1,922 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots

    Get PDF
    This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in the control signal is neutralized by applying Pade ́ approximant and augmenting the system states. An assistant system with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness

    Fuzzy Distributed Cooperative Tracking For A Swarm Of Unmanned Aerial Vehicles With Heterogeneous Goals

    Get PDF
    Copyright © 2015 Taylor & Francis This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Systems Science on 29 December 2015, available online: http://www.tandfonline.com/10.1080/00207721.2015.1126380This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a swarm of UAVs, modelled as nonlinear systems with linear and angular velocity constraints, in order to achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representation of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced is composed of both node and network level information. Firstly feedback gains are synthesised using a Parallel Distributed Compensation (PDC) control law structure, for a collection of isolated UAVs; ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level to incorporate into the control law the relative differences in the states of the vehicles, and to induce cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is performed using tools from linear control theory: in particular the design criteria are posed as Linear Matrix Inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the efficacy of the approach.Engineering and Physical Sciences Research Council (EPSRC

    On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays

    Get PDF
    This paper is concerned with the fault detection problem for a class of discrete-time systems with randomly occurring nonlinearities, mixed stochastic time-delays as well as measurement quantizations. The nonlinearities are assumed to occur in a random way. The mixed time-delays comprise both the multiple discrete time-delays and the infinite distributed delays that occur in a random way as well. A sequence of stochastic variables is introduced to govern the random occurrences of the nonlinearities, discrete time-delays and distributed time-delays, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fault detection filter such that, in the presence of measurement quantization, the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fault detection filters, and then the explicit expression of the desired filter gains is derived by means of the feasibility of certain matrix inequalities. Also, the optimal performance index for the addressed fault detection problem can be obtained by solving an auxiliary convex optimization problem. A practical example is provided to show the usefulness and effectiveness of the proposed design method

    A stability-theory perspective to synchronisation of heterogeneous networks

    Get PDF
    Dans ce mĂ©moire, nous faisons une prĂ©sentation de nos recherches dans le domaine de la synchronisation des systĂšmes dynamiques interconnectĂ©s en rĂ©seau. Une des originalitĂ©s de nos travaux est qu'ils portent sur les rĂ©seaux hĂ©tĂ©rogĂšnes, c'est Ă  dire, des systĂšmes Ă  dynamiques diverses. Au centre du cadre d'analyse que nous proposons, nous introduisons le concept de dynamique Ă©mergente. Il s'agit d'une dynamique "moyennĂ©e'' propre au rĂ©seau lui-mĂȘme. Sous l'hypothĂšse qu'il existe un attracteur pour cette dynamique, nous montrons que le problĂšme de synchronisation se divise en deux problĂšmes duaux : la stabilitĂ© de l'attracteur et la convergence des trajectoires de chaque systĂšme vers celles gĂ©nĂ©rĂ©es par la dynamique Ă©mergente. Nous Ă©tudions aussi le cas particulier des oscillateurs de Stuart-Landau

    Robust stabilization by linear output delay feedback

    Get PDF
    The main result establishes that if a controller CC (comprising of a linear feedback of the output and its \emph{derivatives}) globally stabilizes a (nonlinear) plant PP, then global stabilization of PP can also be achieved by an output feedback controller C[h]C[h] where the output derivatives in CC are replaced by an Euler approximation with sufficiently small delay h>0. This is proved within the conceptual framework of the nonlinear gap metric approach to robust stability. The main result is then applied to finite dimensional linear minimum phase systems with unknown coefficients but known relative degree and known sign of the high frequency gain. Results are also given for systems with non-zero initial conditions

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie
    • 

    corecore