
EU FP7

AMARSi

Adaptive Modular Architectures for Rich Motor Skills

ICT-248311

D 4.1

October 2010 (6 months)

Comparative evaluation of approaches in

T.4.1-4.3 and working definition of adaptive

module

Authors:
Mostafa Ajallooeian, Sébastien Gay, Auke J. Ijspeert,

EPFL, BIOROB, {first.last}@epfl.ch
S.Mohammad Khansari-Zadeh, Seungsu Kim, Aude Billard,

EPFL, LASA, {first.last}@epfl.ch
Elmar Rückert, Gerhard Neumann,

TUG, {first}@igi.tu-graz.ac.at
Tim Waegeman, Francis Wyffels, Benjamin Schrauwen,

UGent, {first.last}@ugent.be
Andre Lemme, R. Felix Reinhart, Matthias Rolf, Jochen J. Steil,
UniBi, {alemme, freinhar, mrolf, jsteil}@cor-lab.uni-bielefeld.de

Juan Pablo Carbajal, Hidenobu Sumioka, Qian Zhao, Naveen Suresh Kuppuswamy,
UZH, {last}@ifi.uzh.ch

Due date of deliverable 1st September 2010
Actual submission date 15th October 2010
Lead Partner EPFL
Revision Final
Dissemination level Public

Abstract

The goal of this deliverable is two-fold: (1) to present and compare
different approaches towards learning and encoding movements us-
ing dynamical systems that have been developed by the AMARSi
partners (in the past during the first 6 months of the project), and
(2) to analyze their suitability to be used as adaptive modules, i.e.
as building blocks for the complete architecture that will be devel-
oped in the project.

The document presents a total of eight approaches, in two groups:
modules for discrete movements (i.e. with a clear goal where the
movement stops) and for rhythmic movements (i.e. which exhibit
periodicity). The basic formulation of each approach is presented
together with some illustrative simulation results. Key character-
istics such as the type of dynamical behavior, learning algorithm,
generalization properties, stability analysis are then discussed for
each approach.

We then make a comparative analysis of the different approaches
by comparing these characteristics and discussing their suitability
for the AMARSi project.

Contents

1 Introduction 6

2 Dynamical Movement Primitives 9
2.1 Short Introduction . 9
2.2 Model Description . 10
2.3 Simulation . 11
2.4 Functional Analysis . 12

2.4.1 Dynamics and Nonlinearity 12
2.4.2 Attractor . 13
2.4.3 Coupling . 13
2.4.4 Learning . 13
2.4.5 Training Data . 14
2.4.6 Generalization . 14
2.4.7 Modulation . 15
2.4.8 Sensory Feedback Integration 15
2.4.9 State Variables . 15
2.4.10 Robustness and Adaptation to Perturbations 15
2.4.11 Stability . 17

2.5 Non-Functional Analysis . 18
2.5.1 Representation and Interface 18
2.5.2 Timing . 19
2.5.3 Robustness and Reliability 19
2.5.4 Dependencies . 19
2.5.5 Runtime . 19
2.5.6 Usefulness for Recognition 19

2.6 Summary . 20

3 Stable Estimator of Dynamical Systems 21
3.1 Short Introduction . 21
3.2 Model Description . 21

3.2.1 SEDS Model Structure . 21
3.2.2 SEDS Learning Algorithm 24

3.3 Simulation . 26
3.4 Functional Analysis . 26

3.4.1 Dynamics and Nonlinearity 26
3.4.2 Attractor . 26
3.4.3 Coupling . 26
3.4.4 Learning . 27

1

3.4.5 Training Data . 27
3.4.6 Generalization . 27
3.4.7 Modulation . 28
3.4.8 Sensory Feedback Integration 28
3.4.9 State Variables . 29
3.4.10 Robustness and Adaptation to Perturbations 29
3.4.11 Stability . 29

3.5 Non-Functional Analysis . 30
3.5.1 Representation and Interface 30
3.5.2 Timing . 30
3.5.3 Robustness and Reliability 30
3.5.4 Dependencies . 31
3.5.5 Runtime . 31
3.5.6 Usefulness for Recognition 31

3.6 Summary . 31

4 Neural Dynamical Motion Primitives Generator 32
4.1 Short Introduction . 32
4.2 Model Description . 32
4.3 Simulation . 34
4.4 Functional Analysis . 36

4.4.1 Dynamics and Nonlinearity 36
4.4.2 Attractor . 36
4.4.3 Coupling . 36
4.4.4 Learning . 37
4.4.5 Training Data . 37
4.4.6 Generalization . 37
4.4.7 Modulation . 37
4.4.8 Sensory Feedback Integration 37
4.4.9 State Variables . 37
4.4.10 Robustness and Adaptation to Perturbations 37
4.4.11 Stability . 38

4.5 Non-Functional Analysis . 38
4.5.1 Representation and Interface 38
4.5.2 Timing . 38
4.5.3 Robustness and Reliability 38
4.5.4 Dependencies . 38
4.5.5 Runtime . 39
4.5.6 Usefulness for Recognition 39

4.6 Summary . 39

5 Neural Motion Primitive Control 40
5.1 Short Introduction . 40
5.2 Model Description . 40
5.3 Simulation . 42
5.4 Functional Analysis . 43

5.4.1 Dynamics and Nonlinearity 43
5.4.2 Attractor . 43
5.4.3 Coupling . 44
5.4.4 Learning . 44

2

5.4.5 Training Data . 44
5.4.6 Generalization . 45
5.4.7 Modulation . 45
5.4.8 Sensory Feedback Integration 46
5.4.9 State Variables . 46
5.4.10 Robustness and Adaptation to Perturbations 46
5.4.11 Stability . 46

5.5 Non-Functional Analysis . 46
5.5.1 Representation and Interface 46
5.5.2 Timing . 47
5.5.3 Robustness and Reliability 47
5.5.4 Dependencies . 47
5.5.5 Runtime . 47
5.5.6 Usefulness for Recognition 47

5.6 Summary . 48

6 Neural Dynamic Movement Primitives 49
6.1 Short Introduction . 49
6.2 Model Description . 49
6.3 Simulation . 50
6.4 Functional Analysis . 53

6.4.1 Dynamics and Nonlinearity 53
6.4.2 Attractor . 53
6.4.3 Coupling . 53
6.4.4 Learning . 53
6.4.5 Training Data . 53
6.4.6 Generalization . 54
6.4.7 Modulation . 54
6.4.8 Sensory Feedback Integration 54
6.4.9 State Variables . 55
6.4.10 Robustness and Adaptation to Perturbations 55
6.4.11 Stability . 55

6.5 Non-Functional Analysis . 55
6.5.1 Representation and Interface 55
6.5.2 Timing . 56
6.5.3 Robustness and Reliability 56
6.5.4 Dependencies . 56
6.5.5 Runtime . 56
6.5.6 Usefulness for Recognition 57

6.6 Summary . 57

7 Planned Motion Primitives using Approximate Inference 58
7.1 Short Introduction . 58
7.2 Model Description . 59
7.3 Simulation . 61
7.4 Functional Analysis . 62

7.4.1 Dynamics and Nonlinearity 62
7.4.2 Attractor . 62
7.4.3 Coupling . 62
7.4.4 Learning . 62

3

7.4.5 Training Data . 62
7.4.6 Generalization . 62
7.4.7 Modulation . 63
7.4.8 Sensory Feedback Integration 63
7.4.9 State Variables . 63
7.4.10 Robustness and Adaptation to Perturbations 63
7.4.11 Stability . 63

7.5 Non-Functional Analysis . 63
7.5.1 Representation and Interface 63
7.5.2 Timing . 63
7.5.3 Robustness and Reliability 63
7.5.4 Dependencies . 64
7.5.5 Runtime . 64
7.5.6 Usefulness for Recognition 64

7.6 Summary . 64

8 Adaptive Frequency Oscillators 65
8.1 Short Introduction . 65
8.2 Model Description . 65
8.3 Simulation . 68

8.3.1 General Results . 68
8.3.2 AFOs and Energy Transfers with Mechanical Systems . . 68
8.3.3 AFOs and Compliant Robotics Systems 71
8.3.4 Pools of AFOs for frequency analysis and construction of

complex limit cycles . 71
8.4 Functional Analysis . 71

8.4.1 Dynamics and Nonlinearity 71
8.4.2 Attractor . 76
8.4.3 Coupling . 76
8.4.4 Learning . 76
8.4.5 Training Data . 76
8.4.6 Generalization . 76
8.4.7 Modulation . 77
8.4.8 Sensory Feedback Integration 77
8.4.9 State Variables . 77
8.4.10 Robustness and Adaptation to Perturbations 77
8.4.11 Stability . 77

8.5 Non-Functional Analysis . 77
8.5.1 Representation and Interface 77
8.5.2 Timing . 78
8.5.3 Robustness and Reliability 78
8.5.4 Dependencies . 78
8.5.5 Runtime . 78

8.6 Summary . 79

9 Neural Central Pattern Generator 80
9.1 Short Introduction . 80
9.2 Model Description . 80
9.3 Simulations . 81
9.4 Functional Analysis . 83

4

9.4.1 Dynamics and Nonlinearity 83
9.4.2 Attractor . 83
9.4.3 Coupling . 83
9.4.4 Learning . 83
9.4.5 Training Data . 85
9.4.6 Generalization . 85
9.4.7 Modulation . 85
9.4.8 Sensory Feedback Integration 85
9.4.9 State Variables . 85
9.4.10 Robustness and Adaptation to Perturbations 86
9.4.11 Stability . 86

9.5 Non-Functional Analysis . 86
9.5.1 Representation and Interface 86
9.5.2 Timing . 87
9.5.3 Robustness and Reliability 87
9.5.4 Dependencies . 87
9.5.5 Runtime . 87
9.5.6 Usefulness for Recognition 87

9.6 Summary . 87

10 Comparison 89
10.1 Models for Reaching Tasks . 89

10.1.1 Coupling and Dimensions 91
10.1.2 Need for Kinematics Learning 91
10.1.3 Parameter Modulation . 91
10.1.4 Learning . 93
10.1.5 Time Complexity and Integration 94
10.1.6 Sensory Feedback Integration 94
10.1.7 Behavior After Perturbations 95
10.1.8 Stability . 96

10.2 Models for Periodic Tasks . 96
10.2.1 Coupling and Dimensions 96
10.2.2 Parameter Modulation . 97
10.2.3 Learning . 97
10.2.4 Time Complexity and Integration 98
10.2.5 Sensory Feedback Integration 98
10.2.6 Behavior After Perturbations 98
10.2.7 Stability . 99

10.3 Architecture Point-of-View . 99
10.3.1 Reaching Tasks . 99
10.3.2 Periodic Tasks . 100
10.3.3 Additional Points . 101

10.4 Summary . 101

A Extensions and Future Works 104
A.1 DMP . 104
A.2 SEDS . 104
A.3 NDMP . 105
A.4 PMP . 105

5

Chapter 1

Introduction

One of the main goals of the AMARSi project is to develop a novel control
and learning architecture based on dynamical systems for providing robots with
multiple degrees of freedom the ability to learn and perform rich motor skills.
The architecture will be modular and hierarchical based on coupled adaptive
modules that will be used as movement primitives, i.e. building blocks for
generating complex movements. The architecture should be scalable, robust,
tightly coupled to the compliant mechanics through rich sensory-motor loops,
and open-ended.

This is an ambitious goal that requires a careful analysis of the features
of the individual modules. In particular, we envision that the modules should
present the following features:

• Stable encoding of movement patterns (either as joint angle trajectories,
end effector trajectories, or as forces/torques patterns) or internal models
(e.g. inverse kinematics and inverse dynamics). Ideally the modules should
exhibit attractor properties such that small transient perturbations are
rapidly forgotten.

• Ability to produce both discrete and rhythmic patterns. Indeed all move-
ments, e.g. for locomotion, reaching, and manipulation, can be decom-
posed into superimpositions and sequences of discrete (i.e. with a clear
end) and rhythmic movements.

• Possibility to modulate movements: similarly to biological movement prim-
itives (see D.1.1) the modules should be constructed such that a few control
inputs can modulate complex output patterns.

• Tight coupling to the mechanics. Since the modules will be used to control
compliant quadruped and humanoid robots, they should harness and try
to take advantage of the complex dynamics (such as resonant dynamics,
for instance) that will result from the interaction between the body and
the environment.

• Ability to learn. A module should be capable to learn new patterns, at
least before being used (offline learning), but possibly also during use, for
online learning.

6

• Suitability to be used in a hierarchical architecture. We envision that low-
level modules will have direct access to actuators, with fast feedback loops
and fast time scales, while higher-level modules provide inputs to low-level
modules, without direct access to actuators, and with slower time scales.
The adaptive modules should therefore be able to work at different time
scales and to be coupled to other modules without damaging the stability
properties of the complete architecture.

As presented in the Description of Work (DoW), the control architecture
of AMARSi will be based on a combination of adaptive modules implemented
as dynamical systems (e.g. sets of differential equations). Indeed, dynamical
systems offer an ideal representation for motor control and learning, and this
for three reasons: (1) they are well-suited for a tight coupling with a mechanical
body (e.g. a nonlinear oscillator can be designed to drive, and be entrained by,
a mechanical pendulum), (2) they can offer robustness against perturbations
(e.g. a dynamical system that exhibits single-point attraction or limit cycle be-
havior will rapidly forget transient perturbations), and (3) they are well-suited
for learning (e.g. non-linear dynamical systems play a key role as filter and fad-
ing memory in the reservoir computing paradigm). The consortium brings to-
gether an extensive expertise on dynamical systems. Indeed, the consortium has
worked with low-dimensional systems (coupled oscillators) to high-dimensional
systems (recurrent neural networks), with different regimes (single point attrac-
tors, limit cycle behavior, and chaos), and on different applications (control of
robots, learning, and computation).

The goal of this deliverable is therefore two-fold: (1) to present and compare
different approaches towards learning and encoding movements using dynamical
systems that have been developed by the AMARSi partners (in the past and
during the first 6 months of the project), and (2) to analyze their suitability to be
used as adaptive modules, i.e. as building blocks for the complete architecture
that will be developed in the project.

The document presents a total of eight approaches, in two groups: modules
for discrete movements (i.e. with a clear goal where the movement stops) and for
rhythmic movements (i.e. which exhibit periodicity). The systems for discrete
movements are the following:

• Dynamical Movement Primitives (EPFL, Chapter 2)

• Stable Estimator of Dynamical Systems (EPFL, Chapter 3)

• Neural Dynamical Motion Primitives Generator (UGent, Chapter 4)

• Neural Motion Primitive Control (UGent, Chapter 5)

• Neural Dynamic Movement Primitives (UniBi, Chapter 6)

• Planned Motion Primitives using Approximate Inference(TUG,Chapter 7)

And those for rhythmic movements are:

• Dynamical Movement Primitives (EPFL, Chapter 2)

• Adaptive Frequency Oscillators (EPFL & UZH, Chapter 8)

• Neural Central Pattern Generator (UGent, Chapter 9)

7

The basic formulation of each approach is presented together with some il-
lustrative simulation results. Key characteristics such as the type of dynamical
behavior, learning algorithm, generalization properties, and stability analysis
are then discussed for each approach. The document is organized such that
each chapter has exactly the same structure with same section titles such as to
facilitate comparisons. We conclude the document with a comparative analysis
of the different approaches (Chapter 10) in which we compare these characteris-
tics and discuss their suitability for the AMARSi project. The main conclusion
that comes out of this detailed analysis is that currently there is not a single
approach that clearly outperforms the other approaches and exhibits all the de-
sired features needed for the architecture. We therefore propose for the rest of
the project to investigate two main directions: (1) the creation of a new type of
module that combines interesting features of the different approaches developed
so far, and (2) the development an architecture that is hybrid i.e. that combines
different types of modules for different functionalities.

8

Chapter 2

Dynamical Movement
Primitives

Mostafa Ajallooeian, Auke Jan Ijspeert
EPFL, BIOROB

2.1 Short Introduction

Dynamical Movement Primitives (DMPs)1 propose a generic modeling approach to
generate multi-dimensional systems of nonlinear differential equations to capture an
observed behavior in an attractor landscape. The essence of the presented methodology
is to transform well understood simple attractor systems with the help of a learnable
forcing function term into a desired nonlinear system. Both point attractor and limit
cycle attractors of almost arbitrary complexity can be achieved. Multiple degrees-
of-freedom can be coordinated with arbitrary phase relationships. Stability of the
model equations can be guaranteed. This approach also provides a metric to compare
different dynamical systems in a scale invariant and temporally invariant way.

This model is designed to achieve the goals listed below:

1. Both learnable point attractor and limit cycle attractors need to be represented.
This is useful to encode both discrete and rhythmic trajectories.

2. The model should be an autonomous system, i.e., without explicit time depen-
dence.

3. The model needs to be able to coordinate multi-dimensional dynamical systems
in a stable way.

4. Learning the open parameters of the system should be as simple as possible,
which essentially opts for a representation which is linear in the open parameters.

5. The system needs to be able to incorporate coupling terms, e.g., as typically
used in synchronization studies or phase resetting studies.

6. Scale and temporal invariance would be desirable, e.g., changing the amplitude
or frequency of a periodic system should not affect a change in geometry of the
attractor landscape.

1There are different implementation of DMPs. The case discussed here is the system
introduced in [1]

9

2.2 Model Description

The basic idea of this model is to use an analytically well understood dynamical system
with good stability properties, and then modulate it by nonlinear terms to achieve a
desired attractor behavior. A simple model to use is a damped spring model:

τ ż = αz(βz(g − y)− z) + f (2.1)

τ ẏ = z

where τ , αz, and βz are positive time constants. Choosing forcing term f = 0 gives a
globally stable second-order linear system with (z, y) = (0, g) as a unique point attrac-
tor. But phasic of periodic choices of f generate nonlinear point-attractor systems and
nonlinear oscillators respectively. Since f transforms the simple dynamics of the un-
forced system, the dynamical system in the equation 2.1 is called the “transformation
system”.

Forcing term f can have any arbitrary structure. So, normalized linear combination
of basis functions (or any other general function approximator) can be used to model
it:

f(t) =

∑N
i=1 Ψi(t)wi∑N
i=1 Ψi(t)

where Ψi are fixed basis functions and wi are adjustable weights. The time definition
in the model can also be replaced by a simple first order system (called “canonical
system”):

τ ẋ = −αxx (2.2)

where αx is a time constant and x monotonically converges to zero. So, the forcing
term becomes:

f(x) =

∑N
i=1 Ψi(x)wi∑N
i=1 Ψi(x)

x (g − y(t)|t=0) (2.3)

with N exponential basis functions Ψi(x):

Ψi(x) = exp

(
− 1

2σ2
i

(x− ci)2

)
(2.4)

where σi and ci are constants that determine, respectively the width and centers of
the basis functions. The modulation term x (g − y(t)|t=0) is used to 1) have useful
scaling properties, and 2) and to make the forcing term vanish when g is reached.

By replacing the discrete canonical system with a periodic canonical system, limit
cycle oscillators can be modeled in the same way as point attractor systems. A simple
choice is a phase oscillator:

τ φ̇ = 1 (2.5)

where φ ∈ [0, 2π] is the phase angle in the polar coordinates, and the amplitude of the
oscillation is assumed to be r. With this, the forcing term for a periodic system is:

f(φ, r) =

∑N
i=1 Ψiwi∑N
i=1 Ψi

r (2.6)

Ψi = exp (hi(cos(φ− ci)− 1)) (2.7)

where g serves as an anchor point and Ψ is a Gaussian-like periodic function.
Another issue is to extend the model for multiple degrees of freedom. This is simply

done by assuming a shared canonical system for all degrees of freedom. A number of

10

phase coupled canonical systems can also be used for this purpose if coupling all
dimensions with one canonical system is not desired.

Learning arbitrary trajectories is done by locally weighted regression. If equation
2.1 is rearranged and the data from the learning demonstration (ydemo(t), ẏdemo(t), ÿdemo(t))
is inserted:

ftarget = τ2ÿdemo − αz(βz(g − ydemo)− τ ẏdemo) (2.8)

where ftarget is the proper forcing term to have ydemo trajectory as the output. τ
is initialized as movement duration (period) and g is set to the desired goal position
(oscillations baseline) for a discrete (periodic) system.

Estimating proper values for wi to model ftarget is done employing locally weighted
regression (LWR). LWR finds for each kernel function Ψi in f the corresponding wi
which minimizes the locally weighted quadratic error criterion:

Ji =

P∑
t=1

Ψi(t)
(
ftarget(t)− wiξ(t)

)2

(2.9)

where ξ(t) = x(t)(g − y(t)|t=0) for the discrete system, and ξ(t) = r for the rhythmic
system. This is a weighted linear regression problem which has the the solution

wi =
sTΓiftarget

sTΓis
(2.10)

with

s =

ξ(1)
ξ(2)
...
ξ(P)

 Γi =

Ψi(1) 0

Ψi(2)
...

0 Ψi(P)

 ftarget =

ftarget(1)
ftarget(2)

...
ftarget(P)

The above formula is used for batch (offline) training when all of the demonstration

data is present. To have an as-data-comes (online) learning procedure, recursive least
squares with a forgetting factor of λ to determine the parameters wi is used:

wt+1
i = wti + pt+1

i ξ(t) ei(t) (2.11)

where

pt+1
i =

1

λ

(
pti −

(ptiξ
t
i)

2

λ
Ψi

+ pti(ξ
t
i)

2

)
(2.12)

ei(t) = ftarget(t)− wtiξ(t) (2.13)

There is also a number of variations to the introduced model. For example, one may
want to have a continues acceleration profile when changing the goal state suddenly.
This can be formulated as:

τ ġ = αg(g0 − g) (2.14)

where g0 is the discontinuous goal change, while g is now a continuous variable. There
are more variations described in [1]. Finally, a summary of the introduced model is
listed in Table 2.1.

2.3 Simulation

Here, some numerical tests are presented. Figure 2.1 demonstrates an exemplary time
evolution of the equations designed to do a reaching movement. Figure 2.2 shows
an exemplary time evolution of the rhythmic pattern generator when trained with a

11

Tab. 2.1: Summary of the equations for our discrete and rhythmic model equations.
The high level design parameters of the discrete system are τ , the temporal scaling
factor, and g, the goal position. The design parameters of the rhythmic system are g,
the baseline of the oscillation, τ , the period divided by 2π, and r, the amplitude of
oscillations. The parameters wi are fitted to a demonstrated trajectory using Locally
Weighted Learning. The parameters αz, βz, αx, αr, αg, hi and ci are positive constants.

Discrete Rhythmic

Transformation System
τ ż = αz(βz(g − y)− z) + f τ ż = αz(βz(g − y)− z) + f
τ ẏ = z τ ẏ = z

Canonical System

τ ẋ = −αxx τφ̇ = 1
Forcing Term

f(x) =
∑N
i=1 Ψi(x)wi∑N
i=1 Ψi(x)

x (g − y0) f(φ, r) =
∑N
i=1 Ψiwi∑N
i=1 Ψi

r

Ψi = exp
(
−hi(x− ci)2

)
Ψi = exp (hi(cos(φ− ci)− 1))

Optional Terms
τ ġ = αg(g0 − g) τ ṙ = αr(r0 − r)

Default Values
ci ∈ [0, 1] ci ∈ [0, 2π]
hi = equal spacing in exp(−αxt) hi = equal spacing in φ(t)
αz = 25 αz = 25
βz = αz/4 βz = αz/4
αx = αz/3 αr = αz/2
αg = αz/2 αg = αz/2

superposition of several sine signals of different frequencies. It should be noted how
quickly the pattern generator converges to the desired trajectory after starting out of
zero initial conditions.

Figure 2.3 illustrates the spatial (Figure 2.3a) and temporal (Figure 2.3b) invari-
ance using the example from Figure 2.1. One property that should be noted is the
mirror symmetric trajectory in Figure 2.3a when the goal is at a negative distance
relative to the start state. We will discuss the issue again later in the chapter.

Figure 2.4 depicts a modulation test on a periodic system. As illustrated, once a
rhythmic movement has been learned, it can be modulated in several ways (amplitude,
frequency, anchor).

2.4 Functional Analysis

2.4.1 Dynamics and Nonlinearity

The introduced dynamics of this system is nonlinear convergent and the nonlinearity
is parameterized. The whole dynamics of the system is a result of the interaction
between canonical systems, transformation systems, the nonlinear forcing term, and
the coupled items. For the discrete system, the nonlinearity of the forcing term is
transient, i.e. it vanishes when the goal is reached. However, the nonlinearity of the
forcing term for the periodic system is not transient.

12

0 0.5 1 1.5
−0.5

0

0.5

1

y

0 0.5 1 1.5
−4

−2

0

2

4

6

8

yd

0 0.5 1 1.5
−40

−20

0

20

40

60

80

zd

0 0.5 1 1.5
0

0.5

1

K
er

ne
l A

ct
iv

at
io

n

0 0.5 1 1.5
0

0.5

1

time [s]

x

0 0.5 1 1.5
−5

−4

−3

−2

−1

0

xd

Fig. 2.1: Exemplary time evolution of the discrete dynamical system. The parameters
wi have been adjusted to fit a 5-th order polynomial trajectory between start and goal
point, superimposed with a negative exponential bump. The upper plots show the
desired position, velocity, and acceleration of this target trajectory with dotted lines,
which largely coincide with the realized trajectories of the equations (continuous lines).
On the bottom right, the activation of the 20 exponential kernels comprising the forcing
term are drawn as a function of time – the kernels have equal spacing in time, which
corresponds to an exponential spacing in x.

2.4.2 Attractor

The attractor of this system can be a point attractor or a limit cycle attractor. If
the system is designed to have a point attractor, the point attractor is located in
(z, y, x) = (0, g, 0). If system is designed to have a limit cycle behavior, the limit cycle
is defined by the ydemo training input. Both point attractor and limit cycle attractors
have global basins of attraction.

2.4.3 Coupling

There are separate transformation systems for each DoF. the subsystems are coupled
together to create a multi-dimensional coupled system. The coupling is usually made
by having a shared canonical system for all DoFs. Like this, interestingly, the canon-
ical system becomes a central clock, not unlike the assumed role of central pattern
generators in biology. It is also possible to have a number of coupled canonical sys-
tems, like having two canonical systems, one for the left side and one for the right side
of a humanoid robot.

2.4.4 Learning

Type The type of learning is supervised. Policy search has also been reported to
learn DMPs with reinforcement learning strategies [2].

Algorithm The used learning algorithm is LWR, but the model is not dependent
to the learning algorithm and other general function approximators can also be
used.

Mode System accepts both offline (batch) and online (as-data-comes) learning modes
provided by LWR.

13

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

y

0 0.5 1 1.5 2
−10

−5

0

5

10

yd

0 0.5 1 1.5 2
−100

−50

0

50

100

150

zd

0 0.5 1 1.5 2
0

0.5

1

K
er

ne
l A

ct
iv

at
io

n

0 0.5 1 1.5 2
0

2

4

6

8

time [s]

φ

0 0.5 1 1.5 2
5

5.5

6

6.5

7

7.5

φ
d

Fig. 2.2: Exemplary time evolution of the rhythmic dynamical system (limit cy-
cle behavior). The parameters wi have been adjusted to fit a trajectory ydemo(t) =
sin(2πt) + 0.25cos(4πt+ 0.77) + 0.1sin(6πt+ 3.0). The upper plots show the desired
position, velocity, and acceleration with dotted lines, but these are mostly covered by
the time evolutions of y, ẏ and ÿ. The bottom plots show the phase variable and its
derivative and the basis functions of the forcing term over time (20 basis functions per
period).

2.4.5 Training Data

The input training data to the model is trajectories. Generally, the position trajectory
of joints with its first and second derivative are presented to the system for learning. It
is needed to extract the frequency of the learning data beforehand. If multiple demon-
strations of a trajectory exist, even at different scales and timing, they can be averaged
together in the locally weighted regression learning after the ftarget information for
every trajectory at every time step has been obtained.

2.4.6 Generalization

Here, the discussion about the generalization issues is separated for discrete and peri-
odic systems:

• Discrete: For the discrete system, goal is modulated online by changing g. So,
the goal state can even be set to values that are not seen in the training phase.
Examples of changing the goal state (even to negative values) are illustrated
in 2.3. Generalization about the initial state is also possible. But since the
position of the goal state is relative to the initial position, goal position needs
to be updated relatively if the initial state is changed. If the generalization is
defined as the ability to change the geometry of the trajectory (signal shape)
in the recall phase, it can be said that this system needs a re-learning step.
Nevertheless, the learning is one-shot and low cost, so re-learning can be done
instantly.

• Periodic: Defining what is generalization for a periodic system is a bit tricky.
If by generalization, modulation of frequency, amplitude, etc is meant, they
are addressed in 2.4.7. If the generalization is defined as the ability to change
the geometry of the trajectory (signal shape), again, a one-shot re-learning is
required.

An important issue about the generalization is if the outcomes for new goals are
acceptable or not. For the proposed model, this, to some extent, is dependent on the
choice of coordinate systems. See Figure 2.5 for an in-depth example.

14

a)
0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

time [s]
b)

0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

Fig. 2.3: Illustration of invariance properties in the discrete dynamical systems, using
the example from Figure 2.1. a) The goal position is varied from −1 to 1 in 10 steps.
b) The time constant τ is changed to generate trajectories from about 0.15 seconds to
1.7 seconds duration.

