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A b strac t

Saturation nonlinearities are ubiquitous to all physical systems. The two most com­
mon forms of saturation nonlinearities encountered in control engineering are actuator 
saturations and state constraints. Whilst the problem of actuator saturations has been 
extensively studied, there has been much less effort expended to study the problem of state 
constraints, particularly within the framework of constructive nonlinear control. This is 
despite the fact that state constraints are a major concern in many practical engineering 
systems.

The principal objective of this thesis is to develop constructive nonlinear control design 
procedures to address the stabilisation problem for nonlinear systems subject to state 
constraints. The general approach adopted, and indeed the central theme of this thesis, 
is to directly incorporate the constraints into the control design process by modifying the 
energy function of the system to include barrier function characteristics at the constraint 
boundaries. The design tools employed are backstepping and passivity-based control.

The thesis comprises of two parts. In Part I, the stabilisation problem for certain 
classes of non-affine, nonlinear systems subject to state constraints is considered. Two 
modified backstepping approaches are developed, providing trade-offs between complexity 
and applicability. The new controller designs are validated via application to flight control. 
Simulations on a fully nonlinear, 6-degree-of-freedom dynamic model of an aerial robotic 
drone demonstrate that the proposed controller designs produce excellent closed-loop per­
formance, whilst strictly satisfying the imposed state constraints.

Part II of the thesis is dedicated to the control of constrained robot manipulators. Two 
controller designs are proposed, both utilizing ideas from the passivity-based control and 
artificial potential field literature to address the stabilisation problem for constrained robot 
manipulators. The first controller design considers the general problem of autonomous, 
or online, obstacle avoidance for robot manipulators subject to joint position and joint 
rate constraints. For arbitrary constraints, closed-loop asymptotic stability can not be 
guaranteed. However, in specific cases where the constraints possess certain convexity 
properties, then asymptotic stability of the closed-loop system is assured. The second 
controller design extends the literature in a different direction, and is geared towards solv­
ing the asymptotic stabilisation problem for robot manipulators subject to joint velocity 
and input torque limits. The resulting controllers are modified Proportional-Derivative 
controllers, which are simple, intuitive, and can easily be implemented in practice. The 
validity and effectiveness of the proposed controller designs are illustrated via closed-loop 
simulations on a 2-link planar manipulator.
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C hapter 1

In troduction

This introductory chapter aims to acquaint the readers with the background literature 
and the practical control problem that motivated our research. The chapter starts with 
a brief historical account of constructive nonlinear control and an overview of existing 
control design methods for constrained systems. This is followed by an outline of the 
research directions undertaken. A description of the flight control problem that provided 
the impetus behind our work along with a general review of traditional aircraft control 
design techniques are next presented. A brief literature review on passivity-based control 
of Euler-Lagrange systems is then given. The chapter ends with an outline of the thesis’s 
structure and main contributions to the body of knowledge.

1.1 C onstructive nonlinear control

Although linear control theory has a long and rich history of successful industrial ap­
plications, it is deemed to be inadequate for many practical engineering systems. The rea­
sons are increasingly stringent performance requirements and vastly expanded operating 
envelopes, mainly due to safety considerations and technological advances. Inherent non­
linear phenomena such as finite escape time, multiple isolated equilibria, limit cycles, mul­
tiple modes of behaviour and other complex dynamic behaviours cannot be described nor 
predicted by linear models. In addition, many physical systems have hard-nonlinearities 
such as Coulomb friction, saturations, dead zones, backlash, and hysteresis [68]. These 
nonlinearities are non-smooth or discontinuous, thus precluding linear approximations. 
Furthermore, nonlinear systems do not follow the superposition principle, which states 
that the output response of a linear system to a combination of input signals is the sum 
of its responses to each individual input. The total effect of measurement noise, external 
disturbances, and reference inputs therefore cannot be simply determined by analysing 
the effect of each input signal separately. Other challenges include the facts that internal 
and input-output stability are generally not equivalent, and the separation principle does 
not hold for nonlinear systems. All of the above factors have made nonlinear control a 
both theoretically and practically challenging topic. As a result, considerable research 
efforts have been expended on studying nonlinear systems and tremendous progress has 
been made over the past twenty five years.

In the early 1980s, Jurdjevic, Isidori, Krener, Sussmann and many other pioneers
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2 Introduction

introduced differential geometric methods to express and extend notions from linear control 
theory such as controllability and observability. Differential geometric concepts, especially 
nonlinear relative degree and zero dynamics, have since become invaluable tools in the 
analysis of input-output structural properties of nonlinear systems. Following from the 
early seminal work is a number of nonlinear control design techniques generally grouped 
under the label of feedback linearization. (For a comprehensive treatment on the subject, 
see such texts as [52], [89], [106], and [127]). The central idea of these techniques is 
to algebraically transform nonlinear system dynamics into a fully, or partly, linear one. 
Linear theory is then applied to design the controller. The major drawback of feedback 
linearization methods is that useful nonlinearities, for example, inherently stabilising terms 
such as —x3, are canceled indiscriminately and replaced by their dangerously destabilising 
positive counterparts. Another weakness of feedback linearization is that in the presence 
of modeling errors, the concepts of relative degree and zero dynamics may be non-robust. 
Sastry et al. [120] showed that regular perturbations in a system may lead to singularly 
perturbed unstable zero dynamics.

It was in the 1990’s that nonlinear control theory really came of age with two excit­
ing breakthroughs. The emergence of new analysis tools such as input-to-state stability 
(ISS), nonlinear small-gain theorems, and the idea of rendering a system passive by feed­
back have led to recursive design procedures, namely backstepping and forwarding. It 
is uncertain whether the idea of backstepping appeared in earlier literature but its use 
as a design tool was initiated in the early nineties [19,71,147,148]. However, the true 
potential of backstepping was only discovered when this approach was developed for non­
linear systems with structured uncertainty. With adaptive backstepping, Kanellakopoulos 
et al. [59] achieved global stabilisation in the presence of unknown parameters, and with 
robust backstepping, Freeman and Kokotovic in [36,37], and Marino and Tomei in [88], 
achieved global stabilisation in the presence of disturbances.

The ease with which backstepping incorporates uncertainties and unknown parameters 
contributed to its instant popularity and rapid acceptance. At the same time, its limi­
tation to a class of pure feedback (lower-triangular) systems stimulated the development 
of forwarding, which is applicable to feedforward systems, by Teel [142,143], Mäzene and 
Praly [93], and Jankovic, Sepulchre, and Kokotovic [53]. Interlacing the steps of these 
procedures further expanded the classes of systems these two recursive design techniques 
are applicable to [123].

1.2 C ontrol o f constrained system s

All physical systems are subject to constraints. In the mathematical model of a system, 
a constraint is expressed as a limit or bound on a system signal. Constraints can be soft or 
hard. A soft constraint is one that may be violated at certain times and for certain periods 
of time, whereas a hard constraint must be satisfied at all time. Only hard constraints 
are considered in this thesis. There are essentially three classes of signals within a system 
model: control input, state, and output. Constraints on control input signals are the most
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commonly encountered constraints, and stem from magnitude and slew rate limits of all 
actuators. State constraints arise from physical, performance, and/or safety constraints. 
For example, all aircraft have to fly below a certain angle of attack. Should they exceed this 
aerodynamic performance constraint, stall ensues with possibly disastrous consequences. 
In robotics, manipulator arms operating on factory floors may have constraints imposed 
on their movement due to spatial restrictions and/or performance limitations to prevent 
material wear and tear. Constraints on the output signals can be further classified into 
two distinct subclasses. The first subclass of output constraints consists of those which 
arise as a direct consequence of constraints on the system states. These constraints can 
be treated as nonlinear or linear combinations of the state constraints, depending on the 
mathematical output model of the system. The second subclass of output constraints arises 
from sensors’ measurement range saturations, and requires different analysis and control 
design strategies which are beyond the scope of this thesis and will not be considered 
herein.

1.2.1 Input constraints

The problem of actuator saturations has been extensively studied. There are many 
techniques available in the linear control literature for incorporating actuator saturations 
into the design process. The simplest but also most widely used in practice are anti-windup 
compensation schemes, see [3,42,60,72,115], and references therein. These approaches are 
however, ad hoc in nature which make their stability and robustness properties difficult 
to analyse. More sophisticated techniques include the use of l\ analysis and synthesis 
techniques, which allow specification of the maximum output response as a function of 
the maximum size of noise and disturbances [26], and the use of convex optimisation to 
design controllers with a variety of input and performance constraints [15,16]. A major 
limitation of using a linear approach is the requirement that the system operates in a linear 
regime. For any nonlinear system with non-trivial transient response, this assumption is 
immediately invalid.

Another limitation associated with linear control techniques is that in general, no linear 
systems, even simple integrator cascades, of order greater than two which are subject 
to input saturations can be globally asymptotically stabilised by linear feedback control 
laws [136]. This negative result led to a number of semi-global approaches, including 
the low-gain designs by Lin and Saberi [82,84] and Teel [139], which achieve semi-global 
stabilisation of null-controllable systems, that is, systems with non-positive eigenvalues. 
The main drawback of these designs is poor performance and disturbance attenuation due 
to the use of low gains to achieve large domains of attraction. In an effort to improve the 
performance and disturbance rejection properties of the closed-loop system, high-and-low 
gain designs were proposed by Saberi et al. [117] and Lin [83]. Although these approaches 
allow for more effective use of the allowable input gains, they do not, in general, provide 
any significant improvements over the low-gain designs [44].

To improve the convergence performance and still achieve semi-global stabilisation of
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linear input constrained systems, Wredenhagen and Belanger [157] proposed a piecewise- 
linear control (PLC) design method, which is based on Linear Quadratic (LQ) theory. PLC 
employs a very simple fact, and that is as the system approaches the origin, the control 
gains may be increased without affecting the stability of the system. The method involves 
deriving a succession of positively invariant sets of diminishing size (nested ellipsoids) and 
assigning each with the corresponding highest LQ gain possible in the presence of the 
input constraints. As a system trajectory moves from an outer ellipsoid into an inner 
one, the controller switches to the corresponding feedback law. Since each ellipsoid is 
invariant under the corresponding feedback law, the switch is safe, that is, no chattering, 
and the existence and uniqueness of the solution to the closed-loop differential equation is 
guaranteed [50]. Consequently, the convergence performance of the closed-loop system is 
progressively enhanced as the system approaches the origin.

In optimal control theory, the bang-bang control methodology, which optimises a per­
formance index subject to control input constraint, has attracted numerous research ef­
forts [64,75,99,100,145,149,156]. In practice however, this control technique is rarely 
implemented. The major disadvantage of bang-bang control is that it is generally impos­
sible to characterise the switching surface. For discrete-time systems, online computation 
has been proposed in the literature, but the computational demand is substantial since 
dynamic programming has to be solved recursively with increasing time-horizon. This 
intensive online computation process increases the time delay and may lead to instability 
due to the accumulated error in the online evaluation of the control law, which is further 
exacerbated as the time-horizon is extended. In addition, the undesirable control chatter 
near the origin of state-space due to high frequency switching of the control signal often 
occurs which may lead to the excitation of undesirable high-frequency dynamics [49].

Several new nonlinear tools have been introduced in the last fifteen years for analysing 
and controlling linear and nonlinear systems with input saturations. One of the fundamen­
tal techniques is based on the thesis work of Teel [140,141], who showed how to stabilise a 
chain of integrators using nested saturation functions. This result is significant since it has 
been established that global asymptotic stabilisation of integrator chains of order greater 
than two cannot be achieved using bounded linear feedback laws. Thus, even simple lin­
ear systems with simple saturations can give rise to difficult nonlinear problems. Teel’s 
approach generates nonlinear controllers which are locally linear, but become nonlinear 
as the inputs grow toward the saturation limits. This result was later generalised to null- 
controllable systems by Sussman et al. [137]. Teel and Kapoor [144] then extended Teel’s 
earlier work by devising an algorithm to dynamically combine a local (performance) con­
troller and a global (stability) controller to achieve local performance and global stability 
for a class of fully-actuated Euler-Lagrange systems with input saturation.

In 1996, Teel [143] added another nonlinear tool to deal with the problem of input 
constraints. He formalised a nonlinear small-gain theorem which can be used to derive it­
erative control design procedures for systems in the feedforward form subject to magnitude 
and rate saturations. Mäzene and Praly [93], and Jankovic et al. [123] then furthered Teel’s 
idea by developing recursive design procedures, now known as forwarding, for such feedfor-
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ward systems subject to input constraints. Another design technique was introduced by 
Megretski [95], who used a gain-scheduling approach to generate nonlinear stabilisers for 
saturated linear systems. In addition to stability, Megretski showed that for stable plants, 
the map from plant disturbances to control inputs is L2 bounded. More recently, the con­
trol input saturation problem was studied by Freeman and Praly in [35], and Mäzene and 
Iggidr [92] in the backstepping framework. They showed that global stabilisation of certain 
classes of systems subject to bounded control and control rates can be achieved by im­
posing bounds on the stabilising functions and propagating those boundedness properties 
through each step of the backstepping technique.

1.2.2 State constraints

Although state constraints are a major concern in almost all practical control problems, 
they have not received as much attention as the problem of control input constraints. There 
have been efforts to solve state saturation control problems for linear systems using the 
concept of positive invariant sets, see [14,124] and references there within. These methods 
are based on the construction of a maximal controlled invariant set, that is, a subset 
of the state-space that will always contain the state under appropriate saturated state 
feedback. The available tools presented in this line of work, however, axe computationally 
very demanding and yield highly complex controllers. Model predictive control (MPC), a 
popular control design technique for industrial processes, has also been employed to deal 
with constrained linear systems [86,91] as well as nonlinear systems [1,2,33]. The general 
MPC algorithm functions as follows. At each sampling instant, MPC solves an open- 
loop trajectory optimisation problem to compute an optimal control sequence over a finite 
horizon, using the current state of the plant as the initial condition and the plant model to 
predict future plant outputs. The first control in the optimal control sequence is applied 
to the plant. At the next sampling instant, the optimisation problem is reformulated with 
the horizon shifted forward by one unit of time and the control input is computed using 
new measurements of the states as the initial condition, and so on. The popularity of the 
approach stems from its inherent ability to explicitly handle state and input constraints, 
and the resulting control action is stable, and optimal with respect to the specified cost 
function [91]. However, the demanded online computation, that is, the solving of an 
optimal control problem at each sampling instant, is intensive and therefore, not suitable 
for systems with fast dynamics.

In contrast to the aforementioned numerical methods, Saberi et al. [116] adopted a 
structural approach to the problem. They established necessary and sufficient structural 
conditions for the solvability of linear systems subject to magnitude and rate constraints 
on both the state and control signals. They then proposed nonlinear time-varying con­
trol laws for systems that satisfy the imposed structural conditions. Although different 
types of constraints are allowed, the solvability conditions are restrictive, thus limiting the 
applicability of the method.

In what appears to be the only other published work that deals with the prob-
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lem of state constraints in the framework of constructive nonlinear control, Wolff and 
Buss [154,155] extended the concept of invariance control [87] to solve the problem of 
stabilisation for control affine nonlinear systems subject to state constraints. In their 
design, a nominal stabilising controller for the system, which does not take into account 
the constraints, is assumed to exist. Compliance with the constraints is enforced by con­
structing an invariance controller, through input-output linearization [121,127], to modify 
the nominal control signal such that a pointwise constraint admissible state space region 
becomes positively invariant. Switching from the nominal controller to the invariance con­
troller is done every time the trajectory of the constrained system reaches the boundary 
of the invariance region. The construction of the invariance controller, however, requires 
solving a set of polynomials, one for each constraint, where the order of each polynomial 
is the relative degree of the constrained state it corresponds to. The design therefore 
becomes analytically complex for state constraints with relative degree greater than two. 
For systems subject to state constraints with relative degree greater than four, closed-form 
solutions do not exist and numerical solutions must be sought.

1.3 Research directions

Although the problem of state constraints has been addressed in the literature, it has 
not received the same focus and energy as had the input constraint problem. Furthermore, 
there have been very few attempts made to study the state constraint problem within the 
context of constructive nonlinear control.

The purpose of this thesis is two fold. The first is to develop backstepping-based control 
design procedures to address the stabilisation problem for specific classes of non-affine, 
nonlinear systems subject to state constraints. The proposed control design procedures are 
then applied to provide solutions to practical engineering problems. The second objective 
is to address the set-point regulation problem for constrained Euler-Lagrange mechanical 
systems in the framework of passivity-based control.

1.4 Practical m otivation: longitude control o f U ninhabited  

Aerial Vehicles

Due to recent advances in computing and sensor technologies, and the social pressure 
to reduce risks to human pilots, there has been an enthusiastic drive towards the use of 
small Uninhabited Aerial Vehicles (UAVs). An example is the Aerosonde UAV depicted 
in Figure 1.1. The Aerosonde is a long-range reconnaissance robotic drone which has been 
successfully deployed in a variety of meteorological sensing missions. Current research 
efforts now focus on improving and extending the operational capability of the aircraft. 
With its small size, approximately 2.9m x 2m in wingspan and length, respectively, and 
an endurance of more than 30 hours, the Aerosonde provides the ideal platform for a 
wide range of low-cost surveillance and sensing tasks. Apart from meteorological data
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Figure 1.1: The Aerosonde UAV (Digital image by Jon Becker, Aerosonde Pty Ltd)

collection, which the aircraft was originally developed for, potential applications include 
coastal surveillance, landscape mapping, aerial photography, low-altitude mineral explo­
ration, just to name a few.

Commercial operations of miniaturized, low-cost UAVs pose different control problems 
to those of manned aircraft or military UAVs. Aircraft and load configurations are more 
likely to change quickly to capture market opportunities. Although performance criteria 
are less stringent, the desire for enhanced functionality demands that the aircraft operates 
over an expanded flight envelope characterised by potentially hostile and highly nonlinear 
variations in dynamic pressure and aerodynamic phenomena [20]. At the same time, 
limited resources, cost effectiveness considerations, and the fact that these aircraft are 
disposable, mandate the use of simplified and incomplete dynamic models and inexpensive 
hardware in the implementation of the control system.

In addition, as with any other practical systems, aircraft control warrants the consider­
ation of input and/or state constraints. Input constraints arise due to physical limitations 
on the range of operations of actuators. Aerodynamic phenomena such as stall and flutter 
impose magnitude constraints on the system states.

One of the main objectives of this thesis is to address these challenges and design a lon­
gitudinal flight controller that guarantees acceptable tracking and stabilising performance 
for the class of small commercially-operated flying robots such as the Aerosonde. The fo­
cus is firmly placed on the longitudinal dynamics due to the fact that the mission profiles 
of the UAVs under consideration do not require acrobatic nor evasive maneuvers. Conse­
quently, these aircraft are normally built with a relatively high degree of lateral-directional 
stability. The Aerosonde, for example, is very stable in the roll mode.
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1.4.1 Traditional aircraft control design m ethods

Traditional approaches to automatic flight control design, though highly successful 
in manned aircraft and military UAVs, axe unsuitable as design tools for commercial 
UAVs. The popular, for its systematic divide-and-conquer framework, gain-scheduling 
methodology is tedious, relies heavily on the designer’s experience, demands system in­
formation to be known a 'priori, and requires extensive flight tests to verify the final 
control law [77,110]. Furthermore, small changes in aircraft dynamics require re-tuning 
of the controller since it does not intrinsically model nonlinear parameter variation in dy­
namic pressure [20]. Although automated gain-scheduling methods dramatically reduces 
the workload involved [98,108,111], automation does little to address the trial-and-error 
nature of the method and robustness issues. Moreover, there exists no simple or direct 
mechanism to incorporate actuator saturation and/or state constraints into the design pro­
cess. The use of nonlinear actuation systems can also significantly increase the complexity 
of the control design [20]. Similarly inapplicable are feedback linearization techniques 
because they involve the inversion of the nonlinear plant dynamics that depend crucially 
on the quality of the flight dynamic model. The so called self-learning approaches, in­
cluding fuzzy logic, neural network, and genetic algorithm, have significant problems. 
Although there have been various proposals which have produced encouraging simulation 
results [80,97,112,132], the major shortcoming of these methodologies as flight control 
design tools is the lack of the analytical and practical means to examine the stability, 
performance, and robustness of the resulting controller.

1.4.2 Integrator backstepping

Integrator backstepping is a nonlinear control design technique that employs Lyapunov 
synthesis to recursively determine controllers for systems satisfying the lower-triangular 
cascaded structure, see Figure 1.2. The advantages of backstepping are numerous. In 
contrast to the feedback linearization technique which stipulates the cancellation of all 
nonlinearities including useful ones, backstepping affords the control engineer not only 
the choice of retaining all beneficial nonlinearities, but also great freedom in selecting the 
final control law [68]. Other strengths of backstepping include its ability to accommodate, 
by explicitly accounting for, large nonlinearities and uncertainties in the system’s model, 
ignored dynamics, input and measurement disturbances [74], [38], [56], [159], [6], [28]. All 
of these factors, coupled with its constructive nature, and the fact that the aircraft lon­
gitudinal dynamics can be transformed into the strict-feedback cascaded structure, make 
backstepping very attractive as a design tool to solve the Aerosonde’s control challenges 
described previously. However, direct application of traditional backstepping [74] tends 
to produce highly aggressive control laws. Such control laws are unsuitable for real sys­
tems due to actuator saturation and the possible presence of hard bounds on the physical 
system states.

Aircraft control requires the consideration of bounded states rather than bounded 
control inputs. Let us illustrate by considering the elevators-to-altitude dynamics which
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Figure 1.2: Lower-triangular cascaded structure

can be transformed into a 4</l-order system driven by the elevators, see Figure 1.3. The 
control margin provided by the elevators for a typical aircraft is more than adequate for all 
required manoeuvres. In fact, the control margin can be considered infinite with respect 
to the system in the sense that both the magnitude and the rate of the control inputs 
are sufficient to cause catastrophic system failure should they be applied too aggressively. 
For example, if  the aircraft attempts to gain altitude at too quickly a rate, the resultant 
large elevator deflections will cause the aircraft to stall. Hard bounds on the states due to 
performance/physical limitations such as that of the aircraft example are very common in 
practice. To design a robust stabilising controller for such systems, it is more applicable 
to place hard bounds on the relevant state/s rather than the control inputs in the control 
design procedure.

elevator input pitch rate angle of attack climb rate altitude
6e q a  vz h

Figure 1.3: Schematic representation of aircraft longitudinal dynamics

Motivated by this control problem, we dedicate the first part of this thesis to developing 
backstepping-based design procedures to asymptotically stabilise general classes of non- 
affine, nonlinear systems subject to state constraints. The design procedures developed 
are then applied to design a longitudinal autopilot for the Aerosonde UAV which takes 
into account the state constraints imposed by aerodynamic phenomena and performance 
limitations.
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1.5 Passivity-based  control o f Euler-Lagrange system s

Passivity-based control (PBC) is in essence a nonlinear, two-stage control design 
methodology whose objective is rendering the closed-loop system passive. The first stage, 
termed the energy shaping stage, involves the modification of the potential energy such 
that the modified potential energy function has a global and unique minimum in the de­
sired equilibrium. The second stage, or injection damping, entails the modification of 
the dissipation function to ensure asymptotic stability. First introduced in the seminal 
paper by Takegaki and Arimoto [138] to solve the set-point regulation of robot manip­
ulators, PBC has attracted enormous popularity because it generates computationally 
simple control laws that can accomplish complicated tasks with rigorously established 
stability, performance, and robustness properties. The final control laws are invariably 
Proportional-Derivative-like control laws, which are intuitively simple and can easily be 
implemented in practice. Numerous extensions of PBC have been made, most notably the 
research work described in [109] which is applicable to general Euler-Lagrange systems, 
that is, systems which admit an Euler-Lagrangian formulation. In [109], issues such as out­
put feedback, disturbance attenuation, under-actuation, and adaptivity were addressed. 
This work also provided the motivation that led to the thesis work of Akmeliawati [4] 
where the author applied the concept of PBC to design longitudinal autopilots for air­
craft. Akmeliawati’s approach however, does not account for state or input constraints. 
Although PBC has been employed to address the bounded input control problem for robot 
manipulators [65,66,119], the problem of state constraints has never been considered in 
the literature. Motivated by this, in the second part of this thesis, we extend the PBC 
methodology to solve the set-point regulation problem for constrained Euler-Lagrange 
systems. Although the results presented in this thesis are explicitly developed for robot 
manipulators, which are an important class of Euler-Lagrange systems due to their per­
vasive presence in modern manufacturing processes, the proposed controller designs are 
applicable to general Euler-Lagrange systems.

1.6 Thesis contributions and outline

This thesis consists of two parts, preceded by a chapter of preliminaries. In Part I, 
modified backstepping design procedures are developed to solve the problem of stabil­
isation for general classes of non-affine, nonlinear systems subject to state constraints. 
These theoretical developments are then applied to mechanical and aerospace systems to 
demonstrate their validity, practicality, and performance. Part II of the thesis is devoted 
to studying the set-point regulation problem for constrained robot manipulators in the 
framework of passivity-based control.

Part I

Part I of the thesis is composed of three chapters and includes extensions of the fol­
lowing two papers:
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• K. B. Ngo, R. Mahony, and Z.-P. Jiang, Integrator backstepping design for motion 
systems with velocity constraint, in Proceedings of the 5th Asian Control Conference 
2004, pages 141-146, Melbourne, Australia, July 2004.

• K. B. Ngo, R. Mahony, and Z.-P. Jiang, Integrator backstepping using barrier func­
tions for systems with multiple state constraints, in Proceedings of the 4 4 th IEEE 
Conference on Decision and Control and European Control Conference 2005, Seville, 
Spain, December 2005.

In Chapter 3, two modified backstepping-based control designs are proposed to asymp­
totically stabilise a class of non-afhne, nonlinear systems subject to a single or two con­
secutively constrained states. The first design, or the “non-strict” approach, only requires 
the construction of non-strict control Lyapunov functions but yields long and algebraically 
complicated control laws. The second design, or the “ISS” approach, generates simpler 
control laws but at the cost of having to construct input-to-state control Lyapunov func­
tions, which are not always possible, and are generally much more difficult than the de­
termination of non-strict control Lyapunov functions. The validity and effectiveness of 
the proposed control designs are illustrated via closed-loop simulations of two mechani­
cal systems: the active car suspension system subject to suspension travel limits and the 
Reaction Wheel Pendulum system subject to torque and pendulum’s velocity constraints.

In Chapter 4, the results of Chapter 3 are extended to asymptotically stabilise a class 
of nonlinear systems subject to multiple state constraints. The adaptation of the “ISS” 
approach to accommodate multiple state constraints is straightforward, requiring only 
one additional assumption on the nonlinear terms in the system’s dynamic model. For 
the “non-strict” approach, the extension is more complicated. To achieve boundedness of 
the states, the cross-terms of the traditional backstepping method have to be dominated 
instead of being directly cancelled. The outcome of the proposed design procedure is a set 
of constraints on the controller parameters. From these constraints, nonlinear bounds for 
the stabilising functions and error variables, and ultimately, for the system states, in terms 
of the controller parameters can be computed. Together, the constraints on the controller 
parameters, the computed bounds on the system states, and the prescribed state bounds 
provide the ingredients for a multi-criteria constrained optimisation routine to tuning the 
controller parameters. The result is a set of controller parameters that guarantees that the 
closed-loop system is asymptotically stable, and yields the maximum possible constraint 
admissible region given the prescribed state bounds and the constraints imposed by the 
proposed design procedure.

Chapter 5 is dedicated to designing a longitudinal autopilot, based on the backstep­
ping method, to regulate the altitude of the Aerosonde UAV. Application of traditional 
backstepping however, leads to an aggressive controller that causes the aircraft to stall 
by commanding excessively large elevator deflections. To solve this “large effector com­
mands” problem, and hence prevent the onset of stall, a hard bound on the climb rate of 
the aircraft is imposed. This state constraint is directly incorporated into the controller 
design by utilizing the results developed in Chapter 3. Closed-loop simulations on a fully
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nonlinear, 6-degree-of-freedom dynamic model of the Aerosonde UAV are presented to 
demonstrate the validity and performance of the proposed controller design.

Part II

Part II of the thesis is devoted to studying robot manipulators subject to constraints 
in the framework of passivity-based control, and is a composition of the following two 
papers:

• K. B. Ngo and R. Mahony, Passivity-based control of robot manipulators subject 
to constraints, in Proceedings of the 2005 Australasian Conference on Robotics and 
Automation, Sydney, Australia, December 2005.

• K. B. Ngo and R. Mahony, Bounded torque control for robot manipulators subject to 
joint velocity constraints, in Proceedings of the 2006 IEEE International Conference 
on Robotics and Automation, Florida, USA, May 2006.

In Chapter 6, a control design procedure is developed which utilizes ideas from 
passivity-based control and artificial potential field methods to address the general prob­
lem of autonomous obstacle avoidance for constrained robot manipulators subject to joint 
position and joint rate constraints. The control objectives are achieved by incorporating 
barrier-function characteristics into the control Lyapunov function. In common with the 
artificial potential field method, for arbitrary constraints, the asymptotic stability of the 
closed-loop system is not guaranteed due to the possible presence of local minima in the 
structure of the proposed control Lyapunov function. However, for systems with state con­
straints that possess certain convexity properties, asymptotic stability of the closed-loop 
system is assured.

In Chapter 7, the ideas of passivity-based control and artificial potential field methods 
are extended in a different direction to solve the stabilisation problem for robot manipu­
lators with torque limits and joint velocity constraints. The key advantage of the control 
design procedure derived in this chapter is that the resulting controllers axe invariably 
modified PD-controllers, which are structurally simple, robust, and immensely practical.

The attractiveness of the control design procedures developed in this part is that 
although the focus is principally on robot manipulator dynamics, the proposed design 
procedures are equally applicable to general Euler-Lagrange systems. Closed-loop simu­
lation results on a 2-link planar robot manipulator are provided to illustrate the validity 
and effectiveness of the proposed controller designs.

The thesis concludes with Chapter 8 which is a summary of the main contributions of 
this thesis, and contains a discussion of recommended future research.



Chapter 2

Prelim inaries

This chapter provides a brief review of the ideas and concepts used in this thesis. In 
Section 2.1, we lay the foundation for the thesis by defining the necessary notation and 
terminology. Section 2.2 contains the definitions of barrier functions and re-centred barrier 
functions. The concept of relative degree is outlined in Section 2.3. Notions of stability 
are given in Section 2.4. The definitions of control Lyapunov functions are presented next 
in Section 2.5. The chapter then ends with Section 2.6 where the integrator backstepping 
method is briefly recapitulated. Since the materials presented in Sections 2.4 and 2.6 are 
well-established, no proofs are offered. For more detailed treatments of those materials, 
the interested reader is referred to such excellent texts as [52,68,74,127].

2.1 N otation  and Term inology

• A function / :  IRn —* Rq is Ck if its partial derivatives exist and are continuous up to 
order k, 1 < k < oo. A C 0 function is continuous. A C°° function is smooth, that 
is, it has continuous partial derivatives of any order.

• Given a vector field /  : Rn —► Rn and a differentiable scalar function A : Rn —► K, 
LfX denotes the Lie derivative (directional derivative) of A along /

Lf\{x)  =  ~ / ( ® )

Higher order Lie derivatives can be defined recursively as

L}\(x) =
L)X(x) = L f V f 1 A(x)

for i = 1,2,... with L°^\(x) = A(x).

• A continuous function a : [0, a) —> [0, oo) is said to belong to class /C, that is, a e 1C, 
if it is strictly increasing and c*(0) = 0. It is said to belong to class /C^ if a = oo 
and a(r) —> oo as r —> oo.

• A continuous function ß : [0, a) x [0, oo) —► [0, oo) is said to belong to class ICC if, 
for each fixed s , the mapping ß(r,s) belongs to class /C with respect to r and, for

13
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each fixed r, the mapping ß (r ,s ) is decreasing with respect to s and ß(r,s) —> 0 as 
s —* 00.

