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The science of quantum information has arisen over the last two decades centered on the

manipulation of individual quanta of information, known as quantum bits or qubits. Quantum

computers, quantum cryptography, and quantum teleportation are among the most celebrated

ideas that have emerged from this new field. It was realized later on that using continuous-

variable quantum information carriers, instead of qubits, constitutes an extremely powerful

alternative approach to quantum information processing. This review focuses on continuous-

variable quantum information processes that rely on any combination of Gaussian states,

Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the

Gaussian realm comes with various benefits, since on the theoretical side, simple analytical

tools are available and, on the experimental side, optical components effecting Gaussian

processes are readily available in the laboratory. Yet, Gaussian quantum information processing

opens the way to a wide variety of tasks and applications, including quantum communication,

quantum cryptography, quantum computation, quantum teleportation, and quantum state and

channel discrimination. This review reports on the state of the art in this field, ranging from the

basic theoretical tools and landmark experimental realizations to the most recent successful

developments.
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I. INTRODUCTION

Quantum mechanics is the branch of physics that studies
how the Universe behaves at its smallest and most fundamen-
tal level. Quantum computers and quantum communication
systems transform and transmit information using systems
such as atoms and photons whose behavior is intrinsically
quantum mechanical. As the size of components of com-
puters and the number of photons used to transmit informa-

tion have pressed downward to the quantum regime, the study
of quantum information processing has potential practical
relevance. Moreover, the strange and counterintuitive features
of quantum mechanics translate into novel methods for in-
formation processing that have no classical analog. Over the
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past two decades, a detailed theory of quantum information
processing has developed, and prototype quantum computers

and quantum communication systems have been constructed
and tested experimentally. Simple quantum algorithms have
been performed, and a wide variety of quantum communica-
tion protocols have been demonstrated, including quantum

teleportation and quantum cryptography.
Quantum information comes in two forms, discrete and

continuous. The best-known example of discrete quantum
information is the quantum bit or ‘‘qubit,’’ a quantum system
with two distinguishable states. Examples of quantum systems
that can be used to register a qubit are spin 1

2 particles such as

electrons and many nuclear spins, the two lowest energy states
of semiconductor quantum dots or quantized superconducting
circuits, and the two polarization states of a single photon. The
best-known example of continuous quantum information

(Braunstein and Pati, 2003; Braunstein and van Loock, 2005;
Cerf, Leuchs, and Polzik, 2007; Andersen, Leuchs, and
Silberhorn, 2010) is the quantized harmonic oscillator, which

can be described by continuous variables such as position and
momentum (an alternative description is the discrete but
infinite-dimensional representation in terms of energy states).
Examples of continuous-variable quantum systems include

quantized modes of bosonic systems such as the different
degrees of freedom of the electromagnetic field, vibrational
modes of solids, atomic ensembles, nuclear spins in a quantum
dot, Josephson junctions, and Bose-Einstein condensates.

Because they supply the quantum description of the propagat-
ing electromagnetic field, continuous-variable quantum sys-
tems are particularly relevant for quantum communication
and quantum-limited techniques for sensing, detection, and

imaging. Similarly, atomic or solid-state based encoding of
continuous-variable systems can be used to perform quantum
computation. Bosonic systems are not only useful in the physi-
cal modeling of qubit-based quantum computation, e.g., the

quantized vibrational modes of ions embody the medium of
communication between qubits in ion-trap quantumcomputers,
but also allow for new approaches to quantum computation.

A. Gaussian quantum information processing

This review reports on the state of the art of quantum

information processing using continuous variables. The
primary tools for analyzing continuous-variable quantum in-
formation processing are Gaussian states and Gaussian trans-
formations. Gaussian states are continuous-variable states that

have a representation in terms of Gaussian functions, and
Gaussian transformations are those that take Gaussian states
toGaussian states. In addition to offering an easy description in
terms of Gaussian functions, Gaussian states and transforma-

tions are of great practical relevance. The ground state and
thermal states of bosonic systems are Gaussian, as are states
created from such states by linear amplification and loss.

Frequently, nonlinear operations can be approximated to a
high degree of accuracy by Gaussian transformations. For
example, squeezing is a process that decreases the variance
of one continuous variable (position or electric field, for

example) while increasing the variance of the conjugate
variable (momentum or magnetic field). Linear squeezing
is Gaussian, and nonlinear squeezing can typically be approxi-

mated to first order by a linear, Gaussian process. Moreover,

any transformation of a continuous-variable state can be built
up by Gaussian processes together with a repeated application

of a single nonlinear process such as photodetection.
In reviewing the basic facts of Gaussian quantum informa-

tion processing (Braunstein and Pati, 2003; Eisert and Plenio,

2003; Braunstein and van Loock, 2005; Ferraro, Olivares, and

Paris, 2005) and in reporting recent developments, we have
attempted to present results in a way that is accessible to two

communities. Members of the quantum optics and atomic
physics communities are familiar with the basic aspects of

Gaussian quantum states and transformations, but may be less

acquainted with the application of Gaussian techniques to
quantum computation, quantum cryptography, and quantum

communication. Members of the quantum information com-

munity are familiar with quantum information processing
techniques such as quantum teleportation, quantum algo-

rithms, and quantum error correction, but may have less
experience in the continuous-variable versions of these

protocols, which exhibit a range of features that do not arise

in their discrete versions.
This review is self-contained in the sense that the study of

the introductory material should suffice to follow the detailed

derivations of more advanced methods of Gaussian quantum
information processing presented in the body of the paper.

Finally, this review supplies a comprehensive set of referen-

ces both to the foundations of the field of Gaussian quantum
information processing and to recent developments.

B. Outline of review

The large subject matter means that this review will take a

mostly theoretical approach to Gaussian quantum informa-

tion. In particular, we focus on optical Gaussian protocols as
they are the natural choice of medium for a lot of the

protocols presented in this review. However, we do make

mention of Gaussian atomic ensemble protocols (Hammerer,
Sorensen, and Polzik, 2010) due to the close correspondence

between continuous variables for light and atomic ensembles.
Furthermore, experiments (both optical and atomic) are

mentioned and cited where appropriate. We also note that

fermionic Gaussian states have been studied in the literature
[see, e.g., Bravyi (2005), Di Vincenzo and Terhal (2005), and

Eisert, Cramer, and Plenio (2010)] but are outside the scope
of this review. We limit our discussion of entanglement,

quantum teleportation, quantum cloning, and quantum dense

coding as these have all been previously discussed in detail;
see, e.g., Braunstein and van Loock (2005). On the other

hand, we give a detailed account of bosonic quantum

channels, distinguishability of Gaussian states, continuous-
variable quantum cryptography, and quantum computation.

We begin in Sec. II by introducing the fundamental theo-

retical concepts of Gaussian quantum information. This in-
cludes Gaussian states and their phase-space representations

and symplectic structure, along with Gaussian unitaries,

which are the simplest quantum operations transforming
Gaussian states into Gaussian states. We then give examples

of both Gaussian states and Gaussian unitaries. Multimode
Gaussian states are discussed next using powerful techniques

based on the manipulation of the second-order statistical
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moments. The quantum entanglement of bipartite Gaussian

states is presented with the various measures associated with

it. We end this section by introducing the basic models of

measurement, such as homodyne detection, heterodyne

detection, and direct detection.
In Sec. III we go more deeply into Gaussian quantum

information processing via the process of distinguishing

between Gaussian states. We present general bounds and

measures of distinguishability and discuss specific models

for discriminating between optical coherent states. In Sec. IV

we introduce basic Gaussian quantum information processing

protocols including quantum teleportation and quantum

cloning.
In Sec. V we review bosonic communication channels

which is one of the fundamental areas of research in quantum

information. Bosonic channels include communication by

electromagnetic waves (e.g., radio waves, microwaves, and

visible light), with Gaussian quantum channels being the

most important example. These channels represent the stan-

dard model of noise in many quantum information protocols

as well as being a good approximation to current optical

telecommunication schemes. We begin by first reviewing

the general formalisms and chief properties of bosonic chan-

nels, and specifically those of Gaussian channels. This natu-

rally leads to the study of the important class of one-mode

Gaussian channels. The established notions of Gaussian

channel capacity, both the classical and quantum versions,

are presented. And next is entanglement-assisted classical

capacity with quantum dense coding being a well-known

example. This is followed by the concepts of entanglement

distribution over noisy Gaussian channels and secret-key

capacities. Finally, we end with the discrimination of quan-

tum channels and the protocols of quantum illumination and

quantum reading.
The state of the art in the burgeoning field of

continuous-variable quantum cryptography is presented in

Sec. VI. We begin by introducing how a generic quantum

cryptographic scheme works followed by examples of the

most commonly studied protocols. We then consider as-

pects of their security including what it means to be secure

along with the main types of eavesdropping attacks. We

continue with the practical situation of finite-size keys and

the optimality and full characterization of collective

Gaussian attacks before deriving the secret-key rates for

the aforementioned protocols. We conclude with a discus-

sion on the future avenues of research in continuous-

variable quantum cryptography.
In Sec. VII we review the most recent of the continuous-

variable quantum information protocols, namely, quantum

computation using continuous-variable cluster states. We

begin by listing the most commonly used continuous-

variable gates and by discussing the Lloyd-Braunstein

criterion which provides the necessary and sufficient con-

ditions for gates to form a universal set. The basic idea of

one-way quantum computation using continuous variables

is discussed next with teleportation providing an elegant

way of understanding how computations can be achieved

using only measurements. A common and convenient way

of describing cluster states, via graph states and the nullifier

formalism, is presented. Next, we consider the practical

situations of Gaussian computational errors along with the
various optical implementations of Gaussian cluster states.
This leads into a discussion on how to incorporate universal
quantum computation and quantum error correction into the
framework of continuous-variable cluster-state quantum
computation. We end by introducing two quantum compu-
tational algorithms and provide directions for future re-
search. In Sec. VIII, we offer perspectives and concluding
remarks.

C. Further readings

For additional readings, perhaps the first place to start for
an overview of continuous-variable quantum information is
the well-known review article by Braunstein and van Loock
(2005). Furthermore, there is also the recent review by
Andersen, Leuchs, and Silberhorn (2010) as well as two
edited books on the subject by Braunstein and Pati (2003)
and Cerf and Grangier (2007). On Gaussian quantum infor-
mation specifically there is the review article by Wang et al.
(2007) and the lecture notes of Ferraro, Olivares, and Paris
(2005). For a quantum optics (Gerry and Knight, 2005;
Bachor and Ralph, 2004; Leonhardt, 2010) approach to quan-
tum information see the textbooks by Walls and Milburn
(2008), Kok and Lovett (2010), and Furusawa and van
Loock (2011) (who provide a joint theoretical and experi-
mental point of view), while the current state of the art of
continuous variables using atomic ensembles can be found in
the review article by Hammerer, Sorensen, and Polzik (2010).
For a detailed treatment of Gaussian systems see the textbook
by Holevo (2011). An overview of Gaussian entanglement is
presented in the review by Eisert and Plenio (2003). For an
elementary introduction to Gaussian quantum channels, see
Eisert and Wolf (2007), and for continuous-variable quantum
cryptography, see the reviews of Cerf and Grangier (2007)
and Scarani et al. (2009). Cluster-state quantum computation
using continuous variables is treated in Kok and Lovett
(2010) and Furusawa and van Loock (2011).

D. Comment on notation

Throughout this review, the variance of the vacuum noise is
normalized to 1. Such a normalization is commonly and
conveniently thought of as setting Planck’s constant ℏ to a
particular value, in our case ℏ ¼ 2. We also define the
‘‘position’’ quadrature by q̂ and the ‘‘momentum’’ quadrature
by p̂. When we refer to their ‘‘eigenstates’’ it is understood
that they are ‘‘improper’’ eigenstates (since they lie outside
the Hilbert space). In this review, the logarithm ( log) can be
taken to be base 2 for bits or natural base e for nats. I
represents the identity matrix which may be 2� 2 (for one
mode) or 2N � 2N (for arbitrary N modes). The correct
dimensions, if not specified, can be deducted from the con-
text. Since we deal with continuous variables, we can have
both discrete and continuous ensembles of states, measure-
ment operators, etc. In order to keep the notation simple, in
some parts we consider discrete ensembles. It is understood
that the extension to continuous ensembles involves the
replacement of sums by integrals. Finally, integrals are taken
from �1 to þ1 unless otherwise stated.
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II. ELEMENTS OF GAUSSIAN QUANTUM INFORMATION

THEORY

A. Bosonic systems in a nutshell

A quantum system is called a continuous-variable system
when it has an infinite-dimensional Hilbert space described
by observables with continuous eigenspectra. The prototype
of a continuous-variable system is represented by N bosonic
modes, corresponding to N quantized radiation modes of the
electromagnetic field, i.e., N quantum harmonic oscillators.
In general, N bosonic modes are associated with a tensor-
product Hilbert space H �N ¼ �N

k¼1H k and corresponding

N pairs of bosonic field operators fâk; âyk gNk¼1, which are

called the annihilation and creation operators, respectively.

These operators can be arranged in a vectorial operator b̂ :¼
ðâ1; ây1 ; . . . ; âN; âyNÞT , which must satisfy the bosonic com-

mutation relations

½b̂i; b̂j� ¼ �ij ði; j ¼ 1; . . . ; 2NÞ; (1)

where �ij is the generic element of the 2N � 2N matrix,

� :¼MN
k¼1

!¼
!

. .
.

!

0
BBB@

1
CCCA; ! :¼ 0 1

�1 0

 !
; (2)

known as the symplectic form. The Hilbert space of this
system is separable and infinite dimensional. This is because
the single-mode Hilbert space H is spanned by a countable
basis fjnig1n¼0, called the Fock or number-state basis, which

is composed of the eigenstates of the number operator
n̂ :¼ âyâ, i.e., n̂jni ¼ njni. Over these states the action of
the bosonic operators is well defined, being determined by the
bosonic commutation relations. In particular, we have

âj0i ¼ 0; âjni ¼ ffiffiffi
n

p jn� 1i ðfor n � 1Þ; (3)

and

âyjni ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1i ðfor n � 0Þ: (4)

Besides the bosonic field operators, the bosonic system
may be described by another kind of field operators. These
are the quadrature field operators fq̂k; p̂kgNk¼1, formally ar-

ranged in the vector

x̂ :¼ ðq̂1; p̂1; . . . ; q̂N; p̂NÞT: (5)

These operators derive from the Cartesian decomposition of
the bosonic field operators, i.e., âk :¼ 1

2 ðq̂k þ ip̂kÞ or equiv-
alently

q̂k :¼ âk þ âyk ; p̂k :¼ iðâyk � âkÞ: (6)

The quadrature field operators represent dimensionless ca-
nonical observables of the system and act similar to the
position and momentum operators of the quantum harmonic
oscillator. In fact, they satisfy the canonical commutation
relations in natural units (ℏ ¼ 2)

½x̂i; x̂j� ¼ 2i�ij; (7)

which are easily derivable from the bosonic commutator
relations of Eq. (1). In the following, we use both kinds of

field operators, the bosonic field operators and the quadrature
field operators.

Now it is important to note that the quadrature operators
are observables with continuous eigenspectra. In fact, the two
quadrature operators q̂ (position) and p̂ (momentum) have
eigenstates1

q̂jqi ¼ qjqi; p̂jpi ¼ pjpi; (8)

with continuous eigenvalues q 2 R and p 2 R. The two
eigensets fjqigq2R and fjpigp2R identify two bases which

are connected by a Fourier transform

jqi ¼ 1

2
ffiffiffiffi
�

p
Z

dpe�iqp=2jpi;

jpi ¼ 1

2
ffiffiffiffi
�

p
Z

dqeiqp=2jqi: (9)

In general, for the N-mode Hilbert space we can write

x̂Tjxi ¼ xTjxi; (10)

with x 2 R2N and jxi :¼ ðjx1i; . . . ; jx2NiÞT . Here the quad-
rature eigenvalues x can be used as continuous variables to
describe the entire bosonic system. This is possible by in-
troducing the notion of phase-space representation.

1. Phase-space representation and Gaussian states

All the physical information about the N-mode bosonic
system is contained in its quantum state. This is represented
by a density operator �̂, which is a trace-one positive operator
acting on the corresponding Hilbert space, i.e., �̂ :¼ H �N !
H �N . We denote by DðH �NÞ the space of the density
operators, also called the state space. Whenever �̂ is a
projector (�̂2 ¼ �̂) we say that �̂ is pure and the state can
be represented as �̂ ¼ j’ih’j, where j’i 2 H �N . Now it is
important to note that any density operator has an equivalent
representation in terms of a quasiprobability distribution
(Wigner function) defined over a real symplectic space (phase
space). In fact, we introduce the Weyl operator

Dð�Þ :¼ expðix̂T��Þ; (11)

where � 2 R2N . Then, an arbitrary �̂ is equivalent to a
Wigner characteristic function

�ð�Þ ¼ Tr½�̂Dð�Þ�; (12)

and, via Fourier transform, to a Wigner function

WðxÞ ¼
Z
R2N

d2N�

ð2�Þ2N expð�ixT��Þ�ð�Þ; (13)

which is normalized to 1 but generally nonpositive (quasi-
probability distribution). In Eq. (13) the continuous variables
x 2 R2N are the eigenvalues of quadrature operators x̂. These
variables span a real symplectic space K :¼ ðR2N;�Þ which
is called the phase space. Thus, an arbitrary quantum state �̂
of a N-mode bosonic system is equivalent to a Wigner

1Strictly speaking, jqi and jpi are improper eigenstates since they

are non-normalizable, thus lying outside the Hilbert space.

Correspondingly, q and p are improper eigenvalues. In the remain-

der we take this mathematical subtlety for granted.
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function WðxÞ defined over a 2N-dimensional phase
space K.

The most relevant quantities that characterize the Wigner
representations (� or W) are the statistical moments of the
quantum state. In particular, the first moment is called the
displacement vector or, simply, the mean value

�x :¼ hx̂i ¼ Trðx̂ �̂Þ; (14)

and the second moment is called the covariance matrix V,
whose arbitrary element is defined by

Vij :¼ 1
2hf�x̂i;�x̂jgi; (15)

where �x̂i :¼ x̂i � hx̂ii and f; g is the anticommutator. In
particular, the diagonal elements of the covariance matrix
provide the variances of the quadrature operators, i.e.,

Vii ¼ Vðx̂iÞ; (16)

where Vðx̂iÞ ¼ hð�x̂iÞ2i ¼ hx̂2i i � hx̂ii2. The covariance ma-

trix is a 2N � 2N real and symmetric matrix which must
satisfy the uncertainty principle (Simon, Mukunda, and
Dutta, 1994)

V þ i� � 0; (17)

directly coming from the commutation relations of Eq. (7)
and implying the positive definiteness V > 0. From the di-
agonal terms in Eq. (17), one can easily derive the usual
Heisenberg relation for position and momentum

Vðq̂kÞVðp̂kÞ � 1: (18)

For a particular class of states the first two moments are
sufficient for a complete characterization, i.e., we can write
�̂ ¼ �̂ð �x;VÞ. This is the case of the Gaussian states (Holevo,
1975, 2011). By definition, these are bosonic states whose
Wigner representation (� or W) is Gaussian, i.e.,

�ð�Þ ¼ exp½�1
2�

Tð�V�TÞ� � ið� �xÞT��; (19)

WðxÞ ¼ exp½�ð1=2Þðx� �xÞTV�1ðx� �xÞ�
ð2�ÞN ffiffiffiffiffiffiffiffiffiffi

detV
p : (20)

It is interesting to note that a pure state is Gaussian if and only
if its Wigner function is non-negative (Hudson, 1974; Soto
and Claverie, 1983; Mandilara, Karpov, and Cerf, 2009).

2. Gaussian unitaries

Since Gaussian states are easy to characterize, it turns out
that a large class of transformations acting on these states are
easy to describe too. In general, a quantum state undergoes a
transformation called a quantum operation (Nielsen and
Chuang, 2000). This is a linear map E:�̂ ! Eð�̂Þ which
is completely positive and trace decreasing, i.e., 0 �
Tr½Eð�̂Þ� � 1. A quantum operation is then called a quantum
channel when it is trace preserving, i.e., Tr½Eð�̂Þ� ¼ 1. The
simplest quantum channels are the ones which are reversible.
These are represented by unitary transformations U�1 ¼ Uy,
which transform a state according to the rule �̂ ! U�̂Uy or,
simply, j’i ! Uj’i, if the state is pure.

Now we say that a quantum operation is Gaussian when it
transforms Gaussian states into Gaussian states. Clearly, this
definition applies to the specific cases of quantum channels
and unitary transformations. Thus, Gaussian channels (uni-
taries) are those channels which preserve the Gaussian char-
acter of a quantum state. Gaussian unitaries are generated via
U ¼ expð�iĤ=2Þ from Hamiltonians Ĥ which are second-
order polynomials in the field operators. In terms of the
annihilation and creation operators â :¼ ðâ1; . . . ; âNÞT and

ây :¼ ðây1 ; . . . ; âyNÞ, this means that

Ĥ ¼ iðây�þ âyFâþ âyGâyTÞ þ H:c:; (21)

where � 2 CN , F and G are N � N complex matrices, and
H.c. stands for Hermitian conjugate. In the Heisenberg pic-
ture, this kind of unitary corresponds to a linear unitary
Bogoliubov transformation

â ! UyâU ¼ Aâþ Bây þ �; (22)

where the N � N complex matrices A and B satisfy ABT ¼
BAT and AAy ¼ BBy þ I with I the identity matrix. In
terms of the quadrature operators, a Gaussian unitary is more
simply described by an affine map

ðS;dÞ: x̂ ! Sx̂þ d; (23)

where d 2 R2N and S is a 2N � 2N real matrix. This trans-
formation must preserve the commutation relations of Eq. (7),
which happens when the matrix S is symplectic, i.e.,

S�ST ¼ �: (24)

Clearly the eigenvalues x of the quadrature operators x̂ must
follow the same rule, i.e., ðS;dÞ: x ! Sxþ d. Thus, an
arbitrary Gaussian unitary is equivalent to an affine symplec-
tic map (S, d) acting on the phase space, and can be denoted
by US;d. In particular, we can always write US;d ¼ DðdÞUS,

where the canonical unitary US corresponds to a linear
symplectic map x ! Sx, and the Weyl operator DðdÞ to a
phase-space translation x ! xþ d. Finally, in terms of the
statistical moments �x and V, the action of a Gaussian unitary
US;d is characterized by the following transformations:

�x ! S �xþ d; V ! SVST: (25)

Thus the action of a Gaussian unitary US;d over a Gaussian

state �̂ð �x;VÞ is completely characterized by Eq. (25).

B. Examples of Gaussian states and Gaussian unitaries

Here we introduce some elementary Gaussian states that
play a major role in continuous-variable quantum informa-
tion. We also introduce the simplest and most common
Gaussian unitaries and discuss their connection with basic
Gaussian states. In these examples we first consider one and
then two bosonic modes with the general case (arbitrary N)
discussed in Sec. II.C.

1. Vacuum states and thermal states

The most important Gaussian state is the one with zero
photons ( �n ¼ 0), i.e., the vacuum state j0i. This is also the
eigenstate with zero eigenvalue of the annihilation operator
(âj0i ¼ 0). The covariance matrix of the vacuum is just the
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identity, which means that position and momentum operators
have noise variances equal to 1, i.e., Vðq̂Þ ¼ Vðp̂Þ ¼ 1.
According to Eq. (18), this is the minimum variance which
is reachable symmetrically by position and momentum. It is
also known as vacuum noise or quantum shot noise.

As we soon see, every Gaussian state can be decomposed
into thermal states. From this point of view, a thermal state
can be thought of as the most fundamental Gaussian state. By
definition, we call thermal a bosonic state which maximizes
the von Neumann entropy

S :¼ �Trð�̂ log�̂Þ; (26)

for fixed energy Trð�̂âyâÞ ¼ �n, where �n � 0 is the mean
number of photons in the bosonic mode. Explicitly, its
number-state representation is given by

�̂thð �nÞ ¼ Xþ1

n¼0

�nn

ð �nþ 1Þnþ1
jnihnj: (27)

One can easily check that its Wigner function is Gaussian,
with zero mean and covariance matrix V ¼ ð2 �nþ 1ÞI, where
I is the 2� 2 identity matrix.

2. Displacement and coherent states

The first Gaussian unitary we introduce is the displacement
operator, which is just the complex version of the Weyl
operator. The displacement operator is generated by a linear
Hamiltonian and is defined by

Dð�Þ :¼ expð�ây � ��âÞ; (28)

where � ¼ ðqþ ipÞ=2 is the complex amplitude. In the
Heisenberg picture, the annihilation operator is transformed
by the linear unitary Bogoliubov transformation â ! âþ �,
and the quadrature operators x̂ ¼ ðq̂; p̂ÞT by the translation
x̂ ! x̂þ d�, where d� ¼ ðq; pÞT . By displacing the vacuum
state, we generate coherent states j�i ¼ Dð�Þj0i. They have
the same covariance matrix of the vacuum (V ¼ I) but
different mean values ( �x ¼ d�). Coherent states are the
eigenstates of the annihilation operator âj�i ¼ �j�i and
can be expanded in number states as

j�i ¼ exp

�
� 1

2
j�j2

� X1
n¼0

�nffiffiffiffiffi
n!

p jni: (29)

Furthermore, they form an overcomplete basis, since they are
nonorthogonal. In fact, given two coherent states j�i and j�i,
the modulus squared of their overlap is given by

jh�j�ij2 ¼ expð�j�� �j2Þ: (30)

3. One-mode squeezing and squeezed states

When we pump a nonlinear crystal with a bright laser,
some of the pump photons with frequency 2! are split into
pairs of photons with frequency !. Whenever the matching
conditions for a degenerate optical parametric amplifier
(OPA) are satisfied (Walls and Milburn, 2008), the outgoing
mode is ideally composed of a superposition of even number
states (j2ni). The interaction Hamiltonian must then contain a
ây2 term to generate pairs of photons and a term â2 to ensure
Hermiticity. The corresponding Gaussian unitary is the one-
mode squeezing operator, which is defined as

SðrÞ :¼ exp½rðâ2 � ây2Þ=2�; (31)

where r 2 R is called the squeezing parameter. In the
Heisenberg picture, the annihilation operator is transformed
by the linear unitary Bogoliubov transformation
â ! ðcoshrÞâ� ðsinhrÞây and the quadrature operators
x̂ ¼ ðq̂; p̂ÞT by the symplectic map x̂ ! SðrÞx̂, where

SðrÞ :¼ e�r 0

0 er

 !
: (32)

Applying the squeezing operator to the vacuum we generate a
squeezed vacuum state (Yuen, 1976),

j0; ri ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
coshr

p X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
2nn!

tanhrnj2ni: (33)

Its covariance matrix is given by V ¼ SðrÞSðrÞT ¼ Sð2rÞ
which has different quadrature noise variances, i.e., one
variance is squeezed below the quantum shot noise, while
the other is antisqueezed above it.

4. Phase rotation

The phase is a crucial element of the wave behavior of the
electromagnetic field with no physical meaning for a single
mode on its own. In continuous-variable systems the phase is
usually defined with respect to a local oscillator, i.e., a mode-
matched classical beam. Applying a phase shift on a given
mode is done by increasing the optical path length of the
beam compared to the local oscillator. For instance, this can
be done by adding a transparent material of a tailored depth
and with a higher refractive index than vacuum. The phase
rotation operator is generated by the free propagation
Hamiltonian Ĥ ¼ 2�âyâ, so that it is defined by Rð�Þ ¼
expð�i�âyâÞ. In the Heisenberg picture, it corresponds
to the simple linear unitary Bogoliubov transformation
â ! e�i�â for the annihilation operator. Correspondingly,
the quadratures are transformed via the symplectic map
x̂ ! Rð�Þx̂, where

Rð�Þ :¼ cos� sin�

� sin� cos�

 !
(34)

is a proper rotation with angle �.

5. General one-mode Gaussian states

Using the singular value decomposition, one can show that
any 2� 2 symplectic matrix can be decomposed as S ¼
Rð�ÞSðrÞRð�Þ. This means that any one-mode Gaussian
unitary can be expressed as DðdÞUS, where US ¼
Rð�ÞSðrÞRð�Þ. By applying this unitary to a thermal state
�̂thð �nÞ, the result is a Gaussian state with mean d and covari-
ance matrix

V ¼ ð2 �nþ 1ÞRð�ÞSð2rÞRð�ÞT: (35)

This is the most general one-mode Gaussian state. This result
can be generalized to arbitrary N bosonic modes as seen in
Sec. II.C. Now, by setting �n ¼ 0 in Eq. (35), we achieve the
covariance matrix of the most general one-mode pure
Gaussian state. This corresponds to a rotated and displaced
squeezed state j�; �; ri ¼ Dð�ÞRð�ÞSðrÞj0i.
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6. Beam splitter

In the case of two bosonic modes one of the most important
Gaussian unitaries is the beam splitter transformation, which
is the simplest example of an interferometer. This transfor-
mation is defined by

Bð�Þ ¼ exp½�ðâyb̂� âb̂yÞ�; (36)

where â and b̂ are the annihilation operators of the two
modes, and � determines the transmissivity of the beam
splitter � ¼ cos2� 2 ½0; 1�. The beam splitter is called bal-
anced when � ¼ 1=2. In the Heisenberg picture, the annihi-
lation operators are transformed via the linear unitary
Bogoliubov transformation� â

b̂

�
!

ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p ffiffiffi
�

p
 !� â

b̂

�
; (37)

and the quadrature operators x̂ :¼ ðq̂a; p̂a; q̂b; p̂bÞT are trans-
formed via the symplectic map

x̂!Bð�Þx̂; Bð�Þ :¼
ffiffiffi
�

p
I

ffiffiffiffiffiffiffiffiffiffiffi
1��

p
I

� ffiffiffiffiffiffiffiffiffiffiffi
1��

p
I

ffiffiffi
�

p
I

 !
: (38)

7. Two-mode squeezing and Einstein-Podolski-Rosen states

Pumping a nonlinear crystal in the nondegenerate OPA
regime, we generate pairs of photons in two different modes,
known as the signal and the idler. This process is described by
an interaction Hamiltonian which contains the bilinear term

âyb̂y. The corresponding Gaussian unitary is known as the
two-mode squeezing operator and is defined as

S2ðrÞ ¼ exp½rðâ b̂�âyb̂yÞ=2�; (39)

where r quantifies the two-mode squeezing (Braunstein and
van Loock, 2005). In the Heisenberg picture, the quadratures
x̂ :¼ ðq̂a; p̂a; q̂b; p̂bÞT undergo the symplectic map

x̂ ! S2ðrÞx̂; S2ðrÞ ¼
coshr I sinhr Z

sinhr Z coshr I

 !
; (40)

where I is the identity matrix and Z :¼ diagð1;�1Þ. By
applying S2ðrÞ to a couple of vacua, we obtain the two-
mode squeezed vacuum state, also known as an Einstein-
Podolski-Rosen (EPR) state �̂EPRðrÞ ¼ jrihrjEPR, where

jriEPR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p X1
n¼0

ð�	Þnjniajnib; (41)

with 	 ¼ tanh r 2 ½0; 1�. This is a Gaussian state with zero
mean and covariance matrix

VEPR ¼ 
I
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 1

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffi


2 � 1
p

Z 
I

 !
:¼ VEPRð
Þ; (42)

where 
 ¼ cosh2r quantifies the noise variance in the quan-
dratures (afterward, we also use the notation j
iEPR). Using
Eq. (42) one can easily check that

Vðq̂�Þ ¼ Vðp̂þÞ ¼ e�2r; (43)

where q̂� :¼ ðq̂a � q̂bÞ=
ffiffiffi
2

p
and p̂þ :¼ ðp̂a þ p̂bÞ=

ffiffiffi
2

p
. Note

that for r ¼ 0, the EPR state corresponds to two vacua and the

previous variances are equal to 1, corresponding to the quan-
tum shot noise. For every two-mode squeezing r > 0, we
have Vðq̂�Þ ¼ Vðp̂þÞ< 1, meaning that the correlations be-
tween the quadratures of the two systems beat the quantum
shot noise. These correlations are known as EPR correlations
and they imply the presence of bipartite entanglement. In the
limit of r ! 1 we have an ideal EPR state with perfect
correlations: q̂a ¼ q̂b and p̂a ¼ �p̂b. Clearly, EPR correla-
tions can also exist in the symmetric case for q̂þ and p̂� using
the replacement Z ! �Z in Eq. (42).

The EPR state is the most commonly used Gaussian
entangled state and has maximally entangled quadratures,
given its average photon number. Besides the use of a non-
degenerate parametric amplifier, an alternative way to gen-
erate the EPR state is by combining two appropriately rotated
squeezed vacuum states (outputs of two degenerate OPAs) on
a balanced beam splitter (Furusawa et al., 1998; Braunstein
and van Loock, 2005). This passive generation of entangle-
ment from squeezing was generalized by Wolf, Eisert, and
Plenio (2003). When one considers Gaussian atomic process-
ing, the same state can also be created using two atomic
(macroscopic) objects as shown by Julsgaard, Kozhekin, and
Polzik (2001). Finally, we note the important relation be-
tween the EPR state and the thermal state. By tracing out one
of the two modes of the EPR state, e.g., mode b, we get
Trb½�̂EPRðrÞ� ¼ �̂th

a ð �nÞ, where �n ¼ sinh2r. Thus, the surviv-
ing mode is described by a thermal state, whose mean photon
number is related to the two-mode squeezing. Because of this,
we also say that the EPR state is the purification of the
thermal state.

C. Symplectic analysis for multimode Gaussian states

In this section we discuss the most powerful approach to
studying Gaussian states of multimode bosonic systems. This
is based on the analysis and manipulation of the second-order
statistical moments, and its central tools are Williamson’s
theorem and the Euler decomposition.

1. Thermal decomposition of Gaussian states

According to Williamson’s theorem, every positive-
definite real matrix of even dimension can be put in diagonal
form by a symplectic transformation (Williamson, 1936). In
particular, this theorem can be applied to covariance matrices.
Given an arbitrary N-mode covariance matrix V, there exists
a symplectic matrix S such that

V ¼ SV�ST; V� :¼ MN
k¼1


kI; (44)

where the diagonal matrix V� is called the Williamson form
of V, and the N positive quantities 
k are called the symplec-
tic eigenvalues of V. Here the symplectic spectrum f
kgNk¼1

can be easily computed as the standard eigenspectrum of the
matrix ji�Vj, where the modulus must be understood in the
operatorial sense. In fact, the matrix i�V is diagonalizable.
By taking the modulus of its 2N real eigenvalues, one gets the
N symplectic eigenvalues of V. The symplectic spectrum is
important since it provides powerful ways to express the
fundamental properties of the corresponding quantum state.
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For example, the uncertainty principle of Eq. (17) is equiva-
lent to

V > 0; V� � I: (45)

In other words, a quantum covariance matrix must be positive
definite and its symplectic eignevalues must satisfy 
k � 1.
Then, the von Neumann entropy Sð�̂Þ of a Gaussian state �̂
can be written as (Holevo, Sohma, and Hirota, 1999)

Sð�̂Þ ¼ XN
k¼1

gð
kÞ; (46)

where

gðxÞ :¼
�
xþ1

2

�
log

�
xþ1

2

�
�
�
x�1

2

�
log

�
x�1

2

�
: (47)

In the space of density operators, the symplectic decomposi-
tion of Eq. (44) corresponds to a thermal decomposition for
Gaussian states. In fact, consider a zero-mean Gaussian state
�̂ð0;VÞ. Because of Eq. (44), there exists a canonical unitary
US such that �̂ð0;VÞ ¼ US�̂ð0;V�ÞUy

S , where

�̂ð0;V�Þ ¼ ON
k¼1

�̂th

�

k � 1

2

�
(48)

is a tensor product of one-mode thermal states whose photon
numbers are provided by the symplectic spectrum f
kg of the
original state. In general, for an arbitrary Gaussian state
�̂ð �x;VÞ we can write the thermal decomposition

�̂ð �x;VÞ ¼ Dð �xÞUS½�̂ð0;V�Þ�Uy
SDð �xÞy: (49)

Using the thermal decomposition of Eq. (49) and the fact
that thermal states are purified by EPR states, we derive a
simple formula for the purification of an arbitrary Gaussian
state (Holevo and Werner, 2001). In fact, denote by A a
system of N modes described by a Gaussian state �̂Að �x;VÞ,
and introduce an additional reference system R of N modes.
Then, we have �̂Að �x;VÞ ¼ TrR½�̂ARð �x0;V0Þ�, where �̂AR is a
pure Gaussian state for the composite system AR, having
mean �x0 ¼ ð �x; 0ÞT and covariance matrix

V0 ¼ V SC

CTST V�

" #
; C :¼ MN

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
k � 1

q
Z: (50)

2. Euler decomposition of canonical unitaries

The canonical unitary US in Eq. (49) can be suitably
decomposed using the Euler decomposition (Arvind,
Mukunda, and Simon, 1995), alternatively known as the
Bloch-Messiah reduction (Braunstein, 2005). First, distin-
guish between active and passive canonical unitaries. By
definition, a canonical unitary US is called passive (active)
if it is photon-number preserving (nonpreserving). A passive
US corresponds to a symplectic matrix S which preserves the
trace of the covariance matrix, i.e., TrðSVSTÞ ¼ TrðVÞ for
any V. This happens when the symplectic matrix S is or-
thogonal, i.e., ST ¼ S�1. Passive canonical unitaries describe
multiport interferometers, e.g., the beam splitter in the case of
two modes. By contrast, active canonical unitaries correspond
to symplectic matrices which are not trace preserving and,

therefore, cannot be orthogonal. This is the case of the one-
mode squeezing matrix of Eq. (32). Arbitrary symplectic
matrices contain the previous elements. In fact, every sym-
plectic matrix S can be written as

S ¼ K

�MN
k¼1

SðrkÞ
�
L; (51)

where K and L are symplectic and orthogonal, while
Sðr1Þ; . . . ;SðrNÞ is a set of one-mode squeezing matrices.
Direct sums in phase space correspond to tensor products in
the state space. As a result, every canonical unitary US can be
decomposed as

US ¼ UK

�ON
k¼1

SðrkÞ
�
UL; (52)

i.e., a multiport interferometer (UL), followed by a parallel
set of N one-mode squeezers [ �k SðrkÞ], followed by another
passive transformation (UK). Combining the thermal decom-
position of Eq. (49) with the Euler decomposition of Eq. (52),
we see that an arbitrary multimode Gaussian state �̂ð �x;VÞ can
be realized by preparing N thermal states �̂ð0;V�Þ, applying
multimode interferometers and one-mode squeezers accord-
ing to Eq. (52) and finally displacing them by �x.

3. Two-mode Gaussian states

Gaussian states of two bosonic modes (N ¼ 2) represent a
remarkable case. They are characterized by simple analytical
formulas and represent the simplest states for studying prop-
erties such as quantum entanglement. Given a two-mode
Gaussian state �̂ð �x;VÞ, we write its covariance matrix in
the block form

V ¼ A C
CT B

� �
; (53)

whereA ¼ AT ,B ¼ BT , andC are 2� 2 real matrices. Then
the Williamson form is simply V� ¼ ð
�IÞ � ð
þIÞ, where
the symplectic spectrum f
�; 
þg is provided by


	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4 detV

p

2

s
; (54)

with � :¼ detAþ detBþ 2 detC and det is the determinant
(Serafini, Illuminati, and De Siena, 2004). In this case the
uncertainty principle is equivalent to the bona fide conditions
(Serafini, 2006; Pirandola, Serafini, and Lloyd, 2009)

V > 0; detV � 1; and � � 1þ detV: (55)

An important class of two-mode Gaussian states has a co-
variance matrix in the standard form (Duan et al., 2000;
Simon, 2000)

V ¼ aI C

C bI

 !
; C ¼ c1 0

0 c2

 !
; (56)

where a, b, c1, and c2 2 R must satisfy the previous
bona fide conditions. In particular, for c1 ¼ �c2 :¼ c � 0,
the symplectic eigenvalues are simply 
	 ¼ ½ ffiffiffi

y
p 	 ðb�

aÞ�=2, where y :¼ ðaþ bÞ2 � 4c2. In this case, we can also
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derive the matrix S realizing the symplectic decomposition
V ¼ SV�ST . This is given by

S ¼ !þI !�Z

!�Z !þI

 !
; !	 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b	 ffiffiffi

y
p

2
ffiffiffi
y

p
s

: (57)

D. Entanglement in bipartite Gaussian states

Entanglement is one of the most important properties of
quantum mechanics, being central in most quantum informa-
tion protocols. To begin with consider two bosonic systems A
with N modes and B with M modes having Hilbert spaces
H A and H B, respectively. The global bipartite system
Aþ B has a Hilbert space H ¼ H A �H B. By definition,
a quantum state �̂ 2 DðH Þ is said to be separable if it can be
written as a convex combination of product states, i.e.,

�̂ ¼ X
i

pi�̂
A
i � �̂B

i ; �̂AðBÞ
i 2 DðH AðBÞÞ; (58)

where pi � 0 and
P

ipi ¼ 1. Note that the index can also be
continuous. In such a case, the previous sum becomes an
integral and the probabilities are replaced by a probability
density function. Physically, Eq. (58) means that a separable
state can be prepared via local (quantum) operations and
classical communications (LOCCs). By definition, a state is
called entangled when it is not separable, i.e., the correlations
between A and B are so strong that they cannot be created by
any strategy based on LOCCs. In entanglement theory there
are two central questions to answer: Is the state entangled?,
and if the answer is yes, then how much entanglement does it
have? In what follows we review how we can answer those
two questions for Gaussian states.

1. Separability

As first shown by Horodecki, Horodecki, and Horodecki
(1996) and Peres (1996), a key tool for studying separability
is the partial transposition, i.e., the transposition with respect
to one of the two subsystems, e.g., system B. In fact, if a
quantum state �̂ is separable, then its partial transpose �̂TB

is a valid density operator and, in particular, positive, i.e.,
�̂TB � 0. Thus, the positivity of the partial transpose repre-
sents a necessary condition for separability. On the other
hand, the nonpositivity of the partial transpose represents a
sufficient condition for entanglement. Note that, in general,
the positivity of the partial transpose is not a sufficient
condition for separability, since there exist entangled states
with positive partial transpose. These states are bound en-
tangled, meaning that their entanglement cannot be distilled
into maximally entangled states (Horodecki, Horodecki, and
Horodecki, 1998, 2009).

The partial transposition operation corresponds to a local
time reversal (Horodecki, Horodecki, and Horodecki, 1998).
For bosonic systems the quadratures x̂ of the bipartite system
Aþ B undergo the transformation x̂ ! ðIA � TBÞx̂, where IA
is the N-mode identity matrix while TB :¼ �M

k¼1Z (Simon,

2000). Consider an arbitrary Gaussian state �̂ð �x;VÞ of the
bipartite system Aþ B, also known as an N �M bipartite
Gaussian state. Under the partial transposition operation, its
covariance matrix is transformed via the congruence

V ! ðIA � TBÞVðIA � TBÞ :¼ ~V; (59)

where the partially transposed matrix ~V is positive definite. If
the state is separable, then ~V satisfies the uncertainty principle,
i.e., ~V þ i� � 0. Since ~V > 0, this is equivalent to check the
condition ~V� � I, where ~V� is theWilliamson formof ~V. This
is also equivalent to check ~
� � 1, where ~
� is the minimum
eigenvalue in the symplectic spectrum f~
kg of ~V.

The satisfaction (violation) of the condition ~
� � 1 cor-
responds to having the positivity (nonpositivity) of the par-
tially transposed Gaussian state. In some restricted situations,
this positivity is equivalent to separability. This happens for
1�M Gaussian states (Werner and Wolf, 2001), and for a
particular class of N �M Gaussian states which are called
bisymmetric (Serafini, Adesso, and Illuminati, 2005). In
general, the equivalence is not true, as shown already for
2� 2 Gaussian states by Werner and Wolf (2001). Finally,
note that the partial transposition is not the only way to study
separability. Duan et al. (2000) constructed an inseparability
criterion, generalizing the EPR correlations, which gives a
sufficient condition for entanglement (also necessary for
1� 1 Gaussian states). Two other useful techniques exist to
fully characterize the separability of bipartite Gaussian states.
The first uses nonlinear maps as shown by Giedke, Kraus
et al. (2001), where the second reduces the separability
problem to a semidefinite program (Hyllus and Eisert,
2006) by exploiting the block-matrix criterion of Werner
and Wolf (2001).

2. Entanglement measures

In the case of pure N �M Gaussian states j’i, the entan-
glement is provided by the entropy of entanglement EVðj’iÞ.
This is defined as the von Neumann entropy of the reduced
states �̂A;B ¼ TrB;Aðj’ih’jÞ, i.e., EVðj’iÞ ¼ Sð�̂AÞ ¼ Sð�̂BÞ
(Bennett et al., 1996), which can be easily calculated using
Eq. (46). The entropy of entanglement gives the amount of
entangled qubits (measured in e bits) that can be extracted from
the state together with the amount of entanglement needed to
generate the state, i.e., distillation and generation being
reversible for pure states (in the asymptotic limit) (Nielsen
and Chuang, 2000). Any bipartite pure Gaussian state can be
mapped, using local Gaussian unitaries, into a tensor product
of EPR states of covariance matrix

L
k VEPRð
kÞ (Holevo and

Werner, 2001; Botero and Reznik, 2003). A LOCC mapping a
Gaussian pure state to another one exists if and only if 
k � 
0

k

for all k, where their respective 
k and 
0
k are in descending

order (Giedke et al., 2003).
Unfortunately, for mixed states we do not have a single

definition of measure of entanglement (Horodecki,
Horodecki, and Horodecki, 2009). Different candidates exist,
each one with its own operational interpretation. Among the
most well known is the entanglement of formation (Bennett
et al., 1996),

EFð�̂Þ ¼ min
fpk;j’kig

X
k

pkEVðj’kiÞ; (60)

where the minimization is taken over all the possible decom-
positions �̂ ¼ P

kpkj’kih’kj (the sum becomes an integral
for continuous decompositions). In general, this optimization
is difficult to carry out. In continuous variables, we only know

630 Christian Weedbrook et al.: Gaussian quantum information

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



the solution for two-mode symmetric Gaussian states (Giedke
et al., 2003). These are two-mode Gaussian states whose
covariance matrix is symmetric under the permutation of
the two modes, i.e., A ¼ B in Eq. (53), where EFð�̂Þ is
then a function of ~
�. Interestingly the optimal decomposi-
tion fpk; j’kig leading to this result is obtained from Gaussian
states j’ki. This is conjectured to be true for any Gaussian
state, i.e., the Gaussian entanglement of formation GEFð�̂Þ,
defined by the minimization over Gaussian decompositions,
satisfies GEFð�̂Þ ¼ EFð�̂Þ (Wolf et al., 2004).

The distillable entanglement Dð�̂Þ quantifies the amount of
entanglement that can be distilled from a given mixed state �̂
(Horodecki, Horodecki, and Horodecki, 2009). It is easy to see
that Dð�̂Þ � EFð�̂Þ; otherwise we could generate an infinite
amount of entanglement from finite resources, where for pure
states we have Dðjc iÞ ¼ EFðjc iÞ ¼ EVðjc iÞ. The entangle-
ment distillation is also hard to calculate, as it needs an opti-
mization over all possible distillation protocols. Little is known
about Dð�̂Þ for Gaussian states, except trivial lower bounds
given by the coherent information (Devetak andWinter, 2004)
and its reverse counterpart (Garcı́a-Patrón et al., 2009).
Giedke, Duan et al. (2001) showed that bipartite Gaussian
states are distillable if andonly if they have a nonpositive partial
transpose. However, the distillation of mixed Gaussian states
into pure Gaussian states is not possible using only Gaussian
LOCC operations (Eisert, Scheel, and Plenio, 2002; Fiuràšek,
2002a;Giedke andCirac, 2002), but canbe achieved using non-
Gaussian operations that map Gaussian states into Gaussian
states (Browne et al., 2003), as recently demonstrated by
Takahashi et al. (2010) and Xiang et al. (2010).

The two previous entanglement measures, i.e., EFð�̂Þ and
Dð�̂Þ, are unfortunately difficult to calculate in full generality.
However, an easy measure to compute is the logarithmic
negativity (Vidal and Werner, 2002)

ENð�̂Þ ¼ logk�̂TBk1; (61)

which quantifies how much the state fails to satisfy the
positivity of the partial transpose condition. For Gaussian
states it reads

ENð�̂Þ ¼
X
k

Fð~
kÞ; (62)

where FðxÞ ¼ � logðxÞ for x < 1 and FðxÞ ¼ 0 for x � 1
(Vidal and Werner, 2002). It was shown to be an entangle-
ment monotone (Eisert, 2001; Plenio, 2005) and an upper
bound of Dð�̂Þ (Vidal and Werner, 2002). The logarithmic
negativity of 1�M and N �M bisymmetric Gaussian states
was characterized by Adesso, Serafini, and Illuminati (2004)
and Adesso and Illuminati (2007), respectively. Finally, we
briefly mention that although the separability of a quantum
state implies zero entanglement, other types of quantum
correlations can exist for separable (nonentangled) mixed
states. One measure of such correlations is the quantum
discord. For Gaussian states, the related notion of Gaussian
quantum discord has also been defined (Adesso and Datta,
2010; Giorda and Paris, 2010).

E. Measuring Gaussian states

A quantum measurement is described by a set of operators

fEig satisfying the completeness relation
P

iE
y
i Ei ¼ I, where

I is the identity operator. Given an input state �̂, the outcome i

is found with probability pi ¼ Trð�̂Ey
i EiÞ and the state is

projected onto �̂i ¼ p�1
i Ei�̂E

y
i . If we are interested only in

the outcome of the measurement, we can set�i :¼ Ey
i Ei and

describe the measurement as a positive operator-valued mea-
sure (POVM). In the case of continuous-variable systems,
quantum measurements are often described by continuous
outcomes i 2 R, so that pi becomes a probability density.
Here we define a measurement as being Gaussian when its
application to Gaussian states provides outcomes which are
Gaussian distributed. From a practical point of view, any
Gaussian measurement can be accomplished using homodyne
detection, linear optics (i.e., active and passive Gaussian
unitaries), and Gaussian ancilla modes. A general property
of a Gaussian measurement is the following: Suppose a
Gaussian measurement is made on N modes of an N þM
Gaussian state where N, M � 1; then the classical outcome
from the measurement is a Gaussian distribution and the
unmeasured M modes are left in a Gaussian state.

1. Homodyne detection

The most common Gaussian measurement in continuous-
variable quantum information is homodyne detection, consist-
ing of the measurement of the quadrature q̂ (or p̂) of a bosonic
mode. Its measurement operators are projectors over the quad-
rature basis jqihqj (or jpihpj), i.e., infinitely squeezed states.
The corresponding outcome q (or p) has a probability distri-
butionPðqÞ [orPðpÞ]which is given by themarginal integral of
the Wigner function over the conjugate quadrature, i.e.,

PðqÞ ¼
Z

Wðq; pÞdp; PðpÞ ¼
Z

Wðq; pÞdq: (63)

This can be generalized to the situation of partially homodyn-
ing a multimode bosonic system by including the integration
over both quadratures of the nonmeasured modes.
Experimentally a homodyne measurement is implemented
by combining the target quantum mode with a local oscillator
into a balanced beam splitter andmeasuring the intensity of the
outgoing modes using two photodetectors. The subtraction of
the signal of both photodetectors gives a signal proportional to
q̂ (Braunstein and van Loock, 2005). The p̂ quadrature is
measured by applying a�=2 phase shift to the local oscillator.
Corrections due to bandwidth effects or limited local oscillator
power have also been addressed (Braunstein, 1990; Braunstein
and Crouch, 1991). Homodyne detection is also a powerful
tool in quantum tomography (Lvovsky andRaymer, 2009). For
instance, by using a single homodyne detector, one can ex-
perimentally reconstruct the covariance matrix of two-mode
Gaussian states (D’Auria et al., 2009; Buono et al., 2010). In
tandem to well-known homodyne measurements on light,
homodyne measurements of the atomic Gaussian spin states
via a quantum nondemolition measurement by light have also
been developed. For example, the work of Fernholz et al.
(2008) demonstrated the quantum tomographic reconstruction
of a spin squeezed state of the atomic ensemble.

2. Heterodyne detection and Gaussian POVMs

The quantum theory of heterodyne detection was estab-
lished by Yuen and Shapiro (1980) and is an important
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example of a Gaussian POVM. Theoretically, heterodyne
detection corresponds to a projection onto coherent states,
i.e., Eð�Þ :¼ ��1=2j�ih�j. A heterodyne detector combines
the measured bosonic mode with a vacuum ancillary mode
into a balanced beam splitter and homodynes the quadratures
q̂ and p̂ of the outcome modes. This approach can be
generalized to any POVM composed of projectors over
pure Gaussian states. As shown by Giedke and Cirac (2002)
and Eisert and Plenio (2003), such measurements can be
decomposed into a Gaussian unitary applied to the input
system and extra ancillary (vacuum) modes followed by
homodyne measurements on all the output modes. Finally, a
general noisy Gaussian POVM is modeled as before but with
part of the output modes traced out.

3. Partial Gaussian measurement

When processing a quantum system we are usually inter-
ested in measuring only part of it (for example, subsystem B
which contains one mode) in order to extract information and
continue processing the remaining part (say, subsystem A
with N modes). Consider a Gaussian state for the global
system Aþ B, where the covariance matrix is in block
form similar to Eq. (53) (but with N þ 1 modes).
Measuring the q̂ quadrature of subsystem B transforms the
covariance matrix of subsystem A as follows (Eisert, Scheel,
and Plenio, 2002; Fiuràšek, 2002a):

V ¼ A�Cð�B�Þ�1CT; (64)

where � :¼ diagð1; 0Þ and ð�B�Þ�1 is a pseudoinverse
since �B� is singular. In particular, we have ð�B�Þ�1 ¼
B�1
11 �, where B11 is the top-left element of B. Note that the

output covariance matrix does not depend on the specific
result of the measurement. This technique can be generalized
to model any partial Gaussian measurement, which consists
of appending ancillary modes to a system, applying a
Gaussian unitary, and processing the output modes as fol-
lows: part is homodyned, another part is discarded, and the
remaining part is the output system. As an example, we can
easily derive the effect on a multimode subsystem A after we
heterodyne a single-mode subsystem B. By heterodyning the
last mode, the first N modes are still in a Gaussian state, and
the output covariance matrix is given by

V ¼ A�CðBþ IÞ�1CT; (65)

or, equivalently, V ¼ A���1Cð!B!T þ IÞCT , where
� :¼ detBþ TrBþ 1, and ! is defined in Eq. (2).

4. Counting and detecting photons

Finally, there are two measurements, that despite being
non-Gaussian, play an important role in certain Gaussian
quantum information protocols, e.g., distinguishability of
Gaussian states, entanglement distillation, and universal
quantum computation. The first one is the von Neumann
measurement in the number-state basis, i.e., En :¼ jnihnj.
The second one is the avalanche photodiode that discrimi-
nates between vacuum E0 ¼ j0ih0j and one or more photons
E1 ¼ I � j0ih0j. Realistic avalanche photodiode detectors
usually have small efficiency, i.e., they detect only a
small fraction of the impinging photons. This is modeled

theoretically by adding a beam splitter before an ideal ava-
lanche photodiode detector, with transmissivity given by the
efficiency of the detector. Recent technological developments
allow experimentalists to approach ideal photon-counting
capability for photon numbers of up to five to ten (Lita,
Miller, and Nam, 2008).

III. DISTINGUISHABILITY OF GAUSSIAN STATES

The laws of quantum information tell us that in general it is
impossible to perfectly distinguish between two nonorthogo-
nal quantum states (Fuchs, 2000; Nielsen and Chuang, 2000).
This limitation of quantum measurement theory (Helstrom,
1976) is inherent in a number of Gaussian quantum informa-
tion protocols including quantum cloning and the security of
quantum cryptography. Closely related to this is quantum
state discrimination which is concerned with the distinguish-
ability of quantum states. There are two commonly used
distinguishability techniques (Chefles, 2000; Bergou,
Herzog, and Hillery, 2004): (1) minimum error state discrimi-
nation, and (2) unambiguous state discrimination. In mini-
mum error state discrimination, a number of approaches have
been developed which allows one to (imperfectly) distinguish
between quantum states provided we allow a certain amount
of uncertainty or error in our measurement results. On the
other hand, unambiguous state discrimination is an error-free
discrimination process but relies on the fact that sometimes
the observer gets an inconclusive result (Chefles and Barnett,
1998b; Enk, 2002). There also exists an intermediate dis-
crimination regime which allows for both errors and incon-
clusive results (Chefles and Barnett, 1998a; Fiuràšek, 2003;
Wittmann et al., 2010a). Here we discuss minimum error
state discrimination which is more developed than unambig-
uous state discrimination in the continuous-variable frame-
work particularly in the case of Gaussian states.

This section is structured as follows. In Sec. III.Awe begin
by introducing some of the basic measures of distinguish-
ability, such as the Helstrom bound, the quantum Chernoff
bound, and the quantum fidelity. We give their formulation
for arbitrary quantum states, providing analytical formulas in
the specific case of Gaussian states. Then, in Sec. III.B, we
consider the most common Gaussian discrimination protocol:
distinguishing optical coherent states with minimum error.

