
 

 

 

 

 

 

 

 

 
 

 

 

 

Title: Binary communication with Gazeau-Klauder coherent states 

 

Author: Jerzy Dajka, Jerzy Łuczka 

 

Citation style: Dajka Jerzy, Łuczka Jerzy. (2020). Binary communication with 
Gazeau-Klauder coherent states. "Entropy" iss. 2, art. no. 201 (2020), s. 1-7, doi 
10.3390/e22020201 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/289276858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


entropy

Article

Binary Communication with Gazeau–Klauder
Coherent States

Jerzy Dajka 1,2,3,* and Jerzy Łuczka1,3,4

1 Institute of Physics, University of Silesia in Katowice, 40-007 Katowice, Poland; jerzy.luczka@us.edu.pl
2 Institute of Computer Science, University of Silesia in Katowice, 40-007 Katowice, Poland
3 Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 40-007

Chorzów, Poland
4 Institute of Mathematics, University of Silesia in Katowice, 40-007 Katowice, Poland
* Correspondence: jerzy.dajka@us.edu.pl

Received: 19 December 2019; Accepted: 6 February 2020; Published: 10 February 2020

Abstract: We investigate advantages and disadvantages of using Gazeau–Klauder coherent states
for optical communication. In this short paper we show that using an alphabet consisting of
coherent Gazeau–Klauder states related to a Kerr-type nonlinear oscillator instead of standard
Perelomov coherent states results in lowering of the Helstrom bound for error probability in
binary communication. We also discuss trace distance between Gazeau–Klauder coherent states
and a standard coherent state as a quantifier of distinguishability of alphabets.
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1. Introduction

Quantum optical implementations of quantum information processing, including communication
and computation, seems to be one of the most promising kinds today [1]. It is related to the maturity
of both theoretical and experimental techniques developed in the last hundred years. It was quite early
when the Quantum Community recognized the usefulness of the ’most classical’ among quantum
states—the coherent states—in quantum information processing [1–4]. Even recently coherent states
with a non-random phase, despite certain limitations [2], have found their application in the very hot
branch of quantum communication related to quantum key distribution [5]. The idea is simply to
utilize as an alphabet a pair of coherent states [1]

ρ0 = |0〉〈0|, ρ1 = |z〉〈z|, (1)

where |z〉 = D(z)|0〉 is a coherent state related to the vacuum state |0〉 via the displacement operator
D(z) = exp

(
−za† − z̄a

)
representing the Heisenberg–Weyl algebra [a, a†] = 1 [6]. Let us notice that the

apparent simplicity of that proposal is at a price of non-orthogonality of the ’letters’, i.e., tr(ρ0ρ1) 6= 0,
resulting in their limiting distinguishability. Since coherent states do not require nonlinear media
for their generation it seems advantageous [3] to use them in comparison to, e.g., earlier proposals
utilizing squeezed states [7] demanding ’hard’ nonlinearity. However, recent progress in experimental
techniques may reverse this trend at least in the cases when going beyond standard coherent states
becomes advantageous. Using the Schrödinger cat states as candidates for orthogonal letters of alphabet
states serves as an example [1].

The aim of this work is to present an example of a candidate for an alphabet consisting
of Gazeau–Klauder coherent states [8]. We analyze binary communication with Gazeau–Klauder
states related to an oscillator equipped with a polynomial nonlinearity typical for the Kerr media.
The Gazeau–Klauder coherent states have been studied for a variety of quantum systems: A one-mode
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system with sinusoidal potential [9], systems characterized by the Pöschl-Teller [10] and Morse
potentials [11], for nonlinear Kerr-type oscillators [12], quantum particles confined by a double–well
potential [13] and pseudoharmonic oscillators [14]. They can also serve as a basis of a very natural
generalization of the cat states [15,16]. Our aim is to expand a list of potential applications of
Gazeau–Klauder construction to a class of communication problems utilizing the non-orthogonal
binary alphabet formed by Gazeau–Klauder coherent states. We show that such a choice can result
in lowering of the Helstrom bound for a receiver error that may balance an obvious disadvantage of
using nonlinear systems leading to non-trivial Gazeau–Klauder coherent states. The paper is organized
as follows: After providing a short review of the Gazeau–Klauder construction of coherent states for
a quantum bosonic system with a Kerr-type polynomial nonlinearity we calculate, as a quantifier of
distinguishability of states, trace distance between Gazeau–Klauder states for a nonlinear system and
corresponding standard states in a linear limit. Further, we propose a binary communication scheme
utilizing an alphabet consisting of two Gazeau–Klauder coherent states as an alternative for well
established schemes utilizing standard (Perelomov) coherent states. For such a scheme we calculate
the Helstrom bound minimizing (over all possible positive-operator-valued measurements (POVM))
the error in the receiver. In the last two sections we discuss and conclude our work.