• The notations Amax{B} and Amin{B} denote the largest and smallest eigenvalues of 
matrix B , respectively. The norm of vector x is defined as ||x|| = VxTx, and that 
of matrix A is defined as ||A ||2 = y/Xmax{AT A ) .

• Throughout this thesis, | . | denotes the Euclidean norm.

2.2 Barrier functions and re-centred barrier functions

Definition 2.1 (Barrier function and re-centred barrier function [152], pg. 90).
Let S  be an open, non-empty, and convex subset o fW 1. A function f  is called a barrier 
function in S  if it satisfies the following conditions.

• The function f  : S  —> R is continuously differentiable and strictly convex in S.

• f (xk)  —> oo for every sequence {x^ 6 <S) approaching a boundary point of S.

Given a point Xd € S, a barrier function f  is called a re-centred barrier function about Xd

if

• f { xd) = and f ( x ) > 0 f or all x G S  with x j- Xd-

Lemma 2.2 (Re-centred barrier function [152], pg. 94). Let S  be an open, non­
empty convex subset o /R n, and f  be a barrier function in S . Given a point Xd € S, and 
define function f Xd: S —>Ras

fxd(x ) = f ( x ) ~ f{xd) ~ V f i x d)T ix ~ xd)- (2.1)

Then f Xd is a re-centred barrier function about Xd.

Proof. Since the function /  is strictly convex and continuously differentiable in S, then

f i x ) > f i xd) + V f ( x d)T(x -  xd), (2.2)

with equality only at x = Xd [152]. □

2.3 R elative degree

Definition 2.3 (Relative degree of nonlinear system s [90]). The nonlinear Single- 
Input-Single-Output (SISO) system

x = f (x)  + g(x)u 

V = h(x), (2.3)
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where f , g : V c R n —>Rn, and h : V  C W1 —» M, is said to have relative degree r, 
1 < r < n, in a region Vo C V if

LgLlfh(x) =  0, z =  l , . . . , r — 1,

LgLrjT1h(x) ±  0

for all x £ Vo.

2.4 Stability

Definition 2.4 (Lyapunov stability [74]). The origin of the system,

x = f (x ), (2.4)

where x G Mn and f(x) is Lipschitz continuous, is said to be

• Stable if, for each e > 0, there exists 6 > 0 such that

|x(0)| < S => |x(t)| < e,Vt > 0.

• Attractive if there exists 6 > 0 such that

|x(0)| < 6 => lim x(t) = 0.
t—►oo

• Asymptotically stable (AS) if it is stable and attractive.

• Globally asymptotically stable (GAS) if it is stable and

Vx(0) G Rn, lim x(t) =  0.
x —>oo

• Locally exponentially stable (LES) if there exists 6, k, ß > 0 such that

\x {0 ) \< S ^ \x ( t) \< k \x (0 ) \e -ßt.

A sufficient condition for stability at the origin of any system is established through 
Lyapunov’s direct method.

Theorem 2.5 (Global asym ptotic stability [74]). Let x = 0 be an equilibrium of 
system (2.f). If there exists a continuously differentiable positive definite and radially 
unbounded function V(x): IRn —> R+ such that

V(x) = ^ { x ) f { x )  <  0, Vx G Rn, ox
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then x — 0 is stable, and all solutions of (2-4) are bounded and converge to the set where x 
= 0. I f V (x) is negative definite, the origin is globally asymptotically stable. The function 
V(x) is called a Lyapunov function for system (2-4)-

Theorem 2.6 (LaSalle’s Invariance Principle [74]). Let LI be a positively invariant 
set of (2.4). Let V : LI —> R+ be a continuously differentiable function V( x ) such that 
V(x)  < 0, Vx 6 Ll. Let E  = {x £ Ll \ V(x) = 0}, and let M  be the largest invariant 
set contained in E. Then, every bounded solution x(t) starting in Ll converges to M  as 
t —> 00.

Another stability concept used in this thesis is the input-to-state stability (ISS). First 
introduced by Sontag in [129], ISS is used to establish boundedness of system’s states with 
respect to bounded inputs.

Definition 2.7 (ISS [68]). The time-invariant system

x = f (x ,d)  (2.5)

where x £ W 1 is the state, d £ W  is the disturbance, and f  : Rn x Rr is Lipschitz 
continuous, is said to be input-to-state stable if there exist a class ICC function ß and a 
class K, function 7 such that for any initial state xq  and for any bounded disturbance d(t), 
the solution x(t) exists for all t > 0 and satisfies

|*(*)l < ß ( M , t )  +  7 (  sup |d(r)| J . (2.6)
Vo<T<t J

The following theorem establishes the connection between the existence of a Lyapunov- 
like function and ISS.

Theorem 2.8 (ISS Lyapunov function [74]). Suppose that for the system (2.5) there 
exists a continuously differentiable function V : Rn —> R+ such that for all x £ Mn and 
d £ Mr,

7i (M) < V’(ar) < 72(H ) (2.7)

and

1*1 > p(\dI) = >  f ( x , d ) < -73(|* |), (2.8)

where 71, 72, and p are class JC0Q functions and 73 is a class K. function. Then the system 
(2.5) is ISS with 7 =  7 f 1 072 °P- The function V is said to be an ISS-Lyapunov function.

One useful application of ISS is the stability analysis of interconnected cascades. We 
are interested in the following result as we will be using it later in Chapters 3 and 4.
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Corollary 2.9 (GAS of ISS-interconnected cascades [68]). Given the cascade system

i i  =  f i (xi , x2) (2.9) 
X2 =  h ( X 2 ) ,  (2. 10)

where f \  : Rni x Rn2 —>• Rni, and f<i : Rn2 —► Rn2 are Lipschitz continuous. I f  the 
system (2.9), with X2 as input, is input-to-state stable and the origin of (2.10) is globally 
asymptotically stable, then the origin of the interconnected system with state x =  [xi X2 ]T 
is globally asymptotically stable.

Definition 2.10 (Domain global asym ptotic stability [104]). A system

x =  f(x, t ) ,  f ( x0,t) =  0, xo E Rn (2.11)

with equilibrium point xo is termed domain globally asymptotically stable (DGAS) to xo 
with domain U if

1. There exists a set U C R n that is forward invariant under the dynamics of (2.11) 
and xo € U.

2. The equilibrium point xo is Lyapunov stable under the dynamics of (2.11) restricted 
to U.

3. For any initial condition x(0) G U, then the solution x(t) of (2.11) satisfies

lim x(t) =  0.
t —* oo

2.5 C ontrol Lyapunov functions

In this section we present the definitions for control Lyapunov functions and ISS-control 
Lyapunov functions.

Definition 2.11 (Control Lyapunov functions [74]). Given the system

x =  f (x , u) (2-12)

where x E Rn is the state vector, u € Rm is the control signal, and f  : Rn x Rm —> Rn 
is Lipschitz continuous. A smooth positive definite and radially unbounded function V : 
Rn —> R+ is called a control Lyapunov function (cLf) for (2.12) if

inf <^- ( x ) f ( x , u)  1 < 0, Vx G Rn. 
tzGRm 1 <9x v ' v ' J “ (2.13)
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If in addition

u€ K m
inf { T x  (x ) f ( x >“)}  < o, Vx ^  0, (2.14)

then it is called a strict elf.

Definition 2.12 (ISS-control Lyapunov functions [68]). Consider the system

where x E Rn is the state, d G Rr is the disturbance, u E Rm is the control signal, and 
/  : R" x f  x Rm —» Rn is Lipschitz continuous. A smooth positive definite and radially 
unbounded function V : Rn —> R+ is called an ISS-control Lyapunov function (ISS-cLf) 
for (2.15) if there exists a class-K,^ function p such that

Backstepping is the main design tool in this thesis and in this section we give a brief 
description of the design procedure. Let us start with a simple nonlinear system cascaded 
by an integrator

where (a:,£) e Rn x R is the state vector, and m 6 R is the control. The functions 
/ ,  g : Rn —► Rn are assumed to be smooth, and /(0 ) = 0. The objective is to find a 
state feedback control law such that the origin x = 0, £ = 0 is globally asymptotically 
stable. The design procedure proceeds as follows. Suppose the the ^-subsystem can be 
stabilised by a smooth state feedback virtual control, also stabilising function, £ = a(x),  
with a(0) = 0 such that the origin of

is globally asymptotically stable. Assume that there exist a positive definite and radially 
unbounded Lyapunov function V(x),  and a positive definite function W(x)  such that the 
following inequality is satisfied

x = f (x ,d ,u) (2.15)

2.6 Backstepping [74]

x = /(:r) + g(x)Z 

i =  u

(2.17a)

(2.17b)

x = f (x)  +  g(x)a(x)

^  [f{x) + g{x)a{x)] < - W ( x ) ,  Wx € Rn. (2.18)
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By adding and subtracting g(x)a(x) on the right hand side of (2.17a), we obtain the 
equivalent representation

x = |/(x) + g(x)c*(x)] + g{x) [£ -  a(x)]

i  = u. (2.19)

Define the change of variables

z = £ -  a(x),

which yields

i  =  u —da(x)
dt

Since /, g and a(x) are known, the derivative daj ^  can be computed analytically and is 
given by

da(x)
dt

da(x) 
dx [f(x) + g(x)£].

This change of variables can be viewed as “backstepping” the virtual control —a(x) 
through the integrator, and results in the system

x = [f(x) + g{x)a(x)] + g(x)z (2.20a)
da(x)

z = u  dt (2.20b)

which is exactly the same as the original system (2.17), except now the x-subsystem has 
a globally asymptotically stable origin when the input z is zero. This feature is now 
exploited in the design of a stabilising control law for the overall system (2.20). Consider 
the following positive definite and radially unbounded function as a candidate Lyapunov 
function

U(x,z) = V(x) + - z2. ( 2 .21)

Differentiating U(x,z) with respect to time yields 

• dV{x)
dx

< — W{x) + z

[f{x) + g(x)a{x)] + 2
u  ~  [/(*) + S(x)£] +

u ~ ^  if(x) + (2 .22)
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To render Ü negative definite, the simplest choice is

u =  -CZ +  [f(x)  +  g{x)£,} -

where c > 0, which yields

(2.23)

Ü < — W(x)  — cz2 (2.24)

and is negative definite since W(x)  is positive definite. Since U is positive definite and 
radially unbounded, we can conclude that the origin x =  0, z =  0 is globally asymptotically 
stable. Since a(0) =  0, then the origin of the original system x — 0, C =  0 is also globally 
asymptotically stable, and the control law u in the original coordinates is given by

u =  - c [ { -  <*(*)] +  [f(x) +  g(x)£\ -  g(x).  (2.25)

It is clear that the above design procedure can be employed to globally asymptotically 
stabilize systems of the following form [74]

x =  f ( x ) + g ( x ) £  i

6  = /i(z,Cl) + 0 i(z ,6 )6

C m - 1  —  fm—2 ( ^ 5  Cl j •••> C m — 1 )  +  <?m—2(x,  Cl> . . . ,  C m —l ) C m

Cm =  fm— 1  f a )  Cl j •••» C m ) T  *?m—1  ( x ,  Cl j C m ) ^  (2.26)

by recursively “backstepping” the control law from the x-subsystem through to the last 
subsystem Cm where the real control signal u appears.



Part I

Integrator B ackstepp ing C ontrol 

o f C onstrained  N onlinear S ystem s

21



C hapter 3

Stabilisation of nonlinear system s  
subject to  state constraints

The problem of saturation nonlinearities is by far the most common challenge faced 
by control engineers as all practical control problems are constrained in one way or an­
other [13,48]. There are two main types of saturation nonlinearities: actuator constraints 
and state constraints. Examples of constrained systems include mechanical systems with 
position and velocity limits, electrical systems with limited power supply to the actuators, 
chemical processes with magnitude restrictions on process variables due to safety issues 
etc. Control problems for constrained linear systems have been extensively studied in 
the literature due to the hitherto successful use of linear approximations to represent a 
restricted range of operating conditions of otherwise nonlinear processes. Key approaches 
include override control [43], set invariance and admissible set control [11,14], the refer­
ence governor approach [39], and Model Predictive Control (MPC) [10,21]. Many of the 
accepted linear techniques are numerical in nature, and rely heavily on computationally 
intensive algorithms to solve the control problems. It is only recently that insights into 
structural properties of stabilizable constrained linear systems, as well as control design 
methodologies for such systems, were provided in [116,118].

All real systems are, however, inherently nonlinear. In addition, factors such as higher 
product quality specifications, increasing productivity demands, tighter environmental 
regulations, and demanding economical considerations all require systems to operate over 
a wider range of operating conditions and often near the boundary of the admissible region. 
Under these conditions, linear models are no longer adequate to describe the system’s 
dynamics and nonlinear models should be considered. A number of linear techniques has 
been extended to address the stabilisation problem of constrained nonlinear systems, most 
notably the MPC approach (see [1,2,33] and references therein). MPC, however, requires 
the solution of an optimal control problem at each time step, rendering it unsuitable for 
systems with fast dynamics.

In the constructive nonlinear control literature, despite significant advances in the 
development of analysis and design methodologies, the general stabilisation problem of 
nonlinear systems subject to saturation nonlinearities remains an open area of research. 
Previous work in the literature has mainly focused on the problem of actuator con-

23



24 Stabilisation of nonlinear systems subject to state constraints

straints for feedforward systems. This has led to the modern techniques of small gain 
designs [45,55,57,141,143] and forwarding [93,123]. A criticism of small gain designs is 
that they generally have poor performance and are non-robust with respect to the presence 
of destabilising feedback terms [44]. Forwarding designs on the other hand, are mathe­
matically involved. The major burden of the forwarding design proposed by Jankovic et 
dl. [123] is the evaluation of the cross-terms which require the solving of partial differential 
equations, a difficult task in general. Similarly, the forwarding design devised by Mäzene 
and Praly [93] requires the determination of the coupling changes of coordinates which 
in many cases, lead to complicated calculations or cannot even be determined due to pa­
rameters inaccurately known or the presence of destabilising feedback terms. Motivated 
by the complexities associated with the forwarding control design methods, Freeman and 
Praly [35] showed that global stabilisation of the following class of control affine nonlinear 
systems

x = f  (x) + g(x){

£ = u + /i(® ,0 , (3.1)

where (x, £) G (Rn xR) is the state vector, u € M is the control input, / ( 0) =  0, h(0,0) =  0, 
subject to bounded controls and control rates can be achieved by imposing bounds on the 
stabilising functions and their derivatives, and propagating those boundedness properties 
through each step of the backstepping technique. This result was later extended by Mäzene 
and Iggidr [92] to the more general class of systems

x = f { x , 0

i  = u + / i ( z ,0 ,  (3-2)

where (x,£) G (Rn xR) is the state vector, u G R is the control input, /(0 ) =  0, h(0,0) =  0, 
which includes feedforward systems that are not stabilisable by the forwarding techniques.

State constraints, which are a major concern in many practical control problems, have 
not received the same level of attention as the problem of actuator constraints has. Re­
cently, Wolff and Buss [154,155] employed the concept of invariance control [87] in con­
junction with feedback linearization to solve the stabilisation problem for control affine 
nonlinear systems

x = f (x)  + g(x)u,

where x G Rn is the state vector, u G K is the control input, and / , g : Rn —> Rn are 
smooth vector fields, subject to m G R+ hard state constraints as defined by

Vi = hi(x) < 0, 1 < i < m,

where hi(x) : Rn —> R are smooth output functions. The main disadvantage of this 
approach is that it involves solving m polynomials, one for each state constraint, where
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the order of each polynomial is the relative degree of the constrained state it corresponds 
to.

To tackle the problem of state saturation constraints, it appears more effective to 
employ the backstepping methodology which is capable of delivering the high input gain 
margins required to impose the state saturation constraints. Furthermore, high gains 
are necessary to drive the constrained states as close as possible to their limits, thus 
achieving better convergence properties. Another salient attribute of backstepping is that, 
in contrast to feedback linearization technique which stipulates the cancellation of all 
nonlinearities including useful ones, backstepping affords the control engineer not only the 
choice of retaining all beneficial nonlinearities, but also great freedom in selecting the final 
control law [74]. Other strengths of backstepping include its ability to accommodate, by 
explicitly accounting for, large and unmatched nonlinearities and parametric uncertainties 
in the system’s model, ignored dynamics, input and measurement disturbances [6,28,38, 
56,74,159].

The main objective of this chapter is to develop systematic design procedures to asymp­
totically stabilise a class of nonlinear systems subject to one or two constrained states as 
depicted in Figures 3.1 and 3.2. The control problems considered in this chapter are 
motivated by the problem of aircraft altitude control, which, due to such aerodynamic 
phenomena as stall, requires the consideration of state constraints rather than input con­
straints. To illustrate this point, let us examine the elevator-to-altitude dynamics of an 
aircraft, which resembles a 4^-order integrator cascade driven by the elevators, see Figure 
1.3. The control margin provided by the elevators for a typical aircraft is more than ade­
quate for all required manoeuvres. In fact, the control margin can be considered infinite 
with respect to the system in the sense that both the magnitude and rate of the control 
inputs are sufficient to cause catastrophic system failure should they be applied too ag­
gressively. For example, if the aircraft is made to climb or descend too quickly, that is, 
at too high an angle of attack, it will stall and fall from the sky due to the loss of lift. 
To design a controller for such systems, it is more applicable to place hard bounds on the 
relevant states rather than the control inputs in the control design procedure.

n

Constrained state

Figure 3.1: System subject to one constrained state

The principal contribution of this chapter is the introduction of two modified backstep­
ping design procedures to solve the stabilisation problem of non-affine nonlinear systems 
subject to a single or two consecutive state constraints as depicted in Figures 3.1 and 3.2.
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r r i

C onstrained  s ta te s

Figure 3.2: System subject to two consecutive constrained states

Observe that the rr-subsystem is non-affine with respect to the state variable £1 . The class 
of systems considered includes those systems which are not locally exponentially stabiliz- 
able and thus are not conducive to the methods of forwarding. The results presented herein 
are extensions of our work in [54,103], and complement the work of Wolff and Buss [154] 
in two ways. Firstly, we consider a more general class of systems than the control affine 
systems considered by Wolff and Buss. Secondly, the design procedure proposed by Wolff 
and Buss becomes mathematically involved for state constraints of relative degree greater 
than 2, and may not even yield a feasible solution for state constraints of relative degree 
greater than 4. In our proposed controller designs, closed-form analytic solutions exist for 
state constraints of any relative degree, provided that they are of the specified order in 
the cascade as shown in Figures 3.1 and 3.2.

The chapter is structured as follows. In Section 3.1, a control design procedure for 
systems subject to a single state constraint is proposed which is based on the assumption 
that no expression of a strict cLf is available. This approach, however, generates control 
laws which are algebraically complex for high-order systems, motivating us to seek a 
simpler design. The second design, presented in Section 3.2, yields considerably simpler 
control laws than the first. Nonetheless, the second design is based on a stronger set 
of assumptions which requires the determination of ISS-cLfs. To illustrate the validity 
and effectiveness of the proposed control designs, we apply the first design procedure, as 
exposed in Section 3.1, to solve the stabilisation problem for the active suspension system 
subject to suspension travel limits. The controller design and closed-loop simulations are 
presented in Section 3.3. In Section 3.4, we extend the first design procedure to solve the 
control problem where there exist magnitude constraints on two consecutive system states. 
Finally, the stabilisation problem of the Reaction Wheel Pendulum subject to magnitude 
constraints on the pendulum’s velocity and applied torque is considered in Section 3.5 
along with closed-loop simulation results.

3.1 The case o f one constrained state: stabilisation  w ith  
non-strict cLfs

In this section, we present an asymptotically stabilising controller design for a class 
of non-affine nonlinear systems subject to a single asymmetric state constraint, assuming
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that no strict cLfs (cf. Definition 2.11) are available. Please note that some parts of the 
derivation and analysis of the main result, particularly the proof for asymptotic stability, 
are based on the work by Mäzene and Iggidr [92].

Given a class of nonlinear systems of the form

x  =  / ( x , C :  i )
Ci = C2 +  h ( x , £ i )

Cm — u + f m{x , Cl) • • • i Cm) (3.3)

where (x,C) £ (Rn x Rm) is the state vector, and u E R is the control. The system 
(3.3) is non-affine in the sense that the x-subsystem is non-affine with respect to the 
state variable Cl- The functions /, / i , . . . , /m are assumed to be sufficiently smooth, and 
/(0,0) = 0, /i(0,0) = 0, ..., / m(0,0,..., 0) = 0. In other words, the origin of (3.3) is 
an equilibrium point. There exist bounds on the state Cl due to performance/physical 
limitations such that

—Bl < Ci it) < B y , Vt > 0, (3.4)

where the constants Bl , By E R+, Bl represents the lower limit and By represents 
the upper limit of the state Cl- The control objective is to develop a systematic design 
procedure to asymptotically stabilise system (3.3), whilst strictly respecting the constraints 
on b  as defined by (3.4).

3.1.1 B ounded state backstepping design

We make the following set of assumptions on system (3.3).

Assumption 3.1. There exist

• A function V (x ) which is positive definite, radially unbounded, and of class C 1.

• A function W  (x) which is positive semi-definite and of class C1.

• A sufficiently smooth control law a\ (x) satisfying

Oi(0) = 0

|q i(x)| < A

^ /( x ,Q i ( x ) )  < -W{x)  (3.5)

where A G R+ is a constant.

• The solution x(t) = 0 is the unique function satisfying, for all t,

x(t) = f(x(t),  c*i (x(t))), W (x(t)) = 0. (3.6)
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Assumption 3.1 concerns only the x-subsystem

x = f (x,£  i),

with £1 as the virtual input, and is a very natural assumption in the framework of back- 
stepping. In essence, we require the construction of a bounded stabilising function c*i (x) 
such that with =  aq(x), the x-subsystem is globally asymptotically stable with the 
cLf V(x),  which can admit negative semi-definite derivatives along the trajectories of 
the closed-loop system x = /(x,o;i(x)). Naturally, Assumption 3.1 will lead us to in­
voke LaSalle’s Invariance Principle (cf. Theorem 2.6) to prove asymptotic stability of the 
closed-loop system.

Note that Assumption 3.1 does not imply that system (3.3) is locally exponentially 
stabilisable. It follows that the design procedures developed in this chapter are applicable 
to those feedforward systems which cannot be stabilised through the forwarding designs 
exposed in [93] or [123]. An illustrative example is the three-dimensional feedforward 
system (adapted from [92])

Xl =  X2

< x2 = - x \  +  £5

i =u
with x = (x i, X2 )T, which is not locally exponentially stabilisable.

To improve the clarity of the development of the result, we will first present the result 
for the reduced-order system

fx = / ( x , £ i )
< . (3.7)
[ 6  = u  + /i(x ,fi)

with v e M as the control signal, then generalise the result to the full-order system (3.3) 
afterwards.

Proposition 3.2. Consider system (3.7) subject to a single state constraint as defined by 
(3.4)• Let a\ > A, b\ > A, and k\, c\ € R+ be design constants, where A is as defined in 
Assumption 3.1. Define the error variable z\ as

* 1 = 6 -  c*i(x) (3.8)

and let the functions T(x,£ 1) and r(zi) denote

T (x ,ii) = !/(®,6 ) “ f i x , a i(x))]

r / x = ____________ [(ai + z i ) (b i -2 i ) ]2____________
1 fci [2 (ai + zi) (61 -  zi) -  z\{(b\ -  z\) -  (ai + 21)}] ’

(3.9)

(3.10)
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respectively. Consider the following candidate cLf for system, (3.7)

U(x, z1) =  V( x ) +  { a i + z k̂ b i _ z i Y  ( 3 . 11)

which is positive definite and radially unbounded in the domain

V  =  {(x, z\) € Rn x M I z\ G (—ai, b\)}.

Suppose that the system (3.7) satisfies Assumption 3.1, then the time derivative of (3.11) 
along the trajectories of system (3.7) in closed-loop with the control law

v(x,zi) =  - c i z i  -  / i (x,£i)  + ^ - ( x ) / ( x , £ i )  -  (3.12)

is rendered non-positive, and negative definite i f W( x )  is positive definite. Furthermore, 
for all initial conditions in V , system (3.7) in closed-loop with feedback (3.12) is V-domain 
globally asymptotically stable (V-DGAS - cf. Definition 2.10) at the origin, the feedback 
(3.12) is continuous, and the state is bounded as defined by (3-4)-

Before stating the proof of Proposition 3.2, the following lemma, which defines a con­
tinuous and strictly positive function in an open, non-empty, and convex set, is required.

Lemma 3.3. Let
y(s) = 2 - - ^ + °  (3.13)

a + s fj — s

If a, ß  € R+, then y(s) is continuous and strictly positive for all s € {—a,ß).

Proof o f Lem ma 3.3. See Appendix A. □

We are now ready to state the proof of Proposition 3.2.

Proof o f Proposition  3.2. Let us consider the x-subsystem

i  =  f ( x , t  l ) - (3.14)

From Assumption 3.1, one obtains

V(x) = ^ ~ ( x)f (x ,£i)

< - W( x )  4- [f(x,Zi) ~  / ( a r , Q i ( a : ) ) l

< - W( x )  + T { x £ i).

Differentiating (3.8) with respect to time yields

z\ =  v +  / i ( * , f i )  -

(3.15)

(3.16)
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It follows that the time derivative of the chosen cLf (3.11) satisfies the inequality

U < - W{x) + Zll l ( * d l)  +  _ I _ ?2 +  / l ( z , { l )  - (3.17)

which in closed-loop with the control law (3.12) is rendered non-positive, negative definite 

if W (x ) is positive definite, in V

Ü < - W { x )  -
k\C\zj

{d\ +  z\) (h  -  z\)
z 1

a \  +  Z\
< 0 (3.18)

since, according to Lemma (3.3), the function in the square brackets in (3.18) is strictly 

positive for all z\ E (—a\,b\).  To prove that the origin of system (3.7) is D-domain 

globally asymptotically stabilised by the control law (3.12), we apply LaSalle’s Invariance 

Principle. Using (3.8) and (3.18), and let (xp(t), £ip(t)) denote a solution of system (3.7) 

in closed-loop with control law (3.12) such that

W{xp{t))

+ h c \  [CiPW  -  <*i(xp(t))f
(öl +  Kl pit) -  a i(x p(t))]) (6i -  [Cl pit) -  ai (xp{t))})

2 -

+

Kip(*) ~ ^i (^p(0)]
(a i  +  K ip W  -  a i ( * p W ) D

Kip(0 - «itepM)]
(bi -  K i p ( 0  -  o i ( * p W ) ] ) .

(3.19)

for all t > 0. Then xp(t) and £ip(t) satisfy

W(xp(t)) = 0, €ip(t) = a\ (xp(t)), Vt > 0 (3.20)

and

xp(t) = f ( x p(t) ,ai(xp(t))), Vt > 0. (3.21)

According to Assumption (3.1), it follows that the function xp(.) satisfies

xp{t) = 0, Vt > 0. (3.22)

Combining (3.20) and (3.22) yields

xp(t) = 0, ClP(t) =  0, Vt > 0, (3.23)

which guarantees that the origin of (3.7) in closed-loop with the control law (3.12) is 

P-DGAS according to LaSalle’s Invariance Principle [92].

The control law v(x, z\) is continuous in V  by composition. Since all the terms on the 

right hand side of (3.12) is continuous in V , v(x,z\)  is therefore continuous in V.
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What remains is the proof of the boundedness of the state £1 . From (3.11) and (3.18), 

one obtains

________ k\Zi ( t ) 2________
(ai  +  z i { t )) (bi -  z i ( t ))

< U{t) <  U(0), Wt > 0.

By inspection, this proves that

(3.24)

—d\ < z\(t) < 6i, Vt > 0. (3.25)

It follows from equations (3.8) and (3.25), and Assumption 3.1 which assumes that 

|ai(rr)| < A, that the state £i is bounded, and the explicit bounds on the state are

- a i  < £i(t) -  a i(x(t)) < b\

= *  — |ai +  A| < £i (f) < \b\ +  AI, Vt > 0 .  (3.26)

The design constants a\, b\ must satisfy a\ > A and b\ > A because it follows from 

(3.8) that

2i(0) =  ? i(0 ) -a i(x (0 ) ) .  (3.27)

Consider the initial condition where £i(0) =  0 and ai(x(0)) =  ±A , then

zi(0) =  0 - ± A

=  t A. (3.28)

Thus, to satisfy (3.25), the design constants a\, b\ must be chosen such that a\ >  A and 

b\ > A to prevent z\ from being ill-conditioned. □

Rem ark 3.4. Note that the domain of attraction V is given in the error coordinates 
(x, z)T. The domain of attraction in the original coordinates (x, £i )t can easily be com­
puted using the diffeomorphism (3.8), and necessarily depends on the values of the design 
constants a\ and b\ .

R em ark 3.5. It is straightforward to see that if the bound A on the norm of the stabilising 
function ai(:r) can be made arbitrarily small, then the achieved state bounds (3.26) can be 
made to satisfy arbitrary prescribed bounds.

3.1.2 Control tuning

In the proof of Proposition 3.2, we have described how the design constants a\ and &i, 
which are the desired bounds on the error variable z\, must be tuned. In this section, we 
explain how to tune the design constant k \, which has a direct effect on how close the error
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variable z\ gets to its imposed bounds (—a \,b \)  during its evolution. It was established 
in (3.24) that

_______hz i j t )2_______
(ai +  z i{ t) )  (61 -  z i( t) ) < U (t), Vt >  0.

Expanding out the denominator on the left hand side of the above inequality yields

____________k \ Z \ { t ) 2____________

a\b\ +  (bi -  a1) z 1(t) -  z i(t)2 <  u ( t ) . (3.29)

For simplicity, let us consider the example where a\ =  1, b\ =  1, which means that 
Z\  G (—1,1). Simple algebraic manipulations of (3.29) lead to the following over-bound 
on the evolution of z\

z \ { t ) 2 <
1

k
VTi

By inspection, it is obvious that for a given value of U{t),  the smaller k\ is, the closer to 
its bounds, which is (—1, 1) in this example, z \( t)  gets. Consequently, the state £i will be 
pushed closer to its bounds by virtue of (3.8).

We are now ready to state the main result for the full-order system (3.3).

3 .1 .3  M a in  resu lt

Theorem  3.6. Consider system  (3.3) subject to a single state constraint as defined by 

(3.4)- Let a\ > A, &i > A, and k i , C {  G R+ be design constants, where A is as defined in 

Assumption 3.1. Define the error variables Z{, for i =  1, as follows

Z i  Ckj, (3.30)

where a; denote the intermediate stabilising functions of the backstepping technique. Sup­

pose that system  (3.3) satisfies Assumption 3.1, then a continuous control law u{x, z )  can 

be constructed such that the time derivative of the following candidate cLf for (3.3), which 

is positive definite and radially unbounded in domain V ,

i  2 m

U (X' Z) =  V{X) +  (a1 +  z 1Hb i - z l ) +  g  kiZ' (3'31)

along the trajectories of system  (3.3) in closed-loop with u(x, z )  is rendered non-positive, 

negative definite i f W( x )  is negative definite, as follows

Ü =  - W { x )  -
k \C \z2

(ai +  zi )  (&i -  zi )
2 -

z \  Z\

a\ +  z\  &i -  z\ -  ^ 2  <  0» (3-32)
i=2
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where domain V  = { (x ,z) G Kn x Mm | z\ G (—a \,b \)} . Furthermore, for all initial 

conditions in V , the closed-loop system is V -D G AS at the origin, and the state Cl is 

bounded as defined by (3.f).