2.4.7 Modulation

The introduced system is able to smoothly modulate working parameters without
affecting the geometry of the basin of attraction. For the discrete system, speed
is modulated by changing τ . For the periodic system, the frequency modulation is
controlled by τ while the anchor (mid-point of oscillations) is modulated by changing
g. Additionally, the amplitude of the generated output can be modulated by changing
r in the forcing term.

2.4.8 Sensory Feedback Integration

The transformation system defined in equation 2.1 can accept different coupling terms
(additive term). Additionally, couplings can be made to the canonical system to
affect the phase state. These coupling terms can be defined as a function of the
sensory feedback. Obviously, the definition of the sensory feedbacks are case-based
and depends on the application. For example, a drumming task may need temporal
coupling based on sensory feedback, while a bipedal walking task totally needs sensory
feedbacks including information about balance. See [3, 4] for some examples.

2.4.9 State Variables

There are three x, y, and z state variables in the standard definition. To have smooth
modulation in each parameter (e.g. goal), an additional state variable for each is
required. y and z state variables are separate for each DoF, while x is generally
shared between DoFs. If the model is extended for N -DoFs, and each dimension has k
smoothly modulated variables, then the total number of state variables is (2+k)N+1.

2.4.10 Robustness and Adaptation to Perturbations

To define the reactions to perturbations, consider the time independent model of the
proposed system. The time independent model will be a three dimensional model
with x, y and z axes. When talking about time independence, it is meant that the
dynamical behavior of the whole system can be depicted in a quiver plot independent
of any explicit external time definition.

For the instances of this three dimensional space that are on the desired trajectory,
the behavior of the vector field is to evolve x and follow the desired trajectory. When

15

0 1 2 3 4 5 6
−5

0

5

0 1 2 3 4 5 6
−5

0

5

0 1 2 3 4 5 6
−5

0

5

0 1 2 3 4 5 6
−5

0

5

t [s]
Fig. 2.4: Modulation of a rhythmic dynamical systems: Top: original trajectory,
which was generated as an arbitrary example. Second from top: r0 multiplied by a
factor 2.0. Third from top: τ multiplied by a factor 0.5. Bottom: g increased by
2.0 (as indicated by the horizontal dotted lines). All modulations are done between
between t=2 and t=4s.

talking about perturbation, it means that the value of the y for the current instance has
been changed (for both temporal and spacial perturbations). So the natural behavior
of the system is to asymptotically reach the proper (x, y, z) state. This is exactly what
the is happening with respect to equation 2.1.

To clarify, here, the reaction to a perturbation is to asymptotically reach the
trajectory while the phase variable (x) is evolving. So, if there is a joint lock (temporal
perturbation blocking the movement in one DoF), the subgoal (point to reach on
trajectory) evolves. As a result, the system bypasses a part of the y trajectory and
tries to reach the evolved trajectory state. There are pros and cons regarding this
behavior. This behavior is good since it does not force the system to go back to the
state before perturbation. So the state variables are always evolving toward reaching
the goal. However, this behavior is problematic if skipping a part of the designed
trajectory is hazardous.

To counter this behavior, one can incorporate both temporal and spatial coupling,
and introduce the coupling terms (with αe, kt and kc as constants)

ė = αe(ya − y − e) (2.15)

Ct = kte (2.16)

τ = 1 + kce
2 (2.17)

16

a)

0 0.5 1 1.5

0

0.2

0.4

y 1

0 0.5 1 1.5

0

0.2

0.4

time [s]

y 2

0.4 0.2 0 0.2 0.4

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

y1

y 2

b)

0 0.5 1 1.5
0.2

0

0.2

0.4

y 1

0 0.5 1 1.5
0.05

0

0.05

0.1

time [s]

y 2

0.4 0.2 0 0.2 0.4

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

y1

y 2

c)

0 0.5 1 1.5
0.2

0

0.2

0.4

y 1

0 0.5 1 1.5
0.1

0

0.1

time [s]

y 2

0.4 0.2 0 0.2 0.4

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

y1

y 2

Fig. 2.5: Generalization of a 2 DOF discrete dynamical system under different choices
of coordinate systems. The 2D movement is a point to point movement with a loop on
the way to the goal. All movements start at the origin of the coordinate system and
terminate at six different goal positions, distributed with 60 degree distance on a circle.
The heavy (red) path in the first quadrant of the coordinate system was the originally
learned movement. The generalization of this movement to 6 different targets is drawn
with different line styles, to make it easier to see the paths of these movements. The
two plots on the right of each subfigure show the y1 and y2 trajectories of each original
movement. a) the original movement is in a benign part of the Cartesian coordinate
system, b) again a Cartesian coordinate system, but the y2 coordinate of the original
movement has the start and end point of the movement within a small distance, c)
choosing a coordinate system that has as the first coordinate the line between start
and end point, and the second coordinate is perpendicular.

where ya is the output feedback (e.g. exact robot’s joint angles perceived by proprio-
ception). The first equation is just a low pass filter of the tracking error e = ya − y.
This error is used as an additive coupling term in the transformation system, which
hinders the state y to evolve too far away from ya. Equation 2.17 affects the time con-
stant τ of all differential equations of the dynamical system, i.e., both the canonical
and the transformation system. This modification of the time constant slows down
the temporal evolution of the dynamics in case of a significant tracking error.

Figure 2.6 illustrates the behavior due to these coupling terms (facing temporal
perturbation for t ∈ [0.35s, 0.9s]) in comparison to the unperturbed (dashed line) time
evolution of the dynamics. The top left plot of Figure 2.6 also shows with the dash-dot
line the position ya. During the holding time period, the entire dynamics comes almost
to a stop, and resumes after the release of the mass roughly with the same behavior
as where the system had left off.

2.4.11 Stability

Stability of the proposed dynamical systems equations can be examined on the basis
that equation 2.1 is (by design) a simple 2nd order time-invariant linear system driven
by a forcing term. The time constants of equation 2.1 are assumed to be chosen
such that without the forcing term, the system is critically damped. Re-arranging
equation 2.1 to combine the goal g and the forcing term f in one expression results in

τ ż = αzβz

((
g +

f

αzβz

)
− y
)
− αzz = αzβz (u− y)− αzz (2.18)

τ ẏ = z

17

00 11 22 33
--00..55

00

00..55

11

11..55

yy

00 11 22 33

--22

00

22

44

yydd

00 11 22 33
--4400

--2200

00

2200

4400

6600

zzdd

00 11 22 33
00

00..55

11

ttiimmee [[ss]]

xx

00 11 22 33

--33

--22

--11

00

xxdd

00 11 22 33
00

00..55

11

KK
eerr

nnee
llAA

cctt
iivv

aatt
iioo

nn

Fig. 2.6: Subjecting the discrete dynamical system from Figure 2.1 to “holding”
(temporal) perturbation. At time t = 0.35s, the actual movement system is blocked
from its time evolution, i.e., its velocity and acceleration are zero and its position
(dash-dot line in the top-left figure) remains constant until t = 0.9s (see shaded area).
Due to the coupling terms, the time evolution of the dynamical system decays to zero,
and resumes after the actual system is released. The unperturbed time evolution of
the dynamics is shown in a dashed line, for comparison. Essentially, the perturbation
simply delays the time evolution of the dynamical system.

where u is a time-variant input to the linear spring-damper system. Equation 2.18
acts like a low pass filter on u. For such linear systems, with appropriate αz and
βz, e.g., from critical damping as employed in our work, it is easy to proof bounded-
input-bounded-output (BIBO) stability, as the magnitude of the forcing function f is
bounded by virtue that all terms of the function, i.e., basis functions, weights, and
other multipliers are bounded by design. Thus, both the discrete and rhythmic system
are BIBO stable. For the discrete system, given that f decays to zero, u converges
to the steady state g after a transient time, such that the system will asymptotically
converge to g. After the transient time, the system will exponentially converge to g
as only the linear spring-damper dynamics remain relevant. Thus, ensuring that our
dynamical systems remain stable is a rather simple exercise of basic stability theory.
There is also another path to prove stability based on contraction theory; see [1].

2.5 Non-Functional Analysis

2.5.1 Representation and Interface

The input and output data of this system can be in global or local coordinate systems.
The choice of the coordinate system will affect the outcome of different modulations
(goal, amplitude, etc). The input of this model can have any dimensions and it is not
dependent to any metric units. The input can be a trajectory of position, velocity or
acceleration. The output of the system is the first derivatives of the state variables.

Trajectories are modeled as linear combination of phase-driven basis functions.
The number of the basis functions are important if a precise output is needed. More
basis functions is needed to model rapidly changing trajectories, and less ones to have
smoother outputs (when having lots of noise). The number of the basis functions are
fixed after the training phase is started (this is the case with standard LWR and can
be replaced with locally weighted learning).

Finally, the approach is suitable to be boxed (with inputs and outputs). This
means that there are well-defined, separate, and accessible variables as the inputs and

18

outputs of the system. Even modulation commands (e.g. τ or g) can be given to the
system as inputs.

2.5.2 Timing

The phase variable of the canonical system works as the internal clock for coordination.
This internal clock controls the coordination of subsystems. As another timing issue,
as the outputs of the system are state derivatives, an integration timestep is used.
Regarding this, as the computations are light, small ∆t values can be considered to
fulfill real-time constraints.

2.5.3 Robustness and Reliability

The introduced system can give anytime guarantee, i.e. it is able to respond to queries
at any time during execution. As the load of the computations are low, satisfying real-
time constraints is not a problem and the system is reliable in this regard. The model
has some tunable parameters, and changing them will not affect the geometry of the
attractor landscape (τ , g and r). So the model has invariance properties that preserves
homomorphism.

2.5.4 Dependencies

The working of the system is dependent to the initialization of τ , g and r. The system
is not dependent to any exogenous inputs. It can also work in an open-loop manner.
However, is the open-loop case is of interest, the performance is dependent to a good
controller (position or velocity or acceleration). Proprioception can be added to the
system as a sensory feedback. This feedback is added to the model with a coupling
term.

2.5.5 Runtime

This system can have different stages: offline learning, online learning, evaluation,
recognition (with the help of an external tool). Offline learning, or each step of the
online learning is one-shot and there is not any computation loops. The evaluation is
also simple and it is just a time integration on the outputs of canonical and transfor-
mation systems. The runtime of the recognition part (that is just an extra feature) is
totally dependent to the external tool used for classification.

2.5.6 Usefulness for Recognition

Due to the temporal and spatial invariance of this system’s representation, an in-
teresting aspect of this dynamical systems approach arises as trajectories that are
topologically similar are fit by similar parameters wi. This property opens the possi-
bility of using our representation for movement recognition. It should be noted that
such recognition is about spatiotemporal patterns, not just spatial patterns. More-
over, it is important to state that the recognition is done by an external tool, and the
system only provides the data for recognition.

The ability to be useful for recognition is an advantage for an adaptive module.
If new modules are learned in a hierarchical and stepwise manner, it would be useful
if a tool for measuring the similarity of the adaptive modules and the underlying
movements exist.

19

2.6 Summary

In this chapter, a computational model for Dynamical Movement Primitives (DMPs)
is presented. The proposed system is based on a transformation system, i.e. a stable
well-defined second-order spring-damper system, excited by a nonlinear forcing term.
The forcing term is defined by Locally Weighted Regression (LWR) that can model
any arbitrary input. The transformation system is driven by a canonical system that
represents phase. Canonical system can be a simple point attractor system for discrete
trajectories, and a simple phase oscillator for periodic ones. The proposed system is
able to learn desired discrete or periodic trajectories in both offline and online manners.

20

Chapter 3

Stable Estimator of
Dynamical Systems

S.Mohammad Khansari-Zadeh, Seungsu Kim, Aude Billard
EPFL, LASA

3.1 Short Introduction

Stable Estimator of Dynamical Systems (SEDS) provides a generic model to estimate
any arbitrary multi-dimensional autonomous (i.e. time-invariant) nonlinear Dynami-
cal System from a set of demonstrations of a task shown to a robot by a user [5–7].
SEDS optimizes the model of demonstrated motions based on different objective func-
tions (e.g. likelihood, mean square error, etc.) under the constraint of the model’s
global asymptotic stability. Hence the obtained model is able to follow closely the
demonstrations while ultimately reaching in and stopping at the target (see Figure
3.1).

The main advantage of learning DSs with SEDS is that it enables a robot to adapt
instantly its trajectory in the faces of perturbations1. A controller driven by a DS
is robust to perturbations because it embeds all possible solutions to reach a target
into one single function (see Figure 3.1). Such a function represents a global map
which specifies on-the-fly the correct direction for reaching the target, considering the
current position of the robot and the target.

3.2 Model Description

3.2.1 SEDS Model Structure

We formulate the encoding of point-to-point motion as control law driven by an au-
tonomous dynamical system: Consider a state variable ξ ∈ Rd that can be used to

1We consider two types of perturbations: 1) spatial perturbations which result from a
sudden displacement in space of either the robot’s arm or of the target, and 2) temporal
perturbations which result from delays in the execution of the task. Note that we distin-
guish between spatial and temporal perturbations as these result in different distortion of
the estimated dynamics and hence require different means to tackle these. Typically, spatial
perturbation would result from an imprecise localization of the target or from interacting with
a dynamic environment where either the target or the robot’s may be moved by external per-
turbation; temporal perturbation arise typically when the robot may get stuck momentarily
due to internal friction.

21

−50 0 50 100 150 200 250 300

−100

−50

0

50

100

150

ξ1(mm)

ξ 2
(m

m
)

0 5 10
0

5

10

 Target

Demonstrations

Reproductions

Fig. 3.1: Given a set of demonstrations, SEDS builds an estimate of the under-
lying dynamics of the motion such that it is globally asymptotically stable at the
target while following accurately a specific motion with a particular dynamics.

unambiguously define a discrete motion of a robotic system (e.g. ξ could be a robot’s
joint angles, the position of an arm’s end-effector in Cartesian space, etc). Let the set

of N given demonstrations {ξt,n, ξ̇t,n}Tn,Nt=0,n=1 be instances of a global motion model
governed by a first order autonomous Ordinary Differential Equation (ODE):

ξ̇ = f(ξ) + ε (3.1)

where f : Rd → Rd is a nonlinear continuous and continuously differentiable function
with a single equilibrium point ξ̇∗ = f(ξ∗) = 0, θ is the set of parameters of f , and ε
represents a zero mean additive Gaussian noise. The noise term ε encapsulates both
inaccuracies in sensor measurements and errors resulting from imperfect demonstra-
tions. The function f̂(ξ) can be described by a set of parameters θ, in which the
optimal values of θ can be obtained based on the set of demonstrations using different
statistical approaches2. We will further denote the obtained noise-free estimate of f
from the statistical modeling with f̂ throughout the chapter. Our noise-free estimate
will thus be:

ξ̇ = f̂(ξ) (3.2)

SEDS uses a probabilistic framework and models f̂ via a finite mixture of Gaussian
functions. Mixture modeling is a popular approach for density approximation [8], and
it allows a user to define an appropriate model through a tradeoff between model com-
plexity and variations of the available training data. Mixture modeling is a method,
that builds a coarse representation of the data density through a fixed number (usually
lower than 10) of mixture components.

Estimating f via a finite mixture of Gaussian functions, the unknown parameters
of f̂ become the prior πk, the mean µk and the covariance matrices Σk of the k = 1..K
Gaussian functions (i.e. θk = {πk, µk,Σk} and θ = {θ1..θK}). The mean and the
covariance matrix of a Gaussian k are defined by:

µk =

(
µkξ
µk
ξ̇

)
& Σk =

(
Σkξ Σk

ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
(3.3)

Given a set of N demonstrations {ξt,n, ξ̇t,n}Tn,Nt=0,n=1, each recorded point in the

trajectories [ξt,n, ξ̇t,n] is associated with a probability density function P(ξt,n, ξ̇t,n):

2Assuming a zero mean distribution for the noise makes it possible to estimate the noise
free model through regression.

22

P(ξt,n, ξ̇t,n;θ) =

K∑
k=1

P(k)P(ξt,n, ξ̇t,n|k)

{
∀n ∈ 1..N
t ∈ 1..Tn

(3.4)

where P(k) = πk is the prior and P(ξt,n, ξ̇t,n|k) is the conditional probability density
function given by:

P(ξt,n, ξ̇t,n|k) = N (ξt,n, ξ̇t,n;µk,Σk) =
1√

(2π)2d|Σk
ξ
|
e−

1
2

([ξt,n,ξ̇t,n]−µk)T (Σk)−1([ξt,n,ξ̇t,n]−µk) (3.5)

Taking the posterior mean estimate of P(ξ̇|ξ) yields (as described in [9]):

ξ̇ =

K∑
k=1

P(k)P(ξ|k)∑K
i=1 P(i)P(ξ|i)

(µkξ̇ + Σkξ̇ξ(Σ
k
ξ)−1(ξ − µkξ)) (3.6)

The notation of Eq. 3.6 can be simplified through a change of variable. Let us
define:

Ak = Σk
ξ̇ξ

(Σkξ)−1

bk = µk
ξ̇
−Akµkξ

hk(ξ) = P(k)P(ξ|k)∑K
i=1 P(i)P(ξ|i)

(3.7)

Substituting Eq. 3.7 into Eq. 3.6 yields:

ξ̇ = f̂(ξ) =

K∑
k=1

hk(ξ)(Akξ + bk) (3.8)

First observe that f̂ is now expressed as a non-linear sum of linear dynamical
systems. Figure 3.2 illustrates the parameters of Eq. 3.7 and their effects on Eq. 3.8
for a 1-D model constructed with 3 Gaussians. Here, each linear dynamics Akξ + bk

corresponds to a line that passes through the centers µk with slope Ak. The nonlinear
weighting terms hk(ξ) in Eq. 3.8, where 0 < hk(ξ) ≤ 1, give a measure of the relative
influence of each Gaussian locally. Observe that due to the nonlinear weighting terms
hk(ξ), the resulting function f̂(ξ) is nonlinear and is flexible enough to model a wide
variety of motions. If one estimates this mixture using classical methods such as
Expectation Maximization (EM) [10], one cannot guarantee that the system will be
asymptotically stable. The resulting nonlinear model f̂(ξ) usually contains several
spurious attractors or limit cycles even for a simple 2-D model.

Figure 3.3 illustrates an example of unstable estimation of a two dimensional non-
linear DS using three different regression techniques: Locally Weighted Projection Re-
gression (LWPR) [11], Gaussian Process Regression (GPR) [12], and Gaussian Mixture
Regression (GMR) [13]. Because all of the aforementioned methods do not optimize
under the constraint of making the system stable at the attractor3, they are not guar-
anteed to result in a stable estimate of the motion. In practice, they fail to ensure
global stability of f̂ , and thus may converge to a spurious attractor or completely
miss the target (diverging/unstable behavior). First graph shows the obtained results
from LWPR. All trajectories inside the dashed black boundary converge to a spurious
attractor. Outside this boundary, the velocity is always zero, hence there exists re-
gions of spurious attractors where motions stop once they cross the boundary. While
for GPR trajectories converge to the target in a narrow area close to demonstrations,
they are mainly attracted to regions of spurious attractors in the most parts of the
operational space. The third graph represents the stability analysis of the dynamics

3GMR and GPR optimize the likelihood that the complete model represents well the data.
LWPR minimizes the mean-square error between the estimate and the data.

23

ξ

ξ̇
=

f̂
(ξ

)
h

k
(ξ

)

A3ξ + b3

μ3

μ2

Σ3

Σ2

μ1Σ1

A2ξ + b2

h3(ξ)h2(ξ)h1(ξ)

ξ̇ = f̂(ξ) =
∑3

k=1 hk(ξ)(Akξ + bk)

A1ξ + b1

Fig. 3.2: Illustration of parameters defined in Eq. 3.7 and their effects on f̂(ξ)
for a 1-D model constructed with 3 Gaussians. Please refer to the text for
further information.

ξ1

ξ 2

LWPR

ξ1

GPR

ξ1

GMR

ξ1

SEDS

Target Demonstrations Reproductions Spurious Attractors

Fig. 3.3: Two dimensional dynamics estimated using (from left to right) LWPR,
GPR, GMR and SEDS, respectively. Training was done using three demonstra-
tions (red dots). Regions of the state space from which the system converges to
spurious attractors are encircled by bold dashed lines.

learned with GMR. Here in the narrow regions around demonstrations, the trajectories
converges to a spurious attractor just next to the target. In other parts of the space,
they either converge to other spurious attractors far from the target or completely
diverge from the target. In all these examples, regions of attractions are usually very
close to demonstrations and thus should be carefully avoided. Most crucial is the fact
that there is no theoretical solution to determine beforehand whether a trajectory will
lead to a spurious attractor, to infinity, or to the desired attractor. Finding these
regions of attraction is a non-trivial task and it becomes computationally costly in
higher dimensions.

Next we determine sufficient conditions on the learning parameters θ to ensure
asymptotic stability of f̂(ξ).

3.2.2 SEDS Learning Algorithm

Section 3.2.1 provided us with a statistical formulation to model an arbitrary nonlinear
function f̂(ξ). It remains now to determine a procedure for computing the unknown
parameters of Eq. 3.8, i.e. θ = {π1..πK ;µ1..µK ; Σ1..ΣK} such that the resulting model
is globally asymptotically stable. In this section we propose a learning algorithm, called
Stable Estimator of Dynamical Systems (SEDS), that computes the optimal values of
θ by solving an optimization problem under the constraint of ensuring the model’s
global asymptotic stability. We consider two different candidates for the optimization

24

objective function: 1) log-likelihood, and 2) Mean Square Error (MSE).

SEDS-Likelihood: using log-likelihood as a means to construct a model.

min
θ
J(θ) = −

N∑
n=1

Tn∑
t=0

logP(ξt,n, ξ̇t,n|θ) (3.9)

subject to
(a) bk = −AkξT
(b) 1

2
(Ak + (Ak)T) < 0

(c) Σk > 0

(d) 0 < πk ≤ 1

(e)
∑K
k=1 π

k = 1

∀k ∈ 1..K (3.10)

where P(ξt,n, ξ̇t,n|θ) is given by Eq. 3.4. The first two constraints in Eq. 3.10 are
stability conditions taken from [5]. The last three constraints are imposed by the nature
of the Gaussian Mixture Model to ensure that Σk are positive definite matrices, priors
πk are positive scalars smaller or equal than one, and sum of all priors is equal to one
(because the probability value of Eq. 3.4 should not exceed 1).

SEDS-MSE: using Mean Square Error as a means to quantify the accuracy of esti-
mations based on demonstrations.

min
θ
J(θ) =

1

N

N∑
n=1

Tn∑
t=0

(
ˆ̇
ξn(t)− ξ̇t,n)2 (3.11)

subject to the same constrains as given by Eq. 3.10.

In Eq. 3.11,
ˆ̇
ξn(t) = f̂(ξ̂n(t) are computed directly from Eq. 3.8.

Both SEDS-Likelihood and SEDS-MSE correspond to a Non-linear Programming
(NLP) problem [14] that can be solved using different optimization techniques such
as Newton and quasi-Newton algorithms [14], Dynamic Programming [15], etc. In
the current work we use quasi-Newton method to solve the optimization problem.
Quasi-Newton methods differ from classical Newton methods in that they compute an
estimate of the Hessian function H(ξ), and thus do not require a user to provide it
explicitly. The estimate of the Hessian function progressively approaches to its real
value as optimization proceeds. Among quasi-Newton methods, Broyden-Fletcher-
Goldfard-Shanno (BFGS) is one of the most popular approaches for which there is a
substantial evidence that it is the best general purpose quasi-Newton method currently
known [14]. In the experiment presented in Section VI, we used the BFGS method
using a line search method [16] to adaptively change the magnitude of each step to
obtain an acceptable decrease in the objective function:

θi+1 = θi + α(∇θ)i (3.12)

where α is the line-search’s parameter, (∇θ)i corresponds to the appropriate descent
direction that minimizes the objective function under the given constrains, and i is
the iteration step.

Note that a feasible solution to this NLP problem always exists. Starting from an
initial value, the solver tries to optimize the value of θ such that the cost function J
is minimized. However since the proposed NLP problem is non-convex, one cannot
ensure to find the globally optimal solution. Solvers are usually very sensitive to
initialization of the parameters and will often converge to some local minimum of the
objective function. We use the Bayesian Information Criterion (BIC) to choose the

25

optimal set K of Gaussians. BIC determines a tradeoff between optimizing the model’s
likelihood and the number of parameters needed to encode the data:

BIC = J(θ) +
np
2

log(

N∑
n=1

Tn) (3.13)

where J(θ) is the log-likelihood of the model computed using Eq. 3.9, and np is
the total number of free parameters. The SEDS-Likelihood approach requires the
estimation of K ∗ (2d2 +3d+1) parameters (the priors πk, mean µk and covariance Σk

are of size 1, 2d and d(2d+ 1) respectively). However, the number of parameters can
be reduced since the constraints given by Eq. 3.10-(a) provide an explicit formulation
to compute µk

ξ̇
from other parameters (i.e. µkξ , Σkξ , and Σk

ξ̇ξ
). Thus the total number

of parameters to construct a GMM with K Gaussians is K(1 + 2d(d + 1)). As for
SEDS-MSE, the number of parameters is even more reduced since when constructing
f̂ , the term Σk

ξ̇
is not used and thus can be omitted during the optimization. Taking

this into account, the total number of learning parameters for the SEDS-MSE reduces
to K(1 + 3

2
d(d + 1)). For both approaches, learning grows linearly with the number

of Gaussians and quadratically with the dimension. In comparison, the number of
parameters in the proposed method is fewer than GMM and LWPR4. The retrieval
time of the proposed method is low and in the same order of GMR and LWPR.

3.3 Simulation

Figure 3.4 demonstrates the performance of SEDS in learning a library of human
handwriting motions. These motions were recorded from a Tablet-PC, and each motion
was demonstrated 3 to 5 times. Here, the models were learned using likelihood as the
objective function for the optimization. As can be seen, the resulting SEDS models
capture well the non-linearity of these complex motions.

3.4 Functional Analysis

3.4.1 Dynamics and Nonlinearity

The proposed method is able to model any arbitrary multi-dimensional non-linear
motion. The method considers correlation between all dimensions, and is able to
generalize across several demonstrations. SEDS guarantees the asymptotic stability of
the learned model.

3.4.2 Attractor

SEDS converges to a point attractor. This point attractor could be set to be the final
target for the system or it could be considered as a via point. In other words, SEDS
could always guarantee convergence to any arbitrary desired target with or without
passing through some given via points.

3.4.3 Coupling

SEDS considers a coupled system in modeling of a demonstrated task. The strength
and coupling relations across dimensions are automatically learned during learning
procedure.

4The number of learning parameter in GMR and LWPR is K(1+3d+2d2) and 7
2
K(d+d2)

respectively.

26

 Target Demonstrations Reproductions Initial points

ξ 2

ξ1

ξ 2

ξ1 ξ1 ξ1 ξ1

ξ 2

ξ1

ξ 2

ξ1 ξ1 ξ1 ξ1

Fig. 3.4: Performance illustration of SEDS in learning 20 different human hand-
writing motions using likelihood as the objective function.

3.4.4 Learning

Type The type of learning is supervised by requiring a user to show to a robot a few
demonstrations of the desired task.

Algorithm Stable Estimator of Dynamical System (SEDS). For more detailed infor-
mation please refer to 3.2.2.

Mode Learning is offline.

3.4.5 Training Data

The input training data to the model is a few demonstrations of the task (it is defined
with the variable ξ in Section 3.2.1). ξ is a set of variable that can be used to unam-
biguously define a discrete motion of a robotic system (e.g. ξ could be a robot’s joint
angles, the position of an arm’s end-effector in Cartesian space, etc).

3.4.6 Generalization

SEDS is able to generalize a task in three different aspects

1. Generalization to doing a task from different initial positions (see Figure 3.1)

2. Generalization to the change in the target’s position (see Figure 3.5). We would
like to highlight this point that in an SEDS model, the generalization is not done
by simply multiplying the original model with a scaling factor. Our model is able
to generalize based on the dynamic of motion that is learned based on a couple of
demonstrations. Regarding Figure 3.5, one can observe that the generalization
to different position of the targets is done by changing only a small part of the
motion (in contrast to scaling where the whole motion is affected).

27

 Initial Point Target Demonstrations Reproductions

−50 0 50 100 150 200 250 300
−150

−100

−50

0

50

100

150

ξ1

ξ 2

Fig. 3.5: Generalization to different positions of the target.

ξ1

ξ 2

Target
Demonstrations
Reproductions

Fig. 3.6: Embedding different ways of performing a task in one single model.
The robot follows an arc, a sine, or a straight line starting from different points
in the workspace.

3. Generalization to different ways of doing a task. To elaborate more, assume
that it is desired to do a same task in different manners starting from different
areas in space, mainly to consider task constraints, to avoid robot’s joint lim-
its, etc. Figure 3.6 shows an example of such a task where a robot required to
approach to the target following an arc, a sine, or a straight line path starting
from the left, right, or top-side of the task space, respectively. While reproduc-
tions locally follow the desired motion around each set of demonstrations, they
smoothly switch from one motion to another in areas between demonstrations.
The proposed method offers a simple but reliable procedure to teach a robot
different ways of performing a task.

3.4.7 Modulation

SEDS is able to smoothly modulate working parameters without affecting the geometry
of the basin of attraction. The modulation can simply done by multiplying Eq. 3.8
by a desired factor.

ξ̇ = λf̂(ξ) (3.14)

where λ is the modulation factor.

