
in dashed grey is a typical density of a high density magneto-optical trap [356]. (b) Hyperfine
structure of 87Rb [350] (left) and 85Rb [351] (right), with values given in MHz.
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Level structure

The full electronic structure of Rb is 1s22s22p63s23p63d104s24p65s, with only the outer electron

contributing to the atoms orbital angular momentum and therefore transition probabilities.

For denoting the state of this electron, we will use the standard nomenclature nLJ where n

labels the electronic shell, L the angular momentum orbital and J = |J | the total electron

angular momentum. The total electron angular momentum is given by J = L + S, for spin

angular momentum S. The ground state of Rb corresponds to 5S1/2. Commonly used for light-

matter interactions in alkali metals are the ‘doublet’ lines, D1 and D2, which for Rb occur at

wavelengths 795 nm and 780 nm respectively and are illustrated in Fig. 4.1b. These transitions

correspond to 5S1/2 → 5P1/2 for the D1 line and to 5S1/2 → 5P3/2 for the D2 line. The D2 line

is often employed as a cycling transition used for trapping and cooling.

The 5S1/2 ground state has zero orbital angular momentum (L = 0) and so the electron

wavefunction extends into the nucleus, leading to a strong magnetic dipole coupling between

the nuclear and electronic spin. This interaction causes the ground state to split into two

hyperfine states, depending on the total atomic angular momentum F = I +J , where I is the

nuclear angular momentum. For 87Rb, |I| = 3/2, which when combined with the electron spin

angular momentum |S| = 1/2, results in two ground states with |F | = 1 or |F | = 2 with a

splitting of 6.835 GHz. For 85Rb, |I| = 5/2 resulting in |F | = 2 or |F | = 3, separated by 3.035

GHz. Both splittings are illustrated in Fig. 4.1b. At room temperature, δDB ≈ 500 MHz, and so

the ground states can be easily distinguished through absorption spectroscopy with a cw laser.

The excited P states have non-zero orbital angular momentum and so |F | can take a greater

range of values. However, the larger angular momentum means that less of the electron wave-

function overlaps with the nucleus, making the hyperfine magnetic dipole interaction smaller.

The result is a splitting on the order of 100 MHz, which at room temperature is obscured by

the Doppler broadening. The individual splittings of the excited hyperfine states are shown in

Fig. 4.1b in MHz.

Beyond the doublet lines, some other useful transitions are to higher lying D states. The 5P to

4D state transitions are compatible with telecom wavelengths and have been used to realise a
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telecom compatible quantum memory [343], which we will explore in more detail in Chapter 6.

Within each hyperfine level, there is a manifold of 2|F | + 1 degenerate sub-levels, labelled

by mF , corresponding to the relative orientation of F to a defined quantisation axis. The

application of an external magnetic field will cause the degeneracy to be lifted and is termed

Zeeman splitting.

A single plane-wave photon has spin equal to the reduced Planck’s constant, ±ℏ (corresponding

to left and right circularly polarised light from the point of view of the receiver) and so ab-

sorption of a photon by an atom leads to an increase in the orbital angular momentum by one

(units of ℏ). This means that only transitions resulting in ∆L = ±1 are allowed (i.e. S → P

but not S → S or S → D). In addition, the projection of F along some quantisation axis can

change depending on the polarisation of the light. In Fig. 4.2 we show how light travelling in

the +z-direction, with different polarisation, changes the projection of F along the +z-axis,

labelled by mFz.

A ∆mFz = ±1 corresponds to left and right circularly polarised light respectively. Light of

linear polarisation is a superposition of left and right circularly polarised light and will cause

the atom to be in a superposition of ∆mFz = ±1. For a quantisation axis defined orthogonal

to the z-axis, represented by the x-axis in Fig. 4.2, linear polarised light polarised parallel to

the x-axis and propagating in the +z-direction, will drive ∆mFx = 0

When combined, we arrive at the transition selection rules,

∆|L| = ±1

∆|S| = 0

∆|J | = 0, ±1 (but not J = 0→ J ′ = 0)

∆|F | = 0, ±1

∆mF = 0, ±1 ( ̸= 0 if ∆|F | = 0) .

(4.7)

While for no application of an external magnetic field, any ∆mF will result in the same transi-

tion frequency, the transition strengths are not identical. The strength of the transition between
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Figure 4.2: Incoming photons of a defined polarisation drive transitions in an atom relative to
a quantisation axis. For the three left illustrations, the quantisation axis is taken to be in the
propagation direction of the light: +z-direction. Furthest left, we have right circularly polarised
light (RCP) with respect to the receiving atom, which reduces the projection of F along the
+z-axis (∆mFz = −1). To the immediate right, we have left circularly polarised (LCP) light
which results in ∆mFz = +1. To the right again, we have linearly polarised light, which can be
though of as a superposition of RCP and LCP light. This drives the atom into a superposition
of both transitions. On the far left, we have the same linearly polarised light, but we have
taken the quantisation axis to be along the +x-direction (orthogonal to the +z-direction). In
this frame, the light causes no change to the projection of F , resulting in ∆mFx = 0.

states |Fj,mFj
⟩ → |Fk,mFk

⟩ is characterised by the dipole matrix element [357],

µjk = ⟨Fj,mFj
| erq |Fk,mFk

⟩ = e

∫
ψ∗
j (r)rqψk(r)d3r (4.8)

where r is the electron position, q labels the component of r in the spherical basis: q = 0 for

linearly polarized light, q = +1 for left hand circular and q = −1 for left hand circular. We can

factor out the angular dependence to give [350,357],

⟨Fj,mFj
| erq |Fk,mFk

⟩ = C(Fj,mFj
, Fk,mFk

) ⟨Fj| |er| |Fk⟩

= W (Fj, Jj, Fk, Jk, I)C(Fj,mFj
, Fk,mFk

) ⟨Jj| |er| |Jk⟩
(4.9)

where C(Fj,mFj
, Fk,mFk

) is the Clebsch-Gordan coefficient, W (Fj, Jj, Fk, Jk, I) represents the

Wigner 6 − j symbol1 and ⟨Jj| |er| |Jk⟩ represents the reduced dipole moment, related to the

1Typically, Eq. 4.9 features some additional prefactors, which we will take to be within the definition for the
Wigner 6− j symbol.
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decay, Γ, of the excited state by,

⟨Jj| |er| |Jk⟩ =

√
2Jk + 1

2Jj + 1

3ϵ0ℏc3Γ
2f 3

0

, (4.10)

where ϵ0 is the vacuum permittivity. The Clebsch-Gordan coefficents and Wigner 6− j symbol

may be calculated, or alternatively can be obtained from Ref. [358]. To obtain the total strength

of a hyperfine transition, we need to sum over all mF sub-level transitions.

4.1.2 Cross section

We now move on to deriving an expression for the cross section. We will consider low laser

powers, allowing non-linear effects to be discounted and cw lasers over timescales much longer

than the decay rate of Rb so we may consider the steady state and neglect coherence effects.

While the treatment used during Chapter 2 involving the optical Bloch equations would also

be appropriate for deriving the equations from this section, we instead choose to use Einstein

A and B coefficients as this was the method I originally obtained the expressions detailed in

Ref. [119].

We can write the absorption cross section for the electric dipole transition from |g⟩ → |e⟩ for

an atom travelling at velocity v as,

σ(ω) =
ℏωge

c
(Bgeng −Begne)Lge(ω, v) (4.11)

where Bge and Beg are the Einstein coefficients for absorption and stimulated emission, ng and

ne are the fractional populations of the ground and excited state, respectively, and ℏωge is the

energy difference between the ground and excited state. The Lorentzian line shape Lge(ω, v) is

defined as,

Lge(ω, v) =
Γ/2π

(ω − ωge − kv)2 + (Γ/2)2
(4.12)

In Eq. 4.11, we have definedBge such that the rate of absorption isBgeρge(ω, v) where ρge(ω, v) =

Lge(ω, v)I/c is the spectral energy density of a monochromatic laser field; the rate of stimulated
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emission is defined analogously.

The B coefficients are given by [359],

Bge =
π

ϵ0ℏ2Dg

∑
mF

|µge|2 =
De

Dg

Beg , (4.13)

where Dj is the number of degenerate sub-levels in |j⟩. Often a factor of 1/3 is added to Eq. 4.13

to average over the three possible orientations of the atom for the case of no quantisation axis.

In our case, the laser light defines our quantisation axis and we assume linear polarisation, so

we may neglect the factor of 1/3.

We can define saturation intensity Ige in the same way as in Chapter 2, (the intensity needed

to reach a population difference in a two-level system of 1/2) which can be shown to be [349],

Ige =
1

3

πcΓ2

4DgBge

(4.14)

where the factor of 1/3 is because we are considering only linearly polarised light.

Open two-level system

We now need to compute the dynamic fractional populations: ng and ne. These populations

will be modified by the counter-propagating pump beam. Let us consider three level system

shown in Fig. 4.3a. As well as absorption and stimulated emission, we have spontaneous decay

from the excited state, as we had in the two level system in Chapter 2. In contrast to the two

level system we had for DBT, we now have an open two level system, where spontaneous decay

can not only occur on the |e⟩ → |g⟩ transition, but on the |e⟩ → |d⟩ transition (where |d⟩

represents the other hyperfine ground state), which is far from detuned from our laser. After

decay to the dark state |d⟩, these atoms stop interacting with the light. The ratio of decay

between the two pathways can be determined via the Clebsch-Gordan coefficients as,

Γge =

∑
mF

C2
ge∑

mF
C2

ge +
∑

mF
C2

de

Γ

Γde =

∑
mF

C2
de∑

mF
C2

ge +
∑

mF
C2

de

Γ .

(4.15)
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Figure 4.3: (a) Open two level system, showing absorption and stimulated emission in red,
at rates Bgeρge(ω, v) and Begρge(ω, v) respectively. Spontaneous decay is represented by the
wavy grey arrows and can occur either to the original ground state |g⟩ or to the other dark
ground state |d⟩. Atoms enter and leave the beam at a rate of R, entering with an unpumped
population distribution. (b) Cut through of a gaussian mode laser as it propagates through an
atomic vapour. Illustrated in dashed grey is the 1/e2 diameter. While this captures most of
the intensity in the beam, atoms may still be optically pumped in the outer intensity tail.

Initially, the atomic populations will be in equilibrium with the thermal background, which at

room temperature corresponds to a frequency of ∼THz. While the excited state in Rb is close

to 400 THz away, the ground state splitting is a few GHz. The initial equilibrium population

in each ground state is proportional to the ratio of sublevels in each,

Ng =
Dg

Dg +Dd

Nd =
Dd

Dg +Dd

,

(4.16)

with Ng +Nd = 1.

Another consideration in our system is that the atoms are moving, and so can move into and

out of the beam, at a transit rate R. We will assume that atoms drifting into the beam enter

with the original unpumped equilibrium population distribution. We can initially take R to be,

R0 =
vp
2r
, (4.17)
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with vp =
√

2kBT/M denoting the most probable speed of an atom in one dimension and r is

the 1/e2 radius of the pump beam, pictured in Fig. 4.3b. However, this estimate does not take

into account atoms interacting with the wings of the pump laser. We will return to derive a

more accurate expression for R in later in this section.

We now arrive at the rate equations,

ṅg = −ngBgeρge + ne[Begρge + Γge] +R(Ng − ng)

ṅe = ngBgeρge − ne[Begρge + Γ +R]

ṅd = neΓed +R(Nd − nd) ,

(4.18)

where we have assumed that any laser field does not transfer significant population from |d⟩ →

|e⟩, as the bandwidth of a cw laser (∼MHz) is much less than the GHz splitting of the Rb

ground states.

We can draw some parallels between Eqs. 4.18 and the optical-Bloch equations derived in Chap-

ter 2. The decay term appears with the same form, but the coherence terms have been replaced

by rates involving Einstein B coefficients, spectral densities and populations. If we were to

set the time derivatives of the equations pertaining to coherence in Eqs 2.13 and reduce the

equations to be in terms of only populations, we would be able to relate the Einstein B coeffi-

cients and spectral density to the Rabi frequency Ω, detuning ∆, decay rate Γ1 and decoherence

rate Γ2, defined in Chapter 2. The remaining term in Eqs. 4.18 involving R did not appear in

Chapter 2 as there we were considering solid state media where there was no transit into or out

of the beam.

The steady state solutions to Eqs. 4.18 are,

ng =
ne[Begρge + Γge] +NgR

Bgeρge +R
(4.19)

ne =
ngBgeρge

Begρge + Γ +R
(4.20)

nd =
neΓed +NdR

R
. (4.21)
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Substituting Eq. 4.20 into Eq. 4.19 results in,

ng =
Ng

1 + αgeβge
(4.22)

ne = ngαge (4.23)

with the saturation parameter αge defined as,

αge =
Bgeρge

Begρge + Γ +R
(4.24)

and the optical pumping parameter βge defined as,

βge = 1 +
Γ− Γge

R
. (4.25)

The saturation parameter quantifies the ratio of processes adding population to |e⟩ (absorption)

to all processes removing population from |e⟩ (stimulated emission, decay, atoms moving out

of the interaction region). In the two level system considered in Chapter 2, we saw that the

excited state population saturated at half due to competition between absorption and stimu-

lated emission. We can see that in Eq. 4.22, for βge = 1, as ρge →∞, αge → De/Dg, which for

De = Dg, leads to ng = Ng/2. If the number of sublevels in the excited state is larger than the

ground state, the rate of stimulated emission is lowered and the ground state population can

be reduced further still. The larger the decay rate and shorter the transit time (larger R), the

higher the laser intensity needed to approach this bound.

The optical pumping parameter captures the effect of the dark state. Decays to the dark state

reduce the rate of stimulated emission while absorption remains unaffected. The longer atoms

spend in the beam (R → 0), the higher the chance of absorption followed by emission to the

dark state (βge →∞), allowing the ground state population to approach zero and all population

to accumulate in the dark state.

The three fractional populations are plotted in Fig. 4.4a as a function of αge, where the dashed

lines represent the populations in the limiting case of β = 1 and the solid lines the case of
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β = 10 (for Rb this corresponds to an R ≈ 600 kHz). In both cases, Dg = De = 1. The dashed

lines are observed to tend towards 0.5 at high saturation, as we expect for a two level system.

Decay to the dark state causes population to be lost from |g⟩ and build up in |d⟩. Once in |d⟩

there is no way for the population to make it back to |g⟩ through interacting with the laser.

Only through transitions into and out of the beam is the population in |g⟩ replenished, leading

to a limiting value of ng = ne ≈ 0.1 for β = 10, as saturation is increased.

Inserting Eq. 4.22 and Eq. 4.23 into Eq. 4.11 for the cross section gives us,

σ(ω) =
ℏωge

c
BgeNg ∆Ng(v)Lge(ω, v) , (4.26)

where we have defined,

∆Ng(v) =
1− Dg

De
αge(v)

1 + αge(v)βge
, (4.27)

which is related to the difference in the population of states |g⟩ and |e⟩ with the level degeneracy

taken into account. We plot ∆Ng(v = 0) as a function of αge for different values of optical

pumping parameter in Fig. 4.4b. For βge = 1, as the populations ng and ne tend to 0.5,

∆Ng → 0, reducing the cross section to zero as it is equally likely that a photon is lost to

absorption as it is to gain a photon from stimulated emission. The result is all incident light

will be transmitted. As optical pumping is increased, ∆Ng approaches zero much faster.

For a dilute gas of atoms we must integrate over the full velocity distribution, weighted by

the occupation probability corresponding to each velocity class. This gives an absorption cross

section of,

σ(ω) =
ℏωge

c

∫ ∞

−∞
BgeNg ∆Ng(v)Lge(ω, v)f(v)dv , (4.28)

which for ∆Ng = 1 results in a Voigt profile (convolution of the Lorentzian atomic lineshape

and Gaussian Doppler broadening), shown in Fig. 4.4d in blue. The introduction of a counter-

propagating pump beam, on resonance with the stationary |g⟩ → |e⟩, causes saturation of the

transition and optical pumping of population to the dark state, leading to a reduction in the

ground state population for atoms with velocities close to zero 2, as shown in Fig. 4.4c, where

2By close to zero, we mean slow enough such that the Doppler shift is within the linewidth of the transition.
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Figure 4.4: (a) Fractional populations as the saturation parameter αge is increased, with (solid
lines) and without (dashed lines) optical pumping. (b) Plot of ∆Ng, related to the population
difference in states |g⟩ and |e⟩, with varying αge and for increasing optical pumping parameter
βge. (c) Velocity distribution for the ground state of a 87Rb vapour at 40 ◦C, where positive
velocity is taken to be travelling in the same direction as the probe beam. Illustrated is a hole
in the distribution caused by a laser beam pumping the population out of |g⟩ for the simple
case of one transition, and for a pump beam perfectly on resonance with the transition. (d)
Plot of the corresponding Doppler broadened spectra, without (dark blue line) and with pump
beam (grey), showing the emergence of a sub-Doppler feature at the centre. Both grey peaks
correspond to the same pump laser intensity but the smaller darker peak has βge = 40 while
the taller peak has βge = 160, consistent with a beam radius increase of a factor four.
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positive velocity refers to travelling in the direction of the probe beam (resulting in a red Doppler

shift). Typically in vapours of alkalis, optical pumping dominates over saturation [360]. The

result in the spectrum is the emergence of a sub-Doppler feature in the centre of the Doppler

broadened absorption dip, plotted in Fig. 4.4d in grey, with the both grey lines originating

from a pump beam of the same intensity but the smaller darker grey line was simulated with a

βge = 40 while the taller peak was simulated with βge = 160. This change in βge is consistent

with an decrease in R by a factor four.

Transit rate

It is important that we determine an accurate value for R, as this has a large affect on the

degree of optical pumping, as illustrated in Fig. 4.4d. Our initial expression in Eq. 4.17 fails to

consider that the absorption of one photon is enough to cause an atom to be pumped to the

dark state, and so optical pumping can continue well into the wings of the pump laser. From

this argument we can see that stronger transitions will likely see a larger effective beam radius

and so we should scale R depending on the transition being interrogated. As in Himsworth et

al. [346], we apply a scaling to R0 relative to the reduced saturation intensity IRge,

IRge =
Ige
Γ

(
Γ +R0

2 + (Γ− Γge)/R0

)
, (4.29)

which is a modified saturation intensity for open two level system. We then redefine the transit

rate for the |g⟩ → |e⟩ transition Rge as,

Rge =
R0√

1
2

ln(IP/IRge)
, (4.30)

which effectively rescales the radius from 1/e2 to where the pump intensity equals IRge.

Extension beyond three levels

We can extend the previous treatment to include the full hyperfine structure of the Rb excited
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state manifold by summing over all excited states, indexed by k,

ng =
Ng

1 +
∑

k αgkβgk
(4.31)

nk = ngαgk , (4.32)

which gives,

σ(ω) =
ℏωge

c

∫ ∞

−∞
Ng ∆Ng(v)

∑
k

BgkLgk(ω, v)f(v)dv , (4.33)

with ∆Ng(v) amended to,

∆Ng(v) =
1−

∑
k

Dg

Dk
αgk(v)

1 +
∑

k αgk(v)βgk
. (4.34)

For completeness we will include a sum over the ground state manifold as well (indexed by i),

accounting for any off resonant absorption and stimulated emission on the dark state transition,

σ(ω) =
ℏωge

c

∫ ∞

−∞

∑
i

(
Ni ∆Ni(v)

∑
k

BikLik(ω, v)

)
f(v)dv . (4.35)

In Fig. 4.5b we have plotted the resulting spectrum while scanning a low intensity probe beam

across a Doppler broadened transition resulting from two excited states, while an overlapped

pump laser counter-propagates. We see a total of three sub-Doppler peaks. The outer two

originate from the probe and pump laser interacting with the same transition. The middle

peak is a crossover feature. In Fig. 4.5a we can see that the velocity distribution causes the

saturation and optical pumping of multiple transitions at once. As the probe beam is scanned

across the Doppler broadening, it too interacts with multiple transitions. For Fig. 4.5 we see

a ‘true’ sub-Doppler feature when the probe beam is blue (red) shifted onto resonance and

interrogates the same transition as the pump beam which is red (blue) shifted onto resonance.

In contrast to the traditional case of saturation absorption spectroscopy (SAS), which has both

beams scanning with the same frequency (often derived from the same laser), these sub-Doppler

features will not necessarily occur at the frequency of the stationary transition. The crossover

feature occurs when the probe and pump are interacting with different transitions that share

the same ground state and so are still subject to the same saturation and optical pumping.
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Figure 4.5: (a) Velocity distribution of ground state. The pump beam is set to a frequency half
way between the two ground to excited state transitions, resulting in two dips in the velocity
distribution, corresponding to velocities which Doppler shift the pump beam onto resonance
with the two transitions. (b) The corresponding probe transmission spectrum, showing the
Doppler broadened absorption without (dark blue line) and with pump beam (grey), showing
the emergence of a sub-Doppler features. Both grey peaks correspond to the same pump laser
intensity but the smaller darker peak has βge = 40 while the taller peak has βge = 160, consistent
with a beam radius increase of a factor four. The two outer peaks originate from the probe
laser interacting with the same transition as the pump beam, and therefore seeing a reduction
in population. The middle peak is a crossover feature, where the probe beam is at the same
frequency as the pump laser (half way between the two transitions) and so interacts with both
velocity dips created by the pump, resulting in a larger peak.

For the system presented in Fig. 4.5, this occurs when the probe in equidistant between the

two transitions, where it experiences a greater transmission due to interacting with two sets of

holes in the velocity distribution at once.

Fluorescence

We now have an expression to compute the change in intensity of a probe laser, where the cross

section is a function of the counter-propagating pump beam. For SAS measurements, where the

probe beam is usually in the microwatt range, this plus an additional background is sufficient

to describe the measurement. However, as the probe beam approaches the single photon level,

the spontaneous emission of the atoms becomes a non-negligible contribution to the spectrum

and so to accurately describe the experiment, we must include an additional fluorescence term.

The total fluorescence collected from the ensemble, assuming no significant re-absorption is,

Ifluor(ωp, v) = ηfluorΓNvπr
2L

(∫ ∞

−∞
f(v)

∑
i

Ni

∑
k

Di

Dk
αik(ωp, v)

1 +
∑

k αik(ωp, v)βik

)
, (4.36)
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Figure 4.6: Schematic of experimental setup. The single photon level probe beam (shown in
red) has a linear polarization set by the first half-wave plate (HWP1) such that it is transmitted
through each polarizing beam splitter (PBS1 and PBS2). The linear polarization of the pump
beam (shown in orange) is rotated by HWP2 such that it is reflected from each PBS2 and
PBS1. Each of these beams may be tuned independently. Once transmitted through the Rb
cell and PBS2, the probe beam is reflected many times between to planar mirrors to increase the
distance of propagation to the avalanche photo-diode. This reduces the amount of background
fluorescence recorded by the APD. To further reduce this background signal a polariser (Pol.) is
use to filter out the randomly polarized fluorescence, as well as a long pass filter F (> 770 nm),
which rejects any scattered light outside the Rb transition being investigated.

where the term inside the brackets is the total fractional population in the excited manifold.

The fluorescence collection efficiency ηfluor accounts for the solid angle overlap between the

collection fibre and the isotropically emitted fluorescence.

4.2 Experiment

4.2.1 Setup

The experimental setup, similar to SAS, features two counter-propagating lasers shown in

Fig. 4.6: the pump beam which causes a redistribution of the atomic population and a probe

field to measure this change in population. Both fields are independently tuned in frequency.