2. Results

Standard coherent states [6] are most natural for harmonic potential systems exhibiting
the Heisenberg–Weyl symmetry which is a first step toward generalized coherent states in the
Gilmore-Perelomov sense [6] exhibiting different symmetries. However, in an absence of almost any
symmetry it is still possible to construct a class of states equipped with most of the desired properties
of coherent states: The Gazeau–Klauder coherent states [8] solely associated with Hamiltonians of
systems under consideration.

For the sake of completeness, let us recall the construction proposed in reference [8]. Let H be
a Hamiltonian of the system with purely discrete non-degenerate (either finite or infinite) spectrum.
The first step in constructing the Gazeau–Klauder states is to solve the eigenvalue problem:

H|n〉 = En|n〉 ≡ h̄ωεn|n〉, n = 0, 1, 2, ... (2)

The Gazeau–Klauder coherent states |J, γ〉 are two-parameter states with real-valued J ≥ 0 and
γ ∈ (−∞, ∞) defined by the relation [8]

|J, γ〉 = 1
C(J)

∞

∑
n=0

Jn/2 exp(−iγen)√
ρn

|n〉, (3)

where

en = εn − ε0 =
En − E0

h̄ω
, ρn = Πn

j=1ej, C2(J) =
∞

∑
n=0

Jn

ρn
(4)

and ρ0 = 1. The other parameters in Equation (3) can be equipped with a clear physical meaning [8]:
(i) 〈J, γ|H|J, γ〉 ∼ J corresponds to a mean energy of the system, and (ii) its phase γ is related to a
temporal stability via exp(−iHt)|J, γ〉 = |J, γ + ωt〉. As the maximal value of J is bounded from above
by the radius of convergence of the series C(J), a choice of J leading to a well defined quantum state
remains limited.

The most elementary generalization of the standard coherent states [6] leading to the
Gazeau–Klauder coherent states of non-trivial properties is for a bosonic oscillator with a polynomial
nonlinearity. Let us consider a nonlinear oscillator of the Kerr type studied in the context of
Gazeau–Klauder states in reference [12]. It is described by the bosonic Hamiltonian

H = h̄ωa†a + h̄χa†2a2 ≡ h̄ωN̂ + h̄χ(N̂2 − N̂), (5)



Entropy 2020, 22, 201 3 of 7

where a† and a are the creation and annihilation boson operators, N̂ = a†a is a number operator and
χ is related to the nonlinear susceptibility of the Kerr medium [12], i.e., a medium with a refraction
index depending on the field intensity [17,18].

From Equation (5) it follows that the energy eigenvalues are given by

en = εn = n− µn + µn2, n = 0, 1, 2 . . . (6)

where µ = χ/ω (typically not exceeding a range of unity µ ∼ 1) is the susceptibility rescaled with
respect to the bare oscillator energy and hence one can explicitly construct Gazeau–Klauder states with

ρn = Γ (n + 1) µnΓ
(

µ n + 1
µ

)
/Γ
(

µ−1
)

. (7)

Let us notice that ρn = Γ(n + 1) = n! for the harmonic oscillator, i.e., for µ = 0. In this case
the Gazeau–Klauder coherent states reduce to the standard coherent states for z =

√
J. Moreover,

since eigenstates of the Kerr Hamiltonian (5) coincide with the eigenstates of the standard harmonic
oscillator one can consider the Gazeau–Klauder states studied in this paper as a very first ’extension’
of the standard coherent states construction of Perelomov [6]. In particular, for γ = 0, one gets

|J, 0〉 = 1
C(J)

∞

∑
n=0

Jn/2
√

ρn
|n〉, (8)

with

C2(J) = I 1−µ
µ

(
2

√
J
µ

)
Γ
(

µ−1
)( J

µ

)− 1−µ
2µ

(9)

expressed in terms of the modified Bessel function Iα(z). Further, as a potential alternative for the
traditional choice given by Equation (1), here we consider

ρ0 = |0〉〈0|, ρ1 = |J, 0〉〈J, 0| (10)

as a candidate for the alphabet in a binary communication and compare it with Alphabet (1) with real
z ∈ R, cf. Reference [3].