3.4.8 Sensory Feedback Integration

One of the main advantages of our proposed model is its simple integration to a real
closed loop, hence re-correcting on-the-fly the next command based on the current state
of the robot perceived through sensors. Figure 3.7 shows a schematic of the control
flow for an arbitrary system using a SEDS model. The whole system’s architecture

28

Dynamical System

Robot’s Dynamics

Forward KinematicsInverse Kinematics

Controller

Inner Loop

N Kinesthetic
Demonstrations

Learning Algorithm
(e.g. SEDS)

O
uterLoop

Perturbations

Learning Block

Fig. 3.7: A typical system’s architecture illustrating the control flow in a robotic
system as considered for SEDS. The system is composed of two loops: the inner
loop representing the robot’s dynamics and a low level controller, and an outer
loop defining the desired motion at each time step. The learning block is used
to infer the parameters of motion θ from demonstrations.

can be decomposed into two loops. The inner loop consists of a controller generating
the required commands to follow the desired motion and a system block to model the
dynamics of the robot. Here q, q̇, and q̈ are the robot’s joint angle and its first and
second time derivatives. Motor commands are denoted by u. The outer loop specifies
the next desired position and velocity of the motion w.r.t. the current status of the
robot. An inverse kinematics block may also be considered in the outer loop to transfer
the desired trajectory from cartesian space to joint space (this block is not necessary
if the motion is already specified in joint space). Having controlled by a SEDS model,
the outer loop controller can handle the inner loop controller’s inaccuracy by treating
these as perturbations, comparing the expected versus the actual state of the system.

3.4.9 State Variables

An arbitrary motion is modeled with the d-dimensional state variable ξ ∈ Rd and its
first time derivative ξ̇.

3.4.10 Robustness and Adaptation to Perturbations

A SEDS model is inherently designed to be robust to any spatial or temporal pertur-
bations (see Section 3.2). In SEDS, without loss of generality we assume the origin of
the reference coordinate systems at the target. Any spatial perturbation can be per-
ceived as a change in the state variable ξ w.r.t. this frame of reference. Since an SEDS
model is globally asymptotically stable, the convergence to the target is thus always
guaranteed. The proposed model is inherently time-independent, hence it is robust
to any temporal perturbations. Besides the inherent robustness to perturbations, the
proposed model has the capability of adapting a new motion on-the-fly in the face of
perturbation without any need to replanning, re-indexing, or re-scaling.

3.4.11 Stability

A SEDS model is globally asymptotically stable. The stability conditions of the system
is forced as constraints in the learning algorithm (see Eq. 3.10). For the proof of
stability please refer to [5].

29

3.5 Non-Functional Analysis

3.5.1 Representation and Interface

The proposed model can be used in any coordinate systems and dimensions, and
does not depend on the metric units. The motion is modeled as a non-linear time-
independent function based on a Gaussian Mixture Model (GMM). The number of
Gaussian functions in GMM can be defined either manually or based on Bayesian
Information Criterion (BIC) [17] (see Eq. 3.13).

3.5.2 Timing

An integration time-step needed to be defined by the user, which will be used to
integrate the first derivative of the state variable. The model is very fast and can
handle the realtime constraints.

The accurate motion timing is highly important if a robot has to synchronize
with external moving objects. As discussed in Section 6.4.7, our non-linear dynamical
system can be extended to allow one to modulate the speed of the motion [18]. The
modulation factor can be used to control the motion duration so as to speed up or
slow down the robot’s motion and hence adhere to precious temporal constraints, while
still benefitting from all the robustness properties deriving from the time-independent
encoding of the DS.

To allow for gradual and on the fly adaptation of the motion’s duration so as to
reach a position ξ∗ in a given time T ∗, we compute our multiplier at each time step
as follows:

ξtj+1 = ξtj + λti
L∑
l=1

˙̂
ξ{tj+

∆t
L
l}∆t

L
(3.15)

λti+1 = λti + kp
(
T̂ ti − T ∗

)
− kd

(
T̂ ti − T̂ ti−1

)
(3.16)

where ti is a time at the ith controlling step, ti+1 = ti + ∆t, t0 = 0; λti is the
velocity multiplier, λt0 = 1; kp and kd are user defined proportional and derivative
gains that control for the reactivity of the system; T̂ ti is the estimated overall motion’s
duration (starting from the beginning of the motion at time t0) as calculated at time
ti; This duration T̂ of the motion is estimated by integrating Eq. 3.14 until reaching
the attractor 5.

3.5.3 Robustness and Reliability

The introduced system can give anytime guarantee, i.e. it is able to respond to queries
at any time during execution. As the load of the computations are low, satisfying
real-time constraints is of no problem and the system is reliable in this regard. As
discussed in Section 3.4.10, the model is robust to change in the goal, modulation, etc.
The optimization presented in Section 3.2.2, requires an initial guess for the model.
The result of optimization is invariant w.r.t. small changes in the initial model’s guess;
however, large change may result to convergence into another optimal model. In any
case the final model is globally asymptotically stable and robust to any perturbations.

5To reduce the negative effect of a big integration step, we integrate the dynamical law f̂
L times, before sending an actual command to the robot

30

3.5.4 Dependencies

The working of the system is dependent to the number of Gaussian functions and the
initial guess for the model. The system is not dependent to any exogenous inputs.
It can also work in an open loop manner. However, if the open-loop case is of inter-
est, the model’s performance directly depends on the performance of the controller.
Proprioception can be added to the system as a sensory feedback (See Figure 3.7)

3.5.5 Runtime

The system has three stages: offline learning, evaluation, and recognition. Learning is
based on a non-linear optimization of a cost function, and thus works in a loop until
convergence to the optimal point. Evaluation of any point can be done in one shot
without any need to integrate. However, to generate a path from its initial point to
the target one needs to integrate from Eq. 3.8, which can be done on-line. Since SEDS
models a motion based on a statistical framework (i.e. GMM), recognition can also
be using the learned statistical model (please see next the section for more details).

3.5.6 Usefulness for Recognition

SEDS learns a motion by fitting a GMM model onto demonstration datapoints. This
GMM model can also be used as a statistical tool for movement recognition. For
a given movement, one can simply compute the likelihood of that movement using
an existing library of motion primitives. The movement recognition can be used for
both spatial and spatial-temporal patterns; however, for cases where movements are
spatially separable (see Figure 3.6), SEDS by itself can embed these movements into
one single model, hence facilitating the recognition phase.

3.6 Summary

In this chapter we presented a method called Stable Estimator of Dynamical Systems
(SEDS) that allows for fast learning of robot motions from a small set of demonstra-
tions. It considers a motion as time-independent nonlinear dynamical systems and
formulates it as a mixture of Gaussian functions. The parameters (the priors, centers,
and covariances) of the GMM are learned via an optimization under constraints on
the global asymptotic stability of the model. The main features of a model learned by
SEDS can be summarized as follows:

• It guarantees the global asymptotic stability of motions.

• It is inherently robust to external perturbations.

• It is able to on-the-fly generate a new motion in the face of perturbations without
any need to re-planning, re-indexing, or re-scaling.

• It can consider via points along the path to the target (passing through via
points is always guaranteed.)

• It can generalize a motion to areas not covered before.

• It can embed different ways of performing a task into one single model.

• It is can easily modulate a model without affecting the main properties of the
model.

• It can manipulate a task in a specified time duration.

• It can be used for the recognition of the movement.

31

Chapter 4

Neural Dynamical Motion
Primitives Generator

Tim Waegeman, Benjamin Schrauwen
UGent

4.1 Short Introduction

Neural Dynamical Motion Primitives Generator (NDMPG) is an adaptive module
which uses the Reservoir Computing (RC) technique to train its internal recurrent
neural network (RNN). This generator is able to learn different motion trajectories in
a single dynamical system. A low pass filter is integrated to allow velocity modulation
of the generated motion. Additionally, it is possible to avoid obstacles by using a
method which uses a nonlinear coordinate transformation. Depending on the used
conditioning, the resulting trajectories show similarities with the trajectory of an end
effector in a force field which is subject to a repelling force from the origin of the
obstacle.

4.2 Model Description

The basic idea behind the Neural Dynamical Motion Primitives Generator is to use a
recurrent neural network to embed the desired attractor. The generated trajectories
are modulated afterwards to allow different velocities of the generated motion.

A recurrent neural network (RNN) contains neurons which are interconnected with
each other. The state of each neuron is represented by xi[k] ∈ x[k] at time step k which
is updated according to:

x[k + 1] = tanh (Wr
rx[k] + Wr

oy[k]) , (4.1)

where the connections weights between the neurons are given by Wr
r. The weights

Wr
i are scaled by a parameter called ’spectral radius’ (ρ) to insure1 the stability of

the reservoir. Wr
o contains the feedback connections from the output layer to the

1depends on the value of the spectral radius. The connection weights are divided by the
maximal absolute eigen value and multiplied by the spectral radius. Consequently, if the
spectral radius is chosen smaller than one, thus operating in the non-chaotic domain, stability
can be insured. However, if it is chosen larger than one the reservoir operates in the chaotic
domain.

32

ξ(k)

Start position
Feedback

low pass

filter
obstacle

avoidance

λ
position

obstacle

ROBOT NMPC / NDMP

ξ(k)
~

Fig. 4.1: Illustration of the proposed Neural Dynamical Motion Primitives Gen-
erator. The trained trajectories are embedded in the reservoir. The feedback
ξ̃(k) is initialized with the initial position (taking translation of the target posi-
tion into account) after which the reservoir starts generating the desired trajec-
tory. The target position is always 0. This means that the generated trajectory
has to be translated when an other target position is required. The modulation
of the velocity (parameter λ) is acquired by a low pass filter. Finally, the trajec-
tory is adjusted when close to an obstacle (ξ(k)). When commanding a robot,
the total controlling system including the robot and a controlling method like
NDMP or NMPC, should be a part of the feedback

reservoir. As there is no input used, one can notice the absence of an input vector. As
non-linearity a tanh()-function is used.

The output of the RNN is computed by the following equation:

y[k + 1] = Wo
r x[k + 1], (4.2)

where Wo
r represent the connections between the RNN and the output layer.

We will use the Reservoir Computing (RC) approach [19–21] where only the output
weights Wo

r are trained, the other weights are randomly chosen. Under this approach,
the used RNN is called ’the reservoir’.

The training of the output weights can be computed in one shot, according to the
echo state approach [19]:

Wo
r = TXT (XXT + γI)−1, (4.3)

where matrix X consists of all reservoir states x[k]. Matrix T consists of all desired
outputs (teacher forced outputs). γ is the regularisation parameter. To improve
generalisation capabilities and to prevent overfitting of the data, ridge regression is
used. The regularization parameter γ is optimized on a validation set. For testing and
global evaluation of the system, the optimal regularization parameter is used.

In Table 4.1 we summarize the used training parameters.
As shown in Figure 4.1, the reservoir uses output feedback which is initialized after

training with the initial position. However, depending on the desired behaviour it is
also possible to feed ξ(k) back to the reservoir (whether or not with robot feedback).
The RNN will generate a trajectory from this initial position to 0. Nevertheless,
reaching to a different target position is possible after a simple translation of the
trajectory. Consequently, the initial position given to the RNN should be translated
as well.

33

F0
FT

S0

r

r
^

r
^

r

r0
^

F0 FT S0 r r S0 FT F0
^

Fig. 4.2: Left illustration shows the transformation sequence to avoid an obsta-
cle. F0 denotes the original Cartesian frame of reference, FT is the translated
frame of reference and S0 is a transformation of FT to a spherical coordinate
system. The bold curve on the left shows the adjusted trajectory while the
dashed one shows the original trajectory. r̂ is the conditioned radius r with r̂0

the minimum radius. Depending on this conditioning one can achieve similar
repelling behaviour in a force field as setting a repelling force at the center of
the obstacle. The right plot illustrates a possible conditioning on r.

parameter description value
N reservoir size ∈ [100, 1000]
ρ spectral radius 0.9
ς connection fraction RNN 100%
η feedback scaling 1

Tab. 4.1: Training parameters for the NDMPG

To regulate the velocity a low pass filter is used:

ỹ[k + 1] = (1− λ)ỹ[k] + λy[k], (4.4)

where ỹ[k] and y[k] describe the filter output and input, respectively. λ is the time
constant which can be adjusted to modulate the velocity.

To incorporate the possibility to avoid obstacles during trajectory generation, each
trajectory point in its original frame of reference F0 is translated to the frame of refer-
ence FT which is located at the position of the obstacle. Next, the current trajectory
point is transformed from a Cartesian to a spherical coordinate system S0. In this rep-
resentation (r, θ, ψ) the radius r is conditioned to r̂ with a certain minimum distance
r̂0 as parameter. Depending on this conditioned radius, one can generate trajectories
similar to a repelling point in a force field during force control. Afterwards, the total
transformation is reversed. As shown in Figure 4.2 the resulting trajectory will avoid
the predefined obstacle.

4.3 Simulation

The results of some small experiments are presented. Figure 4.3 shows the modulation
effect of the used low pass filter with different time constants which demonstrates the

34

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.02

0.04

0.06

0.08

0.1

Time k [Samples]

X
 [

m
]

Original

λ=1/4

λ=1/8

λ=1/12

λ=1/16

λ=1/20

Fig. 4.3: Illustration of an experiment during which the velocity of the position
information is modulated for different values of λ.

−0.2 −0.1 0 0.1 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

X [m]

Y
 [

m
]

−0.4 −0.2 0 0.2 0.4
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

X [m]

Y
 [

m
]

Fig. 4.4: The left plot shows the results of the generalisation capabilities of the
NDMPG. In this experiment the reservoir was set to generate trajectories of
different starting positions located on a circle. The plot on the right illustrates
the examples which are used to train the reservoir. By comparing both plots one
can notice the symmetry of the generated trajectories which were unseen during
training. Additionally, we can conclude that an NDMPG is able to generate
different trajectories depending on its starting position. When its starts at the
right it can generalize an ’S’-motion and when it start at the top, it generalizes
an ’I’-motion. However, the generalisation of the ’C’-motion in this case is not
so good. This can be improved by increasing the amount of examples during
training.

35

Fig. 4.5: Both plots illustrate the results of different experiment during which
trajectories need to avoid obstacles.In the left plot, one can notice how example
trajectories (black lines) avoid the introduced obstacles (circles). The trajecto-
ries without obstacles are illustrated as well (gray lines). The right plot illus-
trates obstacle avoidance of generalized trajectories. In this plot, the position
of the obstacle is depicted by a cross.

spatiotemporal invariance. Figure 4.4(left) illustrates the generalisation capabilities of
the proposed method. Figure 4.4(right) shows the used training examples. Figure 4.5
depicts the obstacle avoiding behaviour for different trajectories. A more detailed
discussion about these results will be given later in this chapter.

4.4 Functional Analysis

4.4.1 Dynamics and Nonlinearity

An NDMPG integrates a reservoir which contains neurons featuring a tanh() as non-
linearity. The system dynamics are the result of the interaction between those neurons
and are therefore nonlinear as well. A tanh() has a linear region around 0, so depend-
ing on the absolute feedback values, the dynamics can be more linear. If the spectral
radius ρ is smaller than 1 the RNN operates in a stable regime. However, when ρ > 1,
it is operating in a chaotic regime. Because of this, the nonlinear dynamics depend on
the feedback and the chosen spectral radius.

4.4.2 Attractor

The system’s attractor type depends on the training data given. In our experiments
we used training trajectories which induce a point attractor into the reservoir with
possible multiple basins of attraction (always converging to 0).

4.4.3 Coupling

The system generates end-effector (EE) trajectories. As mentioned before NDMPG’s
should be used in a hybrid system together with a controlling method like Neural

36

Motion Primitive Control (NMPC). The coupling between each Degree-of-Freedom
(DoF) is managed by such method. In a controlling method like NMPC, the angles
are generated by one dynamical system which means that the hybrid system is coupled.

4.4.4 Learning

Type The learning type of the system is supervised.

Algorithm The echo state approach of learning is used. The learning is done in one
shot according to equation 4.3.

Mode The learning is achieved offline.

4.4.5 Training Data

The containing RNN is trained offline with example data. A limit set of example
trajectories is sufficient. However, to achieve good generalisation capabilities, a large
amount of training data is recommended.

4.4.6 Generalization

In Figure 4.4(left), the generalisation capabilities, in the sense of generating similar
trajectories as seen during training, are shown. On the right of Figure 4.4 the used
training examples are shown. If we compare the training data with the generated
trajectories it is clear that the attractors within one RNN are shaped to reproduce all
the training data as well as possible. As a result, symmetry in the dynamical system
emerges. For example, reaching motions from the bottom to the center are similar to
trained motions from the top to the center.

4.4.7 Modulation

The generated motion of an NDMPG can be modulated to allow different velocities of
the motion. This is achieved by the introduced low pass filter of the system with time
constant λ. In Figure 4.3 this behaviour is demonstrated for different λ’s. Additionally,
as this generator should be used in a hybrid system, the velocity can be modulated in
the controlling system as well (like the leak rate in NMPC).

4.4.8 Sensory Feedback Integration

As mentioned before the proposed system uses feedback. When controlling a robot,
the actual end-effector position should be fed back into the reservoir. This is illustrated
in Figure 4.1.

4.4.9 State Variables

The amount of neurons is equal to the amount of state variables.

4.4.10 Robustness and Adaptation to Perturbations

Because of the designed system and its single point attractor, the reaching motion
started from any position will eventually converge to the desired target position. As
the system is designed to generate a reaching motion by initializing the feedback it
is possible to perturb this feedback by any value as long as needed (e.g. keeping the
feedback constant). After removing the perturbation the motion will converge back
to its single point attractor. This behaviour is similar to the Dynamical Movement
Primitives (DMP) described in an other chapter.

37

parameter description value
N reservoir size ∈ [100, 1000]
ξ(k) desired position X,Y and Z in (m)

ξ̃(k) feedback X,Y and Z in (m)
λ time constant ∈ [10−6, 1]
r̂ minimum obstacle distance in (m)

Tab. 4.2: Interface parameters

As shown in Figure 4.4(left), a perturbation which causes the end-effector to move
to another position in the neighbourhood, will generate a similar converging motion.

4.4.11 Stability

Because of the used nonlinearity, the neuron states are bounded to [−1, 1]. The output
is a linear mapping of these neuron states. This means that the system output is
bounded as well. Although in most cases the desired attractor is reached, convergence
can not be proven.

4.5 Non-Functional Analysis

4.5.1 Representation and Interface

The proposed generator has only one output and feedback. The desired end-effector
position as output and the actual position as feedback. The end effector position needs
to be scaled down to meters to insure no neuron state is saturated. Other parameters
which are controllable are the time constant λ, the initial position (as feedback) and
the position of an obstacle. Additionally, it is possible to define a certain minimum
distance r̂ between the trajectory and the obstacle.

In Table 4.2 we summarize the interface parameters.

4.5.2 Timing

The proposed motion generator has an upper time limit. During operation only equa-
tions 4.1 and 5.2 need to be calculated. Both calculations are simple matrix multipli-
cations and are limited in calculation time. Because offline training is used, the one
shot calculation (equation 4.3) does not need to be recalculated during operation.

4.5.3 Robustness and Reliability

Depending on the training data and the number of different example motions the con-
vergence to 0 is achieved. Because of its integrated low pass filter, the corresponding
converging time can be modulated. Due to the limited calculations, a good Real-time
constraint is possible.

4.5.4 Dependencies

The proposed motion generator needs the actual end-effector position as feedback.
Both proprioception and exterioception can be used to determine this position. Fur-
thermore, the system is implemented in MatLab.

38

4.5.5 Runtime

As indicated before the proposed adaptive module uses offline training where only
equations 4.1 and 5.2 need to be computed during testing. These calculations do not
request a lot of resources.

4.5.6 Usefulness for Recognition

As shown in Figure 4.4(left) the generalisation of the trained motions shows symmetry
when using different initial positions. This identification can be used to identify simi-
larities within different training motions as the dynamical system tries to capture them
all in a single pool of neurons (reservoir). This identification is performed subjectively
by evaluating the results and is not quantized by any parameter of the system.

4.6 Summary

In this chapter, we described an adaptive module called Neural Dynamical Motion
Primitives Generator (NDMPG) which uses a recurrent neural network (RNN) to
learn different trajectories. The initial position of the trajectory is set by initializing
the feedback of the system. These generated trajectories can be modulated in time
to regulate the velocity by using the integrated low pass filter. Additionally, we de-
scribed a method to do obstacle avoidance while generating a trajectory. This shows
similarities with the effect of putting a repelling force at the position of the object
while performing force control of the end-effector. Finally, the results of some simple
experiments are shown together with a detailed description of its characteristics.

39

Chapter 5

Neural Motion Primitive
Control

Tim Waegeman, Benjamin Schrauwen
UGent

5.1 Short Introduction

Neural Motion Primitive Control (NMPC) is a closed loop control strategy which
controls a dynamical system1. Hereby the Reservoir Computing technique is used
to train a recurrent neural network (RNN). This RNN learns an internal model of
the dynamical system. In addition, the proposed system is designed so that it can
adjust its internal model during operation and adapt to unforeseen changes. Each
degree-of-freedom (DoF) of a robot, is generated by the same RNN. The velocity and
shape of the generated motion can be modulated by a set of parameters. To improve
generalisation capabilities this system can use any trajectory generating solution (like
NDMPG, Neural Dynamical Motion Primitives Generator) in a hybrid configuration.

5.2 Model Description

The concept behind this model is to construct an inverse model of, for example, a
robot arm. Therefore, the robot will follow a desired trajectory and thus generating a
reaching motion.

For modeling the dynamical system we use a recurrent neural network (RNN) with
leaky integrator neurons. The state of each neuron is represented by xi[k] ∈ x[k] at
time step k. The update function of each state is given by:

x[k + 1] = (1− λ)x[k] + λ tanh (Wr
rx[k] + Wr

i u[k] + Wr
oy[k] + Wr

b) , (5.1)

where the connections weights between the neurons are given by Wr
r, Wr

i represents
the connections from the input layer to the RNN. Wr

b represents the connections
from the bias to the RNN. The weights Wr

i are scaled by a parameter called ’spectral

1NMPC is different from other chapters because it learns (unsupervised) an internal model
of the robot arm. Additionally, by using the transients of the network and a large amount of
training data, it is possible to regenerate (generalize) a trained trajectory.

40

radius’ (ρ) to insure2 the stability of the reservoir. Wr
o contains the connections from

the output layer to the reservoir. The input vector is given by u[k]. A tanh()-function
is used as non-linearity. The parameter λ represents the leak rate which induces, when
different from 1, a lowpass filter over the neuron states. As a result, the RNN has
fading memory.

The output of the RNN is computed by the following equation:

y[k + 1] = Wo
r x[k + 1], (5.2)

with Wo
r the connections between the RNN and the output layer.

We will use the Reservoir Computing (RC) approach [19–21] where only the output
weights Wo

r are trained, the other weights are randomly chosen. Under this approach,
the used RNN is called ’the reservoir’ and the total system (input, reservoir and
output), the ’RC-network’ (RCN).

The necessary output weights can be determined offline or online. The first proce-
dure, needs recorded example input-output pairs of the desired behaviour over a long
time. The later, learns while controlling, and can learn from examples, although op-
tional. In this chapter we will use the term ’offline learning mode’ when the learning
algorithm is suspended after the training phase. The online learning mode, on the
other hand, will never suspend the learning algorithm. Online and offline training is
achieved by using recursive least squares (RLS), similar to the FORCE method [22].
After random initialisation of the output weights, these weights are updated (with
∆W) each time step. This update is according to an error e and an approximation
of the inverse of the reservoir states correlation matrix (P). The error e between the
produced and the desired output at time step k is given by:

e = W(k − 1)x(k)− d(k), (5.3)

where d(k) is the desired output. The weight update is done according to the following
equations:

P(0) =
I

α
, (5.4)

P(k) = P(k − 1)− P(k − 1)x(k)xT (k)P(k − 1)

1 + xT (k)P(k − 1)x(k)
, (5.5)

∆W(k) = W(k)−W(k − 1) = −eP(k)x(k), (5.6)

where α determines the learning rate of the algorithm.
The proposed model, illustrated in Figure 5.1 consists of 2 identical RC-networks.

The first network, ’RCN1’, gets the current end effector (EE) position ξ(k) as input
and a delayed version ξ(k−δ). The desired output d(k) in equation 5.3 for this network
is a delayed version of the output θ(k− δ) of the second network (’RCN2’). The later,
has the current and the desired EE position as input. All the weights, including the
output weights, are identical for both networks. The output of RCN2 are joint angles
which are used to command the robot arm.

During the first time steps of the online learning process the model has no notion of
how to change the joint angles to achieve the desired trajectory. Because of the random
initialisation of the reservoir states in RCN2, this network will start to produce random
joint angles. These are used by RCN1 to construct an inverse robot arm model by
learning a relationship between the EE-positions over time and the commanded joint
angles. Because of the weight sharing of the output weights, the controlling knowledge
of RCN2 improves each iteration.

2depends on the value of the spectral radius. The connection weights are divided by the
maximal absolute eigen value and multiplied by the spectral radius. Consequently, if the
spectral radius is chosen smaller than one, thus operating in the non-chaotic domain, stability
can be insured. However, if it is chosen larger than one the reservoir operates in the chaotic
domain.

41

ROBOT

ξ(k-δ)

ξ(k)

ξ(k)

ξdes(k+δ)

θ(k)

θ(k-δ)

θ(k)

RLS

RCN1

RCN2

δ
δ

=

Fig. 5.1: Schematic representation of the proposed controller. The dashed ar-
rows represent the output weights which are trained. These are the same for
both networks. ξ(k) is the end effector position and θ(k) the output vector with
the joint angles.

parameter description value
N reservoir size ∈ [300, 1000]
ρ spectral radius 1
λ leak rate 1
ς connection fraction RNN ∈ [10, 100]%
η input scaling 0.001
κ output feedback scaling 1/180
β bias to reservoir 0.5
δ time delay 1
α learning rate 1

Tab. 5.1: Model parameters

This controlling approach learns to control the robot arm without any examples.
However,mere example based training is possible by training the output weights of
RCN1 offline. Afterwards, one can choose to continue optimizing this kinematic model
online.

If example data is used to find an inverse kinematic model, the transient dynamics
in the RC-network are used to achieve a similar reaching motion than the one seen
during training. Even though, the desired EE position ξdes(k + δ) was unseen.

The used model parameters are shown in Table 5.1.

5.3 Simulation

The results of some small experiments are presented. Figure 5.2 shows some reach-
ing experiments with different converging times which demonstrates the spatiotem-
poral invariance. Each sample represents one iteration of the learning algorithm.
Figure 5.3(left) illustrates a reaching motion after following a predefined trajectory.

42

0.1

0.15

0.2

0.25

0.3

0.35

X
 [

m
]

Targets

λ=0.2

λ=0.1

λ=0.05

0.1

0.15

0.2

0.25

Y
 [

m
]

Targets

λ=0.2

λ=0.1

λ=0.05

100 200 300 400 500 600 700 800 900
−0.35

−0.3

−0.25

−0.2

−0.15

Time k [Samples]

Z
 [

m
]

Targets

λ=0.2

λ=0.1

λ=0.05

Fig. 5.2: Illustration of the simulation result during which the robot is com-
manded to reach different targets with different velocities. These plots show
the X,Y and Z position of the end effector, respectively. The reaching velocity
is regulated with the parameter λ which is used in equation 5.1. During this
experiment the following parameters were used: a reservoir size of 400 neurons,
δ = 1, ρ = 1 (operating on the edge of stability), α = 1 and input bias equal to
0.5

Figure 5.4 depicts a trajectory of the robots end effector during which the robot’s
feedback is perturbed. A discussion about these results will be given later in this
chapter.

5.4 Functional Analysis

5.4.1 Dynamics and Nonlinearity

Each neuron features a tanh() as nonlinearity. Because of these neurons and the
interaction between them, the system dynamics are nonlinear. The used nonlinearity
consists of a linear region around 0, so when the absolute input values are small, the
dynamics are more linear. The chosen spectral radius determines if the RNN operates
in a stable (ρ < 1) or chaotic regime (ρ > 1). Therefore, the nonlinear dynamics
depend on the system input, the input scaling and the chosen spectral radius.

5.4.2 Attractor

The system’s attractor type depends on its operation mode. When the learning algo-
rithm (RLS) is applied continuously, the attractor is hard to determine. However, if
the weight updates on a periodic or discrete signal are suspended after training, the
attractor is respectively a limit cycle or point attractor.

43

0.2 0.22 0.24 0.26 0.28 0.3

0.16

0.18

0.2

0.22

0.24

0.26

X [m]

Y
 [

m
]

Trained

Generalisation

Target point

Fig. 5.3: This plot shows the results of a generalisation experiment in offline
learning mode. The system is trained to move the robot’s end effector in a
circle. Afterwards, the training phase is stopped (∆W = 0) and the robot is
commanded to reach to an unseen target point. This experiment was repeated
for different target points.

5.4.3 Coupling

The system generates an output vector containing joint angles for each DoF. Because
these angles are generated by one dynamical system, the system is coupled.

5.4.4 Learning

Type The learning type of the system is supervised.

Algorithm The learning algorithm used is RLS but, with the used system strategy,
other learning algorithms might be possible.

Mode The learning can be achieved in an online (continuous use of RLS) or offline
(training phase after which RLS is suspended) manner.

5.4.5 Training Data

The proposed system does not need any training data. During operation, the systems
starts generating joint angles that are used afterwards to construct a robot model.
Each iteration, this model is improved by observing its controlling attempts. This
means that the system will try to search a way to control the robot desirably.