An attenuated continuous-wave (cw) Ti:sapphire laser (MSquared SolsTiS) is used as the single-

photon level photon probe and its polarisation is adjusted by a half-wave plate (HWP1) such

that it is transmitted through both polarizing beam splitters (PBS1 and PBS2) before being

coupled into a multimode fibre of core diameter 62.5µm (Thorlabs) and detected by a silicon
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avalanche photodiode (SPCM-AQR-14-FC, Excelitas). The polarisation of the pump beam

is controlled via HWP2 and enters through the top port of PBS2, travelling in the opposite

direction through the cell to the probe beam with an orthogonal polarisation, before being

reflected from PBS1.

Interaction with the pump beam causes the atoms to fluoresce at all polarisations, a signal

which is many times larger than the probe signal. To minimise the fluorescence detected by

the single photon detector, we propagate the probe approximately two metres by repeatedly

bouncing between two mirrors, thereby reducing the solid angle overlap by around 10−10. We

further filtered the scattered pump light through a polariser immediately before the APD, along

with a 780±10 nm bandpass filter (Thorlabs) to reject any scattered room light. A temperature

controller (TC200, Thorlabs) is used to regulate the temperature of the 7.5 cm long Rb vapor

cell (quartz vapor reference cell, Thorlabs) to 40 ◦C. No attempt is made to protect the Rb cell

from magnetic fields.

We independently scan the frequency of the probe and pump lasers between 384.2267 −

384.2302 THz to measure a two dimensional Doppler free absorption spectrum. Both beams

are kept at constant powers with acousto-optic modulators, regulated by analogue proportional-

integral-derivative controllers (SIM960). The probe beam is attenuated down to 2.5±0.1 Mcnts/s

before the cell and the pump beam is set to 791±2µW. At each point of the scan, we integrate

for 20 ms to ensure that a steady-state population has been reached.

4.2.2 Results

The simulated and experimentally measured spectra are shown in Fig. 4.7a and b respectively.

The experimental data was been corrected for slow drifts of the probe and pump frequencies over

the course of the scan - approximately two hours. The probe frequencies were corrected using

the Doppler-broadened absorption features in each horizontal scan and the pump frequencies

were corrected to ensure the sub-Doppler features remained parallel and separated by the known

hyperfine splitting [350,351].
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After these corrections, the simulated and measured spectra show close agreement. We quantify

the agreement over N pixels with the mean absolute percentage error,

MAPE =
1

N

∑
j,k

∣∣∣∣Sj,k −Mj,k

Sj,k

∣∣∣∣ , (4.37)

where Sj,k and Mj,k denote the j’th row and k’th column of the simulated and measured

spectrum respectively. We choose to take the absolute value in Eq. 4.37, rather than the square,

to reduce the affect of ‘outliers’ in the measured data, which we discuss in the final paragraph

of this section.

Recall that the vapour pressure obtained from Eq. 4.4 is an estimate, and so for the simulation

shown in Fig. 4.7b the Rb number density was allowed to vary (while maintaining the ratio of

natural abundances of the isotopes) to minimise the MAPE. The MAPE was optimised over

a few selected slices of the data due to lengthy computation involved in calculating the full

spectrum. We find value of 2.688 ± 0.003 × 1010 cm−3 for 85Rb and 1.037 ± 0.001 × 1010 cm−3

for 87Rb. If the vapour pressure in Eq. 4.4 is assumed to be exact, then these number densi-

ties correspond to a temperature of 38.76 ± 0.01 ◦C. This discrepancy (from 40 ◦C) could be

explained by a combination of a systematic offset of the temperature controller probe, as well

as a temperature gradient between the heated portion of the cell and the Rb. The fluorescence

prefactor was also extracted from the data and found to be ηfluor = 1.2 × 10−9, consistent

with the earlier 10−10 estimatation. With these three extracted values, we calculate on overall

MAPE = 3.11%.

For the case of the pump being off resonance with the Doppler broadened transition, scanning

the probe across the two isotopes shows Doppler-broadened absorption, plotted in Fig. 4.7c.

As the pump beam approaches resonance, we see an increase in the background, caused by

fluorescence, shown for a fixed probe frequency in Fig. 4.7d. Scanning the probe laser across

the transition while the pump laser is resonant, we see the addition of sub-Doppler peaks within

the absorption dip, three of which are crossover peaks.

For increasing pump laser frequency, the sub-Doppler peaks shift to lower probe frequencies,
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Figure 4.7: Density plots of the number of transmitted probe photons through the Rb cell
with varying probe laser detuning on the x-axis and varying pump laser detuning on the y-
axis. The antidiagonal sub-Doppler features towards the bottom left result from the 87Rb D2

F = 2 → F ′ = 1, 2, 3 transitions and the features towards the top right result from 85Rb D2

F = 2→ F ′ = 2, 3, 4 transitions. (a) Experimental data. (b) Simulation. Cuts through of the
experimental (blue) and simulated (red) density plots, with the positions of the cuts through
indicated on the density plots. (c) Horizontal slice showing the room-temperature Doppler-
broadened spectra. (d) Vertical slice showing the fluorescence produced by the pump beam.
(e) Horizontal slice showing the sub-Doppler features of 87Rb. (f) Horizontal slice showing the
sub-Doppler features of 85Rb.
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forming the anti-diagonal lines observed in Fig. 4.7a and b. This is a result of the velocity classes

that shift the pump laser onto resonance, apply the opposite shift to the probe. The traditional

spectrum obtained from SAS can be found by taking the slice along the diagonal of Fig. 4.7a

and b. There are some faint diagonal lines seen in Fig. 4.7a, which are the ‘outliers’ we referred

to previously. These diagonal lines are due to reflections of the pump beam from optical faces

in the setup, which result in a faint pump beam co-propagating with the probe. The features

do not lie along the diagonal and so are not measured in normal SAS. The simulated spectrum

does not include these features and so they result in a small addition to the calculated MAPE.

4.3 Optical pumping

As we will see in the next chapter, the efficiency of a quantum memory is proportional to optical

depth. Initially, the population in a warm alkali vapour is split between both ground states and

so not all of the atoms are interacting with the input photon. As well as for determining an

accurate number denisty and temperature, we can use the theory developed in this chapter to

model optical pumping from one ground state to the other, thereby increasing the optical depth

and memory efficiency. However, for lambda quantum memories where the atomic excitation

is stored in a ground state, perhaps a more important consideration is that the state used for

storage be unoccupied before the memory protocol is begun. Any remaining population in the

storage state will contribute noise to the stored coherence and so to have a high fidelity memory,

we need to completely empty the storage state (at least for the velocity classes involved in the

memory interaction).

In Fig. 4.8 we show how the population of the 87Rb ground states vary for a 1 mm radius

pump laser resonant with F = 2 → F = 2′ transition for differing laser powers, as well as

the associated spectrum that would be measured using the setup shown in Fig. 4.6, with the

background and fluorescence subtracted. We have plotted the case of no pump laser in light grey,

and then pump powers of 500µW, 200 mW and 800 mW in dark blue, dark green and purple

respectively. At these high powers, the fluorescence background will have a large contribution
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Figure 4.8: (a) Simulated probe transmission spectrum, with fluorescence and background
subtracted. The atoms were set to 40 ◦C. In light grey is the case with no pump beam. For a
pump beam of radius 1 mm, dark blue corresponds to a pump power of 500µW, dark green to
200 mW and purple to 800 mW. (b) Ground state F = 2 population across the atomic velocity
distribution. (c) Ground state F = 1 population across the atomic velocity distribution.

to the spectrum and may necessitate the probe beam being propagated for a longer distance

than that used to measure Fig. 4.7 in order to distinguish the signal. Alternatively a higher

intensity probe beam may be used, where it may be necessary to include the probe intensity in

the calculation of ∆Ni.

For the spectrum plotted in Fig. 4.8a, the probe transmission tends towards 100% as the pop-

ulation is optically pumped out of the F = 2 ground state, shown in Fig. 4.8b. We can see

the population reaching effectively zero for a narrow band of velocities at a laser power of

200 mW, with the hole in the velocity distribution widening further for 800 mW. Even when

the majority of the population was been pumped away around v = 0, there is still some residual

absorption of the probe beam caused by the tails of higher velocity classes remaining in F = 2.

The majority of the pumped population accumulates in the F = 1 ground state, as shown in

Fig. 4.8c. The dips seen in NF=1 at high intensities are due to transitions F = 2→ F = 3′ (oc-

curring at v ≈ 200 m/s) which cannot decay to F = 1. For storage of a photon with bandwidth

≈ 100 MHz, a 200 mW pump laser would appear to be sufficient.

Hollow core photonic crystal fibres filled with Rb atoms have shown promise for integrating

memories with fibre networks. The smaller mode diameter (∼ 60µm) allows for higher inten-

sities to be reached, though the transit decay rate is significantly increased. In Fig. 4.9 we plot

the simulated spectrum and ground state populations, using the same laser intensities as in

Fig. 4.8 but reducing the beam radius to 30µm. Implicit in this simulation is the assumption

that the atoms return after contacting the fibre walls with the initial population distribution.
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(a) (b) (c)

Figure 4.9: (a) Simulated probe transmission spectrum, with fluorescence and background
subtracted. The atoms were set to 40 ◦C. In light grey is the case with no pump beam. For a
pump beam of radius 30µm, dark blue corresponds to a pump power of 450 nW, dark green to
180µW and purple to 720µW. (b) Ground state F = 2 population across the atomic velocity
distribution. (c) Ground state F = 1 population across the atomic velocity distribution.

The simulation shows the higher transit decay rate resulting in less efficient optical pumping.

In Chapter 5 we will discuss how the preparation of particular mF states can aid in removing

unwanted transitions from the memory interaction, reducing noise and increasing efficiency.

The treatment described in this chapter can also be extended to optical pumping of individual

mF sublevels and is left to future work.



Chapter 5

Light-Matter Interaction

In this chapter, we will derive Maxwell-Bloch equations to describe the coherent interaction of

light with an ensemble of atoms. We will begin with near resonant storage using a Λ−level

configuration of levels: two ground states and an excited state, shown in Fig. 5.1a. Our goal

is to store an input photon, near resonant with the transition |g⟩ → |e⟩ as a long lived atomic

coherence. We will mediate the transfer of photon coherence to atomic coherence by using

a classical control field. Following this, we will derive analytical expressions characterising

the efficiency of storing and retrieving photons, before describing a technique to optimise the

temporal shape and phase of the control field. Next, we begin to make our system more realistic

by adding in four-wave mixing noise, then extending our derived equations to describe multiple

hyperfine excited states. Finally we will investigate how the derived optimums scale to warm

vapour temperatures.

The initial part of the derivation will resemble the treatment used for single dibenzoterrylene

(DBT) molecules from Chapter 2, though with an additional quantum light field included to

describe the input signal the photon. We will then sum up the contributions from all of the

atoms in the ensemble, culminating in an increased interaction strength, quantified by the

ensemble optical depth. Note that the treatment from Chapter 4 is not suitable here as we are

for from the steady state regime and cannot neglect the atomic coherences.

119
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Ωc

|g⟩

|s⟩

|e⟩
Δs Δc

Êε
Êε

Êε

Êε

(a)

Ωc Ωc

Ωc

(b)

TR-T

Backwards retrieval

Forwards retrieval

Storage
ΔHF

Figure 5.1: (a) Λ-configuration of energy levels, where a quantum photon field is near-resonant
to the |g⟩ → |e⟩ transition, with a detuning of ∆s. A classical control field is near-resonant
with the |s⟩ → |e⟩ transition, with a detuning of ∆c. The photon coherence is mapped to
an atomic coherence between the two ground hyperfine ground states, referred to as the spin
wave (represented by the purple oval), where the hyperfine splitting is denoted by ∆HF . (b)
The photon and control field arrive from the same direction and in the same spatial mode (not
shown). After the photon coherence is transferred to the spin wave at time T , sometime later
at time TR the photon may be recovered by applying the retrieval control field in the same
direction as the storage control field, resulting in the photon travelling in the same direction
as the initially stored photon and referred to as forward retrieval. Alternatively, the control
field may be applied in the reverse direction, causing the retrieved photon to propagate in the
opposite direction to the initial photon, referred to as backward retrieval.

5.1 Near-resonant Λ−system

The general scheme is pictured in Fig. 5.1a. Initially, all atoms are assumed to be optically

pumped to the ground state |g⟩. A photon, near resonant with the transition from |g⟩ to

excited state |e⟩, without the presence of any other fields, will induce an atomic polarisation

on this transition, represented by the operator σge = |g⟩ ⟨e|. This coherence will decohere at a

rate γe = Γe/2, where Γe is the population decay rate of the excited state. Unlike with DBT

hosted in an organic crystal, the atomic ensemble has no additional dephasing from phonon

coupling to the environment, however there are other mechanicsms which can lead to additional

decoherence, such as atom-atom or atom-wall collisions, as well as motional dephasing. We will

discuss these other mechanisms in more detail in Section 5.5, but for now we will just include

γe as the decoherence rate due to excited state decay. The stronger the interaction between

the photon and the |g⟩ → |e⟩ transition, the larger the decoherence rate, so we would like to

couple σge to another atomic coherence: one which is much longer lived.
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A second light field, referred to as the control field, is intense enough to modify the overall

Hamiltonian, and is near resonance with the storage state |s⟩ (empty second ground state) and

excited state |e⟩. This field will couple σge to an atomic coherence between the two ground

states σgs = |g⟩ ⟨s|, termed the spin wave. There is no dipole moment coupling |g⟩ and |s⟩ and

so neglecting any additional dephasing mechanisms, γs = 0, with γs the decoherence rate of

σgs. We can therefore store the photon using σgs and retrieve the atomic coherence back as a

photon by reversing the process. The photon may be retrieved in the forwards or backwards

direction, as illustrated in Fig. 5.1b, depending on the direction of the retrieval control field.

Memory protocols based on near-resonant Λ−systems are often referred to as electromagneti-

cally induced transparanency (EIT) protocols, due to early experiments and theoretical treat-

ment of stopped light in atomic ensembles [286, 287]. EIT storage uses the control field to

adiabatically map the photon coherence directly to the spin wave, with negligible atomic polar-

isation σge [284, 285, 288]. This typically leads to strong dispersion of the photon wavepacket.

However, not all protocols based on this system feature EIT. Recently the Autler-Townes split-

ting (ATS) protocol demonstrated single photon level storage [235]. The ATS protocol uses

the control field to split the |g⟩ → |e⟩ resonance using the AC Stark effect. The resulting split

resonance absorbs the photon and the coherence oscillates between σge and σgs, with storage

achieved by switching off the control field when the spin wave coherence is maximised [288].

The period of the oscillation is determined by the strength of the control field, which if left on,

leads to the output photon wavepacket exhibiting a periodic echo-like behaviour. In reality, the

storage and retrieval mechanism is often a hybrid of the two regimes.

The Maxwell-Bloch equations derived in the next section, encompass all near-resonant Λ−system

protocols, regardless of the underlying mechanism used for storage. The derivation will closely

follow the derivations found in Refs. [232,264,361,362].

5.1.1 Equations of motion

Hamiltonian
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Similarly to Chapter 2, we begin with the modified Hamiltonian,

H = HA +HED +HL , (5.1)

with HA = ℏ
∑

j ωjσjj the atomic Hamiltonian where σjj is the population in state |j⟩ and

HED = −µ̂ ·E is the electric dipole Hamiltonian, with µ̂ the atomic transition dipole operator

and E is the total electric field. HL is the optical free-field Hamiltonian of the control and

photon fields and can be written as [264],

HL =
ϵ0
2

∫
dt(E2

c + c2B2
c ) +

∫
dω ℏω

(
â†(ω)â(ω) + 1/2

)
. (5.2)

The first integral term pertains to the classical control field, where ϵ0 is the vacuum permittivity,

c is the speed of light, and Ec and Bc refer to the control electric and magnetic field respectively.

The second term is due to the photon field, with â†(ω) and â(ω) denoting the narrowband

creation and annihilation operators for a photon of frequency ω.

For the Λ−system, we can write µ̂ = µgeσge + µseσse + h.c., since the transition |g⟩ ↔ |s⟩ is

not dipole allowed, with σjk = |j⟩ ⟨k| the transition operator.

The total electric field E = Ec +Es is made up of the classical control field Ec and a quantum

signal field Es, which we will assume only propagates along the z-axis with negligible divergence

such that we can invoke the paraxial approximation1 [232]. We write our control field with

central angular frequency ωc as,

Ec = vc
Ec(z, t)

2
exp[iωc(t− z/c)] + c.c. , (5.3)

with vc denoting the polarisation vector of the control field and Ec is the slowly-varying2 spatio-

temporal field amplitude, where we have included a factor of 1/2 so that the amplitude of Ec

is Ec due to the addition of the complex conjugate, c.c..

1As in the previous chapter, this is reasonable given that the transverse area of the light fields is much larger
than the wavelength squared.

2We have made the slowly-varying envelope approximation, where we assume the pulse envelope varies slowly
compared to the central frequency of the field, i.e. the bandwidth of the field is much smaller than its central
frequency.
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The signal field requires a quantum mechanical description, which we write as [232],

Es = ivs

∫
g(ω)â(ω) exp[−iωz/c]dω + h.c. , (5.4)

where vs is the polarisation vector of the signal field and g(ω) =
√

ℏω/4πϵ0c is the photon

mode amplitude. Substituting â(ω, t) = â(ω) exp[iωt] and making the slowly varying envelope

approximation, we can write the signal field in a similar form to the control,

Es = ivsgs
Es(z, t)

2
exp[iωs(t− z/c)] + h.c. , (5.5)

in which we have defined gs =
√

2πg(ωs) and the slowly varying broadband annihilation oper-

ator Es(z, t),

Es(z, t) =
exp[−iωs(t− z/c)]√

2π

∫
dωâ(ω, t) exp[−iωz/c] . (5.6)

Optical-Bloch equations

Following the same procedure as Chapter 2, we now find how the atomic coherences σjk evolve

in time using the Heisenberg equation,

ℏ∂tσjk = i[σjk, HA +HED +HL] . (5.7)

We can take advantage of the fact that HL always commutes with σjk and so does not affect

∂tσjk. This results in the following equations for atomic populations,

ℏ∂tσgg = −iE · (µgeσge − h.c.)

ℏ∂tσss = −iE · (µesσes − h.c.)

ℏ∂tσee = −∂t(σgg + σee) ,

(5.8)
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and the following for atomic coherences,

ℏ∂tσge = iℏωegσge − iE ·
(
µ∗

ge(σgg − σee) + µesσgs
)

ℏ∂tσgs = iℏωsgσgs − iE ·
(
µ∗

esσgs − µ∗
geσes

)
ℏ∂tσes = iℏωseσes − iE ·

(
µ∗

es(σee − σss)− µgeσgs
)
,

(5.9)

where ωjk = ωj − ωk.

To begin simplifying these equations, for an ensemble containing many atoms, where all of

the atoms begin in |g⟩, the absorption of one photon will not lead to a significant change in

population, so we can set σgg = 1 and σee = σss = 0, and ignore the equations for atomic

population.

We proceed to transform each of the coherences to a frame rotating at the corresponding

resonance frequency, σ̃jk = σjk exp[−iωkjτ ], where τ = t− z/c is the retarded time. With this

transformation we have,

ℏ∂τ σ̃ge = −iE ·
(
µ∗

ge exp[−iωegτ ] + µesσ̃gs exp[−iωesτ ]
)

ℏ∂τ σ̃gs = −iE ·
(
µ∗

esσ̃ge exp[+iωesτ ]− µ∗
geσ̃es exp[−iωegτ ]

)
ℏ∂τ σ̃es = +iE ·

(
µgeσ̃gs exp[+iωegτ ]

)
.

(5.10)

Next we insert the full expression for E, assuming that the signal field only couples to the

|g⟩ → |e⟩ transition, the control field only couples to |s⟩ → |e⟩, and only keep terms oscillating

at the difference frequencies (the rotating wave approximation),

ℏ∂τ σ̃ge = −iµ∗
ge

(
ivsgs

Es
2

exp[+i∆sτ ]

)
− iµesσ̃gs

(
vc
Ec
2

exp[+i∆cτ ]

)
ℏ∂τ σ̃gs = −iµ∗

esσ̃ge

(
v∗
c

E∗c
2

exp[−i∆cτ ]

)
+ iµ∗

geσ̃es

(
ivsgs

Es
2

exp[+i∆sτ ]

)
ℏ∂τ σ̃es = +iµgeσ̃gs

(
−iv∗

sgs
E†s
2

exp[−i∆sτ ]

)
,

(5.11)

where we have defined ∆s = ωs−ωeg and ∆c = ωc−ωes. We can make a further simplification

by only keeping terms that are linear in coherence: any atomic coherence in the system will
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have originated from the photon coherence, so the multiplication of an atomic coherence by the

photon coherence is second order and can be assumed to be small [232]. This leaves us with

two equations for the atomic coherences,

ℏ∂τ σ̃ge =
µ∗

ge · vsgsEs
2

exp[+i∆sτ ]− iµes · vcEcσ̃gs
2

exp[+i∆cτ ]

ℏ∂τ σ̃gs = −iµ
∗
es · v∗

cE∗c σ̃ge
2

exp[−i∆cτ ] .

(5.12)

Note that we have not yet included decoherence due to spontaneous emission.

Photon propagation

We have derived equations describing the evolution of the atomic coherences and now need to

describe how the photon propagates through the medium. To do so, we start with Maxwell’s

equation for an electric field travelling through a medium,

∇2Es = µ0∂
2
tDs , (5.13)

where Ds = ϵ0Es + Ps is the displacement field associated with the photon electric field and

the component of atomic polarisation which acts as a source for Es. This leads to the wave

equation, (
∇2 − 1

c2
∂2t

)
Es = µ0∂

2
tPs . (5.14)

Now inserting our expression for the photon electric field, as well as defining the slowly varying

atomic polarisation P s = P̃ s exp[+iωsτ ] we arrive at,

(
∇2 − 1

c2
∂2t

)
(ivsgs

Es
2

exp[iωsτ ]) = µ0∂
2
t P̃s exp[+iωsτ ] , (5.15)

which after expanding the derivatives leads to,

(
∇2

⊥ +

(
∂2z −

1

c2
∂2t

)
− 2iωs

c

(
∂z +

1

c2
∂t

))
Es
2

= −iµ0

gs
v∗s
(
∂2t + 2iωs∂t − ω2

s

)
P̃s , (5.16)

where we have defined ∇⊥ = ∂x + ∂y. We can set ∇⊥ = 0 with the paraxial approximation

(negligible divergence) and invoke the slowly varying envelope approximation to remove the



126 Chapter 5. Light-Matter Interaction

second order derivatives, leaving,

(
∂z +

1

c
∂t

)
Es = −µ0ω

2
s

gsks
v∗
s · P̃ s . (5.17)

We now need to relate the macroscopic polarisation P̃s with the single atomic coherence σge.

Macroscopic coherences

Let’s consider a cylindrical element of volume δV containing many atoms such that NvδV ≫ 1,

where Nv is the atomic density per unit volume, while its length in the direction of photon

propagation satisfies δL ≪ λs with λs the central wavelength of the photon, allowing us to

assume a constant phase in each element. We also require that the cylindrical element has a

transverse area δA≫ λ2s, so that the density of atoms is small enough to ignore any atom-atom

interactions [232]. If we index the coherence such that an individual atom a, has a coherence

σa
ge, the macroscopic polarisation may be written as,

P s =
1

δV

∑
a(r)

(µgeσ
a
ge + h.c.)

P s =
1

δV

∑
a(r)

(µgeσ̃
a
ge exp[+iωegτ ] + h.c.)

P̃s =
1

δV

∑
a(r)

(µgeσ̃
a
ge exp[+i∆sτ ] + h.c.)