A. Measures of distinguishability

1. Helstrom bound

Suppose that a quantum system is described by an un-
known quantum state �̂ which can take two possible forms,
�̂0 or �̂1, with the same probability (more generally, the
problem can be formulated for quantum states which are
not equiprobable). For discriminating between �̂0 and �̂1,
we apply an arbitrary quantum measurement to the system.
Without loss of generality, we consider a dichotomic POVM
f�0;�1 :¼ I ��0g whose outcome u ¼ 0, 1 is a logical bit
solving the discrimination. This happens up to an error
probability

pe ¼ pðu ¼ 0j�̂ ¼ �̂1Þ þ pðu ¼ 1j�̂ ¼ �̂0Þ
2

; (66)
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where pðuj�̂Þ is the conditional probability of getting the
outcome u given the state �̂. Then we ask: What is the
minimum error probability we can achieve by optimizing
over the (dichotomic) POVMs? The answer to this question
is provided by the Helstrom bound (Helstrom, 1976).
Helstrom showed that an optimal POVM is given by �1 ¼
Pð�þÞ, which is a projector onto the positive part �þ of the
nonpositive operator � :¼ �̂0 � �̂1, known as the Helstrom
matrix. As a result, the minimum error probability is equal to
the Helstrom bound

pe;min ¼ 1
2½1�Dð�̂0; �̂1Þ�; (67)

where

Dð�̂0; �̂1Þ :¼ 1

2
Trj�̂0 � �̂1j ¼ 1

2

X
j

j	jj; (68)

is the trace distance between the two quantum states (Nielsen
and Chuang, 2000). Here

P
jj	jj is the summation of the

absolute values of the eigenvalues of the matrix �̂0 � �̂1. In
the case of two pure states, i.e., �̂0 ¼ jc 0ihc 0j and �̂1 ¼
jc 1ihc 1j, the Helstrom bound takes the simple form

pe;min ¼ 1
2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jhc 0jc 1ij2

q
Þ: (69)

2. Quantum Chernoff bound

In general, deriving an analytical expression for the trace
distance is not easy and, therefore, the Helstrom bound is
usually approximated by other distinguishability measures.
One of the most recent is the quantum Chernoff bound
(Audenaert et al., 2007, 2008; Calsamiglia et al., 2008;
Nussbaum and Szkola, 2009). This is an upper bound
pe;min � pQC, defined by

pQC :¼ 1
2ð inf
0�s�1

CsÞ; Cs :¼ Trð�̂s
0�̂

1�s
1 Þ: (70)

Note that the quantum Chernoff bound involves a minimiza-
tion in s 2 ½0; 1�. In particular, we use an infimum because of
possible discontinuities of Cs at the border s ¼ 0, 1, where
C0 ¼ C1 ¼ 1. By ignoring the minimization and setting s ¼
1=2, we derive a weaker but easier-to-compute upper bound.
This is known as the quantum Bhattacharyya bound
(Pirandola and Lloyd, 2008)

pB :¼ 1
2 Trð

ffiffiffiffiffiffi
�̂0

p ffiffiffiffiffiffi
�̂1

p Þ: (71)

In the case of Gaussian states the quantum Chernoff bound
can be computed from the first two statistical moments. A
first formula, valid for single-mode Gaussian states, was
shown by Calsamiglia et al. (2008). Later, Pirandola and
Lloyd (2008) provided a general formula for multimode
Gaussian states, relating the quantum Chernoff bound to the
symplectic spectra (Williamson forms). Here we review this
general formula. Since it concerns the term Cs in Eq. (70), it
also applies to the quantum Bhattacharyya bound.

First it is useful to introduce the two real functions

GsðxÞ :¼ 2s½ðxþ 1Þs � ðx� 1Þs��1 (72)

and

�sðxÞ :¼ ðxþ 1Þs þ ðx� 1Þs
ðxþ 1Þs � ðx� 1Þs ; (73)

which are positive for x � 1 and s > 0. These functions can
be computed over a Williamson form V� via the rule

fðV�Þ ¼ f

�MN
k¼1


kI

�
¼ MN

k¼1

fð
kÞI: (74)

Using these functions we state the following result (Pirandola
and Lloyd, 2008). Consider two N-mode Gaussian states
�̂0ð �x0;V0Þ and �̂1ð �x1;V1Þ, whose covariance matrices have
symplectic decompositions

V0 ¼ S0V
�
0 S

T
0 ; V1 ¼ S1V

�
1 S

T
1 : (75)

Then, for every s 2 ð0; 1Þ, we can write the Gaussian formula

Cs ¼ 2N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det�s

det�s

s
exp

�
�dT��1

s d

2

�
; (76)

where d :¼ �x0 � �x1 and

�s :¼ GsðV�
0 ÞG1�sðV�

1 Þ; (77)

�s :¼ S0½�sðV�
0 Þ�ST

0 þ S1½�1�sðV�
1 Þ�ST

1 : (78)

In the previous formula, the matrix�s is diagonal and easy to
compute, depending only on the symplectic spectra. In par-
ticular, for pure states (V�

0 ¼ V�
1 ¼ I) we have �s ¼ I. By

contrast, the computation of �s is not straightforward due to
the explicit presence of the two symplectic matrices S0 and
S1, whose derivation may need nontrivial calculations in the
general case (however, see Sec. II.C.3 for two modes). If the
computation of S0 and S1 is too difficult, one possibility is to
use weaker bounds which depend on the symplectic spectra
only, such as the Minkowski bound (Pirandola and Lloyd,
2008).

3. Quantum fidelity

Further bounds can be constructed using the quantum
fidelity. In quantum teleportation and quantum cloning, the
fidelity F is a commonly used measure to compare the input
state to the output state. Given two quantum states �̂0 and �̂1

their fidelity is defined by (Uhlmann, 1976; Jozsa, 1994)

Fð�̂0; �̂1Þ :¼
�
Trð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂0

p
�̂1

ffiffiffiffiffiffi
�̂0

pq
Þ
�
2
; (79)

which ranges from 0 (for orthogonal states) to 1 (for identical
states). In the specific case of two single-mode Gaussian
states �̂0ð �x0;V0Þ and �̂1ð �x1;V1Þ we have (Holevo, 1975;
Scutaru, 1998; Nha and Carmichael, 2005; Olivares, Paris,
and Andersen, 2006)

Fð�̂0; �̂1Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

p � ffiffiffiffi
�

p exp

�
� 1

2
dTðV0 þ V1Þ�1d

�
;

(80)

where � :¼ detðV0 þ V1Þ, � :¼ ðdetV0 � 1ÞðdetV1 � 1Þ,
and d :¼ �x1 � �x0. Using the fidelity, we can define the two
fidelity bounds (Fuchs and de Graaf, 1999)
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F� :¼ 1
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fð�̂0; �̂1Þ

q �
;

Fþ :¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�̂0; �̂1Þ

q
;

(81)

which provide further estimates for the minimum error proba-
bility. In particular, they satisfy the chain of inequalities

F� � pe;min � pQC � pB � Fþ: (82)

4. Multicopy discrimination

In general, assume that we have M copies of the unknown
quantum state �̂, which again can take the two possible forms
�̂0 or �̂1 with the same probability. In other words, we have
the two equiprobable hypotheses

H0:�̂
�M ¼ �̂�M

0
:¼ �̂0 � 
 
 
 � �̂0

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{M

; (83)

H1:�̂
�M ¼ �̂�M

1
:¼ �̂1 � 
 
 
 � �̂1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

M

: (84)

The optimal quantum measurement for discriminating the
two cases is now a collective measurement involving all the
M copies. This is the same dichotomic POVM as before, now
projecting on the positive part of the Helstrom matrix � ¼
�̂�M
0 � �̂�M

1 . Correspondingly, the Helstrom bound for the

M-copy state discrimination takes the form

pðMÞ
e;min ¼ 1

2½1�Dð�̂�M
0 ; �̂�M

1 Þ�: (85)

This quantity is upper bounded by the general M-copy ex-
pression of the quantum Chernoff bound, i.e.,

pðMÞ
e;min � pðMÞ

QC
:¼ 1

2

�
inf

0�s�1
Cs

�
M
: (86)

Interestingly, in the limit of many copies (M � 1), the
quantum Chernoff bound is exponentially tight (Audenaert
et al., 2007). This means that, for large M, the two quantities

pðMÞ
e;min and pðMÞ

QC decay exponentially with the same error-rate

exponent, i.e.,

pðMÞ
e;min ! # expð�MÞ; pðMÞ

QC ! � expð�MÞ;
(87)

where # � � and  is known as the quantum Chernoff
information (Calsamiglia et al., 2008). Note that we also
consider other measures of distinguishability, such as the
M-copy version of the quantum Bhattacharyya bound

pðMÞ
QC � pðMÞ

B
:¼ 1

2½Trð
ffiffiffiffiffiffi
�̂0

p ffiffiffiffiffiffi
�̂1

p Þ�M: (88)

However, even though it is easier to compute, it is not
exponentially tight in the general case.

B. Distinguishing optical coherent states

The distinguishing of coherent states with minimum error
is one of the fundamental tasks in optical communication

theory. For example, we consider a simple theoretical way of
modeling current telecommunication systems by considering
weak coherent states to send binary information which has
been encoded via the amplitude or phase modulation of a
laser beam.2 Such states have small amplitudes and are
largely overlapping (i.e., nonorthogonal), and hence the abil-
ity to successfully decode this classical information is
bounded by the minimum error given the Helstrom bound.
Note that starting off with orthogonal states might make more
sense; however, if orthogonal states are to be used their
orthogonality is typically lost due to real world imperfections
such as energy dissipation and excess noise on the optical
fiber. By achieving the lowest error possible, the information
transfer rate between the sender and receiver can be maxi-
mized. We now illustrate a typical protocol involving the
distinguishing of coherent states.

Suppose we have a sender Alice and a receiver Bob. Alice
prepares one of two binary coherent states �̂0 and �̂1, where
one may be encoded as a logical ‘‘0’’ and the other a logical
‘‘1,’’ respectively. These two states form what is known as
the alphabet of possible states from which Alice can choose
to send and whose contents are also known by Bob.
Furthermore, the probabilities of each state being sent p0

and p1 are also known by Bob. Alice can decide to use either
an amplitude modulation keyed encoding or a binary phase-
shift keyed encoding, given, respectively, as

j0i and j2�i; j�i and j � �i: (89)

We note that it is possible to transform between the two
encoding schemes by using a displacement, e.g., by applying
the displacement operator Dð�Þ to each of the two binary
phase-shift keyed coherent states we retrieve the amplitude
modulation keyed encodings Dð�Þj � �i ¼ j0i and
Dð�Þj�i ¼ j2�i. Bob’s goal is to decide with minimum error
which of the two coherent states he received from Alice (for
example, over a quantum channel with no loss and no noise).
Bob’s strategy is based on quantum hypothesis testing in
which he devises two hypotheses: H0 and H1. Here H0

corresponds to the situation where �̂0 was sent while H1

corresponds to �̂1 being sent. As mentioned, the POVM
that optimizes this decision problem is actually a projective
or von Neumann measurement, i.e., described by the two
operators �0 and �1, such that �i � 0 for i ¼ 0, 1 and
�0 þ�1 ¼ I. Here the measurement described by the
operator �0 selects the state �̂0 while �1 ¼ I ��0 selects
�̂1. The probability of error quantifies the probability in
misinterpreting which state was actually received by Bob
and is given by

pe ¼ p0pðH1j�̂0Þ þ p1pðH0j�̂1Þ; (90)

2More specifically, fiber communications currently employ inline

optical amplifiers, so the states that are received are bathed in

amplified spontaneous emission noise and, moreover, received by

direct detection. Future fiber systems, in which bandwidth efficiency

is being sought, will go to coherent detection, but they will use

much larger than binary signal constellations, i.e., quadrature

amplitude modulation. Laser communication from space will use

direct detection and M-ary pulse-position modulation rather than

binary modulation.
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where pðHij�̂jÞ is defined as the conditional probability, i.e.,

the probability that Bob decided it was hypothesisHi when in
fact it was �̂j, for i � j. The conditional probabilities can be

written as

pðH1j�̂0Þ ¼ tr½�1�̂0�; pðH0j�̂1Þ ¼ tr½�0�̂1�: (91)

Consequently, in the binary phase-shift keyed setting we
write the Helstrom bound as

pe ¼ p0h�j�1j�i þ p1h��j�0j � �i; (92)

and for the amplitude modulation keyed encoding

pe ¼ p0h0j�1j0i þ p1h2�j�0j2�i: (93)

The optimal type of measurement needed to achieve the
Helstrom bound when distinguishing between two coherent
states was shown (Helstrom, 1976) to correspond to a
Schrödinger cat-state basis [i.e., a superposition of two co-
herent states (Jeong and Ralph, 2007)]: �0 ¼ jc ihc j with
jc i ¼ c0ð�Þj0i þ c1ð�Þj�i where the actual weightings
(c1 and c2) depend on the displacement �. After Helstrom
introduced his error probability bound in 1968, it was not
until 1973 that two different physical models of implement-
ing the receiver were discovered. The first construction by
Kennedy (1973) involved building a receiver based on direct
detection (or photon counting) that was near optimal, i.e., an
error probability that was larger than the optimal Helstrom
bound. However, building on Kennedy’s initial proposal,
Dolinar (1973) discovered how one could achieve the optimal
bound using an adaptive feedback process with photon count-
ing. Over the years other researchers have continued to make
further progress in this area (Bondurant, 1993; Osaki, Ban,
and Hirota, 1996; Geremia, 2004; Olivares and Paris, 2004).
Recently, Kennedy’s original idea was improved upon with a
receiver that was much simpler to implement than Dolinar’s
(although still near optimal) but produced a smaller error
probability than Kennedy’s. Such a device is called an opti-
mized displacement receiver (Takeoka and Sasaki, 2008;
Wittmann et al., 2008). However, the simplest possible
receiver to implement is the conventional homodyne receiver,
a common element in optical communication which is also
near optimal outperforming the Kennedy receiver, albeit only
for small coherent amplitudes. We now review each of these
receivers in more detail.

1. Kennedy receiver

Kennedy (1973) gave the first practical realization of a
receiver with an error probability twice that of the Helstrom
bound. The Kennedy receiver distinguishes between the al-
phabet j�i and j � �i by first displacing each of the coherent
states by �, i.e., j � �i ! j0i and j�i ! j2�i. Bob then
measures the number of incoming photons between the times
t ¼ 0 and t ¼ T using direct photon counting, represented by
the operators

�0 ¼ j0ih0j and �1 ¼ I � j0ih0j: (94)

If the number of photons detected during this time is zero then
j0i is chosen (as the vacuum contains no photons); otherwise
it is assumed to have been j2�i. Hence, the Kennedy receiver

always chooses j0i correctly (ignoring experimental imper-
fections), where the error in the decision results from the
vacuum fluctuations in j2�i (as any coherent state has some
finite overlap with the vacuum state). Using Eq. (93), where
from now on we use the least classical probability situ-
ation of p0 ¼ p1 ¼ 1=2, the error probability is given by
pk
e ¼ 1

2 h2�j�1j2�i which is equal to

pk
e ¼ 1

2 expð�4j�j2Þ; (95)

where we used Eq. (30). The above error bound is some-
times known as the shot-noise error.

2. Dolinar receiver

Dolinar (1973) built upon the results of Kennedy by con-
structing a physical scheme that saturates the Helstrom
bound. Using Eq. (69) with Eq. (30), the Helstrom bound
for two pure coherent states j�i and j � �i is given by

pe;min ¼ 1
2½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�4j�j2Þ

q
�: (96)

This is the lowest possible error in distinguishing between
two pure coherent states. Dolinar’s scheme combined photon
counting with real-time quantum feedback. Here the incom-
ing coherent signal is combined on a beam splitter with a
local oscillator whose amplitude is causally dependent on the
number of photons detected in the signal beam. Such an
adaptive process is continually repeated throughout the du-
ration of the signal length where a decision is made based on
the parity of the final number of photons detected (Helstrom,
1976; Geremia, 2004; Takeoka et al., 2005). Many years
after Dolinar’s proposal, other approaches, such as using a
highly nonlinear unitary operation (Sasaki and Hirota, 1996)
or fast feedforward (Takeoka et al., 2005), also achieved the
Helstrom bound by approximating the required Schrödinger
cat-state measurement basis [the actual creation of such a
basis is experimentally very difficult (Ourjoumtsev et al.,
2007)]. However, an experimental implementation of
Dolinar’s original approach was demonstrated in a proof-of-
principle experiment (Cook, Martin, and Geremia, 2007).

3. Homodyne receiver

As its name suggests the homodyne receiver uses a homo-
dyne detector to distinguish between the coherent states j�i
and j � �i. Such a setup is considered the simplest possible
and unlike the other receivers relies only on Gaussian opera-
tions. The POVMs for the homodyne receiver are modeled by
the projectors

�0 ¼
Z 1

0
dxjxihxj and �1 ¼ I ��1; (97)

where a positive (negative) outcome is obtained identifying
j�i ðj � �iÞ. It was proven by Takeoka and Sasaki (2008) that
the simple homodyne detector is optimal among all available
Gaussian measurements. In fact, for weak coherent states
(amplitudes j�j2 < 0:4), the homodyne receiver is near opti-
mal and has a lower error probability than the Kennedy
receiver. Such a regime corresponds to various quantum
communication protocols as well as deep space communica-
tion. Using Eq. (92) with the projectors from Eq. (97) and the
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fact that jh��jxij2 ¼ ��1=2 exp½�ðxþ j�j=2Þ2�, the error
probability for the homodyne receiver is given by (Olivares
and Paris, 2004; Takeoka and Sasaki, 2008)

ph
e ¼ 1

2ð1� erf½j�j=2�Þ; (98)

where erf½
� is the error function. This limit is known as the
homodyne limit.

4. Optimized displacement receiver

The optimized displacement receiver (Takeoka and Sasaki,
2008) is a modification of the Kennedy receiver where instead
of displacing j�i and j � �i by �, both are now displaced by
an optimized value �, where �, � 2 R. This displacement
Dð�Þ is based on optimizing both terms in the error proba-
bility of Eq. (92). When considering the Kennedy receiver,
only the p1h��j�0j � �i term is minimized. However, the
optimized displacement receiver is based on optimizing
the sum of the two probabilities as a function of the displace-
ment �. The signal states j 	 �i are now displaced by �
according to

j 	 �i ! j 	 ffiffiffi
�

p
�þ �i; (99)

for a transmission � in the limit of � ! 1. As with the
Kennedy receiver photon detection is used to detect the
incoming states and is described by the projectors given in
Eq. (94). Using Eqs. (30) and (92) but with the coherent
states now given by Eq. (99), the error probability can be
expressed as

p�
e ¼ 1

2 � exp½�ð�j�j2 þ j�j2Þ� sinhð2 ffiffiffi
�

p
��Þ: (100)

The optimized displacement receiver outperforms both the
homodyne receiver and the Kennedy receiver for all values
of �. It is interesting to note that such a receiver has
applications in quantum cryptography where it has been
shown to increase the secret-key rates of certain protocols
(Wittmann et al., 2010a, 2010b). Furthermore, by includ-
ing squeezing with the displacement, an improvement in
the performance of the receiver can be achieved (Takeoka
and Sasaki, 2008). The optimized displacement receiver
has also been demonstrated experimentally (Wittmann
et al., 2008; Tsujino et al., 2011).

To summarize, in terms of performance, the hierarchy for
the above mentioned receivers is the following: (1) Dolinar
receiver, (2) optimized displacement receiver, (3) Kennedy
receiver, and (4) homodyne receiver. Again, out of the ones
mentioned, the Dolinar receiver is the only one that is opti-
mal. Furthermore, the Kennedy receiver has a lower error
probability than the homodyne receiver for most values of
amplitude. Finally, we point out that our discussion of binary
receivers (photon counters) presumes unity quantum effi-
ciency with no dark noise or thermal noise and hence paints
an ideal theoretical comparison between all of the aforemen-
tioned receivers.

IV. EXAMPLES OF GAUSSIAN QUANTUM PROTOCOLS

A. Quantum teleportation and variants

Quantum teleportation is one of the most beautiful proto-
cols in quantum information. Originally developed for qubits
(Bennett et al., 1993), it was later extended to continuous-
variable systems (Vaidman, 1994; Braunstein and Kimble,
1998; Ralph and Lam, 1998), where coherent states are tele-
ported via the EPR correlations shared by two distant parties.
It was also demonstrated experimentally (Furusawa et al.,
1998; Bowen et al., 2003; Zhang et al., 2003). Here we
review the quantum teleportation protocol for Gaussian states
using the formalism of Chizhov, Knöll, and Welsch (2002);
Fiuràšek (2002b), and Pirandola and Mancini (2006).

Two parties, say Alice and Bob, possess two modes a and b
prepared in a zero-mean Gaussian state �̂ð0;VÞ whose
covariance matrix V can be written in the (A, B, C)-block
form of Eq. (53). This state can be seen as a virtual channel
that Alice can exploit to transfer an input state to Bob. In
principle the input state can be completely arbitrary. In
practical applications she typically picks her state from
some previously agreed alphabet. Consider the case in which
she wishes to transfer a Gaussian state �̂inð �xin;VinÞ, with fixed
covariance matrix Vin but unknown mean �xin (chosen from a
Gaussian distribution), from her input mode in to Bob. To
accomplish this task, Alice must destroy her state �̂in by
combining modes in and a in a joint Gaussian measurement,
known as a Bell measurement, where Alice mixes in and
a in a balanced beam splitter and homodynes the output
modes � and þ by measuring q̂� and p̂þ, respectively.
The outcome of the measurement � :¼ ðq� þ ipþÞ=2 is
then communicated to Bob via a standard telecom line.
Once he receives this information, Bob can reconstruct
Alice’s input state by applying a displacement Dð�Þ on his
mode b, which outputs a Gaussian state �̂out ’ �in. The
performance of the protocol is expressed by the teleportation
fidelity F. This is the fidelity between the input and output
states averaged over all the outcomes of the Bell measure-
ment. Assuming pure Gaussian states as input, one has
(Fiuràšek, 2002b)

F ¼ 2ffiffiffiffiffiffiffiffiffiffi
det�

p ;

� :¼ 2Vin þ ZAZþB� ZC�CTZT;

(101)

where again Z :¼ diagð1;�1Þ. This formula can be general-
ized to virtual channels �̂ð �x;VÞ with arbitrary mean �x ¼
ð �qa; �pa; �qb; �pbÞT . This is possible if Bob performs the modi-

fied displacement Dð�þ ~�Þ, where ~� :¼ ½ð �qb � �qaÞ �
ið �pb þ �paÞ�=2

ffiffiffi
2

p
(Pirandola and Mancini, 2006).

In order to be truly quantum, the teleportation must have a
fidelity above a classical threshold Fclass. This value corre-
sponds to the classical protocol where Alice measures her
states and communicates the results to Bob who, in turn,
reconstructs the states from the classical information. In
general, a necessary condition for having F > Fclass is the
presence of entanglement in the virtual channel. For bosonic
systems, this is usually assured by the presence of EPR
correlations. For instance, consider the case where the input
states are coherent states chosen from a broad Gaussian
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distribution and the virtual channel is an EPR state �̂EPRðrÞ. In
this case, the teleportation fidelity is simply given by
(Furusawa et al., 1998; Adesso and Illuminati, 2005; Mari
and Vitali, 2008)

F ¼ ð1þ ~
�Þ�1; ~
� ¼ expð�2jrjÞ: (102)

Here the presence of EPR correlations (r > 0) guarantees the
presence of entanglement (~
� < 1) and, correspondingly, one
has F > 1=2, i.e., the fidelity beats the classical threshold for
coherent states (Braunstein et al., 2001; Hammerer et al.,
2005). A more stringent threshold for teleportation is to
require that the quantum correlations between the input field
and the teleported field are retained (Ralph and Lam, 1998).
In turn this implies that the teleported field is the best copy of
the input allowed by the no-cloning bound (Grosshans and
Grangier, 2001). At unity gain this requires that ~
� < 1=2
and corresponds to a coherent-state fidelity F > 2=3 as first
demonstrated by Takei et al. (2005).

In continuous variables, the protocol of quantum telepor-
tation was extended in several ways, including number-phase
teleportation (Milburn and Braunstein, 1999), all-optical tele-
portation (Ralph, 1999b), quantum teleportation networks
(Loock and Braunstein, 2000), teleportation of single-photon
states (Ide et al., 2001; Ralph, 2001), quantum telecloning
(Loock and Braunstein, 2001), quantum gate teleportation
(Bartlett and Munro, 2003), assisted quantum teleportation
(Pirandola, Mancini, and Vitali, 2005), quantum tele-
portation games (Pirandola, 2005), and teleportation channels
(Wolf, Pérez-Garcı́a, and Giedke, 2007). One of the most
important variants of the protocol is the teleportation of
entanglement also known as entanglement swapping
(Polkinghorne and Ralph, 1999; van Loock and Braunstein,
1999; van Loock, 2002; Jia et al., 2004; Takei et al., 2005).
Here Alice and Bob possess two entangled states �̂aa0 and
�̂bb0 , respectively. Alice keeps mode a and sends mode a0 to a
Bell measurement, while Bob keeps mode b and sends b0.
Once a0 and b0 are measured and the outcome communicated,
Alice and Bob will share an output state �̂ab, where a and b
are entangled. For simplicity, let us suppose that Alice’s
and Bob’s initial states are EPR states, i.e., �̂aa0 ¼ �̂bb0 ¼
�̂EPRðrÞ. Using the input-output relations given by Pirandola
et al. (2006), one can easily check that the output Gaussian
state �̂ab has logarithmic negativity ENð�̂abÞ ¼ log coshð2rÞ,
corresponding to entanglement for every r > 0.

Teleportation and entanglement swapping are protocols
which may involve bosonic systems of different nature. For
example, Sherson et al. (2006) teleported a quantum state
from an optical mode onto a macroscopic object consisting
of an atomic ensemble of about 1012 caesium atoms.
Theoretically, this kind of result can also be realized by using
radiation pressure. In fact, by impinging a strong monochro-
matic laser beam onto a highly reflecting mirror, it is possible
to generate a scattering process where an optical mode
becomes entangled with an acoustic (massive) mode excited
over the surface of the mirror. Exploiting this hybrid entan-
glement, the teleportation from an optical to an acoustic
mode is possible in principle (Mancini, Vitali, and Tombesi,
2003; Pirandola et al., 2003), as well as the generation of
entanglement between two acoustic modes by means of
entanglement swapping (Pirandola et al., 2006).

B. Quantum cloning

Following the seminal works of Dieks (1982) and Wootters
and Zurek (1982), it is well known that a quantum trans-
formation that outputs two perfect copies of an arbitrary input
state jc i is precluded by the laws of quantum mechanics.
This is the content of the celebrated quantum no-cloning
theorem. More precisely, perfect cloning is possible if and
only if the input state is drawn from a set of orthogonal states.
Then, a simple von Neumann measurement enables the per-
fect discrimination of the states (see Sec. III), which in turn
enables the preparation of exact copies of the measured state.
In contrast, if the input state is drawn from a set of non-
orthogonal states, perfect cloning is impossible. A notable
example of this are coherent states which cannot be perfectly
distinguished nor cloned as a result of Eq. (30). Interestingly,
although perfect cloning is forbidden, one can devise approxi-
mate cloning machines, which produce imperfect copies of
the original state. The concept of a cloning machine was
introduced by Bužek and Hillery (1996), where the cloning
machine produced two identical and optimal clones of an
arbitrary single qubit. Their work launched a whole new field
of investigation (Scarani et al., 2005; Cerf and Fiuràšek,
2006). Cloning machines are intimately related to quantum
cryptography (see Sec. VI) as they usually constitute the
optimal attack against a given protocol, so that finding the
best cloning machine is crucial to address the security of a
quantum cryptographic protocol (Cerf and Grangier, 2007).