However, the internal system model can be trained with example data as well. An
example data set containing a trajectory and joint angles, can be used to train the
system in offline training mode. However, to achieve a good robot representation, a
large amount of training data is recommended.

44

0

0.5

1

X
 [

m
]

ξ

des
(t)

ξ(t)

−0.5

0

0.5

Y
 [

m
]

ξ

des
(t)

ξ(t)

−0.5

0

0.5

Z
 [

m
]

ξ

des
(t)

ξ(t)

4850 4900 4950 5000 5050 5100 5150 5200 5250 5300 5350
−200

0

200

Time k [Samples]

θ
 [

d
e

g
re

e
]

Fig. 5.4: Illustration of an experiment in online training mode, during which
the robots trajectory if perturbed. The upper tree plots show the X,Y and Z
end effector position. The bottom plot shows the commanded joint angles (7
joints) during this perturbation. The introduced perturbation occur during 10
iterations. Besides a leak rate of λ = 1, the same system parameters were used
as in the previous experiment.

5.4.6 Generalization

The generalisation capabilities should be discussed separately for each learning mode:

• online: When the learning algorithm is used throughout the whole task, the
generalization capabilities are attained by the learning algorithm itself. This
operation mode allows to model changes in the environment or internal robot
structure.

• offline: When the learning is suspended after the training phase, the gener-
alization abilities are acquired by the transients of the RC-networks. In Fig-
ure 5.3(left) the reaching motion of unseen target points is shown together with
the training trajectory.

If the generalization capability is insufficient, the described NDMPG (Neural Dy-
namical Motion Primitives Generator, Chapter 4) or other trajectory generating mod-
ules can be used to insure generalization in the sense of generating similar trajectories
as seen during training (Figure 5.3, right). In this case, the NDMPG is attached to
the ξdes(t+ δ) system input.

5.4.7 Modulation

The described systems reaching speed can be modulated by changing the leak rate
λ. This is demonstrated for different λ’s in Figure 5.2. The leak rate should only be
changed during the testing phase when using the offline learning mode. However, when
using the online learning mode, the reaching velocity can be modulated at any time.
The desired end effector position is modulated by ξdes(k). The transition between

45

different reaching points can modulate the shape of the actual reaching motion. In
fact, this transition can regulate the velocity as well.

5.4.8 Sensory Feedback Integration

The proposed system is build to integrate sensory feedback. In the example of the iCub
robot arm this means that after commanding the robot with joint angles, the encoder
values are measured after a given time step. These values can be used to calculate the
actual end effector position, and is afterwards used as system input. Other relevant
sensor information, which can help to improve the internal robot representation, can
be used as well. These would be added to the system’s input vector.

5.4.9 State Variables

The amount of state variables is equal to the amount of neurons used in the system
and is uncorrelated with the DoF.

5.4.10 Robustness and Adaptation to Perturbations

As demonstrated in Figure 5.4, the proposed system is able to handle unforeseen
perturbations. In this example the robot’s end effector is forced to an undesired
position for 10 time steps. Afterwards the system converges again to the desired
trajectory. Because of operating in the online learning mode, the system tries to
change its internal model according to the perturbation. The effect on this model can
be noticed when the perturbation is removed (between samples 5100 and 5150).

The error in the learning algorithm is defined on the accuracy of the internal model
and not on the end effector position. Reaching the end effector position is the result
of a good internal model. This strategy introduces the possibility to handle changes in
the robots pose, construction, disabilities and/or environment. It should be noted that
the transition between different models can lead to fast changing transient behaviour
because of the fast learning nature of RLS.

5.4.11 Stability

The proposed system uses a RC-network which has a given input. The neuron states
are bounded to [−1, 1] because of the used nonlinearity. The output is a linear map-
ping of these neuron states. This means that the system output is bounded as well.
Although in most cases the desired attractor is reached, convergence can not be proven.

5.5 Non-Functional Analysis

5.5.1 Representation and Interface

At this point the described system generates joint angles in degrees. These generated
values are filtered, limiting them to the possible angular values. The end effector
position is calculated in a Cartesian coordinate system and used as system input.
The end effector position needs to be scaled down to meters to insure no neuron state
saturation. Also the generated angles are scaled down, by dividing them by 180, before
given to the reservoir as output feedback. As stated before the system has different
learning modes. The online learning mode is able to adapt to radical changes in the
robot or its environment. The offline learning mode, on the other hand, is unable to
adapt to such changes. In Table 5.2 we give an overview of the interface parameters.

46

parameter description value
N reservoir size ∈ [300, 1000] ∼ [faster, precision]
ξ(k) robot feedback X,Y and Z in (mm)
ξdes(k) desired position X,Y and Z in (mm)
θ(k) system output degree (◦)
λ leak rate ∈ [10−6, 1]
δ time delay 1

Tab. 5.2: Interface parameters

5.5.2 Timing

Depending on the learning mode, the used system strategy has an upper time limit3.
During online learning the equations 5.5 and 5.6 need to be calculated. Each iteration
takes at least the time needed to calculate these equations. This calculation depends
on the reservoir states and can change during operation. When the offline learning
mode, the weight updating is stopped during the testing phase. As a result, those
equations do not need to be calculated afterwards.

5.5.3 Robustness and Reliability

When using the online learning mode without examples, it is possible that the learned
motion limits the robot to achieve a desired trajectory perfectly. Therefore, although
quite robust, converging anytime can not be guaranteed. This also applies for the
offline learning mode. Because of the limited calculations, a good Real-time constraint
is possible.

5.5.4 Dependencies

The system depends now only on proprioception and determines the end effector po-
sition by calculating the forward kinematics from the encoder values. It would be
possible to only depend on exterioception to determine the end effector position. Fur-
thermore, the system is implemented in MatLab and is communicating with the robot
over the YARP robot platform.

5.5.5 Runtime

As indicated before the system provides online and offline learning. When using online
learning, equation 5.1, 5.2, 5.5 and 5.6 need to be calculated each iteration. However,
when using offline learning, only equations 5.1 and 5.2 need to be computed during
testing (∆W = 0).

5.5.6 Usefulness for Recognition

The control of fast dynamical systems need a rather small time delay δ and a larger
leak rate λ. When observing ∆W during the online learning mode, one can identify a
sudden change in the environment or the robot itself when ∆W becomes significantly
larger. After adjusting the internal system model these weights will get smaller again.
This shows that the system can detect spatiotemporal changes in its input.

3On a Quad Core system with 8GB of RAM, for a reservoir with 500 neurons the calcu-
lations in the online mode take around 0.05 seconds. In offline mode this is around 0.005
seconds.

47

5.6 Summary

In this chapter, a system called Neural Motion Primitive Control is proposed which
uses a recurrent neural network (RNN) to model the dynamics of a robot. The training
is done by using an RLS based training technique and can operate online or offline.
By using the transients in this RNN, similar motion as seen during training can be
generated. The robustness, modulation and generalisation capabilities are demon-
strated with some simple experiments. This system should be used in a combination
with a trajectory generator like NDMPG to achieve similar trajectories as seen during
training.

48

Chapter 6

Neural Dynamic Movement
Primitives

Andre Lemme, R. Felix Reinhart, Matthias Rolf, Jochen J. Steil
UniBi

6.1 Short Introduction

Neural dynamic movement primitives (NDMP1) are a combination of the ideas from
reservoir computing and associative learning, which results in an elegant formulation of
neural dynamics. NDMP couple task and joint space by means of an attractor-based
reservoir network (see Fig. 6.1). The combination of unsupervised and supervised
learning methods allows to generate movements with biologically plausible velocity
profiles and to solve the inverse kinematics at the same time.

The main operation modes of this model are:

1. Association:
In this mode, the model is used attractor-based: A target position u∗ is clamped
to the network input while the network is iterated until the dynamics converge.
Then, the resulting joint values q∗ are read out. In this way, it is possible to
compute the inverse/forward kinematics of the robot.

2. Autonomous reaching by feedforward-feedback control:
This is the main operation mode to generate dynamic motion. The basic idea
is to exploit the network’s transient dynamics while approaching an attractor
state for smooth and robust movement generation.

6.2 Model Description

The NDMP framework uses the associative neural reservoir learning (ANRL) ap-
proach, which is described in the following. The associative nature of the neural
model allows for learning of forward and inverse kinematics in parallel and in a single
network. The mapping is bi-directional: we can use task coordinates as input and joint
space coordinates as output or vice versa. These two mappings functionally implement
the forward and backward models described in [24] and use afferent motor copies for
sensory prediction of the input.

1The case discussed here is the system introduced in [23].

49

Fig. 6.1: The associative reservoir network architecture connects task- and joint-
space variables bidirectionally. Thereby the inverse and forward kinematic mod-
els can be be queried continuously for generalization.

Formally, the architecture comprises a recurrent network of nonlinear neurons that
interconnect inputs u and outputs q shown in Fig. 6.2a. We denote the network state
at time step k by z(k) = (u(k)T , y(k)T , q(k)T)T , where u,y and q are the input,
reservoir and output neurons respectively. Wnet captures all connection submatrices
between neurons in the network and is defined by

Wnet =

0 Winp

res 0

Wres
inp Wres

res Wres
out

0 Wout
res 0

 , (6.1)

where we denote by W�
? all connections from ? to � using inp for input, out for output,

and res for inner reservoir neurons. Only connections Wout
res and Winp

res projecting to
the input and output neurons are trained by error correction (illustrated by dashed
arrows in Fig. 6.2a). All other weights are initialized randomly with small weights and
remain fixed. We consider recurrent network dynamics

x(k+1) = (1−∆t) x(k) + ∆tWnetz(k) (6.2)

z(k) = σ(x(k)), (6.3)

where for small ∆t continuous time dynamics are approximated. z is obtained by ap-
plying activation functions component-wise to the neural activations xi, i=1 . . . N . We
use parametrized logistic activation functions yi=σi(xi, ai, bi)=(1+exp (−aixi − bi))−1

for the reservoir neurons. Input and output neurons have the identity as activation
function, i.e. are linear neurons.

6.3 Simulation

In this simulation, we show the performance of the NDMP model in a reaching move-
ment scenario for the right arm of iCub. We use a spiral-like motion as training
pattern. In task space, end effector positions are defined by

u1(k) = −0.08 (0.5 sin(ω̄ k) + 0.5) (6.4)

u2(k) = 0.08 cos(6 ω̄ k) (6.5)

u3(k) = 0.08 sin(6 ω̄ k). (6.6)

This motion is constrained to a cylinder of 8cm in length and with a diameter of
16cm (see Fig. 6.2b). We set ω̄ = 2π/400 and record two pattern periods (K = 800
samples) as training data (u(k)T ,q(k)T)T using a Jacobian-based inverse kinematics

50

(a)

−0.1 −0.08 −0.06 −0.04 −0.02 0

−0.1

−0.05

0

0.05

0.1

−0.1

−0.05

0

0.05

0.1

u
1
[m]

u
2
[m]

u
3
[m

]

training data

network response

(b)

Fig. 6.2: The reservoir network architecture (a) and the training data in task
space with network response (b).

solver. The Cartesian end effector coordinates (u1, u2, u3) are presented in meters and
have their point of origin at the end effector position of iCub’s right arm in the home
position. To excite the network with values in a reasonable range, the network gets
task space inputs in decimeters and joint angles in radians. The network parameters,
which are used in this simulation are shown in Tab. 6.1.

We calculate the positioning error for the iCub arm-movements in task space by

E(u1, u2, u3) = ||(u1, u2, u3)− FK(ˆIK(u1, u2, u3)))||,

where FK denotes the known analytic forward kinematics and ˆIK the learned inverse
kinematics. We compute errors in task space since errors in joint space can be mis-
leading: the network could find a different solution of the redundant kinematics than
the analytic model in order to approach the same target position.

The iCub arm kinematics are trained on the spiral data shown in Fig. 6.2b, where
the positions corresponding to the output of the trained network are superimposed.
To test the network’s generalization of the inverse kinematic mapping systematically,
we query network outputs for targets sampled from a three dimensional and equally
spaced grid with 50x50x50 vertices that spans a cuboid of 20x20x10cm in task space.
The error histogram and cumulative distribution for all 125.000 targets in the cuboid
are shown in Fig. 6.3a. 75% of the 125.000 target positions are reached with an residual
error less than 1cm. The maximal error is below 5cm.

iCub
Reservoir Size 200
Connection ρ a
Input-Reservoir 0.4 0.4
Reservoir-Reservoir 0.2 0.05
Reservoir-Output 0.0 0.0
Output-Reservoir 0.4 0.1
Input-Output – –
Learning η
IP 0.00002
BPDC 0.01
Cycles 1000

Tab. 6.1: Parameters for network construction and learning.

51

0.01 0.02 0.03 0.04 0.05
0

2000

4000

6000

8000

10000

12000

14000

error E [m]

n
u
m

b
er

 o
f

m
o
v
em

en
ts

0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

error E [m]

p
ro

b
ab

il
it

y
 t

h
at

 E
 <

 v
al

u
e

(a) Error histogram and cumulative dis-
tribution in the cuboid.

−0.1
−0.05

0
0.05

0.1

−0.1

−0.05

0

0.05

0.1

0

0.01

0.02

0.03

0.04

0.05

u
2
[m]

u
3
[m]

E
[m

]

(b) Reaching errors in the cuboid pro-
jected onto the frontal plane.

Fig. 6.3: Performance error of the learned inverse kinematics in a generalization
task on iCub.

−1 0 1
−1

0

1

x [m]

y
 [

m
]

(a)

−1 0 1
−1

0

1

x [m]

y
 [

m
]

(b)

Fig. 6.4: Exemplary movements from several initial positions to two different
targets: u∗ = (0, 0) in (a) and u∗ = (0.25, 0.25) in (b).

In order to visualize the error distribution spatially in Fig. 6.3b, we project errors
in the cuboid onto the frontal plane by marginalization with respect to the u1 axis.
The error surface is smooth, which means that similar errors can be expected for
nearby targets. Additionally, we have a graceful degradation of performance. The
reservoir network achieves a mean precision of 0.8cm in the cuboid and generalizes
well to targets away from the training examples, although the sparsely sampled 800
training samples cover only a small subset of the three dimensional volume (compare
Fig. 6.2b).

Fig. 6.4 illustrates the movement generation capabilities of the the attractor-based
network: When the network dynamics are iterated with a fixed target position at the
input, straight reaching trajectories are generated. Note that the movement speed
depends on the relative distance between current position and the target (compare
step widths between dots in Fig. 6.4 (left) and (right)).

52

6.4 Functional Analysis

6.4.1 Dynamics and Nonlinearity

The dynamics of the system are given by the reservoir network update equation (6.2).
The nonlinearity is constituted by the parametrized sigmoidal functions σi(·) of the
reservoir neurons, and the recurrent network dynamics. The interaction between
synaptic- and intrinsic plasticity are the crucial factors in the dynamics of the sys-
tem.

6.4.2 Attractor

The network represents a smooth mapping by a continuum of fixed-point attractor
states. A specific association of task and joint variables is queried by driving the
network with a desired input u∗. The network then converges to the related attractor
state and provides the desired outputs q̂ (compare Fig. 6.1).

6.4.3 Coupling

Multiple DOFs are controlled by a single network using a distributed representation of
the entire robot configuration in the state space of the recurrent network, i.e. z(k) =
f(u,q, z(k − 1)).

6.4.4 Learning

We start by training the dynamic network with trajectories, e.g. demonstrated by a
teacher, to learn the kinematic mapping. This training makes no explicit reference to
the form of the trajectory, which consequently is not stored directly in the network.
Learning proceeds supervised, i.e. needs corresponding task/joint space data pairs for
training, i.e. {(u(k),q(k)}k=1,...,K . In principle, it is possible to train the associative
reservoir model with different algorithms in online or offline training modes. We
typically apply the following combination of online learning techniques for intrinsic
and synaptic plasticity:

Synaptic plasticity:

Type Supervised read-out learning

Algorithm Backpropagation-Decorrelation (BPDC) learning [25]

Mode Online learning.

Intrinsic plasticity:

Type Unsupervised reservoir optimization

Algorithm Intrinsic plasticity (IP) [26]

Mode Online learning.

6.4.5 Training Data

NDMP learns to map end effector position to joint values from training data that
comprises end effector trajectories together with the corresponding trajectories in joint
space. Although the performance of the network will increase with more training
samples, it was shown in [27] that a training set with only 250 data points is sufficient
to learn the inverse kinematics for a 7DOF robot arm in a reasonable area. In this
scenario, training data was even aquired by recording pairs of end effector coordinates
and joint angles teached by a human tutor. However, any expert system can be used

53

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

time step k

v
el

o
ci

ty
 [

m
/t

im
e

st
ep

]

∆ t = 0.02

∆ t = 0.04

∆ t = 0.08

(a) Averaged speed profiles with standard
deviations.

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

time step k

u
2
[m

]

∆ t = 0.02

∆ t = 0.04

∆ t = 0.06

(b) Step response of the network.

Fig. 6.5: Dynamic properties of generated reaching movements for different
gains ∆t.

for data acquisition as well. It is then important to distribute the training data such
that the samples cover the area of operation.

6.4.6 Generalization

The NDMP framework has excellent generalization abilities due to the distributed
and non-local representation of inputs in the reservoir state space. We consider spa-
tial generalization of the inverse kinematic mapping in the generalization tests: New
targets are set at the input of the network and the transient trajectory toward the
target attractor state is observed. Given that all movement directions needed for the
task are present in the training data, the performance of the generalization scales to
complex joint configurations [28].

Another important property of the kinematic learning is that constraints are pre-
served and can be generalized: It is shown in [27, 29] that constraints in joint space
present in the training data are learned in the network and are also generalized by
means of spatial variation of the target position.

We apply a goal as input, however, as we couple both spaces, we could also set
the goal in joint space. Moreover, incomplete or combined goals in both task and
joint space can be considered. The missing components can then be completed by
convergence to the associated attractor state.

6.4.7 Modulation

In the NDMP framework, there are several ways of modulation on different levels
possible. Firstly, the speed of generated movements can be modulated by the scalar
parameter 0 ≤ ∆ ≤ 1 in (6.2). ∆t can be understood as step width of the network
update equation (6.2). The step size allows to modulate the velocity profile and
duration until convergence (see Fig. 6.5a and Fig. 6.5b).

Secondly, the mapping learned by NDMP can be modulated by additional inputs.
In [30], Rolf et al. showed that it is possible to learn a parameterized inverse kinematic
model of a humanoid robot for flexibile tool use. This can be extended to arbitrary
complex mappings in principle, if enough training data is provided.

6.4.8 Sensory Feedback Integration

One can extend the number of controlling DOFs or sensory feedback by clamping the
variables to the input/output neurons of the reservoir (see Fig. 6.1). This possibility

54

allows the user to adapt the learning to various problems. For instance, one could add
the torque sensor information of the robot to the input in order to detect movements
with external forces applied to the robot.

6.4.9 State Variables

Besides of the input/output variables, the system has a high-dimensional state rep-
resentation which holds the current activation of the reservoir. Inputs are mapped
to reservoir states in a distributed manner. Learning mechanisms such as intrinsic
plasticity further lead to a more sparse but still non-local encoding of inputs [31]. In
addition, the reservoir encodes the temporal history of inputs by means of transient
network states.

6.4.10 Robustness and Adaptation to Perturbations

In [32] it was shown that the network can adapt to perturbations in the reaching
process including spatial perturbations, i.e. spatial generalization of the kinematic
mapping, and change in the posture positions during reaching. The feature of NDMP
is that it can approach the target from arbitrary directions, which makes the approach
robust against perturbations. Therefore, also switching goal positions is possible while
the reaching movement is performed.

6.4.11 Stability

Depending on the specific network configuration, global input-stability can be assured
by initialization. This applies to all echo state architectures without output feedback
connections Wres

out. Learning in the system further complicates the stability analy-
sis. The intrinsic plasticity mechanism often used to improve the reservoir encoding
capabilities can drive the reservoir dynamics towards instability.

There is a mechanism for online stabilization in case of output feedback [33], how-
ever, the criterion this mechanism relies on is very conservative. Experiments show
that the entire NDMP system is locally stable. Even more strict: If the NDMP system
is not stable, NDMP cannot generalize a smooth mapping and do not generate smooth
movements. Therefore, it is not necessary to monitor stability in each step during the
training. To assure safe operation on the robot, a evaluation step can be performed
after learning.

6.5 Non-Functional Analysis

6.5.1 Representation and Interface

The input/output data depends on the task. Typically, we configure the NDMP
network to map end effector positions to joint values. The end effector positions can
be defined in a local or a global coordinate system and should be scaled to a reasonable
range e.g [-1,1]. A possibility is to use the units meters for end effector positions and
radians [rad] for joint values. If the values are in degree, the absolute inflow into the
network can cause the activation functions to saturate and thus disturb learning of
the smooth mapping.

The main parameters and their default values are shown in Tab. 6.1. We divide
the parameter set into two subsets: The first parameter set controls the architecture
of the model, e.g. the size of the reservoir and its initial weights (Tab. 6.1 Connection
& Reservoir Size). The other set of parameters determines the learning duration and
the size of each learning step (Tab. 6.1 Learning).

55

6.5.2 Timing

The NDMP model has an internal timing parameter (∆t in (6.2)) which can scale
the network update step continuously. ∆t therefore determines also the speed of
generated movements (compare Sec. 6.4.7). This parameter is set to unity during
training and needs to be adapted depending on the robot’s physcial dynamics for
movement generation.

6.5.3 Robustness and Reliability

The NDMP framework can give an anytime guarantee and also fulfill real-time con-
straints, if the framework is in evaluation mode, because the computational complexity
is constant (see Sec. 6.5.5).

Regarding the network parameters, we draw on the well known robustness prop-
erties of reservoir networks, which have been shown to work for a large variety of
connectivity schemes and output learning methods [34]. Learning of the associative
reservoir is very robust to changes of the parameters in the introduced ranges (see
Tab. 6.1). We do not observe any overfitting and therefore do not need to determine
an optimal number of neurons and connections very carefully. In particular, the in-
trinsic plasticity rule has a strong input specific regularizing effect: it keeps neurons
in a reasonable working range for their specific relevant input [26, 31]. In addition,
intrinsic plasticity reduces the dependency on the initialization of the fixed portion of
the network parameters and limits the respective variance, as has been shown in [31].

6.5.4 Dependencies

NDMP is a neural learning scheme that is completely data driven which causes an intri-
cate dependence on the training data: The structure of the training data is important
and determines the network performance in several ways. Besides the importance to
distribute the training data such that the samples cover the area of operation, there is
a trade-off between the desired coupling of the DOFs and generalization: constraints
that are systematically present in the data will be learned by the network and repro-
duced. For example, if the virtual drawing on a board is trained, then generalization
is possible only within the plane of this board [28], or if handling of a stick with both
hands is trained, then it is not possible to move the hands independently [29]. In
summary, to enable generalization, respective movement directions need to be present
in the training data.

6.5.5 Runtime

NDMP has four different modes:

1. Learning:

(a) offline learning

(b) online learning

2. Evaluation

(a) transient-based movement generation

(b) association

In the offline learning mode (1a) a set of data samples is processed, which needs
some time. If N is the amount of neurons in the network, then the computational com-
plexity of this learning mode is in the O(N3) complexety range. Unlike offline learning,
each step of the online learning (1b) has much less computational cost (O(N)) and can
be done in parallel to the evaluation mode. The evaluation has two different modes

56

as mentioned in Sec. 6.1. The first evaluation mode (2a) covers the transient-based
generation of movements. In this mode, the network state has to be update according
to (6.2) in order to compute the next output values. For one single evaluation step
of the network, the complexity is O(N2) in general. However, using a sparse matrix
implementation and a sparse reservoir initialization (which is typical), the cost for the
network update can be reduced to O(N). If we evaluate in association mode (2b), the
network dynamics are iterated several times until the network is converged. Conver-
gence can take several iteration steps depending on the specific network architecture
and reservoir initialization [32].

6.5.6 Usefulness for Recognition

The ARNL has a fixed random weight matrix to transform the input into the state
space. However, the IP learning rule form the state depending of synaptic summation
in each neuron in the reservoir. That means that you will find similar states for similar
inputs for the same random weight matrix this feature can be used for recognition.

6.6 Summary

The neural dynamic movement primitives (NDMP) framework is a computational
model that combines learning of a forward and inverse model with movement gen-
eration in an associative neural reservoir learning scheme (ANRL). NDMP learn the
kinematics fully data-driven and through coupling of all inputs and joints in a single
network. Movements are generated by retracing the transients to network attractor
states. Spatial generalization is performed by clamping network inputs to target values
which modulate the internal attractor state. While NDMP without extensions do not
learn specific trajectory shapes, the framework generates straight reaching movements
with generic, bell-shaped velocity profiles while solving the inverse kinematics at the
same time. Therefore, NDMP provides a building block that links task with joint space
and may combine towards richer motor skills for smooth and natural movements.

57

Chapter 7

Planned Motion Primitives
using Approximate
Inference

Elmar Rückert, Gerhard Neumann
TUG

7.1 Short Introduction

Many complex behaviors can be decomposed into simpler movements, however, how to
do this decomposition is unclear. One intuitive approach is to represent a movement
as a sequence of subgoals (also called via-points) gi which the agent has to reach and
a corresponding timing parameter di indicating the time to reach the subgoal. We will
denote this sequence of subgoals as movement primitive.

We assume that we can employ a planning machinery which can guide the agent
(at least locally) to any given subgoal in a given amount of time. The advantage of
the subgoal representation is that it is very compact, i.e. the number of parameters to
describe a motion is small compared to other motion primitive approaches. We want
to address the question whether such an compact representation of a movement can
facilitate learning at the level of the motion primitive parameters.

For planning, we will use a state-of-the-art method based on probabilistic inference,
called Approximate Inference Control (AICO, [35]). AICO is used to solve stochastic
optimal control (SOC) problems. Many movements measured from animals or humans
share various characteristics (like the resulting bell-shaped velocity profile) with the
SOC solution, indicating that animals also solve a SOC problem.
AICO is a local planner, i.e. given an initial solution and a cost function, AICO finds
a locally optimal solution which minimizes the given cost function. The parameters
of the motion primitive (the subgoals) directly modulate the cost-function used for
AICO. The algorithm is used to plan the movement to the next subgoal gi in a fixed
amount of time (di). After di seconds, when the agent is supposed to reach the current
sub-goal gi, AICO is used to acquire a new plan in order to reach gi+1.

AICO is (like many other planning methods in continuous spaces like [36, 37]) a
local optimization method, thus, for complex movements we already have to provide
an trajectory which is close to the optimal one. However, we will use AICO only to
reach sub-goals in a neighborhood of the current state. Thus, a single sub-goal is

58

typically easily reachable. In this case the planner can be called with trivial initial
solutions like using no control at all.

The AICO algorithm assumes full knowledge of the system dynamics. In our
experiments we will use the same assumption, however, learning the system dynamics
is part of our future work and has already been done in [38,39] using Locally Weighted
Projection Regression as function approximator. Thus, when using a (local) planning
machinery like AICO, learning takes place at two stages, i.e. learning the system
dynamics (supervised learning) and learning appropriate subgoals to fullfill a given
task (reinforcement learning).

7.2 Model Description

A movement primitive is represented by a sequence of subgoals gi and a corresponding
timing parameter di. There are different ways to parametrize a single subgoal gi:

• Positions: A subgoal gi is given by the desired joint-position θi and the time
to reach this position. All desired joint-velocities for the subgoal are set to 0,
thus, the subgoal typically represents a tuning point in the joint trajectory. In
addition, we use an individual parameter ki to balance the costs between reach-
ing the subgoal and the needed energy of the movement. In this representation
the subgoal has n+ 2 number of parameters, where n is the number of joints of
the robot.

• Position and velocities: In addition to the joint positions, we can also define
the desired joint-velocities θ̇i of the agent when reaching the subgoal. A subgoal
has now has 2n+ 2 parameters.

• Importance factors: Furthermore, we may define importance factors ai for
each dimension of θi and θ̇i indicating the importance for the planner to reach a
certain position (or velocity) with joint j in relation to the subgoals of all other
joints.

These representations have an ascending number of parameters, however, the express-
ibility of the subgoals is also increased. We still have to evaluate which of these rep-
resentations should be preferred. Our current experiments only cover position-based
subgoals. Another promising extension of this approach is to use subgoals not in joint
space, but in task space such as the end-effector position.

In order to guide the agent to the desired subgoal, we use the Approximate Infer-
ence Control (AICO) algorithm to solve a SOC problem. The cost function of the
SOC problem is chosen such that the agent navigates (if possible) to the given subgoal
in the given amount of time. The cost function ct for intermediate time steps (t < di)
is just given by the used energy, i.e.

ct(xt,ut) = −kuuTt ut

The final costs at the final time step T = di are given by the squared distance to the
sub-goal

cT (xT) = −(xT − gi)
Tdiag(ai)(xT − gi),

where the elements of ai are set to 1 for joint positions and to 0.01 for joint velocities.
AICO reformulates the stochastic optimal control problem as an Bayesian inference
problem. This alternative view of control and planning has many advantages:

• Probabilistic Inference might help to bring different disciplines (planning, AI,
imitation learning ...) in robotics together.

• Structured representations like graphical models can be used

59

Fig. 7.1: Graphical Model for Probabilistic Planning from M. Toussaint [40]: A
stochastic optimal control problem can be formulated as probabilistic inference
problem.