Proof of Theorem 3.6. Following verbatim the proof of Proposition 3.2, we can readily 
establish that the reduced-order system

x =  f ( x , £  l )

Ci =  C2 +  / i ( z ,C i )
(3.33)

with the candidate cLf

U l { X ’ Z '  ) = v(»)+ (oi+^ _ ti)

in closed-loop with

a2{x,zi) = —c\Z\ -  /i(z ,f i)  + ~ (3.34)

is asymptotically stable in V\ C V = {(x,z \ ) G Mn x R  | z\  G (—a, &)}, and that the state 
Ci is bounded as defined by (3.26). Now that we have achieved our objective of bounding 
the state Ci, standard backstepping (cf. Section 2.6) is recursively applied to the remaining 
subsystems until the full system (3.3) is stabilised by the actual control u. At the final 
step of the design procedure, we end up with

Zm — Cm CtT (3.35)

Differentiating (3.35) with respect to time yields

Z-m — U fm{Xi Cl > •••» Cm) (3.36)

It follows that the time derivative of the chosen cLf (3.31) satisfies the inequality

m — 1

U < -W(x)  -
k\C\z{

(ai + z i )  (&i -  Z\ )
z\ z 12 -------------—  +

a\ + z\ b \ -  z\ Y  kiCiZi

+ Zr km—\Zm—l km {ti +  fm{x, Cl i •••> Cm) d m } (3.37)

which, in closed-loop with the following continuous control law

u(x,z) — Cm Z-m /m(^> Cl >•••» Cm) “I" k m —l Z m —1 (3.38)

is rendered non-positive, and negative definite if W(x) is negative definite, in domain V
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as follows

Ü = -W{x)  -
k\C\z\

( a i  +  z i )  ( b i  -  Z \ )
2 -

z  1 + z  1

a\ +  z\ b\ — z\
< 0. (3.39)

Asymptotic stability of system (3.3) in closed-loop with feedback (3.38) in domain V  is 
proved by invoking LaSalle’s Invariance Principle and establishing that the set in which 
U = 0 contains only the origin. See the proof of Proposition 3.2 for details. □

The cLf (3.31) constructed in Theorem 3.6 centres on the use of the barrier function 
(cf. Definition 2.1)

y{z)
k z2

(a + z) (b -  z) ’ (3.40)

where a, b E M+, to ensure that the state constraints are strictly satisfied. It works by im­
posing increasingly severe penalties on trajectories approaching the constraint boundary. 
Infinitesimally close to the boundary, the cLf (3.31) becomes infinite, thus guaranteeing 
that all trajectories starting inside the open, non-empty, convex set Z  = { z  € M | z  € 
(—a, b)} remain in Z  for all future time. Trajectories close to the origin however, receive 
negligible penalty. Whilst this is good in the sense that softer control actions are de­
manded, in certain applications, it is often more desirable to have the system converge 
to the demanded position as quickly as possible. This is also consistent with the notion 
of time-optimal control. Maximal convergence rates require the constrained states to be 
pushed right up against their bounds until convergence, and in minimal time. These ob­
jectives can be achieved by choosing the design constant k small as explained in Section 
3.1.2.

Note that the barrier function y(z) = â̂ -z^ b_z  ̂ is only one of many functions that 
satisfies our bounded state control objective. Indeed, any candidate cLf in 2  that tends to 
infinity as 2  tends to either —a or b will satisfy our control objective. Interesting examples 
include gradient re-centred logarithmic functions [153]. It is worth emphasising that the 
the form of the barrier function has no impact on the effectiveness of the final control law.

As pointed out in [123], recursively applying backstepping in its standard form gener­
ates analytical expressions of increasing complexity, primarily due to the dependence of 
Qi+i on the time derivative of a*. The complexity is further exacerbated by the inclusion 
of the barrier function y(z) = (a+z**b_z} in the above design procedure. After a couple of 
recursive steps, the time derivative of y(z) alone gets discouragingly long and complicated, 
thus providing the motivation to seek alternative designs. In the next section, we detail 
a different design approach which leads to simpler stabilising control laws for essentially 
the same problem, albeit with a stronger set of assumptions. We would like to emphasise 
here that the simplified control laws are achieved by adopting a different design route, 
and not by implementing approximate differentiating filters, that is to replace cq_i by 

*+1, where t* is a small time constant, or by using linear high-gain feedbacks as exposed 
in [123].
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3.2 The case of one constrained state: stabilisation  w ith  

ISS-cLfs

The result presented in this section is an extension of the work in [54]. The control 
problem considered herein is slightly different to that of Section 3.1, and for clarity and 
the reader’s convenience, we shall state the control problem in full here.

Given nonlinear systems of the form

* = /(* ,& ) (3.41a)

6 = 6  + /i(®,6)

6n — u + fmi. % 1  6 1 •••■> £m)) (3.41b)

where (x, £) 6 RnxRm is the state variable, and u G R is the control. The functions /,..., f m 
are assumed to be sufficiently smooth, and /(0,0) =  /i(0,0) = ... = /^ (0 ,0,..., 0) = 0. 
There exists a magnitude constraint on the state 6  due to performance/physical limita­
tions such that

\Zi(t)\<B, Vt> 0, (3.42)

where the bounding constant B  G R+. Observe that the symmetric bound defined by 
(3.42) is stricter than the asymmetric bound considered in Section 3.1. The control ob­
jective is to develop explicit feedback control laws which asymptotically stabilise system 
(3.41), whilst keeping the state 6  bounded as defined by (3.42).

3.2.1 Bounded state backstepping: an ISS redesign

The following set of assumptions is made on system (3.41).

Assumption 3.7. There exist

• A function W (x) which is positive definite, of class C1, and satisfies

W{x)  > 7s(M), Vx G Rn, (3.43)

where 7 3  is a class JC00 function.

• A function V{x) which is positive definite, radially unbounded, of class C1, and such 
that

7i(W) < V{x) < 72(M), Vr G Rn, (3.44)

where 7 1 , 7 2  are class /Coo functions.

• A sufficiently smooth control law ai(x), bounded in norm by a positive constant A,
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satisfying oi(0) =  0, and such that

^ f ( x , a i(a:)) < - W( x ) . (3.45)

A class /Coo function o such that

T( x ,£i ) < cr(|£i -  ai(x )|), V[£i -  ai(x)] G M, (3.46)

where T(x , f i )  denotes

T( x ,£i ) = [/(*>£i) ~  f ( x , a i ( x ) ) ] . (3.47)

Assumption 3.7 essentially requires that an ISS-cLf (cf. Definition 2.12) for the x- 
subsystem, with respect to the input signal [£i — oq], exists and can be constructed. This 
assumption allows us to asymptotically stabilise the ^-subsystem independently of the x- 
subsystem, that is, without having to cancel the cross-terms. Asymptotic stability of the 
full system (3.41) is proved by applying the ISS argument for interconnected cascades (cf. 
Definition 2.9).

T heorem  3.8. Consider system (3.41) subject to a single state constraint as defined by 
(3.42). Define

z\ = £1 -  (3.48a)

22 =  £2 + f i  (x, 6 )  -  da^  (3.48b)

+  (3.48c)

Zm = tm + /m -l(* ,£ l.-> £m ) + + ~  + -  -  ~ • (3.48m)

Suppose that system (3.41) satisfies Assumption 3.7. I f the following control law is chosen

t <- <- \ dfm-i d2f m- 2 , d-Q i /Q
u{x,z)  /  „ cizi fm Cl 1 •••» £m) ^  ^ 2  ••• + ĵUm ’ (3.49)

1=1

where Ci G R+ are design constants, i = 1, then the system (3.41) in closed-loop with 
(3.49) is rendered globally asymptotically stable. Furthermore, given an initial condition 
zi(0) G [-61,61], «2(0) e  [—62,62] , 2 m(0) e  [-6m,6m], where 61,62, - , b m € R+, <6ere 
exists a constant e > 0 such that the state £1 is bounded as follows

|£i(f)| < 61+ e  + A , Vt > 0, (3.50)

where A  is as defined in Assumption 3.7.
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Proof o f Theorem 3.8. Let us consider the ^-subsystem

x = /(z,£i) (3.51)

From Assumption 3.7, one obtains

T/ ! \ dV(x) c( t , 
v (*) = - ^ - / ( * > 6 )

< -W (x )  + dVQ ^  [/(z,£i) -  /(®,ai(*))]

< —73(|^|) + <j (\z i \), Vx e Mn, Vzi G M. (3.52)

Thus, the x-subsystem is globally input-to-state stable with respect to the input z\.
We will now describe the design procedure to globally asymptotically stabilise the £- 

subsystem. By applying the diffeomorphism (3.48), the ^-subsystem can be expressed in 
the new ^-coordinates as

zi = z2

Z2 =  *3

• 1 f t  c c \  1 d f m—1 d ~ f m —2 .
2 m  —  U  +  / m ( ^ > C  1 )  • • • >  s m )  H - - - - - - - ^ - - - - - i- - - - - - - - ^ - - - - - - • • •

which in closed-loop with feedback (3.49) is rendered

0 1 ... 0

dma i(x) (3.53)

0 0 
-c i c2 

Az.

. - C T

(3.54)

The design constants c* can be chosen such that A is diagonalisable and Hurwitz, that is, 
all the eigenvalues of A are distinct and negative real. From Lyapunov’s direct method 
for time-invariant linear systems [68], if A is Hurwitz, then for any symmetric, positive 
definite matrix Q € Mmxm, there exists a symmetric, positive definite matrix P € Rmxm 
such that

-Q  = At P + PA. (3.55)

Let us choose the following positive definite and radially unbounded function as the can­
didate cLf for (3.54)

S(z) = zTPz. (3.56)
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The time derivative of (3.56) is given by

S(z) = zt (At P  + PA)z

= - zt Qz (3.57)

and is negative definite as the matrix Q is selected to be positive definite. Since S(x) is 
positive definite and radially unbounded, and S(x) is negative definite, the system (3.53) 
is therefore globally asymptotically stable. The original system (3.41) can be re-written 
in the new coordinates (x, z)T as follows

x = f (x,z i )

Z i

--------------------------------------1

7
 

g

E
 

•*
*

 
•

0
1

—

0

0
- c i

1

0
- C 2

(3.58)

According to Assumption 3.7, the x-subsystem is input-to-state stable with respect to the 
input z i, and we have just proved that the 2-subsystem is globally asymptotically stable. It 
follows from Corollary 2.9 that the interconnected system (3.58) is globally asymptotically 
stable at the origin. Consequently, the original system (3.41) in closed-loop with feedback 
(3.49) is globally asymptotically stable.

The remaining task is to prove the boundedness of the state £i. Given that A is 
diagonalisable, solving the system of linear differential equations (3.54) yields the following 
explicit solution for z\

z\ (t) = d\eSlt +  G^e52* +  ... +  dmeSmt, (3.59)

where s*, i = 1, ...,m, denote the eigenvalues of the matrix A and depend on the design 
constants c*, and the constants dj G 1  depend on the eigenvectors of A as well as the 
initial condition 2(0) = [21 (0),..., zm(ff)]T [25]. Furthermore,

d\ + T ••• T dm — Z\(0). (3.60)

By inspecting (3.59) and (3.60), it is evident that given the initial condition 21 (0) € 
[—fc>i, 61 ], 22(0) € [—62, £>2]» •••, 2m(0) G [—bm,bm], the design constants Cj can be tuned 
such that the evolution of z\ is bounded by

\zi(t)\ < bi + e, V<> 0. (3.61)

From (3.48a) and Assumption 3.7, it follows that the state £1 is bounded in norm, and
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the explicit bound is given by

16 WI = 1*1 M + <*iMI
< bi + e + A, Vt > 0.

This concludes the proof. □

The control law (3.49) is simpler than (3.38) since it does not contain the cross-term 
r(z i)T (x ,£ i)  a n ( j derivatives, which significantly reduces the design time for high-order 
systems. However, the simplicity of the design comes at a cost, and that is the determina­
tion of ISS-cLfs, which from a practical point of view, cannot always be carried out and in 
the majority of cases, far more complicated than the construction of non-ISS, non-strict 
cLfs. As a result, the applicability of the design proposed in this section is severely limited. 
Other drawbacks of the above design procedure are that the method only guarantees a 
domain semi-global result, and requires the explicit solution of the 2-subsystem.

Note that although in the above proof, we employ backstepping-based feedback lin­
earization to compute the control law (3.49), which obviates the need to cancel the cross­
terms, other control laws can as easily be derived through the standard backstepping 
approach, which offers greater flexibility and design freedom, hence robustness, than feed­
back linearization. On the other hand, not cancelling the cross-terms has other advantages 
besides yielding simpler control laws. With additional assumptions, the design procedure 
detailed in this section can readily be extended to solve the problem of multiple state 
constraints, as will be shown in Chapter 4.

3.3 A pplication: active suspension  system  subject to  sus­
pension travel lim its

We will now illustrate the validity and effectiveness of the proposed design procedures 
by applying Theorem 3.6 to the active suspension system for cars subject to suspension 
travel limits.

When designing active suspensions, the main objective is to achieve a high degree of 
ride comfort, and at the same time, maintain a good level of handling performance. To 
improve ride quality, hence passenger comfort, the objective is to minimize the vertical 
acceleration of the car’s body. For good handling performance, the tire deformation must 
be kept as small as possible to minimize wheel hop, whilst simultaneously maximizing 
traction with the road. In addition, an important trade-off which must be factored into 
the overall design process is the ride quality versus the suspension travel. By suspension 
travel we mean the space variation between the car body and the tire. To improve pas­
senger comfort, it is necessary to use more suspension travel. However, this increases the 
likelihood of hitting the suspension travel limits, which not only creates considerable pas­
senger discomfort but also increases wear and teax of vehicle components. Thus, a robust 
active suspension design must behave differently on smooth and rough roads. On smooth
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roads, the emphasis is on a soft response to ensure a high degree of passenger comfort. 
On rough roads, the suspension must stiffen up to avoid bottoming out. Simultaneously, 
tire deformations must be kept small at all time for handling and safety reasons. Such an 
amplitude-dependent response is not achievable with linear control as the response of a 
linear controller is invariably proportional to the amplitude of the error signal. Thus, if 
one chooses the gains such that the suspension limits are not violated when driving over 
rough roads, the design will then become too conservative, resulting in the ride quality on 
smooth roads being greatly compromised [81].

In this section, we apply the control design procedure presented in Section 3.1 to 
address the problem of suspension travel limits in active suspension designs. The problem 
has been considered previously by Lin and Kanellakopoulos [81], and Karlsson et al. [62] 
in the backstepping framework. In [81], the authors introduced a filter design whose 
effective bandwidth is dependent on the magnitude of the suspension travel. In [62], the 
authors intentionally introduced saturation nonlinearities into the controller to stiffen up 
the suspension near its travel limits. However, neither of the mentioned controller designs 
actually guarantees that the suspension travel will stay within its limits. The contribution 
of this section is a controller design for the active suspension system which guarantees 
that the suspension will never bottom out, that is, the suspension travel will never reach 
its limits.

3.3.1 D ynam ical m odel and problem  statem ent

We adopt the dynamic model given in [62] and use the quarter-car model to represent 
the suspension system, see Figure 3.3. In this model, the suspension actuator is taken to 
be a force actuator acting between the car body (the sprung mass) and the axle of the car. 
The tire is represented as an ideal, undamped spring between the axle and the ground. 
The axle and wheel assembly are represented as a mass (the unsprung mass) connected

/ / / / / / / / / / / / / / /

Figure 3.3: Quarter-car suspension model
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to the ground via the spring which represents the tire. The suspension force also reacts 
against the unsprung mass. The system’s dynamics is described by the following set of 
differential equations

X \  = X2 — d

x 2 = — u 2 x \  + p u  

X3 = - X 2  + X4

X4 =  —u  (3.62)

where we use the following notation

X\ the deformation of the tire,

X2 the unsprung mass (tire) velocity,

X3 the suspension deflection,
X4 the sprung mass (car body) velocity,
u control force produced by the actuator,
d the vertical ground velocity, which acts as a disturbance,
u the natural frequency of the unsprung mass,

P the sprung to unsprung mass ratio.

The suspension travel limit is denoted by E. That is,

|x3(t)| < E, Vt > 0. (3.63)

The control objective is to construct an asymptotically stabilising control law for (3.62) 
such that the hard constraint on the suspension travel x3 as defined by (3.63) is satisfied.

3.3.2 Controller design

Firstly, we need to transform system (3.62) into the form as described by (3.3). This 
is achieved with the following diffeomorphism [62]

m

Vi

X \  +
P +  1

P + 1
X2 +

P + 1
£l =  X3

6  =  - x 2 +  x 4

which yields

m = r)2 -  d 
r)2 = -Arn +  B£ i 

ii = &
£2 =  C771 -  .D£i -  E u (3.64)
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where

A =
P + 1

The system (3.64), which contains the //-subsystem driven by the constrained variable £1, 
is exactly in the form as described by (3.3). Furthermore, the subsystem // — (771, 772)^ 
satisfies Assumption 3.1 with

Thus, according to Theorem 3.6, a continuous control law u can be constructed to asymp­
totically stabilise the system (3.64), whilst strictly satisfying the state constraint as defined 
by (3.63). It must also be noted that the controller design detailed in this section solves 
a stablisation problem and not a disturbance attenuation problem. Therefore, the design 
does not depend on where the disturbance enters the dynamic system. In addition, observe 
that it is impossible to solve a global L00 disturbance attenuation problem while keeping 
the state £1 = £3 bounded. We therefore take d =  0 in the controller design process, which 
is reasonable since we only deal with disturbances that are almost impulsive in nature, 
and thus correspond to non-zero initial conditions [62]. The derivation of the control law 
u is presented in full below.

Step 1

Let us consider the //-subsystem

v (v) = \ m \ + (3.65)

and

0 :1(77) = -c i tanh(/ci//2). (3.66)

m =  V2

z) 2 =  - A r i i  +  B £  1. (3.67)

The time-derivative of V (//) is given by

V = Arjirji + 7/2772

= 7/2 Arji -  Arji + B£ 1

=  Br]2^\, (3.68)

which in closed-loop with the stabilising function a\ (77) is rendered

V = -c\Bri2 tanh(fci//2) + Br]2Z\ 
< -W(rj) + BTI2Z1 , (3.69)
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where c\,k\ G E+ are design constants. The error variable z\ and the function W(rj) are 
given by

z\ = £1 -  ol\ (3.70)

W — c\Brj2 tanh(k \772), (3-71)

respectively. Since the function W(rj) is positive semi-definite in (771, 772) £ E2, it is ob­
vious from (3.69) that V(r]) is rendered negative semi-definite once z\ is driven to zero. 
Application of Lasalle’s Invariance Principle proves that the origin of the 77-subsystem is 
indeed globally asymptotically stable when Z\ is driven to 0.

From (3.66), it follows that the stabilising function ct\ is bounded, and the bound on 
Q!i is

|oji(r7(t))| < ci, Vt > 0, (3.72)

since | tanh(.)| < 1 .

Step 2

Consider the augmented subsystem for the 77-subsystem

(3.73)

and define the error variable for this design step z2 as

h  = 6  + c\k\ 1 — tanh2(/ci772) -A771 +  B £ 1

Z2 = £2 -  OL2- (3.74)

Note that the stabilising function c*i is bounded, see (3.72). We now require that the error 
variable z\ to also be bounded in order to bound the state £1. One candidate cLf that 
achieves this is

Uifaz i ) v (v) +  ^ lo g (3.75)

where k% G E+, and > c\ are design constants. The barrier function log  ̂  ̂ is

preferred over the barrier function •̂a+Zl̂ b_Zl\) proposed in Theorem 3.6 because its time 
derivatives are simpler than the latter. In addition, since the state constraint in this 
problem is symmetric, the logarithmic barrier function suffices. This freedom to choose 
different candidate cLfs, hence the final control laws, exemplifies the flexibility of the 
backstepping method. The constant k2 is the imposed bound on z\. That is

\ z i ( t ) \<k2, V* > 0 , V|*i(0)| < fc2, (3.76)
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and must satisfy the condition k-2 > c\ because from (3.70), one obtains

zi(0) = 6(0) -  ai(j;(0)). (3.77)

Consider the initial condition where £i(0) = 0, and ai(r/(0)) =  ±ci, see (3.72), which 
yields

2i(0) = 0 — ±c\ =TCi. (3.78)

Thus, k2 must be tuned such that k2 > c\ to prevent z\ from being ill-conditioned. 
Differentiating U\(rj,z\) with respect to time yields

UX = V + k%z\Z\ 
k \  ~ z\

= - W  (rf) + z\< Br]2 + ks
k\ ~ z\ \

( & + cifci 1 — tanh2(/ci772) -Arn  + #£i

(3.79)

To render U\ negative semi-definite, the stabilising function for this design step, c*2{rj, Z\ ) ,  

is chosen as

OL2 (r),z\) = - c 2zi -  ciki 1 — tanh2(/ci772) -Arji + B£i k \  -  z \ Br] 2, (3.80)

where C2 € IR+ is a design constant. Such a choice for 0 2 (ry, z\) yields

Ui = - W C2k z z \  kzZ\z2
1.2 y 2 +  u2  ~2 —  W \ +  2 2
1^2 ri»2 -Cj /v 2

k3Z\Z2 (3.81)

and

k\ -  z\ D
«1 = — ^ ----Br)2 -  c2z 1 + 22 , (3.82)

where

W i = W  + C2fazl 
k \ - z \ ’

(3.83)

and is semi-positive definite in the domain D = {(77, ^1) 6 R2 x M | 21 £ (—/c2? ^2)} • It 
is clear from (3.81) that U\ is rendered positive semi-definite once Z2 is driven to zero. 
Application of Lasalle’s Invariance Principle yields the conclusion that the subsystem 
(77, z\)  is X>-DGAS at the origin when Z2 is driven to 0.

Observe that the error signal z\ is now bounded due to the hard-bound coded into the 
cLf (3.75). Since c*i is bounded from (3.72), the suspension travel, £1 = £3 , is bounded as
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a direct result of (3.70). The explicit overbound on the suspension travel x 3 is

1*3 WI < |*iWI + MOI
< &2 + Ci.

Step 3

Consider the last augmented subsystem

Z2 = Cr] 1 -  D£ 1 -  E u -  ÖC2-

The cLf for this design step is chosen as

U = Ui + \ k t 4 ,

where k4 € M+ is a design constant, whose time derivative is given by

k3zi
U = -W i  +  22 k\ -  z\

The following final control law u is selected

+ k4 Cr/i — -  Eu  — ÖL2

u  =  - i {  - C 3 Z 2  -  C p  1 + D £  1 + q2 -  7-k4
k3z 1

k2 ~ Z1

where the design constant c3 € R+, and

d 2 = - c 2i  1 +  2c\k\ tanh(fci^2) [l -  tanh2(fci772)] ?)2

-  C\k\ [l -  tanh2(fci772)] ^-Ar/i + ij

2 B . k22 - z ? .
+ I T 121" 2 ~  ~ k T B v 2 -

Such a choice for u yields

*2 =  - C 3 Z 2  -
k3z\

kA(k2 — 22)

Ü = -W i  -  c3kAz22 < - W 2

where

W2 = W\ +  C3 /C4 2 2 ,

and is positive semi-definite in the domain

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

v  =  {(7/, z) e R2 x R2 I z\ e (-fc2, fc2)}.
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Consequently, the function Ü is positive semi-definite in the same domain and application 
of Lasalle’s Invariance Principle proves that the system (77, z\, z2) is D-DGAS at the origin. 
The control law (3.88) guarantees that the suspension will never bottom out, provided that 
the design constants are tuned appropriately, and that the initial condition for the error 
variable z\ is proper. The closed-loop system in the error-coordinates is given by

f l i  =  V 2

f]2 =  - A r i i  -  ci-Btanh(/ci772) +  B z \  

k \  -  z \
zi = --------- ---------B t]2 -  c2z  1 +  Z2

h
fo z i

22 “ C322 kA(ki -  zD

3.3.3 Sim ulation results

(3.91)

The closed-loop system is simulated in Matlab/Simulink. We simulate the situation 
when the car goes over an isolated bump of length l = 2m and height A, on an otherwise 
flat road at a speed of v = 25m/s. The shape of the isolated bump is taken to be that of 
a haversine, which gives rise to the following road height function r(t) [62]

r(t)

0, t < 0,

i  l - c o s (*p t)  , 0 < t < ± ,

0, t >  i

The above road height function r(t) in turn gives rise to the following vertical ground 
velocity d(t) [62]

d{t)
0, t < 0,

< 12.57rAsin(257rt), 0 < t < 0.08,

0, t > 0.08

We run four sets of simulations. For the first three sets of simulations, the bump height A 
being set at 0.015m, 0.075m, and 0.11m with the system starting at zero initial condition. 
In the last set of simulations, the bump height is set to 0.11m. However, in this scenario, 
non-zero initial condition is imposed on the system. The following parameter values are 
used in the simulations: u = 20n rad/s, and p = 10. The suspension travel limit, E, is 
taken to be 0.1m, and the design constants are tuned as follows

ki = 3.5, h2 = 0.051, kz = 0.07, k4 = 50, c\ = 0.049, c2 = 300, C3 = 500

For each bump response, we show plots of suspension travel, vertical body acceleration, 
and tire deformation. To obtain a qualitative measure of the performance of the pro-
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posed controller design, we compare its responses (solid lines) against those of Karlsson’s 
backstepping controller design (dashed lines).1

Figure 3.4 shows the response of the closed-loop system when going through a bump 
of height A — 0.015m. For bumps of this size, which are quite common on road surfaces, 
we require tire deflections to be small to ensure good road traction. In addition, small 
body acceleration is a must for passenger comfort [41,61]. It is clear from Figure 3.4 that 
these objectives are achieved with both controller designs. Comparing with Karlsson’s 
controller design, we can see that our proposed controller design gives rise to slightly 
higher vertical body acceleration and suspension travel. Our proposed controller design 
however, achieves superior tire deformations and a shorter settling time, resulting in better 
handling performance.

From Figures 3.5 and 3.6, which depict the responses of the closed-loop system to 
bump heights of A = 0.075m and A — 0.11m, respectively, we can once again see that 
our proposed controller design produces slightly higher vertical body accelerations and 
suspension travels. On the other hand, smaller tire deformations and much shorter settling 
times are achieved, guaranteeing better grip on the road and improved handling.

„  -m *3

CO 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time [s]

■o -0.005

0.25 
time [s]

Figure 3.4: Closed-loop response to bump height A = 0.015m

1 Karlsson’s controller is obtained from his PhD thesis [61].



48 Stabilisation of nonlinear systems subject to state constraints

0.02 -

- 0.02

o T  time [s]

time [s]

Ä  0025 . //.

- 0.025

Figure 3.5: Closed-loop response to bump height A =  0.075m

Figure 3.6: Closed-loop response to bump height A — 0.11m
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0.06 1

& 0.02

£  - 0.02

Figure 3.7: Closed-loop response to bump height A = 0.1m - non-zero initial condition

Figure 3.7 plots the suspension travel for both controllers. The bump height is set at 
A =  0.11m with the system starting at non-zero initial condition. The initial suspension 
travel (2:3) is set at —0.05m and the initial vertical velocity of the unsprung mass (x2) is 
set at —20m/s. The figure shows that for this scenario, the suspension travel produced by 
Karlsson’s controller exceeds the limits of ±  0.1m whereas the response produced by our 
proposed controller remains within the imposed limits.

3.4 The case of two sta te  constraints

In this section, we extend the design procedure presented in Section 3.1 to asymp­
totically stabilise nonlinear systems subject to two consecutively constrained states. The 
class of systems considered remains the same as that of (3.3). All we require are addi­
tional conditions governing the growth properties of V(x),  0 :1(0:), and /(a:,£ 1), as well as 
the boundedness of the function /i(:r,£i).

3.4.1 Problem  statem ent

Consider system (3.3) subject to constraints on the states £1 and £2 as follows

- B \ l < £i(f) <  -Bit/, - B 2L < £2 {t) < B2U, V£ >  0, (3.92)
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where B \l , B \u , # 2L, B2U £ K+, B n  and B2L represent the lower limits, B\u and B2U 
represent the upper limits of the states £1 and £25 respectively. The control objective is 
to develop a systematic design procedure to asymptotically stabilise system (3.3), whilst 
strictly satisfying the state constraints as defined by (3.92) at all time.

3.4.2 B ounded  sta tes  b ackstepp ing  design

In addition to Assumption 3.1, the following assumptions are made on system (3.3).

Assum ption 3.9. There exist two positive constants and ^ 2  such that

and

with

da\
/(*>&) < $ i , (3.93)

T(x,6)
£ -  <*i{x) < * 2 , (3.94)

T(x,Zi) =  —  (x) [/(*,& ) -  /(x ,o ii(x ))].

Assum ption 3.10. The function /i(x ,£ i)  is bounded in norm by a positive constant Q., 

that is,

|/i(x ,£ i)| < SI.

Assumption 3.9 governs the growth properties of the functions V(x),  ai(x), and 
/(x ,£  1). Note that all the growth conditions are with respect to x, and not £1 due to 
the fact that £1 is bounded. Assumption 3.9 is important because it allows the stabilising 
function Q2(x,£i) to be bounded in norm as will be shown later, which is crucial to the 
bounding of the state £2 . Indeed, the two-dimensional system (adapted from [35])

x =  - x 3 -I- x3£ 

=  u
(3.95)

which satisfies Assumptions 3.1 and 3.10, but not Assumption 3.9 and admits unbounded 
trajectories, leading to the so called “finite escape time” phenomenon whenever u is a 
function bounded in norm by a constant [35].

Note that Assumptions 3.1, 3.9, and 3.10 do not imply that system (3.3) is locally 
exponentially stabilisable. It follows that the design procedure presented in this chapter is 
applicable to feedforward systems which can not be stabilised by the forwarding methods
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of [123] or [93]. The following four-dimensional example illustrates this point

X \  =  X2  

< ± 2

6  =  6  

6  = uV

with x = (x \ ,X2 )t  which is not locally exponentially stabilisable.
Similar to the approach taken in Section 3.1, we first consider the reduced-order system

x = /(s ,6 )  
t i  = v  + f i ( x , t i )

(3.96)

with v € R being the control signal, which gives rise to the following interesting result.

P roposition  3.11. Suppose that system (3.96) satisfies Assumptions 3.1, 3.9, and 3.10. 

Let a\ > A, b\ > A, and k\, C\ E R+ be design constants. Define the error variable Z\  

and the function T(zi) as follows

Z l = £ l ~  «1

T ( x = _____________ l(ai + 2i ) (bi -  zi)j2_____________
1 fci[2(ai +  zi)(bi -  2 i)] -  zi{(bi  -  z\) -  (ai +  2 1 )}

Choose the following function as the candidate cLf for system (3.96)

U(x,z1) = V{X) + iai + ^ i _ z i y  

which is positive definite and radially unbounded in the domain

V  — {(x,zi) € Rn x R I 2 i € (—fli,6i)}.

For all initial conditions in V, the control law

v(x,z i )  =  CiZ\ -  f \ (x,£i )  +  d0i^  f (x,£i )  -  r -( l̂)T(X’6 ) , (3.100)
OX Z\

where the function T(x,^\)  is as defined in Assumption 3.9, renders the system (3.96) 

V-DGAS at the origin. Furthermore, the state £i is bounded as defined by (3.92), and the 

control law v is bounded in norm.

Before stating the proof for Proposition 3.11, we require the following lemma, which 
defines a continuous and norm-bounded function in an open, non-empty, convex set.

(3.97)

(3.98)

(3.99)
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Lemma 3.12. Let

= 0g + s ) ( ß - s ) = _________ [(cr + s)(/3 -s)]2_________
2 -  + ~̂ rs 2(cr + s)(ß -  s) -  s{(/3 -  s) -  (cr + s)}

If a, ß E R+, then y(s) is continuous, and bounded by

(3.101)

0 < y{s) < Y, (3.102)

where Y  = g^ ++2̂ > for all s E (-a,/?).

Proof of Lemma 3.12. See Appendix A. □

We are now ready to present the proof for Proposition 3.11.