The extension of quantum cloning to continuous-variable
systems was first carried out by Cerf and Iblisdir (2000) and
Lindblad (2000), where a Gaussian cloning machine was
shown to produce two noisy copies of an arbitrary coherent
state (where the figure of merit here is the single-clone
excess noise variance). The input mode, described by the
quadratures ðq̂in; p̂inÞ, is transformed into two noisy clones
(q̂1ð2Þ, p̂1ð2Þ) according to

q̂1ð2Þ ¼ q̂in þ N̂q1ð2Þ; p̂1ð2Þ ¼ p̂in þ N̂p1ð2Þ; (103)

where N̂q1ð2Þ and N̂p1ð2Þ stand for the added noise operators on
the output mode 1 (2). We may impose hN̂q1ð2Þi ¼ hN̂p1ð2Þi ¼
0, so that the mean values of the output quadratures coincide
with those of the original state. It is the variance of the added
noise operators which translates the cloning imperfection: A
generalized uncertainty relation for the added noise operators
can be derived (Cerf, Ipe, and Rottenberg, 2000; Cerf, 2003),

�N̂q1�N̂p2 � 1; �N̂p1�N̂q2 � 1; (104)

which is saturated (i.e., lower bounded) by this cloning
machine. The above inequalities clearly imply that it is
impossible to have two clones with simultaneously vanishing
noise in the two canonically conjugate quadratures. This can
be straightforwardly linked to the impossibility of simulta-
neously perfectly measuring the two canonically conjugate
quadratures of the input mode: If we measure q̂ on the first
clone and p̂ on the second clone, the cloning machine ac-
tually produces the exact amount of noise that is necessary to
prevent this procedure from beating the optimal (heterodyne)
measurement (Lindblad, 2000).
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The Gaussian cloning machine was first derived in the
quantum circuit language (Cerf, Ipe, and Rottenberg, 2000),
which may, for example, be useful for the cloning of light
states onto atomic ensembles (Fiuràšek, Cerf, and Polzik,
2004). However, an optical version was later developed by
Braunstein et al. (2001) and Fiuràšek (2001), which is better
suited for our purposes here. The cloning machine can be
realized with a linear phase-insensitive amplifier of intensity
gain two, followed by a balanced beam splitter. The two
clones are then found in the two output ports of the beam
splitter, while an anticlone is found in the idler output of the
amplifier. The anticlone is defined as an imperfect version of
the phase conjugate j��i of the input state j�i, where
� ¼ ðqþ ipÞ=2 and �� ¼ ðq� ipÞ=2. The symplectic
transformation on the quadrature operators x̂ ¼
ðq̂1; p̂1; q̂2; p̂2; q̂3; p̂3ÞT of the three input modes reads

x̂ ! Cx̂; C ¼ ðB � IÞðI � S2Þ; (105)

where B is the symplectic map of a beam splitter with
transmittance � ¼ 1=2 as defined in Eq. (38), S2 is the
symplectic map of a two-mode squeezer with intensity
gain cosh2r ¼ 2 as defined in Eq. (40), and I is a 2� 2
identity matrix. The input mode of the cloner is the signal
mode of the amplifier (mode 2), while the idler mode of the
amplifier (mode 3) and the second input mode of the beam
splitter (mode 1) are both prepared in the vacuum state. At
the output, modes 1 and 2 carry the two clones, while
mode 3 carries the anticlone. By reordering the three q̂
quadratures before the three p̂ quadratures, we can express
the cloning symplectic map as

C¼
2�1=2 1 2�1=2

�2�1=2 1 2�1=2

0 1 21=2

0
BB@

1
CCA�

2�1=2 1 �2�1=2

�2�1=2 1 �2�1=2

0 �1 21=2

0
BB@

1
CCA:

(106)

The second columns of the q̂ and p̂ blocks immediately
imply that the two clones are centered on the input state (q̂2,
p̂2), while the anticlone is centered on the phase conjugate
of the input state (q̂2, �p̂2). We can also check that the
covariance matrix of the output modes can be expressed as

V1 ¼ V2 ¼ Vin þ I; V3 ¼ ZVinZþ 2I; (107)

where Vin is the covariance matrix of the input mode
(mode 2) and again Z ¼ diagð1;�1Þ. Thus, the two clones
suffer exactly one unit of additional shot noise, while the
anticlone suffers two shot-noise units. This can be expressed
in terms of the cloning fidelities of Eq. (80). The fidelity of
each of the clones is given by F ¼ 2=3, regardless of which
coherent state is cloned. The anticlone is noisier and char-
acterized by a fidelity of F ¼ 1=2. Note that this latter
fidelity is precisely that of an optimal joint measurement
of the two conjugate quadratures (Arthurs and Kelly, Jr.,
1965), so that optimal (imperfect) phase conjugation can be
classically achieved by heterodyning the state and preparing
its phase conjugate (Cerf and Iblisdir, 2001b).

A variant of this optical cloner was demonstrated experi-
mentally by Andersen, Josse, and Leuchs (2005), where the
amplifier was replaced by a feed forward optical scheme

which only requires linear optical components and homodyne

detection (Lam et al., 1997). A fraction of the signal beam is

tapped off and measured using heterodyne detection. The

outcomes of this measurement are then used to apply an

appropriate displacement to the remaining part of the signal

beam. This setup demonstrates near-optimal quantum noise

limited performances and can also be adapted to produce a

phase-conjugate output (Josse et al., 2006). This 1-to-2

Gaussian cloner can be straightforwardly extended to a

more general setting, where M identical clones are produced

from N identical replica of an unknown coherent state with a

fidelity F ¼ MN=ðMN þM� NÞ (Cerf and Iblisdir, 2000).

More generally, one can add a N0 replica of the phase-

conjugate state at the input and produce M0 ¼ Mþ N0 � N
anticlones (Cerf and Iblisdir, 2001a). In this more elaborate

scheme, the signal mode carries all inputs and clones, while

the idler mode carries all phase-conjugate inputs and

anticlones. Interestingly, for a fixed total number of inputs

N þ N0 the clones have a higher fidelity if N0 > 0, a property
which holds regardless of M and even survives at the limit of

a measurement M ! 1. So the cloning or measurement

performances are enhanced by phase-conjugate inputs. For

example, the precision of measuring the quadratures of two

phase-conjugate states j�ij��i is as high as that achieved

when measuring four identical states j�i�4, although half of

the mean energy is needed, as experimentally demonstrated

by Niset et al. (2007). Furthermore, the cloning of phase-

conjugate coherent states was suggested by Chen and Zhang

(2007) and also suggested, as well as demonstrated, by

Sabuncu, Andersen, and Leuchs (2007) using the linear

cloner of Andersen, Josse, and Leuchs (2005).
Gaussian cloners have also been theoretically devised in an

asymmetric setting, where the clones have different fidelities

(Fiuràšek, 2001). The way to achieve asymmetry is to use an

additional beam splitter that deflects a fraction of the input

beam before entering the signal mode of the amplifier. This

deflected beam bypasses the amplifier and feeds the vacuum

input port of the beam splitter that yields the two clones. By

tuning the transmittance of the beam splitters, one can gen-

erate the entire family of cloners saturating Eq. (104). This

idea can also be generalized to define the optimal asymmetric

cloner producing M different clones (Fiuràšek and Cerf,

2007). Other research into Gaussian quantum cloning in-

cludes the relationship of the no-cloning limit to the quality

of continuous-variable teleportation (Grosshans and

Grangier, 2001), the optimal cloning of coherent states with

a finite distribution (Cochrane, Ralph, and Dolinska, 2004),

the cloning of squeezed and thermal states (Olivares, Paris,

and Andersen, 2006), and the cloning of both entangled

Gaussian states and Gaussian entanglement (Weedbrook

et al., 2008). Finally, it is worth noting that all the Gaussian

cloners discussed above are optimal if the added noise vari-

ance is taken as the figure of merit. The Gaussian trans-

formation of Eq. (106) produces clones with the minimum

noise variance, namely, one unit of shot noise. Surprisingly, if

the single-clone fidelity is chosen instead as the figure of

merit, the optimal cloner is a non-Gaussian cloner which

slightly outperforms the Gaussian cloner (its fidelity is

2.4% higher) for the cloning of Gaussian (coherent) states

(Cerf, Krüger et al., 2005).
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V. BOSONIC GAUSSIAN CHANNELS

A central topic in quantum information theory is the study
of bosonic channels, or, more properly, linear bosonic
channels (Demoen, Vanheuverzwijn, and Verbeure, 1977;
Lindblad, 2000). In particular, Gaussian channels represent
the standard model of noise in many quantum communication
protocols (Holevo, Sohma, and Hirota, 1999; Holevo and
Werner, 2001; Eisert and Wolf, 2007). They describe all those
communication processes where the interaction between the
bosonic system carrying the information and the external
decohering environment is governed by a linear and/or bi-
linear Hamiltonian. In the simplest scenario, Gaussian chan-
nels are memoryless, meaning that different bosonic systems
are affected independently and identically. This is the case of
the one-mode Gaussian channels, where each mode sent
through the channel is perturbed in this way (Holevo and
Werner, 2001; Holevo, 2007).

This section is structured as follows. In Sec. V.A, we give a
general introduction to bosonic channels and, particularly,
Gaussian channels, together with their main properties. Then,
in Sec. V.B, we discuss the specific case of one-mode
Gaussian channels and their recent full classification. In
Secs. V.C–V.E, we discuss the notions of classical capacity,
the bosonic minimum output entropy conjecture, and quan-
tum capacity, respectively, with quantum dense coding and
entanglement-assisted classical capacity revealed in Sec. V.F.
Entanglement distribution and secret-key capacities are dis-
cussed in Sec. V.G. Finally, in Sec. V.H, we consider the
problem of Gaussian channel discrimination and its potential
applications.

A. General formalism

Consider a multimode bosonic system, with arbitrary N
modes, whose quantum state is described by an arbitrary
density operator �̂ 2 DðH �NÞ. Then, an N-mode bosonic
channel is a linear map E: �̂ ! Eð�̂Þ 2 DðH �NÞ, which
must be completely positive and trace preserving (CPT)
(Nielsen and Chuang, 2000). There are several equivalent
ways to represent this map, one of the most useful being the
Stinespring dilation (Stinespring, 1955). As depicted in
Fig. 1, a multimode bosonic channel can be represented by
a unitary interaction U between the input state �̂ and a pure
state j�iE of ancillary NE modes associated with the environ-
ment. Then the output of the channel is given by tracing out
the environment after interaction, i.e.,

Eð�̂Þ ¼ TrE½Uð�̂ � j�ih�jEÞUy�: (108)

An important property of the Stinespring dilation is its
uniqueness up to partial isometries (Paulsen, 2002). As a
result, one can always choose j�iE ¼ j0iE, where j0iE is a
multimode vacuum state.

Note that, in the physical representation provided by the
Stinespring dilation, the environment has an output too.
In fact, we consider the complementary bosonic channel
~E: �̂ ! ~Eð�̂Þ which is defined by tracing out the system after
interaction. For particular kinds of bosonic channels, the two

outputs Eð�̂Þ and ~Eð�̂Þ are connected by CPT maps. This
happens when the channel is degradable or antidegradable.
By definition, we say that a bosonic channel E is degradable if

there exists a CPT mapD such thatD � E ¼ ~E (Devetak and

Shor, 2005). This means that the environmental output ~Eð�̂Þ
can be achieved from the system output Eð�̂Þ by applying
another bosonic channel D. By contrast, a bosonic channel E
is called antidegradable when there is a CPT map A such

that A � ~E ¼ E (see Fig. 1).
The most important bosonic channels are the Gaussian

channels, defined as those bosonic channels transforming
Gaussian states into Gaussian states. An arbitrary N-mode
Gaussian channel can be represented by a Gaussian dilation.
This means that the interaction unitary U in Eq. (108) is
Gaussian and the environmental state j�iE is pure Gaussian
(or, equivalently, the vacuum). Furthermore, we can choose
an environment composed of NE � 2N modes (Caruso et al.,
2008, 2011). The action of a N-mode Gaussian channel over
an arbitrary Gaussian state �̂ð �x;VÞ can be easily expressed in
terms of the first and second statistical moments. In fact, we
have (Holevo and Werner, 2001)

�x ! T �xþ d; V ! TVTT þ N; (109)

where d 2 R2N is a displacement vector, while T and
N ¼ NT are 2N � 2N real matrices, which must satisfy the
complete positivity condition

Nþ i�� iT�TT � 0; (110)

where � is defined in Eq. (2). Note that, for N ¼ 0 and
T :¼ S symplectic, the channel corresponds to a Gaussian
unitary US;d (see Sec. II.A.2).

B. One-mode Gaussian channels

The study of one-mode Gaussian channels plays a central
role in quantum information theory, representing one of the
standard models to describe the noisy evolution of one-mode
bosonic states. Furthermore, these channels represent the
manifest effect of the most important eavesdropping strategy
in continuous-variable quantum cryptography, known as
collective Gaussian attacks, which will be discussed in
Sec. VI.B.4. An arbitrary one-mode Gaussian channel G is
fully characterized by the transformations of Eq. (109), where
now d 2 R2 and T and N are 2� 2 real matrices, satisfying

N ¼ NT � 0; detN � ðdetT� 1Þ2: (111)

The latter conditions can be derived by specifying Eq. (110)
to one mode (N ¼ 1). According to Holevo (2007),
the mathematical structure of a one-mode Gaussian channel
G ¼ Gðd;T;NÞ can be greatly simplified. As depicted in
Fig. 2(a), every G can be decomposed as

FIG. 1. Stinespring dilation of a bosonic channel E. The input

state �̂ interacts unitarily with a pure state j�iE of the environment,

which can be chosen to be the vacuum. Note that, besides the output

Eð�̂Þ, there is a complementary output ~Eð�̂Þ for the environment. In

some cases, the two outputs are connected by CPT maps (see text).
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Gð�̂Þ ¼ W½CðU�̂UyÞ�Wy; (112)

where U and W are Gaussian unitaries, while the map C,
which is called the canonical form, is a simplified Gaussian
channel C ¼ Cðdc;Tc;NcÞ with dc ¼ 0 and Tc and Nc diago-
nal. The explicit expressions of Tc and Nc depend on three
quantities which are preserved by the action of the Gaussian
unitaries. These invariants are the generalized transmissivity
� :¼ detT (ranging from�1 toþ1), the rank of the channel
r :¼ min½rankðTÞ; rankðNÞ� (with possible values r ¼ 0, 1, 2)
and the thermal number �n, which is a non-negative number
defined by

�n :¼
8<
: ðdetNÞ1=2; for � ¼ 1;

ðdetNÞ1=2
2j1��j � 1

2 ; for � � 1:
(113)

These three invariants f�; r; �ng fully characterize the two
matrices Tc and Nc, thus identifying a unique canonical
form C ¼ Cð�; r; �nÞ. In particular, the first two invariants
f�; rg determine the class of the form. The full canonical
classification is shown in Table I.

We now discuss the various classes. Class A1 is composed
of forms which are completely depolarizing channels, i.e.,
replacing input states with thermal states. Classes A2 and B1

are special and involve canonical forms transforming the
quadratures asymmetrically. Class B2 describes the
classical-noise channels, transforming the quadratures as

x̂ ! x̂þ �, where � is Gaussian noise with classical covari-
ance matrix �nI. This class collapses to the identity channel
for �n ¼ 0. Class C describes canonical forms with trans-

missivities 0< � � 1. This class is further divided in two
subclasses: C (Loss) for 0< �< 1, and C (Amp) for � > 1.
Canonical forms in C (Loss) are known as lossy channels,
also denoted by Lð�; �nÞ :¼ Cð0< �< 1; 2; �nÞ. These are the
most important ones, representing the basic model to describe
communication lines such as optical fibers. In a lossy chan-

nel, the input signals are attenuated and combined with

thermal noise, i.e., we have x̂ ! ffiffiffi
�

p
x̂þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

x̂th, where
x̂th are in a thermal state with �n photons. Canonical forms in

C (Amp) are known as amplifying channels, denoted by
Að�; �nÞ :¼ Cð� > 1; 2; �nÞ. They describe optical processes,
such as phase-insensitive amplifiers, where the input signals

are amplified with the addition of thermal noise, i.e., x̂ !ffiffiffi
�

p
x̂þ ffiffiffiffiffiffiffiffiffiffiffiffi

�� 1
p

x̂th. Finally, class D is associated with nega-

tive transmissivities. Its forms can be seen as complementary
outputs of the amplifying channels.

We can easily construct the Stinespring dilation of all the
canonical forms (Pirandola, Braunstein, and Lloyd, 2008). As
depicted in Fig. 2(b), an arbitrary form Cð�; r; �nÞ can be
dilated to a three-mode canonical unitary UL corresponding
to a 6� 6 symplectic matrix L. This unitary transforms the
input state �̂ (mode A) together with an environmental EPR
state j
i (modes E and e) of suitable noise variance 
 [see

Eq. (42)]. In particular, the symplectic matrix is determined
by the class, i.e., L ¼ Lð�; rÞ, while the EPR state is deter-
mined by the thermal number, i.e., 
 ¼ 2 �nþ 1. We now
analyze Lð�; rÞ for the various classes, starting from B2.
For null rank, class B2 collapses to the identity and we simply
have Lð1; 0Þ ¼ I. However, for full rank the symplectic

matrix Lð1; 2Þ does not have a simple expression (Holevo,
2007). If we exclude the class B2, the symplectic matrix L
can always be decomposed as Lð�; rÞ ¼ Mð�; rÞ � Ie, where
M describes a two-mode canonical unitary acting on modes A
and E, while Ie is just the identity on mode e. As depicted in
Fig. 2(c), this means that only one mode E of the EPR state
j
i is actually combined with the input mode A. Clearly by

tracing out the unused EPR mode e, we get a thermal state
with �n photons on mode E, as depicted in Fig. 2(d). Thus the
canonical forms Cð�; r; �nÞ of all the classes but B2 admit a
physical representation where a single-mode thermal state

(a)

(b)

(c) (d)

FIG. 2. (a) A generic one-mode Gaussian channel G can be

represented by a canonical form C up to input and output

Gaussian unitaries U and W. (b) An arbitrary canonical form C ¼
Cð�; r; �nÞ can be dilated to a three-mode canonical unitary UL which

is described by a class-dependent symplectic transformation L ¼
Lð�; rÞ. This unitary evolves the input state �̂ together with an EPR

state j
i with noise variance 
 ¼ 2 �nþ 1 and belonging to the

environment. (c) Apart from class B2, all the other classes can be

dilated using Lð�; rÞ ¼ Mð�; rÞ � Ie. This means that only one

mode E of the EPR state j
i is combined with the input mode A.

(d) Tracing out mode e, we get a thermal state �̂ð �nÞ on mode E.
Thus the canonical forms of all the classes but B2 can be represented

by a single-mode thermal state interacting with the input state via a

two-mode symplectic transformation M.

TABLE I. The values of f�; rg in the first two columns specify a
canonical class A1, A2, B1, B2, C, or D (third column). Within each
class, the possible canonical forms are expressed in the fourth
column, where also the invariant �n must be considered. The
corresponding expressions of Tc and Nc are shown in the last two
columns, where Z :¼ diagð1;�1Þ, I :¼ diagð1; 1Þ, and 0 is the zero
matrix.

� r Class Form Tc Nc

0 0 A1 Cð0; 0; �nÞ 0 ð2 �nþ 1ÞI
0 1 A2 Cð0; 1; �nÞ IþZ

2 ð2 �nþ 1ÞI
1 1 B1 Cð1; 1; 0Þ I I�Z

2
1 2 B2 Cð1; 2; �nÞ I �nI
1 0 B2ðIdÞ Cð1; 0; 0Þ I 0
(0,1) 2 CðLossÞ Cð�; 2; �nÞ ffiffiffi

�
p

I ð1� �Þð2 �nþ 1ÞI
>1 2 CðAmpÞ Cð�; 2; �nÞ ffiffiffi

�
p

I ð�� 1Þð2 �nþ 1ÞI
<0 2 D Cð�; 2; �nÞ ffiffiffiffiffiffiffi��

p
Z ð1� �Þð2 �nþ 1ÞI
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�̂ð �nÞ interacts with the input state via a two-mode symplectic
transformation Mð�; rÞ. Despite being simpler than the
Stinespring dilation, this unitary dilation involves a mixed
environmental state and, therefore, it is not unique up to
partial isometries. The explicit expressions of Mð�; rÞ are
relatively easy (Caruso, Giovannetti, and Holevo, 2006).
For classes A1, A2, and B1, we have

Mð0;0Þ¼ 0 I

I 0

 !
; Mð0;1Þ¼

IþZ
2 I

I Z�I
2

 !
; (114)

Mð1; 1Þ ¼ I IþZ
2

I�Z
2 �I

 !
: (115)

Then, for classes C (Loss), C (Amp), and D, we have

Mð0< �< 1; 2Þ ¼
ffiffiffi
�

p
I

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
I

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
I

ffiffiffi
�

p
I

 !
; (116)

Mð� > 1; 2Þ ¼
ffiffiffi
�

p
I

ffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p
Zffiffiffiffiffiffiffiffiffiffiffiffi

�� 1
p

Z
ffiffiffi
�

p
I

 !
; (117)

Mð� < 0; 2Þ ¼
ffiffiffiffiffiffiffi��

p
Z

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
I

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
I � ffiffiffiffiffiffiffi��

p
Z

 !
: (118)

Here it is important to note that Eq. (116) is just the beam
splitter matrix [cf. Eq. (38)]. This means that the Stinespring
dilation of a lossy channel Lð�; �nÞ is an entangling cloner
(Grosshans, van Assche et al., 2003), i.e., a beam splitter
with transmissivity � which combines the input mode with
one mode of an environmental EPR state j
i. Clearly, this
implies the well-known physical representation for the lossy
channel where a beam splitter of transmissivity � mixes the
input state with a single-mode thermal state �̂ð �nÞ. A particular
case of lossy channel is the pure-loss channelLð�; 0Þwhich is
given by setting �n ¼ 0. In this case the Stinespring dilation is
just a beam splitter mixing the input with the vacuum.

Finally, we review the degradability properties of the one-
mode Gaussian channels. Since these properties are invariant
by unitary equivalence, we have that a degradable (antide-
gradable) channel G corresponds to a degradable (antidegrad-
able) form C. All the forms Cð�; r; �nÞ with transmissivity
� � 1=2 are antidegradable (Caruso and Giovannetti, 2006).
This includes all the forms of classes A1, A2,D and part of the
forms of class C, i.e., lossy channels Lð�; �nÞ with � � 1=2.
By unitary equivalence, this means that one-mode Gaussian
channels with transmissivity � � 1=2 are all antidegradable.
For � � 1=2 the degradability properties are not so straight-
forward. However, we know that pure-loss channels Lð�; 0Þ
with � � 1=2 and ideal amplifying channels Að�; 0Þ are all
degradable.

C. Classical capacity of Gaussian channels

Shannon (1948) proved that sending information through a
noisy channel can be achieved with a vanishing error, in the
limit of many uses of the channel. He developed an elegant
mathematical theory in order to calculate the ultimate limits
on data transmission rates achievable over a classical com-
munication channel N , known as the channel capacity.

Consider two parties Alice and Bob which are connected
by an arbitrary noisy channel N . At the input, Alice draws
letters from a random variable (or alphabet) A :¼ fa; pag,
where the letter a occurs with probability pa. The informa-
tion content of this variable is expressed in terms of bits per
letter and quantified by the Shannon entropy HðAÞ ¼
�Papa logpa (it is understood that when we consider con-
tinuous variables, the probabilities are replaced by probability
densities and sums by integrals). By drawing many times,
Alice generates a random message a1; a2; . . . which is sent to
Bob through the noisy channel. As long as the channel is
memoryless, i.e., it does not create correlations between
different letters, Bob’s output message can be described by
drawings from another random variable B :¼ fb; pbg corre-
lated to the input one B ¼ N ðAÞ. On average, the number
of bits per letter which are communicated to Bob is given by
the mutual information IðA:BÞ ¼ HðBÞ �HðBjAÞ, where
HðBjAÞ is the Shannon entropy of B conditioned on the
knowledge of A (Cover and Thomas, 2006). Now, the channel
capacity CðN Þ, expressed in bits per channel use, is given by
maximizing the mutual information over all of Alice’s
possible inputs

CðN Þ ¼ max
A

IðA:BÞ: (119)

It is important to note that many communication channels,
such as wired and wireless telephone channels and satellite
links, are currently modeled as classical Gaussian channels.
Here the input variable A generates a continuous signal a with
variance P which is transformed to a continuous output
b ¼ �aþ �, where � is the transmissivity of the channel
and � is drawn from a Gaussian noise variable of variance
V. Shannon’s theory gives the capacity CðN Þ ¼
1
2 logð1þ �PV�1Þ (Cover and Thomas, 2006). We remark

that this result predicts an infinite communication rate through
a noiseless channel (V ¼ 0). This counterintuitive result is due
to the lack of limitation to the measurement accuracy in
classical physics. This is no longer true when we consider
the actual quantumnature of the physical systems. In fact, ifwe
encode classical information in the temporal modes (pulses) of
the quantized electromagnetic field, then the capacity of the
identity channel is no longer infinite but depends on the input
energy. As shown by Yuen and Ozawa (1993), the capacity of
the identity channel I is given by CðIÞ ¼ gð2 �mþ 1Þ, where
gð
Þ is given in Eq. (47) and �m is the mean number of photons
per pulse. Thus, a quantum mechanical treatment of the prob-
lem gives a finite solution for finite energy, showing that
quantum mechanics is mandatory in understanding the ulti-
mate limits of communication.

Since information is fundamentally encoded in a physical
system and quantum mechanics is the most accurate repre-
sentation of the physical world, it is therefore natural to ask
what are the ultimate limits set by quantum mechanics to
communication? Since the 1980s several groups started
studying quantum encoding and detection over optical chan-
nels, modeled as Gaussian quantum channels (Yuen and
Shapiro, 1980; Shapiro, 1984; Caves and Drummond, 1994;
Hall, 1994). An important milestone was achieved with
the Holevo-Schumacher-Westmoreland (HSW) theorem
(Schumacher and Westmoreland, 1997; Holevo, 1998), which
laid the basis for a quantum generalization of Shannon’s
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communication theory (Wilde, 2011). First, we introduce the
notions of quantum ensemble and Holevo bound (Holevo,
1973). An arbitrary random variable A ¼ fa; pag can be
encoded in a quantum ensemble (or source) A ¼ f�̂a; pag,
where each letter a is associated with a quantum letter state
�̂a occurring with probability pa. Since quantum states are
generally nonorthogonal, a nontrivial question is the follow-
ing: What is the maximum information that we can extract
from A using a quantum measurement? This quantity is
called the accessible information of the ensemble and is
less than or equal to the Holevo bound, defined as

�ðAÞ ¼ Sð�̂AÞ �
X
a

paSð�̂aÞ; (120)

where Sð
Þ is the von Neumann entropy and �̂A ¼ P
apa�̂a is

the average state of the ensemble (for continuous ensembles,
the previous sums become integrals). Now, the key result
of the HSW theorem is that the Holevo bound is asymptoti-
cally achievable when we consider a large number of extrac-
tions from the source and a collective quantum measurement.
In this limit, the Holevo bound �ðAÞ provides the accessible
information per letter state.

These results can be directly applied to memoryless quan-
tum channels M. In this case, the letter states drawn from
a source A ¼ f�̂a; pag are transformed identically and
independently by the channel, i.e., �̂a1

� �̂a2

 
 
 !

Mð�̂a1
Þ �Mð�̂a2

Þ 
 
 
 . By performing a collective measure-

ment on the output message state, Bob can extract an average
of �ðA;MÞ bits per channel use, where

�ðA;MÞ ¼ S½Mð�̂AÞ� �
X
a

paS½Mð�̂aÞ�: (121)

Thus the Holevo bound �ðA;MÞ gives the optimal commu-
nication rate which is achievable over the memoryless quan-
tum channel M for fixed source A. Maximizing this
quantity over all the sources A we obtain the (single-shot)
capacity of the channel

Cð1ÞðMÞ ¼ max
A

�ðA;MÞ: (122)

For bosonic systems, where memoryless channels are usually
one-mode channels, the quantity of Eq. (122) must be con-
strained by restricting the maximization over sources with
bounded energy Trð�̂An̂Þ � �m.

Note that we introduced the notation single shot in the
definition of Eq. (122). This is because we are restricting the
problem to single-letter sources which input product states. In
general, we consider multiletter sources that input states that
are (generally) entangled between n uses of the channel
M�n. Then, we can define the full capacity of the channel
via the regularization

CðMÞ ¼ lim
n!1

1

n
Cð1ÞðM�nÞ: (123)

For one-mode bosonic channels, the computation of Eq. (123)
involves the maximization over sources which emit n-mode
entangled states and satisfying the energy constraint
Trð�̂An̂

�nÞ � n �m. Now an important question to ask is if
the presence of entanglement can really enhance the rate of
classical communication. In other words, do we have
CðMÞ>Cð1ÞðMÞ? Hastings (2009) proved the existence of

channels for which this is the case. However, for one-mode
bosonic Gaussian channels this is still an open question.

The first step in this direction was the computation of the
capacity of a pure-loss channel Lp :¼ Lð�; 0Þ. By exploiting

the subadditivity of the von Neumann entropy, Giovannetti
et al. (2004b) obtained an upper bound for CðLpÞ coinciding
with the lower bound reported by Holevo, Sohma, and Hirota
(1999) and Holevo andWerner (2001). As a result, a pure-loss
channel Lp of transmissivity � has classical capacity

CðLpÞ ¼ gð��þ 1� �Þ, where � :¼ 2 �mþ 1 and �m is the

mean number of photons per input mode. Interestingly, one
can achieve this capacity by sending coherent states modu-
lated with a Gaussian distribution of variance V ¼ �� 1. At
the detection stage, collective measurements might be neces-
sary. However, in the regime of many photons, one
may asymptotically achieve this capacity with single-mode
heterodyne since log2ð1þ � �mÞ tends to CðLpÞ as �m ! 1.