• Many algorithms exist to exploit this structure (Massage-Passing, Loopy Belief-
propagation, Variational Inference, Extended Kalman Filters, Particle Filters
...)

The graphical model representation for a SOC problem is illustrated in Figure 7.1.
The state variable xt denotes the joint angles and joint velocities. Controls are labelled
by ut. The time horizon is fixed to T time steps.

The task variable zt expresses a performance criteria (like avoiding a collision, or
reaching a goal). It is given by:

P (zt = 1|xt,ut) = exp(−ct(xt,ut)), (7.1)

where the function ct represents the costs in classical stochastic optimal control. The
SOC problem is now solved by calculating the posterior P (x1:T ,u1:T |z1:T = 1) over
the trajectories, conditioned on observing a reward (zt = 1) at each time step t. It
can be shown that (under some assumptions...) this is equivalent to computing the
classical SOC solution [40]. The posterior can be computed by using message passing
in the given graphical model. The belief b(xt) of a state is given by:

b(xt) = µxt→xt+1(xt)µxt−1→xt(xt)µzt→xt(xt), (7.2)

where µxt→xt+1(xt) denotes the forward message, µxt−1→xt(xt) the backward mes-
sage, and µzt→xt(xt) is expressing the message of the immediate task variable.

Exact massage passing can only be derived for the special case of linear dynamics,
quadratic costs, and Gaussian noise (LQG). In this case all messages are Gaussians
and can be computed in closed form, see [40].
For non-linear dynamics we can use a wide range of approximate inference methods
(extended Kalman smoothing, Unscented Transform (UCT), or particle methods sug-
gested by Hoffman et. al. [41]).
The simplest method is extended Kalman smoothing, which is also used in our exper-
iments. The non-linear system is linearized at the current mode of the belief b(xt).
At this point of linearization again simple Gaussian messages are used, as in the LQG
case. Subsequently, the system is linearized at the new mode of the belief. The algo-
rithm loops back-and-forth over t and updates local messages until the belief of the
trajectory converges.
The algorithm is similar to the iterative Linear Quadratic Gaussian (iLQG) planner
proposed in [42] and [36]. The only difference is that forward messages are neglected
in the iLQG algorithm, which leads to slower convergence.

The resulting optimal policy in AICO is given as a closed-loop non-linear feedback
controller of the form:

ut = lt + Ltxt, (7.3)

60

Fig. 7.2: Atkeson et. al. [43]: Illustration of a complex 2-link balancing be-
haviours for a 2 link balancing task. The figure shows the response to a 25 Ns
push.The optimal strategy is to perform a fast bending movement and subse-
quently return to the upright position.

where lt is a constant control term and Lt represents the linear control gain matrix.
Both quantities vary for each time step, resulting in a non-linear control law.

7.3 Simulation

We conducted preliminary experiments on a complex 2-link balancing task (see Figure
7.2). The physical properties of the robot were chosen to match a human. For more
details, see [43]. The robot gets pushed by an external force and has to keep balance.
The optimal strategy is to perform a fast bending movement and subsequently return
to the upright position. This is a highly non-linear control policy.
The trajectory was modelled with two subgoals resulting in two sub-trajectories. The
first trajectory is optimized with respect to the first subgoal. The second trajectory
stabilizes the agent in an upright position. The optimal subgoals were learned using
the CMA-ES algorithm [44], which is a state-of-the-art algorithm for learning motor
skills. Our learning strategy with multiple subgoals is able learn a near optimal (there
is still some work to do) policy within 15 minutes of simulation time or 200 trials. See
Figure 7.3 for the resulting trajectories. Using only a single subgoal fails because of
the highly non-linear movement.

Fig. 7.3: Results for the 2-Link Balancing Task: The robot needs to keep balance
after a push of 25 Ns. Figure (left) illustrates the near optimal hip and ankle
angle trajectories. The subgoal is indicated by the magenta marker and could
not exactly be reached because of torque constraints (right).

61

7.4 Functional Analysis

7.4.1 Dynamics and Nonlinearity

The dynamics of the system has to be known. The AICO algorithm deals with non-
linearities by linearizing the system at the current mode of the belief of the trajectory.
The motion primitive itself has no dynamics of its own, except for the executing time
of the primitive. The execution time is needed for determining the time which is left
to reach a subgoal.

7.4.2 Attractor

The AICO approach returns a non-linear feedback controller to follow the mode of the
posterior distribution over all trajectories. Thus, the posterior is also an attractor of
the system, at least in a local neighborhood of this trajectory.

7.4.3 Coupling

The coupling between joints is inherent to the approach because the known system
dynamics are used. Coupling with sensory variables is achieved by the feedback con-
troller, however, how to influence the subgoals itself by sensory input is unclear.

7.4.4 Learning

Learning takes place at two levels. At the lower level we have to acquire the system dy-
namics, which is a standard supervised learning problem. Many different approaches
can be used for this setup (see [45] for a comparison of some of the most popular
model learning algorithms). At the level of the subgoal parameters we have to employ
reinforcement learning, we are currently using a state-of-the art method for motor
skill acquisition called CMA-ES ([44]). On the long run we also want to employ an
approximate inference planner using learned models at this level.
So far we have not investigated the possibility of using supervised learning, i.e. ex-
tracting the subgoal parameters from a given trajectory. However, we think that this
should not pose a big problem.

7.4.5 Training Data

The dynamic model of the system can be learned with sample trajectories of the states
and the applied controls. On the level of the subgoals the training data is given by
the used sub-goal parameters and a corresponding performance evaluation of these
sub-goal parameters (RL setup).

7.4.6 Generalization

The AICO algorithm drives the system to the next subgoal in an optimal way (energy
efficient). Thus, the approach generalizes easily to different initial states of the system,
at least if the subgoal is still reachable from the new initial state. Thus, for simple
control problems like kinematic reaching tasks, the generalization of the approach to
different initial states is inherent to the approach. For complex control problems,
where different subgoals have to be used for different initial conditions, the approach
should generalize well due to the abstract representation of the movement.

62

7.4.7 Modulation

The trajectory is modulated by the cost function. For example smaller control costs
will automatically result in an faster movement execution. In addition the speed of
the trajectory can be easily modulated by using different duration parameters di.
Changing the subgoal will result in different trajectories.

7.4.8 Sensory Feedback Integration

The feedback-controller can (in theory) deal with arbitrary Gaussian noise in the
system dynamics. Including additional sensory feedback at the level of the feedback
controller is difficult because we would need an exact model of the sensors and of the
environment. However, sensory feedback can be integrated at the level of the subgoal
parameters, but it is not completely clear how to do that.

7.4.9 State Variables

The state variables are given by the state of the robot (depending on the problem joint-
positions or also joint-velocities) and on the current execution time of the template.

7.4.10 Robustness and Adaptation to Perturbations

The feedback-controller can (in theory) deal with arbitrary Gaussian noise in the sys-
tem dynamics. The feedback controller always tries to track the mode of the posterior
trajectory distribution in an optimal way (according to the defined costs). Unex-
pected perturbations, which require a re-planning of the sub-goal parameters, need to
be detected by a separate module.

7.4.11 Stability

The controller is stable in a local neighborhood of the posterior belief of the trajectory.

7.5 Non-Functional Analysis

7.5.1 Representation and Interface

The motion is represented as a sequence of subgoals. The number of subgoals is usually
fixed before learning.

7.5.2 Timing

Time is a separate variable of the system, determining how much time is left to reach a
subgoal. Replacing the time variable with a phase variable which can be coupled with
external events like for the DMPs [46] should be feasible, but has not been investigated.

7.5.3 Robustness and Reliability

For perturbations which do not require re-planning of the subgoals (typically the case)
the system is very robust due to the feedback controllers. Re-planning of the subgoals
in real time will be difficult due to computational reasons.

63

7.5.4 Dependencies

The system depends on the quality of the knowledge of the system dynamics. The
simulation time step used for planning is also quite crucial, for highly non-linear sys-
tems like the 2-link balancing task, this time-step has to be very small, say 1ms to
5ms.

7.5.5 Runtime

Planning a single trajectory given the subgoal parameters is sufficiently fast and can
be done in less than a second even for high dimensional systems.

Learning the subgoal parameters itself is currently implemented by a genetic al-
gorithm (CMA-ES) which is rather slow (can take several hours). However, we used
this algorithm for the RL setup which is considered to be much more complicated as
the imitation learning setup.

7.5.6 Usefulness for Recognition

If it is possible to extract the subgoals from given trajectories (should be feasible), the
subgoal parameters are due to the compact representation well suited for movement
recognition.

7.6 Summary

Representing a motion primitive as a sequence of subgoals is a very compact represen-
tation of a movement, resulting in a low number of parameters to describe a motion.
The hypothesis that the compact subgoal representation facilitates learning with mo-
tion primitives seems to be plausible, however, this still needs to be investigated. The
subgoal representation also allows the application of local planning methods for com-
plex movement skills which would otherwise not be achievable with these methods.

Learning takes place at two levels of hierarchy. At the motor control level we have
to learn the system dynamics. At the level of the movement primitives, good subgoals
have to be found in order to achieve a given task. Thus the problem of learning the
whole motion with motion primitives is decomposed into two sub problems, which are
supposed to be easier to accomplish.

Due to the non-linear feedback controller the approach is also robust to various
kinds of perturbations. This property should avoid the need for re-planning the sub-
goals in the case of unexpected perturbations.

64

Chapter 8

Adaptive Frequency
Oscillators

Sébastien Gay1, Auke Jan Ijspeert1, Juan Pablo Carbajal2, Hidenobu Sumioka2,
Qian Zhao2, Naveen Suresh Kuppuswamy2

EPFL, BIOROB1, UZH2

8.1 Short Introduction

Adaptive Frequency Oscillators (AFOs) extend standard Central Pattern Generators
(CPGs) to allow the system to learn the frequency of a periodic input (forcing) sig-
nal and adapt its own intrinsic frequency to it. The frequency tuning of Adaptive
Frequency Oscillators goes beyond mere synchronization or entrainment as in generic
CPGs. The system is called plastic in that it adapts its own parameters to learn the
frequency of the input signal. This frequency remains encoded in the system even if
the forcing signal disappears.

Adaptive Frequency Oscillators achieve the following:

1. All characteristics of standard CPGs: no explicit time dependence, stability, low
computational cost etc. (refer to the section on CPGs for more precisions).

2. They learn the frequency of any periodic (harmonic or non-harmonic) input sig-
nal: sine wave, square pulse, sawtooth etc. When the forcing signal encapsulates
several frequency components the AFO learns the frequency component that is
the nearest to its initial frequency.

3. They can track a frequency that is changing with time.

4. They can tune themselves to the resonant frequency of the robot by providing
the information of proper sensors as forcing signal.

5. They can split the different frequency components of a complex signal by using
a pool of AFOs with different initial conditions. The different oscillators can
then be recombined to get a pattern generator with the same complex waveform
as the input signal.

Some parts of the text and the figures of this documents have been taken from [47].

8.2 Model Description

The idea of Adaptive Frequency Oscillators is to add a learning rule on the frequency
to an existing oscillator so that it learns the frequency of a periodic input signal. In

65

this document, we will discuss mostly the Adaptive Hopf Oscillator, but the learning
rule presented here can be applied to other oscillators as well.

The main idea behind Adaptive Frequency Oscillators is the following: Starting
from a standard Hopf oscillator written in Cartesian coordinates and with its output
x perturbed by a periodic input signal F(t):

ẋ = γ(µ− (x2 + y2))x− ωy + εF (t)

ẏ = γ(µ− (x2 + y2))y + ωx (8.1)

where µ defines the squared radius of the limit cycle of the oscillator, γ > 0 influences
the speed of convergence to this limit cycle, and ε defines the strength of the coupling
with the input signal.

Let us write this system into polar coordinates to investigate the influence of the
forcing signal on the phase of the oscillator. We pose x = r cos(φ) and y = r sin(φ) :

ṙ = γ(µ− r2)r + cos(φ)εF (t)

φ̇ = ω − 1

r
sin(φ)εF (t)) (8.2)

Since we want to find a learning rule for ω which drives it towards the frequency of
the perturbation, one should impose the same effect on the frequency (i.e. accelerate
or decelerate) as the forcing signal imposes on the phase (i.e. the tangent component
of the forcing term). As shown above, and considering that the system has converged
to its limit cycle (r = const), the learning rule is chosen to be:

ω̇ = − 1

τ
sinφεF (t)) (8.3)

where τ is a factor influencing the convergence rate of ω to the desired frequency.

Switching back to Cartesian coordinates the full system is written:

ẋ = γ(µ− (x2 + y2))x− ωy + εF (t)

ẏ = γ(µ− (x2 + y2))y + ωx

ω̇ = − ε
τ

y√
x2 + y2

F (t) (8.4)

This learning rule on ω can be similarly applied to different oscillators like ampli-
tude controlled phase oscillator, Van Der Pol or Fitzhugh-Nagumo oscillator. (See [47])

Adaptive Frequency Oscillators have mainly two different applications:

• They can tune themselves to the resonance frequency of a robot with passive
dynamics, making the locomotion very efficient.

• A pool of AFOs can be used to perform frequency analysis on an input signal.
The different AFOs of the pool can then be combined to construct limit cycles
with arbitrary shapes.

Tuning to the resonance frequency of a robot is simply achieved by providing the
proper sensor signal (ex: from load sensors on the feet or potentiometers from the
joints) to the AFO. The system automatically tunes itself to the resonant frequency of
the system and tracks changes of resonance frequency (if one adds or remove weight

66

Fig. 8.1: Structure of the pool of adaptive frequency oscillators that is able
to reproduce a given teaching signal T(t). The mean field produced by the
oscillators is fed back negatively to the oscillators

for instance). See [48] for an example with a compliant quadruped robot.

Performing frequency analysis on complex input signals with multiple frequency
components requires the use of a pool of AFOs with a negative feedback loop, as
described on Figure 8.1.

Each AFO will tune itself to the frequency that is the nearest to its initial frequency.
Each time an oscillator converges to a frequency present in the teaching signal, due
to the negative feedback, this frequency disappears from the input signal. The other
oscillators can then only converge to the other frequencies present. The pool of AFOs
after convergence is able to approximate the frequency spectrum of the teaching signal.

The previous pool of oscillators can be extended by adding a weight to each os-
cillator in the mean field sum, and a coupling between oscillators, in order to ensure
stability of the output pattern. The result is an individual oscillator will be able to
fully match the energy content of a frequency in the spectrum of the teaching signal.
Moreover, the coupling ensures that the system exhibits a stable limit cycle. Here,
amplitudes and phase differences become system state variables, in addition to fre-
quencies. The governing differential equations of the system are then, for oscillator
i:

ẋi = γ(µ− (xi
2 + yi

2))xi − ωiyi + εF (t) + ξ sin(
ωi
ω0
φ0 − φi − ψi)

ẏi = γ(µ− (xi
2 + yi

2))yi + ωixi

ω̇i = − ε
τ

yi√
xi2 + yi2

F (t)

ψ̇i = sin(
ωi
ω0
φ0 − φi − ψi)

α̇i = ηxiF (t) (8.5)

with

φi = sgn(xi) cos−1(− yi√
xi2 + yi2

)

F (t) = Pteach(t)−Qlearned(t)

Qlearned(t) =

N∑
i=0

αixi

67

where ξ , K and η are positive constants. The output of the system, Qlearned, is the
weighted sum of the output of each oscillator. F (t) represents the negative feedback,
which on average is the remainder of the teaching signal Pteach(t) that the network
still has to learn. αi represents the amplitude associated with the frequency ωi of
oscillator i. The evolution equation maximizes the correlation between xi and F (t),
which means that αi will increase only if ωi has converged to a frequency component
of F (t) (the correlation will be positive on average) and will stop increasing when the
frequency component ωi disappears from F(t) because of the negative feedback loop.
ψi is the phase difference between oscillator i and 0. The value converges to the phase
difference between the instantaneous phase of oscillator 0, φ0, scaled for frequency ωi,
and the instantaneous phase of oscillator i, φi. Each adaptive oscillator is coupled
with oscillator 0, with strength ξ, to maintain the correct phase relationships between
oscillators. See [47] for additional information.

8.3 Simulation

8.3.1 General Results

We first present results of numerical simulation where we impose various kinds of
teaching signals to the AFO. Figure 8.2 shows convergence of the AFO to the fre-
quency of the teaching signal for different signal shapes. The AFO tunes itself to the
correct frequency even for non harmonic signals (b and c). It can also track a chang-
ing frequency (d) tunes itself to one of the frequency component of a multi-frequency
input signal. AFOs can even approximate the frequency of a chaotic signal like the
output of the Rössler oscillator (f).

8.3.2 AFOs and Energy Transfers with Mechanical Sys-
tems

As shown in [49] the convergence of ω in the system (Eq.(8.4)) depends on the coupling
parameter ε: the higher this parameter the faster the convergence, but the quality of
the convergence becomes low. Figure 8.3 shows the minimum value of (ω2−ω1)/ω1 for
which the AFO is able to separate the frequencies in the spectrum of the input signal
F (t) = 1

2
(sin(ω1t) + sin(ω2t)). As can be seen, the performance of the separation

becomes low with increasing coupling parameter, but the time required to converge to
the frequency is shorter, defining a trade-off between speed of convergence and sepa-
ration performance.

AFOs can be coupled with mechanical systems and can tune themselves to the
natural frequency of these systems. However, the energy transfer between the me-
chanical system and the AFO that is possible to achieve is largely dependent of the
properties of the system. Figure 8.4 shows the performance of the AFO when coupled,
as described in Section 8.2, to a linear damped mass-spring system defined as:

ż = v

v̇ = −(2πf0)2z − dv + cos(ωt) (f0 =
1

2π

√
k

m
, d =

γ

m
) (8.6)

where f0 = 4.8Hz and d = 0.51/s (we observed a similar tendency for softer
damped mass-spring system (f0 = 3.0Hz, d = 0.0011/s)). The quality index Q(Q ∈
[0, 1]) quantifies the performance of the AFO in terms of energy transfer. The per-
formance in terms of energy transfer (Q) was largely poor with the most number of

68

Fig. 8.2: (a) Typical convergence of an adaptive frequency Hopf oscillator driven
by a harmonic signal (F (t) = sin(2πt)). The frequencies converge towards
the frequency of the input (indicated in dashed line). After convergence the
frequency oscillates with a small amplitude around the frequency of the input.
In all figures, we plot in the main graph the time evolution of the difference
between ω and the input frequency ωF , normalized by the input frequency.
The top right panel shows the driving signals (note the different scales). (b)
Square pulse F (t) = rect(ωF t) (c) Sawtooth, F (t) = st(ωF t), (d) Chirp F(t) =
cos(ωct) where ωc = ωF (1+ 1

2 (t
1000)2). (Note that the graph of the input signal is

illustrative only since changes in frequency takes much longer than illustrated).

(e) Signal with two non-commensurate frequencies F (t) = 1
2 [cos(ωF t)+cos(

√
2

2],
i.e. a representative example of how the system can evolve to different frequency
components of the driving signal depending on the initial condition ωd(0) =
ω(0) − ωF (0) (f) F(t) is the non-periodic output of the Rössler system. The
Rössler signal has a 1

f broad-band spectrum, yet it has a clear maximum in the
frequency spectrum. In order to assess the convergence we use ωF = 2πfmax
, where fmax is found numerically by FFT. The oscillator converges to this
frequency.

69

2

3

4

5

6

7

8

9

5 10 15 20 25 30 35 40

m
in

im
u

m
 d

e
te

c
ta

b
le

 d
if
fe

re
n

c
e

K

y = 1.96e-01 x + 1.90e+00

Fig. 8.3: The minimum values of (ω2−ω1)/ω1 (all ωs are expressed in rad/s) that
allow the AFO to separate ω1 or ω2 (here, ω1 = 20π, ω2 ∈ [1.01ω1, 1.1ω1]) from
the input signal F (t) = 1

2 (sin(ω1t) + sin(ω2t)) for different values of coupling
parameter. The initial phase is set to zero and the initial radius of the oscillator
is 1. We take the initial frequency of the oscillator uniformly at the range,
ω ∈ [0.9ω1, 1.1ω2]. As can be seen, the AFO with the lower parameter can
separate one of frequency components of the inputs even when (ω2−ω1)/ω1 value
is small. However, it takes longer time to converge as shown in [49].

70

initial conditions on ω having Q ∼ 0.2 and only initial conditions with ε = 20 achieve
stabilisation with some of the ω converging to the natural frequency of the mechanical
system.

However, when coupled to a nonlinear spring, the performance of the system is
quite different. The previous spring was extended with the third power of the defor-
mation:

ż = v

v̇ = −az3 − (2πf0)2z − dv + cos(ωt) (8.7)

This time, the performance is surprisingly high (Q ' 0.5 averaged over all initial
conditions). Figure 8.5 shows the evolution of the amplitude and frequency of the
AFO. We notice that for the linear case the frequency converges to values very close
to f0, nevertheless no amplification of the oscillations is observed. The evolution of
the frequency in the non-linear case shows a strong variation which we presume is the
source of the resonant pump of energy into the system. In contrast with the linear
system, the non-linear one shows an increase of the amplitude.

8.3.3 AFOs and Compliant Robotics Systems

AFOs can be coupled to real compliant robots and tune themselves to the resonant
frequency of the whole robot. Unlike above, the AFOs cannot be coupled to the ac-
tual oscillations of the robot (which is unknown a priori), but has to be coupled to
some sensory information. Figure 8.6 shows a small compliant quadruped robot, the
puppy, controlled by a single AFO coupled to the vertical axis of the inertia sensor
of the robot. The AFO is able to tune itself to the resonance frequency of the robot
and track changes of resonance frequency (by adding or removing weight). It is also
capable of adapting to the resonance frequency of a specific posture (here by changing
the leg angle). Convergence has however been proven dependent to the type of sensor
used and particularly its phase shift with respect to the general oscillations of the
robot. For a theoretical discussion and experiments about convergence with different
types of sensors, please refer to [48].

8.3.4 Pools of AFOs for frequency analysis and construc-
tion of complex limit cycles

Finally pools of AFOs can be used to find the frequency components of a multi-
frequency input signal. Figure 8.7 shows an example of a frequency analysis and
construction of a limit cycle using a pool of oscillators. The evolution of the frequency
ω, the amplitude α and the phase φ of each oscillator is represented. Each oscillator
eventually converges to one frequency of the teaching signal and the pool approximates
the input signal perfectly. See [47] and [50] for more details.

8.4 Functional Analysis

8.4.1 Dynamics and Nonlinearity

The dynamics of the oscillator on which the AFO is built is kept by adding the learning
rule on the frequency parameter. The oscillator shape and dynamics do not change.

71

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5

#
In

it
ia

l
co

n
d
it
io

n
s

Q

ǫ = 20
ǫ = 30
ǫ = 40

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14 16 18 20

A
(t

)[
m
]

t[s]

ǫ = 20
ǫ = 30
ǫ = 40

(b) (c)

Figure 1.3: The behaviour of the damped system coupled with the AFO for three
coupling parameter values (ǫ = 20, 30, 40). The initial conditions of the AFO are
radius r = 0.01, phase φ = 0, and f ∈ [0.8f0, 1.2f0]. For each parameter setting, the
simulation is run for 20s at 1000 initial conditions. (a) Histogram of index Q. (b)
Spring instantaneous amplitude for the initial conditions where we get the highest Q
value and the lowest Q one for different coupling parameters. In both conditions, the
amplitude often becomes lower than the initial one. (c) Time series of the frequency of
the AFO. Each gray line represents time series of a frequency for an initial condition.
The natural frequency of the system is shown with red color. The lowest coupling
parameter (K = 20) slightly improves the adaptation of the AFO to the natural
frequency.

We extended the linear system defined as Eq. (1.8) by adding the third power
of the deformation:

v̇ = −az3 − (2πf0)
2z − dv + cos(ωt) (1.10)

In Figure 1.4a, we show the instantaneous amplitude of the oscillation as a
function of time for an linear spring (d = 0, a = 0 in Eq.(1.10)) and a symmetric

11

Fig. 8.4: The behavior of the damped system coupled with the AFO for three
coupling parameter values (ε = 20, 30, 40). The initial conditions of the AFO
are radius r = 0.01, phase φ = 0, and f ∈ [0.8f0, 1.2f0]. For each parameter
setting, the simulation is run for 20s at 1000 initial conditions. a) Histogram of
index Q. b) Amplitude of the oscillations of the spring for the initial conditions
where we get the highest Q value and the lowest Q one for different coupling
parameters ε. In both conditions, the amplitude often becomes lower than the
initial one. c) Time series of the frequency of the AFO. Each gray line represents
time series of a frequency for an initial condition. The natural frequency of the
system is shown with red color. The lowest coupling parameter (K = 20) slightly
improves the adaptation of the AFO to the natural frequency.

72

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20

A
(t

)[
m
]

t[s]

(a)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

0 5 10 15 20

f
[
H
z
]

t[s]

(b)

Figure 1.4: The behavior of an AFO connected to a progressive spring and that of an
AFO connected a linear spring. The time evolution of the instantaneous amplitude
(a) and of the frequency of the AFO (b) are shown. The blue lines correspond to
the nonlinear spring, the red lines to the linear spring and the black line shows the
evolution of the amplitude of the non-linear spring when forced with a cosine function
with frequency equal to the linear resonant frequency f0 = 3Hz. The non-linear case
in blue lines presents an average performance of Q ≃ 0.5 due to the initial drop in
the amplitude. It is clear that the AFO outperforms the linear pumping method in
black. Note that in (b) the frequency of the AFO, for the linear case, is close to f0,
compared with one for the nonlinear case, nevertheless resonance in the amplitude is
not observed.

A cubic force used as a non-linear component in the report could be obtained
from the Maclaurin expansion of the sine function which can be found in the
equations of the pendulum or segmented legs with springs. The investigation
of these systems will be our next step to understand a role of the non-linear
component on the energy transfer.

13

Fig. 8.5: The behavior of an AFO connected to a progressive spring and that
of an AFO connected to a linear spring (ε = 500 for both of them). The time
evolution of the instantaneous amplitude a) and of the frequency of the AFO b)
are shown. The blue lines correspond to the nonlinear spring, the red lines to
the linear spring and the black line shows the evolution of the amplitude of the
non-linear spring when forced with a cosine function with frequency equal to the
linear resonant frequency f0 = 3Hz. The non-linear case in blue lines presents
an average performance of Q ' 0.5 due to the initial drop in the amplitude. It
is clear that the resulting amplitude is higher in the case of an AFO coupled to
a nonlinear spring than when the same nonlinear spring is forced by a simple
cosine function (in black). Note that in b) the frequency of the AFO, for the
linear case, is close to f0, unlike in the nonlinear case, nevertheless resonance in
the amplitude is not observed.

73

336 Auton Robot (2008) 25: 331–347

Fig. 4 Experiment 1 to show the online adaptation of the controller.
On the left an illustration of the sensor-controller structure. The z-value
of the acceleration sensor (A) is used as an input to the oscillator. The
signal of the oscillator is used to set the motor position according to

(5). On the right the intrinsic frequency ω of the oscillator is shown
as it evolves during the experiment. The body weight is changed from
m1 = 0.905 kg to m2 = 0.695 kg. The controller immediately starts to
adapt to the changed body property

Fig. 5 (a) The range of posture
angles used in the experiment
illustrated on the robot. (b) The
average frequency (squares)
found by the adaptive frequency
oscillator vs. posture, i.e. the
angle of the leg. The bars show
the standard deviation

Experiment 2—Posture dependent frequency In this exper-
iment we show that the frequency is not only dependent of
obvious parameters like the weight of the robot but other,
e.g. geometrical parameters, can influence the frequency as
well. Here we show that it is dependent on the posture of the
legs and the adaptive frequency oscillator is able to account
for these different frequencies.

For this experiment the robot is again driven by a single
oscillator and the inertia sensor is used as input to the oscil-
lator (cf. Fig. 4a). While the front leg parameters are kept at
α0 = 14.38◦ and α1 = 10.80◦, in this experiment the angle
of the hind leg is varied from α0 = −13.11◦ to α0 = −3.23◦
while all the other parameters remain the same.

In Fig. 5 we show the average frequency which is as-
sumed by the oscillator vs. the angle of the leg. As can be
seen, the steeper the angle of the leg the higher the frequency
found by the adaptation process.

By varying the posture angle α0 of the leg we vary the
(average) incident angle of the foot which induces a change
in the resonant frequency of the robot. As illustrated in Fig. 6
this makes sense considering the geometry of the leg: The
steeper the leg the less of the force acting on the foot loads
the springs and the larger becomes the force vector push-
ing along the axis of the foot and thus loading the motor.
The force vector acting perpendicular (i.e. in direction of
the free movement) to the lower leg gets smaller, thus there

336 Auton Robot (2008) 25: 331–347

Fig. 4 Experiment 1 to show the online adaptation of the controller.
On the left an illustration of the sensor-controller structure. The z-value
of the acceleration sensor (A) is used as an input to the oscillator. The
signal of the oscillator is used to set the motor position according to

(5). On the right the intrinsic frequency ω of the oscillator is shown
as it evolves during the experiment. The body weight is changed from
m1 = 0.905 kg to m2 = 0.695 kg. The controller immediately starts to
adapt to the changed body property

Fig. 5 (a) The range of posture
angles used in the experiment
illustrated on the robot. (b) The
average frequency (squares)
found by the adaptive frequency
oscillator vs. posture, i.e. the
angle of the leg. The bars show
the standard deviation

Experiment 2—Posture dependent frequency In this exper-
iment we show that the frequency is not only dependent of
obvious parameters like the weight of the robot but other,
e.g. geometrical parameters, can influence the frequency as
well. Here we show that it is dependent on the posture of the
legs and the adaptive frequency oscillator is able to account
for these different frequencies.