P̃s =
√
Nvµge

( 1√
NvδV

∑
a(r)

σ̃a
ge exp[−i∆sτ ]

)
,

(5.18)

where in the last line we have removed terms oscillating at the sum rather than difference

frequency. From the above equation for P̃ s we can define the macroscopic polarisation operator,

Pge =
1√
NvδV

∑
a(r)

σ̃a
ge exp[−i∆sτ ] (5.19)

and a similar operator for the macroscopic spin wave,

Sgs =
1√
NvδV

∑
a(r)

σ̃a
gs exp[−i(∆s −∆c)τ ] . (5.20)
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We have defined these operators in this way, such that they obey bosonic commutation relation,

[Fjk(r, t), F †
jk(r, t)] =

1√
nδV

∑
a(r)

∑
b(r′)

[σ̃a
jk, σ̃

a
kj]

=


1
δV

(σjj − σkk) if r ∧ r′ ∈ δV

0 otherwise,

(5.21)

where as δV −→ 0 the operator Fjk describes the annihilation of an atomic excitation in the

state |k⟩ at position r [232].

We can now write down equations of motion for the macroscopic operators and the photon

field, (
∂z +

1

c
∂t

)
Es = −

κ∗ge
2
Pge

∂τPge = −i∆sPge +
κge
2
Es −

i

2
ΩesSgs

∂τSgs = −i(∆s −∆c)Sgs −
i

2
Ω∗

esPge

(5.22)

where,

κge =
µ∗
gevs
√
Nvgs

ℏ
=
µ∗
gevs

ℏ

√
ℏωsNv

2ϵ0c

Ωes =
µesvcEc

ℏ

(5.23)

Since the macroscopic coherence operators behave as bosons, we can include decoherence into

the equation for Pge due to spontaneous emission by adding the decoherece rate γe along with

a Langevin noise operator, which describes fluctuations in the decay of Pge that preserve the

bosonic commutation relation in Eq. 5.21. Provided that the number of atoms in the states |e⟩

and |s⟩ remains approximately zero, the expectation value of these noise operators is zero and

so we can neglect them going forward. With decoherence included the equations become,

(
∂z +

1

c
∂t

)Es
2

= −κ∗gePge

∂τPge = −(γge + i∆s)Pge +
κge
2
Es −

i

2
ΩesSgs

∂τSgs = −i(∆s −∆c)Sgs −
i

2
Ω∗

esPge .

(5.24)
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We can further simplify these equations by transforming to the reference frame co-propagating

with the photon and control field, and writing our constants in a dimensionless form. The

co-propagating frame, allows us to write both the control field and photon field as functions of

τ = t− z/c. The derivatives are modified to,

∂z|t +
1

c
∂t|z → ∂z|τ (5.25)

∂t|z → ∂τ |z , (5.26)

where |x indicates that the variable x is held constant. We will normalise τ by γe and z by the

length of the atoms L. This results in the following rescaling of variables,

τγge → τ (5.27)

z

L
→ z (5.28)

∂τ
γge
→ ∂τ (5.29)

∂zL→ ∂z (5.30)

∆j

γge
→ ∆j (5.31)

Ωes

γge
→ Ωes (5.32)

|κge|2L
γge

→ d (5.33)

Es√
γgeL

→ Es (5.34)

Pge → Pge (5.35)

Sgs → Sgs (5.36)
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Finally we have,

∂zEs = −
√
d

2
Pge

(5.37)

∂τPge = −(1 + i∆s)Pge +

√
d

2
Es −

i

2
ΩesSgs

(5.38)

∂τSgs = −i(∆s −∆c)−
i

2
Ω∗

esPge (5.39)

where we have taken κge to be real. For the simple three level system described here this is fine,

however when extending our treatment to multiple excited excited states later in this chapter,

we will need to remember the complex nature of κge. The treatment so far has assumed the

atoms to be stationary. We will extend this model to warm vapours in the end of this chapter.

Simulation

We numerically solve the Eqs. 5.37-5.39 using the method of lines. Both the τ and z dimensions

are discretised, for the photon coherence Es and the atomic coherences: τ with regular spacing

and z with Chebyshev points, illustrated in Fig. 5.2a for an example simulation with photon

bandwidth 32.97γe = 2π × 100 MHz for 87Rb. The atomic coherences are initialised at τ = 0

with,

P (z, 0) = S(z, 0) = 0 (5.40)

and the photon coherence is initialised with,

Es(0, τ) =

√
2

τc
exp

[
−(τ − τ0)

τc

]
, (5.41)

where τ0 is the arrival time of the photon at the beginning of the cell and τc is the time taken

for the exponential decay to reach 1/e - in this example τc = 1/(32.97γe). The photon envelope,

plotted in Fig. 5.2b, has an amplitude that is fixed by
∫ T

0
dτ E∗s (0, τ)Es(0, τ) = 1, where T is

the end of the storage simulation, i.e. only one photon is input into the system at once. The

exponential decay corresponds to the temporal envelope of a photon emitted from a two-level

system, like DBT. In reality, the initial sharp edge should be convolved with the shape of

the excitation pulse used to excite the two-level system, though for an excitation pulse much
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shorter than the lifetime of the emitter, we found that this did not alter the simulation or later

optimisations significantly.

At each point in time, Eq. 5.37 is solved using a spectral method [232]. The atomic coherences

are then propagated using a fourth order Runge-Kutta method. We can calculate the storage

efficiency ηstorage by,

ηstorage =

∫ 1

0

dz S∗(z, T )S(z, T ) (5.42)

where any loss comes from decoherence or photon field leaking out of the cell without being

stored.

For retrieval beginning at time TR > T , we can map the spin wave back to the photon field in

either the forward (propagating in the same direction as the initial photon) or backward direc-

tion (opposite to the initial photon). Emission in the backwards direction is caused by reversing

the direction of the control field for retrieval. For forward retrieval, the initial conditions of the

retrieval simulation are simply,

P (z, 0) = 0

Es(0, τ) = 0

S(z, TR) = S(z, T ) ,

(5.43)

where TR is the start time and we have assumed that there is no spin wave decay between

T and TR. For backwards retrieval, we flip the spin wave boundary condition, so that in the

simulation space all propagation is in the forwards direction. We can then flip the retrieval

simulation back if we wish to concatenate it with the storage simulation, as shown in Fig. 5.2c,d

and e. The amended boundary condition for backwards retrieval becomes,

S(z, TR) = S(1− z, T ) . (5.44)

Note that we have implicitly assumed in Eq. 5.44 that the ground and storage states are de-

generate in energy, i.e. ∆HF = 0 in Fig. 5.1a. In reality, it is often beneficial to have these

states be different hyperfine ground states and so the signal and control will have differing wave

vectors, thereby imparting some momentum onto the spin wave. We will discuss the effect of a
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Figure 5.2: (a) Example discretisation of the simulation space, where points along τ are regu-
larly spaced and points along z are distributed as Chebyshev points [232] (more closely spaced
at the boundaries). (b) Input signal photon, with bandwidth 32.97γe = 100 MHz, used as
an initial boundary condition. To enforce the criteria of only one input photon, the integral∫ T

0
dτ E∗s (0, τ)Es(0, τ) = 1 which sets the maximum amplitude. Simulated storage and backward

retrieval, with plots of the (c) photon electric field squared E2s (z, τ) = E∗s (z, τ)Es(0z, τ), where
the white arrows indicate the photon propagation direction, (d) atomic polarisation squared
P 2
s (z, τ) ∼ σ†

geσge and (e) the atomic spin wave squared S2
s (z, τ) ∼ σ†

gsσgs.
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spin wave with finite momentum in Section 5.4 but for now we will assume that the spin wave

is momentumless. We can compute the total efficiency ηtotal with,

ηtotal =

∫ Tend

TR

dτ E∗s (1, τ)Es(1, τ) , (5.45)

with Tend the end cutoff time in the simulation. We can similarly define the retrieval efficiency

as,

ηretrieval =

∫ Tend

TR
dτ E∗s (1, τ)Es(1, τ)∫ 1

0
dz S∗(z, T )S(z, T )

, (5.46)

which reduces to Eq. 5.45 if the spin wave is renormalised before retrieval.

5.1.2 Optimisation

We would like to optimise the overall efficiency of storage and then retrieval of a photon, emitted

from a two-level system, like DBT. It is possible to optimise the memory by either varying the

photon temporal shape or the control field. The photon temporal shape from DBT (or indeed

any two-level emitter) is a decaying exponential, and so we will focus on optimising the memory

using the control pulse temporal shape.

It is possible to analytically derive the optimal control shape from Eqs. 5.37-5.39 in the adiabatic

and non-adiabatic limits, defined by Td ≫ 1 and Td < 1 respectively (T is in units of 1/γge).

However, for experimentally realisable optical depths in cold atomic ensembles and available

photon sources, we require a general optimisation method for in between these regimes. It is

also worth investigating the strictness of the inequalities.

Before describing the general optimisation technique, we will first derive some important results

regarding the memory interaction: what parameters the memory efficiency depends on and

upper limits in achievable memory efficiencies.

Optimal efficiency

Firstly we will consider retrieval. We would like to find the spin wave that maximises the

retrieval efficiency defined in Eq. 5.46, where we will enforce the spin wave to be normalised.
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Following Gorshkov et al. [280], taking the Laplace transform of Eq. 5.37 with z → u and

setting the input electric field to zero (since we are dealing with retrieval), we have,

Ẽs(u, τ) = −
√
d

u
√

2
P̃ (u, τ) , (5.47)

where the tilde denotes the transformed function. Taking the Laplace transform of Eq. 5.38

and subbing in Eq. 5.47 we arrive at,

∂τ P̃ (u, τ) = −
(

1 +
d

2u
+ i∆s

)
P̃ (u, τ)− i

2
ΩS̃(u, τ) . (5.48)

Here we see that, if we could perfectly map coherence from S → P , decay from P is into two

modes with a fixed branching ratio: a rate of γge (= 1 in normalised units) due to decoherence

and a rate of γd/(2u) into the desired photon mode. The retrieval efficiency becomes,

ηr = L−1

[
d

2uu′

∫ ∞

0

d̃τP (u, τ)P̃ ∗(u′, τ)

]
, (5.49)

where we have set TR = 0 and Tend =∞. We now wish to write this it terms of the spin wave.

By combining Eq. 5.48 and the Laplace transform of Eq. 5.39 we arrive at the identity,

∂τ

[
P̃ (u, τ)P̃ ∗(u′, τ) + S̃(u, τ)S̃∗(u′, τ)

]
= −

(
2 +

d

2u
+

d

2u′

)
P̃ (u, τ)P̃ ∗(u′, τ) , (5.50)

which we can rearrange to get,

d

2uu′

∫ ∞

0

P̃ (u, τ)P̃ ∗(u′, τ) =P̃ (u,∞)P̃ ∗(u′,∞)− P̃ (u, 0)P̃ ∗(u′, 0)

+ S̃(u,∞)S̃∗(u′,∞)− S̃(u, 0)S̃∗(u′, 0)

=
d

4uu′ + d(u+ u′)
S̃(u, 0)S̃∗(u′, 0) .

(5.51)

Taking the inverse Laplace transform results in the expression,

ηr =

∫ 1

0

dz

∫ 1

0

dz′Kr(1− z, 1− z′)S(z, 0)S∗(z, 0) (5.52)
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with the retrieval kernel Kr(z, z
′) defined as,

Kr(z, z
′) =

d

4
exp [−d(z + z′)/4] I0(d

√
zz′) (5.53)

where I0 is the modified Bessel function. The kernel Kr(z, z
′) quantifies the mapping between

spin wave and output light field, in the case of perfect control field. It only depends on optical

depth and so the maximum memory efficiency is entirely parameterised by d. To find the

optimum spin wave and efficiency for backwards retrieval, at each d, we numerically solve the

eigenvalue problem,

ηrS(z) =

∫ 1

0

dzKr(1− z, 1− z′)S(z) , (5.54)

in which the optimum spin wave is the eigenvector of Eq. 5.54 with the largest corresponding

eigenvalue ηr (the retrieval efficiency for S(z)).

One numeric method for solving such a problem is to begin with some trial S(z) and insert it

into equation Eq. 5.54. The result, after renormalisation, then becomes the new trial solution,

which is inserted back into Eq. 5.54. At each iteration, the method is tested to see if the result

has converged. The final result is then the optimum spin wave which can then be combined

with the kernel to extract the associated eigenvalue or retrieval efficiency.

The optimum spin wave for retrieval in the backwards direction (z < 0) is plotted in Fig. 5.3a

against z while varying the optical depth. The associated eigenvalues are ηr = 0.05, 0.33, 0.97

for d = 0.1, 1, 100 respectively. The limiting case of S(z) =
√

3(1− z) for d→∞ is plotted in

dashed grey. For d→ 0, the ideal spin wave is flat as it is best to have the entire ensemble con-

tributing to maximise the coupling between the matter and light modes, and the emission from

all atoms to interfere constructively. However, as d increases, the optimum begins to accumulate

a larger amplitude towards the beginning of the ensemble. The constructive interference builds

up through the ensemble but the more atomic medium the excitation propagates through, a

greater proportion of the excitation is lost to the decoherence decay channel. Therefore, it is

best to have as little amplitude at z = 1 as possible, and have the spin wave amplitude slowly

build up as we approach z = 0.
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(a) (b) (c)

Figure 5.3: Plots of optimal spin waves (absolute value) at different optical depths as a function
of distance through the atomic ensemble, for (a) backwards retrieval (b) forwards retrieval,
where the dashed grey lines are the limiting case of d → ∞. (c) Total efficiency as a function
of optical depth for forwards and backwards retrieval.

The same argument applies to the-time reverse, that is the optimal spin wave for storage is

exactly those plotted in Fig 5.3a, where for large optical depths we maximise the spin wave

amplitude at the beginning of the ensemble, thereby minimising decay. Note that the optimum

spin wave for storage and retrieval are only equal to each other for the case of backwards

retrieval where the total efficiency ηtotal = η2r(d) found from Eq. 5.54, and is plotted in Fig 5.3c

in dark blue.

For the case of forward retrieval, a compromise is needed between the optimum spin wave for

storage and for retrieval. We can employ the same time reverse argument, but we must now

reverse the whole process of storage and forward retrieval - the optimum spin wave will flip

after time reversal. We can reformulate the eigenvalue problem as,

√
ηtotalS(z) =

∫ 1

0

dzKr(z, 1− z′)S(z) (5.55)

where ηtotal is now for the forwards direction. However, unlike for backwards retrieval, storage

efficiency will always be greater than the retrieval efficiency for forwards retrieval [280]. The

optimum spin waves are plotted in Fig 5.3b. The scaling of ηtotal with optical depth is plotted

in Fig 5.3c in green.

All of the results derived in this section set an upper limit on the possible efficiency for a

given optical depth, provided that we can perfectly map to the optimal spin wave. We will

now look to use gradient ascent to determine the control field that most faithfully reproduces

this mapping for an input photon mode of a decaying exponential. We will examine how
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the optimum changes while transitioning between the adiabatic and non-adiabatic regimes and

what physical parameters are needed to realise an efficient memory. We will focus on backwards

retrieval, as this can reach higher potential efficiencies for lower optical depth. The optimisation

procedure that we derive in the following can be equally applied to forward retrieval [241].

Gradient ascent

We have bounded the maximum possible efficiency for both forwards and backwards retrieval.

However, the previous derivation gave no insight into what temporal shape (or phase) of control

field achieves this efficiency and did not indicate whether all input photon modes can reach this

efficiency. It is possible to derive analytical solutions in the adiabatic and non-adiabatic limits.

In general, the choice of photon source and atomic medium may not fall into these limits and

we must find an alternative way to optimise the control pulse.

Our goal will be to optimise the storage efficiency, as this will optimise the overall efficiency

for backward retrieval. To do so we will use a gradient ascent algorithm, initially presented in

Gorshkov et al. [241] and further developed in Rakher et al. [363]. The method proceeds by

incrementing a trial solution using a gradient derived from a metric J which is to be maximised

while obeying some constraints. A trial solution for the control field Ωj(τ) is incremented as,

Ωj+1(τ)← Ωj(τ) + α
δJ

δΩ(τ)
, (5.56)

where Ωj+1(τ) is the next trial, with α determining the step size. The gradient, taken with

respect to the control field, is a function of τ and so the control field will be updated for every

time step.

Our metric is a functional consisting of the storage efficiency, plus our constraints which are
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the equations of motion of our system (Eqs. 5.37-5.39). We can write this as,

J =

∫ 1

0

dz S∗
gs(z, T )Sgs(z, T )

+

∫ 1

0

dz

∫ T

0

dτP̄ ∗
ge[−∂τPge − (γge + i∆)Pge +

√
dEs − iΩesSgs] + c.c.

+

∫ 1

0

dz

∫ T

0

dτS̄∗
gs[−∂τSgs − iΩ∗

esPge] + c.c.

+

∫ 1

0

dz

∫ T

0

dτ Ē∗s [−∂zEs −
√
dPge] + c.c. ,

(5.57)

where c.c. stands for the complex conjugate and we have set ∆s = ∆c = ∆. We have also

introduced the co-functions: P̄ge(z, τ), S̄gs(z, τ), Ēs(z, τ). These are analogous to the Lagrange

multipliers commonly seen in optimisation problems. To deal with the complex nature of the

coherences, it is sufficient to treat the coherences and their complex conjugates as independent.

With this convention, the functional derivative is given by,

∂J

∂Ω∗
es(τ)

= i

∫ 1

0

dz
(
P̄geS

∗
gs − S̄∗

gsPge

)
, (5.58)

which in general is complex. Allowing the control field to be complex allows for the phase of

the control field to be optimised as well as its amplitude. We can instead force the control field

to be real, in which case the gradient becomes,

∂J

∂Ωes(τ)
= −2

∫ 1

0

dz Im
[
P̄geS

∗
gs − S̄∗

gsPge

]
. (5.59)

Both expressions for the gradient feature the co-functions and so we must derive equations of

motion for these. To do so, we use the fact that the metric must be stationary with respect to
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variations in all dynamic parameters, allowing us to write,

δJ =

∫ 1

0

dzSgs(z, T )δS∗
gs(z, T ) + δSgs(z, T )S∗

gs(z, T )

+

∫ 1

0

dz

∫ T

0

dτP̄ ∗
ge[−δ∂τPge − (γge + i∆)δPge +

√
dδEs − iΩesδSgs] + c.c.

+

∫ 1

0

dz

∫ T

0

dτS̄∗
gs[−∂τδSgs − iΩ∗

esδPge] + c.c.

+

∫ 1

0

dz

∫ T

0

dτ Ē∗s [−∂zδEs −
√
dδPge] + c.c. .

(5.60)

Performing integration by parts gives us,

δJ =

∫ 1

0

dzSgs(z, T )δS∗
gs(z, T ) + δSgs(z, T )S∗

gs(z, T )

+

(∫ 1

0

dz(P̄ ∗
ge(z, 0)δPge(z, 0)− P̄ ∗

ge(z, T )δPge(z, T ))

+

∫ 1

0

dz

∫ T

0

dτ∂τ P̄
∗
geδP + P̄ ∗

ge[−(γge + i∆)δPge +
√
dδEs − iΩesδSgs] + c.c.

)

+

∫ 1

0

dz(S̄∗
gs(z, 0)δSgs(z, 0)− S̄∗

gs(z, T )δSgs(z, T ))

+

∫ 1

0

dz

∫ T

0

dτ∂τ S̄
∗
gsδSgs + S̄∗

gs[−iΩ∗
esδPge] + c.c.

+

∫ 1

0

dτ(Ēs(0, τ)δEs(0, τ)− Ēs(L, τ)δEs(L, τ)) +

∫ 1

0

dz

∫ T

0

dτ ∂zĒ∗s δEs + Ē∗s [−
√
dδPge] + c.c.

(5.61)
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We have δSgs(z, 0) = δPge(z, 0) = δEs(0, τ) = 0 as our initial conditions are fixed, leading to,

δJ =

∫ 1

0

dzSgs(z, T )δS∗
gs(z, T ) + δSgs(z, T )S∗

gs(z, T )(
−
∫ 1

0

dzP̄ ∗
ge(z, T )δPge(z, T )

+

∫ 1

0

dz

∫ T

0

dτ∂τ P̄
∗
geδPge + P̄ ∗

ge[−(γge + i∆)δPge +
√
dδEs − iΩesδSgs] + c.c.

)

−
∫ 1

0

dzS̄∗
gs(z, T )δSgs(z, T )

+

∫ 1

0

dz

∫ T

0

dτ∂τ S̄
∗
gsδSgs + S̄∗

gs[−iΩ∗
esδPge] + c.c.

−
∫ 1

0

dτ Ēs(L, τ)δEs(L, τ) +

∫ 1

0

dz

∫ T

0

dτ ∂zĒ∗s δEs + Ē∗s [−
√
dδPge] + c.c.

(5.62)

The optimum storage efficiency requires that δJ = 0 for any small parameter variation and so

we can collect terms multiplying δX (where X represents some parameter) and set the results

to zero. This results in the following equations of motion for the co-functions,

∂zĒs = −
√
dP̄ge (5.63)

∂τ P̄ge = (γge − i∆)P̄ge +
√
dEs − iΩesSgs (5.64)

∂τ S̄gs = −iΩesP̄ge (5.65)

and the associated boundary conditions,

Ēs(L, τ) = 0 (5.66)

P̄ge(z, T ) = 0 (5.67)

S̄gs(z, T ) = Sgs(z, T ) (5.68)

These are precisely the same equations as Eqs. 5.37-5.39 except the decay is replaced with

growth. The Eqs. 5.63-5.65 are the time and spaced reverse of Eqs. 5.37-5.39. To see this,

transforming the co-function equations as τ → T − τ and z → L− z (and remembering to take

the complex conjugate for time reversal) will result in precisely Eqs. 5.37-5.39, except for Ēs



140 Chapter 5. Light-Matter Interaction

replaced by −Ēs due to the i in the definition Eq. 5.5. The gradient therefore originates from

the difference in the memory interaction, solved before and after time (and space) reversal. Put

another way, the most efficient memory is one in which the dynamics for storage and backward

retrieval are as similar as possible, which agrees well with the optimal spin waves derived earlier

in this section.

The optimisation algorithm proceeds by first solving Eqs. 5.37-5.39 for storing a photon de-

scribed by Eq. 5.41 using an initial trial Ω(τ). This determines the boundary condition for

Eq. 5.68 and Eqs. 5.63-5.65 are solved (these equations run backward in time and space). The

results from the two simulations are then used to compute the gradient at each time step and

update the control field. This is repeated until the efficiency has converged within the desired

tolerance. While in general, gradient ascent methods can become trapped at local maxima, in

Gorshkov et al. [241] they showed that in the limiting cases where there exists an analytical

solution, the gradient ascent method presented here converged to the global optima in all cases.

This suggests that this method always yields the global optimum.

Overall, this method is very efficient, requiring only two memory runs to improve the control

field over the entire temporal domain. Even more efficient algorithms exist such as Krotov’s

method [364], which was originally used to optimise the landing of a spacecraft onto the surface

of a planet. However for this thesis, we will stick to the slightly less optimal but simpler gradient

ascent.

Example optimisation

We are primarily interested in using Rb as a medium for a quantum memory, with all of the

population beginning in one of the hyperfine ground states and the other empty ground state

used for storage. For 87Rb, the ground state splitting is 6.8 GHz, so to reduce the coupling of the

control field with the |g⟩ → |e⟩ transition (which in deriving the equations Eqs. 5.37 - 5.39 we

assumed was zero) the control bandwidth should be much less than the hyperfine splitting. Even

so, this coupling will not be zero and we will revisit this undesired coupling when discussing

four-wave mixing in Section 5.3. For now, we will restrict ourselves to optimising photons of

bandwidth ≤ 1 GHz, as the bandwidth of the corresponding control pulse will be of a similar
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Figure 5.4: Typical gradient ascent optimisation. The photon temporal shape is shown in
dashed grey and has been normalised to the maximum control field amplitude. The initial
control Ω(τ) = 1/(10τc) is shown in black. The control field at iterations 5, 10, 15 and 20 is
pltoted in dark blue, green, purple and yellow respectively. Inset: Total efficiency, step size and
gradient magnitude in the direction of travel over the 20 total iterations of the gradient ascent.

order.