For a binary communication utilizing two states in either Equation (1) or Equation (10) as
codewords, a receiver is faced with a decision of distinguishing which among two states has already
been transmitted. The most natural quantifier of the distinguishability between two various states ρ

and σ is the trace distance [19]:

D =
1
2

Tr
[√

(ρ− σ)2
]

. (11)

The trace distance between the Gazeau–Klauder coherent state and the corresponding standard
coherent state satisfying z =

√
J can be calculated and the result is

D =
√

1− |F|2, (12)

where

F =
e−J/2

C(J)

∞

∑
n=0

Jn

√√√√ Γ (µ−1)

µnΓ2 (n + 1) Γ
(

µ n+1
µ

) (13)
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stands for fidelity [19]. Clearly, with increasing µ which quantifies the role played by polynomial
nonlinearity of the Kerr medium in Equation (5) the trace distance becomes larger as presented in
Figure 1. Nevertheless, for small values of J, the Gazeau–Kluder and Perelomov coherent states are
hardly distinguishable.

Figure 1. Trace distance between the Gazeau–Klauder coherent states |J, 0〉 given by Equation (3) and
the Perelomov coherent states |z =

√
J〉 depicted for selected values of the rescaled susceptibility µ.

Non-orthogonality of states ρ0 and ρ1 utilized as codewords in (binary) quantum communication
becomes a natural source of error due to limited distinguishability of codewords. If one applies
(resolving unity) POVM (positive-operator-valued measures) [19]

Id = Π0 + Π1 (14)

for a measurement of non-orthogonal states one arrives to two hypotheses H0 and H1 which need to
be tested. According to H0, the transmitted state is ρ0 and according to H1, the transmitted state is ρ1.
There is also the natural and unavoidable possibility of erroneous detection and choosing H0 (H1) if ρ1

(respectively, ρ0) arrives at a receiver. Such an opportunity can be formalized by quantities

p(H0|ρ1) = tr[Π0ρ1], p(H1|ρ0) = tr[Π1ρ0]. (15)

The receiver error probability becomes then

p[Π0, Π1] = p0(ρ0)p(H1|ρ0) + p0(ρ1)p(H0|ρ1) (16)

with p0(·) denoting the actual probability of transmission of a given state (1) and p0(ρ0) + p0(ρ1) = 1.
In quantum communication [20], there is a bound minimizing the receiver error (its lower bound)

PH = min{Π0,Π1} p[Π0, Π1] (17)
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known as the Helstrom bound [20] which, for a binary communication using the alphabet in
Equation (10) reads [20,21]

PH =
1
2

(
1−

√
1− 4p0(ρ0)p0(ρ1)|〈0|J, 0〉|2

)
. (18)

For the particular class of the Gazeau–Klauder coherent states studied in this paper, the Helstrom
bound can be calculated explicitly:

PH =
1
2
− 1

2

√√√√√1−

∣∣∣∣∣∣I 1−µ
µ

(
2

√
J
µ

)
Γ (µ−1)

(
J
µ

)1/2 −1+µ
µ

∣∣∣∣∣∣
−1

. (19)

The Helstrom bound (19) for a binary communication with Gazeau–Klauder coherent states as
letters of an alphabet for different values of µ in Equation (5) is presented in Figure 2.

Figure 2. Helstrom bound PH given by Equation (19) depicted for selected values of µ. For the sake of
clarity, the range of PH in the figure is limited to PH ≤ 0.1.

Let us notice that for small values of J ≤ 3 the Helstrom bound PH remains almost unaffected by
nonlinearity even with relatively large amplitude µ ≈ 2. With increasing J the effect of nonlinearity
becomes more apparent resulting in lowering the value of the Helstrom bound, i.e., resulting in
an advantageous smaller minimal probability of receiver error.

3. Discussion

Quantum communication implemented with quantum optical states and devices seems to be one
of the most promising for future developments. Non-randomized coherent states are natural candidates
for letters of an alphabet used in communication [2–4]. Creation and manipulation of such states do
not require devices with a ’hard’ nonlinearity. In this work we studied a binary alphabet consisting
of two Gazeau–Klauder coherent states [8] as an alternative for a well studied choice of standard
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Perelomov coherent states. We utilize Gazeau–Klauder states calculated for a simplest nonlinear
Kerr-type medium Equation (5) and we provide explicit analytic formulas for trace distance between
Gazeau–Klauder and Perelomov states serving as codewords of the two alternative binary alphabets.

Despite that Gazeau–Klauder generalized coherent states [8] (used instead of the standard
Perelomov) are harder in production [22], they can be, as we showed in this work, advantageous.
At the cost of coping with a relatively well known Kerr-type nonlinear bosonic oscillator, present also
beyond typical optical context [23], one gets a communication scheme with a smaller value of the
Helstrom bound.

As coherent states with a non-randomized phase have recently attracted new attention [5] we
believe that our analysis, despite its simplicity, can serve as a modest theoretical contribution for
further practical developments utilizing Gazeau–Klauder coherent states in quantum communication
and information processing and in a context of hybrid protocols [24].

4. Materials and Methods

Coherent states technique, quantum detection theory, quantum information with quantum optical
implementations of quantum communication [4,6,8].
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