For this experiment the robot is again driven by a single
oscillator and the inertia sensor is used as input to the oscil-
lator (cf. Fig. 4a). While the front leg parameters are kept at
α0 = 14.38◦ and α1 = 10.80◦, in this experiment the angle
of the hind leg is varied from α0 = −13.11◦ to α0 = −3.23◦
while all the other parameters remain the same.

In Fig. 5 we show the average frequency which is as-
sumed by the oscillator vs. the angle of the leg. As can be
seen, the steeper the angle of the leg the higher the frequency
found by the adaptation process.

By varying the posture angle α0 of the leg we vary the
(average) incident angle of the foot which induces a change
in the resonant frequency of the robot. As illustrated in Fig. 6
this makes sense considering the geometry of the leg: The
steeper the leg the less of the force acting on the foot loads
the springs and the larger becomes the force vector push-
ing along the axis of the foot and thus loading the motor.
The force vector acting perpendicular (i.e. in direction of
the free movement) to the lower leg gets smaller, thus there

336 Auton Robot (2008) 25: 331–347

Fig. 4 Experiment 1 to show the online adaptation of the controller.
On the left an illustration of the sensor-controller structure. The z-value
of the acceleration sensor (A) is used as an input to the oscillator. The
signal of the oscillator is used to set the motor position according to

(5). On the right the intrinsic frequency ω of the oscillator is shown
as it evolves during the experiment. The body weight is changed from
m1 = 0.905 kg to m2 = 0.695 kg. The controller immediately starts to
adapt to the changed body property

Fig. 5 (a) The range of posture
angles used in the experiment
illustrated on the robot. (b) The
average frequency (squares)
found by the adaptive frequency
oscillator vs. posture, i.e. the
angle of the leg. The bars show
the standard deviation

Experiment 2—Posture dependent frequency In this exper-
iment we show that the frequency is not only dependent of
obvious parameters like the weight of the robot but other,
e.g. geometrical parameters, can influence the frequency as
well. Here we show that it is dependent on the posture of the
legs and the adaptive frequency oscillator is able to account
for these different frequencies.

For this experiment the robot is again driven by a single
oscillator and the inertia sensor is used as input to the oscil-
lator (cf. Fig. 4a). While the front leg parameters are kept at
α0 = 14.38◦ and α1 = 10.80◦, in this experiment the angle
of the hind leg is varied from α0 = −13.11◦ to α0 = −3.23◦
while all the other parameters remain the same.

In Fig. 5 we show the average frequency which is as-
sumed by the oscillator vs. the angle of the leg. As can be
seen, the steeper the angle of the leg the higher the frequency
found by the adaptation process.

By varying the posture angle α0 of the leg we vary the
(average) incident angle of the foot which induces a change
in the resonant frequency of the robot. As illustrated in Fig. 6
this makes sense considering the geometry of the leg: The
steeper the leg the less of the force acting on the foot loads
the springs and the larger becomes the force vector push-
ing along the axis of the foot and thus loading the motor.
The force vector acting perpendicular (i.e. in direction of
the free movement) to the lower leg gets smaller, thus there

Fig. 8.6: Online adaptation of AFOs controlling the hip joint of a simple com-
pliant quadruped robot. Top: the quadruped robot used for the experiments
with two different leg angles. The compliance is in the knees and only the hips
are actuated. Middle left: illustration of the sensor-controller structure. The
z-value of the acceleration sensor (A) is used as an input to the oscillator. The
signal of the oscillator is used to set the motor position according to. Middle
right: intrinsic frequency ω of the oscillator shown as it evolves during the ex-
periment. The body weight is changed from m1 = 0.905 kg to m2 = 0.695 kg.
The controller immediately starts to adapt to the changed body property Bot-
tom: the average frequency (squares) found by the adaptive frequency oscillator
vs. posture, i.e. the angle of the leg. The bars show the standard deviation.

74

(a) Evolution of the state variables of the system

(b) Result of learning

Fig. 8.7: Construction of a limit cycle by learning an input signal (Pteach =
0.8 sin(15t)+cos(30t)−1.4 sin(45t)−0.5 cos(60t)). Fig. (5a) shows the evolution
of the state variables of the system during learning. The upper graph is a plot
of the error (||Pteach − Qlearned||). The 3 other graphs show the evolution of
the frequencies, ωi, the amplitudes, αi and the phases, φi. We clearly see that
the system can learn the teaching signal perfectly – the frequencies, amplitudes
and phase differences converge to the correct values and the error becomes zero.
Fig. (5b) shows the result of learning (teaching signal in upper graph, output
of the system in lower graph), we note the perfect reconstruction of the signal.

75

8.4.2 Attractor

The system is designed to learn the frequency of periodic signals. Thus it can be
applied to oscillators with limit cycle behaviors. The frequency of the input signal is a
global attractor of the system (infinite basin of attraction), although the frequency of
the oscillator never quite stays at the teaching frequency but keeps oscillating around
it with very small amplitude.

8.4.3 Coupling

For online learning of the resonance frequency of a robot, the AFOs can be coupled
in the same way as standard CPGs (see Section on CPGs). Usually, one AFO per
DoF is used. For frequency analysis and construction of limit cycles, several AFOs
are coupled together as described in Section 8.2. This time, one AFO per frequency
component is used and this pool of AFO forms a higher dimensional limit-cycle, a
meta-oscillator. One can then use these new modules for locomotion the same way as
standard CPGs, by using one per DoF and coupling them together to have specific
phase relationships.

8.4.4 Learning

Type AFOs are a type of supervised learning since a teaching signal is provided.

Algorithm All the learning is embedded in the dynamics of the system. No exter-
nal learning algorithm is used, although AFOs can be considered as a type of
Hebbian learning.

Mode AFOs are well suited for online learning, especially to tune themselves to the
resonant frequency of the robot, since the learning is based on the information
provided online by the various sensors. They can also track a varying frequency
online. Pools of AFOs can be used offline to construct a limit cycle based on
some training signal and then applied to the robot and modulated online.

8.4.5 Training Data

The training data can be any periodic or pseudo-periodic signal, depending on the
application. For resonance frequency tuning AFOs use sensor outputs. Note: the
phase relationship between the sensor and the oscillator output must respect some
bands to avoid divergence (see [48]). This might require shifting the phase of the
sensor. For frequency analysis, a desired teaching signal has to be provided. It can be
for instance the desired trajectory of one joint.

8.4.6 Generalization

AFOs are capable to generalize to any periodic signal with any frequency. The basin
of attraction of the frequency is infinite. The learning is made online so AFOs can
adapt online to changes in the frequency.

A pools of AFOs coupled together is capable of generating a limit cycle modeling
any teaching signal, as long as the number of AFOs chosen to compose the pool is at
least equal to the number of frequency components of the teaching signal. If fewer
oscillators are used, or if the spectrum is continuous, the output will only approximate
the teaching signal.

76

8.4.7 Modulation

In addition to the base oscillator parameters, the coupling terms ε and convergence
speed τ can be modulated, both influencing the convergence rate of the frequency
to the input frequency as well as the amplitude of the remaining oscillations of the
frequency after convergence.

8.4.8 Sensory Feedback Integration

Adaptive Frequency Oscillators are intrinsically suited for sensory feedback integra-
tion. Indeed, one of their main application is to be able to learn the resonance fre-
quency of a mechanical system. For this, information from well chosen sensors (see
note in Section 8.4.5) is provided to the AFO as input signal, and the system auto-
matically tunes itself to the resonance frequency of the system. Other kinds of sensory
feedback information can be imagined, similarly to CPGs.

8.4.9 State Variables

Depending on the oscillator that is used as basis for the AFO, different state variables
may be used. For the Hopf oscillator in Cartesian coordinates, two coupled state
variables x and y are used, x being generally chosen as the output of the system. In
addition to the intrinsic state variables of the base oscillator, the frequency, ω, is made
a state variable of the system to allow learning of the input frequency and not only
entrainment.

8.4.10 Robustness and Adaptation to Perturbations

The characteristics the oscillator on which the AFO is built are kept, thus the robust-
ness of the limit cycle is the same. For more precisions on characteristics of some well
known oscillators, please see the section on CPGs. Perturbations on the frequency are
immediately damped out by the system and the frequency converges back to that of
the input signal. The basis of attraction of the frequency being infinite, this behavior
is independent of the amplitude of the perturbation, although the time to recover may
change.

8.4.11 Stability

Again, stability of the limit cycle of the oscillator depends of the oscillator used (see
section on CPGs). Convergence of the frequency to that of the teaching signal has
been proven for small coupling term ε << 1 in [49] and for big ε >> 1 in [50].

8.5 Non-Functional Analysis

8.5.1 Representation and Interface

AFOs can take as input any periodic signal. They output trajectories the same way
standard oscillators do, but with the frequency of these oscillations tuned to the fre-
quency of the input signal. The input signal can even be a multi-frequency signal in
which case the AFO will tune itself to the frequency component which is the nearest
to its initial frequency. In the case of programmable central pattern generators, using
pools of AFO, the number of AFOs has to be predefined. The output is a limit cycle
which shape approximates that of the input signal. It the number of AFOs is at least
equal to the number of frequency components of the input signal, the shape of the
limit cycle will perfectly match that of the teaching signal. The approach is suitable

77

to be used as an independent module since inputs, outputs and modulation commands
are well separated.

8.5.2 Timing

The limit cycle part of AFOs work on the same timing as the oscillator it is based
on. These oscillators usually have an explicit or implicit phase definition, which acts
as an internal clock. Although no explicit time dependence is used, the dynamical
systems are integrated with some predefined time-step. See section on CPGs for more
information.

The convergence of the frequency of the AFO to the frequency of the input signal
works on a slower timescale than the convergence of the trajectory to the limit cycle.
This timescale can however be modulated to some extend by changing the coupling
terms ε and τ .

8.5.3 Robustness and Reliability

AFOs can give Anytime guarantee: the input signal can be changed at anytime, lead-
ing to the AFO tuning itself to the frequency of the new signal. In addition to the
parameters of the oscillator defining the limit cycle, AFOs have two tunable parame-
ters ε and τ . Since the coupling term ε is applied to x as well as ω, setting a too big
ε can increase the amplitude of the oscillations. Setting a too small τ , however, can
lead to instabilities in the frequency.

8.5.4 Dependencies

AFOs are intrinsically coupled to an external signal. This signal can come from sensors
in particular to learn the resonance frequency of a mechanical system (See however
the note in section 8.4.5 about the choice of sensor). This signal can however be any
kind of signal, when using pools of AFOs for frequency analysis for instance. It can
be predefined joint trajectories when using pools of AFOs as programmable central
pattern generators.

8.5.5 Runtime

AFOs, like oscillators, do not have well defined states since everything (trajectory
generation, frequency learning) is embedded in the dynamics of the system. As a
matter of fact, even when the frequency seem to have converged to the input frequency,
it actually keeps on oscillating around it with very small amplitude.

The complexity of a single AFO is of the order of the integrator, and no additional
computation loop is needed. The complexity is comparable to that of a standard
oscillator.

The number of integration steps to generate an arbitrary shaped limit cycle using
pools of AFOs is dependent of the following factors:

• The number of AFOs used (which depends of the number of frequency compo-
nents in the input signal to approximate).

• The initial frequency chosen for each oscillator. The higher the difference be-
tween the initial frequency of each AFOs and the frequency component to con-
verge to, the longer the convergence time.

78

8.6 Summary

In this chapter we presented the Adaptive Frequency Oscillators, which are an ex-
tension to standard oscillators enabling them to adapt their frequency to that of an
input signal. AFOs add a simple learning rule to the frequency of the oscillator, which
becomes a state variable. All the learning is embedded in the dynamics of the oscilla-
tor. Two main applications exist for AFOs. First, when coupling an AFO with some
well chosen sensor, the system is able to tune itself to the resonance frequencies of
the mechanical system. Convergence and performance in terms of energy transfer is
however dependent on the coupling parameter used as well as the type of mechanical
system. Coupling AFOs with a compliant legged robot allows for efficient locomotion,
adaptation to changes of body properties and postures. Second, using a pool of AFOs,
it is possible to find the different components of a multi-frequency signal, which is
useful for frequency analysis for instance. The different AFOs can then be recombined
to generate an arbitrary shaped limit cycle. This is very useful to program a limit
cycle with a predefined complex shape, which can be modulated afterwards.

79

Chapter 9

Neural Central Pattern
Generator

Francis Wyffels, Benjamin Schrauwen
UGent

9.1 Short Introduction

In this chapter we introduce a new methodology for CPG design based on Reser-
voir Computing. We call the constructed modules Neural Central Pattern Gener-
ators (NCPGs) because they use a recurrent neural network, the reservoir, to au-
tonomously generate rhythmic patterns. For training, a recently published paradigm
called FORCE learning [51], is used to adjust the output weights of our system. Apart
from generating high-dimensional complex rhythmic patterns in a stable and robust
way, the system’s output can be modulated using low dimensional control inputs or
adjusting some parameters of the NCPG. Sensor information can be incorporated in
our system by feeding it to additional inputs.

9.2 Model Description

The core technique used for the Neural Central Pattern Generator (NCPG) model is
Reservoir Computing [52–54]. Basically, we use a large recurrent neural network, the
reservoir, of which only the output weights are trained using standard linear regression
techniques. The reservoir is composed of randomly connected sigmoid neurons. During
both training and testing, the neuron states are updated using the following equation:

x[k + 1] = (1− λ)x[k] + λ tanh
(
Wres

resx[k] + Wres
inpu[k] + Wres

outy[k] + Wres
bias

)
(9.1)

The states x[k + 1] at time step k + 1 depend on the states x[k] at time step k, an
additional input u[k] (can be a control input but also sensor feedback), the output of
the system y[k] and a bias. By changing the leak-rate λ, the system’s dynamics can
be tuned effectively. In our setup we use sigmoidal neurons but other non-linearities
might also be used. Initially, all weights Wres

? are created randomly (usually drawn
from uniform or normal distributions) and are fixed during both training and testing.
The weight matrix Wres

res is drawn from a normal distribution with zero mean and unit
variance. A large part of the weights is set to zero according the used connection
fraction cres. After construction, the weight matrix Wres

res is rescaled such that the

80

...

outputsreservoirinputs

Fig. 9.1: Schematic overview of the NCPG model. The system has one or more
outputs which are fed back into the reservoir. Additional control inputs can
be used for modulation of the output signals. Only connections directed to the
output, denoted by dashed lines, are trained. The other connections are initially
randomly created and remain unchanged during training/testing.

largest eigenvalue (i.e., the spectral radius) is equal to 1.5. This causes the reservoir
to be chaotic. This differs from the usual approach where the spectral radius is chosen
such that the system operates at the edge of chaos. We will use FORCE learning
to train the reservoir system, which require the reservoir to spontaneously generate
some activity. Apart from this difference, it is important to note that the output of
the system is fed back during both training and testing. This is different from the
echo state networks approach, in which the desired output is fed back (teacher forced)
during training.

The weights Wout
res are trained online using FORCE learning. This means that Re-

cursive Least Squares is used. For this, during training, every time step the reservoir-
to-output weights Wout

res and the output is adjusted according following equations [51]:

y[k + 1] = Wres
outx[k + 1] (9.2)

e[k + 1] = y[k + 1]− ydesired[k + 1] (9.3)

P = P− Px[k + 1]xT[k + 1]P

1 + xT[k + 1]Px[k + 1]
(9.4)

Wres
out = Wres

out − e[k + 1]Px[k + 1] (9.5)

Here ydesired is the desired output of the system, e.g., an example trajectory, and
e[k + 1] is the error at time step k + 1. P is an N ×N matrix with N the number of
neurons in the reservoir. After training, the weights Wres

out are kept fixed to test our
system. Table 9.1 summarizes all the parameters of our system and their commonly
used values1.

9.3 Simulations

In this section we give some simulation results that illustrate the performance of our
system. In Figure 9.2 we show that our system is able to learn rhythmic patterns.
The top graph shows the time evolution of the learned MSO pattern (sin(0.2k) +

1Commonly, in the sense that they should be sufficient to do all simulations in this chapter.

81

Tab. 9.1: Summary of all NCPG parameters. Most parameters are set tun-
ing them roughly by hand. The number of neurons depends mainly on the
dimensionality of the output and the number of gaits.

Parameter Description Value
N number of neurons 100 to 2000
λ leak-rate 0.2
ρ spectral radius 1.5
cres reservoir-to-reservoir connection fraction 0.1
cin in-to-reservoir connection fraction 1
cout out-to-reservoir connection fraction 1
cbias bias-to-reservoir connection fraction 1
β bias weight variance 0.5
ω output feedback scale 1
α learning rate, determines initialization of Pinit = I

α 0.1

2000 2100 2200 2300 2400 2500 2600

2000 2100 2200 2300 2400 2500 2600

3000 3100 3200 3300 3400 3500 3600
Timesteps

Fig. 9.2: This figure shows the ability to generate a learned rhythmic trajectory.
In the top graph one can see, in black, the output of our system after training.
The teacher trajectory is sin(0.2k)+sin(0.311k) which can be seen in light gray.
The second graph shows the ability to modulate the frequency of the output
signal by changing the leak-rate parameter of the reservoir system. Every 200
time steps, the leak-rate was set abruptly to an other random value. In the
bottom graph we illustrates the ability to switch smoothly from one learned

trajectory (k mod 25)+0.5 sin(0.2k)−12.5
5 to an other sin(0.2k)+sin(0.311k). For this,

our system was trained using one additional input denoting which trajectory had
to be learned.

82

sin(0.311k)) after training. The desired pattern, shown in light gray, is hard to dis-
tinguish as it coincides almost perfectly with the pattern generated by the NCPG.
The central graph shows the ability to modulate the frequency by merely tuning the
reservoir’s leak-rate parameter. Note that the system was not trained explicitly to
generate multiple frequencies. The bottom graph illustrates the ability to switch be-
tween different gaits. In this case the system was trained with two different patterns,
(k mod 25)+0.5 sin(0.2k)−12.5

5
and sin(0.2k) + sin(0.311k), using an additional input which

was set to −1 or 1 depending on the desired output pattern. During testing, this input
can be switched to control the generated output of the NCPG. Preliminary experi-
ments show that the number of patterns between which a single NCPG can be trained
to switch is limited by the complexity of the patterns, the number of neurons and the
dimensionality of the output.

In Figure 9.3 we illustrate the ability to learn multi-dimensional patterns. One
can see that the system has learned to generate sin(0.15k), sin(0.3k) and sin(0.2k) +
cos(0.1k) simultaneously. In total, the desired output dimension was eight. One
can observe that our system is able to cope with multiple frequencies. In the same
experiment we tested the robustness of the system. Every 200 time steps one or two
randomly chosen outputs are clamped to a random outlier value. We see that the
system is able to cope with these perturbations and that the coupling between the
several outputs remains stable due to the fact that all outputs are derived from the
same (coupled) reservoir. This fact is confirmed by the phase portraits in Figure 9.4,
illustrating the coupling between several outputs after recovery from the perturbations.

9.4 Functional Analysis

9.4.1 Dynamics and Nonlinearity

The nonlinearity of the system is defined by the sigmoid function and can be adjusted
by adding more or less bias, or by scaling up or down the inputs of the system.
The dynamics of the system are defined by the randomly generated recurrent neural
network, the reservoir, and can be tuned by the spectral radius. Since we are using a
spectral radius of 1.5 the reservoir can be considered chaotic. This causes spontaneous
activity of the reservoir which is required by FORCE learning. The inputs (including
output feedback) are scaled enough large to tame the dynamics of the reservoir such
that the system itself is stable.

9.4.2 Attractor

The attractor of the NCPG is a limit cycle attractor, which is defined by the training
signal.

9.4.3 Coupling

In the NCPG model, all outputs are derived from the same system: a coupled recurrent
neural network. Because of this, all outputs generated by the NCPG are coupled and
stay coupled even under severe conditions, as can be observed from Figure 9.3 and
Figure 9.4.

9.4.4 Learning

Type Supervised

Algorithm Only the output weights of our system are changed during training using
standard linear regression methods. We apply FORCE learning, a method based
on recursive least squares, for training our system.

83

2000 2200 2400 2600 2800 3000
Timesteps

Fig. 9.3: To illustrate the capabilities of the NCPG, we trained our system using
an 8 dimensional trajectory. The first four dimensions were set to sin(0.15k),
the second two to sin(0.3k) and the last two to sin(0.2k) + cos(0.1k). After
training the system was left freely and every 200 time steps we clamp one or
two random outputs to a random outlier value. As one can see, the system is
able to cope with these perturbations and due to the coupling of the reservoir
all outputs remain coupled.

Fig. 9.4: Illustration of the output coupling of a trained NCPG. The three phase
portraits show the coupling between the outputs of our system after it recovered
from perturbations. The output dimension was 8, the most left graph show the
coupling between the first two outputs, the middle graph shows the coupling
between the first and fifth output and the right graph shows the coupling be-
tween the first and eight output. Once recovered from the perturbations, we
can see that all outputs remain coupled.

84

Mode Both offline and online training are possible. Online training can be useful to
learn to deal with sensor feedback.

9.4.5 Training Data

Usually, example trajectories (angle evolution to control the servo motors of a robot)
are used as training data. If the system has to be able to switch between multiple
different trajectories (e.g., different gaits), additional inputs can be defined which
denote the gait presented to the system. After training, these inputs can be used to
switch from one gait to another (Figure 9.2). Also, high-dimensional trajectories, as
shown in Figure 9.3, can be learned by the NCPG.

9.4.6 Generalization

Generalization is not yet defined properly for periodic systems. Several interpretations
are possible. We define generalization as the ability to recover from unseen conditions.
As shown in Figure 9.4 random perturbations can be applied to our systems. The
system is able to recover from them. Apart from that, the system is able to deal
with noisy feedback which can be useful whenever the output is applied on a robot
and the output feedback comes from the robot sensors. We elaborate more on this in
section 9.4.8.

9.4.7 Modulation

As can be observed from Figure 9.2, both frequency and shape can be modulated.
However, modulation capabilities might be increased further to other properties. The
frequency can be modulated by changing the leak-rate λ of our system. Amplitude
modulation can be done by amplifying the output and decreasing the output feedback
in the same way. When shape changes are desired, one has to train our system show-
ing all desired trajectories together with one or multiple inputs which denote which
trajectory has been shown. Usually one additional (binary) input is taken for each
shape that has to be generated. When a certain trajectory is shown (or has to be
generated) the corresponding input is set to 1, otherwise the input is set to −1.

9.4.8 Sensory Feedback Integration

Sensory feedback integration can be done easily by adding additional inputs to the sys-
tem or using the output feedback loop. As illustrated in Figure 9.5, FORCE learning
makes it possible to apply the output of the NCPG on a system, for example to control
the joints of a quadruped robot, and get feedback from the sensors of this robot (for
example from the rotary encoders in all joints) during training. This enables learning
relations between the NCPG output and the sensor feedback directly. This might
be helpful to make locomotion control using a NCPG robust against perturbations
applied on the robot.

9.4.9 State Variables

The number of states is limited by computational effort only and is defined by the
number of neurons. Typically, we use large recurrent neural networks of more than
100 neurons which can be increased up to more than 1000 depending on the complexity
of the task (number of gaits, output dimensionality,...).

85

robot

inputs reservoir

output feedback from robot

Fig. 9.5: Illustration of the ability to add sensory feedback. Since our system al-
lows in loop feedback during training, the system can learn the relation between
the output of the NCPG (the applied control signals) and sensor feedback. As
suggested in this sketch, the NCPG generates the control signals for each joint
of the robot. The feedback is derived from the rotary sensors in each joint.
Additionally, some other sensors or control inputs can be fed into the system.
Only the reservoir-to-output connections are trained (dashed lines), all other
connections are randomly created when constructing the system.

9.4.10 Robustness and Adaptation to Perturbations

In Figure 9.3 we illustrate the ability to cope with perturbations on the output feedback
of the NCPG. Every 200 time steps one or two randomly chosen outputs are clamped
to a random outlier value. From our experiments, it seems that the system is able to
recover from noise or perturbations of all inputs and state variables. Even when all
states are reset to some random value, the system can recover.

9.4.11 Stability

All neuron states are bounded by the saturating nature of the nonlinearity. Addi-
tionally, FORCE tends to keep the reservoir-to-output weights small. As a result, the
output of the NCPG will be bounded for any applied input. Additionally, we learned
from experiments that the NCPG converges to it’s attractor, even under difficult con-
ditions (large disturbances). However, to our knowledge no proof can be given that
the NCPG will converge to its attractor under all conditions.

9.5 Non-Functional Analysis

9.5.1 Representation and Interface

The output of the NCPG is a rhythmic trajectory representing the control signals
for the servo motors of a robot. Typically, angle evolution is used. The output can
be high-dimensional when multiple servo motors have to be controlled. The input
is mainly defined by the output feedback which can be derived directly from the
system’s output. Alternatively, the output feedback can come from the robot sensors
(rotary encoders) which generate a delayed and/or filtered form of the system’s output.
Additionally, multiple inputs can be added to modulate the output of the system or

86

to integrate other robot sensors. It is desirable to normalize both inputs and outputs,
to avoid saturation of the neuron states. The system has multiple parameters which
are summarized in Table 9.1. The leak-rate can be adjusted at runtime in order to
modulate the output frequency.

9.5.2 Timing

Time is determined by the iteration step size. During testing, computation time
depends on equation 9.1 and 9.2.

9.5.3 Robustness and Reliability

The NCPG’s response time is predictable and does not depend on its input variables.
It will respond to queries at all time during execution. Computation time depends on
equation 9.1 and 9.2 and meeting real-time constraints shouldn’t be any problem if
the reservoir is not too large.

9.5.4 Dependencies

Since the NCPG can be applied in open loop, the system is not dependent to any
exogenous inputs. Proprioception can be added to the NCPG in two ways: by using
sensor information for the output feedback and by adding sensor information as addi-
tional inputs to the system. Currently we are using Python to implement the system
using the Scipy library. The system can be provided in matlab as well.

9.5.5 Runtime

Different stages can be identified for our system: offline learning, online learning, eval-
uation (testing) and recognition (see Section 9.5.6). Both offline and online learning
occur step by step using equations 9.1 to 9.5. When applying online learning, the
output can be applied on the robot directly or the feedback can be derived from the
robot sensors. For testing, the reservoir-to-output weights Wres

out are kept fixed and
only equation 9.1 and 9.2 have to be applied every time step.

9.5.6 Usefulness for Recognition

If the NCPG is trained such that the inputs that are responsible for gait selection are
considered as outputs that have to be predicted (apart from the desired trajectories),
output weights will be trained for both inputs and outputs. In this kind of setup,
one can chose whether the NCPG has to generate a desired trajectory by applying the
correct input, or that the correct input (which acts as a classification output now) must
be predicted by feeding a trajectory to the NCPG. This makes the NCPG suitable for
gait classification.

9.6 Summary

In this chapter we have presented the Neural Central Pattern Generator (NCPG). The
core of the system is a random recurrent neural network. Training is done by using
FORCE learning. This means that Recursive Least Squares is used to train (only)
the output weights while the real output of the system is fed back into the reservoir.
The NCPG is capable of learning complex, high-dimensional rhythmic patterns (e.g.
control signals used for locomotion) and to stably generate them. Simulations show
that the system is robust against perturbations. The NCPG output frequency can be

87

modulated and if desired several gaits can be trained such that the system can switch
at runtime from one gait to another.

88

Chapter 10

Comparison

In this chapter a comparison between models described in previous chapters is pre-
sented. The analysis and comparison regarding Reaching Tasks and Periodic Tasks
models are separated in two different sections. Then an overall discussion is presented
to analyze the suitability of different models for the complete architecture that will be
developed within the AMARSi project.

To have a comparative study, it is necessary to analyze the models from different
perspectives. Collecting the information presented in previous chapters creates table
10.1. Columns in table 10.1 refer to the different models while each row describes a
certain aspect. The key features of this table and previous chapters are presented in
the following sections.

10.1 Models for Reaching Tasks

There are six models that are considered to be used for reaching tasks:

1. Dynamical Movement Primitives (DMP): Considering an analytically well un-
derstood dynamical system with good stability properties and modulating it by
nonlinear forcing term to achieve a desired attractor behavior.

2. Stable Estimator of Dynamical Systems (SEDS): Estimating multidimensional
autonomous nonlinear dynamical systems based on optimizing the model for
demonstrated motions under the constraint of the model’s global asymptotic
stability.

3. Neural Dynamic Movement Primitives (NDMP): Coupling task and joint spaces
by means of an attractor-based reservoir network and associative learning. Feed-
back from the robot is in the loop of learning.

4. Neural Dynamical Motion Primitive Generator (NDMPG): Using a recurrent
neural network to code the desired reaching movement in an attractor landscape,
based on the echo-state approach.

5. Neural Motor Primitive Control (NMPC): Controlling (closed loop) a dynamical
system that models the dynamics of a robot based on a recurrent neural network.

6. Planned Motion Primitive (PMP): A local optimal trajectory planner based on
a subgoal representation using a state-of-the-art probabilistic planning method.

These models are analyzed in the following subsections.