The model of pure-loss channel Lp can be adopted to

describe broadband communication lines, such as wave
guides, where the losses are independent from the frequency.
For a pure-loss channel of this kind which employs a set of
frequencies !k ¼ k�! for integer k, one can derive the
capacity C ¼ �

ffiffiffiffiffiffi
�P

p
T, where � is the transmissivity, T ¼

2�=�! is the transmission time, P is the average transmitted
power, and � is a constant (Yuen and Ozawa, 1993). Another
important scenario is free-space optical communication. Here
transmitter and receiver communicate through circular aper-
tures of areas At and Ar which are separated by a distance L.
The far-field regime corresponds to having a single spatial
mode, which happens when AtAr!

2ð2�cLÞ�2 :¼ �ð!Þ  1,
where c is the speed of light and �ð!Þ is the transmissivity of
the optimal spatial modewith frequency! (Yuen and Shapiro,
1978). We have a broadband far-field regime when we use
frequencies up to a critical frequency!c, such that �ð!cÞ  1.
In this case, we compute the capacity

C ¼ ð!cT=2�y0Þ
Z y0

0
dxg½ðe1=x � 1Þ�1�; (124)

where y0 is a parameter which is connected with the energy
constraint (Giovannetti et al., 2004b; Shapiro, Guha, and
Erkmen, 2005; Guha, 2008). Recently, the computation of
this classical capacity was generalized to the presence of
optical refocusing systems between transmitter and receiver
(Lupo, Giovannetti et al., 2011).

D. Bosonic minimum output entropy conjecture

Despite a large research effort in recent years, little progress
has been achieved in the calculation of the classical capacity of
other one-mode Gaussian channels. However, by using
Gaussian encodings, one can obtain lower bounds3. For

3Gaussian encodings have been exploited in various contexts. Not

only for memoryless Gaussian channels (Holevo, Sohma, and

Hirota, 1999; Pilyavets, Lupo, and Mancini, 2009; Lupo,

Pirandola et al., 2011), but also for Gaussian channels with

memory; see, e.g., Cerf, Clavareau et al. (2005), Giovannetti and

Mancini (2005), Pilyavets, Zborovskii, and Mancini (2008), Lupo,

Pilyavets and Mancini (2009), Schäfer, Karpov, and Cerf (2009,

2010, 2011), and Lupo and Mancini (2010).
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instance, using a coherent-state encoding at the input of a lossy
channelLð�; �nÞ, we can compute the following lower bound for
the capacity:

CðLÞ � g½��þ ð1� �Þ
� � g½�þ ð1� �Þ
� :¼ CðLÞ;
(125)

where 
 :¼ 2 �nþ 1,� :¼ 2 �mþ 1, and �m is the mean number
of photons per input mode (Holevo, Sohma, and Hirota, 1999).
It is believed that this lower bound is tight, i.e.,CðLÞ ¼ CðLÞ.
This conjecture is implied by another conjecture, known as the
bosonic minimum output entropy conjecture and stating that
theminimumentropy at the output of a lossy channel is realized
by a vacuum state at the input, i.e., S½Lðj0ih0jÞ� � S½Lð�̂Þ� for
every �̂. It seems extremely reasonable to assume that sending
nothing through the channel is the best way of minimizing the
noise (entropy) at its output. However, such a simple statement
is still todaywithout a proof. Using Lagrangianminimization it
has been possible to prove that vacuum is a local minimum of
the output entropy (Giovannetti et al., 2004a; Lloyd et al.,
2009). In the work of Giovannetti et al. (2004a) a simulated
annealing optimization suggested that outputs produced by a
vacuum input majorize all the other outputs and therefore have
smaller entropy. In a recent work (Garcı́a-Patrón et al., 2012) it
was rigorously proven that the conjecture can be reduced to
minimizing the entanglement produced in a two-mode
squeezer, and a chain of majorization relations was derived
which confirm the conjecture if the input state is a Fock state. It
was also shown that the conjecture holds for all input states in
the case of an infinitesimal Gaussian amplification channel.
Other studies showed that the output Rényi entropy of integer
orders � 2 is minimized by the vacuum input and is also
additive (Giovannetti and Lloyd, 2004; Giovannetti et al.,
2004). Unfortunately, the von Neumann entropy is the Rényi
entropy of the order of 1, which is therefore not covered by
these results. By restricting the input states to Gaussian states it
was proven that vacuum gives the minimal output entropy
(Giovannetti et al., 2004a; Serafini, Eisert, and Wolf, 2005;
Hiroshima, 2006); unfortunately this does not preclude the
possibility of having non-Gaussian input states performing
better. Finally, alternative approaches to the problem were
also proposed, such as proving the entropy photon-number
inequality (Guha, 2008), which is a quantum version of the
classical entropy power inequality (Cover and Thomas, 2006);
see also Giovannetti et al. (2010).

E. Quantum capacity of Gaussian channels

Quantum channels can be used to transfer not just classical
information but also quantum information. In the typical
quantum communication scenario, Alice aims to transmit
quantum states to Bob through a memoryless quantum chan-
nelM. The quantum capacityQðMÞ of the channel gives the
number of qubits per channel use that can be reliably trans-
mitted. As shown by Schumacher and Nielsen (1996), a
crucial role in the definition of the quantum capacity is played
by the coherent information JðM; �̂AÞ, which is a function of
Alice’s input �̂A and the channel M. In order to define this
quantity, we introduce a mirror system R and the purification
�RA ¼ j�ih�jRA of the input state �̂A ¼ TrRð�RAÞ, as shown
in Fig. 3. Then, the coherent information is defined by

JðM; �̂AÞ ¼ Sð�̂BÞ � Sð�̂RBÞ; (126)

where �̂RB :¼ ðIR �MÞð�RAÞ, with IR the identity channel
on the mirror system R. The (single-shot) quantum capacity is
computed by maximizing over all the input states

Qð1ÞðMÞ ¼ max
�̂A

JðM; �̂AÞ: (127)

Since this quantity is known to be nonadditive (Di Vincenzo,
Shor, and Smolin, 1998; Smith and Smolin, 2007; Smith and
Yard, 2008; Smith, Smolin, and Yard, 2011), the correct
definition of quantum capacity is given by the regularization
(Lloyd, 1997; Shor, 2002; Devetak, 2005)

QðMÞ ¼ lim
n!1

1

n
max
�̂An

JðM�n; �̂AnÞ; (128)

where the input state �̂An is generally entangled over n uses of
the channel M�n. It is important to note that the coherent
information computed over bosonic channels is finite even for
infinite input energy. As a result the quantum capacity of
bosonic channels is still defined as in Eq. (128) without the
need of energy constraints. Another important consideration
regards degradable and antidegradable channels. As shown
by Devetak and Shor (2005), degradable channels have addi-
tive quantum capacity, i.e., QðMÞ ¼ Qð1ÞðMÞ. By contrast,
antidegradable channels have null quantum capacity
QðMÞ ¼ 0 (Caruso and Giovannetti, 2006).

Consider the specific case of one-mode Gaussian channels.
In this case a lower bound can be computed by restricting the
quantum capacity to a single use of the channel and pure
Gaussian states. Thus, for an arbitrary one-mode Gaussian
channel G with transmissivity � � 1, we can write the lower
bound (Holevo and Werner, 2001; Pirandola et al., 2009)

QðGÞ � Qð1;gÞðGÞ ¼ max

�
0; log

�������� �

1� �

���������gð
Þ
	
;

(129)

where 
 :¼ 2 �nþ 1 and �n is the thermal number of the
channel. Clearly this formula applies to all the canonical
forms of classes A1, A2, C, and D. There are remarkable
cases where the bound in Eq. (129) is tight. This happens
when the one-mode Gaussian channel is degradable. The
proof given by Wolf, Pérez-Garcı́a, and Giedke (2007) com-
bines the additivity for degradable channels QðGÞ ¼ Qð1ÞðGÞ
with the extremality of Gaussian states Qð1ÞðGÞ ¼ Qð1;gÞðGÞ
(Wolf, Giedke, and Cirac, 2006). Important examples of
degradable one-mode Gaussian channels are the ideal ampli-
fying channels Að�; 0Þ and the pure-loss channels Lð�; 0Þ
with transmissivity � � 1=2. Another case, where the pre-
vious bound is tight, regards all the one-mode Gaussian
channels with transmissivity � � 1=2. These channels are

FIG. 3. Alice’s input state �̂A is transformed into Bob’s output

state �̂B by a generic memoryless channel M. The input state �̂A

can be purified by introducing an additional mirror system R.

Christian Weedbrook et al.: Gaussian quantum information 643

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



in fact antidegradable and we have QðGÞ ¼ Qð1;gÞðGÞ ¼ 0.
Note that we can also compute a lower bound to the quantum
capacity for � ¼ 1 in the case of a canonical form B2. This is
achieved by using continuous-variable stabilizer codes
(Harrington and Preskill, 2001).

F. Quantum dense coding and entanglement-assisted classical

capacity

The classical capacity of a quantum channel can be in-
creased if Alice and Bob share an entangled state. This effect
is known as quantum dense coding. The analysis that reaches
this conclusion ignores the cost of distributing the entangle-
ment. The rationale for doing this is that the entanglement
does not carry any information per se. Originally introduced
in the context of qubits (Bennett and Wiesner, 1992), dense
coding was later extended to continuous variables (Ban,
1999; Braunstein and Kimble, 1999; Ralph and Huntington,
2002), with a series of experiments in both settings (Mattle
et al., 1996; Pereira, Ou, and Kimble, 2000; Li et al., 2002;
Mizuno et al., 2005).

The basic setup in continuous variables considers the dis-
tribution of information over an identity channelI bymeans of
a single bosonic mode. Here Bob possesses an EPR state of
variance V. This state can be generated by combining a pair
of single-mode squeezed states with orthogonal squeezings
into a balanced beam splitter. In particular, the squeezed

quadratures must have variance Vsq ¼ V �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � 1

p
. Bob

sends one mode of the EPR state to Alice, while keeping the
other mode. To transmit classical information, Alice modu-
lates both quadratures and sends the mode back to Bob, with a
mean number of photons equal to �m. To retrieve information,
Bob detects both received and kept modes by using a Bell
measurement with detector efficiency � 2 ½0; 1�. The achiev-
able rate is given by (Ralph and Huntington, 2002)

RdcðIÞ ¼ log

�
1þ �ð4 �m� Vsq � 1=Vsq þ 2Þ

4ð�Vsq þ 1� �Þ
�
: (130)

This rate can exceed the classical capacity of the identity
channel CðIÞ at the same fixed average photon number �m for
a considerable range of values of Vsq and �.

The advantages of quantum dense coding can be extended
to an arbitrary memoryless channel M. This leads to the
notion of entanglement-assisted classical capacity CEðMÞ,
which is defined as the maximum asymptotic rate of reliable
bit transmission over a channel M assuming the help of
unlimited preshared entanglement. As shown by Bennett
et al. (2002) this is equal to

CEðMÞ ¼ max
�̂A

IðM; �̂AÞ; (131)

where IðM; �̂AÞ ¼ Sð�̂AÞ þ JðM; �̂AÞ is the quantum mutual
information associated with the channel M and the input
state �̂A (J is the coherent information). For one-mode
Gaussian channels, the capacity CE must be computed under
the energy constraint Trð�̂An̂Þ � �m. In particular, for a pure-
loss channel Lp ¼ Lð�; 0Þ, we have (Holevo and Werner,

2001)

CEðLpÞ ¼ gð�Þ þ gð��þ 1� �Þ � gð	�Þ � gð	þÞ;
(132)

where � ¼ 2 �mþ 1 and 		 ¼ D	 �mð1� �Þ, with
D ¼ f½1þ �mð�þ 1Þ�2 � 4� �mð �mþ 1Þg1=2: (133)

This capacity is achieved by a Gaussian state. For � ! 1 we
have the identity channel and we get CEðIÞ ¼ 2gð�Þ, which
is twice its classical capacity CðIÞ.

G. Entanglement distribution and secret-key capacities

Other important tasks that can be achieved in quantum
information are the distribution of entanglement and secret
keys over quantum noisy channels. Given a memoryless
channel M, its entanglement distribution capacity EðMÞ
quantifies the number of entanglement bits which are distrib-
uted per use of the channel. As shown by Barnum, Knill, and
Nielsen (2000), this quantity coincides with the quantum
capacity, i.e., EðMÞ ¼ QðMÞ. Then, the secret-key capacity
KðMÞ of the channel provides the number of secure bits
which are distributed per use of the channel (Devetak, 2005).
Since secret bits can be extracted from entanglement bits, we
generally have KðN Þ � EðMÞ. Using classical communica-
tion, Alice and Bob can improve all these capacities.
However, they need feedback classical communication, since
the capacities assisted by forward classical communication,
i.e., K!ðMÞ, E!ðMÞ, and Q!ðMÞ, coincide with the cor-
responding unassisted capacities, KðMÞ, EðMÞ, and QðMÞ
(Barnum, Knill, and Nielsen, 2000; Devetak, 2005).

Unfortunately, the study of feedback-assisted capacities is
a difficult task. Alternatively, we can introduce simpler
capacities, called reverse capacities, defined by the maximi-
zation over protocols which are assisted by a single feedback
classical communication (known as reverse protocols). A
reverse protocol can be explained considering the purified
scenario of Fig. 3. Alice sends to Bob a large number of A
modes while keeping the R modes. Then Bob applies a
quantum operation over all the output B modes and commu-
nicates a classical variable to Alice (single final classical
communication). Exploiting this information, Alice applies
a conditional quantum operation on all the R modes. Thus we
have the reverse (b) entanglement distribution capacity
EbðMÞ and the reverse secret-key capacity KbðMÞ, which
clearly must satisfy KbðMÞ � EbðMÞ. Interestingly, these
capacities can be lower bounded by a quantity which is easy
to compute. In fact, as shown by Garcı́a-Patrón et al. (2009),
we can define the reverse coherent information

JRðM; �̂AÞ ¼ Sð�̂RÞ � Sð�̂RBÞ: (134)

This quantity differs from the coherent information JðM; �̂AÞ
by the replacement Sð�̂BÞ ! Sð�̂RÞ ¼ Sð�̂AÞ. For this reason,
we have JRðM; �̂AÞ> JðM; �̂AÞ for channels which de-
crease entropy, i.e., Sð�̂AÞ> Sð�̂BÞ. Optimizing the reverse
coherent information over all the inputs, we can define the

(one-shot) reverse coherent information capacity Eð1Þ
R ðMÞ

and the corresponding regularization ERðMÞ. Interestingly,
this quantity turns out to be additive for all channels, so that

we simply have ERðMÞ ¼ Eð1Þ
R ðMÞ. Now the capacity

ERðMÞ provides a lower bound for the reverse capacities,
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i.e., KbðMÞ � EbðMÞ � ERðMÞ. The expression of
ERðMÞ can be simple. As shown by Pirandola et al.
(2009), an arbitrary one-mode Gaussian channel G with
transmission � � 1 has

ERðGÞ ¼ max

�
0; log

�������� 1

1� �

���������gð
Þ
	
; (135)

where 
 :¼ 2 �nþ 1 and �n is the thermal number of the
channel. Note that ERðGÞ can be positive for � � 1=2, where
the channel is antidegradable and, therefore, EðGÞ ¼ QðGÞ ¼
0. Thus, despite the fact that the unassisted (forward-assisted)
capacities are zero, the use of a single feedback classical
communication is sufficient to distribute entanglement
[EbðGÞ> 0] and secret keys [KbðGÞ> 0]. In cryptographic
terms, antidegradibility means that an eavesdropper is able to
reconstruct the output state of Bob. Despite this, Alice and
Bob are still able to extract a secret key from their shared
correlations by using a reverse secret-key protocol. This is a
remarkable feature of reverse reconciliation, which is dis-
cussed further in Sec. VI.

H. Gaussian channel discrimination and applications

The discrimination of quantum channels represents one of
the basic problems in quantum information theory (Childs,
Preskill, and Renes, 2000; Acı́n, 2001; Sacchi, 2005; Wang
and Ying, 2006; Chiribella, D’Ariano, and Perinotti, 2008;
Duan, Feng, and Ying, 2009; Hayashi, 2009; Harrow et al.,
2010; Invernizzi, Paris, and Pirandola, 2011). Here we discuss
the problem of distinguishing between two Gaussian chan-
nels. Suppose that we have a black box which implements
one of two possible (one-mode) Gaussian channels G0 or G1,
with the same probability, and we want to find out which one
it is. In other words, the box contains an unknown Gaussian
channel Gu encoding a logical bit u ¼ 0, 1 and we want to
retrieve the value of this bit. The basic approach involves
probing the box with a one-mode quantum state �̂ and
detecting the corresponding output �̂u :¼ Guð�̂Þ by means
of a quantum measurement. However, this approach can be
readily generalized. In fact, we consider multiple access to
the box by inputting M signal modes. Then, we also consider
additional L idler modes, which are not processed by the box
but are directly sent to the output measurement, as shown in
Fig. 4. Thus, for a given state �̂ of the inputMþ Lmodes, we
have two possible output states �̂0 and �̂1 described by the
dichotomic state �̂u :¼ ðG�M

u � I�LÞð�̂Þ, where G�M
u is ap-

plied to the signals and the identity I�L to the idlers. This

output is detected by a multimode quantum measurement

whose outcome estimates the encoded bit. Now, since �̂0

and �̂1 are generally nonorthogonal, the bit is decoded up to

an error probability perr. Thus, the main goal of the problem is

theminimization ofperr, whichmust be done on both input and

output. For fixed input state �̂, the optimal detection of the

output is already known: This is the Helstrom’s dichotomic

POVM discussed in Sec. III.A. However, we do not know

which state is optimal at the input. More precisely, we do not

know the optimal input state when we constrain the signal

energy irradiated over the box. Here there are two kinds of

constraints that we can actually consider. The first one is a

global energy constraint, where we restrict the mean total

number of photons mtot irradiated over the box. In this case

the minimum value of perr can be nonzero. The second one is a

local energy constraint, where we restrict the mean number of

photons �m per signal mode. In this case, the value of perr

generally goes to zero for M ! þ1 and the problem is to

achieve themost rapid decaying behavior. In both cases finding

the optimal input state for fixed energy is an open problem.
However, we can try to answer related questions: For fixed

energy, does entanglement help? Or more generally: Do we

need nonclassical states for minimizing perr? By definition a

state is called classical (nonclassical) when it can (cannot) be

written as a probabilistic mixture of coherent states, i.e., �̂ ¼R
d�Pð�Þj�ih�j, where j�i ¼ j�1i � 
 
 
 � j�LþMi and

Pð�Þ is a probability density function. Classical states are

always separable and represent the standard sources in today’s

optical applications. By contrast, nonclassical states (such as

number states, squeezed, and entangled states) are generated

only in quantum optics laboratories. Thus, we formulate the

following question: For fixed signal energy (mtot or �m) and

optimal output detection, can we find a nonclassical state

which outperforms any classical state in the discrimination

of two Gaussian channels? This basic question motivated

several theoretical investigations (Tan et al., 2008; Usha

Devi and Rajagopal, 2009; Yuen and Nair, 2009; Pirandola,

2011). In particular, it was answered in two interesting scenar-

ios, with nontrivial implications in quantum technology.
The first scenario is known as quantum illumination

(Lloyd, 2008) with Gaussian states (Tan et al., 2008). Here

the Gaussian channel discrimination G0 � G1 is related with

the problem of sensing the presence of a low-reflectivity

object in a bright thermal-noise environment. In this case,

the black box of Fig. 4 represents a target region from where

the signals are reflected back to the detector. If the object is

absent (bit value u ¼ 0), we have a completely depolarizing

channel Cð0; 0; �nÞ which replaces each signal mode with an

environmental mode in a thermal state with �n � 1 photons.

By contrast, if the object is present (bit value u ¼ 1), we have
a lossy channel Lð; �n0Þ with high loss   1 and high

thermal number �n0 :¼ �n=ð1� Þ � 1. These channels are

entanglement breaking, i.e., no entanglement survives at the

output. Now, assuming very few photons per signal mode

�m  1 (local constraint), we ask if a nonclassical state is able
to outperform any classical state. To this goal, we construct an

EPR transmitter composed of M signals and M idlers in a

tensor product of EPR states, i.e., �M :¼ �̂11ðrÞ � 
 
 
 �
�̂MMðrÞ, where �̂ijðrÞ is an EPR state of squeezing r which

entangles signal mode i and idler mode j. The corresponding

FIG. 4. Gaussian channel discrimination. The input state �̂ de-

scribes M signal modes and L idler modes. Only the signals probe

the black box which contains one of two possible (one-mode)

Gaussian channels G0 or G1 (encoding a bit u). At the output,

signals and idlers are described by a dichotomic quantum state �̂u

whose detection gives an estimate of the bit.
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error probability perr ¼ pEPRðMÞ can be computed using
the Gaussian formula of the quantum Chernoff bound
(see Sec. III.A.2). For large M, we derive pEPRðMÞ ’
expð�M �m= �nÞ=2, which decays to zero more rapidly than
the error probability of any classical state with M signals and
arbitrary L idlers. In particular, if we restrict the classical
states to coherent states, then we have an error probability
pcohðMÞ ’ expð�M �m=4 �nÞ=2 which is 6 dB worse than
pEPRðMÞ (Tan et al., 2008). Interestingly, the quantum
illumination advantage accrues despite the fact that no en-
tanglement survives at the output. In fact, even if the output
signal-idler correlations are within the classical bounds, there
is no classical input state that can produce a close approxi-
mation to this output state. Further studies on quantum
illumination of targets have been pursued by Guha and
Erkmen (2009) and Shapiro and Lloyd (2009).

The second scenario regards the use of nonclassical trans-
mitters to read data from classical digital memories, such as
optical disks (CDs and DVDs). This is known as quantum
reading (Pirandola, 2011).Here the discrimination ofGaussian
channels is associated with the retrieval of information from a
memory cell, modeled as a medium with two possible reflec-
tivities. This cell is equivalent to the black box of Fig. 4 where
the bit u ¼ 0, 1 specifies two lossy channels Lð0; �nÞ and
Lð1; �nÞ with the same thermal number �n but different losses
0 � 1. For optical disks, we consider low noise ( �n  1) and
1 close to 1. In these conditions, and irradiating relatively few
photons over the cell mtot ’ 10 (global constraint), we find an
EPR transmitter �M0 , with small M0, which is able to outper-
form any classical state with any M and L. As shown by
Pirandola (2011), the difference in the readout of information
can be surprising (up to 1 bit per cell), with nontrivial impli-
cations for the technology of data storage. Follow-up studies
on the quantum reading of memories have been pursued by
Bisio, Dall’Arno, and D’Ariano (2011), Guha et al. (2011),
Hirota (2011), Nair (2011), Pirandola et al. (2011), Dall’Arno
et al. (2012), and Guha, Tan, and Wilde (2012).

VI. QUANTUM CRYPTOGRAPHY USING CONTINUOUS

VARIABLES

Cryptography is the theory and practice of hiding informa-
tion (Menezes, van Oorschot, and Vanstone, 1997). The devel-
opment of the information age and telecommunications in the
last century has made secure communication a must. In the
1970s, public-key cryptography was developed and deals with
the tremendous demand for encrypted data in finance, com-
merce, and government affairs. Public-key cryptography is
based on the concept of one-way functions, i.e., functions
which are easy to compute but extremely hard to invert. As
an example, most of the current Internet transactions are se-
cured by the Rivest-Shamir-Adleman (RSA) protocol, which is
based on the difficulty of factorizing large numbers (Rivest,
Shamir, and Adleman, 1978). Unfortunately, its security is not
unconditional, being based on the assumption that no efficient
factorization algorithm is known for classical computers.
Furthermore, if quantum computers were available today,
RSA could be easily broken by Shor’s algorithm (Shor, 1997).

Ideally, it is desirable to have a completely secure way of
communicating, i.e., unconditional security. Shannon (1949)

proved that this is indeed possible using the one-time pad

(Vernam, 1926). Here two parties, Alice and Bob, share a

preestablished secret key unknown to a potential eavesdrop-

per, Eve. In this technique, Alice encodes her message by

applying a modular addition between the plaintext bits and an

equal amount of random bits from the secret key. Then, Bob

decodes the message by applying the same modular addition

between the ciphertext received from Alice and the secret key.

The main problem of the one-time pad is the secure generation

and exchange of the secret key, which must be at least as long

as the message and can be used only once. Distributing very

long one-time pad keys is inconvenient and usually poses a

significant security risk. For this reason, public-key cryptog-

raphy is more widely used than the one-time pad.
Quantum cryptography, or quantum key distribution

(QKD) as it is more accurately known,4 is a quantum tech-

nology allowing Alice and Bob to generate secret keys that

can later be used to communicate with theoretically uncondi-

tional security. This is used in conjunction with the one-time

pad or another symmetric cryptographic protocol such as

pretty good privacy (Schneier, 2000). The unconditional

security of QKD is guaranteed by the laws of quantum

mechanics (Gisin et al., 2002) and, more precisely, the no-

cloning theorem (cf. Sec. IV.B), which can be understood as a

manifestation of the Heisenberg uncertainty principle. The

first QKD protocol was the BB84 protocol (Bennett and

Brassard, 1984). Since then QKD has become one of the

leading fields in quantum information. Despite being a quan-

tum technology, QKD is experimentally realizable using

current technologies. In fact, the use of telecom components

over normal optical fibers is sufficient to distribute secret keys

with reasonable rates over metropolitan network areas, as

recently demonstrated by the European Union’s SECOQC

project (SECOQC, 2007). Today QKD can be considered as a

mature field (Scarani et al., 2009) with several startup

companies formed around the world.
In this section, we review the continuous-variable version

of QKD, whose key elements are the modulation (encoding)

of Gaussian states and Gaussian measurements (decoding),

e.g., homodyne and heterodyne detection. The first

continuous-variable QKD protocols were based on a discrete

modulation of Gaussian states (Ralph, 1999a; Hillery, 2000;

Reid, 2000). The first protocol based on a continuous

(Gaussian) modulation of Gaussian states was introduced

by Cerf, Levy, and van Assche (2001) and employed

squeezed states for the secret encoding. This idea was readily

extended by Grosshans and Grangier (2002) and Grosshans,

van Assche et al. (2003), with the design and implementation

of the first continuous-variable QKD protocol based on the

Gaussian modulation of coherent states and homodyne de-

tection. Shortly afterward, another coherent-state protocol

4Technically, quantum cryptography refers not only to quantum

key distribution but also other continuous-variable secrecy tasks

such as quantum money, quantum secret and state sharing (Tyc and

Sanders, 2002; Lance et al., 2004), quantum bit commitment [albeit

with certain constraints (Magnin et al., 2010; Mandilara and Cerf,

2011)], and quantum random number generators (Gabriel et al.,

2010). However, it is not uncommon for quantum cryptography and

quantum key distribution to be used synonymously in the literature.

646 Christian Weedbrook et al.: Gaussian quantum information

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



was proposed (Weedbrook et al., 2004, 2006) and imple-

mented (Lance et al., 2005), known as the no-switching
protocol, where homodyne detection is replaced by hetero-

dyne detection. This enables the honest parties to exploit both

quadratures in the distribution of the secret key. It is impor-
tant to note that the coherent-state encoding introduced by

Grosshans and Grangier (2002) is today at the core of the
most promising continuous-variable QKD implementations,

thanks to the possibility of using standard telecom compo-

nents (Lodewyck et al., 2005, 2007; Lodewyck, Debuisschert
et al., 2007; Fossier et al., 2009).

In order to reach significant transmission distances, i.e.,

corresponding to more than 3 dB of loss, two main tech-
niques are commonly used: reverse reconciliation

(Grosshans, van Assche et al., 2003) and postselection

(Silberhorn et al., 2002). Furthermore, the introduction of
new protocols using two-way quantum communication

(Pirandola et al., 2008) and discrete modulation (Leverrier
and Grangier, 2009, 2011) have shown the possibility of

further improvements in terms of transmission range.

Recently, Weedbrook et al. (2010) showed that a secure
key could, in principle, be generated over short distances at

wavelengths considerably longer than optical and down into

the microwave regime, providing a potential platform for
noise-tolerant short-range QKD.

The first security proof in continuous-variable QKD was

given by Gottesman and Preskill (2001) using squeezed states.
The proof used techniques from discrete-variable quantum

error correction and worked for states with squeezing greater
than 2.51 dB. Subsequent proofs for continuous-variable QKD

followed, including a proof against individual attacks for

coherent-state protocols (Grosshans and Cerf, 2004) and an
unconditional security proof which reduced coherent attacks

to collective attacks (Renner and Cirac, 2009). Using the latter

result, a large family of QKD protocols can be analyzed
against the simpler collective Gaussian attacks (Garcı́a-

Patrón and Cerf, 2006; Navascués, Grosshans, and Acı́n,
2006; Leverrier and Grangier, 2010a) which have been fully

characterized by Pirandola, Braunstein, and Lloyd (2008).