In particular, we will optimise three bandwidths of photon: 1 MHz, 100 MHz and 1 GHz. Nar-

rowband sources with bandwidths on the order of 1 MHz include high quality factor cavity

sources [276, 365], photon sources such as DBT and colour centres often produce lifetime lim-

ited photons in the 10−100 MHz range [189,202] and quantum dots typically have bandwidths

on the order of 1 GHz [81,147]. To begin with, we set the photon and control field on resonance

(∆s = ∆c = 0). As for optical depths, high density magneto-optical traps (MOTs) have been

demonstrated with d ⪅ 1000 [366]. We will consider optical depths up to 2500 in the follow-

ing, thereby encompassing current capabilities and future improvements. In warm Rb vapours,

higher optical depths can be obtained and will be investigated at the end of this chapter.

We set the initial control field to Ω(τ) = 1/(10τc) with a starting step size of α = 1000. When

the gradient is computed at each iteration, the step is tested to see if it satisfies the Wolfe

conditions, see Appendix B.3.1. The Wolfe conditions set a lower and upper bound on an

appropriate step, increasing or decreasing the step size geometrically if the current iteration

falls outside of these bounds. A typical optimisation run is shown in Fig. 5.4. The photon
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temporal shape (rescaled to the maximum height of the control field) is shown in dashed grey

and the initial control is shown in black. The control field at iteration 5, 10, 15 and 20 is

shown in dark blue, green, purple and yellow respectively, where convergence to 0.01% took

20 iterations total (a total of just 40 simulation runs). The inset shows the storage efficiency,

step size and gradient magnitude (in the direction of the steepest ascent) over the 20 iterations,

showing the gradient ascent converges quickly to within a few percent after < 10 iterations. As

the gradient approaches zero, the step size is adjusted to allow for better convergence.

5.2 Three level results

The results of the full complex optimisations for ∆ = 0 are shown in Fig. 5.5. The total

efficiency against optical depth is plotted in Fig. 5.5a for 1 MHz (dark blue), 100 MHz (green)

and 1 GHz (purple) bandwidth photons. In dashed grey are the efficiencies obtained from

the eigenfunctions of Eq. 5.54. We see that the optimisation for 1 MHz photons very quickly

approaches the upper efficiency limit. For higher bandwidths, the process becomes less adiabatic

and the efficiency suffers. As the optical depth is increased, we begin to enter the adiabatic

regime again and the efficiencies converge with the dashed grey line.

In Fig. 5.5b, c and d we have plotted the optimised spin waves for d = 40, 110 and 850 respec-

tively. In dashed grey are the optimum spin waves obtained from the eigenvectors of Eq. 5.54

with the coloured lines corresponding to the same bandwidths as in Fig. 5.5a. We see that

the optimised spin waves obey the qualitative argument that most of the spin wave should be

located at the entrance to the ensemble, and in Fig. 5.5b the spin wave that corresponds to

the 1 MHz photon follows the optimal very closely. As the bandwidth is increased, and the

efficiency drops, we observe that the photon cannot be mapped to the optimum spin wave.

For higher optical depths, the spin waves relating to higher bandwidths begin to resemble the

optimum more closely.

We plot the optimum control field shapes in Fig. 5.5e with the amplitudes normalised to one

in order to better compare the shapes. For zero detuning, the control field is real, so only the
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Figure 5.5: Optimisation results for input photon bandwidths 1 MHz (blue), 100 MHz (green)
and 1 GHz (purple). (a) Plot of optimised total efficiency as a function of optical depth. The
theoretical upper bound is shown is dashed grey. The resulting absolute values of the optimised
spin waves as a function of distance through the atomic ensemble are plotted, for an optical
depth of (b) d = 40, (c) d = 110, (d) d = 850. The theoretical optimum is shown in dashed
grey, derived from Eq. 5.54. (e) Optimised control shapes, normalised to an amplitude of 1, and
plotted as a function of the characteristic decay time of the input photon, with the input photon
shown in solid grey. Inset: True amplitude of opitmised control fields in units of Rabi frequency.
(f) Optimum control field for a 100 MHz input photon and optical depths of d = 40, 110 and
850, where a higher peak amplitude corresponds to a higher optical depth. Inset: Peak Rabi
frequency of the control fields as optical depth is increased. On the left axis, the peak amplitude
is given in terms of Rabi frequency, while on the right it is given in terms of watts, where we
have assumed a control beam radius of 1 mm and a dipole moment of 3.584× 10−29 Cm.
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amplitudes are plotted. The adiabatic case resembles a decaying exponential, though with a

steeper initial drop off. This results in the photon coherence being mapped directly to the spin

wave, with very little excitation of the atomic polarisation (Pge), which resembles EIT storage.

As we move away from the adiabacity criterion, the centre of mass of the control field shifts

to after the photon has arrived. The photon coherence is first allowed to induce an atomic

polarisation Pge which is then mapped by the control field to the spin wave. This more closely

resembles ATS storage. The true amplitudes of the control fields are shown in the inset of

Fig. 5.5e, where we can see the increase in peak Rabi frequency required for higher bandwidths.

In Fig. 5.5f we show how increasing the optical depth results in the optimum approaching the

adiabatic case, for an input photon of 100 MHz. Here the increasing amplitude of the grey lines

relate to an increasing optical depth, of values d = 40, 110 and 850. The inset shows how the

peak Rabi frequency scales with optical depth for the three bandwidths considered, with the

corresponding peak power shown on the right axis, assuming a control beam radius of 1 mm

and a dipole moment of 3.584× 10−29 Cm [350].

Non zero-detuning

In Fig. 5.6, we plot the real valued optimisation results on the left for an input photon bandwidth

of 2π × 100 MHz, at three photon detunings, ∆s/(2π) = 0, 625 MHz and 2.5 GHz denoted by

solid blue, green and purple lines respectively, for an optical depth of 2500. The control field

detuning ∆c was set equal to ∆s, so the two light fields were on two photon resonance. Plotted

with dashed lines, are the amplitudes of the complex results, with the corresponding phases

plotted on the right. Only at ∆s = 2π× 2.5 GHz do we begin to observe a significant deviation

between the real and complex shapes, where the complex results appear to be smoother and

resemble the adiabatic result from the resonant case.

In terms of efficiency, with complex control fields, each detuning reached roughly the same

efficiency, in the range 95− 96%. The same is true for the real valued control fields, except for

the ∆s = 2π × 2.5 GHz case where the efficiency drops to 75%. This could be a physical effect

often observed in detuned Raman memories (as will be discussed in more detail in Chapter 6)

where increasing the control field power, as is required to achieve the required coupling at
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Figure 5.6: Left: Normalised control field amplitudes plotted against time in nanoseconds,
for input photon bandwidth of 2π × 100 MHz at ∆ = 0 (blue), ∆ = 2π × 625 MHz (green),
∆ = 2π × 2.5 GHz (purple), where ∆ is the detuning of both the photon and control fields.
Solid lines denote the results of the real valued optimisation, and the dashed the result of the
complex valued optimisation. Inset: True amplitudes of real and complex control fields for
∆ = 2π × 2.5 GHz, where the complex amplitude is shown in dashed black. Right: Phase of
complex control field.

larger detunings, results in an AC Stark shift of the intermediate and storage states. The

consequence is a decrease in efficiency as the control field power is increased beyond a certain

point [264, 367]. Through varying the phase, complex control field amplitudes can circumvent

this issue. To see this, note that an additional detuning of the control field (from the two photon

resonance condition) could be described by incorporating a time dependant phase. Control over

the phase also accounts for sidebands and chirping of the control pulse. Alternatively, the lower

efficiency could be explained by the gradient ascent algorithm converging too slowly, and may

have been prematurely terminated.

In the inset of Fig. 5.6, the true amplitudes of the real and complex control fields are plotted,

with the dashed black line representing the complex control field. It appears that the complex

field requires less peak power, at the expense of requiring phase control.

We can see in all of the optimisations presented here (decaying exponential input photon), in

order to reach above 90% efficiencies, the optical depth has to be high enough to enter the
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Figure 5.7: (a) Illustration showing unwanted cross coupling of the control field to the signal
transition, leading to the creation of a spin wave without the presence of a signal photon. Ad-
ditionally, coupling of this kind can couple any spin wave to the anti-stokes field EF , potentially
removing stored coherence which was correlated to a signal photon. (b) A spurious spin wave
can be readout in the usual retrieval process, producing a field of the same frequency as the
signal photon but with no correlation to the input signal.

adiabatic regime. This implies then that the we only need to be able to engineer the limiting

adiabatic control pulse shape, with the peak amplitude and duration dictated by the bandwidth

and optical depth. While this is true for the simple case of three levels, as we move to more

realistic setups we will see the true benefit of this gradient ascent method.

It is worth noting that in Gorshkov et al. [280], it was shown that in the non-adiabatic limit,

efficient mapping of a photon to the spin wave is possible for a rising exponential photon.

Shaping of the photon may be a promising avenue to achieve high bandwidth memories for

attainable optical depths, but we will not discuss it further in this thesis.

5.3 Four-wave mixing noise

In previous derivation, we neglected coupling of control field to the signal transition. In re-

ality, though this transition is very far detuned, the coupling is non zero, especially at high

bandwidths and optical depths, which also require high control intensities. The effect of this

non-resonant cross-coupling is illustrated in Fig. 5.7.
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As well as the desired interaction shown in the previous section, the control field acts to couple

population in |g⟩ via a stokes field EF , to excite a spurious spin wave, even without the presence

of a signal photon, as illustrated in Fig. 5.7a. This spin wave can then be read out through

coupling of the control field to the desired transition, depicted in Fig.5.7b. The process is

termed four-wave mixing (FWM) and does not only act to both add amplitude to the spin

wave which is not correlated with the signal photon, but also can couple the spin wave to the

photon field EF reducing the amplitude of the spin wave.

In Phillips et al. [368] they included the cross-coupling of the control field and derived a modified

set of equations that included the Stokes field, under the assumption that the bandwidth and

amplitude of the control field are still small enough such that there is minimal population

transfer from |g⟩ to |e⟩. The modified equations were shown to agree with experiment well and

are,

∂zEs = −
√
d

2
Pge

(5.69)

∂zEF =

√
d

2

Ωes

∆HF

Sgs (5.70)

∂τPge = −(1 + i∆s − 2iδls)Pge +

√
d

2
Es −

i

2
ΩesSgs

(5.71)

∂τSgs = −i(∆s −∆c − δls)Sgs −
i

2
Ω∗Pge −

i

2

√
d

2

Ωes

∆HF

E∗F , (5.72)

where ∆HF denotes the hyperfine splitting of the ground states and δls refers to the time-

dependent light shift δls = |Ωge|2/∆HF, with Ωge referring to control field coupling strength on

the |g⟩ → |e⟩ transition. As we would expect, increasing ∆HF reduces the FWM, and so alkali

vapours with large hyperfine ground splittings such as 87Rb and Cs will offer improved resilience

to FWM. Lower optical depths are also beneficial due to the decreased coupling of the control

field to the signal transition and the lower Rabi frequency required for optimal control.

In Fig. 5.8a we have plotted the efficiencies obtained when using the optimum control fields from

the previous section, after adding in FWM to the system, using ∆HF = 2π×6.8 GHz. In contrast

to the simple three level system, bandwidths 2π× 100 MHz (solid green) and 2π× 1 GHz (solid

purple), show a decreasing efficiency at higher optical depths. The dashed lines of the same
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Figure 5.8: Optimisation results for input photon bandwidths 2π×1 MHz (blue), 2π×100 MHz
(green) and 2π × 1 GHz (purple) (a) Plot of total memory efficiency (solid) against optical
depth, using the optima derived in Section 5.2 with four-wave mixing (FWM) included. FWM
efficiency, defined as the number of excitations in the stokes field, are plotted as dashed lines.
(b) Zoom in of FWM efficiences, with an inset which further zooms in on 2π × 1 MHz input
bandwidth. (c) Shown in colour are the optimisation results using the metric defined in Eq. 5.73,
with F = 100, which adds a penalty for FWM noise. Dashed lines are the optima from the
metric not including the FWM penalty for comparison. (d) FWM noise from optima derived
from the FWM penalising metric. (e) Normalised control field amplitudes, with the original
real valued optima shown in dashed and the new optima shown in solid colour. Inset: True
amplitudes of control fields. (f) Optimum control fields from the new metric, as optical depth is
increased from d = 40, 110 and 850. Inset: Peak Rabi frequency of the control fields as optical
depth is increased. On the left axis, the peak amplitude is given in terms of Rabi frequency,
while on the right it is given in terms of watts. Dashed corresponds to the results from the old
metric.
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colour show the FWM efficiency, defined as the number of excitations in the stokes field. Note

that this does not strictly capture the full effect of gain due to FWM as spurious excitations

in the spin wave mode would be indistinguishable from higher efficiency. However, FWM

efficiency is a good metric for determining the amount of FWM in the system. In Fig. 5.8b we

see a zoom in of the FWM efficiencies Fig. 5.8a, showing how bandwidths 2π × 100 MHz and

2π×1 GHz continue to increase at higher optical depths, exceeding 1% at d ≈ 900 and d ≈ 600

respectively. In contrast, 2π × 1 MHz saturates at around 0.8% before evening off at higher

optical depths, which corresponds to the peak Rabi frequency, seen in the inset of Fig. 5.5f,

beginning to plateau. The metric of 1% is rather arbitrary here, as it does not directly relate

to the fidelity of the output photon state. Nevertheless, it is clear that without correction, the

FWM noise introduced will render a quantum memory unsuitable for quantum information.

We can use the gradient ascent optimisation strategy with a modified objective function in

order to penalise the introduction of FWM. We write the new objective function,

J =

∫ 1

0

dz S∗(z, T )S(z, T )

(
1−F

∫ 1

0

dτE∗F (L, τ)EF (L, τ)

)
+

∫ 1

0

dz

∫ T

0

dτP̄ ∗[−∂τP − (γ + i∆− 2iδls)P +
√
dEs − iΩS] + c.c.

+

∫ 1

0

dz

∫ T

0

dτS̄∗[+iδls − ∂τS − iΩ∗P − i

2

√
d

2

Ω

∆HF

E∗F ] + c.c.

+

∫ 1

0

dz

∫ T

0

dτ Ē∗s [−∂zEs −
√
dP ] + c.c.

+

∫ 1

0

dz

∫ T

0

dτ Ē∗F [−∂zEF +

√
d

2

Ω

∆HF

S] + c.c. ,

(5.73)

where F is a factor to determine how much to penalise FWM. The new expression gradient

and the boundary conditions are given in the Appendix B.3.2.

The resulting efficiencies for a real valued control field and F = 100 are plotted with solid lines

in Fig. 5.8c with the efficiencies from Fig. 5.8a plotted in dashed lines for comparison. We see

a general plateauing of the efficiency below that of Fig. 5.8a with some oscillation. In Fig. 5.8d

we have plotted the associated FWM efficiency which is much reduced when compared with

Fig. 5.8b. The oscillations in Fig. 5.8c and Fig. 5.8d coincide, due to the FWM noise increasing
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to the point where the FWM penalty began to significantly affect the optimum. At this point,

efficiency is sacrificed to keep FWM low.

In Fig. 5.5e, the new optimal control pulses are plotted with solid lines, while the original pulses

from the previous section are plotted with dashed lines. We see a preference for spreading out

the area of the pulse, thereby retaining a similar total pulse energy but with a lower average

Rabi frequency. The lower peak heights can be seen in the inset of Fig. 5.5e. The control fields

for increasing optical depth (d = 40, 110 and 850) are shown in Fig. 5.5f, where the optimum is

observed to split into two peaks. The inset shows how the control pulses tend to a maximum

peak value. Worth noting is that optimising against FWM is equivalent to optimising for a

lower average Rabi frequency. A similar metric to Eq. 5.73 can also be useful for experimental

setups where laser power is limited.

From the results of this section, it would appear that high-bandwidth storage in a Λ-scheme

quantum memory isn’t possible for 87Rb or alkali vapours with smaller ground hyperfine split-

tings (Cs has a larger splitting of 2π × 9 GHz and so could allow for higher bandwidths to be

stored). However, we have so far neglected the full manifold of levels available in the excited

state and the Zeeman sublevels contained within. In the next section, we will discuss how

we may choose configurations resistant to FWM and how the optimum pulses and efficiencies

change when considering more realistic systems.

5.4 Full excited state manifold

The treatment developed so far considered storage of 2π×1 MHz, 2π×100 MHz and 2π×1 GHz

bandwidth photons using only one excited state. However, the excited state splitting in 87Rb

is on the order of 2π × 100 MHz, and the control field Rabi frequency quickly approaches this

splitting even for a 2π × 1 MHz bandwidth photon. As a result, we need to take into account

transitions to all states in the excited state manifold, where depending on the dipole matrix

elements the transitions may interfere constructively or destructively.

We have also seen how even for the simple three-level system, FWM can prevent storage of
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Figure 5.9: (a) Memory scheme using the 87Rb D1 transition, where the population has been
prepared in the ground F = 2 maximal spin state mF = −2. The signal photon, illustrated
by the red wavy line, is near-resonant with the excited hyperfine manifold and drives the
σ+ transition. The control field drives the σ− transition, thereby coupling the excited state
to the F = 1, mF = 0 hyperfine ground state. With this configuration, the control field
polarisation cannot couple the F = 2 state to the excited manifold and so FWM is eliminated.
(b) Phase matching diagram for storage and backward retrieval. The black arrows represent the
wavevectors of the various fields while the parallel coloured arrows illustrate the propagation
direction of the fields. The spin wave wavevector, labelled κ, is given by ks−kc, where ks and
kc refer to the input photon and control field wave vectors respectively. The retrieval control
field wavevector is represented by k′

c and the retrieved signal photon k′
s. (c) Memory scheme

where the population has been prepared in the ground F = 1 maximal spin state mF = −1, and
F = 2, mF = +1 is used as the storage state. These two states have the same variation with
magnetic field to first order and so the stored coherence is somewhat insensitive to magnetic
field fluctuations.

greater than 90%. Increasing the hyperfine ground state splitting is one way to mitigate the

off-resonant coupling of the control field, though this restricts the available alkali species. If we

consider the full excited state manifold, an alternative approach to mitigate the cross coupling

of the control is to select a configuration of levels where the cross-coupled transitions are not

dipole allowed. An example of such a scheme on the 87Rb D1 transition is shown in Fig. 5.9a.

This transition is compatible with the red insertion site of DBT [302].

The atomic population is initially prepared in the ground F = 2 maximal spin state mF =

−2. The input photon drives the transition σ+ while the control field drives σ−. With this

setup, the control field cannot couple to the signal transition as there is no excited state

with the appropriate mF to couple to, thereby eliminating FWM noise. However, in reality

polarisers and atomic preparation are not perfect, so some FWM may persist. In the rest of this

section we will assume that FWM has been completely eliminated, but effects of weak FWM

could be included by extending Eqs. 5.69-5.72 to include all allowed transitions in the system,
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and adjusting the strength of the couplings to reflect the error in atomic preparation of laser

polarisation. Furthermore, for the case of the D2 manifold, which would be compatible with

the main insertion site of DBT at 780 nm, the full FWM theory would need to be considered.

This is beyond the scope of this thesis.

A feature we have neglected to mention so far is the effect on the spin wave of having signal

and control fields with different wave vectors. A larger ∆HF (and thus a larger wave vector

mismatch between the signal and control fields) results in more momentum being taken up by

the spin wave. We can absorb the additional momentum ∆k by redefining the macroscopic

operators [280] but we must now take care to amend the boundary condition for backwards

retrieval (forwards retrieval remains unchanged) to,

S(z, TR) = S(1− z, T ) exp[−2i∆kz] , (5.74)

which can cause a significant reduction in efficiency unless ∆kL ≪
√

d
2
. In Surmacz et al.

[243], it was shown that this momentum mismatch may be compensated for by introducing an

angle between the signal and control field, as shown in Fig. 5.9b. Typically for the wavevector

mismatch acquired from the ground hyperfine state splitting, the angle required is of the order

milli-radians.

For the full 2d simulation, provided the control wave vector is larger than that of the signal (as

is the case for the scheme presented in Fig. 5.9a to prevent FWM), the memory interaction was

shown to remain efficient and agree well with the one dimensional treatment. The justification

is that the input and output photon traverse along the same axis and so the entire spin wave

contributes to the interaction. In this case, increasing ∆k is no longer a problem, though

increasing the angle between the signal and control fields reduces the size of the interaction

region. To counteract this, we may increase the width of the control beam, though at the cost

of requiring a higher laser power to reach the same intensities. For schemes using signal photons

with a larger wave vector than the control field it is important to include the phase factor in

Eq. 5.74. Provided the length of the ensemble is low, and the optical depth high, possible in a

high density MOT, the reduction in efficiency due to the phase mismatch can be kept minimal.
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Another factor to consider is magnetic field sensitivity. The spin wave is distributed across two

mF states, in two different ground states. Fluctuations in magnetic field can cause fluctuations

in the relative energies of the mF levels for different atoms, which can lead to a differing phase

evolution. The resulting decoherence will lead to a decay in the retrieval efficiency. To combat

this, we could use mF = 0 in states F = 1 and F = 2 as the ground and storage state, which

will not fluctuate with magnetic field. While this configuration prevents magnetic dephasing,

the polarisations of the signal and control fields now must be identical, making filtering of

the control field more difficult. Alternatively, using mF = ±1 as |g⟩ and mF = ∓1 as |s⟩,

fluctuations in magnetic field are cancelled out to first order. This scheme is illustrated in

Fig. 5.9c. With this configuration, the control and signal beams can be orthogonally polarised,

though we now have a signal wave vector which is larger than the control wave vector, preventing

us using the scheme shown in Fig. 5.9b. For simulating this magnetically insensitive scheme, it

is important to include Eq. 5.74. Both of these magnetically insensitive schemes do not prevent

cross-coupling of the control field and so other methods to reduce FWM would likely need to

be employed.

It is clear that we cannot satisfy all of these issues (FWM, wave vector mismatch and magnetic

field sensitivity) at once in the Λ-scheme. In the next chapter, we will consider ladder schemes

which will allow us to satisfy all of these criteria, though at the expense of memory lifetime.

For now, we will restrict ourselves to using |g⟩ = |F = 2,mF = −2⟩, |s⟩ = |F = 1,mF = 0⟩ and

|e⟩ = |F = 1, 2,mF = −1⟩ on the D1 transition, as shown in Fig. 5.9a and assume no FWM.

We will also neglect the non zero momentum of the spin wave, assuming either a short atomic

ensemble length or a slight angle between the signal and control field. As for magnetic fields,

appropriate µ−metal shielding can protect the atoms from fluctuations [286] so we will not

consider this any further.
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Expanding Eqs. 5.37-5.39 to include multiple excited states, we arrive at,

∂zEs =
∑
j

−(
√
dj)

∗Pj (5.75)

∂τPj = −(γj + i∆sj)Pj +
√
djEs − iΩjSgs (5.76)

∂τSgs = −(γgs + i(∆s −∆c))− i
∑
j

Ω∗
jPj , (5.77)

where the subscript j is used to index the states in the excited manifold. It is important to

include the relative sign of
√
dj when solving the above equations.