89

T
ab

.
10

.1
:

T
h
e

co
m

p
le

te
ta

b
le

o
f

d
iff

er
en

t
a
d
a
p
ti

v
e

m
o
d
u
le

s
a
n
d

th
ei

r
p
ro

p
er

ti
es

.
M

o
d
el

s
fo

r
b

o
th

re
a
ch

in
g

a
n
d

p
er

io
d
ic

ta
sk

s
a
re

p
re

se
n
t.

T
h
e

co
m

p
le

te
n
a
m

es
o
f

a
cr

o
n
y
m

s
u
se

d
in

th
e

“
L

ea
rn

in
g

a
lg

o
ri

th
m

”
ro

w
a
re

:
L
W

R
:

L
o
cl

ly
W

ei
g
h
te

d
R

eg
re

ss
io

n
,

S
E

D
S
:

S
ta

b
le

E
st

im
a
to

r
o
f

D
y
n
a
m

ic
a
l

S
y
st

em
s,

L
R

E
G

:
L

in
ea

r
R

E
G

re
ss

io
n
,

B
P

D
C

:
B

a
ck

-P
ro

p
a
g
a
ti

o
n

D
e-

C
o
rr

el
a
ti

o
n
,

C
M

A
-E

S
:

C
ov

a
ri

a
n
ce

M
a
tr

ix
A

d
a
p
ta

ti
o
n

E
v
o
lu

ti
o
n

S
tr

a
te

g
y,

L
A

W
E

R
:

L
o
ca

ll
y
-A

d
va

n
ta

g
e

W
ei

g
h
te

d
R

eg
re

ss
io

n
,

F
O

R
C

E
(n

o
t

a
n

a
cr

o
n
y
m

):
F

O
R

C
E

-l
ea

rn
in

g
is

a
p
ro

ce
d
u
re

fo
r

m
o
d
if

y
in

g
in

te
rn

a
l

o
r

ex
te

rn
a
l

co
n
n
ec

ti
o
n

w
ei

g
h
ts

to
ch

a
n
g
e

th
e

ch
a
o
ti

c
sp

o
n
ta

n
eo

u
s

a
ct

iv
it

y
o
f

a
re

cu
rr

en
t

n
eu

ra
l

n
et

w
o
rk

.

D
M

P
S
E
D

S
N

D
M

P
G

N
M

P
C

N
D

M
P

P
M

P
A

F
O

N
C

P
G

D
y
n
a
m

ic
s

n
o
n
li
n
e
a
r

c
o
n
v
e
r
g
e
n
t

n
o
n
li
n
e
a
r

c
o
n
v
e
r
g
e
n
t

r
e
c
u
r
r
e
n
t

n
e
u
r
a
l

n
e
t

r
e
c
u
r
r
e
n
t

n
e
u
r
a
l

n
e
t

r
e
c
u
r
r
e
n
t

n
e
u
r
a
l

n
e
t

p
la

n
n
e
d

t
r
a
je

c
t
o
r
y

n
o
n
li
n
e
a
r

c
o
n
v
e
r
g
e
n
t

r
e
c
u
r
r
e
n
t

n
e
u
r
a
l

n
e
t

N
o
n
li
n
e
a
r
it
y

p
a
r
a
m

e
t
r
iz

e
d

G
a
u
s
s
ia

n
fu

n
c
t
io

n
s

m
ix

t
u
r
e

o
f

G
a
u
s
s
ia

n
fu

n
c
t
io

n
s

p
a
r
a
m

e
t
r
iz

e
d

s
ig

m
o
id

a
l

fu
n
c
t
io

n
s

p
a
r
a
m

e
t
r
iz

e
d

s
ig

m
o
id

a
l

fu
n
c
t
io

n
s

p
a
r
a
m

e
t
r
iz

e
d

s
ig

m
o
id

a
l

fu
n
c
t
io

n
s

p
la

n
n
e
d

t
r
a
je

c
t
o
r
y

w
e
ig

h
t
e
d

s
u
m

o
f

o
s
c
il
la

t
o
r
s

p
a
r
a
m

e
t
r
iz

e
d

s
ig

m
o
id

a
l

fu
n
c
t
io

n
s

A
t
t
r
a
c
t
o
r

p
o
in

t
a
t
t
r
a
c
t
o
r
,

li
m

it
c
y
c
le

a
t
t
r
a
c
t
o
r

p
o
in

t
a
t
t
r
a
c
t
o
r

p
o
in

t
a
t
t
r
a
c
t
o
r

p
o
in

t
a
t
t
r
a
c
t
o
r

n
e
t
w

o
r
k

p
o
in

t
a
t
t
r
a
c
t
o
r

s
u
b
g
o
a
ls

li
m

it
c
y
c
le

a
t
t
r
a
c
t
o
r

li
m

it
c
y
c
le

a
t
t
r
a
c
t
o
r

C
o
u
p
li
n
g

o
n
e

s
y
s
t
e
m

p
e
r

D
O

F
c
o
u
p
le

d
s
y
s
t
e
m

c
o
u
p
le

d
s
y
s
t
e
m

c
o
u
p
le

d
s
y
s
t
e
m

c
o
u
p
le

d
s
y
s
t
e
m

c
o
u
p
le

d
s
y
s
t
e
m

o
n
e

m
e
t
a
-o

s
c
il
la

t
o
r

p
e
r

D
O

F
c
o
u
p
le

d
s
y
s
t
e
m

T
r
a
in

in
g

d
a
t
a

s
a
m

p
le

t
r
a
je

c
t
o
r
ie

s
s
a
m

p
le

t
r
a
je

c
t
o
r
ie

s
s
a
m

p
le

t
r
a
je

c
t
o
r
ie

s
n
o
n
e

o
r

s
a
m

p
le

t
r
a
je

c
t
o
r
ie

s
s
a
m

p
le

t
r
a
je

c
t
o
r
ie

s

s
a
m

p
le

t
r
a
je

c
t
o
r
ie

s
(
fo

r
le

a
r
n
in

g
fo

r
w

a
r
d

m
o
d
e
ls

)
s
a
m

p
le

t
r
a
je

c
t
o
r
y
,

s
e
n
s
o
r
y

in
fo

r
m

a
t
io

n
s
a
m

p
le

t
r
a
je

c
t
o
r
ie

s

L
e
a
r
n
in

g
a
lg

o
r
it

h
m

L
W

R
S
E

D
S

L
R

E
G

L
R

E
G

,
F

O
R

C
E

B
P

D
C

,
L

R
E

G
,

F
O

R
C

E
C

M
A

-E
S

(
G

e
n
e
t
ic

a
lg

.)
,

L
A

W
E

R
e
m

b
e
d
d
e
d

in
t
h
e

d
y
n
a
m

ic
s

L
R

E
G

,
F

O
R

C
E

L
e
a
r
n
in

g
t
y
p
e

s
u
p
e
r
v
is

e
d

s
u
p
e
r
v
is

e
d

s
u
p
e
r
v
is

e
d

u
n
s
u
p
e
r
v
is

e
d

/
s
u
p
e
r
v
is

e
d

s
u
p
e
r
v
is

e
d

s
u
p
e
r
v
is

e
d

/
r
e
in

fo
r
c
e
m

e
n
t

le
a
r
n
.

(
fo

r
fi

n
d
in

g
s
u
b
g
o
a
ls

)
s
u
p
e
r
v
is

e
d

s
u
p
e
r
v
is

e
d

L
e
a
r
n
in

g
m

o
d
e

o
n
li
n
e

/
o
ff

li
n
e

o
ff

li
n
e

o
ff

li
n
e

o
n
li
n
e

/
o
ff

li
n
e

o
n
li
n
e

/
o
ff

li
n
e

o
n
li
n
e

o
n
li
n
e

/
o
ff

li
n
e

o
n
li
n
e

/
o
ff

li
n
e

N
u
m

b
e
r

o
f

s
t
a
t
e

v
a
r
ia

b
le

s
4

×
d
im

e
n
s
io

n
s

2
×

d
im

e
n
s
io

n
s

n
e
t
w

o
r
k

s
iz

e
n
e
t
w

o
r
k

s
iz

e
n
e
t
w

o
r
k

s
iz

e
1

o
r

2
×

d
im

e
n
s
io

n
s

2
o
r

3
×

p
o
o
l

s
iz

e
n
e
t
w

o
r
k

s
iz

e

N
u
m

b
e
r

o
f

p
a
r
a
m

e
t
e
r
s

n
e
e
d
e
d

t
o

b
e

t
u
n
e
d

1 (
n
u
m

b
e
r

o
f

b
a
s
is

fu
n
c
t
io

n
s
)

1 (
n
u
m

b
e
r

o
f

G
a
u
s
s
ia

n
s
)

1 (
in

p
u
t

s
c
a
li
n
g
)

2 (
in

p
u
t

s
c
a
li
n
g
,

t
im

e
s
h
if

t
δ
)

4
(
s
t
e
p

s
iz

e
o
f

IP
+

B
P

D
C

,
t
w

o
r
e
g
u
la

r
iz

a
t
io

n
p
a
r
a
m

e
t
e
r
s
)

1 (
N

u
m

b
e
r

o
f

s
u
b
g
o
a
ls

)
1 (
p
o
o
l

s
iz

e
)

2 (
le

a
k
-r

a
t
e
,

in
p
u
t

s
c
a
li
n
g
)

S
e
n
s
o
r
y

F
e
e
d
b
a
c
k

I
n
t
e
g
r
a
t
io

n
m

a
n
u
a
ll
y

d
e
fi

n
e
d

fr
o
m

s
t
a
t
e

v
a
r
ia

b
le

s
a
n
d

u
s
e
r

p
r
e
-d

e
fi

n
e
d

d
e
s
ir

e
d

v
a
r
ia

b
le

s
m

a
n
u
a
ll
y

d
e
fi

n
e
d

le
a
r
n
e
d

b
y

e
x
a
m

p
le

p
r
o
p
r
io

c
e
p
t
io

n
m

a
n
u
a
ll
y

d
e
fi

n
e
d

m
a
n
u
a
ll
y

d
e
fi

n
e
d

le
a
r
n
e
d

b
y

e
x
a
m

p
le

A
s
y
m

p
t
o
t
ic

c
o
n
v
e
r
g
e
n
c
e

t
o

t
h
e

d
e
s
ir

e
d

b
e
h
a
v
io

r
a
ft

e
r

p
e
r
t
u
r
b
a
t
io

n
g
lo

b
a
l-

p
r
o
v
e
d

g
lo

b
a
l-

p
r
o
v
e
d

lo
c
a
l-

e
m

p
ir

ic
a
l

lo
c
a
l-

e
m

p
ir

ic
a
l

lo
c
a
l-

e
m

p
ir

ic
a
l

lo
c
a
l-

p
r
o
o
f

d
e
p
e
n
d
e
n
t

o
n

k
in

e
m

a
t
ic

s
m

o
d
e
l

g
lo

b
a
l-

p
r
o
v
e
d

lo
c
a
l-

e
m

p
ir

ic
a
l

B
I
B

O
S
t
a
b
le

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

90

10.1.1 Coupling and Dimensions

Coupling is an important timing issue needed for synchronous performance. If two
tasks are completely decoupled, they can easily get out of sync with even small per-
turbations. Coupling between different dimensions might have two different meaning:
unilateral and bilateral couplings, i.e. one process affecting another (but not in return),
and two processes affecting each other mutually. From the models presented, a single
1-DOF DMP is decoupled. When the canonical system is shared between different
dimensions (1-DOF subsystems), the whole model is unilaterally coupled through the
canonical system (transformation systems are not coupled directly). Also, DMPs can
have multiple canonical systems that are bilaterally coupled. SEDS, NMPC, NMPG,
NDMP and PMP are bilaterally coupled multi-dimensional systems. The models are
N-dimensional and they model all of the dynamics in a single model.

To summarize, DMP has different transformation systems for different dimensions
and SEDS, NMPC, NDMPG, NDMP and PMP model all the dimensions in one single
model.

10.1.2 Need for Kinematics Learning

If a good definition for inverse kinematics of the robot is unknown, using a model
that learns the kinematics is beneficial. Among the models introduced, NMPC and
NDMP are capable of learning inverse kinematics. They both use sets of N-tuples
{end effector position(t), joint angles(t)} to learn the inverse kinematics. However,
they are not designed to learn raw input trajectories. This is where DMP, SEDS and
NDMPG are useful. They can learn input trajectories and code them into dynamical
systems, without depending on the meaning of the given dataset. On a higher level,
PMP just does optimal trajectory planning and do not store the trajectory in the
dynamics. PMP assumes a given forward kinematic model, which can be learned by
any supervised learning method like NMPC or NDMP. Then, it uses optimal control
to plan a low cost trajectory.

So, here, the issue is to define the need. If the desired trajectory is not defined,
or if it is only defined for the end effector, knowing (learning) robot’s kinematics is
a necessity to execute commands on the robot. So, if it is required learn the inverse
kinematics, NMPC and NDMP are the choices, but if the adaptive module is meant
to learn a raw input trajectories, DMP, SEDS and NDMPG have to be used. Finally,
PMP is meant to be used in high level as the optimal control planner and do not
encode any trajectory itself. So, PMP is useful when a well defined trajectory is not
present, and it is needed to optimally follow some subgoals.

10.1.3 Parameter Modulation

Considering the models for reaching tasks, the first important modulation ability is
the goal modulation, i.e. the ability to create movements towards new goals that were
not part of the training data. DMP is capable of doing goal modulation through the
g parameter. It is important to mention that the outcome of the goal modulation
is dependent on the choice of the coordinate system. Additionally, the behavior is
different if goal modulation is done in the beginning or during the movement. SEDS
defines the goal in the origin of the coordinate frame. SEDS does the goal modulation
through moving the origin of the coordinate frame. NMPC changes the goal position
with the definition of ξdes. NDMPG’s goal is always at the origin of the coordinate
system, so goal modulation is done by correct offsetting translation of the coordinate
system. For NDMP, in the autonomous reaching mode, goal modulation is done by
changing the desired input values. Finally, goal modulation for PMP can be done
trivially by changing the last subgoal. However, re-planning is needed in this case.

91

DMP and SEDS are globally asymptotically stable, so changing the goal to arbi-
trary places is possible for them. However, it is notable that the way SEDS and DMP
modify the motion to reach the new goal is different. Since DMP learns a motion from
one single demonstration, the generalizations may not necessarily result in a desired
behavior, for a large change in the goal. DMP just scales the path to reach the goal
when the goal is modulated. SEDS is able to learn the basin of attraction to the goal
from any number of demonstrations. Hence it can generalize the motion more properly
in different areas in space.

The modulation of the goal state for NMPC, NDMPG and NDMP is also depen-
dent on the training data. If these models are well trained, they can modulate the
goal in the neighborhood of the training data. But if the desired goal is outside of the
covered area, NMPC and NDMP cannot guarantee reaching the goal. For NDMPG,
since the network is damped, it will always (empirically) go to 0, which means the goal
position will be reached eventually. It is needed to mention that NDMP is designed to
do an additional goal modulation task: when the goal state is incompletely given, and
auto-association is needed. This is when only one part of the desired attractor state
is given, the other part shall be associated (e.g. desired end effector position in the
goal state is known, but corresponding posture is not known). For PMP, trajectory is
represented by a sequence of subgoals, representing a higher level plan. This subgoals
can be changed to an arbitrary position as long as the kinematics planner is able to
handle that. So, the reliability is dependent on the kinematics model.

Second, it is important to analyze the generalization to the initial state. For
DMP, since it assumes that the initial state (y0) is zero, change in the initial state
is interpreted as a translation in the goal state. SEDS and PMP has the current
state (position) as the input, so change in the initial position is easily accepted. This
is the same for NMPC, NDMPG and NDMP, with the difference that convergence
to the desired goal is not analytically proven. It holds for all of the models that
having a desired behavior (from different initial conditions) is partially dependent to
the coverage of training data.

Third, it is important to know which models can encode the desired trajectories
in themselves. DMP, SEDS and NDMPG can code arbitrary reaching trajectories
and accept them as training data. NMPC is also able to regenerate the trajectories
used for inverse kinematics learning (if any) by the transients of RC-networks (but
the regeneration of similar trajectories is not as good as DMP, SEDS and NDMPG).
For NDMP however, learning movement shapes (trajectories) is still ongoing research.
Additionally, SEDS, NMPC and NDMPG can code multiple trajectories while DMP
can only code a single trajectory at once. So SEDS, NMPC and NDMPG are capable of
doing a reaching task in different ways while DMP needs re-learning, or using multiple
models and switch between them, to do a task in a new way. PMP does not store
the desired trajectory (subgoals) in the dynamics and only uses it as the input for
planning.

Fourth, it is an advantage for an adaptive module to adapt to the changes in the
robot/environment. Here, we do not mean change in robot states, like configuration
or end effector position, but we mean something like change in a link length, or a
changing environment. While NMPC tries to automatically adapt itself to the change
in environment and it explores the environment to learn the kinematics, DMP and
NDMP require the appropriate response to be defined so they can adapt through
online learning. For SEDS, if it is working in Cartesian coordinates (end effector
control), and if the change is affecting the kinematics model used, it is up to the
kinematics model to adapt. But if the change in the environment can be perceived by
SEDS, like change in an obstacle’s position, it can adapt well. This is the same for
NDMPG. NDMPG has an extra input to define the position of an obstacle. At last,
the behavior of PMP depends totally on the kinematics learning model and cannot
adapt itself separately.

92

Finally, all of the presented models are able to modulate the speed of performing
a desired task. DMP performs this through its τ variable, SEDS and NDMPG with
the modulation factor λ (output filter control for NDMPG), and NMPC and NDMP
with the leak-rate parameter. Regarding PMP, smaller control weights and the timing
of the subgoals can be used to modulate the movement execution time.

10.1.4 Learning

Learning can be described in different manners:

• online vs. offline

• supervised vs. unsupervised vs. reinforcement learning

• one-shot vs. iterative

Starting with DMP, it is capable of both online and offline learning in a supervised
manner with locally weighted regression (LWR). There are also techniques of reinforce-
ment learning (to be exact, policy search) used to train DMPs [2]. Essentially, those
techniques can be extended for other parameterized dynamical models with online
learning. SEDS is designed to use supervised offline learning as it trains the dynam-
ical model through constrained nonlinear optimization. NMPC provides both online
and offline supervised learning with recursive least-squares, where NDMPG only imple-
ments supervised offline learning through ridge regression. For NDMP, there are two
learning mechanisms: 1) unsupervised reservoir optimization with intrinsic plasticity
to improve the encoding capabilities, and 2) supervised read-out learning using either
online backpropagation-decorrelation or offline ridge regression to learn the kinematics.
Intrinsic plasticity is applied in parallel with backpropagation-decorrelation learning
in the online learning scenario. In the offline case, intrinsic plasticity is applied in
a pretraining phase before read-out regression. As for PMP, learning takes place at
two stages. The kinematics can be learned by any supervised learning technique like
NDMP or NMPC. Whereas the optimal subgoals are computed iteratively by the use
of reinforcement learning methods. This optimization can be done online or offline
(PMP is not included in the further discussion because of the basic differences).

Learning for DMP in the offline mode is one-shot. DMP in the online mode,
SEDS, NMPC, NDMPG, NDMP and PMP need time to converge to the minima. The
computational time needed for convergence is dependent on the size of the model, the
initial values and the complexity of the learning algorithm.

When the learning method is defined, one has to define what are the properties
of the data collection for training. DMP, uses a trajectory-set containing triplets of
an entity and its first and second derivatives (e.g. position, velocity and acceleration).
SEDS is flexible in terms of input and output parameters, and it can accept any arbi-
trary variable for training. For example, the training data-set for SEDS could be any
combination of position, joint angles, end-effector orientation, velocity, acceleration,
force, torque, etc. NDMPG uses end effector trajectories for training. NMPC can be
trained without any training data and uses internal exploration to build up the model
(but it seems to need a good initial estimate). Nevertheless, it can be trained with
{end effector, joint angles} pairs, which is the same for NDMP.

Another important issue is that how many trajectories are needed for the models
to be trained. DMP is trained with a single trajectory. If there are multiple learning
trajectories, the outcome is an average of them. So, the training set should be for
a single task. SEDS accepts multiple demonstrations, which can even have inconsis-
tencies (having different behaviors in same states). It can also be trained by a single
demonstration, but the generalization is better with multiple demos. NMPC can learn
the inverse kinematics without any training data. However, if the internal model is
meant to be trained with examples, a large amount of training data is recommended,

93

alike for NDMPG. Finally, NDMP can easily handle multiple trajectories – in par-
ticular as the basic version does not store their geometrical form. NDMP needs very
few samples. Kinematics of 7 DOF can be learned with only 250 data points for one
workspace.

10.1.5 Time Complexity and Integration

One key comparison between different adaptive modules is their time complexity in
the evaluation phase, or, in other words, computational load to evaluate a single N-
dimensional entry. This entry can be end effector position, joint angles, etc. What is
important is the dimensions of the entry (N), and analysis will be a function of N .
Time complexity analysis is very important since it defines the limits for the real-time
design.

The basic operation to analyze the time complexity is assumed to be the multi-
plication of two scalars. Additionally, since the nonlinearity of all of the models
discussed here are originated from a sigmoidal or Gaussian function, without loosing
anything, it is considered that evaluating a 1-D sigmoidal or Gaussian function
with a single data point is a basic operation. With these assumptions, a coupled
N-dimensional DMP will be of O(K×N) where K is the number of basis functions in
each dimension. SEDS is of O(K×N2) where K is the number of Gaussian functions.
For NMPC, the time complexity is of O(P 2 + P × i+ P × o) where P , i and o stand
for pool size, input and output size. Assuming that the number of neurons are more
than inputs and outputs, time complexity can be rewritten as O(P 2). This the same
for the NDMP in evaluating the transients of the network. For NDMP evaluating in
association mode, the time complexity is of O(M × P 2) where M is the number of
iterations until convergence. If a trajectory is discretized into S discrete time steps,
then the time complexity of the PMP is given by O(S ×N2 ×M), where N denotes
the dimensions of the system and the number of planning iterations is indicated by
M .

Another important question is the sensitivity of the models to the integration
timestep and method. It can be assumed that, for simplicity and efficiency, an Euler
integration method is going to be used. It is clear for DMP, SEDS and PMP that
they can work even with fairly large timesteps. As for NMPC, as there is not any
guaranteed convergence margin around the designed trajectory, the model is probably
more sensitive to the choice of timestep. This sensitivity is even more tangible for
NDMP where the trajectory to reach the goal is not defined. It is important to
mention that NMPC and NDMP are discrete dynamical systems and do not need any
integration method.

10.1.6 Sensory Feedback Integration

Sensory feedback integration helps a model to respond properly to different situations,
e.g. due to changes in the environment and the robot. Sensory feedback can take dif-
ferent modalities, ranging from proprioception to sensory information like gyroscopes,
accelerometers, etc. DMP accepts sensory feedback as additive coupling terms. The
coupled term is a function of the sensory information, and the behavior of this function
has to be defined manually. NDMPG is an end effector trajectory generating system
that accepts sensory feedback through input slots. SEDS accepts proprioception (joint
angles or end effector position depending on the training data content) as an input,
so this system can work in a closed-loop. In addition to proprioception, SEDS can
also accepts sensory information through additive coupling terms through a phase
variable. NMPC and NDMP are more advanced in regards of incorporating sensory
feedback. They both have proprioception as inputs, so they work in a closed-loop. Ad-
ditionally, they can accept other sensory information as additional inputs. The added

94

input will actually affect their behavior. Especially for NMPC, since it has its own
learning-through-exploration, it can find the function to be imposed on the sensory
information. PMP uses proprioception within the feedback controller. An integration
of additional sensory feedback is difficult, because an exact model of the sensors and
the environment would be necessary. However, if the information is available it can
be integrated into the cost function.

10.1.7 Behavior After Perturbations

Perturbations can happen as spatial and/or temporal perturbations. A spatial per-
turbation means that the value of a DOF is changed by an external source. But, a
temporal perturbation is happening for instance when a DOF is frozen for a timespan,
so the value of that DOF cannot change. Both spatial and temporal perturbations
can happen for multiple dimensions simultaneously.

DMP is able to handle spatial perturbations of any amplitude since it is globally
stable. For a DMP working in open-loop, the reaction to a spatial perturbation is
trying to reach the desired trajectory while the y state is evolving by time. The
reaction of DMP to a temporal perturbation is the same as to a spatial perturbation.
The model tries to reach the trajectory toward reaching the evolving y state. This
is not exactly the desired behavior for a temporal perturbation because it will go off-
track and skip a part of trajectory to reach the evolving state. A good idea is to have
different feedback functions to define the desired behavior in different situations, and
this topic needs more research.

SEDS have advantages in handling temporal perturbation. While SEDS can handle
spatial perturbation with any amplitude, it can also handle temporal perturbations
without going off-track. As another advantage, since SEDS is generally trained with
multiple demonstrations, it will not necessarily try to go back to the trajectory before
perturbation, and it selects a new way (based on training demonstrations) to reach
the goal.

NDMPG woks in closed-loop in Cartesian coordinates (end effector position), so
reacting to spatial perturbation is on-the-fly. After a spatial perturbation, NDMPG
goes back to the trajectory before perturbation, and goes from another track to the
goal point. However, it is possible for NDMPG to get stuck in an undesired attractor
state if the perturbation is large. For temporal perturbation, since NDMPG perceives
current end effector position, it will pause until the temporal perturbation is over, and
then continue from the point before perturbation. For NDMPG, reaching the goal is
not proven, but it is empirically shown.

NMPC and NDMP handle spatial and temporal perturbations in a same way. A
perturbation is a change in the input that is correspondent to proprioception. The
response to perturbation is dependent on the amplitude of perturbation, learning
data provided and the generalization capability of the trained model. Based on these
issues, the response to a perturbation can be good or bad, and nothing is guaranteed.
Nevertheless, NMPC and NDMP seem to converge back to the desired trajectory if
the perturbation is not large.

PMP can theoretically react optimally to arbitrary (and limited) Gaussian noise
present in the system dynamics (that is not forcing the system outside the belief of the
planned trajectory). This is investigated further. But an additional control mechanism
would be necessary to achieve the desired control behavior in the presence of temporal
perturbations. Generally, unexpected perturbations, which require a re-planning of
the subgoal parameters, need to be detected by a separate module.

95

10.1.8 Stability

Stability is an essential aspect needed for an adaptive module to be reliable. The
notion of stability has to be addressed for three issues:

1. BIBO stability: BIBO stands for Bounded-Input Bounded-Output. If a system
is BIBO stable, then the output will be bounded for every input to the system
that is bounded.

2. Goal’s asymptotic stability: If all solutions of the dynamical system that start
out near an equilibrium point g (here the goal point) stay near g forever, then g
is Lyapunov stable. More strongly, if g is Lyapunov stable and all solutions that
start out near g converge to g, then g is asymptotically stable. This stability
can be addressed for just parts of the state space (local), or for the entire state
space (global).

Based on the definitions above, all presented models are BIBO stable. It means
that for bounded inputs, they will not diverge to large and increasing values. Following
is the discussion for goal’s asymptotic stability.

The desired goal in DMP is inherently asymptotically globally stable. The main
idea of DMP is to use a globally stable dynamical system and shape its behavior
without loosing stability. DMP’s asymptotic stability can be analytically proven using
contraction theory. SEDS is also asymptotically globally stable. The stability is
guaranteed through the constraints put in the learning algorithm.

PMP itself is locally stable around the posterior belief of the planned trajectory.
However, this stability is dependent to the lower level kinematics model that is used.

On the other side, NMPC, NDMPG and NDMP do not have any analytical proof
of asymptotic stability. They all have big pools of neurons that are the source of the
dynamics, and finding constraints and proofs for asymptotic stability is a very compli-
cated task. Nevertheless, numerical tests show that NMPC, NDMPG and NDMP can
be reliably asymptoticly stable in the locality of the training trajectories. This is due
to the fact that dynamic reservoirs with damped weights work like a damped-spring.

10.2 Models for Periodic Tasks

Based on the models provided, three of them are designed to learn and perform periodic
tasks:

1. Dynamical Movement Primitives (DMP) - periodic version: Considering an an-
alytically well understood dynamical system with good stability properties and
modulating it by nonlinear forcing term to achieve a desired attractor behavior.

2. Adaptive Frequency Oscillators (AFO): Extending standard CPGs to allow the
system to learn the frequency of a periodic input signal, and adapt its own
intrinsic frequency to it.

3. Neural Central Pattern Generators (NCPG): Using a recurrent neural network,
the reservoir, in a chaotic state to autonomously generate rhythmic patterns.

A comparison between these models is presented in the following subsections.

10.2.1 Coupling and Dimensions

DMP defines separate subsystems for different DOFs. Then, a shared canonical system
is used to unilaterally couple them (it is also possible to have multiple canonical
systems). The canonical system plays the role of central clock for this system, so the
whole system is always coupled.

A single AFO is a decoupled part that is able to adapt its intrinsic frequency to one
of the frequencies in the input signal. To acquire a desired signal shape, even for one

96

DOF, a pool of coupled AFOs is used. The coupling is done unilaterally with the first
AFO in the pool, but it can be simply done bilaterally. So, if there are K frequencies
in each dimension, total number of coupled AFOs to learn an N-dimensional input is
K ×N .

While the elements of DMPs and AFO are decoupled, NCPG is a completely
coupled system. NCPG tries to learn and code all of the dynamical behavior in a
single reservoir. NCPG does not have any internal clock or phase definition.