More recently, finite-size effects have begun to be studied
(Leverrier, Grosshans, and Grangier, 2010), with the aim of

assessing unconditional security when only a finite number of

quantum systems have been exchanged.
This section is structured as follows. In Sec. VI.A, we

present the various continuous-variable QKD protocols using

Gaussian states. This is followed by an analysis of their
security in Sec. VI.B and finally, in Sec. VI.C, we discuss

the future directions of the field.

A. Continuous-variable QKD protocols

We start by presenting a generic QKD protocol. Then we

continue by illustrating the most important families of
continuous-variable QKD protocols based on the use of

Gaussian states. These protocols are presented as prepare-

and-measure schemes, where Alice prepares an ensemble of
signal states using a random number generator. In

Sec. VI.A.5, we also discuss the entanglement-based repre-
sentation, where Alice’s preparation is realized by a suitable

measurement over an entangled source.

1. A generic protocol

Any QKD protocol, be it based on discrete or continuous
variables, can be divided into two steps: (1) quantum com-
munication followed by (2) classical postprocessing. During
the quantum communication, Alice and Bob exchange a
significant number of quantum states over a communication
channel, which is modeled as a quantum channel. In each
round, Alice encodes a classical random variable a onto a

quantum system which is sent to Bob. This system is
measured by Bob at the output of the channel, thus extract-
ing a random variable b which is correlated to Alice’s.
Repeating this procedure many times, Alice and Bob
generate two sets of correlated data, known as the
raw keys.

Quantum communication is followed by classical postpro-
cessing where the two raw keys are mapped into a shared
secret key (i.e., the final key used to encode the secret
message). The classical postprocessing is divided into several

stages (Gisin et al., 2002; van Assche, 2006; Scarani et al.,
2009). The first stage is the sifting of the keys where Alice
and Bob communicate which basis or quadrature they used to
encode or decode the information, thus discarding incompat-
ible data. We then have parameter estimation, where the two
parties compare a randomly chosen subset of their data. This
step allows them to analyze the channel and upper bound the
information stolen by Eve. Next we have error correction,
where the two parties communicate the syndromes of the

errors affecting their data. As a result, Alice’s and Bob’s raw
keys are transformed into the same string of bits. Finally, we
have privacy amplification. During this step, the two parties
generate a smaller but secret key, reducing Eve’s knowledge
of the key to a negligible amount (van Assche, 2006). The
amount of data to discard is given by the upper bound on
Eve’s information which has been computed during the pa-
rameter estimation stage.

It is important to note that the classical postprocessing
stages of error correction and privacy amplification involve a

public channel that Alice and Bob use by means of either
one-way or two-way classical communication (the initial
stages of sifting and parameter estimation always involve
two-way communication). Two-way classical communica-
tion is allowed in the postselection protocol which we
introduce later. When one-way classical communication is
used and is forwarded, i.e., from Alice to Bob, we have
direct reconciliation. In this case, Alice’s data are the refer-
ence which must be estimated by Bob (and Eve). By con-

trast, if one-way classical communication is backward, i.e.,
from Bob to Alice, then we have reverse reconciliation,
where Bob’s data must be estimated by Alice (and Eve).
As discussed by Pirandola et al. (2009), both direct and
reverse reconciliation can be in principle realized by using a
single classical communication. This observation enables a
simple definition of the most general protocols in direct and
reverse reconciliation (direct and reverse protocols). By us-

ing these protocols we can define the direct and reverse
secret-key capacities of an arbitrary quantum channel (see
Sec. V.G). Another important observation is that the public
channel used for the classical communication must be au-
thenticated. This means that Alice and Bob have to identify
themselves by using a preshared secret key (Renner and
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Wolf, 2005). As a result, QKD does not create secret keys
out of nothing, but rather expands initial secret keys into
longer ones.

2. Coherent-state protocol (homodyne detection)

A seminal result in QKD using continuous variables was
the discovery that coherent states are sufficient to distribute
secret keys (Grosshans and Grangier, 2002; Ralph, 2003).
Because coherent states are much easier to generate in the
laboratory than any other Gaussian state, this result opened
the door to experimental demonstrations and field implemen-
tations. The first Gaussian modulated coherent-state protocol
utilized direct reconciliation (Grosshans and Grangier, 2002),
followed shortly after by reverse reconciliation (Grosshans,
van Assche et al., 2003). Since then nearly all proposals have
used coherent states as their substrate. The security of
coherent-state protocols is based on the fact that coherent
states are nonorthogonal [cf. Eq. (30)], which on its own is a
sufficient condition for QKD (i.e., the no-cloning theorem
applies). The quantum communication starts by Alice gen-
erating two real variables aq and ap each drawn from a

Gaussian distribution of variance Va and zero mean. These
variables are encoded onto a coherent state resulting in a
mean of ðaq; apÞ. By imposing Va ¼ V � 1, we obtain an

average output state which is thermal of variance V. For each
incoming state, Bob draws a random bit u0 and measures
either the q̂ or p̂ quadrature using homodyne detection based
on the outcome of u0. After repeating these steps many times,
Alice ends up with a long string of data encoding the values
ðaq; apÞ which are correlated with Bob’s homodyne outcomes

b. The postprocessing starts by Bob revealing his string of
random bits u0 and Alice keeping as the final string of data a
the values (aq or ap) matching Bob’s quadratures.

3. No-switching protocol (heterodyne detection)

In the previous protocols, Alice generated two real random
variables but in the end only one was ultimately used for the
key after the sifting stage. Thus, one can modify the protocol
in order to use both values for the generation of the key, as
shown by Weedbrook et al. (2004). The quantum communi-
cation part of the protocol is equivalent to the previous
protocols except for Bob’s measurement which is now re-
placed by heterodyne detection, and enables him to measure
q̂ and p̂ simultaneously (albeit with a noise penalty demanded
by the uncertainty principle). Since there is no longer the
random switching between the two conjugated bases, the
random number generator at Bob’s side is no longer needed.
After repeating these steps many times, Alice ends up with
two strings of data ðaq; apÞ correlated with Bob’s data

ðbq; bpÞ. Heterodyne detection allows for a simpler experi-

mental setup, producing higher secret-key rates and can be
used in conjunction with all known continuous-variable QKD
protocols.

4. Squeezed-state protocols

The ability to use coherent states was a milestone in
continuous-variable QKD and is currently, by far, the most
popular state to use both theoretically and experimentally.

However, the first protocol based on the Gaussian modulation
of Gaussian states with Gaussian measurements was given by
Cerf, Levy, and van Assche (2001) and involved using
squeezed states. Here Alice generated a random bit u and a
real variable a drawn from a Gaussian distribution of variance
Va and zero mean. Subsequently, she generated a squeezed
vacuum state and displaced it by an amount a. Before sending
the state through the quantum channel, Alice applied a ran-
dom phase of � ¼ u�=2. This is equivalent to randomly
choosing to squeeze and displace either the q̂ or p̂ quadrature.
Averaging the output states over the Gaussian distribution
gives a thermal state whose variance V is the same for u ¼ 0
and u ¼ 1, which prevents Eve from extracting information
on which quadrature was selected by Alice. This imposes the
constraint Va þ 1=V ¼ V on Alice’s modulation. Once the
state reached Bob, he generated a random bit u0 informing
him which quadrature he should measure. Alice and Bob then
publicly revealed their strings of random bits keeping only the
data which correspond to the same measured quadrature.

Another squeezed-state protocol was developed by Garcı́a-
Patrón and Cerf (2009) where Alice again randomly sends
displaced squeezed states to Bob. However, this time Bob
uses heterodyne detection rather than homodyne detection,
but still disregards either one of his quadrature measurements,
depending on Alice’s quadrature choice. This reverse recon-
ciliation protocol can be seen as a noisy version of the
protocol with squeezed states and homodyne detection.
Thanks to this addition of noise, the protocol has an enhanced
robustness versus the noise of the channel which can be
interpreted as the continuous-variable counterpart of the
effect described by Renner, Gisin, and Kraus (2005) for
qubit-based protocols. Note that such an effect can also be
seen in the work of Navascués and Acı́n (2005), where the
protocol with coherent states and homodyne detection has a
better performance than the protocol with squeezed states and
homodyne detection when using direct reconciliation. Further
evidence that noise can improve the performance of QKD is
provided in the work of Pirandola et al. (2009).

5. Fully Gaussian protocols and entanglement-based

representation

The previous protocols based on coherent states encoding
and homodyne detection, together with the no-switching
protocols and the squeezed states protocols, are all based
on the Gaussian modulation of Gaussian states followed by
Gaussian measurements. For this reason, we refer to these
protocols as fully Gaussian protocols. Because they can be
implemented in direct or reverse reconciliation, they repre-
sent a family of eight protocols. As we discuss later, their
unconditional security can be simply assessed against collec-
tive Gaussian attacks. By adopting an entanglement-based
representation (Bennett, Brassard, and Mermin, 1992;
Grosshans, Cerf et al., 2003), these protocols can be de-
scribed by a unique scheme (Garcı́a-Patrón, 2007) where
Alice has an EPR state jViA0A with noise variance V and
sends one mode A to Bob while keeping the other mode A0 for
herself (see Fig. 5). Then, Alice mixes her mode A0 with a
vacuum mode C into a beam splitter of transmissivity �A,
followed by a measurement of the output quadratures q̂A and
p̂C. As a result, she projects the EPR mode A into a Gaussian
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state with mean d ¼ ð�qqA; �ppCÞ and covariance matrix

V ¼ diagðx�1; xÞ, where x ¼ ð�V þ 1Þ=ðV þ�Þ, � ¼
ð1� �AÞ=�A, and

�q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�AðV2�1Þp

�AVþð1��AÞ; �p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1��AÞðV2�1Þp
ð1��AÞVþ�A

: (136)

It is easy to check that Alice generated a source of squeezed
(coherent) states for �A ¼ 1 (�A ¼ 1=2). Then, Bob applied
homodyne (�B ¼ 1) or heterodyne (�B ¼ 1=2) detection de-
pending on which protocol they want to implement. It is
important to note that the entanglement-based representation
is a powerful tool to study many other QKD protocols,
including discrete modulation and two-way protocols. In
general, any prepare-and-measure protocol admits an
entanglement-based representation. This is because any en-
semble of states on a system A can be realized by applying a
partial measurement on a larger bipartite system Aþ A0
(Hughston, Jozsa, and Wootters, 1993).

6. Postselection

Originally, it was believed that the range of continuous-
variable QKD protocols could not exceed the 3 dB loss limit,
as first encountered by direct reconciliation. Exceeding such a
limit corresponds to having less than 50% transmission which
intuitively means that Eve is getting more information on
Alice’s data than what Bob is. However, two proposals
showed that such a limit can actually be surpassed, namely,
reverse reconciliation (as discussed previously) and postse-
lection (Silberhorn et al., 2002). The quantum communica-
tion part of the postselection protocol is equivalent to the
previously mentioned coherent-state protocols. However, the
main difference occurs in the classical postprocessing stage.
In the sifting stage, once Bob revealed which quadrature he
measured, Alice replied with the absolute value of her corre-
sponding quadrature (jaqj or japj). Subsequently, Bob, de-
pending on Alice’s revealed value and the absolute value of
his measurement outcome jbj, decides, following a preestab-
lished rule, whether they should discard or keep parts of their
data. The main concept is that every pair of values (jaj, jbj)
can be associated with a discrete channel and a binary pro-
tocol, based on the signs of a and b. A theoretical secret-key
rate Kðjaj; jbjÞ can be calculated for each channel (jaj, jbj)
from the data obtained during the parameter estimation stage
of the postprocessing. The postselection protocol discards

those channels for which Kðjaj; jbjÞ � 0, keeping only those
channels with a positive contribution. A variant of this
protocol consists of Bob applying heterodyne instead of
homodyne detection, i.e., a no-switching postselection proto-
col (Lorenz, Korolkova, and Leuchs, 2004; Lance et al.,
2005). In such a case, Alice and Bob can extract information
from both quadratures thus increasing the secret-key rate.
This version of the postselection protocol was also experi-
mentally demonstrated (Lance et al., 2005; Lorenz et al.,
2006).

7. Discrete modulation of Gaussian states

The very first continuous-variable QKD protocols were
based on a discrete (and hence, non-Gaussian) encoding of
Gaussian states (Ralph, 1999a; Hillery, 2000; Reid, 2000).
However, after the discovery of Gaussian modulated coherent
states as a viable resource, the discrete encoding took a back
seat with only a small number of papers continuing with the
idea (Namiki and Hirano, 2003, 2006; Heid and Lütkenhaus,
2006). In recent times though, there has been renewed interest
in the discrete encoding of coherent states (Leverrier and
Grangier, 2009, 2010b; Sych and Leuchs, 2010; Zhao
et al., 2009) due to it being experimentally easier to imple-

ment as well as its higher error correction efficiencies which
promotes continuous-variable QKD over longer distances. A
generalized protocol using a discrete modulation (Sych and
Leuchs, 2010) consists of an alphabet of N coherent states
j�ki ¼ jaei2�k=Ni with relative phase 2�k=N, where k enc-
odes the secret key. Bob uses either homodyne or heterodyne
detection in order to estimate k. Such a multiletter encoding
scheme can achieve higher key rates under the assumption of
a lossy channel. Of the proposals introduced thus far, the
classical postprocessing stage uses either postselection or
reverse reconciliation. The current drawback with discrete
modulation Gaussian protocols is the infancy of their security
analysis, although promising advances have been made
(Leverrier and Grangier, 2009, 2011; Zhao et al., 2009).

8. Two-way quantum communication

In standard QKD protocols the quantum communication is
one way, i.e., quantum systems are sent from Alice to Bob. In
two-way protocols, this process is bidirectional, with the
systems transformed by Bob and sent back to Alice
(Boström and Felbinger, 2002, 2008). Recently, Pirandola
et al. (2008) introduced this idea in continuous-variable
QKD, showing how the use of two-way quantum communi-
cation can increase the robustness to noise of the key distri-
bution. As a result, bosonic channels which are too noisy for
one-way protocols may become secure for two-way proto-
cols. This ‘‘security activation’’ can have nontrivial applica-
tions, especially in realistic communication lines where the
noise is high. For simplicity, we discuss only the two-way
coherent-state protocol depicted in Fig. 6, which is a two-way
extension of the no-switching protocol. Let Alice prepare a
random coherent-state j�i, whose amplitude � is Gaussian
modulated. This state is sent to Bob, who randomly chooses
between two configurations, ON and OFF. In ON, Bob ap-
plies a random displacement Dð�Þ with � Gaussian modu-
lated. In OFF, Bob heterodynes the incoming state with

FIG. 5 (color online). Entanglement-based representation for the

fully Gaussian protocols. Alice has an EPR state jViA0A sending

mode A to Bob while keeping mode A0. Alice (Bob) mixes her (his)

mode A0 (B) with a vacuum mode in a beam splitter of trans-

missivity �A (�B) and subsequently homodynes the output quad-

ratures. Depending on the value of �A, Alice generates a source of

squeezed states (�A ¼ 1) or coherent states (�A ¼ 1=2). Then, Bob

applies homodyne (�B ¼ 1) or heterodyne (�B ¼ 1=2) detection.
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outcome �0 and prepares another random coherent state j�0i.
In both configurations, the state is finally sent back to Alice,

who performs heterodyne detection with outcome �. During
sifting, Bob declares the configuration chosen in each round.

In ON, Alice processes � and � to estimate �. In OFF, Alice

considers � ’ �0 and � ’ �0. During the parameter estima-

tion, Alice and Bob analyze the noise properties of the

channel, checking for the presence of memory between the

forward and backward paths. If memory is present, they select

the OFF configuration only. In this way, they can destroy the

effect of the memory in the postprocessing, by choosing only

one of the two paths and processing its data in direct or

reverse reconciliation. In this case the protocol is at least as

robust as the underlying one-way protocol. By contrast, if

memory is absent, Alice and Bob can use both the ON and

OFF configurations. In this case, the key distribution is more

robust to the noise of the channel, with the enhancement

provided by the use of the ON configuration (see

Sec. VI.B.5 for details).

9. Thermal state QKD

Generally, it is assumed in all the previous continuous-

variable QKD protocols that Alice’s initial states originate

from encoding classical information onto pure vacuum states.

However, in practice this is never possible with some level of

impurity occurring due to experimental imperfections.

Thermal state QKD therefore addresses this issue where the

protocol is now analyzed with respect to Alice using noisy

coherent states. This was first investigated by Filip (2008) and

Usenko and Filip (2010) who showed that by using reverse

reconciliation the distance over which QKD was secure fell

rapidly as the states became significantly impure. Extending

upon this initial work, Weedbrook et al. (2010) showed that

by using direct reconciliation, and provided that the channel

transmission � is greater than 50%, the security of quantum

cryptography is not dependent on the amount of preparation

noise on Alice’s states. This is a counterintuitive result as we

might naturally expect that as Alice’s states become more and

more thermalized, secure transmission over any finite dis-

tance becomes impossible. Consequently, the best strategy to

deal with preparation noise is to use a combination of direct

(� > 0:5) and reverse reconciliation (� � 0:5). This moti-

vated analysis into the secure key generation at different

wavelengths and was shown that secure regions exist from

the optical and infrared all the way down into the microwave
region (Weedbrook et al., 2010).

B. Security analysis

The strongest definition of security in a quantum scenario
was given by Renner (2005). A QKD protocol is said to be
� secure if

Dð�̂abE; �̂ab � �̂EÞ � �; (137)

whereD is the trace distance as defined in Eq. (68). Here �̂abE

is the final joint state of Alice, Bob, and Eve and �̂ab � �̂E is
the ideal secret-key state. Therefore, up to a probability �Alice
and Bob generate a shared secret key identical to an ideal key.
In the following we present the necessary tools to calculate the
secret-key rate K for various continuous-variable QKD
protocols.

1. Main eavesdropping attacks

To prove the unconditional security of a QKD protocol, the
following assumptions on Eve have to be satisfied: (1) full
access to the quantum channel; (2) no computational (classical
or quantum) limitation; (3) capable of monitoring the public
channel, withoutmodifying themessages (authenticated chan-
nel); and (4) no access toAlice’s andBob’s setups. Under these
assumptions, themost powerful attack that Eve can implement
is known as a coherent attack. This consists of Eve preparing a
global ancillary system and making it interact with all the
signals sent through the quantum channel and then storing the
output ancillary system into a quantummemory.5 Finally, after
having listened to all the classical communication over the
public channel, Eve applies an optimal joint measurement on
the quantum memory. The security against coherent attacks is
extremely complex to address. Interestingly, by using the
quantum de Finetti theorem, proven by Renner (2007) for
discrete variables and by Renner and Cirac (2009) for continu-
ous variables, we can prove unconditional security in the
asymptotic regime by analyzing the simpler class of collective
attacks. For an arbitrary QKD protocol in the entanglement-
based representation, if the multimode entangled state (shared
between Alice and Bob after many uses of the channel) is
permutationally invariant (which can either be forced by ran-
domization of the classical data or be ensured by the symmetry
of the protocol itself), then the quantum de Finetti theorem can
be used. In such a situation the state can be approximated
(asymptotically) by a mixture of independent and identically
distributed two-mode states. This corresponds to considering
the simpler case of a collective attack.

In a collective attack Eve has a set of independent and
identically prepared systems (ancillas), each one interacting
individually with a single signal sent by Alice. In the
entanglement-based representation, this implies that the

FIG. 6. Two-way coherent-state protocol. Alice sends a random

coherent state to Bob, who selects between two configurations, ON

or OFF. In ON, Bob applies a random displacement Dð�Þ. In OFF,

he heterodynes and prepares another random coherent state j�0i. In
both configurations, the output state is sent back to Alice who

performs heterodyne detection. Also displayed is a two-mode attack

(discussed later).

5Quantum memory is a device that allows the storage and

retrieval of quantum information. It plays a role in many

continuous-variable quantum information protocols. For more theo-

retical details and the status of experimental demonstrations, see,

e.g., Lvovsky, Sanders, and Tittel (2009) and Hammerer, Sorensen,

and Polzik (2010).
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output state of Alice, Bob, and Eve is in a tensor product of n
identical states (�̂�n

abE). Eve’s ancillas are stored in a quantum

memory and then, after listening to Alice and Bob’s classical
communication, Eve applies an optimal measurement on the
quantum memory. In the asymptotic regime (n ! 1), the
secret-key rate K can be computed via (Renner, Gisin, and
Kraus, 2005)

K ¼ ’½Iða:bÞ � Sðx:EÞ�; (138)

where Iða:bÞ is the mutual information between the variables
of Alice (a) and Bob (b) and Sðx:EÞ is the Holevo bound
between Alice’s (Bob’s) variable x ¼ a (x ¼ b) and Eve’s
quantum memory, when direct (reverse) reconciliation is
used. For more on the mutual information and the Holevo
bound, see Sec. V.C. The coefficient ’ 2 ½0; 1� models the
effect of the sifting. For instance, we have ’ ¼ 1 for the no-
switching protocol, while ’ ¼ 1=2 for the protocol with
coherent states and homodyne detection.

2. Finite-size analysis

Until now we have considered the asymptotic scenario
where Alice and Bob exchange infinitely many signals.
This ideal situation is useful when we are interested in
comparing the optimal performances of different protocols.
However, in practice the number of signals is always finite.
The formalism to address this problem was recently devel-
oped for discrete-variable QKD (Scarani and Renner, 2008;
Cai and Scarani, 2009). In what follows we explain the most
important features of finite-size analysis in the continuous-
variable scenario (Leverrier, Grosshans, and Grangier, 2010).
In such a situation, the secret-key rate reads

K ¼ ’n

N
½�Iða:bÞ � S�PE ðaðbÞ:EÞ� �ðnÞ �DðnÞ�;

(139)

where N is the total number of signals exchanged, n is the
numbers of signals used for the establishment of the key
(N � n is used for parameter estimation), � is the reconcili-
ation efficiency (ranging from 0 when no information is
extracted to 1 for perfect reconciliation), S�PE ðaðbÞ:EÞ is

the maximal value of Eve’s information compatible with
the parameter estimation data, �ðnÞ is related to the security
of the privacy amplification and the speed of convergence of
the smooth min entropy toward the von Neumann entropy,
and DðnÞ is the penalty due to considering collective attacks
instead of coherent attacks (Renner, 2007; Christandl, König,
and Renner, 2009; Renner and Cirac, 2009). The principal
finite-size negative effect in discrete-variable QKD is due to
the parameter estimation (Cai and Scarani, 2009) which is
expected to also be the case for continuous-variable QKD
(Leverrier, Grosshans, and Grangier, 2010).

Despite the fact that Renner and Cirac (2009) showed that
collective attacks are as powerful as coherent attacks in the
asymptotic regime, the correction DðnÞ provided for the
finite regime leads to a result that could be improved. An
alternative approach using the natural symmetries of bosonic
channels was suggested by Leverrier et al. (2009), with only
partial results obtained so far (Leverrier and Cerf, 2009). An
ideal solution would be finding a generalization of the
Leverrier and Grangier (2010a) result by showing that

collective Gaussian attacks are optimal in the finite regime,
i.e., DðnÞ ¼ 0 (which is the case for the asymptotic scenario
as discussed in the next section). The study of finite-size
effects in continuous-variable QKD is recent and further
investigations are needed.

3. Optimality of collective Gaussian attacks

The fully Gaussian protocols have the most developed
security proofs due to their high symmetry. As discussed,
Renner and Cirac (2009) showed that, assuming the permu-
tation symmetry of the classical postprocessing, collective
attacks are as efficient as coherent attacks. Therefore, in order
to guarantee the security against collective attacks we need to
know what type of collective attack is the most dangerous. A
crucial step in that direction was the discovery that the
optimal attack Eve can implement is one based on Gaussian
operations (Garcı́a-Patrón and Cerf, 2006; Navascués,
Grosshans, and Acı́n, 2006; Leverrier and Grangier, 2010a).
This consequently makes the security analysis much easier.
Garcı́a-Patrón and Cerf (2006) showed that, for an
entanglement-based QKD protocol characterized by a tripar-
tite state �̂abE, i.e., resulting from Alice’s and Bob’s mea-
surements on the pure state jc iABE, of covariance matrix
VABE, the secret key is minimized by the Gaussian state
�̂G
abE of the same covariance matrix, i.e.,

Kð�̂abEÞ � Kð�̂G
abEÞ: (140)

As a result, collective Gaussian attacks represent the funda-
mental benchmark to test the asymptotic security of
continuous-variable QKD protocols based on the Gaussian
modulation of Gaussian states.

4. Full characterization of collective Gaussian attacks

The most general description of a collective Gaussian
attack is achieved by dilating the most general one-mode
Gaussian channel into an environment which is controlled
by Eve. As discussed in Sec. V.B, an arbitrary one-mode
Gaussian channel G is associated with three symplectic
invariants: transmissivity �, rank r, and thermal number �n.
These quantities identify a simpler channel, the canonical
form Cð�; r; �nÞ, which is equivalent to G up to a pair of
Gaussian unitaries U and W (see Fig. 7). The canonical
form can be dilated into a symplectic transformation Lð�; rÞ
which mixes the incoming state �̂ with an EPR state j
i of
variance 
 ¼ 2 �nþ 1 (see Fig. 7). Now if we treat the envi-
ronment as a large but finite box, the dilation is unique up to a
unitary ~U which transforms the output EPR modesE together
with a countable set of vacuum modes F (see Fig. 7). Thus,
for each use of the channel, Eve’s modes fE;Fg are trans-
formed by some ~U and then stored in a quantum memory.
This memory is detected at the end of the protocol by means
of an optimal coherent measurement M which estimates
Alice’s data (in direct reconciliation) or Bob’s data (in reverse
reconciliation). This is the most general description of a
collective Gaussian attack (Pirandola, Braunstein, and
Lloyd, 2008).

This scenario can be greatly simplified if we use the
Holevo bound for Eve’s accessible information. For instance,
this happens when we consider the asymptotic regime, so that
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Eq. (138) holds. In this case, we ignore the details of M, the
extra unitary ~U, and the extra ancillas F. As a result, the
attack is simply described by the canonical dilation
fLð�; rÞ; j
ig and the one-mode Gaussian unitaries fU;Wg
(see solid boxes in Fig. 7). As discussed in Sec. II, the
Gaussian unitaries fU;Wg can be further decomposed into
displacements, rotations, and squeezings. By definition, we
call ‘‘canonical’’ the attacks with U ¼ W ¼ I. These attacks
are fully described by the canonical dilation fLð�; rÞ; j
ig
(Pirandola, Braunstein, and Lloyd, 2008). The most important
canonical attack is the (collective) entangling-cloner attack
(Grosshans, van Assche et al., 2003). In this attack, the
symplectic transformation L represents a beam splitter of
transmissivity 0< �< 1 mixing the incoming signal mode
with one mode only of the EPR state j
i. Thus, from the point
of view of Alice and Bob, we have a lossy channel with
transmissivity � and thermal number �n ¼ ð
� 1Þ=2. This
channel is the most common, representing the standard de-
scription for communication lines such as optical fibers.

5. Secret-key rates

In this section, we discuss the secret-key rates of the
continuous-variable QKD protocols given in Sec. VI.A.
These rates are derived in the presence of a collective
entangling-cloner attack which is the most important collec-
tive Gaussian attack in the experimental sense. This attack
can be identified by the parameters of the corresponding lossy
channel, i.e., transmission � and thermal number �n.
Equivalently, we consider � and the excess noise � :¼
2 �nð1� �Þ��1, i.e., the noise on Bob’s side referred to the
input (Alice). These parameters are inferred by Alice and Bob
during the parameter estimation stage. Given a specific pro-
tocol, the corresponding secret-key rate can be expressed in
terms of the two channel parameters as K ¼ Kð�; �Þ.
Furthermore, the equation K ¼ 0 defines the security
threshold of the protocol, expressed in terms of tolerable
excess noise �� versus the transmissivity of the channel, i.e.,
�� ¼ ��ð�Þ.