The gradient of our metric for complex valued control field becomes,

∂J

∂Ω∗(τ)
= i

∫ 1

0

dz

(∑
j

P̄j

)
S∗
gs − S̄∗

gs

(∑
j

Pj

)
, (5.78)

and real valued control field,

∂J

∂Ω(τ)
= −2

∫ 1

0

dz Im

[(∑
j

P̄j

)
S∗
gs − S̄∗

gs

(∑
j

P̄j

)]
. (5.79)

In Fig. 5.10a, b and c, we plot how the optimal efficiency changes as a function of detuning,

relative to the F = 2 excited state, for optical depths d = 500, 1000 and 2000 respectively,

where the photon and control fields are kept at two photon resonance. The solid lines refer

to the real control field and the dashed lines to a complex control field. We see at an optical

depth of 500, photon bandwidths of 2π × 1 MHz and 2π × 100 MHz (plotted in blue and green

respectively) show a reduced efficiency at a detuning of −2π × 225 MHz from the excited

F = 2 state. This is due to destructive interference between the two transitions. For a

2π×1 GHz bandwidth, the broader bandwidth prevents the destructive dip from being observed.

In contrast, a complex control field appears to be able to mitigate the destructive interference

and maintain a reasonably constant efficiency over the full manifold. At higher optical depths,

both real and complex control fields are seen to tend to the same efficiency.

In Fig. 5.11 we have plotted the optimised control fields for detunings −2π × 225 MHz and
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Figure 5.10: Plots of total memory efficiency versus detuning, relative to the F = 2 excited
state of 87Rb, for signal photons of bandwidth 1 MHz, 100 MHz and 1 GHz shown in blue, green
and purple respectively, and with optical depths equal to (a) 500, (b) 1000, and (c) 2000.
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−2π× 700 MHz, corresponding to the efficiencies marked with squares and circles on Fig. 5.10a

respectively. For the detuning of −2π × 225 MHz, where we see a high degree of destructive

interference, the control field amplitudes are shown in Fig. 5.11a, with solid lines representing

the real optimisation and dashed the result of complex optimisation. The phases of the complex

optimisation are shown in Fig. 5.11b. We see that for low bandwidths, we once again recover the

same adiabatic shape as the three level case, while for higher bandwidths we begin to deviate

from this shape. The real valued control pulse for an input photon of 1 GHz (purple) features

a a degree of oscillation on a time scale consistent with the excited hyperfine splitting, most

likely to counteract the photon interacting with both excited states. For the complex field, this

oscillation is absent from the amplitude and we recover something more similar to the high

bandwidth three level case. Instead we have a phase varying within the range of around π/2

for the period where the control field is of appreciable strength. For the 2π×1 MHz (blue) case,

the real and complex control fields have similar amplitudes and shapes, but the addition of a

phase variation following the control amplitude causes an increase in efficiency from ≈ 60% to

90%.

The control field shapes for detuning of −2π × 700 MHz (black circles on Fig. 5.10a), corre-

sponding to the higher efficiency are shown in Fig. 5.11c, along with the phases of the complex

controls in Fig. 5.11d. The shapes remain very similar to Fig. 5.11a, with similar oscillations

present in the 2π × 1 GHz (purple) case. Interestingly for the 2π × 1 MHz (blue) case, the

complex optimisation requires around four times as much peak power, perhaps due to the gra-

dient ascent finding two different local maxima. For this bandwidth and detuning, the complex

control field doesn’t require any significant changes in the phase.

At an optical depth of 2000 (not shown), all control shapes begin to resemble the adiabatic

shape seen in the three level case, though with the oscillation in amplitude persisting for high

bandwidths and real valued control fields.

From the results presented in this chapter, it is clear that to achieve high bandwidth quantum

memories, we require much higher optical depths than those available in MOTs. We will now

turn to warm vapours, where much higher optical depths are available.



5.4. Full excited state manifold 157

(a)

(c)

(b)

(d)

Figure 5.11: For a signal and control field detuning of −2π × 225 MHz from the F = 2 excited
state of the 87Rb D1 transition, and a signal photon of bandwidth 2π × 1 MHz (blue), 2π ×
100 MHz (green) and 2π × 1 GHz (purple), we have plotted are the (a) normalised optimal
control field amplitudes, against τ in units of the characteristic decay time of the photons. The
solid lines are the resulting amplitude from the real valued optimisation and the dashed lines
the amplitude of the complex valued optimisation. The inset shows the true amplitudes of the
real valued control fields, in units of Rabi frequency. (b) Plots showing the optimal phase from
the complex values control, with the inset showing the true amplitudes of the complex valued
control fields. For a signal and control field detuning of −2π× 700 MHz, we have again plotted
the (c) normalised control field amplitudes, with the true amplitudes of the real valued control
field shown in the inset, and (d) the complex control field phases, along with the unnormalised
complex valued control field amplitudes.
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5.5 Warm vapour

While warm vapours offer significantly higher optical depths of hundreds of thousands, we must

now deal with the non-zero velocity of the atoms. Each atom will Doppler shift the light fields

depending on the relevant wavevector and velocity. We will first briefly return to the three-level

system with finite temperature, before expanding to the full manifold. The new equations can

be written as [280],

∂zEs(z, τ) = −
∑
v

√
pv dPge(v, z, τ) (5.80)

∂τPge(v, z, τ) = −(γge + i(∆s − ksv))Pge(v, z, τ) +
√
pv dEs(z, τ)− iΩesSgs(v, z, τ) (5.81)

∂τSgs(v, z, τ) = −(γgs + i ((∆s − ksv)− (∆c − kcv))Sgs(v, z, τ)− iΩ∗
esPge(v, z, τ) . (5.82)

For ks ̸= kc, the addition of velocity results in a velocity dependent two photon detuning

((∆s − ksv)− (∆c − kcv)). Due to the differing energies, over time velocity classes will become

out of phase with one another, leading to a reduction in retrieval efficiency.

After storage, when the control field has been turned off at time τ = 0, we can write the spin

wave as,

Sgs(v, z, τ) = exp
[
−γgs

2
τ
]

exp [i ((∆s − ksv)− (∆c − kcv)) τ ]Sgs(v, z, 0) , (5.83)

which we can then integrate over the velocity distribution to give,

Sgs(z, τ) = exp

[
−γgs

2
τ − T∆2

kkB

2M
τ 2
]

exp [i (∆s −∆c) τ ]Sgs(v, z, 0) . (5.84)

In the above, T refers to the ensemble temperature, kB the Boltzmann constant, and M is the

mass of an atom in the ensemble. We can identify an exponential decay due to γgs, along with

a decay which is shows quadratic exponential decay, termed Doppler dephasing.

In the Λ−scheme presented in this chapter, the signal and control field wavevectors are similar

enough that this Doppler dephasing is negligible, over the timescale of microseconds. However,
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Figure 5.12: (a) Ratio of memory storage efficiency at 400 K to the efficiency at 0 K (using
the optima obtained from gradient ascent in Section 5.2), plotted against the optical depth of
the atomic medium, for photon bandwidths of 2π × 1 MHz (blue), 2π × 100 MHz (green) and
2π × 1 GHz (purple). (b) Plot of storage efficiency as the control field peak Rabi frequency is
increased, for a decaying exponential control field with the same characteristic decay time as
the photon.

in Chapter 6 we will investigate systems for which this becomes a significant effect.

Another complication of warm vapours is the now velocity dependent single photon detuning

(∆s − ksv). Here, if the photon coherence is first mapped to atomic polarisation, each velocity

will begin to evolve with a differing phase. We would therefore expect higher bandwidths to

perform better in warm vapours as the shorter timescale of the memory interaction leaves less

time for the atomic polarisation to decohere.

In Fig. 5.12a, we plot the ratio of memory storage efficiency at an ensemble temperature of

T = 400 K (127◦C) to the efficiency at 0 K, as we vary the ensemble optical depth, while using

the optima derived in Section 5.2. We see that as we approach high optical depths, the optima

derived for higher bandwidths of photon tend to the T = 0 K case, while lower bandwidths

saturate at a lower value, due to the dephasing of atomic polarisation as the photon is absorbed.

However in reality, at temperatures of 400 K, we have optical depths of hundreds of thousands,

which will push us well into the adiabatic regime for all of the bandwidths we are considering.

We can crudely approximate the adiabatic control shape as a decaying exponential with the

same characteristic decay time as the signal photon, where since the optical depth is so large,

there is little decrease in efficiency from using the non-optimal shape. It is then sufficient to

vary the amplitude to find the peak efficiency. In Fig. 5.12b we have plotted the efficiency as

the control field peak Rabi frequency is varied, for a temperature of 400 K and d = 150000,
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which is the typical optical depth of 87Rb at this temperature in a standard vapour cell. For

all bandwidths we find that we can reach efficiencies over 90%, though we require much larger

Rabi frequencies when compared to the cold system. We find for maximum efficiencies of

98.9%, 98.5% and 96.9%, the required peak Rabi frequency is 250, 2800 and 9500 respectively,

in units of γge. In comparison, optimal Rabi frequencies of the cold system were on the order

of a few hundred γge (see Fig. 5.5). For a control beam radius of 1 mm, these Rabi frequencies

correspond to 80 mW, 10 W and 120 W respectively. We can see how for large bandwidths, in

order to achieve the required intensities, we would need to focus the control field to a smaller

beam waist.

It is possible to run the optimisation routine discussed throughout this chapter for warm

vapours, though currently the simulation takes too long to run for this to be completed in a

reasonable time. A more efficient simulation would allow warm systems to be optimised, while

imposing a limit in the available control field intensity, in order to find the best compromise.

Something neglected so far in this section is the loss of atoms from the interaction region,

as well as collisions with the vapour cell walls. While vapour cells may be coated to prevent

decoherence due to wall collisions, in practice, atoms will be lost from the interaction region on

the order of a microsecond in a warm vapour [300], though for smaller radii of control fields,

atoms will be lost from the interaction region at a faster rate. This limits the warm vapours use

for lower bandwidths such as 2π×1 MHz. However, since storing higher bandwidths is desirable

due to the larger time-bandwidth product, this is not really a limitation. Going forward, we

no longer consider 2π × 1 MHz input photons.

A further cause for concern is FWM. With the large optical depths and control Rabi frequencies

required in warm vapours, we can expect FWM noise to render our quantum memory useless.

We will now return to the scheme illustrated in Fig. 5.9a and how the inclusion of the excited

state manifold affects the warm vapour results.
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(a) (b)

Figure 5.13: (a) Normalised storage efficiency versus the atomic ensemble Doppler width as
a linear frequency, δDB, defined as in Eq.4.6, over the linear frequency splitting between the
D1 excited hyperfine states, δHF. Plotted are photon bandwidths of 2π × 100 MHz (green)
and 2π × 1 GHz (purple), where the efficiencies have been normalised to the δDB = 0 values.
The lines marked by squares refer to a photon detuning of −2π × 220 MHz from the F = 2
excited state of the 87Rb D1 transition, indicated by the black squares on Fig. 5.10a. The lines
marked by circles refer to a detuning of −2π×700 MHz, indicated by black circles on Fig. 5.10a.
Additionally for convenience, we have marked the corresponding δDB/δHF ratio for Rb87 and Cs
at 400 K. (b) Plot of storage efficiency as the control field peak Rabi frequency is varied, for a
decaying exponential control field with the same characteristic decay time as the photon.

5.5.1 Manifold

When expanding to the full excited manifold, the issue due to velocity classes becomes more

pronounced, as it becomes difficult to isolate which transition the photon will interact with. We

again focus on the two detunings labelled by the black squares and circles in Fig. 5.10a, keeping

the optical depth fixed at d = 2000, but make a toy model atom where we can easily vary the

linear Doppler width δDB (see Eq.4.6) and/or hyperfine spacing of the two excited D1 hyperfine

states, δHF. As we increase the ratio δDB/δHF, we we observe very different behaviour for the two

detunings, plotted in Fig. 5.13a. For a detuning of −2π×220 MHz (squares), the efficiency drops

off very quickly, whereas −2π × 700 MHz (circles) performs better for the both the 100 MHz

(green) and 1 GHz (purple) bandwidth photons, with the 100 MHz seemingly improving slightly

for certain ratios. The storage efficiency here has been normalised to the δDB = 0 values shown

in Fig.5.10. To compare our toy atom to realistic atoms, we have indicated the δDB/δHF ratio

for the D1 hyperfine states in Rb87 and Cs at T = 400K, by the labelled vertical black dashed

lines.

However, if we set our optical depth to 150000 and again use a decaying exponential control
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field we find that we cannot reach high efficiencies for any control field amplitude, as shown in

Fig. 5.13b. At high optical depth, it appears that the destructive interference between the two

excited state transitions prevents efficient storage, at least for the control fields used here. This

is where the gradient ascent optimisation method may be most useful, when paired with a faster

running simulation, perhaps finding a complex valued control field which could counteract the

destructive interference of the two excited state transitions, as was observed in Fig. 5.10a.

Despite this optimisation currently being intractable, a more attainable solution is to far detune

from the excited state manifold, as is the case in Raman memories [218, 237, 367]. Here the

memory dynamics are dominated by a single photon detuning, which is made many times larger

than the hyperfine state splitting and Doppler broadening.

Something else we have failed to discuss so far is how the retrieved photon is practically filtered

from the control field. Using polarisers to filter the orthogonally polarised control can achieve

rejection on the order of 1000 : 1, but given the control field is likely many milliwatts (which

must be filtered to below the single photon level), we need orders of magnitude better filtering.

Some spatial filtering may be possible if there is a small angle between the signal and control

fields, provided the collection pinhole is very far from the ensemble, though this is also typically

insufficient. Generally, many etalon filters are added after the memory setup to spectrally filter

out the control field. While these work well, with each one giving around 1000 : 1 rejection

again, multiple etalons are still required, with each requiring careful alignment and temperature

stabilisation. Additionally, the losses due to each interface concatenate to drastically reduce

the end to end efficiency.

Recently, a novel quantum memory protocol was demonstrated, combining a far detuned Raman

scheme with a ladder configuration of levels, referred to as off resonant cascaded absorption

(ORCA) [236] or fast ladder memory (FLAME) [301]. This scheme boasts immunity from

FWM noise as well as counter-propagating beams, making spatially filtering the control field

from the retrieved photon trivial. In the next chapter, we will examine the ORCA memory

scheme and how the optimisation technique used throughout this chapter may be applied to

this new configuration.



Chapter 6

Ladder Scheme

In the previous chapter we optimised the memory efficiency of Λ-type near-resonant memories

for cold atoms, such as those contained within a MOT. We showed how available optical depth

and four-wave mixing (FWM) noise significantly restrict the bandwidths that are possible to

store efficiently and with high fidelity. We then looked at warm vapours, which offer a much

improved optical depth, but the large Doppler broadening prevented efficient storage on the

87Rb D1 line due to being unable to isolate a single excited state transition. While it may

be possible to overcome this by extending the gradient ascent algorithm to warm vapours

(provided the simulation could be sped up) and modulating the phase of the control field,

an alternative solution are protocols where the signal photon is far-detuned from the excited

state. With the signal photon detuning much larger than the excited state hyperfine splitting

and Doppler broadening, the memory dynamics becomes entirely dominated by the photon

detuning, allowing us to approximate the excited manifold as a single state. Such a scheme

falls under the umbrella of Raman memories.

In this chapter, we will look at the Off-Resonant-Cascaded-Absorption (ORCA) [236] memory

scheme (also referred to as fast ladder memory or FLAME) [301], which is a Raman memory im-

plemented using a ladder configuration of energy levels, illustrated in Fig. 6.1a. After discussing

the differences between an ORCA memory and the near-resonant Λ-memories investigated last

chapter, we will adapt the gradient ascent algorithm to optimise the ORCA scheme. We ex-
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Figure 6.1: (a) Ladder configuration of levels, referred to as the ORCA scheme in the text.
A photon Ês, detuned from the |g⟩ → |e⟩ transition, is coupled to the orbital wave coherence
between the states |g⟩ and|s⟩ (represented by the purple oval) via a classical control field Ωc,
detuned from |e⟩ → |s⟩. (b) The photon and control field counter-propagate through the
ensemble. At time TR, where the storage interaction was completed at time T , we can either
retrieve into the forward or backward direction, depending on the direction of the retrieval
control field.

amine how the optima differ and scale compared with that of the lambda system; in particular

how the length of the cell and overlap of the optical fields becomes an important consideration.

Following this, we will investigate a similar scheme, namely the telecom ORCA (TORCA) pro-

tocol [343], which allows the storage of telecommunications wavelengths single photons with

Rb. Joining these schemes together, we will see how this also allows for wavelength conversion

between telecom and 780 nm light, before briefly discussing ways to extend the lifetimes of the

ORCA and TORCA protocols.

6.1 ORCA

Memories based on a Λ-configuration store the coherence between the two ground states. This

comes with the benefit of a long coherence lifetime of the spin wave. However we saw in

the previous chapter how there are some major drawbacks. First of all is four-wave mixing
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(FWM) noise. Due to the cross coupling of the control field to the signal transition, we are

severely limited in the bandwidth of photon we can store, unless we employ other techniques to

temper FWM, which add further complexity to the system, such as requiring optical pumping.

Secondly, due to the signal and control propagating in the same direction, up to some small

angle, it can be difficult to filter out the control field to below the single photon level without

introducing a lot of loss for the retrieved photons as well. We may also wish to use magnetically

insensitive states. Storage using the mF = 0 states required signal and control fields of the same

polarisation for the Λ-configuration, which would be difficult to separate. Alternatively, using

states mF = ±1 and mF ∓ 1 for the initial and storage states requires the signal wavevector to

be larger than the control wavevector, which may reduce efficiency due to phase mismatching

for backwards retrieval. Yet, we do not have to use the two ground states to store the atomic

coherence. In principle, any two states with a long enough lifetime (long compared with the

photon temporal duration) could constitute a useful quantum memory.

The ORCA scheme [236, 301] overcomes many of the difficulties associated with a Λ-type

memory. This scheme uses a ladder configuration of levels, with the control field mapping

the photon coherence to an atomic coherence between the initial ground state and a doubly

excited state, as shown in Fig. 6.1a - the stored coherence is termed an orbital wave. There

are three main differences to the storage interaction between the two memory schemes. Firstly,

the absorption of a photon in the Λ-type memory was followed by stimulated emission into

the mode of the control field, resulting in a spin wave with a momentum equal to ks − kc,

where ks refers to the photon wavevector and kc to the control field wavevector. That meant

we required copropagating beams (up to some small angle) to give the smallest resulting spin

wave momentum and therefore, the longest lived spin wave, see Eq. 5.84. In contrast, a ladder-

type memory absorbs both the input photon and a photon from the control field, forming an

orbital wave with momentum of ks + kc. This necessitates the two optical fields be counter-

propagating (again up to some small angle), illustrated in Fig. 6.1b, in order to produce the

lowest momentum orbital wave. This allows trivial spatial filtering of the photon from the

control field.

Secondly, since the two atomic transitions used are no longer restricted to starting and ending
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in the same hyperfine manifolds, the photon and control can have a much larger frequency

difference. Rather than a few gigahertz separation, limited by the ground hyperfine splitting

of whichever alkali metal we chose, the separation can now be many nanometers. As well as

allowing for further spectral filtering of the signal photon, this also effectively eliminates FWM

noise. As long as the control field remains a shorter wavelength than the signal field, we can

always correct the phase matching for backward retrieval by introducing an angle, with no

detriment to efficiency, provided we can make our control beam suitably large in diameter.

On top of this, there is no problem in using magnetically insensitive states, other than having

to optically pump to prepare the states. If we don’t require magnetically insensitive states,

unlike the Λ-scheme where we must empty the storage state of all population, in the ORCA

scheme, the doubly excited state is already unpopulated, so we don’t require any initial state

preparation.

The downside to this scheme is the orbital wave decay. The doubly excited state has no single

photon transitions to the ground state and so is longer lived than the intermediate excited

state, yet even so, the spin wave decays on a much faster timescale when compared with a

cold Λ-type memory. For example, the 87Rb state 5D5/2, used in Finkelstein et al. [301], has

an electronic decoherence rate of 240 ns. For applications where the memory lifetime is not as

critical, the ORCA scheme offers some significant advantages over Λ-type systems.

6.1.1 Equations of motion

While the equations governing our new configuration appear very similar to the Λ-case, there

are nonetheless some subtle differences in the dynamics. For a three level ladder configuration,

our equations of motion read,

∂zEs = −
√
d

2
Pge

∂τPge = −(γge + i∆s)Pge +

√
d

2
Es −

i

2
Ωes(τ + 2z/c)Sgs

∂τSgs = −(γgs + i(∆s + ∆c))Sgs −
i

2
Ω∗

es(τ + 2z/c)Pge ,

(6.1)
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where ∆c = ωc − ωse and Ωes = µ∗
esv

∗
cE∗

c

ℏ have been redefined. See Appendix B.1 for a full

derivation.

We have also redefined the macroscopic spin wave operator as,

Sgs =
1√
nδV

∑
a(r)

σ̃a
gs exp [i(∆s −∆c)τ + 2ikcz] , (6.2)

where we have included the longitudinal momentum of the control field in the co-moving ref-

erence frame of the signal photon, 2kc = 2ωc/c.

Apart from the change in definitions, Eqs. 6.1 differ from the Λ-configuration only due to the

inclusion of spin wave decay and a control field with a dependence on τ + 2z/c with 2z/c

representing the signal and control beam walk off.

If we define a characteristic duration of the control pulse, τcontrol, then the spatial length of

the control pulse is cτcontrol. For the case of cτcontrol ≫ L, where L is the length of the atomic

medium, we arrive at the short cell limit, and Eqs. 6.1 reduce to the copropagating case: Ωes(τ+

2z/c) ≈ Ωes(τ). In this limit, all the results from the previous chapter optimisation apply,

except without any FWM noise and with the addition of spin wave decay. However in practice

this restriction would limit the available optical depth and the bandwidth of photons capable

of being stored.

The opposite limit is where optical pulses are much shorter than the medium, either due to very

long cells or atoms within an optical fibre, or because of large bandwidth optical fields. In this

limit the two optical fields are able to completely pass each other in the medium. One potential

benefit of this, would be to allow for multiple temporal modes to be stored at different spatial

positions along the memory. While potentially useful for quantum information processing,

similar mappings have been used for quantum sensing [228].

Although it is possible to use the ladder scheme while near resonant with the intermediate

excited states, in this chapter we will focus on the far-detuned raman case, with the goal

of efficiently storing high bandwidth photons in a warm vapour. However, large detuning

comes at the cost of requiring much more optical depth and control field power to reach the
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high efficiencies compared with the near-resonant case. At this far-detuned limit, we can

assume that the atomic polarisation adiabatically follows the incident fields and set ∂τP = 0

[232,264,361,362]. We can therefore simplify our equations to,

∂zEs =
+i
√

d
2
Ωes(τ + 2z/c)Sgs − dEs

2(γe + i∆s)
(6.3)

∂τSgs = −
(
γs + i(∆s + ∆c) +

|Ωes(τ + 2z/c)|2

4(γe + i∆s)

)
Sgs −

i
√
d/2Ω∗

es(τ + 2z/c)Es
2(γe + i∆s)

(6.4)

where we have made the substitution Pge ≈
(√

d
2
Es − i

2
ΩesSgs

)
/(γge + i∆s). In the above set

of equations, we can identify the |Ωes|2 term as the AC stark shift produced by the control field.

The real and imaginary part of the dEs/[2(γe + i∆s)] term refer to absorption and dispersion

respectively.

6.1.2 Modification to optimisation

We can construct a similar optimisation metric as the previous chapter,

J =

∫ 1

0

dzSgs(z, T )S∗
gs(z, T )

+

∫ 1

0

dz

∫ T

0

dτ Ē∗s

−∂zEs +
+i
√

d
2
Ωes(τ + 2z/c)S − dEs

2(γe + i∆s)

+ c.c.

+

∫ 1

0

dz

∫ T

0

dτS̄∗
gs

[
− ∂τSgs −

(
γs + i(∆s + ∆c) +

|Ωes(τ + 2z/c)|2

4(γe + i∆s)

)
Sgs

−
i
√

d
2
Ω∗

es(τ + 2z/c)Es
2(γe + i∆s)

]
+ c.c. ,

(6.5)

although we now want to find the gradient of J in the co-moving frame of the control field.