10.2.2 Parameter Modulation

The first parameter that is of importance is the frequency. Luckily, all of the three
models are able to do frequency modulation. In DMP, AFO, and NCPG goal mod-
ulation is done by changing the τ , ω and leak-rate λ variables respectively. While
changing the frequency parameters in DMP and AFO is straightforward, to change
the frequency of the NCPG to a desired one, it is needed to calculate the proper
leak-rate(λ) value.

Another parameter that can be modulated is the amplitude of the generated signal.
DMP does this through changing the explicit r variable. AFO need to change the
internal radius variable of the oscillator, e.g. µ for Hopf oscillator. For DMP and
AFO, amplitude of each dimension can easily be modulated to a different value without
loosing coupling. If a NCPG is meant to do the amplitude modulation, training data
must include the desired behavior with different amplitudes. As an alternative, one
can upscale the output and downscale the output feedback by the desired factor.

Modulating the shape of the generated signal is one of the capabilities of NCPG.
NCPG can accept different trajectories as training inputs and manually switch between
them in the evaluation phase. This is not possible for DMP and AFO (pool of them
albeit) since they can only code a single behavior at once. However, they can change
the shape of the generated signal implicitly (blindly). DMP can do this with changing
the w variables in the forcing term, that is proportionally related to the shape of
trajectory. AFO can also change the frequencies of different nodes, but guessing the
proper change is not straightforward at all.

Another feature that can improve the generalization capabilities of a rhythmic
adaptive module is the ability to modulate the speed of convergence to the limit
cycle (in other words the duration of the transient behavior), without changing the
frequency. For DMP, this can be achieved by changing the αz and βz values (spring
and damper properties). For AFO, this is achieved if the oscillators used have such
parameter. The γ parameter is defined for this reason for the Hopf oscillator. For
current state of the NCPG, this ability is not yet defined.

Finally, it is important to know if an adaptive module is capable of changing phase
lags between different dimensions online. One use of this feature is changing the gait
(in locomotion) based on changing phase differences between joints. For DMP and
AFO, this can be done by changing the coupling matrix between different dimensions.
To do this, DMP needs having multiple canonical systems, that are coupled. For a
NCPG, changing the phase differences between dimensions is dependent on having
proper training data (covering different phase-lag choices) and a switch (input) to
change between them online.

10.2.3 Learning

All of the three models, DMP, AFO and NCPG, use supervised learning. They can do
the learning procedure in both offline and online modes. DMP uses locally weighted
regression, that will always end in a good estimation of the trajectory if the number of
basis functions is not too low. A pool of AFOs tries to find the frequencies of teaching
signal, but based on the initial values of the intrinsic frequencies, the pool size, and

97

the coupling strength, learning may end in with a perfect result, or a not-so-good one.
For a NCPG, the risk of the system to be bad depends more on the properties of the
reservoir and not of the training itself. Training is done by applying linear regression
(or recursive linear regression), and thus, if the reservoir is constructed properly, a good
model is obtained. However - with all these parameters - one could have the problem
of over-fitting, but this can be solved by applying a good regularization technique
(ridge regression, FORCE learning, etc).

10.2.4 Time Complexity and Integration

To analyze the time complexity of the models, first one needs to define the basic
operations. Here, it is assumed that the multiplication of two scalars is a basic
operation. Moreover, without loosing anything, it is considered that evaluating a 1-
D sigmoidal or Gaussian function with a single data point is a basic operation.
It is important to mention that the time complexity analysis is derived for execution
in the evaluation phase (not the learning phase).

Time complexity of a coupled N-dimensional DMP will be of O(K × N) where
K is the number of basis functions in each dimension. A pool of AFOs is of O(K)
where K is the number of AFOs in the pool. For NCPG, the time complexity is of
O(P 2 + P × i + P × o) where P , i and o stand for pool(reservoir), input and output
size. Assuming that the number of neurons are much more than inputs and outputs,
time complexity can be rewritten as O(P 2).

Another important question is the sensitivity of the models to the integration
timestep and method. It can be assumed that, for simplicity and efficiency, an Euler
integration method is going to be used. It is clear for DMP and AFO that they can
work even with fairly large timesteps. NCPG do not even use an integration timestep
since it is discrete dynamical system. Concluding, the integration timestep is not a
serious concern for the presented periodic adaptive modules.

10.2.5 Sensory Feedback Integration

Sensory feedback integration helps a model to respond properly to different situations
of robot and environment. Sensory feedback can be different things, ranging from
proprioception to sensory information like gyroscope, accelerometer, etc. DMP and
AFO accept sensory feedback as additive coupling terms. The coupled term is a
function of the sensory information, and the behavior of this function has to be defined
manually. NCPG accepts sensory feedback as inputs to the model. As NCPG will take
into account whatever input it is given, regardless of its physical meaning, the response
to a sensory feedback depends on a proper training. Otherwise, the response will be
emergent, and not necessarily good.

10.2.6 Behavior After Perturbations

Perturbations can happen as spatial and/or temporal perturbations. A spatial per-
turbation means that the value of a DOF is changed by an external source. But, a
temporal perturbation is happening for instance when a DOF is frozen for a timespan,
so the value of that DOF cannot change. Both spatial and temporal perturbations
can happen for multiple dimensions simultaneously.

DMP is able to handle spatial perturbations of any amplitude since it is globally
asymptotic stable. The reaction to a spatial perturbation is trying to reach the trajec-
tory, while the subgoal on the trajectory is evolving by time. A good idea is to have
different feedback functions to define the desired behavior in different situations, and
this topic needs more research. The reaction of DMP to a temporal perturbation is
the same as to a spatial perturbation. The model tries to reach the trajectory toward

98

reaching the evolving subgoal. This is not exactly the desired behavior for a temporal
perturbation because it will go off-track and skip a part of trajectory to reach the
evolving subgoal.

AFO can handle spatial perturbations in the evaluation mode. This is true for
both a single AFO, and a pool of them. But, for a pool of AFOs, it is hard to
have a direct proprioceptive feedback. As for the temporal perturbation, with a good
coupling formulation for proprioception, a stopping, speeding down or speeding up
phase behavior can be achieved with a single AFO (regarding the application). This
discussion is not valid for a pool of AFOs since each single x state variable is not
separately linked to a physical subject (like a joint angle).

For a NCPG, since it incorporates inputs for proprioception, spatial and temporal
perturbations are handled the same. A perturbation just changes the input to an
unexpected value. The response to a perturbation depends on the learning data, and
whether it covers the perturbed situation, and the generalization capability of the
learned model. Convergence to the desired periodic behavior is not guaranteed after
perturbation. Nevertheless, a good convergence behavior in locality of the training
data is empirically shown.

10.2.7 Stability

Stability can be addressed as BIBO stability and asymptotic stability (see 10.1.8 for
more). Stability is an essential aspect needed for an adaptive module to be reliable.
All of the three models are BIBO stable.

DMP is inherently globally asymptotic stable. Asymptotic stability of AFO is
dependent on the choice of the oscillator. With a Hopf oscillator used, the AFO is
globally asymptotic stable. This is generalized to a pool of AFOs.

NCPG does not have any analytical proof of asymptotic stability. It has big pools
of neurons that are the source of the dynamics, and finding constraints and proofs
for asymptotic stability is a very complicated task. Nevertheless, practice shows that
NCPG can be reliably asymptoticly stable in the locality of the training trajectories.

10.3 Architecture Point-of-View

The discussion until now has compared key properties of different approaches, but has
not yet addressed whether the proposed approaches are suitable to be used as building
blocks for a complete, hierarchical, architecture. Indeed for this, the adaptive modules
should present several features such as the possibility to work at different time scales
(e.g. short time scales at the bottom, large time scales on the top), the possibility
to be coupled to other modules while keeping stability of the overall architecture,
encapsulation (i.e. provide explicit inputs and outputs), meaningful phase information,
etc. We address these topics first for discrete and then for reaching tasks.

10.3.1 Reaching Tasks

The first thing to be discussed is if all of the models, DMP, SEDS, NMPC, NDMPG,
NDMP and PMP, are suitable to be encapsulated. By encapsulation, we mean that
all inputs and outputs (and any other variable needed for analysis) are explicitly
expressed, and are accessible. Fortunately, all of the presented models have explicit
input and output variables that helps encapsulation. As for the observability of the
models, DMP, SEDS and PMP have small numbers of state variables that makes the
state of the system easily observable. For NMPC, NDMPG and NDMP, this is a little
bit more complicated since they have many internal state variables, so more memory
is needed to have the track of the system.

99

The second issue is the problem of timescales. Actually, DMP and SEDS can work
in very small timescales since they are both smooth and have proved convergence.
Choice of the timescale has to be more careful for NMPC, NDMP, NDMP and PMP
since they can get asymptoticly unstable in large timescales (but not for small ones).
With this information, one can conclude that DMP an SEDS are more suitable for
real-time parts of the architecture where a very small timestep is going to be used, and
NMPC, NDMPG, NDMP and PMP can work in more relaxed parts of the system.

Another issue for a system to be suitable for a complete architecture is the defini-
tion of a phase state. Here phase state is defined as a variable to tell what portion of
the job has been done, and what portion is remaining. This phase state has to robust
to perturbations. The phase state can be also used to coordinate the adaptive module
with an external clock, if needed. DMP provides this phase state as a state variable,
but it is in a logarithmic manner. To be coupled with a linear clock, or other adaptive
modules, the logarithmic phase variable of the DMP has to be converted to a lin-
early changing value. Nevertheless, this can be done simply. SEDS, NMPC, NDMPG,
NDMP do not inherit any explicit internal phase variable. For these models, in order
to be used in the whole interconnected architecture, it is needed to devise some method
to extract a phase definition. This can be done, for example, by internal integration of
these models. Alternatively, a phase variable can be added to the training data since
these models can accept any arbitrary variable as input. This phase state can be used
to tell what portion of the job has been done, and what portion is remaining. Anyway,
this is an issue that has to be solved by each model separately, and there might be
different approaches to tackle this. As for PMP, since timing of the subgoals is an
external input, a phase variable have to be defined externally. Nevertheless, PMP has
an internal time variable, determining how much time is left to reach a subgoal. This
time variable can be replaced with a phase variable (for partial coordination), but this
needs investigation.

One interesting matter that helps drawing out a decision is the nature of the
candidates. DMP can learn fast and execute fast. SEDS codes the desired behavior in
a very stable and robust manner. SEDS learning is not very fast, but it can execute
fast. PMP can optimally track subgoals. NDMPG is a reservoir computing model that
is designed to code raw trajectories. NMPC is able to learn the inverse kinematics by
exploration, and NDMP is able to code forward and inverse kinematics bidirectionally
in a single structure. So, what seems to be useful is a hybrid strategy like the following
(as an example): NMPC can be used in a low level to explore the kinematics. In
sequence, DMP and NDMPG can use the kinematics information with the help of a
planner, to do rapid prototyping and testing. Meanwhile, NDMP uses the data explored
by NMPC to build up a good kinematics model. In a longer timescale, SEDS works as
a long term memory and consolidates good behaviors. Finally, PMP can be used if the
desired trajectory is expressed as subgoals. It should be mentioned that this is just an
option which will be explored further in the coming months.

10.3.2 Periodic Tasks

Discussions here in this subsection will have almost same topics as the previous
(10.3.1). So, the first thing to be discussed is the encapsulation. Again, fortunately,
DMP, AFO and NCPG have explicit inputs and outputs and they can be easily encap-
sulated. Keeping track of the system needs observing the states of the models. This
is simple and low cost for DMP and a single AFO, since they have small number of
states. But for a pool of AFOs, or NCPG, since the number of state variables is large,
more memory is needed.

Second, a phase variable is needed for coordination with external sources in the
whole architecture (e.g. other adaptive modules). DMP and AFO both have explicit
well-defined phase variables, where NCPG do not have an explicit phase definition yet,

100

but it might be possible to introduce such phase variable in the training data.
NCPG have more potential to take the lead on coding sensory feedback. NCPG

have a vast structure that gives space to learn the effect of sensory feedback. For DMP
and AFO, the formulation of sensory feedback has to be defined manually.

What seems to be a good decision is to use each model regarding its expertise.
AFO is expert with adaptation capabilities, DMP is stable and low-cost, and NCPG
is a basin of emergence. So, one choice is to have a cooperation between these three
approaches. As an example, AFO can be used to extract the resonant frequency of
the robot in interaction with environment, and give this information to NCPG and
DMP. Meanwhile, NCPG helps finding a good sensory feedback function. Additionally,
NCPG can code all information in a coupled model, and learn the link between different
dimensions inherently. Finally, DMP can play the role of encoding the desired behavior
in a stable way, and will be a candidate for fast execution, testing and modulating the
desired task. This is just an option which will be explored further in the coming
months. It is important to know that another good choice is to design a new adaptive
module that combines good features from each model, and this should be investigated
further.

10.3.3 Additional Points

There are additional points about the suitability of different models to used as the
adaptive module in the AMARSi project. These points can be listed as follows:

• Very likely, adaptive modules should also have ”interrupts”, i.e. modules should
be able to tell how well they are doing and to provide a signal when something
goes wrong. So far, none of the modules have this feature. It is important to
keep in mind that devising such feature is not routine, but it is important to
have it.

• Learning inside a module versus learning in the whole architecture should be
addressed. This will be related to WP5 and WP6 where learning paradigms and
architecture issues are going to be analyzed.

• It is a question when to add new modules and how to couple them with the
existing ones. This study includes recognizing new inputs, and having a mecha-
nism to find out if a new module should be created, or the existing ones should
be updated. It also includes the analysis of stability (probably using the con-
traction theory), especially when the new module is coupled to the other ones
in the architecture.

A thorough analysis can be presented in this document, but since these point are
strongly related to the other AMARSi Work-Packages, a discussion is needed.

It is important to state that none of the presented models are finalized (see the
extension appendix). Good features of each model can be explored for the other ones,
and the AMARSi’s strategy is definitely to strengthen each adaptive module model.
It is possible to have mixed adaptive modules combining good properties of different
approaches.

10.4 Summary

In this chapter an extended comparison study between different models of adaptive
modules was presented. Models were first studied in different aspect including cou-
pling, learning, modulation, kinematics learning, sensory feedback integration, and
stability. After that, the suitability of different models to be used in a hierarchical
architecture in AMARSi was discussed. The main conclusion that comes out of this de-
tailed analysis is that currently there is not a single approach that clearly outperforms

101

the other approaches and exhibits all the desired features needed for the architecture.
We therefore propose for the rest of the project to investigate two main directions: (1)
the creation of a new type of module that combines interesting features of the different
approaches developed so far, and (2) the development an architecture that is hybrid
i.e. that combines different types of modules for different functionalities.

102

Appendices

103

Appendix A

Extensions and Future
Works

There are several models presented as adaptive modules (see Chapters 2-9). The
presented models have several capabilities, but all of them can be improved further.
Here, possible extensions and future works for each model are discussed.

A.1 DMP

The first future study on DMP is the effect of including proprioception feedback di-
rectly into the transformation system. This means that DMP will be studied in a
closed-loop manner. This study will help to improve the behavior of DMP after per-
turbations, especially temporal ones.

Second, there is an idea of mixing DMP with what has been studied done under
the topic of muscle synergies. This will help to better understand the relation of
muscle activities, a minimum representation of them (through PCA, etc), and motor
primitives in the joint level. It will be an extension for DMP to learn weighted basis
functions to model synergies, and then having higher level weights to express tasks as
weighted combination of synergies. Like this, switching between different tasks can be
achieved by just switching the higher level weights.

Finally, for periodic tasks, DMP depend on knowing the frequency of the teaching
signal. A continued research has been followed to mix DMP and AFO to eliminate
this dependence [55], and this topic is under progress.

A.2 SEDS

Currently we have extended SEDS to a more generic framework that is able to perform
discrete motions with non-zero velocity at the target (this work has not published yet).
This extension allows to learn a considerably wider set of motions ranging from pick-
and-place movements to agile robot tasks that require reaching/hitting a static/moving
target with a specific speed and direction. It also allows the generation of more com-
plex motions by enabling a user to define via-point(s) on the path to the final goal (an
example of this requirement could be catching an object in mid-air and then placing it
on a table). Another ongoing extension to our work is to endow SEDS with the abil-
ity to perform real-time obstacle avoidance while retaining all the existing favorable
properties of SEDS. Hence, the resulting adaptive module make it possible for a robot
to interact safely and robustly in an unstructured and dynamic environment. Further,

104

we are also working on formulating the periodic version of SEDS, where we model
cyclic motions with a non-linear autonomous Dynamical Systems. The periodic SEDS
will inherit all the current properties of discrete SEDS. Finally, SEDS is currently an
offline learning algorithm which learns the parameters of a dynamical system through
constrained nonlinear optimization. An ongoing research is to design the online learn-
ing version of SEDS where the algorithm forms the motion dynamics and optimizes
the parameters of the model along time as the robot explores the working space.

A.3 NDMP

In the current form, the NDMP framework (see Fig. 6.1) has the ability to generate
straight movements but not complex shaped trajectories without an external planner.
We therefore introduce an extension to the current framework. The idea is to learn the
kinematics of the robot first to get the ability to approach the goal in a straight line.
Afterwards, we identify frequently used trajectories, which are used to learn a velocity
mapping. In the long run, this approach aims at consolidation of frequently used
trajectories in the network which then can be reproduced without external planning.

The new framework is shown in Fig. A.1 displaying the additional components for
the extension above the horizontal line. The difference to the basic NDMP is that
another output is added to the reservoir which is trained to generate the next target
position via an integration step (control loop shown in black lines in Fig. A.1). Note
that the input information is the same as it is for the original kinematic framework.
The extension introduces the ability to learn movement shapes in the end effector space
by generating a velocity u̇ for each position u, i.e. representing a vector field. We
use the velocities to compute the new target position according to u(k) = u(k − 1) +
αu̇(k − 1). The extended loop is only used if specific movement shapes are inquired.

The velocity mapping is learned from example trajectories following the previously
presented learning methods (see chapter 6). The training data for the velocity mapping
is derived from the raw input trajectories by calculating the velocities at each position
along the path yielding pairs (u(k), u̇(k)). During operation, the extension introduces
an additional dynamic system besides the reservoir. Important for this approach is
the convergence of the appended system to a target attractor (fixed-point attractors
for discrete movements, or cyclic attractors for periodic movements). This strongly
depends on the training data. A first aid to stabilize the dynamics is to add training
data that forces the end position of the trajectory to be an attractor, e.g. with the
velocities given by u̇ = β(g − x) for positions x in the vicinity of the end position g.

In this framework, multiple movement shapes, i.e. movement primitives, are rep-
resented in several velocity mappings. That means for each primitive we need another
set of read-out weights which generates the needed trajectory, but only one reservoir.
Blending and mixture of primitives can then be accomplished by gating the contribu-
tion of selected velocity mappings.

A.4 PMP

Representing a motion primitive as a sequence of subgoals is a very compact represen-
tation of a movement, resulting in a low number of parameters to describe a motion. In
future work we want to exploit the properties of the PMPs to acquire a large amount
of movement skills.

With PMPs learning takes place at two levels of hierarchy. At the motor control
level the system dynamics have to be learned. At the level of the movement primitives,
good subgoals have to be found in order to achieve a given task.

Future work will focus on defining a hierarchical planner which should learn suc-
cessful policies (motion primitives) for different tasks within a few episodes. On the

105

Fig. A.1: For an extension of the basic NDMP framework a velocity mapping is added
(above dashed line) and used for trajectory generation (bold black components).

lowest level of the hierarchy optimal control sequences are planned, whereas learning
optimal subgoals is performed on a higher level.

The probabilistic planning algorithm AICO assumes full knowledge of the sys-
tem dynamics. For the evaluated balancing tasks, mathematical descriptions of the
dynamic models are available. However, for more complicated robots or real world
examples the dynamics are unknown or to complex to describe analytically. Learning
the system dynamics is part of future work.

Finally structure learning could facilitate learning of new behavior. The proba-
bilistic planning approach could also be used to identify and improve task relevant
features, like for example the step length for walking or the center of gravity for bal-
ancing. As a result, a motion primitive would be defined by a sequence of higher order
features instead of subgoals and is part of future research.

106

Bibliography

[1] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Learning
nonlinear dynamical systems models.” Under review.

[2] J. Kober and J. Peters, “Policy search for motor primitives in robotics,” in NIPS
(D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), pp. 849–856, MIT
Press, 2008.

[3] L. Righetti and A. J. Ijspeert, “Programmable Central Pattern Generators: an
application to biped locomotion control,” in Proceedings of the 2006 IEEE Inter-
national Conference on Robotics and Automation, 2006.

[4] S. Degallier, C. Santos, L. Righetti, and A. Ijspeert, “Movement generation using
dynamical systems: a humanoid robot performing a drumming task,” in Pro-
ceedings of the IEEE-RAS International Conference on Humanoid Robots (HU-
MANOIDS06), 2006.

[5] S.-M. Khansari-Zadeh and A. Billard, “Imitation learning of globally stable non-
linear point-to-point robot motions using nonlinear programming,” in Proceed-
ing of theIEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010.2010, 2010.

[6] E. Gribovskaya, S. M. Khansari-Zadeh, and A. Billard, “Learning nonlinear mul-
tivariate dynamics of motion in robotic manipulators,” The International Journal
of Robotics Research, pp. 1–37, 2010.

[7] S.-M. Khansari-Zadeh and A. Billard, “BM: An iterative algorithm to learn stable
non-linear dynamical systems with gaussian mixture models,” in Proceeding of
the International Conference on Robotics and Automation (ICRA) pp, pp. 2381–
2388, 2010.

[8] G. McLachlan and D. Peel, Finite Mixture Models. : Wiley, 2000.

[9] D. Cohn and Z. Ghahramani, “Active learning with statistical models,” Artificial
Intelligence Research, pp. 129–145, 1996.

[10] A. Dempster and N. L. D. Rubin, “Maximum likelihood from incomplete data
via the em algorithm,” Journal of the Royal Statistical Society B, vol. 39, no. 1,
pp. 1–38, 1977.

[11] S. Vijayakumar and S. Schaal, “Locally weighted projection regression: An
o(n) algorithm for incremental real time learning in high dimensional space,”
in Proceedings of the Seventeenth International Conference on Machine Learning
(ICML), 2000.

[12] C. Rasmussen and C. Williams, Gaussian processes for machine learning. :
Springer, 2006.

[13] S. Calinon, F. Guenter, and A. Billard, “On learning, representing and gener-
alizing a task in a humanoid robot,” IEEE transactions on systems, man and
cybernetics, vol. 37, no. 2, pp. 286–298, 2007.

107

[14] M. S. Bazaraa, H. Sherali, and C. Shetty, “Nonlinear programming: Theory and
algorithms,” in 3rd Edition, Ed. John & SonsEd. John Wiley & Sons: Wiley,
2006.

[15] R. D. Robinett, Applied dynamic programming for optimization of dynamical sys-
tems. SIAM, 2005.

[16] C. T. Kelley, “Line search methods and the armijo rule,” in Iterative Methods
for Optimization, vol. 3, no. 2, pp. 40–52, 1999.

[17] G. Schwarz, “Estimating the dimension of a model,” Annals of Statistics, pp. 461–
464, 1978.

[18] S. Kim, E. Gribovskaya, and A. Billard, “Learning Motion Dynamics to Catch a
Moving Object,” in the 10th IEEE-RAS International Conference on Humanoid
Robots, 2010.

[19] H. Jaeger, “The echo state approach to analysing and training recurrent neural
networks,” submitted for publication, 2001.

[20] W. Maass, T. Natschlager, and H. Markram, “Real-time computing without sta-
ble states: A new framework for neural computation based on perturbations,”
Neural computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[21] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview of reservoir
computing: theory, applications and implementations,” in Proceedings of the 15th
European Symposium on Artificial Neural Networks, pp. 471–482, Citeseer, 2007.

[22] D. Sussillo and L. Abbott, “Generating coherent patterns of activity from chaotic
neural networks,” Neuron, vol. 63, no. 4, pp. 544–557, 2009.

[23] J. J. Steil, R. F. Reinhart, and M. Rolf, “Neural dynamic movement primitives
based on associative reservoir learning,” submitted to Adaptive Behavior, 2010.

[24] D. Wolpert and M. Kawato, “Multiple paired forward and inverse models for
motor control,” Neural Networks, pp. 1317–1329, 1998.

[25] J. J. Steil, “Backpropagation-decorrelation: recurrent learning with O(N) com-
plexity,” in Proc. IJCNN, vol. 1, pp. 843–848, 2004.

[26] J. Triesch, “A gradient rule for the plasticity of a neuron’s intrinsic excitability,”
in Proc. ICANN, pp. 65–79, 2005.

[27] S. Wrede, A. Nordmann, A. Lemme, S. Rüther, M. Johannfunke, A. Weirich, and
J. J. Steil, “A flexible and intelligent robot control framework,” in 20. GMA-FA
Workshop on Computational Intelligence, 2010. submitted.

[28] M. Rolf, J. J. Steil, and M. Gienger, “Efficient exploration and learning of whole
body kinematics,” in IEEE 8th International Conference on Development and
Learning, 2009.

[29] K. Neumann, M. Rolf, J. J. Steil, and M. Gienger, “Learning inverse kinematics
for pose-constraint bi-manual movements,” in Simulation of Adaptive Behavior –
SAB, 2010. in press.

[30] M. Rolf, J. J. Steil, and M. Gienger, “Learning flexible full body kinematics for
humanoid tool use,” in ECSIS Symp. on LAB-RS, 2010. in press.

[31] J. J. Steil, “Online reservoir adaptation by intrinsic plasticity for back-
propagation-decorrelation and echo state learning,” Neural Networks, vol. 20,
no. 3, pp. 353–364, 2007.

[32] R. F. Reinhart and J. J. Steil, “Attractor-based computation with reservoirs for
online learning of inverse kinematics,” in Proc. ESANN, pp. 257–262, 2009.

[33] J. J. Steil, “Online stability of backpropagation-decorrelation recurrent learning,”
Neurocomputing, vol. 69, pp. 642–650, Mar 2006.

108

[34] M. Lukosevicius and H. Jaeger, “Reservoir computing approaches to recurrent
neural network training,” Computer Science Review, pp. 127–149, 2009.

[35] M. Toussaint, “Robot trajectory optimization using approximate inference,” in
ICML ’09: Proceedings of the 26th Annual International Conference on Machine
Learning, (New York, NY, USA), pp. 1049–1056, ACM, 2009.

[36] E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal
feedback control of constrained nonlinear stochastic systems,” 2005.

[37] E. Theodorou, Y. Tassa, and E. Todorov, “Stochastic differential dynamic pro-
gramming,” 2010.

[38] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Optimal control with adaptive
internal dynamics models,” 2008.

[39] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Adaptive optimal feedback control
with learned internal dynamics models,” 2010.

[40] M. Toussaint and K. Rawlik, “Approximate inference control, submitted for pub-
lication,” 2010.

[41] M. Hoffman, H. Kueck, N. de Freitas, and A. Doucet, “New inference strategies
for solving markov decision processes using reversible jump mcmc,” in Proceed-
ings of the Proceedings of the Twenty-Fifth Conference Annual Conference on
Uncertainty in Artificial Intelligence (UAI-09), (Corvallis, Oregon), pp. 223–231,
AUAI Press, 2009.

[42] W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear
biological movement systems,” 2004.

[43] C. Atkeson and B. Stephens, “Multiple balance strategies from one optimization
criterion,” 2007.

[44] V. Heidrich-Meisner and C. Igel, “Neuroevolution strategies for episodic reinforce-
ment learning,” J. Algorithms, vol. 64, no. 4, pp. 152–168, 2009.

[45] D. Nguyen-tuong, J. Peters, M. Seeger, and B. Schölkopf, “Learning inverse dy-
namics: a comparison.”

[46] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for
learning motor primitives,” in in Advances in Neural Information Processing Sys-
tems, pp. 1523–1530, MIT Press, 2003.

[47] L. Righetti, J. Buchli, and A. J. Ijspeert, “Adaptive Frequency Oscillators and
Applications,” The Open Cybernetics and Systemics Journal, vol. 3, pp. 64–69,
2009.

[48] J. Buchli and A. J. Ijspeert, “Self-organized adaptive legged locomotion in a
compliant quadruped robot,” Autonomous Robots, vol. 25, no. 4, pp. 331–347,
2008.

[49] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic hebbian learning in adaptive
frequency oscillators,” Physica D, vol. 216, no. 2, pp. 269–281, 2006.

[50] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic fourier series decomposition
with pools of strongly coupled adaptive frequency oscillators.” Unpublished.

[51] D. Sussillo and L. Abbott, “Generating coherent patterns of activity from chaotic
neural networks,” Neuron, vol. 63, pp. 544–557, 2009.

[52] H. Jaeger, “The “echo state” approach to analysing and training recurrent neural
networks,” Tech. Rep. GMD Report 148, German National Research Center for
Information Technology, 2001.

[53] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without sta-
ble states: A new framework for neural computation based on perturbations,”
Neural Computation, vol. 14, no. 11, pp. 2531–2560, 2002.

109

[54] D. Verstraeten, B. Schrauwen, M. D‘Haene, and D. Stroobandt, “An experimental
unification of reservoir computing methods,” Neural Networks, vol. 20, no. 3,
pp. 391–403, 2007.

[55] A. Gams, A. Ijspeert, S. Schaal, and J. Lenarcic, “On-line learning and modu-
lation of periodic movements with nonlinear dynamical systems,” Autonomous
Robots, vol. 27, no. 1, pp. 3–23, 2009.

110