Note that we can derive more general expressions for the
secret-key rates by considering the most general form of a
collective Gaussian attack (cf. Sec. VI.B.4). This general-
ization can be found in Pirandola, Braunstein, and Lloyd
(2008) for the no-switching protocol of Weedbrook et al.
(2004). The secret-key rates of the other protocols could be
generalized as well. This generalization involves not only the
study of other canonical attacks but also the analysis of phase
effects (mixing of the quadratures) which derive from the
Gaussian unitaries U and W. These effects can be taken into
account by introducing suitable corrections in the expressions
of the rates. Another possibility is reducing an attack to a
canonical attack (U ¼ W ¼ 1) by means of random trans-
formations in the postprocessing stage, which sacrifices part
of the secret data. This symmetrization has been recently used
by Leverrier et al. (2009) to delete phase effects from lossy
channels.

a. Fully Gaussian protocols

Here we discuss the secret-key rates for the family of fully
Gaussian protocols. In the entanglement-based description,
one mode of an EPR state of variance V is sent through the
lossy channel with transmissivity � and excess noise �. At the
output of the channel, Alice and Bob’s bipartite state is
Gaussian with covariance matrix

VAB ¼ xI zZ
zZ yI

� �
; (141)

where x ¼ V, y ¼ �ðV þ �Þ, and z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðV2 � 1Þp

. Now the
various protocols differ for the measurements of both Alice
and Bob and the kind of reconciliation used. In order to
estimate Eq. (138) we first calculate Alice and Bob’s mutual
information (Garcı́a-Patrón, 2007)

Iða:bÞ ¼ w

2
log½ðV þ �Þ=ð�þ 	V�1Þ�; (142)

where w ¼ 1, except for the no-switching protocol where
w ¼ 2; then 	 ¼ V (	 ¼ 1) for protocols with coherent
(squeezed) states. The calculation of Eve’s information is
more involved. As an example, we consider the calculation
of Sðb:EÞ ¼ SðEÞ � SðEjbÞ for reverse reconciliation using
coherent states and homodyne detection. First we use the fact
that Eve’s system E purifies AB, i.e., SðEÞ ¼ SðABÞ, where
SðABÞ can be calculated from the symplectic eigenvalues of
the matrix VAB using Eq. (54), which are then substituted into
Eq. (46). Next to calculate the term SðEjbÞ we find the
symplectic eigenvalues of the covariance matrix VEjb, com-

puted using Eq. (64) and then proceed as before.

b. Postselection

Determining the secret-key rates for postselection is more
challenging than either direct or reverse reconciliation.
Despite the fact that the postselection protocol involves
Gaussian elements in the quantum communication part, its
description becomes non-Gaussian after the filtering of data.
Consequently, using Eq. (140) to upper-bound Eve’s infor-
mation no longer applies. Therefore, a subtler analysis has to
be carried out to obtain tighter bounds. Here we present the
basic security analysis for the postselection protocol against
collective entangling-cloner attacks (Heid and Lütkenhaus,

FIG. 7. Construction of a collective Gaussian attack in four steps.

(1) Any one-mode Gaussian channel G can be reduced to a

canonical form C via two Gaussian unitaries U and W. (2) Form

C can be dilated into a symplectic transformation Lmixing the input

state �̂ with an EPR state j
i. (3) In a finite box, the dilation is

unique up to a unitary ~U combining the output EPR modes E with a

countable set of vacuum modes F. (4) After ~U all of the output is

stored in a quantum memory that Eve measures at the end of the

protocol.
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2007; Symul et al., 2007). When Bob performs homodyne
detection, the mutual information between Alice and Bob for
a given pair of variables (jaqðpÞj, jbj) is given by Shannon’s

formula for a binary channel (Shannon, 1948)

Iða:bÞ ¼ 1þ pe logpe þ ð1� peÞ logð1� peÞ: (143)

Here pe is Bob’s error in determining the value of Alice’s sign
and is given by

pe ¼ f1þ exp½8 ffiffiffi
�

p jaqðpÞbj=ð1þ �Þ�g�1: (144)

Now if Bob performs heterodyne detection, we have to
consider the Shannon formula for two parallel binary chan-
nels, one per quadrature, given by (Lance et al., 2005)

pe ¼ f1þ exp½4 ffiffiffiffiffiffi
2�

p jaqðpÞbj=ð1þ �Þ�g�1: (145)

Eve’s information is calculated using the Holevo bound
between Eve’s system and the information bits used as ref-
erence for the key (a in direct reconciliation and b in reverse
reconciliation). The key rate for a given pair of values (a, b)
reads

�K ¼ ’maxf�Iða:bÞ � Sa;bðE:xÞ; 0g; (146)

where again ’ accounts for the sifting and � for the recon-
ciliation efficiency. The postselection is then modeled by the
maximum function, imposing a zero contribution of the
effective binary channel when �Iða:bÞ � Sa;bðE:xÞ< 0, as
expected. Finally, the evaluation of the overall secret-key rate
needs to be calculated numerically and is given by

K ¼
Z

pða; bÞ�Kða; bÞdadb; (147)

where pða; bÞ is a joint probability distribution. A detailed
experimental analysis was carried out by Symul et al. (2007)
using postselection with the no-switching protocol.

c. Discrete modulation of Gaussian states

One of the technical advantages of continuous-variable
QKD is that it relies solely on standard high-speed optical
telecom components. However, to date, field implementations
have been restricted to short distances [27 km by Fossier
et al. (2009)]. The main reason is the low efficiency of the
reconciliation stage for protocols using Gaussian modulation
(Lodewyck et al., 2007). This is especially true at low signal-
to-noise ratios (Leverrier et al., 2008; Jouguet, Kunz-
Jacques, and Leverrier, 2011), which is the working regime
when distributing secret keys over long distances. On the
other hand, extremely good reconciliation protocols exist for
discrete modulations, as the error correction procedure is
greatly simplified. In this case, the problem can be mapped
onto a binary channel with additive noise, for which very
good codes exist, such as low-density-parity check
codes (Richardson, Shokrollahi, and Urbanke, 2001).
Unfortunately, protocols based on discrete modulation, even
if using Gaussian states, have non-Gaussian entanglement-
based representations. As a result, the calculation of Eve’s
information can no longer rely on the previous optimality
proofs (Garcı́a-Patrón and Cerf, 2006; Navascués, Grosshans,
and Acı́n, 2006; Leverrier and Grangier, 2010a).

However, the proof by Garcı́a-Patrón and Cerf (2006) can
still be used to provide a (nontight) Gaussian upper bound on
Eve’s information. This idea was used by Leverrier and
Grangier (2009), where a protocol with four coherent states
was shown to outperform Gaussian-modulated protocols in
the regime of low signal-to-noise ratio. The crucial point was
the observation that the four-state modulation well approx-
imates the Gaussian modulation for low modulation varian-
ces. As a result, the Gaussian upper bound can still be
used, being nearly tight in the studied regime. The following
year Leverrier and Grangier (2011) proposed another
non-Gaussian (but continuous) modulation protocol able to
exploit the Gaussian upper bound. In this protocol, Alice
generates points centered on an eight-dimensional sphere to
decide which ensemble of four successive coherent states are
to be sent. Then, Bob uses the no-switching protocol (hetero-
dyne detection) to guess the point selected by Alice. The
secret-key rate reached by this new protocol is higher, by
nearly an order of magnitude, for realistic parameters, which
enables the distribution of secret keys over distances of the
order of 50 km, even after taking all finite-size effects into
account.

d. Two-way quantum communication

In general, the security analysis of two-way protocols is
quite involved. For simplicity, here we consider the two-
way coherent-state protocol of Fig. 6. Using symmetrization
arguments (Renner, 2005; Renner and Cirac, 2009), one can
reduce an arbitrary coherent attack to a two-mode attack,
affecting each round-trip independently. This attack can
have a residual memory between the two uses of the
quantum channel. If this memory is present, Alice and
Bob use the OFF configuration, thus collapsing the protocol
to one-way quantum communication. Correspondingly, the
attack is reduced to one mode, i.e., collective, which can be
bounded by assuming a Gaussian interaction (collective
Gaussian attack). Thus, in the OFF configuration, the se-
curity threshold is given by the underlying one-way proto-
col (the no-switching protocol in this case). The advantage
occurs when no memory is present, which is the most
practical situation. In particular, this happens when the
original attack is already collective. In this case, Alice
and Bob can use both the ON and OFF configurations to
process their data. While the OFF configuration is equiva-
lent to two instances of one-way protocol (forward and
backward), the ON configuration is based on a coherent
two-way quantum communication. Consider the case of a
collective entangling-cloner attack, which results in a one-
mode lossy channel with transmissivity � and excess noise
�. For every � 2 ð0; 1Þ, the key distribution is possible
whenever the excess noise � is below a certain value ��
specified by the security threshold �� ¼ ��ð�Þ. As shown by
Pirandola et al. (2008), the security threshold in the ON
configuration is higher than the one in the OFF configura-
tion. For instance, if we consider reverse reconciliation, we
have ��ONð�Þ> ��OFFð�Þ for every � 2 ð0; 1Þ. As a result,
there are lossy channels whose excess noise � is intolerable
in OFF but still tolerable in ON. Thanks to this security
activation, the two-way coherent-state protocol is able to
distribute secret keys in communication lines which are too
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noisy for the corresponding one-way protocol. This result,

which has been proven for large modulation and many
rounds (asymptotic regime), is also valid for other

Gaussian modulation protocols, extended to two-way quan-
tum communication via the hybrid ON or OFF formulation.

C. Future directions

Continuous-variable QKD offers a promising alternative to
the traditional discrete-variable QKD systems [for a state-of-

the-art comparison between the various QKD platforms, see
Scarani et al. (2009)]. An important next step for continuous-

variable QKD is to prove unconditional security in a fully

realistic scenario. For example, an important assumption
which is made in the security proofs of QKD protocols is

that Alice’s and Bob’s setups are not accessible to Eve. In
practice, this conditionmay be difficult to realize, and Evemay

probe Alice’s and Bob’s apparata (e.g., modulators and detec-
tors) by sending ancillary trojan-horse modes and analyzing

their reflections. Therefore, by means of this side-channel

attack, Eve may steal information directly from Alice’s and
Bob’s stations without interfering with the quantum commu-

nication channel. Possible strategies to overcome side-channel
attacks have been recently proposed [see, e.g., Braunstein and

Pirandola (2012) and Lo, Curty, and Qi (2012)].
Other important next steps are improving the reconciliation

procedures and taking finite-size effects into account. This

could potentially provide extremely high secret-key rates

over distances which are comparable to the ones of
discrete-variable protocols (about 100 km). Thus, additional

research efforts are focused to extend the range of
continuous-variable QKD protocols. As opposed to the

single-photon detectors of discrete-variable QKD, the use

of homodyne detection in continuous-variable QKD provides
an outcome even for the vacuum input. Filtering out this

vacuum noise is the main weakness in the reconciliation
procedures. From this point of view, postselection is the

best choice. Therefore, proving the unconditional security

of the postselection protocol would be of much interest.
Another possibility is the design of new protocols which

are more robust to excess noise, i.e., with higher security
thresholds. This would enable the reconciliation procedures

to work much more efficiently. Such a possibility has already
been shown by the use of two-way protocols. Thus further

directions include the full security analysis of protocols based

on multiple quantum communication.
The further development of continuous-variable quantum

repeaters is also an important research direction. Quantum

repeaters allow one to distribute entanglement between two
end points of a long communication line, which can later be

used to extract a secret key. This technique combines entan-
glement distillation, entanglement swapping, and the use of

quantum memories. Unfortunately, Gaussian operations can-

not distill Gaussian entanglement which poses a serious
limitation to this approach. However, there has been an on-

going research effort in the direction of Gaussian preserving
optical entanglement distillation employing non-Gaussian

elements (Browne et al., 2003; Fiuràšek, Mišta, Jr., and

Filip, 2003; Eisert et al., 2004; Menzies and Korolkova,
2007; Ralph and Lund, 2009).

VII. CONTINUOUS-VARIABLE QUANTUM

COMPUTATION USING GAUSSIAN CLUSTER STATES

Quantum computation using continuous variables was first
considered by Lloyd and Braunstein (1999) in the circuit
model of quantum computing (Nielsen and Chuang, 2000).
They showed that arbitrary quantum logic gates (i.e., simple
unitaries) could be created using Hamiltonians that are poly-
nomial in the quadrature operators q̂ and p̂ of the harmonic
oscillator. Years later, a different but computationally equiva-
lent model of continuous-variable quantum computation,
known as cluster-state quantum computation, was developed
by Menicucci et al. (2006) and Zhang and Braunstein (2006).
This measurement-based protocol of quantum computation
was originally developed by Raussendorf and Briegel (2001)
for discrete variables and forgoes actively implementing
quantum gates. Instead, the computation is achieved via local
measurements on a highly entangled multimode state, known
as a cluster state. In the ideal case, the continuous-variable
cluster state is created using infinitely squeezed states, but in
practice is approximated by a finitely squeezed Gaussian
entangled state.

These two models of continuous-variable computation
must be associated with a fault tolerant and error correctable
system, where at some point the continuous variables are
discretized. With this in mind, there is a third type of
continuous-variable quantum computer, known as the
Gottesman-Kitaev-Preskill model of quantum computing
(Gottesman, Kitaev, and Preskill, 2001). This proposal shows
how to encode finite-dimensional qubits into the infinite-
dimensional harmonic oscillator, thus facilitating fault toler-
ance and quantum error correction. In this section, we focus
primarily on cluster-state quantum computation while still
using important elements of the Gottesman-Kitaev-Preskill
model and the Lloyd-Braunstein model.

This section is structured as follows. We begin by intro-
ducing important continuous-variable gates as well as defin-
ing what constitutes a universal set of gates. In Sec. VII.B, we
introduce the notion of one-way quantum computation using
continuous variables and how one can gain an understanding
of it by considering a teleportation circuit. The important
tools of graph states and nullifiers follow in Sec. VII.C, while
the realistic case of Gaussian computational errors due to
finite squeezing is discussed in Sec. VII.D. The various
proposals for optically implementing Gaussian cluster states
are revealed in Sec. VII.E. In Secs. VII.F and VII.G, achiev-
ing universal quantum computation and quantum error cor-
rection for continuous variables, are discussed, respectively.
Two examples of algorithms for a continuous-variable quan-
tum computer are given in Sec. VII.H, before ending with
future directions of the field in Sec. VII.I.

A. Continuous-variable quantum gates

Before introducing the quantum gates used in continuous-
variable quantum computation we remind the reader that the
displacement gate Dð�Þ, the beam splitter gate B, and the
one- and two-mode squeezing gates S and S2 are important
Gaussian gates which have already been introduced in
Sec. II.B. To begin with, in Gaussian quantum information
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processing there are the Heisenberg-Weyl operators which
are comprised of the position and momentum phase-space
displacement operators, given, respectively, as

XðsÞ ¼ expð�isp̂=2Þ; ZðtÞ ¼ expðitq̂=2Þ; (148)

where XðsÞ gives a shift by an amount s in the q direction and
ZðtÞ a momentum shift by an amount t, i.e., in terms of the
displacement operator Dð�Þ they can be rewritten as X ¼
Dðs=2Þ and Z ¼ Dðit=2Þ. They are related via XðsÞZðtÞ ¼
e�ist=2ZðtÞXðsÞ and act on the position computational basis
states jqi as

XðsÞjqi ¼ jqþ si; ZðtÞjqi ¼ eitq=2jqi; (149)

and on the momentum basis states jpi as
XðsÞjpi ¼ e�isp=2jpi; ZðtÞjpi ¼ jpþ ti: (150)

The position and momentum basis states are related via a
Fourier transform as defined in Eq. (9). The Fourier gate F is
the Gaussian version of the qubit Hadamard gate (Nielsen and
Chuang, 2000) and can be defined in terms of the annihilation
and creation operators as well as the quadrature operators

F ¼ exp

�
i�

4

�
exp

�
i�

2
âyâ

�
¼ exp

�
i�

8
ðq̂2 þ p̂2Þ

�
:

(151)

In the phase-space picture, the Fourier gate is a �=2 rotation,
e.g., from one quadrature to the other

Fyq̂F ¼ �p̂; Fyp̂F ¼ q̂: (152)

The Fourier gate acts on the displacement gates as follows:

FyZðtÞF ¼ XðtÞ; FXðsÞFy ¼ ZðsÞ: (153)

Finally, the Fourier gate acting on the quadrature eigenstates
gives

Fjxiq ¼ jxip; Fyjxiq ¼ �jxip; (154)

Fjxip ¼ �jxiq; Fyjxip ¼ jxiq; (155)

where the subscript is used to remind us whether we are in the
computational q basis or the conjugate p basis. The phase
gate Pð�Þ can be thought of as a type of shearing operation,
i.e., a combination of rotations and squeezers. It is defined as

Pð�Þ ¼ exp

��
i�

4

�
q̂2
�
; (156)

where � 2 R. The phase gate acts on the XðsÞ displacement
gate as

PyXðsÞP ¼ ei�s
2=4XðsÞZð�sÞ; (157)

while leaving Z unaltered. The phase gate affects the quad-
ratures as

Pyq̂P ¼ q̂; Pyp̂P ¼ p̂þ �q̂: (158)

The controlled-phase gate, or CPHASE for short, is a two-
mode Gaussian gate defined as

CZ ¼ exp

��
i

2

�
q̂1 � q̂2

�
: (159)

The effect of this two-mode gate on the computational basis
states is given by

CZjqi1jqi2 ¼ eiq1q2=2jqi1jqi2: (160)

In the Heisenberg picture, the CPHASE gate transforms the
momentum quadratures according to

p̂1 ! p̂1 þ q̂2; p̂2 ! p̂2 þ q̂1; (161)

while doing nothing to the position quadratures q̂1 ! q̂1 and
q̂2 ! q̂2. The CPHASE gate and the phase gate both get their
names from the analogous discrete-variable gates and their
similar actions on the Pauli matrices (Nielsen and Chuang,
2000).

Finally, we note the graphical representation of the quan-
tum gates in the circuit model of computation. The single-
mode Gaussian gates, i.e., the Heisenberg-Weyl displacement
gates, the single-mode squeeze gate, the Fourier gate, and the
phase gate are given, respectively, as

While the two-mode Gaussian gates, i.e., the CPHASE gate,
the beam splitter gate, and the two-mode squeeze gate, are
denoted, respectively, by

A continuous-variable quantum computer is said to be
universal if it can implement an arbitrary Hamiltonian with
arbitrarily small error. So what are the necessary and suffi-
cient conditions for a continuous-variable quantum computer
to be universal? This is given by the Lloyd-Braunstein crite-
rion (Lloyd and Braunstein, 1999) which tells us which gates
are needed to generate any unitary transformation to arbitrary
accuracy. This consists of the two families of gates:

(1) ZðtÞ, Pð�Þ, F, and UG (which is any multimode
Gaussian gate, e.g., CZ or B), 8 t; � 2 R. This first
family generates all possible Gaussian operations.

(2) exp½itq̂n�3� (for some value of t) which is a nonlinear
transformation of polynomial degree 3 or higher and
corresponds to a family of non-Gaussian gates.

Note that if we were restricted to using only Gaussian gates,
we would not be able to synthesize an arbitrary Hamiltonian.
In fact, the continuous-variable version (Bartlett et al., 2002)
of the Gottesman-Knill theorem (Gottesman, 1998) tells us
that starting from an initial Gaussian state, Gaussian process-
ing (which includes Gaussian measurements and Gaussian
operations) can be efficiently simulated on a classical com-
puter. Besides giving necessary and sufficient conditions for
simulating arbitrary Hamiltonians such as Lloyd and
Braunstein, a systematic and explicit method to decompose
any such Hamiltonian into elementary universal gates was
given by Sefi and van Loock (2011).

B. One-way quantum computation using continuous variables

One-way quantum computation (Raussendorf and Briegel,
2001) using continuous variables (Menicucci et al., 2006;
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Zhang and Braunstein, 2006; Gu et al., 2009) allows one to
perform any computational algorithm by implementing a
sequence of single-mode measurements on a specially en-
tangled state known as a cluster state (note that we often
begin our analysis using a perfectly entangled state but move
to the more realistic case of a Gaussian cluster state as we
progress). Here quantum gates are not required, as arbitrary
Hamiltonians are simulated via measurements alone. After
each measurement is performed the resulting measurement
outcome is used to select the basis of the next measurement.
In general, the order in which measurements are made does
matter, a property known as adaptiveness. However, when
implementing only Gaussian gates, this condition is relaxed
and the order no longer matters, a property known as paral-
lelism. The two basic steps of continuous-variable cluster-
state quantum computation can be summarized as follows:

(1) Cluster-state preparation: All quantum modes are ini-
tialized as highly squeezed vacuum states, approximat-
ing momentum eigenstates j0ip. The CZ gate is applied

to the relevant quantum modes in order to create the
entangled cluster state.

(2) Measurements: Single-mode measurements are made
on the relevant quantum modes where each result is
used to select the subsequent measurement basis.

Here a quantum mode, or qumode for short, is the continuous-
variable analog of the discrete-variable qubit and is simply a
continuous-variable quantum state or mode. Note that, up
until this point in the review, we simply referred to such states
as modes. However in line with the terminology used in the
current research of continuous-variable cluster states, we will
refer to such quantum states as qumodes.

1. Understanding one-way computation via teleportation

To get a feel of how measurements allow us to generate
arbitrary evolutions in cluster-state computation, it is helpful
to look at quantum teleportation from the perspective of the
quantum circuit model. The quantum circuit for the gate
teleportation of a single-mode continuous-variable quantum
state jc i is given by (Menicucci et al., 2006)

The above circuit can be understood in the following way.
The input states consist of the arbitrary state jc i that we wish
to teleport and a momentum eigenstate j0ip (note that we

begin by considering the unphysical case of perfectly
squeezed vacuum states with the realistic case of Gaussian
squeezed states discussed later). They are entangled using a
CZ gate. A p̂ quadrature measurement is performed resulting
in the outcome m1. The state jc i is thus teleported from
the top quantum wire to the bottom wire and can be fully
restored by applying the corrections FyXyðm1Þ to the out-
put state. We now go through the above circuit in more
detail. First, the two initial input states can be written as
jc ij0ip. Expanding them into the position basis gives

jc ij0ip ¼ ð2 ffiffiffiffi
�

p Þ�1
R
dq1dq2c ðq1Þjq1ijq2i, where jc i ¼R

dq1c ðq1Þjq1i and j0ip ¼ ð2 ffiffiffiffi
�

p Þ�1
R
dq2jq2i. Applying

the CPHASE gate leads to

CZjc ij0ip ¼ 1

2
ffiffiffiffi
�

p
Z

dq1dq2c ðq1Þeiq1q2=2jq1ijq2i:
(165)

After measuring p̂ of the first mode, using the projector
jm1ihm1jp, and obtaining the result m1, we get

1

4�

Z
dq1dq2c ðq1Þeiq1ðq2�m1Þ=2q2; (166)

where we used hm1jq1i ¼ ð2 ffiffiffiffi
�

p Þ�1 expð�iq1m1=2Þ. The
above state can be rewritten as jc 0i ¼ Xðm1ÞFjc i. As
mentioned, applying the corrections gives back the initial
state FyXyðm1Þjc 0i ¼ jc i.

Having considered the teleportation of an arbitrary state,
we are now in a position to consider the teleportation of a
quantum gate (Bartlett and Munro, 2003), which is at the
heart of the measurement-based model of computation. This
requires only a slight alteration to the previous circuit as we
consider teleporting gates that are diagonal in the computa-
tional basis and thus commute through the CPHASE gate. For
example, the circuit below teleports the state jc 0i ¼ Ujc i,
whereU ¼ exp½ifðq̂Þ� is a gate diagonal in the computational
basis

The above circuit is equivalent to the circuit below, where U
can be absorbed into the measurement process

The above circuit forms the basis for our understanding of
measurement-based quantum computation. We stop for a
moment to consider why this is. Circuit (167) is the typical
quantum circuit where an algorithm (in this case gate tele-
portation) is achieved by first implementing a quantum gateU
onto a quantum state jc i. However, circuit (168) shows us
that we no longer need to explicitly implement the quantum
gate but we can simulate the effect of the gate using only
measurements in a new basis. This effect is the building block
of cluster-state computation where we can concatenate a
number of these circuits to form a larger cluster state.

2. Implementing gates using measurements

We have just shown that by performing a measurement in
the basisUyp̂U we can simulate the effect of theU gate on an
arbitrary state. Using this result with the previously men-
tioned Lloyd-Braunstein criterion, we are able to implement
the set of universal Hamiltonians q̂, q̂2, and q̂3 using only
measurements. We can forget about the two-mode Gaussian
gate UG from the set as we already used it in creating the
cluster via the CZ gate. We also use the Hamiltonian q̂3, rather
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than any other higher order polynomial, because we know
how to optically implement it (more on this in Sec. VII.F).
This corresponds to the following three transformations:

Uy
j p̂Uj ¼ p̂þ tq̂j�1 (169)

for j ¼ 1, 2, and 3 and where the gates diagonal in the
computational basis are conveniently written as Uj ¼
exp½ðit=2jÞq̂j�. Note that U1 corresponds to the Heisenberg-
Weyl displacement operator ZðtÞ, U2 is the phase gate PðtÞ,
and U3 is known as the cubic phase gate, denoted as VðtÞ. So
how are the above transformations optically implemented?
Well, the first one is achieved by simply measuring p̂ and
adding t to the measurement result. The second one is a
homodyne measurement in a rotated quadrature basis
ðp̂ cos�� q̂ sin�Þ= cos�. However, the cubic Hamiltonian is
a little more difficult to implement than the previous two and
will be discussed in more detail in Sec. VII.F.

C. Graph states and nullifiers

1. Graph states

A common and convenient way of depicting cluster states
is by using graphs. The continuous-variable version of graph
states was defined by Zhang and Braunstein (2006) where
every continuous-variable cluster state can be represented
by a graph (Gu et al., 2009) known as a graph state.6

Specifically, a graph G ¼ ðV; EÞ consists of a set of vertices
(or nodes) V and a set of edges E. The following recipe allows
us to construct a corresponding graph state:

(1) Each squeezed momentum eigenstate becomes a ver-
tex in the graph.

(2) Each CZ operation applied between two qumodes is an
edge in the graph.

To illustrate, we give a simple example of a two-mode cluster
state. Below we have the first step of initializing the two
squeezed momentum eigenstates (represented by vertices and
labeled 1 and 2). In the second step the CZ gate is applied,
indicated by the edge joining vertices 1 and 2. The final step
illustrates how measurements are indicated on a graph. Here a
p̂ quadrature measurement on the first node is implemented

Previously we introduced the quantum circuit formalism to
understand measurement-based computation. Therefore we
give below an equivalence between the teleportation circuit
(on the left) and the graph state formalism (on the right)

The concept of continuous-variable graph states has been
developed by Zhang (Zhang, 2008a, 2008b, 2010) and inde-
pendently by others (Menicucci et al., 2007; Pfister, 2007;
Menicucci, Flammia, and Pfister, 2008; Zaidi et al., 2008;
Flammia, Menicucci, and Pfister, 2009; Flammia and
Severini, 2009; Zhang et al., 2009; Aolita et al., 2011). A
more general approach was introduced by Menicucci,
Flammia, and van Loock (2011) allowing the graphical cal-
culus formalism to be applied to the practical case where
continuous-variable cluster states are created using finitely
squeezed Gaussian states rather than ideal perfectly squeezed
eigenstates.

2. Stabilizers and nullifiers

The stabilizer formalism (Gottesman, 1997) for continuous
variables (Gottesman, Kitaev, and Preskill, 2001; Barnes,
2004; van Loock, Weedbrook, and Gu, 2007) is a useful
way of both defining and analyzing cluster states (or graph

states). An operator Ô is a stabilizer of a state jc i if Ôjc i ¼
jc i, i.e., it has an eigenvalue of þ1. For example, a zero
momentum eigenstate j0ip is stabilized by the displacement

operator XðsÞ, i.e., XðsÞj0ip ¼ j0ip for all values of s. For an

arbitrary continuous-variable graph state j�i with graph G ¼
ðV; EÞ on n qumodes, the stabilizers are defined as

KiðsÞ ¼ XiðsÞ
Y

j2NðiÞ
ZjðsÞ; (172)

for i ¼ 1; . . . ; n and for all s 2 R. Here NðiÞ means the set of
vertices in the neighborhood of vi, i.e., NðiÞ ¼ fjjðvj; viÞ 2
Eg. A variation of these stabilizers Ki involves using what is
known as nullifiers Hi. Here every stabilizer is the exponen-
tial of a nullifier, i.e., KiðsÞ ¼ e�isHi for all s 2 R. This
results in Hij�i ¼ 0 where the set of nullifiers are given by

Hi ¼ p̂i �
X

j2NðiÞ
q̂j: (173)

Therefore the graph state j�i is a zero eigenstate of the above
nullifiers where any linear superposition satisfies Hijc i ¼ 0
and ½Hi;Hj� ¼ 0. An example might be helpful here.

Suppose we have a simple three-node linear cluster where
the nodes are labeled 1, 2, and 3. Then, according to Eq. (173),
the nullifiers are given by p̂1 � q̂2, p̂2 � q̂1 � q̂3, and
p̂3 � q̂2. Furthermore, according to Eq. (172), the set of
stabilizers can be written as X1ðsÞZ2ðsÞ, Z1ðsÞX2ðsÞZ3ðsÞ, and
Z2ðsÞX3ðsÞ, for all s. Therefore, by simply looking at a given
graph we can write down the nullifiers and stabilizers of that
particular graph. We note another useful way of analyzing
graph states, other than the nullifier formalism, is by using the
Wigner representation (Gu et al., 2009).