This equates to finding the gradient ∂J
∂Ωes

(τ + 2z/c). To do so, we make the transformation
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y = τ + 2z/c and define the new macroscopic operators,

ξ(y, τ) = Es (τ + 2z/c, τ) (6.6)

σ(y, τ) = Sgs (τ + 2z/c, τ) (6.7)

Our new equations of motion are,

∂yξ(y, τ) =
+ic
√

d
2
Ω∗

es(y)σ − cdξ
4(γe + i∆s)

(6.8)

(∂τ + ∂y)σ(y, τ) = −
(
γs + i(∆s + ∆c) +

|Ωes(y)|2

4(γe + i∆s)

)
σ −

i
√

d
2
Ωes(y)ξ

2(γe + i∆s)
(6.9)

Now taking the Fourier transform in the τ direction, defined as,

f ′(y, k) =
1√
2π

∫ ∞

−∞
dτf(y, τ) exp [ikτ ] , (6.10)

results in,

∂yξ
′(y, k) =

+ic
√

d
2
Ω∗

es(y)σ′ − cdξ′

4(γe + i∆s)
(6.11)

∂yσ
′(y, k) = ikσ(y, k)−

(
γs + i(∆s + ∆c) +

|Ωes(y)|2

4(γe + i∆s)

)
σ′ −

i
√

d
2
Ωes(y)ξ′

2(γe + i∆s)
. (6.12)

In these transformed coordinates, the real-valued gradient reads,

∂J

∂Ω∗ (y) =

∫ 1

0

dk 2 Im

[√
d

2

(
ξ̄∗σ′c

4(γe + i∆s)
+

σ̄ξ′

2(γe − i∆s)

)]
(6.13)

− Ωes(y)Re

[
σ̄∗σ′

4(γe + i∆s)
+

σ̄σ′∗

4(γe − i∆s)

]
(6.14)
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With these transformed equations, we can derive expressions for the co-functions,

∂y ξ̄(y, k) =
−ic
√

d
2
Ω∗

esσ̄ + cdξ̄

4(γe − i∆s)
(6.15)

∂yσ̄(y, k) = ikσ(y, k) +

(
γs − i(∆s + ∆c) +

|Ωes|2

4(γe − i∆s)

)
σ̄ +

i
√

d
2
Ωesξ̄

2(γe − i∆s)
, (6.16)

which are precisely the transformed co-functions of Eqs. 6.3-6.4,

∂zĒs =
−i
√

d
2
Ωes(τ + 2z/c)S̄gs + dĒs

2(γe − i∆s)
(6.17)

∂τ S̄gs =

(
γs + i(∆s + ∆c) +

|Ωes(τ + 2z/c)|2

4(γe − i∆s)

)
Sgs +

i
√

d
2
Ω∗

es(τ + 2z/c)Es
2(γe − i∆s)

, (6.18)

with the following boundary conditions,

Ēs(L, τ) = 0 (6.19)

S̄gs(z, T ) = Sgs(z, T ) (6.20)

So to perform the same optimisation for backwards retrieval as the previous chapter, we must

store using our trial control field using Eqs. 6.3-6.4, then solve using Eqs. 6.17-6.18 (with time

and space reversed), subject to the boundary conditions described in Eqs. 6.19-6.20. We then

transform the coherences to obtain ξ(y, k), ξ̄(y, k), σ(y, k) and σ̄(y, k) and compute the gradient

defined in Eq. 6.14.

The resulting transformations are illustrated in Fig. 6.2. We can see how the transform τ +

2z/c → y results in two axis which each describe the retarded time frame of either the co-

propagating photon, or the counter-propagating control field. If we examine the gradient in

Eq. 6.14 more closely, we see that the first term resembles the near-resonant co-propagating

gradient, in that it compares the coherences before and after time reversal. The second term did

not appear in the near-resonant case directly, but is a consequence of adiabatically eliminating

Pge from the system, which directly includes the AC stark shift. This second term is an explicit

penalty for control field power while coherence is stored in Sgs, i.e. informs the optimisation to
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Figure 6.2: Plots showing visually the outcome of the transform τ + 2z/c → y, followed by a
Fourier transform along τ . Shown are the (a) counter propagating control field Ωes(z, τ), (b)
and the transformed control field Ωes(y, τ), where the diagonal white lines indicate the edge of
the ensemble. (c) Plot of the non-transformed square of the photon field E2s (z, τ) propagating
through the ensemble, (d) then transformed to E2s (y, τ), (e) and finally Fourier transformed
along τ to give E2s (y, k), with k the Fourier conjugate variable of τ . (f) Plot of the non-
transformed square of the spin ave S2

gs(z, τ), (g) then transformed to S2
gs(y, τ) (h) and finally

Fourier transformed along τ , resulting in S2
gs(y, k)
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counteract the AC stark shift.

6.1.3 Results

We examine the two bandwidths from the end of Chapter 5, namely 100 MHz and 1 GHz.

Each is detuned by 1.5 GHz and 3 GHz respectively, so as to be well away from the Doppler

broadened intermediate excited state and have negligible overlap between the photon bandwidth

and the intermediate states, while still maintaining an appreciable atom-light coupling. We also

investigate three key lengths of atomic ensemble: 3 cm, comparable to a typical magneto optical

trap (MOT), 7.5 cm, the length of a standard Rb vapour cell and 80 cm, to investigate dynamics

relevant to fibre based systems. For a 100 MHz photon, 3 cm and 7.5 cm correspond to the short

cell regime, and 80 cm resides in the long cell regime. For a 1 GHz photon, we have 3 cm in the

intermediate regime, whereas 7.5 cm and 80 cm are in the long cell regime.

For simulating storage, it is now important to ensure that the time frame of the simulation is

long enough to allow for the control pulse to completely traverse the atomic ensemble, otherwise

we will bias the gradient optimisation to a particular time window, which will in turn bias the

resulting optimal spin wave to a region in space, particularly in the long cell regime. We

simulate a total time of L/c, with the input photon arriving at time equal to L/(2c). As

the length of the cell or bandwidth increases, choosing to solve with too coarse a mesh will

result in non-smooth coherences, particularly along a diagonal, which can be exasperated by

the interpolation required for the transform τ + 2z/c → y, as well as the subsequent Fourier

transform.

We optimise the ORCA memory for cold atoms, so that the optimisation runs in a reasonable

time frame, but extend the optical depths considered to 15000 due to Raman memories requiring

a higher optical depth to reach large efficiencies. While these optical depths are not currently

obtainable in cold systems, our goal is to use the derived optimal control fields with warm

vapours, and so the high cold optical depth is simply to obtain the adiabatic regime optima.

In contrast to the previous chapter, we found that the best initial condition for the control field
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Figure 6.3: Optimisation results for ensembles of length 3 cm, 7.5 cm and 80 cm, shown in blue,
green and purple respectively. Plot of optimal storage efficiency as a function of optical depth,
for an input photon bandwidth of (a) 100 MHz and (b) 1 GHz. Optimal control fields at the
midpoint of the cell for input photon bandwidths of (c) 100 MHz and (d) 1 GHz. The photon
temporal shape is shown in grey. Insets show the true amplitudes of the control fields in terms
of rabi frequency.

was a Gaussian with a full-width-half-maximum equal to 1/4 of the storage simulation time

and an amplitude equal to the bandwidth of the input photon. The control field was initialised

and optimised at the midpoint of the cell, and interpolated for each point in z to simulate

counter-propagation. The results for the real-valued optimisation are shown in Fig. 6.3.

In Fig. 6.3a we plot the optimised storage efficiency as optical depth is increased, for ensembles

of length 3 cm (blue), 7.5 cm (green) and 80 cm (purple). We will examine the total efficiency

after returning to warm vapours. For optical depths currently accessible in a MOT (≈ 1000)

we see that it was only possible to achieve around 70% storage efficiency, whereas for the three

level near-resonant case in the last chapter, the optimum reached 90%. The efficiencies for 3 cm
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and 7.5 cm are largely indiscernible, as they are both in the short cell regime. As we move

to 80 cm, we see a substantial decrease in efficiency as the interaction region (the space-time

area where the photon field and control field overlap) is reduced. The results for a 1 GHz input

photon are plotted in Fig. 6.3b. For all lengths, this bandwidth is no longer in the short cell

regime, leading to a significant reduction in storage efficiency.

The optmised control fields in the short cell regime, (plotted at the midpoint of the cell in

Fig. 6.3c) for a photon bandwidth of 100 MHz, lengths of 3 cm and 7.5 cm, both resemble the

adiabatic case from near-resonant co-propgating memories, but with slightly higher amplitudes

(shown in the inset). As we approach the long cell regime, the peak of the control field moves

earlier in time, resulting in the intersection of photon and control field happening at an earlier

point in the cell from the perspective of the photon. We also observe a second feature appearing

at a later time. The inset of Fig. 6.3c shows this second feature as a second bump, acting

to spread out the control pulse area, thereby increasing the interaction region, along with a

reduction in the length of the exponential tail, which would otherwise propagate the coherence

further through the ensemble, leading to more loss. Note that each length has been normalised

to the same duration of time for ease of comparison. The ragged edges seen on this later bump

are simulation artifacts from too coarse a computation mesh combined with the transforms

required to calculate the gradient. In the inset of Fig. 6.3c we see how there is very little change

in the peak amplitudes, with a small reduction as length increased to 80 cm.

In Fig. 6.3d, we have plotted how the control fields change for a photon bandwidth of 1 GHz,

where the system is now in the intermediate/long cell regime, along with becoming less adia-

batic. For L = 3 cm, the control field appears similar to the 100 MHz L = 80 cm case, except

the initial decaying exponential is somewhat smeared out, similarly to the near-resonant case

as we moved away from the adiabatic regime. Additionally, we see a general spreading out of

the control pulse when compare to the 100 MHz optima, resulting in an increased interaction

region. The oscillations seen for L = 80 cm don’t significantly alter the efficiency and likely

are the result of too few time and space steps used in the optimisation. In the inset, we again

see very little change in the Rabi frequencies required, though with an overall higher peak

amplitude when compared to the 100 MHz case.
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(a) (b)

Figure 6.4: Spin waves resulting from optimised real-valued control fields, for ensembles of
length 0.03 m (blue), 0.075 m (green) and 1 m (purple), and with an input photon bandwidth
of (a) 100 MHz and (b) 1 GHz.

The resulting spin waves from the optimisation are shown in Fig. 6.4. For a photon bandwidth

of 100 MHz, (Fig. 6.4a) with L = 3 cm and L = 7.5 cm (short cell regime), the spin waves agree

well with those from the previous chapter, where the majority of the coherence is stored at the

entry to the atomic ensemble. As the length is increased, the optimisation still favours this, but

there is a resulting sharp drop of in spin wave amplitude at z ≈ 0.4. For a 1 GHz input photon,

further into the long cell limit, the optimum spin waves found deviate from the co-propagating

case substantially. There still appears to be some preference for more spin wave amplitude at

the entry to the cell for L = 3 cm and L = 7.5 cm, but the optimisation seems to result in the

entire length of the ensemble being used. For the most extreme case of L = 80 cm, the spin

wave coherence is well localised in exactly the middle of the ensemble.

6.1.4 Extending to warm vapours and full manifold

We will now look at how the previously derived optima scale to warm vapours. Similarly to

the previous chapter, we will investigate how efficiency changes as we increase the ensemble

temperature to 400 K, for both a simple three level system as well as after including the full

excited state manifold.

In Fig. 6.5a, we plot the ratio of memory storage efficiency at an ensemble temperature of

T = 400 K (127◦C) to the efficiency at 0 K, as we vary the ensemble optical depth, while using

the optima derived in Section 6.1.3, for an input photon bandwidth of 100 MHz and ensemble
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Figure 6.5: Ratio of memory storage efficiency at 400 K to the efficiency at 0 K (using the
optima obtained from gradient ascent in Section 6.1.3), plotted against the optical depth of the
atomic medium, for ensemble lengths of 3 cm (blue), 7.5 cm (green) and 80 cm (purple), and
photon bandwidths of (a) 2π×100 MHz (b) and 2π×1 GHz. Both insets show zoomed in plots
of optical depths above 2000 to compare efficiency ratios close to one. In the lower two plots,
we show normalised storage efficiency versus the atomic ensemble Doppler width as a linear
frequency, δDB, defined as in Eq.4.6, over the linear frequency splitting between the D1 excited
hyperfine states, δHF. Plotted are photon bandwidths of (c) 2π× 100 MHz (d) and 2π× 1 GHz,
where the efficiencies have been normalised to the δDB = 0 values. Additionally for convenience,
we have marked the corresponding δDB/δHF ratio for Rb87 and Cs at 400 K.
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lengths of 3 cm (blue), 7.5 cm (green) and 80 cm (purple). We see that as we approach optical

depths of around 2000, the see the storage efficiency tend to the T = 0 K case for all lengths.

This is in contrast to the case previously in Fig. 5.12, where a 100 MHz input photon failed to

reach the T = 0 K as we increased the optical depth. Due to the off-resonant Raman nature

of the interaction, the intermediate excited state is never populated and so the protocol does

not suffer from the same dephasing of atomic polarisation. In the inset, we zoom in on the

later optical depths to distinguish the efficiency ratio close to one. For the 80 cm (purple) case,

the efficiency ratio above one may again be due to simulation artifacts, originating from too

coarse a computation mesh. In Fig. 6.5b, we show the same plot but with an input photon

of bandwidth 1 GHz, which shows an efficiency ratio which approaches one at lower optical

depths. This may due to the larger single photon detuning used, leading to further resistance

to the Doppler broadening of the atoms.

In Fig. 6.5c and Fig. 6.5d, we again plot the results for 100 MHz and 1 GHz respectively, but

after including the full hyperfine manifold of the intermediate state (see Appendix B.1) and we

vary the ratio δDB/δHF, where δDB denotes the linear Doppler width (see Eq. 4.6) and δHF is

the hyperfine splitting of the two excited D1 hyperfine states. We simulated the configuration

where all of the population was prepared in the ground state |F = 2,mF = −2⟩, the input

photon was polarised to be σ+ and the intermediate manifold was chosen to be 5P3/2 (D2

transition). While the spacing between the hyperfine states are different on the D2 transition

to δHF (D1 transition), they are related and so δHF still serves as a reasonable indicator of the

hyperfine splitting of the intermediate state manifold. The control field was also set to be σ+

and at two photon resonance with the storage state |F = 1,mF = 0⟩ in the manifold 5D5/2 (the

remaining hyperfine states in the storage manifold were not simulated). This is by no means the

optimal choice of states and polarisations, but serves to check how well the previously derived

optima extrapolate to more complex systems and allows us to compare the ORCA scheme to

the near-resonant scheme presented in the previous chapter.

We see a similar story as for the three level model (Fig. 5.13a), in that the efficiency decreases as

the δDB/δHF ratio is increased. However, the decrease is much less than the near-resonant scheme

presented in the previous chapter, due to the far-detuned nature of the interaction generalising



178 Chapter 6. Ladder Scheme

(a) (b) (c)

Figure 6.6: Plots of storage efficiency as the control field peak Rabi frequency is increased, using
the off resonant cascaded absorption (ORCA) memory protocol with a decaying exponential
control field where the characteristic decay time (τc) is equal to that of the photon, but with
the initial edge ramped on from zero to max height over τc/10. The line colours correspond to
ensemble lengths of 3 cm (blue), 7.5 cm (green) and 80 cm (purple), and plotted are the cases for
an input photon bandwidth of (a) 100 MHz and (b) 1 GHz. (c) Normalised retrieval efficiency
for backwards retrieval from a warm vapour, as a function of retrieval time: time between when
storage was completed and when the retrieval control pulse entered the cell.

to warm vapours and more complicated hyperfine structures more favourably. Again we have

indicated the δDB/δHF ratio for real atoms Rb87 and Cs to show how well some of the optima

derived here would be expected to perform in warm atomic ensembles found in the lab. The

longer cell regimes appear to perform more poorly than the rest, most likely due to the increase

in susceptibility to simulation error.

For the near-resonant memories in the previous chapter, we found that for the three level case,

while there was some drop in efficiency as the temperature of the ensemble was increased,

after increasing the optical depth to typical warm vapour levels and approximating the control

field as a decaying exponential of the same bandwidth as the signal photon, with an increased

control field amplitude, we could attain greater than 90% efficiency. However, when including

the excited manifold, the high optical depth resulted in storage efficiencies of less than < 30%,

even after adjusting the control field amplitude. In Fig. 6.6a and b (input photon of 100 MHz and

1 GHz respectively), we have plotted how the storage efficiency varies with maximum control

field Rabi frequency, while simulating the full excited hyperfine manifold and approximating the

adiabatic control field as a ramped-on exponential decay - that is, rather than a instantaneous

step on, the amplitude is ramped up to the maximum value on a timescale of τc/10, where τc

is the characteristic decay time of the input photon. Omitting this ramp reduces the storage

efficiency by around 10%. The ensemble was initialised with an optical depth of 150000 and

temperature of 400 K. We observe higher efficiencies than the previous chapter, suggesting
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that the off-resonant scheme offers some protection against the multiple transitions in the

intermediate state manifold. However, the efficiency is noticeably lower than that seen for the

three level case, though the peak Rabi frequencies required for maximum efficiency are of a

similar order to the cold three-level derived optima. The lower efficiencies are likely due to a

non-optimal choice of states and polarisations. In the long cell regime, the ramped decaying

exponential appears to not generalise as well. The oscillations seen in Fig. 6.6b are likely due

to too coarse a mesh in time, space and velocity.

Doppler dephasing

In the previous chapter, we briefly discussed Doppler depahsing, and how differing signal and

control field wavelengths can lead to the phase of the stored coherence in different velocity

classes to evolve at a different rate. For a Λ−type memory, Doppler dephasing was negligible

over a storage time on the order of microseconds. Yet, for the ORCA protocol, while having

signal and control fields separated by nanometers has many benefits, the downside is a much

increased Doppler dephasing rate. In Finkelstein et al. [301], ORCA was implemented in a warm

Rb vapour where the state |e⟩ was the 5P3/2 manifold (D2 transition) and the storage state |s⟩

was the 5D5/2 manifold. The wavelengths for the signal and control fields were therefore 780 nm

and 776 nm respectively. Due to such differing wavevectors, the timescale for Doppler dephasing

is just 175 ns. In Fig. 6.6c we have plotted the results of simulating the retrieval efficiency as a

function of time between storage and retrieval control pulse, showing the characteristic Gaussian

decay associated with Doppler dephasing.

How the phase of the spin wave evolves in time is illustrated in Fig. 6.7 where on the left is the

spin wave phase just after storage, showing how the phase varies through a short section of the

ensemble, for atoms at different velocities. Directly below the real part of the averaged spin

wave is plotted . Plotted on the right is the spin wave phase after 175 ns where we can see how

different velocities have evolved to have a distinct phase at the same position in the ensemble.

The resulting real part of the averaged spin wave is shown below, where we can clearly see a

reduced visibility when compared to the plot on the left.

Storage manifold
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Figure 6.7: Left: Spin wave immediately after storage using the off-resonant cascaded absorp-
tion (ORCA) protocol, for a signal wavelength 780 nm and control wavelength 776 nm. Shown
below is the real part of that averaged spin wave. Right: Spin wave after 2 ns, with the corre-
sponding real part of the average plotted below.

In the above discussion and simulations, while we have accounted for the intermediate excited

state manifold, we have ignored the hyperfine manifold of the storage state. Without any optical

preparation of the atoms, transitions to multiple storage states are possible. Since each state

has a different energy, the orbital waves stored in each accumulate phase at a different rate,

leading to a beating in the retrieval efficiency, as observed in Finkelstein et al. [301]. By first

optically preparing the atoms in a particular ground state, the number of storage states involved

in the memory can be reduced, thereby removing the retrieval efficiency beating. Even so, the

existence of multiple storage states may lead to differing optima then those derived from the

three-level case. As for the metric, we could choose to maximise the stored coherence involving

specified storage states or coherence stored in the full storage manifold. In Appendix B.1,

we outline the necessary modifications to the theory and optimisation including all hyperfine

manifolds and Zeeman sublevels.

Alternatively, using a large magnetic field would allow for transitions between individual Zee-

man sublevels to be resolved [369].
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6.2 Telecom-ORCA

Recently, Thomas et al. [343] used the same ladder configuration as ORCA, but with 4D5/2

used as the storage state, which has a transition of 1529.3 nm above 5P3/2, rather than the

5D5/2 state used as the storage state for ORCA in the previous section [301]. Additionally,

the transitions addressed by the signal and control field were swapped, with the control pulse

now addressing the ground and intermediate states, and the signal addressing the intermediate

to storage states. A schematic of this scheme is pictured on the left of Fig. 6.8a, between the

states |g⟩, |e1⟩ and |s⟩, with optical fields Ωc1 (wavelength of 780 nm) and ET (1529 nm). This

allowed Rb to be used to store telecom light, with a total memory efficiency of 20%, which

is competitive with other telecom compatible quantum memories [370], while boasting room

temperature operation and no atomic preparation required beforehand (besides the heating

of a Rb vapour cell). In contrast, other telecom quantum memories are typically based on

solid state crystals and require cryogenic cooling [370, 371, 372, 373]. On top of this, the Rb

telecom-ORCA (TORCA) memory benefits from a much higher optical depth of 150000 when

compared to other telecom memories, which are typically on the order of 10 [370, 373], but at

most 150 [342]. This allowed read in efficiencies of up to 80% for a 1 GHz input signal field at

6 GHz detuning [343]. However, due to the two optical fields being 780 nm and 1529 nm, the

large wavevector mismatch results in a Doppler dephasing time of ∼ 2 ns.

In Appendix B.2 we derive the equations of motion for TORCA. These are presented below,

∂zET = −
i
√

d
2
Ω∗

cSgs

2(γs + γe + i∆t)
, (6.21)

∂τSgs = −
(
γs + i(∆c + ∆t) +

|Ωc|2

4(γs + γe + i∆t)

)
Sgs −

i
√

d
2
ΩcET

2(γe + i∆c)
(6.22)

where we can see they are almost identical to ORCA equations of the previous section, except for

the absence of the absorption/dispersion term in the equation for ∂zET , along with changes to

the complex decay term featured in the denominators. The lack of absorption/dispersion is due

to the absence of population which can directly interact with the photon, while the modification
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Figure 6.8: (a) Combined schematic of the telecom off resonant cascaded absorption protocol
(TORCA) for storage of telecom compatible photons with a 780 nm control field, using the
states |g⟩, |e1⟩ and |s⟩, and the standard off resonant cascaded absorption protocol (ORCA)
for storing 780 nm photons with a telecom control field, using the states |g⟩, |e2⟩ and |s⟩.
Using one protocol for storage and the other for retrieval results in a quantum memory with
wavelength conversion. (b) Schematic showing the directions of the fields for the storage of
telecom compatible single photons with a 780 nm control field, and retrieval of 780 nm photons
using a telecom control field.

to the decay results from the dephasing rate of the coherence between levels |e⟩ ⟨s|.

As with the ORCA protocol, the optical depths needed to realise an efficient TORCA memory

require warm vapours. While in the previous section we saw that the optima for ORCA gener-

alised very well to warm vapours, the dramatic increase in Doppler dephasing associated with

TORCA means that any optima derived for a cold ensemble will not translate well to warm

systems. In this section, rather than optimise storage of telecom light using the TORCA, which

ends up being remarkably similar to the results from the previous section (for low optical depths

at least), we will instead focus on the storage of 780 nm light using the ORCA protocol, but re-

trieve using the TORCA protocol, thereby theoretically showing 780 nm to 1529 nm wavelength

conversion combined with a memory. This can be viewed as FWM with a controllable delay and

the scheme is illustrated in Fig. 6.8. The left side of Fig. 6.8a shows the usual TORCA scheme,

while on the right side (using states |g⟩, |e2⟩ and |s⟩) is the ORCA protocol but with a control

field Ωc2 of wavelength 1529 nm. States |e1⟩ and |e2⟩ in principle need not be different states.