Proof of Proposition 3.11. In Proposition 3.2, we have established that if the design 
constants are tuned as stated, then the system (3.96) in closed-loop with feedback (3.100) 

is rendered D-DGAS for all initial conditions in V. It has also been proved that

- a i  < z\(t) < 6i, (3.103)

and that the state is bounded and the explicit bounds are given by

— |ai + A| < 6 ( 0  < |&i + A|, t > 0 .  (3.104)

The remaining task is to prove the boundedness of the control law (3.100). From 

(3.103), and using Assumptions 3.9, 3.10 and Lemma 3.12, it follows that every term on 

the right hand side of (3.100) is bounded. Consequently, the control law (3.100) is bounded 
and the over-bound can be obtained explicitly as follows

|u(t)| < ci max(ai,b\) + Cl + 'Üi + Yv*  2 
h  ’

V* > 0, (3.105)

where Yv ^ (ai+bl)3
ai+6i-(-2\/ai6i , 4>i, ^ 2  are as defined in Assumption 3.9, and Q is as defined in

Assumption 3.10. □

Proposition 3.11 is interesting for two reasons. Firstly, it provides an alternative to 
solving the bounded control problem considered by Mäzene and Iggidr [92], albeit for 
a smaller class of systems. In addition, Proposition 3.11 is capable of accommodating 
saturation constraints on the state £i. Secondly, there is a number of motion systems 
subject to both state and control saturation constraints whose equations of motion can be 
transformed into the cascade form of (3.96) as illustrated by the Reaction Wheel Pendulum 
control problem considered later in Section 3.5.



3.4 The case of two state constraints 53

We will now present the main result for the full-order system (3.3).

3.4.3 M ain result

Theorem 3.13. Consider system (3.3) subject to state constraints as defined by (3.92). 
Let a\, b\, a2, b2, h , Ci £ R+ be design constants, i = 1 The constants a\, b\ must
satisfy the conditions a\ > A, b\ > A, where A is as defined in Assumption 3.1, and 0 2 , 
b2 must satisfy the following conditions

a2 > Ci max(ai, 61) + Q + 4/1 + Yv*  2 
ki ’

and

62 > ci max(ai, 61) + Q, + 4>i + Yv*  2 
h  ’

where Yv = a ^ 1+2 /̂aibi , ^1, ^2 are as defined in Assumption 3.9, and O is as defined 
in Assumption 3.10. Define the error variables as follows

Zi =  & — Qj, 2 =  1, ... ,m.

Suppose that system (3.3) satisfies Assumptions 3.1, 3.9, and 3.10. Then one can construct 
a continuous control law u(x, z) such that the time derivative of the following cLf, which 
is positive definite and radially unbounded in V,

U{x,z) =  V(x) + k\z\ + k2zl
(ai + £i)(6i — z\) (a2 + z2)(b2 -  z2) + kiZ? (3.106)

along the trajectories of system (3.3) in closed-loop with u(x,z) is rendered non-positive, 
and negative definite if W (x ) is negative definite, as follows

Ü = - W( x)  -
k\C\z\

(ai + 2i)(fei -  z\) 

k2c2Z2

+

(a2 + z2)(62 -  z2) 

where domain V is given by

2 -

a\ + z\

22 z2
a2 + z2 b2 -  z2 - ^ 2 kiCiz\, 

i=3
(3.107)

V =  {{x,z)  x Rm I z\ € ( -a i,6 i) , z2 € (-02,62)}. (3.108)

Furthermore, for all initial conditions in V, the closed-loop system is V-DGAS at the 
origin, and the states £1 and £2 are bounded as defined by (3.92).

Proof o f Theorem 3.13. Following verbatim the proof of Proposition 3.11, we can read-
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ily prove that the subsystem

x = /(* ,& )

6  =^2 + /l(® ,6)
(3.109)

with the candidate cLf

Ut = V(x)  + k \ z \
(ai + zi)(bi -  z\) (3.110)

in closed-loop with

t  N ,  t  <■ \  , öai W , /  ^  r(2i)T(®,6)<W,2i) = -Ci2i -  / i(z,fi) H----ö---- /(®,fi) ~ “ z\
(3.111)

where the error variable z\  = £ 1  — c*i, the function r(zi) is given by (3.98), and the 
function T(x,£ 1 ) is as defined in Assumption 3.9, is asymptotically stable in V\ C V — 
{ (£ , 2 1 ) € Mn x R I z\  G (—a i , 6 1 )}. In addition, the state £ 1  is bounded and the bounds 
are given by (3.104), and the stabilising function a<i is bounded in norm as follows

|c*2(x(t), zi(t))\  < ci max(ai,6i) + 17 + 4>i + Yv*  2 

ki ’
Vt > 0. (3.112)

Such a choice for c*2 yields

Ui = -W{x)  - k\C\z\
(ai + z\){b\ -  zi) 2 -

Z\ ZI
ai + z\ b\ -  z\ +

r ( « i )
2122

< -  Wi(x,zi) +
r ( 2 i )

2l22, (3.113)

and

.  .. .Z\ — ~ C \Z \ ------------------------ h 22,
2l

where the error variable Z2 and the function W\ (x, z \ ) denote

(3.114)

22 =  & “  <*2 (3.115)
Z\ Z\

O l -I- 21 61 — 2 i  J

The function Wi(x,z\) is non-negative, and is positive definite if W(x)  is positive definite. 
It is thus obvious from (3.113) that U\ is non-positive, and is positive definite if W(x)  is 
positive definite, once Z2 is driven to 0.

Wi(x,zi )  =  W{x) +
k\C\z{

(0 1  +  z\ )(bi  -  zi)



3.4 The case of two state constraints 55

Consider the following augmented subsystem for (3.114)

32 = $3 + /2(*>fl>f2)---

and define the error variable 23 as follows

(3.116)

-23 =  6  - « 3. (3.117)

Since the stabilising function a2 is bounded, all we need to do now is bound 22 in order 

to have £2 bounded, see (3.115). To achieve this, we select the following candidate cLf

U2(X^ )  =  Ul +  -2 +  2g 2 _ 22). (3.118)

The chosen cLf (3.118) is positive definite and radially unbounded in the domain V2 = 

{(£,2) <E Rn x M2 I z\ G (—ö l,61), 22 G {—a2,b2)}. Differentiating (3.118) with respect to 

time yields

Ü2 Ul +
Ö f e ) 22i2

< — Wi(x, 2l) +  22
L r(2 i)21 +  T i (z2)b { & + /2 ( ^ ,6 i6 ) (3.119)

where Ti (22) denotes

r  / \ _  __________________ [(°2  +  ^2 ) (*>2 ~  ^2 )]2__________________

1 k2 [2 (a2 + z2) (62 -  22) -  z2{(b2 -  z2) -  (a2 + «2)}]

whenever U2(x, z\, z2) is well-defined and bounded at every t > 0. From (3.116) and 

(3.119), the choice of

Oi 3 -C222 -  /2 (®»£i >&) + - £ i t e )
r(*i) Zu (3.120)

where C2 > 0 is a design constant, renders

• _  r .  r i (z2) _ _Z2 — — C2 Z2  —  r - 2i +  23

u2 = - W \  -

n * i )
k2C2Z2

(3.121)

(a2 +  z2)(b2 -  z2)

< - W 2(x, 21,22) +  , , z2z3,
1 M )

2 - ----------- 1- 7-------
CL2 + z2 b2 — z2 +

r l(3>)
*2*3

(3.122)
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where

W2( x , z i , z 2) Wi + _______________
(02  +  Z 2 )(b 2 -  Z l)

z 2 Z2

CL2 +  Z2 ~  Z2
(3.123)

and is non-positive, positive definite if W(x)  is positive definite, in V2 since according to 

Lemma 3.3, the function in the square brackets on the right hand side of (3.123) is strictly 

positive for all z2 G (—a2,b2). It follows from (3.122) that U2 is rendered non-positive, 

positive definite if W(x)  is positive definite, in V 2 once 23 is driven to 0.

Observe that the stabilising function a 3 contains the cross-term whose mag­

nitude goes to infinity as z\ gets infinitesimally close to —a\ or 61. This prohibits further 

bounding of the remaining state variables in the cascade (3.3) using this design procedure. 

Consequently, a different approach must be adopted to address the case where more than 

two states axe constrained.

When 23 has been driven to 0, ie. when £3 =  03 , one obtains

JJ2 <  —W2( x , z \ , z 2) <  0. (3.124)

Application of Lyapunov’s direct method [68] to (3.118) and (3.124) gives rise to the 

following

______ k2z2(t)2_______
(a2 +  z2(t))(b2 -  z2(t))

<  U2{t) < U2{0), Vt >  0 .

By inspection, this proves that

(3.125)

—a2 < z2(t) < b2, Vt > 0. (3.126)

Prom (3.112) and (3.115), it follows that the state £2 is bounded and the explicit bounds 

axe given by

— 0-2 < £2 (t) ~ OL2 {t) < b2 (3.127)

a2 +  ci m ax(ai,6i) +  17 +  + Yv*  2 
ki

<  £2 (t) < b2 + ci m ax(ai, 61) +  +  'Ll + Yv9  2
h

(3.128)

Similar to the conditions that ai > A and 61 > A, see the proof of Proposition 3.2, 

the conditions on the constants a2 and b2 such that

Y  4>o
a2 >  ci max(ai, 61) +  Q +  ^1 +  —

k 1
Y  ^9

b2 > Ci max(ai, 61) +  Q +  ^1 -I— -—
k 1

(3.129)

(3.130)
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must be satisfied in order to prevent z2 from being ill-conditioned.
Now that we have achieved our objective of bounding both £ 1  and £2 ? standard back- 

stepping can be applied to stabilise the remaining subsystems of (3.3). We skip to the 
final step of the design when the last augmented subsystem is considered

Zm =  U +  /m (s ,£ l , - ,£ m )  ~  (3.131)

It then follows that the time derivative of the chosen cLf (3.106) satisfies the following 
inequality

m —1

Ü < ~W 2(x, Z i , Z 2) -  2̂ kiCiZi + Zm
i=2

(3.132)

whenever (3.106) is well-defined and bounded at every t > 0. Choosing the final control 
law

hrn — l^ m  — l  “k k m  s U +  f m i ^ t  > •••» £ m )

u(x,z) = - C m Z m  -  f m{x, £1, £m) + -  km ^ Zm \  (3.133)

where Cm € M+ is a design constant, renders U non-positive, and negative definite if W2 
is negative definite, in V> as follows

m

Ü < — W2(x,z i ,z2) -  ^ 2  ki°izi < 0. (3.134)
1=2

Asymptotic stability of system (3.3) in closed-loop with feedback (3.133) in V  at the 
origin is proved by applying Lasalle’s Invariance Principle and using Assumption (3.1) 
to establish that the set in which U(x, z) = 0 contains only the origin. See the proof of 
Proposition 3.2 for details. □

Remark 3.14. Note that the bounds on the state £2 , given in (3.128), and the lower bound 
for a2 and b2, given in (3.129) and (3.130), are conservative. The actual bounds can be 
much smaller in practice.

3.5 Application: the R eaction  W heel Pendulum

The RWP is a mechanical system consisting of a pendulum with a rotating disk at­
tached to the end, which is free to rotate about an axis parallel to the axis of the pendulum, 
see Figure 3.8. The disk is actuated by a DC-motor and the coupling torque generated by 
the angular acceleration of the disk can be used to actively control the system. The control
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Figure 3.8: The Reaction Wheel Pendulum system

objective for the RWP is to asymptotically stabilise the system about the pendulum’s up­
right position. The system was first introduced in [130] where a switching/hybrid control 
scheme was proposed. The swing-up problem was solved by a passivity-based controller, 
and a feedback linearization controller was employed to balance the pendulum about its 
its upright position. A switching schedule was then used to switch between the swing- 
up and the balance controllers. In [107], Olfati-Saber showed that the RWP’s dynamics 
can be transformed into the nonlinear cascade form as described by (3.3), using a global 
change of coordinates in an explicit form. He then presented a standard backstepping- 
based controller design which globally asymptotically stabilises the RWP system about 
its upright position. His controller design, however, is highly aggressive and demands 
very high pendulum’s velocities, which in turn impose severe loading at the pendulum’s 
joint. Furthermore, the magnitude of the torque input is dependent on the state initial 
condition. In [30], Fantoni and Lozano proposed two passivity-based controller designs for 
the swinging-up problem. Although their controller designs allow the applied torque to 
be made to satisfy arbitrary bounds, the pendulum’s velocities are excessively high, and 
the closed-loop system is not guaranteed to converge.

In this section, we apply the result from Proposition 3.11 to address the asymptotic sta­
bilisation of the RWP system about its upright position subject to magnitude constraints 
on the pendulum’s velocity and applied torque.

3.5.1 Dynam ical m odel and problem  statem ent

The dynamics of the RWP system can be described by the following Euler-Lagrangian 
equations [30]

{m\l2cl + m2l\ + h  + fyq i + hfa  ~ + m2l\)gsin(qi) = 0
I2qi + I2q2 = t (3.135)
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where the following notation is used

q\ the position of pendulum with respect to the vertical,

q2 the position of the rotating disk,
mi mass of the pendulum,
m 2 mass of the rotating disk,
Li length of the pendulum,

lc \ distance from the joint to the centre of mass of the pendulum,

h moment of inertia of the pendulum,

I2 moment of inertia of the rotating disk,

9 gravity,
T motor torque applied on the rotating disk.

d\\ = m \l2cl +  m 2l\ +  I\ + h  

d\2 = d-2i = dm — h

do = (mild  -I- m2h)g. (3.136)

Then the equations of motion can be re-written in a more compact form as follows

dnqi + di2<?2 -  do sin(gi) =  0 

d 2 \ q i  +  d22#2 =  T.

Applying the following global change of coordinates [107]

Vi = m u qi +  m nq 2 

m  = q\ 

m = q2

yields

m = do sin (772)
m -  dum 

dn

d22 - ^

(3.137)

(3.138)

(3.139)

Since the position of the rotating disk, q2 , does not influence the dynamics of the RWP 
in any way, it is ignored as a state variable in the dynamic model [107]. Let us make a 
further change of variable. By defining £ = (771 — di2*?3 ) /d n , the following dynamic model
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is obtained

f]i =  do s in (? 7 2 )

£ =  Asm(r]2 ) +  C sin(772) -  B t , (3.140)

where

^  _  do_ R ______ du_____ ^  _  d\2 d2 \do/d\\

Observe that the variable £ now represents <71, ie. the angular velocity of the pendulum. 
Note also that system (3.140) is in the form described by (3.3). There exist limits on the 
angular velocity of the pendulum £ and the applied torque r  as follows

where the constants E, rmax G R+.
The control objective is to explicitly construct a control law r  which asymptotically 

stabilises the Reaction Wheel Pendulum about its upright position, whilst strictly respect 
the constraints as defined by (3.141).

3.5.2 Controller design

Observe that the subsystem 77 = (771,772 )T satisfies Assumptions 3.1, 3.9, and 3.10 with

where k\, ^2 , c\ G R+ are design constants. Thus, according to Proposition 3.11, a 
continuous control law r  can be constructed to asymptotically stabilise system (3.140) 
about its upright position whilst strictly satisfying the constraints as defined in (3.141). 
Note that the chosen cLf V(r]) is only valid in the set {(771, 772) G R2 | — tt < 772 < 7r}. 
This is physically intuitive since the pendulum can only move between (—7r,7r]. The full 
derivation of the control law r  is presented below.

|£(*)| < S, |r(t)| < r,m ax 1 vt > 0, (3.141)

V{rj) = - k i  log (1  + 77?) + k2 log[2 -  cos(t72 )] (3.142)

and

0 4 ( 7 7 )  =  “ c i  s i n (772)  -
kidpiji [2 -  cos(772)] 

* 2 (1  +  77?)
(3.143)
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Step  1

Let us consider the 77-subsystem

7)1 = d0 sin (772)

The time derivative of V (77) is given by

(3.144)

V(r]) = sin (772) M o77i + £ (3.145)
_ 1 -T 77J 2 -  cos (772)

which in closed-loop with the stabilising function ai (77) satisfies the following inequality

• = cik2 sin2(772) k2 sin(772)
^ 2 -  cos(772) 2 - cos(t72) 2

< - w(r,)+ *2Sinfe). z (3.146)
2 -  cos (772)

where Ci G R+ is a design constant, the error variable 2 and the function W'(77) denote

z = i - o c  1 (3.147)
w { )  =  C i t 2 S i n 2 f e )

™ 2 -  cosfe) '

Observe that ^(77) is positive semi-definite in the set {(771,772) G R2 | — n < p2 < n}. 
Thus, 1̂ (77) is negative semi-definite in the same set once z is driven to 0. Asymptotic 
stability of the 77-subsystem at the origin when 2 has been driven to 0 is proved by applying 
Lasalle’s Invariance Principle [68].

Prom (3.143), it follows that the stabilising function <21(77) is bounded by

|ai(t)l < c i +  h ^ ,  V «>0. (3.148)
k2

S tep  2

Consider the augmented subsystem for the 77-subystem

z = Asm(r]2) + Csm(r]2) -  B t -  — (3.149)dt

where

d a i t o )  ____ feidom sin(772)  ̂ M o (2 -  cos(772))sin(772) ,,  „2\
k2{i + rjl)-----------------w T T W 2---------( l _ " l ) - (3-150)
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Since 0 4 (77) is bounded, see (3.148), we now require that the error variable 2 to also be 
bounded in order to bound the state £. One candidate cLf that achieves this is

U (77, z) =  V (r?) +  log ’ (3.151)

where fc3, k4  € M+ are design constants, and k4  is the imposed bound on 2 . That is, 
12 (̂ ) I <  &4, Vt >  0. In addition, Aq must be tuned such that Aq > +  is satisfied. (See
the Proof of Proposition 3.2 for full details). The chosen cLf U (77, 2 ) is positive definite and 
radially unbounded in the domain V  =  {(77, 2) 6  I 2 x M | — 7T < 772 < 7r, 2 6  (—/C4 , £4)}. 
Differentiating U(r],z) with respect to time yields

[>(77, 2 ) — W (77) T 2 k2 sin (772) k3 
2 -  005(772) k\ — 22

IA sin (772) +  C  sin(772) -  B r  -  j •
(3.152)

The control r  is chosen as

r B c2z +  j4sin(772) +  C s in ^ ) daiiv)  +  k2{kj -  22)sin (772) 
dt /c3(2 -  cos(t72))

(3.153)

The function U(rj,z) in closed-loop with feedback (3.153) satisfies the following inequality

k3c2z2 
k\ -  22

< 0 , (3.154)

and is negative semi-definite in V. Asymptotic stability of the closed-loop system at the 
origin is proved by applying Lasalle’s Invariance Principle. The closed-loop system in the 
error-coordinates is given by

t)i =  d0sin(772)

m

z

- C l  sin(772) -
fcimo77i[2 -  cos(772)] 

M l  +  Vi)
+  2

- c 2z -
k2{k\ -  z2) sin(772) 

M 2 -  cos(772))

Prom (3.151) and (3.154), it follows that

^ 3log( f c T ^ )  - c/ (t )- c/(0)'

(3.155)

Thus,

\z{t)\ <  /u4, V< > 0. (3.156)



3.5 Application: the Reaction Wheel Pendulum 63

From (3.147), the bound on the state £ can be explicitly computed as follows

|£(£)| = \z(t) + a i(t)| < hi + ci + - , V£ > 0. (3.157)

Now that we have obtained an over-bound on the state £, we can prove that the control 
r  is also bounded. From (3.150), it follows that ^  is bounded, and the over-bound is 
given by

doc\{t)
dt < ci /C4 + Ci + kido'

k2

k\do
+

& 4  - f -  C i  +

2F2

kldg
kg +

2k\do Vt > 0. (3.158)

By examining (3.153), the following explicit bound on r  can be obtained

kWI < ^ C2k^  d* ^4 +  C* +
doi\{t)

+
k2kl
ks

Vt > 0. (3.159)

3.5.3 Sim ulation results

The closed-loop system is simulated in Matlab/Simulink. The following parameter 
values are used, which are the true system parameters of the RWP at the University of 
Illinois at Urbana-Champaign [30],

mi = 0.02kg, m2 = 0.3kg, l\ -  0.125m, lc\ = 0.063m,

I\ = 47 x 10~6kg.m2, I2 = 32 x 10_6kg.m2, g = 9.8m.s~2

which yield

dn = 4.83 x 10 di2 = d2\ = d22 — 32 x 10 do = 379.3 x 10 

A = 78.52, B = 208.42, C = 523.7 x 10"3.

We desire a limit of ±  lrad/s on the angular velocity of the pendulum, and that the 
maximum input torque does not exceed |rmaI| < 0.4 Nm. The design constants are tuned 
as follows

ki = 57.5 x 10~3, k2 = 2.225, k3 = 0.25,

&4 = 0.501, ci = 0.5, C2 =  1.

We run two sets of simulations. One for the initial condition of (<?i, <7i>92) = (7r/2,0,0), 
and another for the initial condition of (<?i,<h,<72) = (77,0,0). For each set of simulations, 
plots of the pendulum’s position, velocity, applied torque versus time, and the closed-loop 
trajectory in the (</i,<h) plane, are shown.

Figures 3.9-3.12 demonstrate that asymptotic stabilisation of the pendulum about its 
upright position is achieved. In terms of the imposed constraints, it is clear from Figures



64 Stabilisation of nonlinear systems subject to state constraints

3.9 and 3.11 that the magnitude of the pendulum’s angular velocity and the magnitude of 
the applied torque remain below lrad/s and 0.4Nm, irrespective of the initial condition. 
An intriguing feature which is obvious in Figure 3.11 is the slow rate of convergence of q\ 
for approximately the first 6 seconds. This is due to the shape of the chosen cLf (3.142) 
whose gradient is very flat when 7/2 — q\ is close to ±7r. If a different V(r]), that is, one 
which does not have this property, can be constructed, then the transient response will 
greatly improve.

3.6 Chapter sum m ary

Mechanical systems subject to state constraints are very common in practice. An ex­
ample is the active suspension system with suspension travel limits. In this chapter, we 
have introduced two modified backstepping design procedures to asymptotically stabilise 
particular classes of non-affine, nonlinear systems subject to a single or two consecutively 
constrained states. The first approach, or the “non-strict” approach, assumes that only 
non-strict cLfs are available. The approach entails incorporating barrier function charac­
teristics into the cLf, and propagating hard-bounds imposed on the pertinent stabilising 
functions through the steps of the backstepping methodology. The result is a class of 
controllers that asymptotically stabilises the closed-loop system, and strictly satisfies the 
imposed state constraints for all time t > 0. The validity and effectiveness of the design 
procedure are verified through closed-loop simulations of the active suspension system and 
the Reaction Wheel Pendulum benchmark system.

The second approach, or the “ISS” approach, is based on the notion of ISS, and 
therefore requires the computation of ISS-cLfs. Comparing with the first approach, this 
second approach generally yields considerably simpler control laws. One disadvantage 
associated with the first design procedure is that it leads to algebraically complex control 
laws due to the presence of barrier function terms in the cLf. However, since ISS-cLfs 
cannot always be determined, and in the majority of cases, much more difficult to construct 
than non-strict, non-ISS-cLfs, the applicability of the second approach is consequently 
more limited.
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Figure 3.9: Closed-loop response to (91,91,92) = (7r /2, 0, 0)

Figure 3 .10: System trajectory in (91,91) plane with initial condition (91,91,92) = (7t/2, 0,0)
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time [s]

time [s]

time [s]

Figure 3.11: Closed-loop response to (<7 1 , <71, 9 2 ) = (tt, 0,0)

Figure 3.12: System trajectory in (91,91) plane with initial condition (91,91,92) = (7r, 0,0)



Chapter 4

Stabilisation of nonlinear system s 
subject to m ultiple state  
constraints

In the last chapter, we presented two systematic design procedures to asymptotically 
stabilise a class of nonlinear systems subject to a single or two consecutively constrained 
states. In this chapter, we extend both of those approaches to solve the stabilisation 
problem for a particular class of nonlinear systems subject to more than two consecutive 
state constraints. The problem is motivated by the consideration of physical motion 
systems where the nonlinear model of the system is only valid for a restricted band of 
velocities. We again use the 4^-order longitudinal dynamics of a conventionally-configured 
aircraft, see Figure 1.3, as an example. The dynamic model comprises altitude, vertical 
velocity or climb rate, angle of attack, and pitch rate [134]. In this case, the vertical 
velocity, or climb rate, is proportional to the angle-of-attack of the aircraft. This internal 
state of the system model must be bounded below the stall angle-of-attack of the aircraft to 
avoid catastrophic failure of the closed-loop system. Structural strength of the airframe, 
and for commercial jet aircraft, the “passenger comfort” factor all impose magnitude 
constraints on both the aircraft’s pitch attitude and pitch rate during manoeuvres which 
can be well below the actuator saturation limits.

The multiple state constraints control problem presents a significant increase in the 
level of complexity over the single or two consecutive state constraint cases considered in 
Chapter 3. The key difficulty of the problem lies in understanding the interactions be­
tween the state constraints without explicitly integrating the underlying ODEs in advance. 
Constraints on one system state variable of the system may lead to dynamic limitations 
on the evolution of the system which could cause another state variable to exceed its 
constraints, even though its initial conditions were well within the specified constraints. 
To account for these dependencies explicitly in the control design, one is naturally led 
towards industrially proven control techniques such as model predictive control (MPC). 
MPC, however, is computationally expensive and is therefore not suitable for systems 
possessing fast dynamics. The approach taken in this chapter is to impose a constructive 
nonlinear control design architecture on the problem and then deal with the complexities

67



68 Stabilisation of nonlinear systems subject to multiple state constraints

of the problem as a nonlinear optimisation problem. That is, a constructive nonlinear 
design procedure is proposed, parameterised by a set of controller gains, that asymptot­
ically stabilises the system and guarantees that the state constraints are satisfied at all 
time. Once the control architecture is fixed, a constrained nonlinear optimisation problem 
is formulated which characterises the correct choice of controller gains that achieves the 
required performance. If no feasible solution to the optimisation problem exists then this 
indicates that the nonlinear design architecture is incompatible with the specified state 
constraints. The design algorithm can be adjusted or re-formulated until a suitable or 
feasible solution is attained. The approach is motivated by the belief that the nonlinear 
design approach will provide a good structural representation of the constrained control 
problem. In practice, it may be convenient to partition the state-space and gain-schedule 
the final control law accordingly in order to enlarge the domain of validity of the control 
design. The proposed approach provides a purely algebraic process that can be performed 
off-line for complex systems.

The chapter is organised as follows. The problem statement is outlined in Section 4.1. 
In Section 4.2, the control design procedure which requires the construction of ISS-cLfs 
is presented. Section 4.3 details the design where only non-strict cLfs are assumed to be 
available. Simulation results axe presented in Section 4.4 and Section 4.5 contains the 
concluding remarks.

4.1 Problem  statem ent

Given nonlinear cascades of the form

x  =  l )

6 = 6  + /i(®»6)

6n = U f m (x , 6 , . . . , 671)5 (̂  + )

where (x,£) E Mn x Km is the state variable, and u 6 R is the control input. The 
functions / ( x , ^ ) ,  f\{x,£\),  ..., f m( x are sufficiently smooth, and /(0,0) = 0, 
/i(0,0) = 0, ..., / m(0,0 , 0 )  = 0. That is, the origin of (4.1) is an equilibrium point. 
There exist magnitude constraints on the system states due to physical/performance limits 
as follows

I6(*)l<2i, « = 1,..., m, Wt > 0. (4.2)

The control objective is to develop a systematic procedure to design asymptotically sta­
bilising controllers for system (4.1) subject to constraints as defined by (4.2).
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4.2 Stabilisation w ith  ISS-cLfs

In this section, we extend the result of Theorem 3.8 to solve the problem of multiple 
constraints as posed in the previous section. The design procedure presented herein is an 
extension of the work in [54].

We make the following assumptions on the system (4.1).

Assumption 4.1. There exist

• A function W (x ) which is positive definite, of class C l , and satisfies

W(x)  > 73(|a;|), Vx E Rn, (4.3)

where 73 is a class JC00 function.

• A function V(x) which is positive definite, radially unbounded, of class C 1, and such 
that

7i(M) < V(x) < 72(H ), Vr G i n, (4.4)

where 71, 72 are class JC0Q functions.

• A sufficiently smooth control law ai(x) satisfying ai(0) = 0 and such that

^ f { x , a i ( x ) )  < - W( x ) .  (4.5)

Furthermore, the norms of aq(x) and its derivatives are bounded by positive con­
stants.

• A class /Coo function o such that

T{x,Z) < <j(|6  -  ai(x)|), V[̂ i - q i(x)]g 1 , (4.6)

where T{x,fi) denotes

T(x , t i )  = | j ^ ( x ) [/(®,6 ) -  /(ar,ai(®))]. (4.7)

Assumption 4.2. The functions f i{x,£\),  f 2 {x,£,i,£,2 ), /m-i(^)Ci5 •••»^m-i) and their
derivatives are bounded in norm.

Assumption 4.1 requires that an ISS-cLf for the ^-subsystem with respect to the input 
signal [4i -o i(x)] exists and can be constructed. This assumption affords us the freedom to 
asymptotically stabilise the ^-subsystem independently of the x-subsystem. The advantage 
of this is that we do not have to cancel the cross-terms, resulting in simpler final control 
laws. Asymptotic stability of the full system (4.1) is proved by invoking the ISS argument 
for interconnected systems. The requirements that the stabilising function ai(a?) and its 
derivatives are bounded in norm and that Assumption 4.2 holds are necessary to bounding 
the states i = 1 , . . . ,  m.
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Remark 4.3. Note that in Assumption 4-2, we have placed no constraints on the function 
/ m(x, Cl) • ••> fm)- I f fm is also norm-bounded with bounded derivatives, then the design 
procedure outlined in this section will lead to control laws that are bounded in magnitude 
and rate as will be shown below.

Theorem 4.4. Consider the system (4-1) subject to state constraints as defined by (4-2). 
Define

z 1

Z2

fi  -  <*i

Zm fm A- fm — 1 4"
dfrn—2 d fm—3

dt dt2

dm~lai
dtTn~1

(4.8)

Suppose that system (4-1) satisfies Assumptions 4-1 and 4-2. I f the following control law 
is chosen

u(x, z) ^   ̂C-i,Zi fm
dfm— 1 d2fm -2 _ dmg  1

dt2 dtm
(4.9)

where Ci G M+ are design constants, then system (4-13) in closed-loop with (4-9) is rendered 
globally asymptotically stable. Consequently, given an initial condition in the set

1C — {{x,z)  G Mn x Rm I z\ G [—Zi,Zi],Z2 G [—Z2, Z2], •••, zm £ \—Zm, ZmJ}, (4.10)

where Zi G R+, there exist constants bi G R+ such that the evolution of the variables Zi is 
governed by

\zi(t)\ <  61,

Mt)\ <  6 2 ,

\zm(t)I <  6m, Vt > 0,

and the states fi are bounded in norm.

P roof o f  Theorem  4 -A- Let us consider the ^-subsystem

i  =  f { x , f i ) - (4.11)
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From Assumption 4.1, one obtains

t>, x dV(x) t , <- N 
^(*) =

<  -V F (x ) 4- [ / ( z ,£ i)  -  / ( x ,a i(® ) ) )

<  - 73( H )  +  ^ ( k i l ) ,  Vx G Mn , V21 G M. (4 .12)

Thus, the x-subsystem is globally input-to-state stable with respect to the input z\. 
Applying the diffeomorphism (4.8) to the ^-subsystem yields

zi = z2 

Z2 =  Z3

Z "m
d f m - 1  d 2 / m - 2  , d m OLi

u + f m + —  + ^ -  + " ~  I F T -

System (4.13) in closed-loop with control law (4.9) is rendered

(4.13)

i

0 1 ... 0

0 0 1 
— Ci —C2 . • . - C m

Az. (4.14)

The original system (4.1) can now be re-written in the new coordinates (x ,z)T as follows

x = f  (x, Z \  )

Az. (4.15)

Let us examine the z-subsystem (4.14). By inspection, it can be seen that the design 
constants q , i = 1, ...,m, can be tuned such that the matrix A is rendered diagonalisable 
and Hurwitz. If A is Hurwitz, then applying Lyapunov’s direct method for time-invariant 
linear systems to (4.14), see the proof of Theorem 3.8, yields the conclusion that (4.14) 
is globally asymptotically stable. Since the x-subsystem is globally input-to-state stable 
with respect to the input 21, and the 2-subsystem is globally asymptotically stable, it then 
follows from Corollary 2.9 that the interconnected system (4.15) is globally asymptotically 
stable.