3. Shaping clusters: Removing nodes and shortening wires

The nullifier formalism provides a useful way of under-
standing how graph states are transformed by quadrature

6From now on we use the terms cluster states and graph states

interchangeably. Note that some technically refer to a cluster state as

one which has a graph that is universal for measurement-based

computation (e.g., a square lattice); while a graph state could be

any arbitrary graph. However, in the continuous-variable literature

(Menicucci et al., 2006; Menicucci, Flammia, and Pfister, 2008;

Flammia, Menicucci, and Pfister, 2009; Menicucci, Ma, and Ralph,

2010;Menicucci, 2011;Menicucci, Flammia, and vanLoock, 2011) it

is common to use them synonymously with context providing clarity.
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measurements. It can be shown (Gu et al., 2009) that q̂
(computational) measurements remove a given node (modulo
some known displacement), while p̂ quadrature measure-
ments also remove the node but preserve the correlations
between neighboring nodes (modulo a displacement and
Fourier transform). For example, in the graph state picture,
a position quadrature measurement on the second node has
the following effect:

and a momentum measurement on the second node we have

Using the above techniques we can shape a Gaussian cluster
in order to put it into the required topology to perform a
specific algorithm. For example, below we create the graph
state on the right by first performing a sequence of quadrature
measurements on an initial 4� 5 cluster given on the left

An experimental demonstration of continuous-variable
cluster-state shaping was performed using a four-mode linear
cluster using homodyne detection and feedforward (Miwa
et al., 2010).

D. Gaussian errors from finite squeezing

In the next section, we look at ways in which Gaussian
cluster states can be implemented optically. As soon as we
start discussing practical implementations we have to con-
sider using finitely squeezed Gaussian states in our analysis
which inevitably introduces errors into our computations. To
illustrate the effect of finite squeezing we show what happens
to the propagation of quantum information in a simple tele-
portation protocol. We now go back to the teleportation
circuits from Sec. VII.B.1 where we showed the effect of
teleporting, first a qumode and then a gate diagonal in the
computational basis, from one quantum wire to another. In
that particular scenario, the nodes of the cluster were mo-
mentum eigenstates. In the calculations that follow they will
be replaced by Gaussian squeezed states, i.e., j0ip !
j0; VSip, where VS < 1 is the variance of the input squeezing.

Suppose we initially start off with the two input states jc i and
j0; VSip, where both can again be expanded in terms of

arbitrary position bases, i.e., jc i ¼ R
dq1c ðq1Þjq1i and

j0; VSip ¼ ð�VSÞ�1=4
Z

dq2e
�q2

2
=2VS jq2i: (175)

Applying the CPHASE gate to these two states gives

ð�VSÞ�1=4
Z

dq1dq2c ðq1Þe�q2
2
=2VSeiq1q2=2jq1ijq2i:

(176)

After performing a measurement on the first mode in the
momentum basis we end up with jc 0i ¼ MXðm1ÞFjc i,
where M is a Gaussian distortion (Menicucci et al., 2006)

Mjc i /
Z

dqeq
2VS=2jqihqjc i: (177)

So effectively what we have is a Gaussian distortion, with
zero mean and variance 1=VS, applied to the original input
state as a result of propagating through a cluster created using
finite squeezing (equivalently, this can be thought of as a
convolution in momentum space by a Gaussian of variance
VS). The same reasoning holds when we consider the gate
teleportation situation where the output is given by
MXðm1ÞFUjc i. We note that the above distortions due to
finite squeezing errors of both state propagation and universal
gate teleportation have also been analyzed by Gu et al.
(2009) from the point of view of the Wigner representation.

E. Optical implementations of Gaussian cluster states

Here we look at the various methods to optically imple-
ment continuous-variable cluster states using Gaussian ele-
ments. The advantage of the continuous-variable optical
approach, compared to the discrete-variable approach, is
that the generation of continuous-variable cluster states is
completely deterministic. Furthermore, once the cluster is set
up only homodyne detection is needed to implement any
multimode Gaussian transformation (Ukai et al., 2010).
However, the errors introduced into the computations, due
to the finitely squeezed resources, are a down side to this
unconditionality. The five methods for cluster-state produc-
tion are outlined next.

1. Canonical method

The canonical method was first introduced in 2006
(Menicucci et al., 2006; Zhang and Braunstein, 2006) and
proposed a literal interpretation of how to implement an
optical Gaussian cluster state. By that we mean each mode
is first prepared as a momentum squeezed vacuum state and
then an appropriate number of CZ gates are applied to create
the required cluster. The CZ gate is optically implemented
using two beam splitters and two online7 squeezers (Yurke,
1985; Filip, Marek, and Andersen, 2005; Walls and Milburn,
2008). One of the advantages of this method is that the CZ

gates commute with one another (i.e., the order in which they
are applied does not matter) and thus facilitate theoretical
analysis. On the other hand, the implementation of the CZ

gate is experimentally challenging (Ukai et al., 2011) due to
the difficulty of online squeezing (Yurke, 1985; La Porta,
Slusher, and Yurke, 1989; Yoshikawa et al., 2007) and

7An online squeezer (also known as an inline squeezer) is the

squeezing of an arbitrary, possibly unknown, state. An offline

squeezer is the squeezing of a known state, typically the vacuum.
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therefore is not very efficient as CZ gates are needed for every
link in the cluster. Note that the demonstration of another type
of quantum nondemolition (QND) gate (the SUM gate) has
also been achieved (Yoshikawa et al., 2008).

2. Linear-optics method

The linear-optics method was conceived by van Loock
(van Loock, Weedbrook, and Gu, 2007) and provided a way
of greatly simplifying the optical implementation of the
canonical method. Put simply, the linear-optics method al-
lows the creation of a cluster state using only offline squeezed
states and a beam splitter network. Experimentally this rep-
resented an important advancement in the building of
continuous-variable cluster states as the difficult part of on-
line squeezing was now moved offline (Gu et al., 2009). In
this work (van Loock, Weedbrook, and Gu, 2007) two algo-
rithms were developed using squeezed vacuum states and
linear optics to create two varieties of cluster states: (1) ca-
nonical Gaussian cluster states and (2) generalized cluster-
type states. The first algorithm, known as the decompositional
algorithm, used the Bloch-Messiah reduction (cf. Sec. II.C.2)
to show that the canonical method can be decomposed into
offline squeezed states and beam splitters to create the origi-
nal canonical cluster. The second algorithm (this time inde-
pendent of the Bloch-Messiah reduction) showed how to
create a more general class of Gaussian cluster states, known
as cluster-type states (from which the canonical cluster states
are a special case). This was shown by requiring that the final
cluster state (again created from squeeze vacuum states and
carefully configured passive linear optics) satisfies the nulli-
fier relation of Eq. (173) in the limit of infinite squeezing.
However, when the finite squeezing case is also considered a
larger family of noncanonical cluster states is created.

One of the benefits of the second algorithm is that the
antisqueezing components are suppressed, thus making it
experimentally more appealing (Yukawa et al., 2008). Also
smaller levels of input squeezing are required to create cluster-
type states compared to using the canonical method to create
canonical states with the same kind of correlations. A number
of experiments using the linear-optics method have been
demonstrated from setting up an initial four-mode Gaussian
cluster (Su et al., 2007; Yukawa et al., 2008) [including linear,
T shape, and square clusters (Yukawa et al., 2008)] to simple
continuous-variable one-way quantum computations on a
four-mode linear cluster (Miwa et al., 2010;Ukai et al., 2011).

3. Single optical parametric oscillator method

The single optical parametric oscillator (OPO) method
(Menicucci et al., 2007; Menicucci, Flammia, and Pfister,
2008; Flammia, Menicucci, and Pfister, 2009) was developed
around the same time as the linear-optics method and shows
how to create an ultracompact and scalable, universal
N-mode cluster state using only an OPO.8 Effectively this

means that the cluster state can be created in just a single step
using a top-down approach and requires the same amount of
resources as the linear-optics method [i.e., OðN2Þ]. However,
unlike the linear-optics method it does not require an inter-
ferometer which can be cumbersome for large N, thus re-
moving the beam splitter network altogether. It therefore
holds great promise of scalability for universal continuous-
variable cluster states.

The initial proposal (Menicucci et al., 2007) showed that,
by using an appropriately constructed multifrequency pump
beam, the single OPO could generate any continuous-variable
cluster state with a bipartite graph. Mathematically this result
relied on showing a connection between continuous-variable
cluster states and Hamiltonian graphs or H graphs for short
(Menicucci et al., 2007; Menicucci, Flammia, and Pfister,
2008; Zaidi et al., 2008; Flammia, Menicucci, and Pfister,
2009; Flammia and Severini, 2009). These H graphs corre-
spond to those states produced by an OPO.With this result we
have effectively gone from requiring N single-mode squeez-
ers (OPOs) to a single multimode OPO which is pumped by
an OðN2Þ-mode beam. Further progress showed (Menicucci,
Flammia, and Pfister, 2008; Flammia, Menicucci, and Pfister,
2009) that this method can in fact produce a whole family of
universal continuous-variable cluster states where the encod-
ing scheme of the single OPO involves using the optical
frequency comb. Here each independent qumode corresponds
to a different frequency in the optical frequency comb (which
derives its name from the equal spacings between each
qumode). The main advantage of this method is that the
number of pump frequencies is not OðN2Þ but, in fact,
constant. The first experimental demonstration of cluster-
state generation in the optical frequency was performed by
Pysher et al. (2011). Here 15 quadripartite cluster states were
created over 60 cavity qumodes, exhibiting its potential for
scalable quantum computation.

4. Single-QND-gate method

In the four years since the canonical method, and its
reliance on CZ gates, all of the previous methods have
purposely shied away from using this nondemolition gate
due to its difficulty in being experimentally implemented
(Ukai et al., 2011). However, in a novel approach
(Menicucci, Ma, and Ralph, 2010), the CZ gate once again
makes an appearance in a compact scheme devised to gen-
erate arbitrarily large cluster states. In the canonical method,
OðN2Þ low-noise CZ gates are needed to set up the initial
N-mode cluster. However, in this new approach, all that is
required is a single CZ gate. In fact, for universal quantum
computation, only a single copy of the following key optical
ingredients are needed: a single-mode vacuum squeezer, a CZ

gate, a homodyne detector, and a photon counter. The basic
premise of the single-QND-gate method involves building the
cluster on the go where the cluster is extended and measured
as needed, according to the particular algorithm to be
executed.

The specific design of this method can be understood from
considering a simple linear cluster. In this case momentum
squeezed vacuum states are generated at regular intervals and
repeatedly fed into a single CZ gate. One output of the gate is
directed toward a detector while the other is fed back into the

8A simple OPO consists of an optical cavity (e.g., two facing

mirrors) with a crystal inside. Typically this crystal is nonlinear

(e.g., second order �ð2Þ) and is pumped by a laser beam which can

lead to the downconversion or the upconversion of the initial

frequencies.
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CZ gate. Because, in general, all qumodes travel the same
optical path, but importantly at different times, the encoding
scheme of the qumodes is temporal. This process of creating
and measuring is repeated over and over during the duration
of the algorithm and can be extended in much the same way
to create universal cluster states. One advantage that the
single-QND-gate method offers over the previous approaches
is that maintaining the coherence of a large cluster becomes
less of an issue. This is because we are concerned only with
the coherence of a small instance of the cluster at any one
time.

5. Temporal-mode-linear-optics method

The latest approach was developed by Menicucci (2011)
and combines the essential features and benefits of the pre-
vious three methods into one. This method, known as the
temporal-mode-linear-optics method, offers an improvement
over the single-QND-gate approach in that it uses the tech-
niques from the linear-optics scheme to move the experimen-
tally challenging online squeezing, offline. This new
temporal-mode encoding, where again the input squeezed
vacuum states are repeatedly sent through the same optical
hardware but at different times, still maintains the finite
coherence and scalability features of the previous model.
This implementation is achieved by recognizing that the
output states of the single-OPO method are in fact Gaussian
projected entangled pair states (Ohliger, Kieling, and Eisert,
2010). Gaussian projected entangled pair states are pairs of
Gaussian two-mode squeezed states that are locally projected
down to a lower-dimensional subspace. For example, in the
cluster-state formalism, this corresponds to having two two-
node graph states where a measurement projects the ends of
both nodes down to a single node and in doing so creates a
linear three-node graph (Ohliger, Kieling, and Eisert, 2010).
The graphical formalism developed by Menicucci, Flammia,
and van Loock (2011) is used to describe and formulate this
Gaussian projected entangled pair states construction and can
be optically implemented using single-mode offline squeez-
ers and linear optics.

F. Universal quantum computation

As previously noted, the Lloyd-Braunstein criterion tells us
that in order to achieve universal quantum computation, i.e.,
the ability to generate an arbitrary Hamiltonian, we need the
addition of a non-Gaussian element, such as a non-Gaussian
operation or a non-Gaussian state, to our tool box. In
continuous-variable cluster-state quantum computation the
cubic phase gate and the cubic phase state, are examples of
such elements. The cubic phase gate is defined as

V ¼ expði�q̂3Þ; (178)

where � 2 R. The action of the cubic phase gate on a zero
momentum eigenstate j0ip creates what is known as the cubic
phase state j�iwhich is an unnormalizable non-Gaussian state

j�i ¼ Vj0ip ¼ 1

2
ffiffiffiffi
�

p
Z

dqei�q
3 jqi: (179)

Ultimately the cubic phase state will be used as a resource to
implement the cubic phase gate onto an arbitrary state in the
cluster. We begin by first showing how to create such a state
and then explore twomethods of implementing the cubic phase
gate.

1. Creating the cubic phase state

Gottesman, Kitaev, and Preskill (2001) showed that the
cubic phase state could be created by implementing the
following quantum circuit (Gu et al., 2009):

where V 0 ¼ exp½i�0ðnÞq̂3� and the strength of the gate de-

pends on the probabilistic measurement result: �0ðnÞ ¼
ð6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p Þ�1. Therefore, the above circuit corresponds to a

simple two-mode graph state with a displaced photon-
counting measurement on the first node

Note that the output state above is not quite in the form we
would like, i.e., it is �0 and not �. To correct this note that V 0
can be decomposed into two squeeze gates and the cubic
phase gate (Gottesman, Kitaev, and Preskill, 2001), i.e.,

V0 ¼ SðfÞVSyðfÞ; (182)

where f :¼ fðnÞ ¼ ½�=�0ðnÞ�1=3. Once these squeezing cor-
rections are implemented the cubic phase state can be
synthesized.

2. Implementing the cubic phase gate

Now that we have a way of creating the cubic phase state
we look at two possible approaches to induce the action of the
cubic phase gate onto an arbitrary state using the cubic phase
state as a resource. The first approach deviates from the
typical measurement-based scheme by performing Gaussian
measurements on a non-Gaussian cluster state. The second
approach revisits the typical setup of a Gaussian cluster but
requires that the measurement tool box now consists of both
Gaussian and non-Gaussian measurements.

a. Non-Gaussian cluster and Gaussian measurements

In the standard cluster-state model of computation all
nodes are initialized as zero momentum eigenstates before
becoming entangled via the CPHASE gate. However, one
way to implement the cubic phase gate is to first embed the
cubic phase state into the original cluster. In the regime of
finite squeezing the initial Gaussian cluster state now be-
comes non-Gaussian. A computation is performed as before
using only Gaussian (homodyne) measurements. Once the
cubic phase state j�i is part of the initial cluster a variation of
gate teleportation can be used to teleport V onto an arbitrary
state j�i of the cluster (where, for instance, j�i is the state of
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a node in the cluster at a particular point in time). The
following circuit achieves this (Gu et al., 2009):

modulo known Gaussian corrections (Weedbrook, 2009)
(hence the � ). In the graph state formalism the above circuit
is depicted as

Note that the above graph corresponds to a subgraph of a
much larger cluster. One way to think about what is happen-
ing is that we have the cubic phase gate V acting on a zero
momentum eigenstate on the second node and by performing
momentum quadrature measurements on the first and second
nodes we are effectively teleporting V onto j�i (modulo
corrections) with the resulting state appearing at the third
node. The advantage of using a non-Gaussian cluster from
the beginning is that once it is created only quadrature
measurements are needed to perform any algorithm.
However, creating such an improved resource is experimen-
tally challenging.

b. Gaussian cluster and non-Gaussian measurements

Now the previous approach is tailored to creating the cubic
phase state offline, i.e., as one of the initial resource states
prior to the entangling gate. However, if we wanted to
emulate the original cluster-state formalism by beginning
with a universal Gaussian cluster, our set of measurements
would need to be both Gaussian and non-Gaussian (e.g.,
photon counting). One consequence of this is the need to
perform the squeezing corrections of Eq. (182) online. With
this in mind circuit (183) now becomes

where the second squeezing correction is dependent on the
first measurement result m1 because it is itself dependent on
the photon-counting result n (Weedbrook, 2009). Translating
the above circuit into the graph state formalism and using
Eq. (181) gives the following:

where the input state j�i is the first node from the left. Here
the square boxes represent subgraphs through which the
squeezing corrections SðfÞ and Syðf;m1Þ are implemented

via homodyne measurements (van Loock, 2007). Another

consequence of the non-Gaussian measurement is that the
concept of parallelism is no longer valid as the center top

node needs to be measured first due to the probabilistic nature
of the measurement outcome, after which the amount of

squeezing required on the first node is dependent on the result
n. Hence the time ordering of measurements now matters and

adaptiveness plays a role (depending on the specific algo-
rithm performed, the value of � might also depend on pre-

vious measurement results as well). From the above graph

one can notice that ideally the top center node is attached only
to the node below it. This is where the shaping tools from

Sec. VII.C.3 play a part. For example, if there is a point in the
computation on the Gaussian cluster where the cubic phase

state needs to be created, then removing or deleting nodes
from the cluster will allow one to have it in the required form.

G. Quantum error correction

To argue that a particular physical system is capable of
universal quantum computation it is not sufficient to show

that the system in question can implement arbitrary unitary
evolutions. In any physical implementation there will be

imperfections in the system that will inevitably lead to ran-
dom errors being introduced. Even if these errors are small,

when large scale quantum processing is considered, we have
to worry about their propagation during gate operations. If

uncorrected, such errors will grow uncontrollably and make

the computation useless. The answer to this problem is a fault
tolerant error correction (Shor, 1995; Steane, 1996). Thus, to

make a necessary and sufficient argument that a particular
physical system is capable of continuous-variable quantum

computation, strictly one must also show that fault tolerant
error correction is possible.

The idea of error correction is self-explanatory, although

the description of its application to quantum systems requires
some care. Classically we might consider using a redundancy

code such that, for example, 0 ! 000 and 1 ! 111. If a bit
flip occurs on one of the bits we might end up with 010 or

101, but we can recover the original bit value by taking a
majority vote. An example of a quantum redundant encoding

for qubits is �j0i þ �j1i ! �j000i þ �j111i, where we

have created an entangled state rather than copies. It is then
possible to identify an error without collapsing the superpo-

sition, by reading out the parity of pairs of qubits. For
example, a bit-flip error might result in the state �j001i þ
�j110i. The parity of the first two qubits will be zero while
the parity of the second two qubits will be 1, thus unambig-

uously identifying that an error has occurred on the last qubit.
Because we are measuring the parity, not the qubit value, the

superposition is not collapsed. Such codes can be expanded to

cope with the possibility of more than one error occurring
between correction attempts and to cope with multiple types

of errors. Of course, the gates being used to detect and correct
the errors may themselves be faulty. An error correction code

is said to be fault tolerant if error propagation can be pre-
vented even if the components used to do the error correction

introduce errors themselves. Typically this is possible only if
the error rate per operation is below some level known as the

fault tolerant threshold.
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The first error correction protocol for continuous variables

(Braunstein, 1998a; Lloyd and Slotine, 1998) was developed

as a direct generalization of the qubit redundancy codes

(Shor, 1995). In Braunstein’s simplified version

(Braunstein, 1998b), eight ancilla squeezed states are mixed

on beam splitters with the signal state to create a nine-mode

encoded state. Decoding is similarly achieved with beam

splitters, with homodyne detection on eight of the modes

providing information about errors on the remaining signal

mode. This protocol has recently been demonstrated experi-

mentally (Aoki et al., 2009). On any particular run the code

can correct any error that occurs on any single mode of the

encoded state (Walker and Braunstein, 2010). This was shown

to extend to multiple errors provided they occur in a stochastic

way (van Loock, 2010). Unfortunately, error models of this

kind are non-Gaussian error models and do not correspond to

the Gaussian errors that typically occur in experiments due to

loss and thermal noise. Other protocols for correcting more

specific types of non-Gaussian noise imposed on Gaussian

states have been proposed and experimentally demonstrated

(Niset, Andersen, and Cerf, 2008; Lassen et al., 2010). It has

been proven that error correction of Gaussian noise, imposed

on Gaussian states, using only Gaussian operations is impos-

sible (Niset, Fiuràšek, and Cerf, 2009).
This no-go theorem does not apply if the initial states are

non-Gaussian. An example of such a protocol is that de-

veloped by Gottesman, Kitaev, and Preskill (2001). Here

the information is discretized by encoding qubit states as

non-Gaussian continuous-variable states. Such states could

be generated in optical modes by means of cross-Kerr

interactions (Pirandola et al., 2004). Error correction

against Gaussian errors can then be achieved using

Gaussian operations. This protocol is known to be fault

tolerant, although the threshold requirements are quite ex-

treme (Glancy and Knill, 2006). A simpler encoding of

qubits into continuous-variable states is the coherent-state

encoding (Ralph et al., 2003). Fault tolerant error correc-

tion against Gaussian errors can also be achieved with this

system, with a better threshold behavior (Lund, Ralph,

and Haselgrove, 2008). The price paid for this improve-

ment though is that non-Gaussian operations are also

required.
A third possibility that is not explicitly forbidden by the

no-go theorem is to error correct Gaussian states against

Gaussian noise using non-Gaussian operations that nonethe-

less result in a Gaussian output state. Such protocols have

been proposed (Browne et al., 2003) and demonstrated

(Xiang et al., 2010) for continuous-variable entanglement

distillation. Entanglement distillation (Bennett et al., 1996)

is a nondeterministic error detection protocol, useful for

extending the reach of quantum communication systems.

Continuous-variable protocols have also been developed to

distill entanglement against non-Gaussian noise (Dong et al.,

2008; Hage et al., 2008) and for non-Gaussian states against

Gaussian noise (Ourjoumtsev et al., 2009). In principle,

continuous-variable teleportation and continuous-variable

distillation protocols based on noiseless amplification can

be combined to error correct Gaussian states against

Gaussian noise (Ralph, 2011). However, it is not currently

known if such protocols can be made fault tolerant.

Error correction cannot be directly introduced into the
continuous-variable cluster-state model by simply simulating
a circuit model error correction protocol with the cluster
(Cable and Browne, 2010; Ohliger, Kieling, and Eisert,
2010). This is a generalization of the result of Nielsen and
Dawson (2005) that similarly restricts error correction for
discrete-variable cluster states. They showed that error cor-
rection could be incorporated only into the cluster-state
computation model provided the construction and measure-
ment of the cluster occurred concurrently, and the offline,
nondeterministic production of special states was allowed. In
continuous-variable cluster-state computation, without fully
fletched continuous-variable fault tolerance, continuous-
variable cluster states based on any finite squeezing are
strictly speaking not resources for continuous-variable
cluster-state quantum computing (Ohliger, Kieling, and
Eisert, 2010). However, it has been argued that, in principle,
combining the techniques of Nielsen and Dawson (2005) with
the oscillator encoding scheme of Gottesman, Kitaev, and
Preskill (2001) would allow fault tolerant continuous-variable
cluster-state computation to be carried out, although this has
not been shown explicitly.

H. Continuous-variable quantum algorithms

Finally, before discussing future directions, we briefly
mention two algorithms that have been developed for a
continuous-variable quantum computer: Grover’s search al-
gorithm (Grover, 1997) and the Deutsch-Jozsa algorithm
(Deutsch and Jozsa, 1992). These algorithms were originally
developed for discrete-variable systems (Nielsen and Chuang,
2000) and later analogs were found for continuous-variable
systems in terms of the quantum circuit model formalism.
Grover’s search algorithm using continuous variables was
presented by Pati, Braunstein, and Lloyd (2000) and showed
that a square-root speedup in searching an unsorted database
could be achieved in analogy with the qubit case. A
continuous-variable version of one of the earliest quantum
algorithms, the Deutsch-Jozsa algorithm, was first developed
by Pati and Braunstein (2003). Here the goal of determining
whether a function is constant or balanced was constructed in
the ideal case of perfectly squeezed qumodes. Later, this
algorithm was analyzed in more detail by Adcock, Høyer,
and Sanders (2009) and reformulated using Gaussian states
by Zwierz, Pérez-Delgado, and Kok (2010).

I. Future directions

Research interest in the field of continuous-variable quan-
tum computation has increased significantly in the last few
years. This is particularly true in the case of cluster-state
quantum computation. Therefore it is worth making a brief
comparison between the continuous-variable cluster states
discussed here and the discrete-variable approach based on
single-photon qubits and linear-optics techniques (Knill,
Laflamme, and Milburn, 2001; Nielsen, 2004). The key
trade-off is between construction of the cluster and its mea-
surements. In the continuous-variable approach construction
is deterministic, while in the single-photon approach it is
nondeterministic and requires a very large overhead in terms
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of photon sources and memory in order to make it near
deterministic. On the other hand, all required measurements
are straightforward in the single-photon approach, while non-
Gaussian measurements pose a major challenge in the
continuous-variable approach. At this point it is difficult to
say which of these problems represents the biggest impedi-
ment to building a large scale system.

There are a number of important avenues for future research
in continuous-variable quantumcomputation. Perhaps themost
important at this stage is the development of continuous-
variable fault tolerance for cluster-state quantum computation.
Another avenue would be to incorporate continuous-variable
quantum algorithms, such as Grover’s algorithm and the
Deutsch-Jozsa algorithm, into the cluster-state model.
Additionally, the development of further algorithms for a
continuous-variable quantum computer, e.g., an optical version
of Shor’s factoring algorithm (Shor, 1997), would also be
interesting, especially for future experimental demonstrations.

VIII. CONCLUSION AND PERSPECTIVES

This review examined the power of continuous-variable
quantum information from a Gaussian perspective. The
processing of Gaussian quantum information involves the
use of any combination of Gaussian states, Gaussian opera-
tions, and Gaussian measurements. The ability to characterize
Gaussian states and operations via their first- and second-
order statistical moments offers a major simplification in the
mathematical analysis of quantum information protocols.
Over the last decade, optical and atomic Gaussian states
and operations have been recognized as key resources for
quantum information processing. For example, continuous-
variable quantum teleportation requires only Gaussian entan-
glement and Gaussian operations, while it can be used to
teleport arbitrary, even highly non-Gaussian, quantum states.
Similarly, continuous-variable quantum key distribution
works with coherent states, while it achieves the uncondi-
tional security once believed to reside only with highly non-
classical resources. Yet another unexpected property is that a
Gaussian cluster state is provably a universal resource for
quantum computation. All of these findings put forward the
idea that Gaussian protocols deserve a front row position in
quantum information science.

Beyond a comprehensive description of Gaussian quantum
information protocols, this review also examined bounds on
the distinguishability of Gaussian states, and features of
Gaussian bosonic quantum communication channels such as
their capacity and statistical discrimination. Future directions
in quantum information sciences include the exploration of
more complex scenarios of quantum communication, involv-
ing different protocols such as quantum cloning or teleporta-
tion networks. In this context, the Gaussian approach is
particularly promising, allowing us to explore these future
directions with powerful mathematical tools and standard
optical components.

From a purely Gaussian perspective, i.e., when one is
restricted to using states, operations, and measurements that
are all Gaussian, certain protocols are not possible. For
example, universal quantum computation, entanglement dis-
tillation, and error correction all require that the protocol be

supplemented with either a non-Gaussian state, operation, or
measurement. For some tasks, hybrid systems, which com-
bine elements from continuous and discrete-variable quantum
information processing, are then favored as they may outper-
form purely discrete-variable systems. Interestingly, the
powerful mathematical tools of Gaussian analysis can some-
times be used even when non-Gaussian processing or non-
Gaussian states are involved. For example, in certain quantum
key distribution protocols, even if Alice and Bob use non-
Gaussian distributions or Eve makes a non-Gaussian attack,
the security can be ensured by considering the worst case of a
Gaussian attack against a Gaussian protocol. Such an analysis
would still hold if quantum repeaters based on non-Gaussian
processing were used by Alice and Bob. Similarly, universal
quantum computation achieved by a Gaussian cluster state
and non-Gaussian detection is an example of the power
brought by the application of Gaussian analysis tools to
hybrid quantum systems.

In conclusion, we anticipate that Gaussian quantum infor-
mation will play a key role in future developments of
quantum information sciences, both theoretical and experi-
mental. This is due to the simplicity and versatility of the
involved protocols as well as the availability of the required
technologies. We hope that this review will help encourage
these developments.
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