In reality, due to the short lifetime of the stored coherence in a warm vapour, the conversion

process would have to be completed almost immediately. We will examine telecom conversion
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(a) (b) (c)

Figure 6.9: Amplitudes of the spin wave for the telecom off-resonant cascaded absorption
(TORCA) protocol, when storage was completed using the control fields optimised for the off
resonant cascaded absorption (ORCA) protocol, for ensemble lengths of 3 cm (blue), 7.5 cm
(green) and 80 cm (purple) with an input photon of bandwidth (a) 100 MHz, and (b) 1 GHz.
(c) Normalised retrieval efficiency for backwards retrieval from a warm vapour, as a function of
retrieval time: time between when storage was completed and when the retrieval control pulse
entered the cell. Plotted in solid blue is the retrieval efficiency for the TORCA protocol, while
the dashed blue line is the retrieval efficiency for the ORCA protocol for comparison.

for zero temperature as a proof of principle and later discuss potential approaches to reduce

Doppler dephasing and extend the memory lifetime of TORCA (and ORCA). It should also be

noted that the reverse process could be used to convert telecom photons to 780 nm.

Wavelength conversion

For optimising backward retrieval of ORCA, as retrieval was the time reverse of storage and

therefore both processes had the same optimal orbital wave, it was sufficient to only optimise

storage. In Fig. 6.9a and b (input 1529 nm photon of 100 MHz and 1 GHz respectively), we

have plotted the resulting orbital wave modes when using the ORCA optimal control fields

with the TORCA protocol, for an optical depth of 15000 and a temperature of 0 K. While the

orbital waves resemble those found in the ORCA protocol, there is some dissimilarity. For a

100 MHz input photon, the orbital wave is not as localised at the beginning of the ensemble,

perhaps because the dispersion cannot be leveraged to slow down the photon. The resulting

storage efficiencies for TORCA storage are also slightly lower, though all of the total retrieval

efficiencies for the TORCA protocol at this bandwidth are larger than those of the ORCA, as

shown in Table 6.1, where retrieval for both ORCA and TORCA were performed 6τc = 10 ns

after storage. While TORCA appears to be more efficient, even without the correct optima,

where it falls short is the much reduced spin wave lifetime due to Doppler dephasing. In

Fig. 6.9c, the solid blue line shows how the retrieval efficiency for TORCA decreases for an

ensemble temperature of 400 K, over 2 ns. Also shown for comparison is the retrieval efficiency
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Input
photon
bandwidth

L
(cm)

ORCA
storage
efficiency
(%)

TORCA
storage
efficiency
(%)

ORCA
total
efficiency
(%)

TORCA
total
efficiency
(%)

Telecom
conversion
efficiency
(%)

100 MHz
3 96.1 94.3 90.7 93.3 72.2
7.5 95.3 93.6 89.4 92.6 78.2
80 51.5 50 23.1 42.3 9.5

1 GHz
3 74.4 65.2 53.1 62.5 50.4
7.5 77.8 28.3 53.4 21.1 52.7
80 18.1 24.4 1.4 8.2 1

Table 6.1: Table showing the efficiencies for the off resonant cascaded absorption (ORCA) and
telecom off resonant cascaded absorption (TORCA) protocols, while using the optimal control
fields for the ORCA protocol. In the final column are the efficiencies for storage with the ORCA
protocol, followed by retrieval with the TORCA protocol, thereby realising delayed wavelength
conversion between 780 nm photons and 1529 nm photons.

for ORCA (dashed blue line) for the same parameters.

With a 1 GHz photon (Fig. 6.9b), for lengths 3 cm and 7.5 cm we see a similar story, with the

orbital wave distributed more evenly across the ensemble. At a length of 80 cm, while the

orbital wave is similarly localised in the middle of the ensemble, it appears smoother than the

ORCA case and with the amplitude collected together rather than in two peaks, suggesting

that the absence of dispersion allows the photon to be more effectively stored in the long cell

limit (or that the simulation had an easier time of solving the equations). This is reflected in

Table 6.1 where the storage efficiency for 1 GHz, 80 cm TORCA exceeds that of ORCA. For

total efficiency, TORCA again exceeds ORCA at lengths 3 cm and 80 cm, where retrieval was

performed 1 ns after storage. Strangely for a 7.5 cm long ensemble, TORCA performs much

worse.

For the case of telecom conversion, since the ORCA and TORCA orbital waves differ, it is

not the case that the optimisation for the ORCA protocol is sufficient to optimise telecom

conversion. A combined optimisation which takes into account the full telecom conversion

process is needed, where the telecom field used to read the 780 nm photon into the memory

and the 780 nm control field used to read out a telecom photon, in general will not have the

same shape, and some compromise would have to be made between the two halves of the

conversion process. To do so, the gradient ascent method could be extended to optimise both
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fields simultaneously, but we leave this to future work. However, motivated by the comparable

efficiencies of ORCA and TORCA shown in Table 6.1, here we instead use the previously derived

optima for ORCA but change the wavelength of the control field from 1529 nm to 780 nm when

retrieving. The efficiencies are shown in the final column of Table 6.1 for an optical depth of

15000 and a temperature of 0 K. We can see how the conversion process lowers the overall

efficiency, but that we still achieve an appreciable amount of conversion. Optimisation of the

full process may allow for efficiencies approaching those of the individual protocols.

In Fig. 6.10, we show how the output photon temporal shape differs for the case of telecom

conversion (solid line), compared with ORCA read out (dashed). For the short cell limit

(bandwidth of 100 MHz, and ensemble length of 3 cm and 7.5 cm), plotted in Fig. 6.10a and

Fig. 6.10c, there is very little difference between the output photons, apart from a decrease in

area for the telecom conversion. This can be attributed to the lack of length for dispersion to

significantly alter the result. However, as we move to the longer cell limits, we observe a much

larger discrepancy. It is also important to point out how the short cell limit is the only one

which faithfully reproduces the exponential decaying input photon (up to time reversal).

Increasing the orbital wave lifetime

Even with the non-optimum control fields, increasing the optical depth by moving to a warm

vapour could be used to increase the conversion efficiency to over 90%. Yet any increase in

efficiency would be counteracted by the accompanying Doppler dephasing, which would decrease

the efficiency to zero over the course of a few nanoseconds, and even fast readout would be

subject to significant loss.

In order to realise delayed telecom conversion, or TORCA as a useful quantum memory, we must

find a way to extend it lifetime. Firstly, Doppler dephasing is the greatest source of decoherence.

For the standard ORCA in Rb, Finkelstein et al. [374] reduced Doppler dephasing to negligible

amounts by using an additional classical control field, to induce a light shift which counteracted

the different rates of phase evolution of each velocity class. We show this schematically in

Fig. 6.11a, where we again store the photon coherence between states |g⟩ and |s⟩, but we add a

third field labelled by Ω1 and dashed, detuned from an auxiliary state |aux⟩. In Fig. 6.11c, we
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Square of the output photon electric field temporal shape after storage with the
off resonant cascaded absorption (ORCA) protocol and subsequent backward retrieval using
ORCA (dashed line) or telecom off resonant cascaded absorption (TORCA, solid line), for an
ensemble length of 3 cm and input photon bandwidth of (a) 100 MHz (b) 1 GHz, length of
7.5 cm, bandwidth of (c) 100 MHz(d) 1 GHz, and length of 80 cm, bandwidth of (e) 100 MHz
(f) 1 GHz.
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Figure 6.11: Strategies to improve the lifetime of the telecom off resonant cascaded absorption
(TORCA) protocol. (a) Adapted from Finkelstein et al. [374] where this setup removed Doppler
dephasing from the off resonant cascaded absorption (ORCA) protocol. This scheme stores
the coherence between states |g⟩ and |s⟩ as in the usual TORCA protocol, but features an
additional classical field Ω1, detuned from an auxiliary state |aux⟩, which acts to light shift the
individual velocity classes in the opposite way to the Doppler shift. The result is that the phase
evolution for each of the velocity classes is more uniform, thereby reducing Doppler dephasing
and increasing the memory lifetime up to the electronic state lifetime of |s⟩. (b) An alternative
strategy where an additional control field acts to map the stored coherence from the original
storage state |s1⟩, to a different storage state |s2⟩. The wavelength of the second control field
Ω1 is chosen such that all three optical fields may be placed at an angle to produce an orbital
wave with minimal momentum. This scheme also benefits from using a higher lying excited
state which typically have longer lifetimes than 4D used for |s1⟩ in the TORCA protocol. (c)
Diagram showing the relative direction of the optical fields for the schemes previously described.
The angles between the optical fields shown are not exact. (d) Scheme to map the coherence
initially stored between states |g⟩ and |s⟩, to between |g⟩ and |d⟩, resembling the spin wave from
Λ−memories discussed in the previous chapter. (e) Diagram showing the relative direction of
the four optical fields involved.
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show the required direction of dashed Ω1 field in relation to the optical fields, in order for the

light induced phase shift to cancel the Doppler dephasing. While this certainly can extend the

memory lifetime by removing Doppler dephasing, the best case scenario is a decay rate equal

to the storage state lifetime, which for ORCA is 240 ns and for TORCA is 94 ns.

Another method for removing Doppler dephasing is to use a second classical field to drive

another transition and remove momentum from the spin wave. Such a scheme is illustrated

in Fig. 6.11b. One potential choice for |s2⟩ is the 7P level, located 1179 nm above the 4D

state, with corresponding electronic lifetime of 270 ns [375]. With the correct choice of angles,

between all the fields, the orbital wave momentum can theoretically be completely cancelled.

However, the angles required to fully conjugate the wavevector mismatch would make such a

scheme difficult to realise in practice, as well as dramatically reducing the interaction region.

An alternative is to instead map down to the other ground state, illustrated in Fig. 6.11d, as

is the case with Λ−memories. This requires the addition of an extra two classical fields, which

would have to be synchronised in time with Ωc (at least to within a nanosecond). Furthermore,

we would need to empty state |d⟩ through optical pumping before performing the storage and

there is also the potential to add FWM noise into the system, along with any other problems

associated with Λ−memories which ORCA circumvented. The upside is that such a scheme

extends all the benefits of Λ−memories to telecom compatible wavelengths. Overall, this scheme

adds significant experimental complexity, but would allow all beams to be co-linear, provided

|e⟩ and |b⟩ resided in the same hyperfine manifold (see Fig. 6.11e for the required arrangement

of the fields), so may turn out to be the easiest to implement practically and has the potential

for the longest memory lifetime.
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Conclusion and Future Work

7.1 Summary

The research laid out in this thesis worked towards integrating dibenzoterrylene (DBT) molecules

with rubidium (Rb) ensembles. In Chapter 2, we laid out the theory for characterising DBT

molecules, along with the experimental setup used in this thesis. Chapter 3 presented exper-

imental results, investigating the DC Stark tuning of DBT emission as a function of angle

relative to the transition dipole moment, together with experiments examining other tuning

mechanisms. We went on to realise a method for deterministically placing DBT containing

nanocrystals into pre-fabricated photonic structures. Additionally, we presented results from

a novel host matrix for DBT, namely para-Terphenyl, which showed great promise as a single

photon source.

Following this, Chapter 4 moved onto Rb, where we developed a rate equation model to cap-

ture the population dynamics, together with an experiment showing the interaction of a single

photon level probe with a warm Rb vapour and how the aforementioned model reproduced the

measured spectra to a high accuracy. Chapter 5 laid out the theory for Λ−type quantum mem-

ories, and introduced a gradient ascent optimisation method to for determining the control field

amplitude (and optionally phase) that maximised single photon storage followed by backwards

retrieval. We investigated the dependence of efficiency on the optical depth of the Rb ensemble

189
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and the dependence on the bandwidth of the incident photons, for the case of a photon with

a decaying exponential shape, as is emitted from DBT. We then extended our model to de-

scribe four-wave mixing (FWM) noise, and how the optimsation technique may be adapted to

counteract FWM. Next, we included the full excited state manifold of the D1 transition in Rb,

compatible with photons emitted from the DBT red insertion site in crystalline anthracene,

where we detailed a configuration that removed FWM altogether, and found how efficiency

also depended on the detuning within the excited state manifold. We identified optical depth

as a key limitation for storing high bandwidth photons in cold Rb memories, and so expanded

the model to describe warm vapours where high optical depths are readily available. We found

that destructive interference between the multiple transitions to the excited state prevented

efficient storage.

In Chapter 6, we investigated a different memory system, using a ladder configuration of levels

with the input photon far-detuned from the intermediate state, resulting in no FWM noise and

resistance to interference between the intermediate states. The gradient ascent optimisation was

adapted to deal with the counter-propagating optical fields required for the ladder configuration

and allowed us to derive control fields which achieved high efficiency storage of high bandwidth

photons in warm Rb vapour, at the expense of storage time. We then combined these results

with a ladder configuration, capable of storing telecom single photons, and showed how delayed

FWM could be used to realise wavelength conversion within the memory process. Finally we

discussed ways to improve on the storage time of ladder type memories.

In this final chapter, we will describe some of the next steps for the projects described in this

thesis, and the current progress in these directions.

7.2 Future work

Dibenzoterrylene

For DBT in Anthracene (Ac), the main research direction is to increase the brightness of the

sources by redirecting the emission, such as through bullseye gratings, as well as modifying
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Figure 7.1: (a) 3D illustration of a vertical-emitting defect cavity design, where molten an-
thracene (Ac) containing dibenzoterrylene (DBT), shown in yellow, can be flown through the
side of the structure. The multiple lines either side of the DBT/Ac are alternating layers of
niobium pentoxide (Nb2O5) and silica (SiO2) which form distributed Bragg reflectors above and
below the DBT molecules, thereby forming a cavity. (b) 2D cut through of the cavity design,
showing how a DBT molecule would be situated within the structure. The blue and red bold
lines represent the positive and negative sides of an electrode, allowing the DBT molecules to
be dynamically tuned.

the DBT emission rate through solid state cavities. One promising research direction is a

pillar cavity design, similar to quantum dot pillar cavity desgins [376], where DBT is placed

between two distributed Bragg reflectors, effectively redirecting the emission and forming a

cavity around the DBT. The design is shown in Fig 7.1. Molten DBT/Ac can be flown through

the side of the structure, as was demonstrated in Chapter 2 when capillary channels were filled

with DBT/Ac. Additionally, Stark electrodes can be added, as indicated by the bold blue and

red lines in Fig 7.1b, to allow tuning of the molecular emission, in order to adjust the coupling

of the DBT to the cavity or the coupling to other media such as Rb, as well as improve the

spectral overlap between multiple emitters thereby increasing the indistinguishability.

Another future direction will be to use the hole filling method described in Section 1.3 to

incorporate PMMA nanocapsules containing DBT into existing photonic structures, such as

bullseye gratings or photonic crystal cavities. On the other hand, PMMA balls offer some

protection to DBT during the fabrication processes, so patterning structures around deposited

nanocapsules is a parallel research direction.

For DBT to be a useful photon source, the issue of laser tuning must be addressed. That is,

we require some method by which to prevent or deterministically turn on or off laser induced
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tuning of the emission frequency. Other host materials, such as n-hexadecane may offer some

protection from electron transfer and therefore prevent laser tuning. Aside from new host

matrices, the process of laser tuning itself warrants more investigation. If there is a threshold

for laser tuning, DBT placed in a cavity would require less laser power to excite, while perhaps

inhibiting any multiple photon transition which leads to laser tuning. In this instance, tuning

would still be possible with the appropriate light intensity, or by exposing DBT from the side

of the cavity, allowing tunable emission without the need to pattern electrodes. Then, laser

tuning may turn out to offer a real advantage over other photonic emitters.

As for DBT in para-terphenyl (pT), it still remains to be seen whether more macroscopic

crystals produce more repeatable stable emitters, or whether the nanocrystal growth could be

refined.

Optical pumping in rubidium

The degree of similarity between simulation and experiment presented in Chapter 4 shows how

the theory accurately describes the population dynamics. At the end of Chapter 4, we looked to

apply the simulation to calculating the intensity of pumping light needed to prepare population

in a particular hyperfine ground states of rubidium (Rb), in both a typical vapour cell, as well

as an optical fibre.

The memory optimisations presented in Chapter 5 and 6 assumed all the population began

in one ground state (in a single mF state), such as the case for a magneto optical trap. To

obtain this starting condition in a warm vapour however, optical pumping would be required.

Expanding the simulation to include all mF states could aid in pumping vapours optimally, as

well as helping confirm experimentally whether the population had been adequately prepared,

by predicting the spectrum that would be measured from a weak probe state interacting with

the vapour.

Memory simulation

For the memory simulation, the biggest improvement to be made is in speeding up the code.

With a faster simulation, it becomes feasible to optimise the warm vapour with a complex
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control field, which may allow for near-resonant schemes to be utilised in warm vapours.

Further, expanding the four-wave mixing theory to the full hyperfine manifold, would mean we

could test the feasibility of using the Rb D2 line for storage of photons emitted by DBT occu-

pying the main insertion site in anthracene. Including all Zeeman sublevels, thereby capturing

the effects of the light field polarisation and non-trivial initial population distributions, would

allow for a more realistic simulation to inform future experimental improvements.

In the case of the ladder schemes presented in Chapter 6, we saw how the optima derived from

the simple three level system generalised well to the more complicated case involving the full

intermediate state hyperfine manifold. However, the storage state also features a hyperfine

manifold, along with Zeeman sublevels. It will be important to expand the simulation to

include the full level structure and the necessary modifications to the theory are outlined in

Appendix B.1.

Finally, in order to make the telecom off-resonant cascaded absorption (TORCA) or telecom

conversion protocol (and to some extent the off-resonant cascaded absorption (ORCA) protocol)

viable in warm vapours, the protocols must be expanded to include extra electronic levels.

Including the protocols outlined at the end of Chapter 6 to extend the lifetime would allow the

feasibility of the various protocols to be checked, as well as optimised.

7.2.1 Memory experimental work

Magneto-optical trap

Out of the theory and numerical simulations of this thesis, it has become clear that a promising

route to efficient memories would be a cold ensemble of atoms with a high optical depth - such

as is the case in a magneto-optical trap (MOT). To test the optima derived in Chapter 5, we

have begun constructing our own purposely designed MOT.

The design, shown in Fig. 7.2, utilises both a 2D and 3D MOT, where the 2D MOT has a

higher background pressure and is connected to the lower pressure 3D MOT chamber by a
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Figure 7.2: (a) 3D CAD render of the design for a magneto-optical trap (MOT), currently
under construction. The design features a 2D MOT which is loaded from a rubidium (Rb)
dispenser and a 3D MOT, which is loaded from the 2D MOT via a differential pumping tube,
not shown. (b) Cross-section of the MOT design, where the differential tube connecting the
2D and 3D MOT is shown.

differential pumping stage. The 2D MOT captures Rb atoms from a thermal vapour, ejected

by a Rb dispenser. Such a source of Rb prevents the chamber from achieving high vacuum

and limits the achievable optical depth in setups where the 3D MOT is directly loaded from a

thermal vapour. The 2D MOT cools atoms in two out of three dimensions, and Rb is allowed

to flow through the differential pumping stage, or alternatively it may be assisted through a

push beam. This provides an atomic flux to be loaded into the 3D MOT, which has a lower

mean temperature and allows the 3D MOT to be held at a higher vacuum. The result is a

MOT which can reach peak atomic densities up to 2 × 1011 cm−3 [377], corresponding to an

optical depth of around 4000. Such high optical depths would allow for the efficient storage

and retrieval of 100 MHz photons.

However, for storage the presence of both light fields and magnetic fields can lead to increased

dephasing and therefore reduce the memory lifetime - this is particularly problematic for mag-

netically sensitive states. To circumvent this, the trapping light and magnetic field is switched

off but time must be allowed for the magnetic field and any induced eddy currents in the sur-

rounding metal to decay. In this time, atoms are lost from the interaction region, reducing the

overall optical depth. On top of this, optical pumping may be required to prepare the popula-

tion in a desired mF state, adding extra waiting time which can lead to a further reduction in

optical depth. To shorten the time between switching the trapping fields off and performing the
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storage interaction, fast switching and high current electronics can be combined with optimised

current waveforms to dynamically correct for eddy currents and stray magnetic fields around

the setup, allowing zero magnetic field to be reached in a shorter time.

A further possibility is the misleadingly named 2D MOT [378], which is not the same as the

2D MOT mentioned previously. This configuration utilises trapping beams that are not along

the null lines of the magnetic field, but rather at a 45◦ angle to them, combined with a third

pair of beams along the longitudinal direction. In this arrangement, the signal photon maybe

directed along the zero field line, potentially removing the need to switch off the magnetic field,

or at least reducing the sensitivity to the MOT magnetic field.

Pulse carving

In order to get the most efficiency for a given optical depth, we require a way to shape the control

pulses to the optima found in Chapters 5 and 6. For this we intend to use a 20 GHz bandwidth

electro-optic modulator (EOM, NIR-MX800-LN-20, iXblue) to carve the pulses from a cw

laser, after which the pulses will be amplified using a tapered amplifier (TA, Toptica) to reach

the necessary peak powers. The EOM will be controlled via an arbitrary waveform generator

(AWG, SDR14TX-PXIE, Teledyne), which will be programmed to produce the theoretical

optimal control pulse. Further optimisation to account for experimental imperfections may be

required.

When not being used, a DC bias voltage is fed to the EOM to maintain minimum transmission.

Overtime the required DC bias can drift and so needs to be corrected. Typically, the DC bias is

locked by dithering the bias voltage and performing lock-in amplification on the resulting signal.

Instead, we have designed a PCB which performs a gradient ascent using a micro-controller,

to maintain minimum output in between runs. The lock will then be muted while running the

experiment. The maximum extinction from an EOM is still non-zero (the DC extinction ratio

is of order 1000 : 1) and so there will be a constant leaked control field to the experiment.

To prevent this we may need to place an additional acousto-optic modulator (which need not

be as fast as the EOM) on the output to remove the control field during storage or during

preparation of the atoms.
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Figure 7.3: (a) 3D CAD render of the tapered amplifier (TA) mount. The seed laser enters
from the left, where a pick-off is used to monitor the input power. The TA housing contains
two lenses, used to couple the seed laser light to the TA chip, which is located in the centre
of the housing. Finally a cylindrical lense is situated just before the output of the device to
correct for the asymmetry in the beam output from the TA chip. (b) Cross-section of the TA
housing. Shown are the asphere mounts, which will be machined with a fine thread, to allow
for fine adjustment of the asphere collimation, needed for coupling in and out of the TA chip.
The position of the TA chip is also shown. Each section of the lens mounting assembly features
centering rods, along with adjustable mounting screws for both vertical and horizontal (not
shown) fine adjustment. Below the TA housing is a heating element, which in combination
with a thermistor contained within the TA housing (not shown), will be used to regulate the
TA temperature.



7.2. Future work 197

The TA chip is housed in a home-built mount, inspired by the design presented in Kangara et

al. [379]. Our deisgn is illustrated in Fig. 7.3. The full system is shown in Fig. 7.3a, where the

TA chip is located within the TA housing, which will be made up of two brass blocks. The

surrounding base and frame will be made of aluminium and will allow the system to be enclosed

and secured to the optical table. Dust accumulation on the chip can lead to destruction of the

TA, so it important that once aligned, the TA chip is completely covered. A cross-section of

the TA housing is provided in Fig. 7.3b.

The seed laser enters from the left of Fig. 7.3a, where a pick-off mirror sends ≈ 1% of the input

laser to a photodiode to aid in the TA alignment, as well as allow for the input power to be

monitored. Supplying the TA with high intensity input light while it is not powered on can

lead to damage of the TA. In addition, supplying the TA with low input laser intensity while

the chip is powered on, can result in thermal degradation of the chip, as most of the electrical

power will be converted into heat, rather than optical power [379]. Therefore, it is necessary

to monitor the input power to the device, in order to feedback into the current controller for

the TA chip and prevent damage.