The remaining task is to prove the boundedness of the error variables Z{ and the states
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Given that A is diagonalisable, solving the system of linear differential equations (4.14) 

yields the following explicit solution [25]

Z\(t) — d\yeSlt +  d i i2 e S2< +  ... +  d\yTneSrnt

Z2{t) =  d 2 ,ieSl< +  d2!2eS2< +  ... +  d2,meSmt

Zm{t) — dm,\eSlt 4- dm^c S2t 4- ••• 4- dm,meSmt, (4-16)

where S{ are the eigenvalues of (4.14), and the constants d ij  depend on the eigenvector of 

(4.14) and the initial condition of the error variables Z{. Furthermore,

dpi +  dp 2 4- ••• 4- dpm =  zi(0) 

d2,i +  d2,2 4- ••• 4- d2,m — «2(0)

dm,l 4" dm,2 4“ ••• 4" dm,m =  *m(0). (4.17)

By inspecting (4.16) and using (4.17), it is evident that given the initial condition zi(0) G 

\—Z i ,Z i], 22(0 ) £ [—̂ 25^2], • ••, 2m(0 ) G \—Zm,Z m], the design constants C{ can be tuned 
such that the evolution of the variables Z{ is governed by

|*i(t)l < bi>
M t ) \  < 62,

\zm {t)\< bm, Vt > 0, (4.18)

where the constants bi can be computed explicitly from (4.16). From (4.8) and Assump­

tions 4.1 and 4.2, the states & are bounded and the explicit bounds are as follows

I 6 W I
M t) \

|*i 4- a i| < 61 4- |a i|,
dai

z* ~ h  + i t < b2 + I/ll 4-
dai

ICm(̂ ) I

^  bm 4 -  I fm  I 4 "

dfm- 1 d2 fm-2 dmOL\
dt dt2 dtm

dfm— 1 1 d 2 / m - 2 1 1
d 771« !

dt T dt2
“T  ••• I dtm Vt > 0.

This concludes the proof.

(4.19)

□

The above control design procedure is appealing in its systematic approach and sim-
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plicity of the final control laws. These features have the potential to considerably reduce 
the design time for high-order systems. However, the major disadvantage associated with 
this design is that it relies on the construction of ISS-cLfs, which is practically difficult, 
and generally a far more mathematically involved task than the construction of non-ISS, 
non-strict cLfs.

Remark 4.5. Inspection of the control law (4-9) reveals that if the function 
f m(x, £i, • ••, £m) is bounded with bounded derivatives, then (4-9) is bounded in magnitude 
and rate. Consequently, the design procedure outlined in this section is equally apt in 
solving the problem of bounded controls and control rates as well as the problem of state 
constraints, or both.

4.3 Stabilisation w ith  non-strict cLfs

In this section, we extend the results of Theorems 3.6 and 3.8 to stabilise system (4.1) 
subject to multiple state constraints as defined by (4.2). The design procedure proposed 
in this section differs from the one outlined in the previous section in that only non-strict 
cLfs for the x-subsystem are assumed to be available. The main features of the design 
consist of shaping the cLfs to bound and suppress the propagation of the errors at each 
stage of the backstepping procedure, and introducing barrier-function-like terms to impose 
hard bound on the associated error signals. In addition, it was shown in the preceding 
chapter that if the cross-terms are cancelled, the method cannot be extended to address 
the problem of more than two consecutive state constraints due to the fact that the cross­
terms escape to infinity at the constraint boundaries. To circumvent this problem, we will 
employ domination rather than direct cancellation of the cross-terms. The result presented 
in this chapter is an extension of the paper [104].

4.3.1 Control design procedure

We make the following assumptions on system (4.1).

Assumption 4.6. There exist

• A function V (x ) which is positive definite, radially unbounded, and of class C l .

• A function W(x) which is non-negative and of class C1.

• A sufficiently smooth control law a.\(x) satisfying

ai(0) = 0

^ f ( x , a i ( x ) )  < -W(x) .

Furthermore, the norms of a i(x) and its derivatives are bounded by positive con­
stants.
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• The solution x (t) =  0 is the unique function satisfying, for all t,

±{t) = f (x(t ) ,ai (x(t))) ,  W  (x(t)) = 0.

Assumption 4.7. The function
T(x^)

6  -  oil (a?)
(4.20)

with

T{x, t i) = -T-r(i) [/(x,4i) -  f(x,On(x))} (4.21)

and its derivatives are bounded in norm by positive constants.

Assumption 4.8. The functions /i(a:,6)> /2(£>6>6)> ■ fm-i (x,€i ,  ...,6n -i) and their 
derivatives are bounded by positive constants.

Assumption 4.6 is essential to the global asymptotic stabilisation of the x-subsystem 
and to the bounding of the state 6 .  Assumptions 4.7 and 4.8 are necessary to the bounding 
of the states 6> i = 2,..., m.

Remark 4.9. Note that in Assumption \.8, we have made no assumptions on the function 
fm(x , £i,.. .,£m)• As will be shown later, if f m{x,fi\, and its derivatives are also
bounded in norm by positive constants, then the design procedure outlined in this section 
has the potential to simultaneously solve the problem of multiple state constraints as well 
as the problem of bounded controls and control rates.

The design procedure proceeds as follows.

Step 1

Consider the subsystem

x  =  /(®,£i) 
6 = 6  + /i(z,6) (4.22)

and introduce the error variables

zi =  6 “  ot\. (4.23)

Prom Assumption 4.6, one obtains

V(x) = ^ ( x ) f ( x , 6 )  < - W{ x )  +  ^  [f{x,6 )  -  f {x,ai (x)) \  

< - W { x )  + T{x,  6 ) . (4.24)



4.3 Stabilisation with non-strict cLfs 75

Differentiate (4.23) with respect to time yields

* =  6 +  / .( * ,ft) (4.25)

With the stabilising function a\(x) being bounded in norm from Assumption 4.6, we are 
now only required to saturate the error variable z\ in order to satisfy the bound on the 
state according to (4.23). This is achieved by defining the cLf for (4.25) with a barrier 
function structure such that the growth of the cLf is governed by

|z i |—>A21 = >  U\{zi )- * +oo (4.26)

where the constant A2l E R+ denotes the desired hard-bound on z\. A candidate cLf is

U1(x,z-l) = V(x) + ^k1l o g ( ^ - ^ j  (4.27)

where k\ E R+ is a design constant, and the constant k2 E M+ is the desired hard-bound 
on the error variable Z \ .  The cLf (4.27) is positive definite and radially unbounded in the 
domain

T>\ = {{x,zi) E Rn x R I z\ E ( - ^ 2,^2)}.

Observe that (4.27) satisfies the required growth condition (4.26), that is, as (zil —► k2, 
U\ —> + 00. Consequently, such a choice of cLf yields

\zi (t)| < k2, Vt > 0.

It follows that the time derivative of (4.27) satisfies the inequality

Ui < - i y ( x ) + 2 1( ^ ^  + T4^- 6  +  / i (* j£i ) -
da i(x)

( z\ k2 -  z \ 

whenever U\(x, z\) is well-defined and bounded at every t > 0. The choice of

dai(ar) (k%- z%)T(x,£ 1)a 2 = C\Z\ -  f i (x,£i )  +

where c\ E R+ is a design constant, renders

kizi

T T  s '  T\ T (  \  ^ 1C1 2 1 ^1U1 -  W(x) 2 2 ̂ 1 + ,2 72 ZlZ<1
r\>*2 v |  r t oz2 z:

and

_ r .. (k2 ~ zi)T(x,h) _
Zi  — —C 1 Z 1 --------------- :----------------------V Z2 ,

k\Z\

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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where the error variable 22 is defined by

Z2 =  6  -  OL2- (4.33)

It is evident from (4.31) that U\(x ,z \ ) is non-positive, and negative definite when W(x)  
is positive definite, on domain V\  once 22 is driven to 0.

Now that Z\ is bounded and from Assumption 4.6, a\(x) is also bounded, the state £1 

is bounded as a direct result of (4.23). The over-bound on £1 can be explicitly obtained 
by using (4.23), (4.28), and Assumption 4.6, as follows

16(01 =  \zi(t) +  ai(x(t))\

< k2 +  \ai(x(t))\. (4.34)

The design constant 6  must be tuned such that 6  > |o:i(a?(t))| because from (4.23), 
one obtains

2i(0) =  £ i(0 ) -« i(x (0 ) ) .  (4.35)

Consider the initial condition where 6 (0 )  =  0 and ai(a:(0)) =  ± |a i(x (t)) |, then

2i(0) =  0 -  ± |a i(s ( i) ) |

=  t |o i(*W)I- (4.36)

Thus, from (4.28), it follows that the condition

k2 > \ai(x(t))\ (4.37)

must be satisfied in order to prevent 21 from being ill-conditioned.
Note that the stabilising function <22 is also bounded. Using Assumptions 4.7, 4.8, and 

Equation (4.28), the over-bound on c*2 can be obtained explicitly as follows

|q2(6I < C lk2 + 1/1(3,6)1 +
da\(x(t)) kl 

+ 7~
T (x , ( ,)

dt k\ Z \
(4.38)

Step 2

Consider the following augmented subsystem for (4.32)

6 = 6 + 6(3,6 »6) —

and define the error variable 23 as follows

(4.39)

Z3 =  6 -  a 3 (4.40)
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where the stabilising function 0 3  is to be determined. With the stabilising function a 2 

bounded, see (4.38), we are now only required to bound the error variable z2 in order to 
bound the state £2 according to (4.33). To achieve this, we proceed in a similar manner 
to Step 1 and impose a barrier function structure on the candidate cLf for (4.39) with a 
growth condition governed by

|z2| —► A Z2 => U2 {z2) -> +00 (4.41)

where A Z2 E R+ is a constant denoting the desired hard-bound on the error variable z2. 
A valid candidate cLf is

U2 (x ,z i ,z2) = Ui +  ^ 3  log ^ 2^ 2)  (4-42)

where k3 E R+ is a design constant, and k± E R+ is the desired hard-bound on z2. The 
cLf (4.42) is positive definite and radially unbounded in the domain

V 2 = {(x ,z \,z2) E Rn x R2 I z\ E (~k2 ,k2),z2 E ( -£ 4, £4)}. (4-43)

and yields

\z2 {t)\ < &4, V£ > 0. (4.44)

It then follows that the time derivative of (4.42) satisfies the following inequality

+ { 5s+/2(x,6,?2) -  } ’
(4.45)

whenever U2(x, zj, z2) is well-defined, and bounded at every t > 0. To render U2 non­
positive, or negative definite if W(x)  is positive definite, the simplest choice would be to 
choose the stabilising law #3 as follows

ü2 < -w(x) -  -p - jiA  + ^2
r t o  Z-t

x ,  ̂ \ , da2 h ( k l  -  z\)
« 3  = - 02*2 -  .6 ) + - £ ■  -

Such a choice, however, means that <23 is unbounded since the term escapes to
infinity as \z\\ approaches k2 , thus preventing the bounding of the remaining states. To 
yield a bounded <23, we choose to not cancel the cross-term 2 24, resulting in

C*3 =  ~ C 2 Z 2  -  / 2 ( z , £ l > £ 2 )  +  • (4.46)
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Let us now check that (4.46) is indeed bounded. We will first examine the boundedness 
of the third term on the RHS of (4.46) by differentiating (4.30)

da2 . df\ d2a\ 2 z \i \  T (x ,£ i) k2 — z \  d
dt 11 dt ^ dt2 k\ Z\ k\ dt

T (x,& )
h

(4.47)

Since Z2 is bounded as defined by (4.44), z\ is bounded as defined by (4.28), and using 
Assumption 4.7, it immediately follows that the signal z\ is bounded. From (4.32), the 
explicit over-bound on z\ is given by

|ii(t) | < cik2 +  — 
k\

T(x,Si)
z\

+  k4 . (4.48)

Using Assumptions 4.6-4.8 and Equation (4.48), all terms on the RHS of (4.47) are 
bounded, ^  is therefore bounded. The over-bound on ^  is explicitly given by

da  2 

dt < c i |i i |  +
df\
dt +

d2a  1 
dt2

2 ^2  -. ,
+ i r N

T(x,Z  1) , k2 d [rOr.fOl
Z\ ki dt k\

(4.49)

Consequently, 0:3 is bounded and the over-bound is given by

M * ) | < c2 /c4 + 1/ 2 (2:,6 , 6 ) 1  +
da 2 

dt

The choice of (4.46) for 0:3 yields

(4.50)

Z2 =  —C2 22 +  Z3 (4.51)

and

t 't \  k \ C \  2 , k \U2 = -W(X)  - p— 2̂1 + p— 2*1*2 
K2 z \ ^2  Z1

~ k2 3"^2Z2 +  k2 3 2^2^3 (4.52)

which is not guaranteed to be non-positive. To render U2 non-positive, and negative 
definite if W(x)  is positive definite, we dominate the cross-term by appropriately tuning 
the design constants. This is achieved by first manipulating (4.52) into the form

U2 =  - W { x )  - ki
2[k2 -  z2)

fac2
2 { k l ~ z l ) Z‘2 2(kj -  zlY '2- ' k \ - z \

{z\ -  z2y

fac2

k\C\ 2 1 k\ 2 1 ^1 2
221 +  0772---- 37*1 +  77772---- 37*2

z \  +

k \ - z \  2(k% -  z\) 2{kl - z\)
kz

2 Z2 Z3 • (4.53)

What we have done is complete the squares for the cross-term -r r 1  ̂z\Z2 , and add the
k2- z 1

terms 2(k*-z2)z i an<̂  2(fc -̂z2)-2̂  which come from the completion of the squares. These 
are the fourth and fifth terms on the RHS of (4.53), respectively. We then split the term
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— j^f2z2 z\ in two parts to indicate our intention to use one part of the term to dominate 
the additional terms coming from the completion of the squares, and other part in the 
next step of the backstepping design procedure.

Let us now consider the sum of the third, fourth, fifth, and sixth term on the RHS of 
(4.53) separately

k\C\ 2 . k\ 2 , k\ 2

k l - z f '  + l ( k l - z \ ) Zl + 2( l%-z
3̂C2 2

2 ( k l - 4 f 2-
(4.54)

Our goal is to tune the design constants such that Y\ is rendered negative-definite. If we 
choose

ci > k\ 1
(k2aZl)2 2’

(4.55)

where aZl E (0, \/2) is a constant, then the following inequality is obtained

Y i < - h
ju2 ~2
ft,2

k\ 1
+  -.{k2aZl)2 2

2 , k\ 2 I 1̂
Z \  +  0 / j 2---------2 \ Z 1 d"

J2 k$C 2 j2. 
z2 _  7T7TÖ

< —
ki k\z\ +

(k2 -  zi)(k2aZl)2 

From (4.44), it follows that

2(kl -  z\) 2{kl -  z2) 2(k2 -  z\)
k\ 2 k ĉ2 2 

' z 2 ~  W7T?2 ~J2\ z 2-2(k2 - z 2) 2 2{k2 — z2) 2' (4.56)

k i
2(k2 -  z \ Y 2 < 2{kl -  z2)

ki ki.2\ 'M (4.57)

Thus, when \z\\ > k2aZl, Yi is negative-definite if the design constant c\ is tuned in 
accordance with (4.55).

When \z\\ < k2aZl, we employ the term ~ 2{t^2zrjz 2 dominate 2(p~̂ z7)z2 ' simple 
deduction, we can easily see that

k̂ C2 2 ^  k$c2 2
2( k l - z l ) " 2 -  2kl*2'

(4.58)

In addition, when |zi| < k2aZl, the following is true for the term (̂k -̂z1)^

k\ 2 ^ _____  2
2{k2 - z l )  2 2(k% -  [k2aZl}2) 2'

(4.59)

Thus, if we choose

fac2 > ki 
kj ~ k \ -  [k2aZl]2

(4.60)
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then it follows that

^ 3 C2 2 \  ^1 2

2(*J -  *!)22 -  2( k l - z t f 2'
v|2,| < fc2a2I. (4.61)

Consequently,

Yi = -
kici ;zj + kl ki

k i - z r  m - A r
. , 2
z 2

k$C2 2
m  -  A ) * 2

(4.62)

is negative-definite for |zi| < k2 , jz2 1 < k4, if the design constants are tuned in accordance 
with (4.55) and (4.60). If (4.62) is negative-definite, then from (4.53), one obtains

C/2 =  -W(x)  -  H4l22 -  23C2, 4  + (4.63)
— Z2 ) K 4 — Z2

which is non-positive, and negative definite if W(x) is negative definite, on domain V2 

once Z3 is driven to 0. The function WZlZ2 is defined as

Wvv Z1Z2
k \ C \  2 k \  k$ C 2 2

h.2 _  7 2 Z 1 u2 72 2 l 2 2 + 9 f P  72 \ Z<2ft-2 Zi  ft-2 z l  z \ k 4 z 2 )
(4.64)

and is positive definite in domain V>2 provided that the design constants are tuned in 
accordance with (4.55) and (4.60).

Now that Z2 is bounded due to the barrier function structure imposed on the cLf (4.42) 
and c*2 is bounded as shown in (4.38), the state £2 is bounded as a direct result of (4.33). 
The explicit bound on the state £2 is given by

I 6 M I  ± \ z 2 (t) +  a2(t)\

< k4 -f cik2 + l / i (x,6)1 +
da\(x(t)) ko+ T“

T(x,tx)
dt k\ z\

Similar to (4.37), k4 must be chosen to satisfy

(4.65)

k4 > \c*2 (t)\

> c\k2 + l / i (x,6)1 4-
dai(x(t)) k%+ T“

T(x,Zi)
dt k\ Zl

(4.66)

in order to prevent Z2 from being ill-conditioned.
The procedure to bound each of the remaining states is recursive and is analogous 

to Step 2. The procedure involves not cancelling the cross-terms but dominating them 
and defining a barrier function structure on the cLfs to impose hard-bounds on the error 
variables. The recursion terminates when the system (4.1) is stabilised by the actual 
control signal u, which is at the mth step of the proposed design procedure.
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Step m

Define the error variable for this design step

Zm =  Cm £*m (4-67)

Differentiate (4.67) with respect to time yields the final augmented subsystem

zm Cm Öim

u  4“ fm (% i Cl » Cm) — Öcm . (4.68)

To bound £m, we require the error variable zm to be bounded. Similar to Step 2, this 
is achieved by imposing a barrier function structure on the cLf for (4.68) with a growth 
condition governed by

Zm * ^Zm ’ Um(zm) > Too, (4.69)

where A Zm denotes the desired hard-bound on the error variable zm. A candidate cLf is

1 {  k2 \
Z\ > •••) Zm) =  U m — 1 4“ rt̂ 2m-|-l log ( ~j~2 2~ ) ’ (4.70)

1 \ K2 m  ~  ZnnJ

where k2m+\ £ K+ is a design constant, and the constant k2m £ K+ is the desired bound 
on zm- That is,

\zm( t ) \ < k 2m, Vt > 0. (4.71)

The cLf (4.70) is positive definite and radially unbounded in

V  = {(x,z i ,. . . ,Zm )  G Rn x Rm I Zi € ( - k 2i ,k 2i)}, i = (4.72)

The time derivative of (4.70) is given by

vm = - W ( x )  -  wzlZ2 - . . .  -  0„ ; 2m- 3Cm~1 , 4 _!

4" Zr

2 ( * L - 2  “  2m - l )

^ 2 m —3  . k 2 m - 1 r  . t  t  \  . •>
, 2  2 ^ m -1  4" , 2  2  j m \ ^ t  Cl > •••> Cm) J
fc2 m -2  _  ^771—1 fc2m -  2m

(4.73)

whenever JJm{x ,z \ , . . . , zm) is well-defined and bounded at every t > 0. As there is no 
prescribed constraint on the control u , one choice for u is

U — Cm Zm  f m { x ,  Cl> •••> Cm) 4" d T (4.74)

where cm £ K+ is a design constant. Note that we have selected not to directly cancel 
the cross-term 2- fĉ ^ 2— zm- i z m in (4.73). This is because the presence of this term in

fc2m-2 zm - 1



82 Stabilisation of nonlinear systems subject to multiple state constraints

the final control law produces infinitely large effector commands as \zm\ —► fom- Such a 
choice of u yields

Cm Zm (4.75)

and

Vm =  - W ( x )  -  WZIZ2
^2m-3 Cm— 1

^ ( ^ 2 m - 2  Zm - l )
2m - l  +

^2m-;
K2m -2 —  Z.

' Z"m— 1 z m
m— 1

^2m -lcm
p2̂ m

(4.76)

The same trick to dominate the cross-term, as detailed in Step 2, is again required 
here in order to render Um non-positive, and negative definite if W(x)  is positive definite. 
As this is the final design step, there is no need to split the term — Hm~lC2m z^- Thus, if

fc2m  z m
we choose

Cm—1

^2m-1 Cm
P ~K2m

^2 m_______________ 1

(^2m —2 & T n — 1 ) 2 2

^2m- 3
2 (^ 2 m -2  — [^ 2 m -2 Q:m - l ] 2 )

(4.77)

(4.78)

where c*m_i G (0, \/2) is a constant. Then following the arguments outlined in Step 2, one 
obtains

t/m < -W (x )  -  WZ1Z2 -  ... -  WZm_lZm < 0 (4.79)

which is non-positive, and negative definite if W(x)  is positive definite, in domain V.  The 
function WZm_lZm is defined by

2m  — l z m
^2m—3 Cm— 1

2(̂ 2m-2 ~ Zm - \ )
z m — 1

^2m-c
k2K2m -2 — 2, " Z-rn —  1 z m

m —1

^ 2 m -lC m
p  _  z 2 ft'2m ^m

(4.80)

and is positive definite on domain D.
The last state £m is now bounded by virtue of (4.67) since both zm, as defined by 

(4.71), and am are bounded. The arguments to show the boundedness of am are similar 
to those used to demonstrate the boundedness of (*3 in Step 2. The bound on the state 
zm is given by

|^m(^)| — I z m  &m  I

^  ^2m T |ctm| (4.81)

Once again, the design constant k^m must be chosen to satisfy

^2m > |c*m| (4.82)
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to prevent zm from being ill-conditioned.

R em ark 4.10. The constraints on the design constants imposed by (4-55), (4-60), 
(4-77), and (4-78), are analytically derived from the worst case scenario. Numerical de­
termination of the design constants, based on the system ’s cLf and its derivative, reveals 
that the actual constraints on them are much less stringent. This can be observed in the 
simulation results presented later on.

R em ark 4.11. It is interesting to note that if the function / m(:r,£i, ...,£m) its deriva­
tives are norm bounded by positive constants, then the control u, as defined in (4-74), is 
bounded in both magnitude and rate. This means that the algorithm outlined in this section 
is potentially applicable to systems with bounded controls and control rates as well as those 
with state constraints, or both.

4.3.2 M ain result

T heorem  4.12. Suppose that system (4-1) satisfies Assumptions 4-6, 4-7, and 4-8. Let 
c i , ...,cm, £ R+ be design constants, and are tuned in accordance with (4-37),
(4-55), (4-60), (4-86), (4-77), (4-78), and (4-82). For all initial conditions in

V  = {(x,z)  G Rn x Rm I x  € Rn,Zi € (-foi,& 2i)}, « =  (4.83)

the system (4-1) in closed-loop with control law (4-74) is rendered V-DGAS (cf. Definition 
2.10) at the origin. Furthermore, the states £* are bounded in norm.

P roo f o f  Theorem  4-12. The cLf Um, as defined by (4.70), is positive definite and radi­

ally unbounded in domain V. Its time-derivative Um is non-positive, and negative definite 

if W(x)  is positive definite, in the same domain V  when (4.37), (4.55), (4.60), (4.66), ..., 

(4.77), (4.78), and (4.82) are satisfied, see (4.79). Using Assumption (3.1), it can readily 

be proved that the set in which Um = 0 contains only the origin. (See the proof of Propo­

sition 3.2 for details). Application of Lasalle’s Invariance Principle yields the conclusion 

that the closed-loop system is indeed asymptotically stable in V.
The boundedness of the system states comes as a direct consequence of the proposed 

control design procedure. For example, to prove the boundedness of z\ (t), application of 

Lyapunov’s direct method to (4.70) and (4.79) gives rise to the following

log {wzffiT)2)  ^ M « )  < 0), Vt > 0. (4.84)

By inspection, this proves that

\zi(t)\ < /02, Vt > 0. (4.85)
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Prom Assumption 4.6 and Equation (4.23), it follows that the state £i is bounded, and 
the explicit bound is given by

IfiMI < fa + |c*i|. (4.86)

The boundedness of the remaining states can be proved in a similar manner. □

4.3.3 Tuning the control gains

The goal of the control design is to obtain a controller that exploits the maximum 
allowable range of state variation whilst guaranteeing the satisfaction of the state con­
straints for all time. The first step in tuning the control gains is to restrict consideration 
to only those controller parameters {ki, Ci] that are self-consistent with respect to the pro­
posed design procedure. By self-consistent, we mean controller parameters {/c*,Ci} that 
satisfy the set of mutual constraints which is defined by (4.37), (4.55), (4.60), (4.66), ..., 
(4.77), (4.78), and (4.82). Self-consistency ensures that Theorem 4.12 holds. The design 
procedure provides a set of constraints on the controller parameters {/c^c*}, and a set of 
bounds on the stabilising functions and error variables. The remaining task required is to 
relate constraints on the stabilising functions and error variables back to constraints on 
the original state variables.

The domain constraints, obtained as a function of the proposed control design, yield 
a set of conditions on the error variables

W  = |& -  o»| < foi- (4.87)

The stabilising functions, a* are defined as algebraic functions of the error coordinates, 
system states and controller parameters. It is a simple exercise to obtain worst case over­
bounds for the norms of the reference trajectories. Following from these bounds, it is 
possible to obtain a set of nonlinear bounds { X\ , X2, • • •, Xn} for the state evolution in 
terms of the control parameters

l&WI < M t )  + ai{t)\
< fa + |c*i(£)| =: X\ (4.88a)

l&WI < \z2 (t) + a 2 (t) 1

< &4 + Ci k2 +  l/i 1 -1- ^ T (x ,6 ) .
+ , =. A 2k 1 zi

(4.88b)

Km(0l < \Zm{t) + am(t)\

< &2m T |^m(0l (4.88m)

These bounds are defined recursively in the sense that X 2 depends on Xi, X 3 depends 
on X 2 and X\,  etc. For a given set of controller parameters {/ci,c;}, it is straight forward
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to iteratively compute worst case bounds on the system states £*(£) | < X{. Prom the point 
of view of the control design we think of the worst case state constraints as a nonlinear 
function of the controller parameters

Z  (&i, • . . , C\ , . . . , Cm )

X : = X ( Z ) ,  X  =  ( Xu . . . , X m).

Next we introduce the set of constraints associated with the problem formulation

Xi <  S;. (4.89)

Satisfying (4.89) ensures that \£i(t)\ <  Xi < Hj. Thus, the state constraints specified 
for the problem are guaranteed to hold. The constraints (4.37), (4.55), (4.60), (4.66), 
..., (4.77), (4.78), and (4.82), along with (4.89), define the feasible set for the controller 
parameters {/cj,Cj}.

Finally, introduce the cost functions

<3>i(Z) =  Hi -  Xi, i =  (4.90)

Note that E* > Xi on the feasible set of &(Z)  G R+. The goal of tuning the control 
parameters is a constrained multi-criteria optimisation problem:

Find controller parameters Z, subject to constraints (4.37), (4.55), (4.60),
(4.66), ..., (4.77), (4.78), (4.82), and (4.89), that minimises the cost functions

In general, the cost functions <f>i are incompatible with each other, and can seldom 
be jointly minimised. That is, one set of controller parameters Z  that optimises one cost 
function may be far from optimal for others.

To simplify the optimisation procedure, we introduce the following “utility function”, 
which is a positively weighted sum of the cost functions <E>i,

S(Z) =  ^^Wi$i ,  W{ G R+, z =  l,...,ra. (4.91)

The resulting optimisation problem is a standard constrained single criterion problem. Al­
though this constrained optimisation problem is difficult it is quite tractable using modern 
numerical optimisation algorithms [8]. (Consider trying to solve the original constrained 
nonlinear control problem using optimal control techniques.) The underlying philosophy 
in the overall approach is to use an algorithmic design procedure to impose structure on 
the nonlinear control problem and then exploit this structure to obtain a tractable opti­
misation problem. The resulting controller is conceptually the best sub-optimal controller 
that satisfies the constraints imposed by the design procedure. An important property of 
the proposed methodology is that it is relatively simple to find feasible values starting with
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very small values for the controller parameters. The nice algebraic form of the constraints 
(4.37), (4.55), (4.60), (4.66), ..., (4.77), (4.78), and (4.82) is crucial in this process.

4.3.4 Finding feasible solutions for tuning the control gains

The approach proposed in Section 4.3.3 to tune the controller parameters guarantees 
that the actual state bounds obtained are optimised to ensure that they are tight worst-case 
bounds. A disadvantage associated with such an approach is that some of the arguments 
employed to estimate the bounds on the stabilising functions lead to sub-optimal bounds on 
the system states, ultimately resulting in reduced performance of the closed-loop system. 
Another disadvantage is the possibility that the introduction of the worst-case bounding 
arguments, which gave rise to the constraints on the design constants (4.55), (4.60), ..., 
(4.77), and (4.78), will lead to an infeasible optimisation problem. In this scenario the 
problem formulation can be adjusted to reduce the influence of the state bounds until a 
feasible solution is attained. However, it is possible that this will lead to a control design 
with such restrictive bounds that there is a distinct danger in it becoming little more than 
a low-gain argument and the performance advantages of the backstepping approach will 
be lost. This problem arises due to the limitations inherent in imposing a fixed design 
algorithm on a highly nonlinear system. The optimisation process can only do the best 
possible given the imposed structure. For certain systems, the imposed structure can be 
so restrictive that it precludes any solution.

Unfortunately, due to time limitations, a detailed analysis of the problem of finding 
feasible solutions for the controller parameters when the optimisation problem proposed 
in Section 4.3.3 fails can not be undertaken. The simulations presented in Section 4.4 
considers a system for which the approach proposed in Section 4.3.3 can be applied. Even 
in this case some freedom in the controller parameter choice was required. It is instructive 
to briefly discuss how the controller parameters could be found for a larger class of systems.

4.3.5 Gain-scheduling

The control architecture proposed in Section 4.3 provides a local control design. That 
is, the control law u is a direct function of the system states and guarantees the decrease of 
a Lyapunov function which is also a function of the system states. Consider partitioning 
the constraint admissible state-space into small regions. On each of these regions the 
control architecture proposed in Section 4.3 may be applied. For each local region it is 
possible to compute the constraints imposed on the design constants, which are defined 
by (4.37), (4.55), (4.60), (4.66), ..., (4.77), (4.78), (4.82), and a subset of (4.89) depending 
on the local region. On each small subset it is no longer necessary to use a worst-case 
analysis to convert these bounds into constraint equations for the optimisation procedure 
since the system states need only be considered within each local region. As a result, 
within each region the sub-optimal bounds employed in Section 4.3.3 can be rewritten 
as explicit state bounds depending directly on the actual state values, at least to first- 
order approximations. It is natural to expect that the resulting optimisation problems will
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mostly be feasible on the interior of the constraint admissible domain. It is interesting to 
note that each independent optimisation procedure will choose slightly different control 
parameters. Thus, far away from the boundaries of the individual region the influence 
of the constraints will be small and the design will focus on the asymptotic stability of 
the system. Close to the boundaries, however, the effect of the boundary constraints will 
dominate and the resulting controller parameters will be tuned to ensure that the barrier 
terms in the cLf are decreasing, thus guaranteeing the preservation of the state constraints.

There may be regions in the full constraint admissible state-space where the optimisa­
tion problem remains infeasible. These cases will tend to correspond to situations where 
the dynamics of the system prevent the system from exploiting the full constraint admis­
sible domain that was arbitrarily specified in the problem specification. These regions of 
the constraint admissible state-space cannot be accessed by the system and are therefore 
not considered.

At the end of this process the designer will obtain, after some considerable expenditure 
of effort, a partition of the full constraint admissible domain in state-space into a union of 
local regions each of which has a local cLf and controller u. The final controller is obtained 
by combining these local controllers into a controller for the full constraint admissible 
state-space. The simplest design concept for a global control design is to introduce a gain- 
schedule based on which local region the system is contained within. The stability analysis 
of this approach will depend on how the cLfs interact at the boundaries of the partitioned 
regions. We believe that this approach will provide good performance in practice, even 
though it has not been possible to comprehensively investigate this issue in the present 
thesis. It is also possible to consider other schemes whereby the independent control laws 
are smoothly combined in some manner to obtain averaged control where the local regions 
intersect. The study of this topic is beyond the scope of the present thesis and will not be 
considered further.

4.3.6 M anual tuning of control gains

In this approach, the constraints imposed by (4.55), (4.60), ..., (4.77), and (4.78) are 
not considered in the determination of the controller parameters {ki,Ci}. The rationale 
behind their omission is that, as mentioned previously, worst-case arguments were used in 
deriving those conditions which mean that they are necessarily conservative.

The controller parameters {ki,Cj} are computed in accordance with the nonlinear 
bounds on the system states given by (4.88), and the conditions (4.37), (4.66), ..., and 
(4.82). This ensures that the specified state constraints are satisfied and that the zero 
initial condition is proper. However, since the conditions (4.55), (4.60), ..., (4.77), and 
(4.78) have not been accounted for in determining the control gains, the stability of the 
closed-loop system is not assured. Thus, the set of allowable initial conditions cannot be 
directly calculated by using the expressions for the error variables (4.23), (4.33), (4.40), 
..., and (4.67). Rather, the set of allowable initial conditions is determined by simulating 
the closed-loop system at various initial conditions and examining the evolution of the
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candidate cLf and its time derivative. This method of tuning the design constants is sim­
ple, non-conservative, and guarantees to generate a set of feasible control gains as will be 
demonstrated via simulations of a 4f/l-order integrator system in Section 4.4. The draw­
backs of the method include its trial-and-error nature, which could lead to many iterations 
before the right set of controller gains, which satisfies the prescribed state bounds, and 
the maximum possible allowable set of initial conditions are obtained. The process could, 
however, be sped up considerably by using automated software testing, and is not dis­
similar in concept to validation of current industry standard gain-scheduled linear control 
designs for flight control.

4.4 Sim ulation results

Simulations for a simple 4t/l-order integrator cascade are presented to support our 
results. The system’s equations of motion are given by

£i = £2

£4 = u (4.92)

The constraints on the system’s states are as follows

£2 < 2.5, £3 <12, £4 < 700 (4.93)

The design constants are numerically tuned as follows 

0.5ci = — ,C2 = 1, C3 = 50, C4 = l,k \ = l,fc2 = 2,
7T

ks = 3, Aq = 5.61, k*, = 1 ,ke = 354.5, ki = 10

The closed-loop system is simulated in Matlab/Simulink using the fixed step Dormand- 
Prince solver option with a step size of 0.005.

Figures 1 and 2 clearly show that £2, £3, and £4 all remain within the constraints 
expressed by (4.93), irrespective of the initial condition. Note the ramp-like response of 
the system which provides a perfect example of how a system with velocity constraints, 
such as that of non-acrobatic and non-fighter types of aircraft, should respond to a change- 
in-position command. Also note the near optimal velocity obtained, £2, which can be 
pushed closer to its true bound by further tweaking the design constants. This is where 
backstepping is most proficient as it can provide the high gains required to push the system 
states as close to their maximum limits as possible to approximate optimal trajectories.
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4.5 Chapter sum m ary

This chapter extends the results presented in the previous chapter to address the prob­
lem of multiple state constraints. The main contribution of this chapter is the extending 
of the backstepping methodology to asymptotically stabilise a class of nonlinear systems 
subject to multiple state constraints. The adaptation of the design procedure which re­
quires the construction of ISS-cLfs to accommodate multiple state constraints is straight 
forward as outlined in Section 4.2. All that is needed is the additional assumption that 
all nonlinearities in the system’s dynamic model and their time derivatives are bounded 
in norm.

For the design procedure which assumes that no strict cLfs are available, the extension 
is not as straightforward. The standard approach of cancelling the cross-terms does not 
work because of the cross-terms escaping to infinity infinitesimally close to the constraint 
boundaries. Consequently, rather than cancellation of the cross-terms, we have adopted 
domination instead. The outcome of the proposed design procedure is a set of constraints 
on the controller parameters. Satisfying these constraints ensures that the closed-loop 
system is asymptotically stable, and the states are bounded in norm. From these con­
straints, nonlinear bounds for the stabilising functions and error variables, and ultimately, 
for the system states, in terms of the controller parameters were computed. Together, 
the constraints on the controller parameters, the computed bounds on the system states, 
and the prescribed state bounds provide the ingredients for a multi-criteria constrained 
optimisation routine to tuning the controller parameters. The result is a set of con­
troller parameters which guarantees that the closed-loop system is asymptotically stable, 
and yields the maximum possible constraint admissible region given the prescribed state 
bounds and the constraints imposed by the proposed design procedure. There however, 
exists a distinct possibility, due to the worst-case arguments employed in deriving some of 
the constraints on the controller parameters, that in certain cases, the optimisation rou­
tine is ill-conditioned. Unfortunately, there was insufficient time to undertake a detailed 
analysis into the problem of finding feasible solutions for the controller parameters when 
the optimisation routine proposed in Section 4.3.3 fails. Two alternative methods were 
proposed including gain-scheduling and manually tuning the controller parameters. The 
validity of the manual tuning approach was demonstrated in Section 4.4 via simulations 
of a 4t/l-order integrator cascade. The issue of whether the gain-scheduling approach pro­
vides better performance and robustness than the “global” approach and manual tuning 
is unresolved due to time limitations.
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Time [s]

Figure 4.1: Closed-loop response with initial condition: £i(0) =  —10, £2(0) = —1.5, £3(0) = 
-0.05, £4(0) = -2 .5

40
Time [s]

Figure 4.2: Closed-loop response with initial condition: £i(0) = — 100.£2(0) = 1 5,£3(0 ) 
-4 ,  £4(0) =  -5 0



Chapter 5

C onstrained lon gitud e control for 

th e A erosonde U A V

Nom enclature

c = m ean aerodynam ic chord

cLa = lift curve slope

C l 0 = lift coefficient a t zero angle of a tta c k

cMa = pitch ing  m om ent coefficient due to  angle of a tta c k

CMo = pitch ing  m om ent coefficient a t  zero ang le-o f-a ttack

C m q = pitch ing  m om ent coefficient due to  p itch  ra te

° M se = pitch ing  m om ent coefficient due to  e levator deflections

Ft = th ru s t

9 = grav ity

h = a ltitu d e

lyy = m om ent of in e rtia  ab o u t th e  y-axis

L = aerodynam ic lift force

M = aerodynam ic p itch ing  m om ent

m = a irc ra f t’s m ass

P , 9 , r = roll, p itch , and  yaw ra te  ab o u t th e  a irc ra ft-b o d y  fram e of reference

Q = dynam ic pressure

S = wing p lanfo rm  area

Vt = tru e  airspeed

V z = clim b ra te

a = angle of a tta c k

ß = angle of sideslip

ÖE = elevators deflection
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<)),6,iIj — roll, pitch, and yaw angle

5.1 Introduction

The Aerosonde is a small-scale UAV developed specifically for long-range meteoro­

logical reconnaissance over oceanic and remote areas, and in hazardous conditions (see 

Figure 1.1). However, with a low-cost design, small footprint, and an aerodynamically 

efficient airframe, the Aerosonde is capable of performing a much wider range of surveil­

lance and sensing tasks than what it was originally designed for. Potential applications 

include coastal surveillance, landscape mapping, aerial photography, low-altitude mineral 

exploration, just to name a few.

Presently, there is an on-going research and development (R&D) effort to extend and 

enhance the operational capability of the Aerosonde to capture new and emerging market 

opportunities. An integral part of this R&D initiative is the focus on developing a new 

flight controller for the Aerosonde that is capable of providing better stability and tracking 

performance over a much wider range of operating conditions and trajectories than the 

existing control algorithm. At the same time, limited resources, cost effectiveness consid­

erations, and the fact that these aircraft are disposable, mandate the use of simplified and 

incomplete dynamic models and inexpensive hardware in the control implementation.
Motivated by the above challenges, we dedicate this chapter to designing a longitu­

dinal flight controller to regulate the altitude of the Aerosonde UAV. We focus on the 

longitudinal dynamics because the Aerosonde is built with a relatively high degree of lat­

eral/directional stability. Moreover, the mission profiles of the Aerosonde typically require 

the aircraft to fly straight and level whilst accurately tracking altitude change commands.

Traditional aircraft flight control designs are dominated by classical design techniques. 

The most popular design methodology, due largely to its systematic “divide-and-conquer” 

framework, involves linearizing the vehicle’s dynamics about a number of operating con­

ditions throughout the flight envelope, designing linear controllers for each of these op­

erating condition, and blending these point designs with an interpolation scheme. This 

gain-scheduling approach, however, may produce a control law that does not globally pos­

sess the desirable properties exhibited locally by its constituent point designs. In addition, 

there exists no simple or direct mechanism to incorporate actuator saturation and/ or state 

constraints into the design process. The use of nonlinear actuation systems can also add 

significant complexity to the controller design [20].

In the past few decades, a number of nonlinear control methodologies has been de­

veloped for application to advanced flight vehicles. These nonlinear design techniques, 

by dealing directly with the vehicle’s complete dynamics rather than point designs, offer 

significant increases in performance as well as greatly reduce the development time. The 

most popular and widely employed nonlinear design methodology is feedback lineariza-
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tion. A common approach to designing flight control laws with feedback linearization is to 
separate the vehicle’s dynamics into fast and slow states using time-scale separation argu­
ments with the fast states utilized as virtual controls to drive the slow states [17,96,128]. 
Although this approach greatly simplifies the state inversion transformations due to the 
now simpler dynamical equations, closed-loop stability is not guaranteed [78,113].

Another drawback of feedback linearization techniques is that their performance and 
applicability rely crucially upon accurate knowledge of the vehicle’s dynamics. Unfortu­
nately, a high-fidelity aircraft model is expensive, and often not possible to obtain be­
cause most aerodynamic phenomena are highly nonlinear functions of several variables 
and therefore, very difficult to model exactly.

One nonlinear control technique that can provide solutions to the above issues is inte­
grator backstepping. Rather than indiscriminately cancelling all nonlinearities including 
useful ones as stipulated by feedback linearization techniques, backstepping affords the 
control engineer not only the choice of retaining all beneficial nonlinearities, but also great 
freedom in selecting the final control law [68]. This flexibility means that not only the 
form of the resulting control law can be much simpler than those derived using feedback 
linearization, the dynamical model used need not be exact. In addition, as backstepping 
includes the transients in the virtual control signals explicitly in the derivation of the final 
control law, the time-scale separation assumption is therefore, no longer required.

Despite possessing many attractive features and holding numerous advantages over 
feedback linearization techniques, applications of backstepping to flight control have been 
few. The majority of those focus on the control of the aerodynamic angles (a, ß) and/or 
Euler angles (0, 0, ■?/>), which are essentially second-order systems [78,126,133]. Härkegärd 
and Glad [46], and more recently, Sharma and Ward [125] employ backstepping to address 
the control problem of the flight-path angle (7 ), which is a third-order system. Both of 
these work however, do not address the problem of actuator and/or state constraints. 
To the best of the author’s knowledge, only the work in [31] considers the problem of 
state and actuator magnitude, rate, and bandwidth constraints in flight control using 
backstepping. To address these constraints, the authors in [31] implement limiting filters 
to bound the magnitude, rate, and bandwidth of the virtual control signals at each step 
of the backstepping design procedure, and correct the error signals to compensate for the 
periods during which the nominal virtual control signals exceed the constraints. However, 
this approach does not guarantee that the actual states remain within their specified hard 
bounds, nor does it guarantee the convergence of the error signals to the origin when 
saturations of the states and/or actuators are in effect.

Perhaps the main criticism being leveled at backstepping is that direct application of 
traditional backstepping produces highly aggressive controllers that require unbounded 
inputs. This is unsuitable for real dynamical systems because of actuator saturations 
and/or the possibility of hard bounds on the physical system states. Due to aerodynamic
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phenomena such as stall and flutter, aircraft control requires the consideration of state 
constraints in the control design process rather than actuator saturations. For example, 
the control margin provided by the elevators for a typical aircraft is more than adequate 
for all required manoeuvres in the longitudinal plane. If the elevators are applied too 
aggressively, the aircraft will be subjected to excessive pitching moments which can lead 
to stall if the resulting angles of attack exceed the stall angle. Although this problem 
can readily be circumvented by implementing a guidance algorithm based on switching 
decision logics, such an approach can add significant complexity to the controller design, 
and is less robust than a base level controller design that reflects the state constraints, 
and can add significant complexity to the controller design. A more elegant, simple, and 
robust solution is to directly incorporate the state constraints into the controller design 
process in a natural manner.

In this chapter, we propose a backstepping controller to regulate the altitude of the 
Aerosonde UAV. The dynamic model considered is a fourth-order system. To prevent 
the controller from demanding excessive elevator deflections, hence causing the aircraft to 
stall, a hard constraint on the aircraft’s climb rate is imposed. The rationale is that if 
the climb rate is bounded, then the angles of attack will also be bounded, which in turn 
will place limits on the pitch rates, and ultimately, the elevator deflections. The imposed 
state constraint is incorporated directly into the controller design by applying the results 
developed in Chapter 3.

The chapter is organised as follows. In Section 5.2, the aircraft altitude dynamics is 
described and cast into the requisite strict-feedback form. In Section 5.3, a controller 
design based on the traditional backstepping methodology is presented. This exercise 
serves to validate our argument that application of traditional backstepping leads to an 
overly aggressive controller which will cause stall if a sufficiently large altitude change 
is commanded. In Section 5.4, the controller is re-designed to take into account the 
hard constraint on the vertical velocity. The performance and stability of both controller 
designs are demonstrated via closed-loop simulations on a full 6-DOF, nonlinear model of 
the Aerosonde UAV.

5.2 System  m odel

The altitude dynamics of an aircraft can be described by [134]

h = vt sin(7 ) (5.1a)

7  = —-— [-FVsin(a) + L -  mg cos(7 )] 
m vr

(5.1b)

d = —— [-F t  sin(a) — L + mg cos(7 )] -1- q 
m vr

(5.1c)
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Before backstepping can be applied, we first need to transform system (5.1) into the 

strict-feedback form. To achieve this, we make the following assumptions.

A ssum ption  5.1. The flight-path angle, 7 , is small throughout the flight envelope and 

therefore can be approximated by

7^
sin(7 ) «  7 , cos(7 ) « 1  — —.

A ssum ption  5.2. The true airspeed, v t , is controlled by a separate control loop and can 

be treated as a constant in (5.1) [46,113,125].

A ssum ption  5.3. The component of the thrust force, Ft  sin(a) is negligible as it is gen­

erally much smaller than the lift force, L [125].

A ssum ption  5.4. The aerodynamic lift force, L, can be approximated by the following 

linear relationship

L =  Lq -t- Laa,

where La =  q S C iQ represents the lift force due to the angle of attack, Lq =  qSCL0 

represents the lift force at zero angle of attack, and CLa,CL0 G R. Note that the lift 
component due to control surfaces is negligible compared to the principal components and 

is not modeled. Furthermore, its inclusion would prevent the transformation of the flight- 
path angle, 7 , dynamics into the strict-feedback form. The above linear approximation of 

the aerodynamic lift force is valid up to the stall angle of attack.

The pitching moment, M , can be approximated by

M  — Mq +  Maa  4- Mqq 4- Mse6e ,

where Mo =  qScCM0 represents the pitching moment at zero angle of attack, Ma =  

qScCMa represents the pitching moment due to the angle of attack, Mq =  qSc2CMq is 

the pitching moment due to pitch rate, MsE =  qScCM0E is the pitching moment due to 

elevator deflections, and CM0,CMa,CMq,CM&E G R. (For a more detailed discussion on 

aerodynamic forces and moments, please refer to such excellent texts as [51,134]-)

Assuming that Assumptions 5.1-5.4 hold, equations (5.1) can be expressed as follows

h vTy

7

Q

1
mvr

1
mvr

07
Lq -(- LQa — g 4— —

r  t 4.— Lq — LQa  +  g ----— +  q

q = —— [Mq +  Maot +  Mqq +  Möe6e } • 
*vv

(5.2a)

(5.2b)

(5.2c) 

(5.2d)
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Let us introduce the following change of variables

vt 7 = vz <=> 7 = —Vz_

vt

and define

System (5.2) now becomes

Vz — - g +  ^ 2 ' VZ +  -^o + L a a

d = A _  
v t

q = Mq + M'aa  4- M'qq + M$e 6e ,

h = vz (5.3a)

(5.3b)

(5.3c)

(5.3d)

which is in the requisite strict-feedback form.

5.3 A ltitude controller: a backstepping design

In this section, we apply traditional backstepping, as developed in [74], to design 
a controller to regulate the altitude of the Aerosonde UAV. The system considered is 
described by (5.3). The controller design is detailed below.

Step  1

Introduce the error variable

where the constant hd 6 R denotes the desired (or commanded) altitude. Taking the time 
derivative of z\ yields

z \ = h  -  hd, (5.4)

21  =  Vz . (5.5)

Let us select the following cLf for (5.5)

U(* 1) = I*?, (5.6)
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whose time derivative is given by

Vi =  Z i v z . (5.7)

Choosing the stabilising function v2re, to be

VZref =  - C l  Z l ,  (5.8)

and defining the error signal z 2 as follows

Z2 = v z - v Zr e f , (5.9)

one obtains

Z \ = - C \ Z \ + Z 2  (5.10)

Vi =  - c \ z \  4- z2z\

=  -W i(z i)  +  z2zi, (5.11)

where c\ E R+ is a design constant, and W i(z\) = c\z\ which is positive definite. It is 

clear that once z2 is driven to 0, Vi is negative definite which implies that z\ —* 0, and 

the h dynamics becomes asymptotically stable at the desired altitude hd-

Step 2

Consider the augmented subsystem for (5.10)

Z2 =  ~ g  +  ^ ~ 2 Vz  +  ^ 0  +  L ^ Oi  +  C\ Z\ .

The cLf for this step is chosen to be

=  Vi +  l- z \ .

Differentiating V2 yields

V2 -W i(z i)  +  Z2 z \ — 9 +  2 ĵ2 vz +  -̂ o +  L*aa  +  c\i\

Let

C*ref - c 2z2 -  Zl + g -

(5.12)

(5.13)

(5.14)

(5.15)
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and define

Z3 = a — aref,  (5.16)

where C2 E M+ is a design constant. By substituting (5.15) and (5.16) into (5.12) and 
(5.14), one obtains

Z2 =  -C2Z2 ~ z 1 +  L*qz3 

V2 =  ~ W 1(z1) -  c2z \ +  Caz2z3 

= - W 2 (z i,z2) +  L lz 2z3,

(5.17)

(5.18)

where W2 = W\ + C2Ẑ  and is positive definite. Since V2 is negative definite once Z3 is 
driven to 0, Z2 —> 0, and the vz dynamics becomes asymptotically stable at the origin.

Step  3

Consider the augmented subsystem for (5.17)

*3 = TT" -  7TTvz ~ L0 ~ L'aa  + Q
v t  2 v j ,

-C2Z2 -  z  1 -  4 - VZVZ -  C\ Z\

Let the cLf for this step be defined by

V3 =  V2 +  - z \

whose time derivative is given below

Vs =  - W 2(z i , z 2) + z3 { l >  +  J L -  4-

-C2Z2 -  i i  -  -^-vzvz -  c \i \

Choosing the stabilising function qref  to be

Qref -  -C 3 Z 3  -  L*a Z2 ~  ~  +  2 v * V* +  +  L '<*a

1
+ L i -C2Z2 -  Z i -  A r V z Vz -  C\Z\

(5.19)

(5.20)

(5.21)

(5.22)

and defining

Z\  —  q qre f ( 5.23)
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renders

H = -C3 Z3 ~ L*az2 + 24 (5.24)

V3 =  -  W2 {zi,z2) -  c3 z\ + Z3Z4

= - W 3 ( z i , z 2 , Z3)  + Z3Z4,  (5.25)

where C3 £ R+ is a design constant, and

W3 =  W2 + c3 z$,

which is positive definite. The function V3 is negative definite once Z4 is driven to 0. This 
guarantees that 23 —+ 0, and the a dynamics will asymptotically converge to a steady-state 
value ao which represents the angle of attack when 7 = 7 = 0, or equivalently, vz = vz = 0. 
That is, the steady-state angle of attack is defined by, see (5.3b) and (5.15),

«0 =  [9 -  LI) . (5.26)

Step 4

Consider the final augmented subsystem

Z4 — Mq + M'aa + M'qq + M'6eSe — I — C3Z3 — L*az2 -I- —vzvz + L'aä
l  VT

} •
1

+ZI - c 2z2 -  Z\ -  \ i ) 2z -  \ v zvz -  ci z i (5.27)

where

vz =  \ v zvz + L* a.
Vrp

The cLf for this step is selected by adding a term penalizing the error variable Z4

V = V3 + (5.28)

The time derivative of (5.28) is defined by

V = -W 3(zi,z2,z3)

+ Z4 Z3 + Mq + M'aa + M'qq + M'6e8e — < —C3Z3 — L* z2 + -3 -vzvz + L'Qa
l vt



100 Constrained longitude control for the Aerosonde UAV

Selecting the following as the final control law

Se  =

M 6e

- C 4 Z 4  -  z3 -  M'qq -  M'aa -  M q -  z3 

+ |-C 3i3 -  L*az2 + ^ v zvz + L'aä

1
- c 2z 2 - z \ ~  -  - ^ v zv z -  C\ z \

renders

(5.30)

Z4 — — C4Z4 — Z3 (5.31)

V = -  W 3(Z!,Z2,Z3) -  c4z \

= - W ( z i , z 2, z 3,Z4),  (5.32)

where C4 €  R+ is a design constant, and W  =  W 3 +  C424 which is positive definite. Con­
sequently, the function V is negative definite. Application of Lyapunov’s direct method 
yields the conclusion that the system (2 1 , z 2, z3, Z4)T is asymptotically stable at the ori­
gin and the original system (5.3) is asymptotically stable at [hd, 0, qo, 0]t . Note that 
asymptotic stability is not guaranteed beyond the stall angle of attack as our model of the 
aerodynamic lift force becomes invalid in the stall region.

5.3.1 Sim ulation results

In this section, we apply the control law (5.30) to the fully nonlinear, 6-DOF model 
of the Aerosonde UAV. The model is a part of the AeroSim blockset for Matlab/Simulink 
[105]. (The aerodynamic coefficients, which are based on wind-tunnel test data, are sub­
jected to commercial-in-confidence restrictions and therefore cannot be listed.) The closed- 
loop system is implemented entirely in Matlab and Simulink. In the simulations that 
follow, the airspeed and the lateral dynamics are controlled by separate control loops.

To demonstrate the performance of the the control law (5.30), two scenarios are simu­
lated. Both start at 100m above ground level (AGL) and with an airspeed of 23m/s. The 
effective range of the control input signal, in this case the elevators, is 6e = [—57.3°, 57.3°]. 
The design constants are tuned as follows

ci = 1.5, c2 = 10, C3 = 5, C4 = 0.1

Figures 5.1 and 5.2 summarise the results of our first simulation scenario. The objective 
of this simulation is to track two altitude change commands. The first is a command to 
climb to 150m, applied at time t = 10s, and the second is a command to descend to 130m, 
applied at time t = 100s. The figures show that the controller provides good command
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tracking, and a well-damped response with virtually no over-shoot. Such a good tracking 
performance from the controller justifies the use of a simplified aerodynamic model in the 
design process. The downside is that the simulated response has very long rise times. Let 
us examine the simulated response to the +50m step input commanded at 10s. Despite 
achieving a maximum climb rate of 4m/s at 12s, the rise time is approximately 40s. What 
we desire is that the aircraft attains the maximum possible vertical speed and maintains 
that speed until the aircraft has reached the commanded altitude. This however, is not 
possible with traditional backstepping because the control signals are proportional to the 
magnitude of the output error, see Figures 5.1 and 5.2.

Figures 5.3 and 5.4 summarise the results of the second simulation. In this case 
scenario, a step input of -1-lOOm is commanded at 10s. The figures show that due to the 
large size of the step input, the controller produces aggressive elevator deflections to try 
and drive the aircraft to the new altitude quickly, ultimately causing the aircraft to stall 
and enter into an irrecoverable dive. The stall occurs just before the 20s mark when the 
angle of attack goes beyond the stall angle of 17°. This simulation exposes the main 
weakness of traditional backstepping. That is, it tends to produce very large effector 
commands, which are unsuitable for real dynamical systems due to actuator saturations 
and/or state constraints as shown in this simulation scenario.

100

£ -100

—  Command
—  Response

Time [s]

Figure 5.1: Aircraft response
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-20  -

Time [s]

Figure 5.2: Elevator deflection

£  -100

-  Command 
—  Response

Time [s]

Figure 5.3: Aircraft response - stall case
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Time [s]

Figure 5.4: Elevator deflection - stall case

5.4 Constrained altitude controller: a backstepping re­

design

In this section, we apply the results developed in Chapter 3 to re-design the altitude 
controller presented in the previous section. To prevent the controller from forcing the 
aircraft to attain altitude too quickly by commanding excessively large elevator deflections, 
hence causing the aircraft to stall, we impose a hard bound on the climb rate. That is,

\vz( t ) \<B,  Vt> 0, (5.33)

where B  G R+ is a constant. The design proceeds as follows.

Step 1

Let us go back to the first subsystem (5.4)

zi = vz, (5.34)
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where z\ — h — hd, and ^  6 1  is the desired altitude. The following cLf is selected for 
this design step

V\ = k\Z\  tanh(zi), (5.35)

whose time derivative is given by

Vi =  k \ i \  {tanh(zi) + z \  — z \  tanh2(zi)}

=  k\Vz (tanh(zi) + Z\ — Z\ tanh2(zi)} . (5.36)

Choosing the stabilising function vZref to be

vZref = —ci tanh(zi), (5.37)

and defining the error variable z% as follows

z 2 =  v z -  v Zref, (5.38)

one obtains

z \  = —Ci tanh(zi) + z^ (5.39)

and

Vi = — fciCi tanh(zi) (tanh(zi) + z\ — z\ tanh2(zi)}

+ k\Z2 (tanh(zi) + Z\ -  Z\ tanh2(zi)}

=  — W î(zi) +  k\Z2 (tanh(zi) +  Z\ — z\ tanh2(zi)} , (5.40)

where

W\ = fcici tanh(zi) (tanh(zi) + z\ — z\ tanh2(zi)} . (5-41)

Since the function W\ is positive definite, Vi is negative definite once Z2 is driven to 0. 
This guarantees that z\ —> 0 and the h dynamics becomes asymptotically stable at the 
desired altitude hd. From (5.37), it follows that the selected stabilising function vZref is 
bounded in norm, that is,

K e / I  < ci- (5-42)

The reason the cLf Vi is chosen instead of the standard quadratic form is to limit the 
propagation of the error variable z\ through to the next subsystem via the cross-term.
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This would occur if the magnitude of z\ is sufficiently large, due to a large step input in 
hd for example, which may cause the next subsystem to become stiff and therefore harder 
to control.

Step  2

Consider the augmented subsystem for (5.39)

z2 = ~9 + + Lq + L*aa + C \i\ -  c \ i \  tanh2(zi). (5.43)
Urp

To achieve the control objective of bounding the norm of the vertical velocity, vz, the 
following cLf is selected for this design step

v2 = v1 +  i*3iog <5-44)

where k2, fcs G R+ are design constants, and is positive definite and radially unbounded 
in the domain

T>i = {(21, 22) € M2 I 22 G { -k 2ik2)}. (5.45)

Differentiating V2 yields

V2 = -W ffz l ) + z2 { k l tanh(2i) + 21 — 21 tanh2(2i) *3
+ h.2 2Z2

k 2 z 2 } •
(5.46)

whenever V2 is well-defined and bounded at every t > 0. Selecting the stabilising function 
aref  as follows

c tre f =  J J ^ - C 2Z2 + g -  ^ J 2 v z ~ Lq -  C \Z \ + c xz \  tanh(2i)s

tanh(2i) + 21 — 21 tanh2(2i)
}■

and defining the error variable 23 = a — aref  render

i 2 = - c 2z2 -  77 (fc£ -  4 ) tanh(2i) + 21 -  21 tanh2(2i) + L*azs

V2 = -W 1(zl) - l p £  + 1£ ± C z 2z3
1 ^ 2  ^2 ^2 ^2

-W 2(z1,z2)+  h L 'a
e2 z2

2 2̂ Z3;

k 3 C 2 Z o

(5.47)

(5.48)

(5.49)

where W2 = W\ + and is positive definite in V It then follows from (5.49) that V2 
is rendered negative definite in the same domain T>\ once 23 is driven to 0. This guarantees
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that the subsystem (21, 22) is Pi-domain asymptotically stable at the origin when 23 is 
driven to 0.

Observe that the error signal 22 is bounded due to the hard-bound coded into the cLf 
V2. With the stability function vZref bounded in norm, the climb rate vz is now bounded 
by virtue of (5.38). The explicit overbound on vz is

\vz{t)\ = \z2(t)\ + \vZref(t) I

< k 2 + c\. (5.50)

We have now achieved our control objective. The remaining design steps mirror those of 
the traditional backstepping method.

Step 3

Consider the augmented subsystem for (5.48)

h  =  ' i & v* - Lo ~ L >  +  < i - < W -

The following cLf is selected for this design step

= i 4
whose time derivative is given by

V3 = - W 2(zi,z2) + 23 I fc21C~2 22 + «31 , 

whenever V3 is well-defined and bounded at every t > 0. The choice of

Qref -  - C 3Z3 -  _  j Z 2 -  —  +  — 3- v z  +  L q +  L a Ot +  a ref ,

renders

23 k3 K
~ c3z3 ~ T2----- 2 22 +  24’K2 22

and

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

V3 =  ~W 2 -  c3z\ +  2324 

=  -W 3  + 2324, (5.56)

where 24 = q — qref , and W3 = W2 + csz\ which is positive definite in the domain

£>2 = { (z i , z2, z3) e R3 I 22 € (-fc2 ,fc2)}. (5.57)
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This implies that V3 is negative definite in the same domain V2 once 24 is driven to 0. 
Consequently, 23 —» 0 and the a dynamics becomes asymptotically stable at the steady- 
state angle of attack o^, which is defined by (5.26).

Step 4

Consider the final augmented subsystem

24 — Mq + M'aa + M'qq + M$eÖe — qTef• (5.58)

The following cLf is chosen

V = V3 + ~ z l  (5.59)

Differentiating V  yields

V = -W s  +  24 {23 +  24} , (5.60)

whenever V  is well-defined and bounded at every t > 0. If the following final control law 
Se is chosen

SE = -C424 -  23 -  M'qq -  M'aa -  Mq + qref 1 , (5.61)

we obtain

24 = —C424 — 23 (5.62)

V = -  W3 -  c4zl < -W 4, (5.63)

where W4 = W3 + C424 and is positive definite in the domain

T> = {(^1,^2,23,24) G M4 I 22 € ( - k 2,k2)}. (5.64)

Consequently, V is negative definite in the domain V.  Application of direct Lyapunov’s 
method yields the conclusion that the system (21, z2, 23,24 )T is asymptotically stable at the 
origin. This implies that the original system (5.3) is asymptotically stable at [hd, 0, ao, 0]T.