The laser then continues to the TA housing, where it is directed through an asphere, located in

the left asphere mount in Fig. 7.3b, which couples the seed laser into the TA chip. Both asphere

mounts will be machined to have a fine thread, to allow for fine control over the collimation.

The TA housing will be held together by centering rods, as well as featuring adjustable screws to

fine tune the position of the aspheres relative to the chip, which is mounted in the middle of the

assembly. The output light from the TA is then collimated through the second ashpere, located

in the right asphere mount of Fig. 7.3b, before passing through a cylindrical lens, shown to the

right of Fig. 7.3a. The cylindrical lens is needed to correct for the asymmetric beam output

from the TA. Furthermore, the TA will produce broadband amplified spontaneous emission, so

additional spectral filtering of the TA may be needed at the output.

The TA housing is situated on a heating element to regulate the temperature of the chip, due

to the high electrical currents involved. The temperature is measured by way of a thermistor

located in the TA housing assembly. Not shown in Fig. 7.3 are the electrical connections to the
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TA chip, thermistor and heating element.

Upon combining the aforementioned devices, we will proceed to demonstrate long-lived atomic

storage of on-demand single photons generated by organic molecules. These techniques will

then be used in future demonstrations of entanglement swapping and quantum networking.



Appendix A

Modified Radon transform

In Chapter 3, to determine the Stark tuning coefficients, we fit several 2D Lorentzians of the

form,

L2D =
A

(ν − [kV 2 +mV + d])2 +
(
Γ2

2

)2 +B , (A.1)

to 2D data, an example of which is shown in Fig. A.1a. In Eq. A.1, A denotes the amplitude, ν

is the frequency in hertz, V the applied voltage, B is the background and Γ2 is the frequency

full-width-half-maxmimum of the emission peak. In the square brackets, the coefficients k, m

and d characterise the curve, gradient and central frequency at V = 0, respectively.

In order to obtain good fits to the data, which totalled over 400 Stark tuning molecules, we

required a method to provide good initial parameters for m and d. Initialising the coefficient k

as zero was sufficient to obtain a good fit. To acquire estimates for m and d, we performed a

modified Radon transform.

The Radon transform is an integral transform which takes a function defined on a plane and

integrates along a particular line. By performing line integrals and varying the gradient and

y-axis offset of the lines, a 2D map can be constructed where coordinates corresponding to m

and d represent the totaled intensity along that line. The largest peaks of this transformed

function correspond to lines which closely followed the tuning molecular emission in Fig. A.1a.

The final requirement was an estimate on the number of DBT emission lines present in the

199
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kcounts/s
(a) (b)

Figure A.1: (a) Density plot showing a collection of bright molecular resonances tuning with
applied voltage. (b) After applying the modified Radon transform, the resulting lines, shown
in white, are layered over the original density plot. The parameters from these lines can then
be used as initial guesses for the fit detailed in Eq. A.1

scan. To obtain this, we counted the number of peaks, defined by a certain threshold above

the background, at each voltage and the mode of the resulting list was taken to be the number

of (easily discernible) emission lines in a scan. We can then select this number of tallest peaks

from the Radon transform to arrive a set of lines which are plotted in white in Fig. A.1b.



Appendix B

Memory simulation sundries

B.1 ORCA derivation

This derivation will largely resemble that in Chapter 5 for the Λ−type memory for copropagat-

ing signal and control fields, and closely follows the derivation in Ref. [264].

Atomic coherences

We have the total system Hamiltonian,

H = HA +HED +HL , (B.1)

with HA = ℏ
∑

j ωjσjj the atomic Hamiltonian where σjj is the population in state |j⟩ and

HED = −µ̂ ·E is the electric dipole Hamiltonian, with µ̂ the atomic transition dipole operator

and E is the total electric field. The final term, HL, is the optical free-field Hamiltonian of the

control and photon fields.

We want to find how the atomic coherences evolve in time using the Heisenberg equation,

ℏ∂tσjk = i[σjk, HA +HED +HL] . (B.2)

where HL always commutes with σjk so we will neglect it going forward.
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For the ladder configuration of energy levels, as is the case with off-resonant cascaded absorption

(ORCA, see Fig. 6.1a), we can write the dipole operator as µ̂ = µgeσge + µseσse + h.c., where

µjk and σjk = |j⟩ ⟨k| are the transition dipole strengths and transition operator between states

j and k. We have labelled the ground state as |g⟩, the intermediate excited state |e⟩ and the

storage state |s⟩. The final term h.c. denotes the hermitian conjugate.

The total electric field E = Ec +Es is made up of the classical control field Ec and a quantum

signal field Es, which we will assume only propagates along the z-axis with negligible divergence

such that we can invoke the paraxial approximation [232]. We write our control field with

central angular frequency ωc as,

Ec = vc
Ec(z, t)

2
exp[iωc(t+ z/c)] + c.c.

= vc
Ec(z, t)

2
exp[iωc(t− z/c)] exp[−2ikcz] + c.c. ,

(B.3)

with vc denoting the polarisation vector of the control field and Ec is the slowly-varying spatio-

temporal field amplitude, where we have included a factor of 1/2 so that the amplitude of Ec

is Ec due to the addition of the complex conjugate, c.c..

The signal field requires a quantum mechanical description, which we write in a similar form

to the control [232],

Es = ivsgs
Es(z, t)

2
exp[iωs(t− z/c)] + h.c. , (B.4)

with gs =
√

2πg(ωs), where g(ω) =
√

ℏω/4πϵ0c is the photon mode amplitude. In Eq. B.4,

the exponent features a minus rather than plus, due to the counter propagating nature of the

signal and control fields. We have also defined the slowly varying photon amplitude as,

Es(z, t) =
exp[−iωs(t− z/c)]√

2π

∫
dω âs(ω, t) exp[−iωz/c] , (B.5)

where âs(z, t) is the slowly varying broadband annihilation operator.

We will make the assumption that most of the population remains in the ground state. which
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results in the following equations for the atomic coherences,

ℏ∂tσge = iℏωegσge − iE ·
(
µ∗

ge(σgg − σee) + µesσgs
)

ℏ∂tσgs = iℏωsgσgs − iE ·
(
µ∗

esσgs − µ∗
geσes

)
ℏ∂tσes = iℏωseσes − iE ·

(
µ∗

es(σee − σss)− µgeσgs
)
,

(B.6)

where ωjk = ωj − ωk.

We proceed to transform each of the coherences to a frame rotating at the corresponding

resonance frequency, σ̃jk = σjk exp[−iωkjτ ], where τ = t− z/c is the retarded time. With this

transformation we have,

ℏ∂τ σ̃ge = −iE ·
(
µ∗

ge exp[−iωegτ ] + µesσ̃gs exp[−iωesτ ]
)

ℏ∂τ σ̃gs = −iE ·
(
µ∗

esσ̃ge exp[+iωesτ ]− µ∗
geσ̃es exp[−iωegτ ]

)
ℏ∂τ σ̃es = +iE ·

(
µgeσ̃gs exp[+iωegτ ]

)
.

(B.7)

Next we insert the full expression for E, assuming that the signal field only couples to the

|g⟩ → |e⟩ transition, the control field only couples to |s⟩ → |e⟩, and only keep terms oscillating

at the difference frequencies (the rotating wave approximation),

ℏ∂τ σ̃ge = −iµ∗
ge

(
ivsgs

Es
2

exp[+i∆sτ ]

)
− iµesσ̃gs

(
vc
Ec
2

exp[+i∆cτ ] exp[−2ikcz]

)
ℏ∂τ σ̃gs = −iµ∗

esσ̃ge

(
v∗
c

E∗c
2

exp[−i∆cτ ] exp[+2ikcz]

)
+ iµ∗

geσ̃es

(
ivsgs

Es
2

exp[+i∆sτ ]

)
ℏ∂τ σ̃es = +iµgeσ̃gs

(
−iv∗

sgs
E†s
2

exp[−i∆sτ ]

)
,

(B.8)

where we have defined ∆s = ωs − ωeg and ∆c = ωc − ωes and exp[−2ikcz] accounts for the

longitudinal momentum of the counter-propagating control field. We can make a further sim-

plification by only keeping terms that are linear in coherence: any atomic coherence in the

system will have originated from the photon coherence, so the multiplication of an atomic co-

herence by the photon coherence is second order and can be assumed to be small [232]. This
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leaves us with two equations for the atomic coherences,

ℏ∂τ σ̃ge =
µ∗

ge · vsgsEs
2

exp[+i∆sτ ]− iµes · vcEcσ̃gs
2

exp[+i∆cτ ] exp[−2ikcz]

ℏ∂τ σ̃gs = −iµ
∗
es · v∗

cE∗c σ̃ge
2

exp[−i∆cτ ] exp[+2ikcz] .

(B.9)

Photon propagation

Following the same derivation as Chapter 5 we arrive at the propagation equation for the signal

field, (
∂z +

1

c
∂t

)
Es = −µ0ω

2
s

gsks
v∗
s · P̃ s . (B.10)

Macroscopic coherences

We relate the macroscopic polarisation P̃s with the single atomic coherence σge by writing,

P̃s =
√
Nvµge

( 1√
NvδV

∑
a(r)

σ̃a
ge exp[−i∆sτ ]

)
, (B.11)

where Nv is the atomic number density, δV is the volume of an infinitesimal cylindrical voxel

and the atoms are labelled by the index a. We can define macroscopic operators as in Chapter 5,

such that,

Pge =
1√
NvδV

∑
a(r)

σ̃a
ge exp[−i∆sτ ] , (B.12)

but we must change the definition of the orbital wave operator to incorporate the longitudinal

momentum,

Sgs =
1√
NvδV

∑
a(r)

σ̃a
gs exp[−i(∆s −∆c)τ ] exp[−2ikcz] . (B.13)

These operators are defined such that they obey the bosonic commutation relation.

We can now write down equations of motion for the macroscopic operators and the photon

field, with decoherence included, transforming to the reference frame co-propagating with the
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photon and control field, and writing our constants in a dimensionless form, we have,

∂zEs = −
√
d

2
Pge

(B.14)

∂τPge = −(γe + i∆s)Pge +

√
d

2
Es −

i

2
Ωes(τ + 2z/c)Sgs

(B.15)

∂τSgs = −i(∆s −∆c)−
i

2
Ω∗

es(τ + 2z/c)Pge (B.16)

Adiabatic elimination

In Chapter 6, we investigated the regime where the single photon detuning was much larger

than the bandwidths of the photon and control fields, allowing us to make the adiabatic ap-

proximation and set ∂τPge ≈ 0, leaving us with,

∂zEs =
+i
√

d
2
Ωes(τ + 2z/c)Sgs − dEs

2(γe + i∆s)
(B.17)

∂τSgs = −
(
γs + i(∆s + ∆c) +

|Ωes(τ + 2z/c)|2

4(γe + i∆s)

)
Sgs −

i
√
d/2Ω∗

es(τ + 2z/c)Es
2(γe + i∆s)

(B.18)

Most general set of equations

We can extend our system to describe all hyperfine states, Zeeman sublevels and velocity classes

of our system. We redefine d/2 → d, and Ω/2 → Ω to avoid carrying around factors of two.

We introduce the index g, j, q to label the electronic ground, intermediate and storage states

respectively, along with mg,j,q to label the corresponding Zeeman sublevels. The velocity class

is labeled by v, while τ and z index the time and space coordinates. Finally we use Q to index

left and right circularly polarised light. The full set of equations can then be written in terms
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of high dimensional tensors,

∂zE (τ,z,Q) =

+ i
∑

g,mg ,j,mj ,v

√d(g,mg ,j,mj ,v,Q)

∑
q,mq

(∑
Q

(
Ω

(j,mj ,q,mq ,Q)
c

[
C(τ,z,Q)

]∗)
S
(τ,z,g,mg ,q,mq ,v)
gs

)
γe + i∆

(g,j,v)
s


−

∑
g,mg ,j,mj ,v,Q

d(g,mg ,j,mj ,v,Q)E (τ,z,Q)

γe + i∆g,j,v
s

(B.19)

∂τS
(τ,z,g,mg ,q,mq ,v)
gs = −(γs + i∆(g,q,v)

gs )S(τ,z,g,mg ,q,mq ,v)
gs

−
∑
j,mj

∑
Q

(
Ω(g,mg ,j,mj ,Q)

c C(τ,z,Q)
) ∑q,mq

(∑
Q

(
Ω

(j,mj ,q,mq ,Q)
c

[
C(τ,z,Q)

]∗)
S
(τ,z,g,mg ,q,mq ,v)
gs

)
γe + i∆

(j,q,v)
s


− i
∑
j,mj

∑Q

(
Ω

(g,mg ,j,mj ,Q)
c C(τ,z,Q)

)
γe + i∆

(g,j,v)
c

∑
Q

(√
d(j,mj ,q,mq ,v,Q)E (τ,z,Q)

) ,

(B.20)

where we have incorporated the ground state population distribution into d(g,mg ,j,mj ,v,Q). Addi-

tionally, the control field has been split into the transition dipole strengths Ω
(g,mg ,j,mj ,Q)
c and the

classical electric field C(τ,z,Q). While a relatively compact formalism, setting out the equations

in this way is also conducive to speeding up the simulation. Python packages such as Numpy

use C code which is highly optimised for performing vectorised mathematical operations and

so framing the equations this way could result in orders of magnitude speed up.

B.2 TORCA derivation

The derivation for telecom off-resonant cascaded absorption (TORCA) is similar to the previous

ORCA derivation. Nevertheless, there are some key differences. We define the detunings,

∆IR = ωIR − ωeg (B.21)

∆T = ωT − ωse , (B.22)
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where ωjk = ωj − ωk, and the subscripts IR and T refer to the infrared and telecom optical

fields respectively. In the case of TORCA, the infrared field is the control field and the telecom

field is the signal photon.

Atomic coherences

Similarly to the ORCA derivation we have the following equations for the atomic coherences,

ℏ∂tσ̃ge = −iE · [µ∗
ge(σgg − σee) exp[−iωegτ ] + µesσ̃gs exp[+iωseτ ]] (B.23)

ℏ∂tσ̃gs = −iE · [µ∗
esσ̃ge exp[−iωseτ ]− µ∗

geσ̃es exp[−iωegτ ]] (B.24)

ℏ∂tσ̃es = −iE · [µ∗
esσee exp[−iωseτ ]− µgeσ̃gs exp[+iωegτ ]] . (B.25)

Provided the control field detuning (∆IR) is large enough, we again make the approximation

that we do not populate |e⟩ and so set σgg = 1 and σee = σss = 0. The equations for ORCA

and TORCA begin to diverge when multiplying out E,

ℏ∂tσ̃ge = −iµ∗
gevIREIR exp[+i∆IRτ ] exp[−2ikIRz]− µesvTgTE∗T σ̃gs exp[−i∆T τ ] (B.26)

ℏ∂tσ̃gs = iµ∗
esvTgTET σ̃ge exp[+i∆T τ ] + iµ∗

gevIREIRσ̃es exp[+i∆IRτ ] exp[−2ikIRz] (B.27)

ℏ∂tσ̃es = +iµgevIREIRσ̃gs exp[−i∆IRτ ] exp[+2ikIRz] , (B.28)

where we have absorbed factors of 1/2 into the definitions for ET ad Ec. We remove terms

pertaining to a photon coherence multiplying an atomic coherence which resulted from a photon

coherence - linear approximation. Crucially, this does not remove the equation for ∂tσ̃es unlike

the other protocols presented in this thesis,

ℏ∂tσ̃ge = −iµ∗
gevIREIR exp[+i∆IRτ ] exp[−2ikIRz] (B.29)

ℏ∂tσ̃gs = iµ∗
esvTgTET σ̃ge exp[+i∆T τ ] + iµ∗

gevIREIRσ̃es exp[+i∆IRτ ] exp[−2ikIRz] (B.30)

ℏ∂tσ̃es = +iµgevIREIRσ̃gs exp[−i∆IRτ ] exp[+2ikIRz] (B.31)
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Photon propagation

The photon propagation equation for the telecom electric field is,

(
∂z +

1

c
∂t

)
ET = −µ0ω

2
T

gTkT
v∗
T · P̃ T . (B.32)

Macroscopic coherences

The macroscopic polarisation P̃ T is related to the σes coherence as,

P̃T =
√
Nvµes

( 1√
NvδV

∑
a(r)

σ̃a
es exp[−i∆T τ ]

)
, (B.33)

so we define the macroscopic operators,

Pes =
1√
nδV

∑
a(r)

σ̃a
es exp[−i∆T τ ] (B.34)

Sgs =
1√
nδV

∑
a(r)

σ̃a
gs exp[−i(∆IR + ∆T )τ ] exp[+2ikIRz] , (B.35)

which each obey the bosonic commutation relations.

We also define,

Pge =
1

nδV

∑
a(r)

σ̃a
ge exp[−i∆IRτ ] exp[+2ikIRz] , (B.36)

which does not obey the bosonic commutation relations and therefore does not represent an

annihilation operator as [Pge(r, t), P
†
ge(r, t)] = 0 for all r and t, but just serves the purpose of

tidying up the equations. Note that,

∫
V

P †
esPesdV = Ns (B.37)∫

V

S†
gsSgsdV = Ns (B.38)
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where Ns are the number of excitations is the state |s⟩, while,

∫
V

P †
gePgedV ∈ [0, 1] . (B.39)

Inserting these operators into Eqs. B.29 - B.31, including decay, moving to the frame co-moving

with the photon and writing variables in a dimensionless form, we have,

∂zEt = −
√
dPes (B.40)

∂tPge = −(γe + i∆c)Pge − iΩc(τ + 2z/c) (B.41)

∂tSgs = −(γs + i(∆c + ∆t))Sgs + iΩc(τ + 2z/c)Pes + i
√
dPgeEt (B.42)

∂tPes = −(γe + γs + i∆t)Pes + iΩ∗
c(τ + 2z/c)Sgs . (B.43)

where d = |κ|2L/γe = µ∗
esvTgTL/(ℏγe) and Ω = µ∗

gevIREIR/(ℏγe) are dimensionless.

Adiabatic approximation

For signal and control field detunings much larger than their respective bandwidths, we can set

∂τPge = ∂τPes = 0, leading to,

∂zEt =
−i
√
dΩ(τ + 2z/c)S

γe + i∆c

∂τS = −
(
γs + i(∆t + ∆c) +

|Ω(τ + 2z/c)|2

γe + γs + i∆t

)
S − i

√
dΩ∗(τ + 2z/c)Et
γe + i∆c

,

(B.44)

Notice the key difference between TORCA and ORCA equations is the absence of the dispersion

term from the equation for ∂zEt, as well as the modification of the decays on the denominator.

For Eqs. 6.21-6.22 we should remember that we absorbed a factor of 1/2 into our definitions for

ET and Ec. We can recover these equations by redefining d→ d/2 and Ωcv → Ωc/2.

Due to the control field being off resonant from the populated ground state, generalising to

include all hyperfine states and Zeeman sublevels is more complicated, and is left to future

work.
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B.3 Gradient ascent

B.3.1 Wolfe conditions

Throughout the optimisations presented in Chapter 5 and 6, we varied the step size α of the

gradient ascent so as to guarantee quick convergence. In Chapter 5, the optimisation was

initialised with an amplitude of 1/(10τc) (and phase equal to zero for complex optimisation)

at all time, where τc is the characteristic decay time of the exponentially decaying photon

temporal envelope. After each step, the efficiency and gradient for the next step were calculated

to determine whether the step would meet the Wolfe conditions,

η (Ωi+1) ≥ η (Ωi) + c1αi

∣∣∣∣∂J∂Ω

∣∣∣∣ (B.45)∣∣∣∣ ∂J

∂Ωi+1

∣∣∣∣ ≤ c2

∣∣∣∣ ∂J∂Ωi

∣∣∣∣ , (B.46)

with c1, c2 ∈ (0, 1). For all the optimisations presented in this thesis, we set c1 = 1× 10−8 and

c2 = 0.9. The first of the Wolfe conditions (Eq. B.45) sets an upper bound on the step size,

requiring that αi increases η sufficiently. If this condition was violated, the step size was reduced

by a factor of two, and the efficiency and gradient for the next step were recalculated. This

was repeated until Eq. B.45 was satisfied. The second Wolfe condition (Eq. B.46) sets a lower

bound on the step size, requiring that αi has reduced the gradient sufficiently. If this condition

is not met, we increase the step size by a factor of 1.1, until it is satisfied. The optimisation

proceeds until the efficiency has converged to within 0.01%, after taking the average of the last

three runs.

In Chapter 6 we found that the best performing initial condition was a Gaussian with full-

width-half-maximum equal to a 1/4 of the simulation time and an amplitude equal to the input

photon bandwidth. The initial step size was set such that the first alteration to the control field

was on the order of its amplitude, as the resulting gradient after transforming the coherences

ended up being much larger than for the Λ−type memory optimisation. A dynamic step size

was employed as before until the efficiency has converged to within 0.01%.
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B.3.2 Extension for four-wave mixing noise

In Section 5.3, we extended the simple three-level Λ−type memory to include four-wave mixing

(FWM) noise. For reference, the modified equations were,

∂zEs = −
√
d

2
Pge

(B.47)

∂zEF =

√
d

2

Ωes

∆HF

Sgs (B.48)

∂τPge = −(1 + i∆s − 2iδls)Pge +

√
d

2
Es −

i

2
ΩesSgs

(B.49)

∂τSgs = −i(∆s −∆c − δls)Sgs −
i

2
Ω∗Pge −

i

2

√
d

2

Ωes

∆HF

E∗F , (B.50)

where ∆HF denotes the hyperfine splitting of the ground states and δls refers to the time-

dependent light shift δls = |Ωge|2/∆HF , with Ωge referring to control field coupling strength on

the |g⟩ → |e⟩ transition.

We then adapted the gradient ascent technique to reduce the amount of FWM noise in the

system. The cofunctions read,

∂zĒs = −
√
d

2
P̄ge

(B.51)

∂zĒF =

√
d

2

Ωes

∆HF

S̄gs (B.52)

∂τ P̄ge = (1− i∆s + 2iδls)P̄ge +

√
d

2
Ēs −

i

2
ΩesS̄gs

(B.53)

∂τ S̄gs = −i(∆s −∆c − δls)S̄gs −
i

2
Ω∗P̄ge −

i

2

√
d

2

Ωes

∆HF

Ē∗F , (B.54)

and the associated boundary conditions,

Ēs(L, τ) = 0 (B.55)

ĒF (L, τ) = −ηstorageEF (B.56)

P̄ge(z, T ) = 0 (B.57)

S̄gs(z, T ) = Sgs(z, T ) (1−F ηFWM) (B.58)
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where we have defined,

ηstorage =

∫ 1

0

dz S∗(z, T )S(z, T ) (B.59)

ηFWM =

∫ 1

0

dτ E∗F (L, τ)EF (L, τ) . (B.60)

It should be noted that the Eqs B.51 and Eqs B.52 are equivalent to Eqs B.47 and Eqs B.48

after time and space reversal, provided Ēs = −Es and ĒF = −EF .

The gradient for each iteration for a complex valued control field is then,

∂J

∂Ω∗
es(τ)

=
i

2

∫ 1

0

dz

[
P̄geS

∗
gs − S̄∗

gsPge +
1

∆HF

√
d

2

(
ĒFS∗ − S̄∗EF

)]
, (B.61)

and for a real valued control field is,

∂J

∂Ωes(τ)
= −

∫ 1

0

dz Im

[
P̄geS

∗
gs − S̄∗

gsPge +
1

∆HF

√
d

2

(
ĒFS∗ − S̄∗EF

)]
. (B.62)
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