5.4.1 Main result

Theorem 5.5. Consider the system (5.3) subject to constraints on the climb rate as 
follows

\vz(t)\ < B, B e  R+, Vt > 0. (5.65)
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Let ci + k2 < B, k2 > Ci, C2 ,C3 ,C4 , k\, ks G M+ be design constants. For any initial 
condition such that |^(0)| < B, then system (5.3) in closed-loop with control law (5.61) 
is:

i. asymptotically stable at the origin,

ii. \vz(t)\ < B, V t > 0, and 

in. the control ÖE(t) is smooth.

Proof. Part (i) follows from the application of Lyapunov’s direct method to (5.59) and 
(5.63).

Part(ii) is a consequence of the proposed control design. From (5.44) and (5.59), it 
immediately follows that

v ‘ - ° -  (566)

By inspection, this proves that

\z2{ t ) \<k2, V t> 0. (5.67)

As a direct result of (5.37) and (5.38)

M *)l < M t) | + K .e/(t)l
< k2 + c\ (5.68)

for all time t > 0. Since the constants ci and k2 are chosen such that c\ + k2 < B,

\vz{t )\<B,  V*> 0. (5.69)

Lastly, part (iii) follows directly from the construction of the control law 5e(t), see 
(5.61). □

5.4.2 Control tuning

In this section, we explain how the design parameter £ 3  governs the evolution of the 
error variable z2, and hence the vertical velocity vz. From (5.66), we obtain

^ 3iogG f - t ( t ) 0 - m  vt-°- (5'7o)
Multiplying both sides by £  and exponentiating them yields

( k% \  mu (5.71)



5.4 Constrained altitude controller: a backstepping re-design 109

For simplicity, let us consider the case where /c2 = 1 which means that Z2 E (—1,1). Simple 
algebraic manipulations of (5.71) leads to the following bound on Z2

4 ( t ) <  l - - 3 ^ r -  (5.72)
e fc3

It is obvious from the above expression that for a given value of V(t), the smaller k3 is, 
the closer to its bounds, which is (—1, 1) in this example, Z2 (t) gets. Consequently, the 
climb rate vz will be pushed closer to its bounds by virtue of (5.38).

5.4.3 Sim ulation results

To illustrate the performance of the proposed controller design, the results of two 
simulation scenarios are presented in this section. In both cases, the aircraft starts out at 
100m above ground level (AGL) with an airspeed of 23m/s. We demand that the climb 
rate of the Aerosonde UAV should never be allowed to exceed ± 3.5m/s. The design 
parameters are tuned accordingly as follows

ci — 1.5, C2 = 1, C3 = 5, C4 = 10, k\ = 1.5, /c2 = 2, k$ = 0.5

Figures 5.5 and 5.6 plot the aircraft’s response to a +100m step input commanded 
at 10s, and Figures 5.7 and 5.8 plot the aircraft’s response to a +400m step input also 
commanded at 10s.

- Command
—  Response

2 . 100

0-  -100

Time [s]

Figure 5.5: Constrained aircraft response to an altitude command of 4-100m at 10s
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Time [s]

Figure 5.6: Elevator deflection for an altitude command of + 100m at 10s

Figure 5.7: Constrained aircraft response to an altitude command of +400m at 10s
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Time [s]

Figure 5.8: Elevator deflection for an altitude command of +400m at 10s

The simulation results clearly demonstrate that our objective of constraining the ver­
tical velocity to below 3.5m/s at all time is achieved, irrespective of the magnitude of 
the commanded altitude changes. This imposed constraint on the climb rate means that 
the controller will never force the aircraft to climb or descend at too steeply a rate by 
commanding unnecessarily large elevator deflections. As a result, stall is no longer an 
issue. Performance wise, the response is exactly what is desired. That is, following an 
altitude change command, the aircraft reaches the maximum achievable climb rate in the 
shortest time possible, and maintains this speed until the commanded altitude has been 
attained. This type of response can be considered to be almost time-optimal and cannot 
be achieved with traditional backstepping.

5.5 Chapter sum m ary

The contribution of this chapter is the introduction of two backstepping-based con­
troller designs to regulate the altitude of the Aerosonde UAV. The first controller is de­
signed based on the traditional backstepping approach. Closed-loop simulations of the 
controller on a fully nonlinear, 6-DOF aircraft model show that the the controller provides 
good tracking performance for small altitude commands. However, the controller becomes 
more aggressive for larger altitude commands, and eventually causes the aircraft to stall 
by commanding excessively large elevator deflections. To address this issue, we imposed a
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hard bound on the aircraft’s rate of climb and re-designed the controller using the results 
of Chapter 3. Closed-loop simulations for this controller demonstrate that the climb rate 
always remains within the specified bounds, irrespective of the size of the altitude change 
commands. This hard bound imposed on the climb rate means that the controller will 
never command the aircraft to attain altitude more quickly than is aerodynamically and 
physically achievable by the airframe, thus preventing stall. Furthermore, the re-designed 
controller provides excellent tracking performance, and the induced response can be re­
garded as almost time-optimal, given the constraints on the climb rate. That is, following 
an altitude change command, the aircraft reaches the maximum allowable climb rate in 
the shortest possible time, and maintains this velocity until the desired altitude is reached. 
Such performance is more robust than existing nonlinear control designs that do not con­
sider state constraints. The use of a simplified aerodynamic model has also been justified 
as it causes no discernable degradation to the performance of either controller.
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Chapter 6

Constrained stabilisation of robot 

manipulators

Robot manipulators have become an integral part in almost all modern manufacturing 
processes, performing tasks that are considered too dull, repetitive, and hazardous for 
humans, or that require strength, skill, and precision beyond the capability of humans. 
The control problem for robot manipulators is therefore a well-studied one. The recog­
nised “classical” techniques for controlling a manipulator include: feedback linearization 
or dynamic inversion [52,73], variable structure control [127], computed torque feedfor­
ward control [5,70], and passivity-based control (PBC) [109,138]. Although these early 
works solved the global asymptotic tracking and set-point regulation problems, they did 
not address the problems of obstacles in the workspace and/or hard constraints on the 
robot’s joint positions and joint velocities.

The environments in which robot manipulators operate are often constrained and clut­
tered. Due to factors such as safety and economy of operations, it is imperative that the 
robots avoid collisions with obstacles while performing their work. There is a great amount 
of research devoted to the obstacle avoidance problem. Lozano-Perez [85], Brooks [18], 
and many others [32,63,76] proposed off-line algorithms using free-space to plan collision- 
free motions for general robot manipulators. However, these off-line methods axe typically 
computationally expensive and thus unsuitable for real-time implementation except for 
very simple cases [9]. Online obstacle avoidance approaches on the other hand, are sub­
stantially faster and well-suited for real-time applications. Online obstacle avoidance can 
be achieved by employing the popular artificial potential field method [69,114] where the 
robot is guided by potential fields that exert repulsive forces away from the obstacles and 
an attractive force toward the desired position. More recently, it has been shown in [135] 
that the extra freedom of the coordinate transformation in the feedback linearisation 
method can also be employed to solve the online obstacle avoidance problem. Biologically 
motivated, non-model-based methods have been considered, including fuzzy logic [27,94], 
neural networks [158], and genetic algorithms [40,146]. Although attempts to incorporate 
Lyapunov-like formalisms into such frameworks have been made in such works as [34,58],

115
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stability and convergence properties of these methods remain, in general, difficult to ana­
lyze.

Another important consideration in the controlling of robot manipulators is the hard 
constraints on the robot’s joint positions and joint velocities. Ignoring these constraints 
will cause saturation as well as sustaining physical damage when a joint position or joint ve­
locity is commanded beyond its physical bounds. Time-scaling [47] is a standard technique 
employed to avoid joint velocity saturation along pre-defined trajectories. An alternative 
approach is the “Windup Feedback Scheme” [102], where, whenever a joint position or joint 
velocity is saturated, the unmet control demands are redistributed among the remaining 
unsaturated joints. There have also been numerous studies of obstacle avoidance and/or 
joint position and joint velocity constraints for redundant manipulators [22-24,151]. The 
applicability of these methods, however, is restricted to redundant manipulators only. For 
general manipulators, there are few works that address both obstacle constraints and joint 
limits in an integrated framework. In [135], Sugie et al. uses a two step process involv­
ing feedback linearisation with the extra degree of freedom to address the online obstacle 
avoidance problem along with a coupled time-scaling adjustment for bounded joint velocity 
control.

This chapter addresses the general problem of autonomous, or online, obstacle avoid­
ance for robot manipulators subject to hard constraints on the robot’s joint positions and 
joint velocities. The obstacles are assumed to be fixed and stationary, and we only con­
sider set-point regulation. The proposed control design is based on the PBC framework, 
with modifications made to the cLf such that the constraints are strictly satisfied for all 
time. The structure of the modified cLf resembles those used in the artificial potential 
field method. We differ from the earlier developments by directly integrating the con­
straint equations into the cLf to derive a unified control law that achieves autonomous 
obstacle avoidance, respects joint position and joint velocity limits, and achieves local 
stabilisation of the closed-loop system. The modification of the cLf can be thought of as 
a form of energy shaping of both the kinetic and potential energy terms in the classical 
storage function obtained in PBC. The ideas presented in this chapter are similar to those 
of [150]. However, in [150], only joint position constraints of the form qi < q < qu, where 
qL, qu represent the upper and lower limits of the robot’s joint position q, respectively, 
are considered. Furthermore, the cLf structure proposed in [150] is very different to ours, 
and cannot readily be extended to accommodate obstacle constraints and joint velocity 
constraints. For arbitrary constraints, the controller design proposed in this chapter suf­
fers from the same limitations of the artificial potential field approach in regard to the 
possible presence of local minima in the cLf. However, there are certain cases for which 
asymptotic stability of the closed-loop system is guaranteed. Examples of such cases are 
covered in Section 6.3.1.

The chapter is organised as follows. Section 6.1 provides an overview of the robot dy-
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namics. Section 6.2 briefly reviews the results of the “classical” PBC method. Section 6.3 
details the main results. Simulation results are provided in Section 6.4 whilst concluding 
statements are contained in Section 6.6.

6.1 R obot dynam ics

Consider a rigid and fully-actuated n-link robot manipulator with no external forces, 
that is, no end-effector contacts with the environment, and no external disturbances. The 
dynamics of such systems is described by [109]

V(q)q + C(q, q)q + g{q) = T, (6.1)

where we use the following notation

q e Rn generalised joint coordinates,
V{q) <E Knxn generalised inertia matrix,
C(q,q) e Knxn Coriolis-centrifugal matrix,

g(q) e Rn gravitational torques,

Ho) Rayleigh dissipation function,
t e R n applied input torques.

For all serial manipulators, the following properties hold for (6.1).

Property 6.1. The inertial matrix V{q) is symmetric and positive definite. That is,

V(q)T = V(q) >0 , € Rn. (6.2)

Property 6.2. The time derivative of the inertia matrix T>(q) and the Coriolis-centrifugal 
matrix C(q,q) satisfy the following “skew-symmetric” relationship

qT[V -  2C}q = 0, V q , q e R n,

Property 6.3. The Rayleigh dissipation function ^(q) satisfies

. T d T

and

q -^(q)  > 0, Wqe

(6.3)

(6.4)

(6.5)

6.2 Classical PBC for robot manipulators

In this section, we present a brief recapitulation of the classical theory of PBC of robot 
manipulators for the set-point regulation problem [67].
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Let the vector [q, q]T define the system state, where

q = q-qd (6 .6)

represents the error between the actual, g, and the desired, qd, link position. Select the 
following positive definite and radially unbounded function as the candidate cLf

£(<?> q) = \ q TV{q)q + i qTK Pq, (6.7)

which is derived from the kinetic energy of the system along with the “shaped” potential 
energy. The control gain matrix Kp  G MnXn is constant, diagonal, and positive definite. 
Note that the potential energy has been shaped such that the set-point [q =  qd, q = 0]T is 
now the equilibrium of the system.

Differentiating (6.7) with respect to time yields

C = qTV{q)q + i qTt>{q)q + qT K Pq. (6.8)

Substituting the system dynamics (6.1) into (6.8) gives

C = \ q T [t(q)-2C(q,q) 4 -  4̂ ( 4) +  f T -  g(q) + Kpq (6.9)

The first term on the right hand side (RHS) of (6.9) is null due to the passivity properties 
of mechanical systems [109], see Property 6.2. The second term is negative semi-definite 
(or dissipative) due to the properties of the Rayleigh dissipation function, see Property 
6.3. To stabilise (6.1), the following input torque is chosen

t = g(q) -  K Pq -  KDq, ( 6 . 10)

where the control gain matrix Kp> G Rnxn is constant, diagonal, and positive definite. 
Such a choice for r  renders

r \

C = - q T ^ r ( q ) - q TK Dq<  0, V j . ^ R "  (6.11)
dq

The resulting closed-loop dynamics is given by

V(q)q = - K Pq -  K Dq -  C{q, q)q -  ^  W). (6.12)

Application of Lyapunov’s direct method [68] to (6.7) and (6.11) guarantees convergence 
to the invariant set characterised by X := {(q,q) G Kn x Kn | q = 0}. Note that since 
q = 0, it must also hold that q = 0 in X. Let us now evaluate the closed-loop dynamics
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(6.12) in 1 , that is, when q — q — 0. Using Property 6.3, one obtains the following equality

0 = K Pq. (6.13)

Since the control gain matrix K p  is chosen to be constant and positive definite, the above 
equality is true if and only if q =  0. According to LaSalle’s Invariance Principle [68], the 
origin [q, q]T = [0,0]T is therefore globally asymptotically stable. Thus, all closed-loop 
trajectories asymptotically converge to the set-point \q = Q — 0]T. Detailed proof of 
this result can be found in such robotics text as [67,122].

6.3 C onstrained P B C

This section proposes a modification to the “classical” PBC design for robot manip­
ulators to incorporate obstacle constraints as well as hard constraints on joint positions 
and joint velocities.

In the following derivation, obstacle constraints and joint position constraints are rep­
resented mathematically by one-sided inequalities expressed in terms of the joint positions. 
Each constraint is represented by a separate constraint function.

Assum ption 6.4. For each obstacle or joint position constraint, there exists a differen­
tiable function hi(q) and a constant Aj € R such that

hi(q) > Ai (6.14)

characterises the accessible workspace for that constraint.

Rem ark 6.5. Non-smooth transitions such as edges and comers of an obstacle or singu­
larities in joint positions can be accommodated by approximating the non-smooth constraint 
with a differentiable constraint. In practice, the function hi(q) is only required to be dif­
ferentiable on the set hi(q) > A;. It is acceptable to work with constraint functions hi(q) 
that are non-differentiable on the constraint boundary itself.

Joint velocity constraints can be accommodated as long as they can be expressed as 
quadratic functions of joint velocities.

Assum ption 6.6. For each joint velocity constraint there exists a smoothly varying posi­
tive semi-definite matrix Qj{q) > 0 and a smooth function flj(q) such that the joint velocity 
constraint can be expressed as

\<iTQj{q)q <

Rem ark 6.7. The simplest joint velocity constraints are those where each and every in­

dividual joint velocity is bounded as follows

\q j ( t ) \<Bj , t > 0, j  = 1,..., n, (6.15)
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where Bj  E R + is a constant. In this case, choosing Qj — Bj / 2 ,  the velocity constraints 
can be re-written as

= \<irzjz]q = < f y ,  t > o,

for j  = 1 Here ej denotes the unit vector in the j ’th direction and the matrix
Q j  = e jej > 0 is positive semi-definite. A limitation of Assumption 6.6 is that the velocity 
constraints have to be symmetric about the origin q = 0. Thus, a velocity constraint 
—a < qj(t) < b where a,b E M+, a b cannot be accommodated using the proposed 
approach.

Denote the number of configuration constraints, that is, obstacle and joint position 
constraints, by N  and the number of velocity constraints by M. To simplify the derivation 
that follows, we introduce the following notations

N

* ( * ) - n * < * > . <t>M ) = h M ) - ^  (6.i6)
2—1

and

AL !
=  =  ^ TQ M ) ^  j  =  i , . . . , M .  (6.17)

j = i

The admissible constraint set for the problem is the set of states contained in

S = {(q, q) E Kn x Rn | (ffiq) > 0 and q) > 0, i = l, .. . ,N, j  =

= {(q,q) E Mn x Rn | <E>(q) > 0 and ^(q, q) > 0}. (6.18)

The boundary of S is defined by

dS = {(q,q) E Rn x M" | <E>(̂ ) = 0 or ^(q, q) = 0}. (6.19)

Let the vector [q, q]T define the system state, where q = q — qd represents the error 
between the actual and the desired link position. The control problem considered is that 
of stabilisation to the target set-point [q = qd, q = 0]T. It is desired to have control that 
behaves as do the PBC designs when distant from the constraints and is modified to ensure 
that the constraints are always respected. The underlying idea of the approach is similar 
to that of the artificial potential field method. We differ from the earlier developments in 
that we directly integrate the constraint equations into the cLf and use this cLf to derive 
a unified control law that fully respects the system’s dynamics. To ensure a well-posed 
problem we make the following final assumption.
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A ssum ption  6.8. The initial condition [qo,qo}] £ <S, where qo — q(t =  0), and % =  

q(t =  0). The desired link position qj E S, and qd and qo lie in the same path connected 

component of S.

Consider the following function, which is positive definite and radially unbounded in 

S, as the candidate cLf for system (6.1)

v («> 9) =  [9Tr,(9)9 +  , (6.20)

where the function C(q,q) is given by (6.7). The constraint functions and \I> are iden­

tically zero on the boundary dS.  Consequently, V (q, q) is asymptotically infinite on dS. 
The proposed candidate cLf is similar to the barrier functions used in optimisation meth­

ods and the underlying idea is closely linked to the artificial potential field method. The 

advantage of the approach taken is that the function V(q, q) can be thought of as a shaped 

energy function for the constrained system.

T heorem  6.9. Consider the dynamics (6.1) for a serial manipulator. Given configuration 

and velocity constraints satisfying Assumptions 6.4 and 6.6, and functions $  and ’3/ as 
defined by (6.16) and (6.17). Define C{q,q) according to (6.7) and

N

a<t>{q) := 5Z
S = 1

M

• =

5=1

M

P(q,q) : = £
5=1

/  M

I H ' M )

fI M q, q)

d(f>s
dq '

(6 .21)

) [ " • - (6.22)

I Qs- (6.23)

Choose the torque input to be

T(q,q) = g{q) +  T>{q) $ $ V{q) +  C $P
- 1

M ' {Kpq + K Dq} + £  { 4 ^  +  $ a 4  +  £4>PZr‘(<7) U q  +  j

(6.24)

where the control gain matrices K p , K o  € Enxn are constant, diagonal, and positive defi­
nite. Then for any initial condition [qo, qo]T and desired link position qd satisfying Assump­
tion 6.8, all trajectories of the closed-loop system remain inside the admissible constraint 

set S for all time, and converge to the invariant set characterised by the following equality

&(q)*(q, 0)KPq = C{q, 0) [V(q, O)a^(g) +  $ (q)axJ){q, 0)] (6.25)



122 Constrained stabilisation of robot manipulators

which contains the set-point [q = qd,Q = 0]T.

To simplify the notation, in the following development, functions are written without 
their arguments except where confusion may arise.

Proof. Consider the cLf given by (6.20). Differentiating with respect to time yields

C $ $  -  £ ( 4 > ^  +  4 >4 >)V (6.26)

whenever V (q, q) is well-defined, and bounded at every t > 0. Taking the time-derivatives 
of £, 4>, and gives

C =  -2 4
•T V - 2 C q -  qT^ r  + qT [ r - g  + K Pq]

$  =  W ,  q)

^  = (a^,q) -  ( P V - 1

dq

d Tr - C q - g -  —

(6.27)

(6.28) 

(6.29)

respectively, where (•, •) denotes the inner product. Substituting £, 4>, and 4' into the 
expression for V yields

V  = { - qT

C
” ( $ ^ ) 2

V - 2 C q ~ qT + qT lT -  g +  K pq\

{a^q)^  + ${a^,q) -  $(PV - l dTr - C , - , -  — ,<7> • (6-30)

Applying Properties 6.2 and 6.3, and collecting like terms together, one obtains

at

(M)2 [ $ W  + £$P] V 1t + QV [KPq -  g] -  C [4/a  ̂+

-C$PV - l .y d T  Cq + g + q
1 •T1

dq (6.31)

Note that the matrices [$4/X> 4- £$P] and V  are both positive definite and thus have 
well-conditioned inverses for all q,q € S. As a consequence, the proposed feedback control 
(6.24) is well-defined for all q,q € S. Substituting (6.24) into (6.31) yields

-1  ,T d T  qTKoq
V dq

< 0. (6.32)

It follows from (6.32) that

V(t) < V(0). (6.33)

As the desired joint position qd lies properly inside S  from Assumption 6.8, it follows that
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£ is strictly positive on the constraint boundary dS. From (6.19), the functions $ and T 
are identically zero on dS. The cLf V  is therefore unbounded (to positive infinity) on dS. 
However, (6.33) guarantees that V remains upper-bounded and together with Assumption 
6.8 ensures that the closed-loop trajectories remain inside the admissible constraint set S  
for all time.

Application of Lyapunov’s direct method [68] to (6.20) and (6.32) guarantees that 
q —> 0. From (6.32), it follows that V  = 0 if and only if q = q = 0. By examining (6.1) 
and (6.24), it is straightforward to verify that at the equilibrium condition q — q — 0, the 
closed-loop dynamics is given by

9(q) = 9(Q) + V(Q) $(g)T(g, 0)V{q) + £(q, 0)$(q)P(q, q)
- l

-^(9)^(9 , 0)KPq + £(q, 0) {V(q, 0)a<t>(q) + ^{q)a1p(q, 0)} .

Cancelling g(q) and pre-multiplying both sides by [4>( )̂4,(^, 0)V + £(q, 0)$(q)P(q, 0)] V  1 
results in the following equality

^(9)^(9 ,0)Kpq = £{q, 0) [$(g, O)a^(^) + $(q)aj,(q, 0)]. (6.34)

Application of Lasalle’s Invariance Principle [68] yields the conclusion that all closed- 
loop trajectories converge to the forward invariant set defined by (6.34). Furthermore, 
as C(qd, 0) = 0, it follows from (6.34) that the set-point [q = qd,Q = 0]T lies inside this 
invariant set. □

6.3.1 A sym ptotic stability

In general, application of Theorem 6.9 cannot guarantee closed-loop asymptotic stabil­
ity for robot manipulators subject to arbitrary constraints. This is due to the possibility 
of local minima being introduced into the cLf (6.20) by the constraint functions 4> and 4'. 
However, there are specific cases in which asymptotic stability of the closed-loop system 
at the set-point \q = qd,q = 0]T is guaranteed. In what follows we will apply Theorem 6.9 
to three such special cases and prove asymptotic stability of the closed-loop system.

Case 1: Pure symmetric joint velocity constraints

Consider the case where the system (6.1) is subjected to M  pure symmetric joint 
velocity constraints. By pure symmetric joint velocity constraints we mean that each of 
these joint velocity constraints are bounded in norm by a constant. That is, the system
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(6.1) is subjected to constraints which can be expressed as follows

j  — 1 , M,  Vi > 0, (6.35)

where Bj  G M+ is a positive constant. Choosing Qj =  Bj / 2 , the above constraints can be 

rewritten as

\Q j{t)2 =  \<iTej eJq <  ü j, j  =  1, Vi >  0, (6.36)

where ej denotes the unit vector in the j ’th direction. The constraint function 'h is defined 

as follows

M
V(q) =  n  *1>M) =  -  9 ^Te je j 4 , j  =  1, . . .  ,M. (6.37)

j =i

The admissible constraint set is thus the set of states contained in

S =  { ( q , q ) e R n x R n I *(</)> 0}, (6.38)

whose boundary is given by

dS =  {(q,q)  G Rn x Rn | \&(q) =  0}. 

Let us select the following as the candidate cLf

) =  ^  =  ^  [qTVq +  qTK Pq\ .

Taking the time-derivative of (6.40) yields

... jCV -  t i l

The function L is given by (6.27), and

4 = -{ /V P -1

where

' . d T
T - C q - 9 - ^ i \ ,q)>

m I m

p*=xi n*«> e*e*»
«=1 \j*B

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

which is a positive definite matrix for all q G S.  Substituting for C and 4* in (6.41) and
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applying Properties 6.2 and 6.3 yields

I  [4-X> + CP)̂ V - ' t +  4- -  -Cq + g + f j r rdq
1 . j- Ö.77

W
(6.44)

Let the torque input be

T g + V l W  + CP^}-1 -4- (Kpq + K Dq) + CP^V~l (cq  + qT^ r )  ■ (6.45)

Then V  is rendered

• 1 .T d XV = ---- q —
dq

qTK Dq
< 0 , (6.46)

which implies that q —+ 0. By examining (6.1) and (6.45), it follows that at the equilibrium 
condition q — q = 0, the closed-loop dynamics is given by

V(0)KPq = 0. (6.47)

Prom (6.37), it is clear that 4>(0) > 0 within the admissible constraint set S, which is given 
by (6.38), and since Kp  is chosen to be positive definite (see Theorem 6.9), the equality 
(6.47) is true if and only if q — 0. It follows fiom Lasalle’s Invariance Principle that the 
closed-loop system is asymptotically stable at the set-point [q = qd,q = 0]^.

C ase 2: Joint position  constraints

In this section, we explore the case where system (6.1) is subjected to N  symmetric 
joint position constraints. The application of PBC to asymptotically stabilise robot ma­
nipulators subject to joint position constraints is not new, and is presented here as an 
illustration of the usefulness of Theorem 6.9. The idea has been exposed in [150] where 
the authors also proposed a barrier function-like cLf to achieve boundedness of the joint 
positions. However, the structure of the barrier function introduced in [150] is very differ­
ent to ours, and is more restrictive in the sense that joint velocity constraints and obstacle 
constraints can not be accommodated.

We consider the type of joint position constraints that can be expressed as follows

\q(t)i\<Xi,  t = l,...,JV, Vt> 0, (6.48)

where X{ € K+ is a constant. Choosing Aj = X f / 2, the above constraints can be re-
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written as

= ^Q1 eiejq < z =  l, ...,# , Vt > 0, (6.49)

where e* denotes the unit vector in the z’th direction. The constraint function <f> is thus 
defined as

*to)  =  n * ( « ) ,  ^  = Ai -  \qTeie?q’ * =  i,  •••>#, (6-50)
Z=1

where e* denotes the unit vector in the z’th direction. The admissible constraint set in 
this case is the set of states contained in

5 = {{q,q)e Mn xMn | $(q) > 0},

whose boundary is given by

(6.51)

dS = {(<?, q) € Mn x Mn | $(g) -  0}. (6.52)

Motivated by the concept of gradient re-centred barrier function exposed in [152] (cf. 
Definition 2.1 and Lemma 2.1), the candidate cLf is selected as follows

v (<?, q) =  \ q T v q +  f(q) -  f(q<i) -  v f(qd)Tq, (6.53)

where

M qTK Pq
mq) '

Before proceeding any further, we require the following lemma.

(6.54)

Lemma 6.10. The function f(q) is strictly convex for all q G S.

Proof. The function qTKpq is strictly convex for all q € Mn, and has a global minimum at 
the origin because the matrix Kp  is chosen to be constant, diagonal, and positive definite 
(see Theorem 6.9). The function 2^ y  is positive, is a barrier function in «5 (cf. Definition 
2.1), is symmetric about q = 0, and its minimum lies on q = 0. The function f(q ) = 
is therefore a barrier function in S, which is strictly convex for all q G »5 by definition. □

It follows from Lemma 6.10 that V2/(g) > 0, Vq € S. This fact will be used later to 
establish the convexity of the proposed cLf (6.53).

The term Vf{qd) denotes the gradient of the function f(q) at q = qd. The gradient
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V/(g) = &{q)  is given by

V/(9)
*fa)5

+ -q T KpqP■p(q)q (6.55)

where

n  /  n

p4>(v) = Y1  e * e

3 = 1  y i ^ s  y

and is a positive definite matrix for all g € S.
Differentiating (6.53) with respect to time and applying Properties 6.2 and 6.3 yields

V = q'J { r  -  g + $ K Pq+ -q 1 KpqP^q .T d T
~ V /(gd) \ -  q (6.56)

Choosing the input torque to be

T(q,q) = g -  K Dq - $ K Pq+ -q 1 KpqP^q + VfiQd) (6.57)

renders

O /r*

V = -« T —  -  qTK Dq < 0. (6.58)dq

This implies that q —> 0. By inspecting (6.1) and (6.57), it follows that all closed-loop 
trajectories converge to the following invariant set

- $ K Pq -  ^qr K pqP<t>q + ${q)2S7f(qd) = 0. (6.59)

From (6.6), we have q = q + qd. Substituting for q in (6.59) and expanding gives

- $ ( < 7  + qd)KP[q +  qd\ -  ^\q + qd]TK P[q + q^P^q  + qd)[q + qd\

+ $(<? + qd)‘ Ute)2
$(qd)KPqd + - q j  K PqdP(j)(qd)qd (6.60)

When q = 0, the terms on the first line of (6.60) exactly cancel out those on the second 
line. Thus the set-point [qd, 0]T is contained in the forward invariant set expressed by 
(6.59).

To prove asymptotic stability of the closed-loop system, it is sufficient to establish that 
the cLf (6.53) is convex in q in S. Checking second-order condition yields

d2V 
dq2 V2/(«)>o,  Vqes,
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since we have established in Lemma 6.10 that f(q ) is convex for all q E <S, which means 
that V2/(g') > 0, Vg E S. Thus, q = 0 is the only minimum of V(q, q) inside the constraint 
admissible set S. Consequently, all closed-loop trajectories asymptotically converge to the 
set-point [q = qj, q = 0]T.

The asymptotic stability result proved in this section is predictable given the structure 
of the chosen cLf (6.53). The barrier function f ( q ) is convex in S  with the minimum point 
at q = 0. The presence of the constant term —f(qd) and the linear term —V f(qd)q serves 
to relocate the minimum point (re-centre) from the origin to the desired link position 
qd [152]. These two terms do not contribute to the second partial derivative of the cLf 
(6.53) with respect to q, and therefore have no effect on its convexity property. The linear 
term —Vf(qd)q however, changes the gradient of the cLf, which governs the convergence 
rate of the closed-loop system.

Case 3: Joint position  plus jo in t ve locity  constraints

It is straightforward to see that in the case where both symmetric joint position and 
pure symmetric joint velocity constraints are present, asymptotic stability of the closed- 
loop system can be achieved with the following candidate cLf

v ( q, q) =  +  f(q) -  f(Qd) -  Vf(qd)Tq, (6.61)

where f(q) and Vf(q)  are as defined by (6.54) and (6.55), respectively. Taking the time- 
derivative of (6.61) yields

v=e m + \ q Ti^qTV q P ^ jV  lT -  g(q) - ^ c f V q P ^ V  1 ^0 + Ctf + - 0  

’t‘K Pq + 1-q r KpqP4,q -  V f (qd) \  -  ~ .  <

Choosing the input torque

(6.62)

9{q ) +  P <HV + -q TVqP'q,
- 1

-■HKDq + l- q TVqPi,V - l \]Cq +  ^

~ \ i K Pq + ^ q T K p q P ^  + * 2Vf(qd)

renders

f K n q  + e d- f
oq

< 0 , (6.64)
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which ensures that q —> 0. Inspection of (6.1) and (6.63) leads to the conclusion that all 
closed-loop trajectories asymptotically converge to

0 = - $ K Pq -  i qr K PqP<f)q + $ 2(tf)V/(gd), (6.65)

which is exactly the same as (6.59), and therefore contains the set-point [<7d,0] as proved 
in case 2. Similarly, since the second partial derivative of the cLf (6.61) with respect to q 
is exactly the same as that of case 2, the cLf (6.61) is convex for all q G S. Consequently, 
all closed-loop trajectories asymptotically converge to the set-point [<7d,0].

6.3.2 Joint velocity constraints expressed as kinetic energy bound

Another special case that is of practical interest is when the joint velocity constraints 
are expressed as a bound on the kinetic energy of the system,

V{Q, q) =  t o -  ^qTD(q)q, (6.66)

where ft > 0 is a constant. In this particular case there is no direct bound on any single 
joint velocity, however, the overall kinetic energy of the system is upper bounded by the 
constant ft.

Corollary 6.11. Consider the dynamics (6.1) for a serial manipulator. Given gen­

eral configuration constraints $(q) satisfying Assumption 6.4, a single velocity constraint 
ty(q, q) of the form (6.66), and the admissible constraint set S  as defined by (6.18). Define 

C(q,q) according to (6.7) and a(p(q) according to (6.21). Choose the torque input to be

r{q, q) = g(q) + ^  ^  ( - $  [K Pq +  K Dq] + Ca<t>) , (6.67)

where the control gain matrices Kp,Kp> € Enxn are constant, diagonal, and positive defi­

nite. Then for any initial condition [qo, qo]T and desired link position qd satisfying Assump­

tion 6.8, all trajectories of the closed-loop system remain inside the admissible constraint 

set S  for all time, and converge to the invariant set characterised by the following equality

K p q =  (6-68)

which contains the set point [q = qd, q =  0] .

Proof. The proof is analogous to the proof of Theorem 6.9. The key difference is that 
the passivity properties of the system can now be exploited in the time derivative of ^  as
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follows

< H = -^qTV q - q 'V q■T*

= “ 29
■T V  -  2C(q, q) 1 q + qT -  qT [r -  0(g)]

ÖQ
.T dT .T . ,

q  ~ o i ~ q  ■

Substituting the above expression into (6.26) results in

V
(V + C) T d f  _ f K p q

q dq '

Following verbatim the proof of Theorem 6.9 right after (6.32) leads to the result. Note 

that the term qT Qj? coming from the time derivative of is left as a general dissipation 

term in this case, whereas it was required to be explicitly cancelled in the proof of Theorem 

6.9. □

The advantage of Corollary 6.11 is that the control law (6.67) is a modified 
Proportional-Derivative (PD) controller. This type of control is very desirable as a low- 
level stabilisation technique due to its simplicity and robustness with respect to modeling 
errors in the inertia matrix V(q), the Coriolis-centrifugal matrix C(q,q), and the Rayleigh 
dissipation function T{q) ■ That is, those terms do not appear in the control law (6.67). 
The velocity constraint expressed as a bound on the kinetic energy is physically intuitive. 
The final complexity of the control law is dependent on the complexity of the configuration 
constraint function $, or more precisely, its partial derivative a^.

Remark 6.12. Given a kinetic energy bound on the robot then any single joint could, in 

theory, have a velocity qj(t) up to the bound given by

\Qj(t)\ — \ j ^ / 5

where Ij is the minimum inertia configuration for that joint j .  The normal action of the 

energy bound will constrain the joint velocities that correspond to large values of kinetic 

energy. I f  there is a large amount of kinetic energy in a single joint then the action of the 

energy bound will be to naturally redistribute this energy among all joints of the robot, at 

the same time as reducing the overall kinetic energy. The situation that is most dangerous 

is when there are sensitive low inertia links with velocity constraints on the end of heavier 

arms with high inertia. In this case it is necessary to individually bound the velocities of 

the low inertia links.

The function V  (q, q) defined by (6.20) is only one of the many functions whose deriva­
tive along the trajectories of system (6.1) can be rendered negative semi-definite by the
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above constrained control design procedure. A class of such functions of practical interest

m  = m W  + ’
where a(.) is a non-negative function and a(0) =  0. If it is desired to have no effect from 

the barrier function outside of a neighborhood of size <5 of the boundary of the admissible 

constraint set, then it is simply a case of choosing a(.) to be monotonic non-decreasing, 

a(0) =  0, a(x) =  1 for all x > 6, and such that a is smooth on x > 0. An example of an 

analytic barrier function with localised boundary effect is

y  =  £ ( q ,  q )

tanh(cr<3>'I/) ’

where o G M+ is a constant. Choosing o large will limit the effect of the barrier function 

to the immediate vicinity of the barrier itself, and vice versa.

R em ark 6.13. The proposed control design does not bound the demanded torque input. 
It is physically impossible to have arbitrary configuration, velocity, and torque bounds. A 

counter-example can be constructed by choosing initial conditions close to a configuration 

constraint with non-zero velocity. The torque required to stop the robot before the constraint 
is reached can be infinitely large.

In general, however, if the initial conditions are not ‘too close ’ to the boundary and the 

constraint functions $  and \I> are not ‘too aggressive ’ then it is expected that the behaviour 

of the closed-loop system will share the nice energy minimising properties of PBC designs.

6.4 Sim ulation results

The experiment setup is a 2-link planar robot manipulator moving horizontally in the 

Cartesian xy-coordinates (see Figure 6.1). The joint positions are absolute link angles. 

The dynamics of the system is ( [131], pg. 150)

d n di2 qi
+

0 -hq2 <71 n

di2 d22 <72

---1
o

92 T2

where

(6.69)

dn = mi/ci + m2l\ + I\

dn  =  m2/i/C2 COs(g2 -  q\) 

d22 =  m2^ 2 +  / 2 

h =  m2/i/c2sm(g2 -  q\)
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Figure 6.1: Two-link revolute joint manipulator

The parameters mi denotes the mass of link i, li denotes the length of link i , Id denotes 

the distance from the previous joint to the centre of mass of link i, and U denotes the 

moment of inertia of link i about an axis normal to the page, passing through the centre 

of mass of link i. In this experiment, m\ =  m2 =  1 kg, l\ =  h — lm , lc\ =  lc 2  =  0.5m, and 

h  =  h  =  lkgm2.
There is a circular obstacle with a radius of 0.5m centred at the coordinates [ro, yo]T =  

[0, 2]t (see Figure 6.4). The desired link position is qj =  [7r, ^ ] t , and the commanded 

set-point is [q =  qd, q =  0]T. The initial condition of the manipulator is set at qo =  [0,0]T 

and <70 =  [0,0]T. To prevent the manipulator from going through itself, the position of the 

second link relative to the first link is restricted to the range ± ||7r . In addition, we further 

desire that the angular velocity of each link to be constrained, with link 1 to remain below 

0.3rad/s and link 2 below 0.2rad/s.

To demonstrate its effectiveness, we compare the simulation results from the proposed 

constrained passivity-based control (CPBC) design with those from the Proportional- 

Derivative (PD) controller. The PD-controller used in the simulations has the usual form

tpd =  - K p q  -  Kp>q
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with q = q — qd- To design the CPBC-controller, we select the following candidate cLf

V{qt q) = £(q, q)

where the constant parameter a  G R+ is employed to control the shape of the candidate 
cLf V (q, q), which directly governs how close to the obstacle the robot’s links are allowed to 
come and how close to their bounds the links’ velocities are allowed to reach. The smaller 
a is chosen to be, the closer to the obstacle the robot’s links are allowed to approach, and 
the closer to their bounds the links’ velocities are allowed to get. In this experiment, a is 
chosen to be 0.2.

The function C(q,q) is as defined by (6.7), and

$ — 0102,

where

and

01

0 2

[cos(gi) +  cos(q2) -  xq]2 +  [sin(gi) +  sm(q2) -  Vo]2 -  0.52

(iH

*  =  i(0 .32 -  4i)(0.22 -  ql).

Such choices yield the following control law

tcpbc = v  [($*)“!> + £a ($4')a- 1$P]~1 [-($*)“
+£a(4>4')a- 1 (4><v +

+ £ a ($ $ )“- 1$ P P ~ 1C9)] . (6.70)

To allow for an accurate comparison, the control gains are set to be K p = 4 and K d = 
20 for both controllers. The simulation results are generated by the Planar Manipulators 
Toolbox [160].

From Figure 6.2, it is straightforward to see that both controllers asymptotically sta­
bilise the manipulator to the desired set-point [q = qd,q = 0]T =  [(7r, ^ L)r , (0,0)r ]T. 
Figure 6.3 shows that with the PD-controller, link 1 reaches a maximum velocity of ap­
proximately 0.585rad/s. For link 2, the maximum velocity reached is around 0.39rad/s. 
With the CPBC-controller, our objective of restricting the velocity of link 1 to 0.3rad/s and 
link 2 to 0.2rad/s is successfully achieved. Figure 6.4 illustrates that obstacle avoidance 
is achieved with the CPBC-controller.
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Figure 6.4: Constrained control: Manipulator trajectory in xy-coordinates

6.5 G eneral Euler-Lagrange system s

Although we have focussed on robot manipulators, the control design proposed in this 
chapter is equally applicable to any state constrained, n-degrees of freedom, fully-actuated 
Euler-Lagrange systems whose dynamics can be expressed by (6.1), and satisfy Properties 
6.1-6.3. Furthermore, if the state constraints are of the same form as those exposed in 
Section 6.3.1, then asymptotic stability of the closed-loop system is guaranteed.

6.6 Chapter sum m ary

In this chapter we have addressed the problem of autonomous obstacle avoidance for 
robot manipulators subject to hard constraints on joint positions and joint velocities. 
These control objectives are achieved simultaneously by combining the ideas of passivity- 
based control and artificial potential field methods. Although asymptotic stability of the 
closed-loop system cannot be achieved in general for arbitrary constraints due to the 
possible presence of local minima in the proposed cLf structure, the key advantages of 
the proposed control design lie in its simplicity and its basis in energy-based stabilisation, 
leading to simple and effective stabilising control laws that strictly satisfies configuration 
and velocity constraints for all time. Furthermore, asymptotic stability is ensured when the
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only constraints in effect are pure joint position and joint velocity constraints. Even though 
we have focussed mainly on the autonomous obstacle avoidance problem for general robot 
manipulator systems, the results exposed in this chapter can readily be applied to any 
state-constrained Euler-Lagrange system whose dynamics satisfies the stated properties 
and assumptions. The validity and effectiveness of the proposed control design are verified 
through simulations on a 2-link planar manipulator.
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B ounded  torque control for robot 

m anipulators w ith  jo in t ve locity  

constraints

The general tracking problem of robot manipulators in particular, and Euler-Lagrange 
systems in general, has elegantly been solved by the PBC technique. Since its first in­
troduction in the seminal paper [138], PBC has attracted great interest from the robotics 
community because it rigorously establishes that computationally simple control laws can 
achieve quite complicated tasks. The resulting controllers are invariably PD-controllers 
which are simple, intuitive, and can easily be implemented in practice [122].

There are however, two weaknesses associated with the classical PBC approach. The 
first is the implicit assumption that the manipulator actuators are able to provide joint 
torques of any magnitude. This assumption is expensive in practice, and in certain appli­
cations, not feasible as all actuators have saturation limits. If these constraints are not 
taken into consideration, problems such as degraded link position tracking and system 
failure, will occur [29]. Secondly, classical PBC does not consider the problem of state 
constraints. Hard constraints on joint positions and joint velocities are a commonly en­
countered problem. If the problem is not accounted for in the control design, mechanical 
failure will ultimately ensue. PBC designs with bounded torque input have been addressed 
in such works as [29,65,66,119]. However, a review of the literature reveals that the set- 
point regulation problem of robot manipulators with bounded torque inputs subject to 
state constraints has not been considered in the framework of PBC.

In the last chapter, we extended the PBC methodology to address the problem of 
autonomous obstacle avoidance for general robot manipulators subject to hard constraints 
on the robot’s joint positions and joint velocities. We however, implicitly assumed that 
the robot’s motors can deliver any demanded torque. This assumption is expensive in 
practice due to the fitting of highly powerful motors, and in certain applications, may not 
be at all feasible. In this chapter, we extend the PBC methodology in a different direction 
to address the problem of set-point regulation for robot manipulators subject to torque

137
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and joint velocity limits. The proposed control design involves shaping and incorporating 
barrier function characteristics into the cLf. The underlying ideas behind the modified 
cLf are reminiscent of those employed in the artificial potential field method [76]. We 
differ from the earlier works by directly integrating the constraint equation into the cLf to 
derive a unified control law that is bounded in norm, respects joint velocity constraints, 
and achieves asymptotic stabilisation of the closed-loop system.

The chapter consists of five sections. Section 7.1 states the control problem. Section 
7.2 details the main results. Simulation results are presented in Section 7.3. Remarks on 
extending the proposed control design to general Euler-Lagrange systems and the chapter 
summary are contained in Sections 7.4 and 7.5, respectively.

7.1 R obot dynam ics and problem  form ulation

7.1.1 R obot dynam ics

Consider rigid and fully-actuated n-link revolute robot manipulators with no external 
forces, that is, no end-effector contacts with the environment, and no external disturbances. 
Assuming that static friction is negligible, the dynamics of such systems is adequately 
described by [7,79]

T>(q)q + C(q,q)q + g(q) + Fdq = T (7.1)

where we use the following notation

q G Rn generalised joint coordinates
V(q) G RnXn generalised inertia matrix,
C{q,q) G RnXn Coriolis-centrifugal matrix,
g(q) € R" gravitational torques,
Fd e Rnxn joint viscous friction coefficient matrix,
r  G Rn applied input torques.

The following properties hold for (7.1).

Property 7.1. The inertial matrix V{q) is symmetric and positive definite. That is,

V(q)T =  V(q) > 0, Vg € Rn. (7.2)

Property 7.2. The time derivative of the inertia matrix V(q) and the Coriolis-centrifugal 
matrix C(q,q) satisfy the following “skew-symmetric” relationship

qT\V -  2C]q = 0, Vq, <7 G Rn, (7.3)
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P roperty  7.3. The viscous and/or dynamic friction coefficient matrix Fd satisfies

qTFdq > 0 , \/q € Rn. (7.4)

In addition to the above properties, the following assumptions are valid for revolute- 
joint robot manipulators [79].

Assum ption 7.4. The Coriolis-centrifugal matrix C(q, q) is linear in q, and its dependence 
on q is bounded such that

l|C(9.9)ll < Ccllgll, V?,9€ R". (7.5)

where C,c G R+ is a constant.

Assum ption 7.5. The gravitational torque vector g(q) is bounded such that there exists 
a finite constant £g € R+ satisfying

lls(?)ll<<9, V{ 6 r .  (7.6)

Assum ption 7.6. The viscous friction coefficient matrix Fd is bounded such that

\ \ m  < c/, (7.7)

where Q  E R+ is a constant.

7.1.2 Joint velocity constraints

Each and every individual joint velocity is bounded as follows

\q i(t)\< B i, t>  0, i = 1, ...,n, (7.8)

where J3j € R+ is a constant. Choosing Q* = B f / 2, the above velocity constraints can be 
expressed as

= ^QTeielQ < * > 0, * =  (7-9)

where e* denotes the unit vector in the i’th direction.

7.1.3 Problem  statem ent

Let the vector [q, q\T define the system state, where

Q =  q~Qd (7.10)
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represents the error between the actual, q, and the desired, qj, joint position. The control 
problem is to design a controller such that:

• The set point [q — q^ q — 0]T is asymptotically stable.

• The joint velocities are bounded as defined by (7.8).

• The demanded torque input r  is bounded in norm for all time, irrespective of the 
initial condition.

7.2 Bounded control design

This section proposes a modification to the “classical” PBC design for robot manip­
ulators, (see Section 6.2 for a brief overview), to incorporate actuator bounds as well as 
hard constraints on joint velocities.

To simplify the subsequent development, we introduce the following notation

n

¥ « ) - n * « > .  M q) = tti -  (7.11)
2=1

for i =  1 ,... ,  n, and let the vector tanh(.) € Rn denote

tanh(x) =  [tanh(xi),tanh(x2) , . . .  ,tanh(xn)] , (712)

where x = [aq, X2, xn]T € Rn.
Let us define the admissible constraint set as follows

5  = {(9, 9) I *(<?)> 0} (7.13)

whose boundary is given by

d,S =  {(9,9) I 9 ( q )  =  0}. (7.14)

Motivated by the pioneering work in [65,66], we consider the following positive definite 
and radially unbounded function as the candidate cLf

V(q,q)
1

W )
\q TV(q)q + V '  T KPi ln (c°sh (£i<?i» ,
z  i - i  5 i

(7.15)

where the control gain matrix Kp = diagf/Cpd G Rnxn is constant and positive definite, 
and the constants &, for i = l,...,n , are strictly positive real numbers. The constraint 
function \k(q) is identically zero on the constraint boundary dS. Consequently, the value 
of V(q,q) is asymptotically infinite on dS. The proposed candidate cLf is similar to the
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barrier functions used in optimisation methods and the underlying idea is closely linked to 
the artificial potential field methods. The advantage of this approach is that the function 
V (q, q) can be thought of as a shaped energy function for the constrained system. The 
set-point [<7d,0] is the unique minimum of V(q,q) corresponding to the minimal kinetic 
and (shaped) potential energy.

Theorem  7.7. Consider the dynamics (7.1) for a serial manipulator. Given joint velocity 
constraints of the form (7.8) and the constraint function 'F as defined by (7.11). Define

p (q) =E n ^ |  e*e
s=l

(7.16)

which is diagonal and positive definite in S . Choose the torque input to be

- l
r{q,q) = 9(q) + p (q) <HV(q) + CP {Kp  tanh(S^) +  Kp> tanh(r4)}

+CPV(q)~1{Cq + Fdq} (7.17)

where the control gain matrices K p , K p  € IRnxn are constant, diagonal, and positive 
definite, £  =  diagfä} G Rnxn, T =  diag{^i] € Rnxn, and the constants 7j are strictly 
positive real. Then for any initial velocity qo G S , the system (7.1) in closed-loop with 
control (7.17) is asymptotically stable at the set point [q = qd, q =  0]7 . Moreover, the joint 
velocities are bounded as defined by (7.8), and the control torque r is bounded in norm for 
all time, regardless of the initial condition.

To simplify the notation, in the following development, functions are written without 

their arguments except where confusion may arise. Furthermore, let us define

£($, q) = \<iT,D(q)q +  5 1  j . Kp* in(cosh (&&)). (7.18)

Proof. Consider the cLf given by (7.15) which can now be re-written as

( 7 - i 9 )

where C{q,q) is as defined in (7.18). Differentiating (7.19) with respect to time yields

• C<H -  
_  ^ 2

whenever V(q, q) is well-defined, and bounded at every t > 0. Taking the time derivatives
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of C and 4/ gives

1  O ' V - 2 C q -  qTFdq +  q1 [r -  g(q) +  K P tanh(Eg)]•T

*  =  - ( P V ~ 1 [t  — Cq — g(q) — Fdq] , q),

respectively, where (•, •) denotes the inner product. Substituting C and 4/ into the expres­

sion for V yields

V - 2 C q -  qTFdq +  q1 [r -  g(q) +  K P tanh(E<?)]•T

- - ^ 2 \ - ( P V  M t - C q - g ( q )  -  Fdq] , q) } . (7.20)

Recalling that qT[D — 2C]q =  0 for all q,q € Mn and qTFdq >  0 (see Properties 7.2 and 

7.3), and collecting like terms together, one obtains

•TqV =  ^ 2  V T +  *  \Kp  tanh(H^) -  g(q)] -  CPV~' [Cq +  g(q) +  Fdq}

qTFdq (7.21)

Note that the matrices [4>P 4- CP] and V  are both positive definite and thus have well- 
conditioned inverses for all q,q € S. As a consequence, the proposed feedback control 

(7.17) is well-defined for all q,q € S. Substituting (7.17) into (7.21) yields

y  =  [qTFdg +  qTK p  tanh(r^)] < Q
(7.22)

Application of Lyapunov’s direct method [68] to (7.15) and (7.22) guarantees that 

q —> 0. It also follows from (7.22) that V =  0 only if q =  q =  0. By examining the system 

dynamics (7.1) and the chosen control law (7.17), it is straightforward to verify that at 

the equilibrium condition q =  q =  0, the closed-loop dynamics is given by

g(q) = g(q) +  T>(q) [*(0)I>(g) +  ^ O ^ O ) ] " 1 {$(0) [-K ptanh(H g)]} (7.23)

Cancelling g(q) and pre-multiplying both sides by [^(0)P(g) -I- C(q, 0)P(0)] V  1 yields

4/(0) KP tanh(Sq') =  0 (7.24)

Since 4/(0) > 0 inside <S, and E, K P are positive definite, it follows that the equality (7.24) 

is true if and only if q =  q -  qd =  0. Thus, by Lasalle’s Invariance Principle, all closed-loop 

trajectories asymptotically converge to the set-point [q =  qd,q =  0]T.
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It follows from (7.18) that the function C is non-zero on the constraint boundary dS. 

Thus, the cLf V escapes to positive infinity as the system state approaches dS.  However, 

from (7.22), it follows that V remains upper-bounded since

V(t) <  V{0), Wt >  0. (7.25)

Given that the initial velocity % G S, the closed-loop system will remain inside S  for all 

time. Consequently, the joint velocities are bounded as defined by (7.8) for all time by 

virtue of (7.11) and (7.13).

To prove the boundedness of the control law (7.17), we invoke the well-known matrix 

inversion lemma [12]

(A +  B)~l =  A~1 -  A~1(B~1 +  A - 1) ' 1 A ' 1 

=  B ~ l -  B ~ 1(A~1 +  B ~ l ) - l B ~ l

for invertible matrices A and B. Applying the above to the term (\I/V  +  CP )~ l in (7.17) 

gives

(TO +  r P ) “ 1 =  (TO)"1 -  (T O ^ ^ T O )" 1 +  (jC P ) - 1] - 1^ ® ) - 1, (7.26)

which can be re-written as follows

(T O )-1 =  (TO +  CP)~l +  (TO)"1 [(TO)"1 +  ( C P ) - l ] - \ ^ V ) ~ l . (7.27)

Since all matrices in (7.27) are positive definite as V  and P  are symmetric and positive 

definite, see Assumptions 7.1 and (7.16), it follows that

(TO)(TO + CP)~l < In, (7.28)

where In denotes the n x n identity matrix. A similar argument can be used to show that

(TO +  C P ) ~ \ C P )  <  In. (7.29)

The control law (7.17) can be re-written as

r =  9(q) -  W  [TO -1- CP]~l \KP tanh(S^) +  K D tanh(Tg)]

+  V  [TO +  CP]’ 1 C P V ~l [Cq +  Fdq} . (7.30)

Taking the norm of (7.30) and applying the results from (7.28) and (7.29) yields

IMI < ||s(g)|| +  \ \Kp  tanh(Eq')|| +  \\KD tanh(Tg)|| +  ||C9|| +  \\Fdq\\. (7.31)
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Since |tanh(x)| < 1 for all x G R, |<ft(£)| < Bi, and applying Assumptions 7.4-7.6 , we 

obtain the following explicit upper bound on the norm of the demanded torque input

IMI 5: Cg +  Amax{Kp} +  ^max{Kd ] + Cc||-Ö||2 + C/||-B||> (7.32)

where the vector B =  [Bi , ..., Bn]T , and the constants B \ , ..., Bn are as defined in (7.8). □

A case that is of practical interest is when the joint velocity constraints are expressed 

as a bound on the kinetic energy of the system

V(q,q) =  n -  i qTV{q)q , (7.33)

where ft € R+ is a constant. In this particular case there is no direct bound on individual 

joint velocity, however, the overall kinetic energy of the system is upper bounded by the 

constant ft.

Corollary 7.8. Consider the dynamics (7.1) for a serial manipulator. Given a single 

velocity constraint fy(q,q) > 0 of the form (7.33), the admissible constraint set S  and con­

straint boundary dS  as defined by (7.13) and (7.14), respectively. Consider the candidate 

cLfV(q,q) as defined by (7.19), where C(q,q) is as defined by (7.18). Choose the torque 
input to be

r(q, q) =  g(q) -  ^ [KP tanh (Eq) +  K D tanh(r<?)|, (7.34)

where the control gain matrices K p , K j j  € Rnxn are constant, diagonal, and positive 

definite, E =  diag{£i) G Rnxn, T =  diag{^i) E Rnxn, and the constants 7; are strictly 

positive real. Then for any initial velocity % € S, the system (7.1) in closed-loop with 

control (7.34) is asymptotically stable at the set point [q =  q^,q =  0]T. Moreover, the 

system ’s kinetic energy is bounded as follows

\ f V ( q ) q  <  Si, (7.35)

and the control torque r  is bounded in norm for all time, regardless of the initial condition.

Proof. The key difference between this proof and the proof of Theorem 7.7 is that the 

passivity properties of the system can now be exploited in the time derivative of ^ as 

follows

-^ Q T/D q -  qTVq

-U T V - 2 C ( q , q ) q +  qTFdq -  qT [r -  g{q)\

qTFdq — qT [t — g{q)]
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Substituting the above expression into (7.20) results in

V  =  - ^ 2 ^ 9  TFdq + p ? T{(4> + C) t- (4- +  + tanh(~9 ) j ,  (7.36)

which in closed-loop with feedback (7.34) yields

v = -  (q/̂ , £)qTFdq -  \ q TKD tanh(r<j) < 0. (7.37)

Application of Lyapunov’s direct method to (7.15) and (7.37) ensures that q —> 0. It also 
follows from (7.37) that V = 0 if and only if q = q = 0. By examining (7.1) and (7.34), it 
is straightforward to verify that at the equilibrium set q = q = 0, the closed-loop dynamics 
is given by

Kptainh(Eq) = 0. (7.38)

Since E and Kp are positive definite by way of design, the above equality is only true if 
q = q — qd = 0. Application of Lasalle’s Invariance Principle guarantees that the closed- 
loop dynamics is asymptotically stable at the set-point [q = qd,q = 0]T.

It follows from (7.33) that q, hence £, is non-zero on the constraint boundary dS. 
Consequently, the cLf V  escapes to positive infinity as the system state approaches dS. 
However, from (7.37), V remains upper-bounded since

V(t) < V(0), Vi > 0. (7.39)

Given that the initial velocity qo £ S, the closed-loop system will remain inside S  for all 
time. As a result, the system’s kinetic energy is bounded as defined by (7.35) for all time 
by virtue of (7.13) and (7.33).

Since |tanh(x)| < 1, Vrr € M, and using Assumption 7.5, we obtain the following 
explicit upper bound on the norm of the demanded torque input

IMI < Cg + Amax{-^p} + Amazl/Co}. (7.40)

This concludes the proof. □

The advantage of Corollary 7.8 is that the control law (7.34) is a slightly modified
PD-plus-gravity-compensation controller. This type of control is very desirable as a low- 
level stabilisation technique due to its simplicity and robustness with respect to modeling 
errors in the inertia matrix V(q), the Coriolis-centrifugal matrix C(q, q), and the Rayleigh 
dissipation function !F{q). That is, those terms do not appear in the control law (7.34). 
The velocity constraint expressed as a bound on the kinetic energy is physically intuitive. 
Furthermore, the bound on the norm of the demanded torque input (7.40) is interesting
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because it recovers exactly the bounds obtained in [65, 66] where just the problem of 

bounded torque control is considered.

Rem ark 7.9. Given a kinetic energy bound on the robot then any single joint could, in 

theory, have a velocity qj(t) up to the bound given by

\Qj(t) I <

where I j  is the minimum inertia configuration for that joint j .  The normal action of the 

energy bound will constrain the joint velocities that correspond to large values of kinetic 

energy. I f there is a large amount of kinetic energy in a single joint then the action of the 

energy bound will be to naturally redistribute this energy among all joints of the robot, at 

the same time as reducing the overall kinetic energy. The situation that is most dangerous 

is when there are sensitive low inertia links with velocity constraints on the end of heavier 

arms with high inertia. In this case it is necessary to individually bound the velocities of 

the low inertia links.

Rem ark 7.10. The parameters & and 7* are not related to the stability of the closed- 

loop dynamics nor the boundedness of the demanded torque input. They, however, affect 

the transient response of the closed-loop system. It has been established in [66] that the 

parameters £; affect the steady-state positioning bias due to the presence of static friction in 

the robot joints. Choosing & large reduces the bias. The parameters 7\, on the other hand, 

affect the damping of the closed-loop system. Choosing 7* large improves the damping of 

the closed-loop system, and vice versa.

The function V(q,q) defined by (7.19) is only one of the many cLfs whose derivative 

along the trajectories of system (7.1) can be rendered negative semi-definite by the con­

strained control design procedure presented above. A class of such functions of practical 

interest is

a ( ¥ )  ’

where a(.) is a non-negative function and a(0) =  0. If it is desired to have no effect from 

the barrier function outside of a neighborhood of size 6 of the boundary of the admissible 

constraint set, then it is simply a case of choosing a(.) to be monotonic non-decreasing, 

a(0) =  0, a(a:) =  1 for all x > 6, and such that a  is smooth on x > 0. An example of an 

analytic barrier function with adjustable boundary effect is
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where o > 0 is a constant. Choosing o large will limit the effect of the barrier function to 
the immediate vicinity of the barrier itself, and vice versa.

7.3 Sim ulation results

The experiment setup is a 2-link planar robot manipulator moving horizontally in the 
Cartesian xy-coordinates (see Figure 6.1). The joint positions are absolute link angles. 
The dynamics of the system is ( [131], pg. 150)

dn d\ 2 Qi +
' 0 -h q 2 Ql _ n

du d22_ fa hqi 0 .fa. r2
(7.41)

where

dn = rn\l2cX + m2l\ + I\ 

dn =  m 2l\lc2 cos(^2 -  qi) 

d22 = m2l2c2 + I2 

h =  m 2l\lC2sin{q2 -  q\ )

The parameters rrii denotes the mass of link i, li denotes the length of link 2, lCi denotes 
the distance from the previous joint to the centre of mass of link i, and U denotes the 
moment of inertia of link i about an axis normal to the page, passing through the centre 
of mass of link i. In this experiment, mi = m2 = 1kg, l\ = l2 = lm, lc\ = lc2 = 0.5m, and 
h  = h  -  lkgm2.

The desired link position is q  ̂= [7r,7r]T, and the commanded set-point is [q = q^q  = 
0]T. Two sets of initial conditions are simulated. The first simulation scenario has the 
initial condition qo = [0,0]T and qo = [0,0]T, and the second simulation scenario has 
the initial condition qo = [0,0]T and qo = [-0.2, —0.1]T. In all cases, we desire that the 
angular velocity of each link to be constrained, with link 1 to remain below 0.3rad/s and 
link 2 below 0.2rad/s.

To demonstrate its effectiveness, we compare the proposed bounded passivity-based 
control (BPBC) design with the PD-controller. The PD-controller used in the simulations 
has the usual form

tpd =  ~ K p q  -  K pq

with q =  q — qd- To design the BPBC-controller, we select the following candidate cLf

£(q,q)
* M ) °  ’

v(q,  q)
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where the constant parameter a  E R+ is employed to control the shape of the candidate cLf 

V(q,q),  which directly governs how close to their bounds the links’ velocities are allowed 

to get. The smaller a is chosen to be, the closer to their bounds the links’ velocities are 

allowed to get, resulting in a faster convergence rate. In this experiment, a  is chosen to 

be 0.2. The function £  is as defined by (7.18) and the constraint function ^(g) is defined 

as follows

4' =  l(0 .3 2 -?? )(0 .2  2 - q l ) .

Such choices give rise to the following control law

tbpbc  = V  [VQV  + C a ^ a~l P ] _1 [ - V a { K P tanh(EIq) +  K D tanh(r^)}

y C a ^ a- l P V ~ lCq)} .

To allow for an accurate comparison, the control gains are set to be K p  = diag{2,10} 

and K d = diag{4,20} for both controllers. Those values are selected to ensure good 

convergence properties. For the BPBC-controller, the parameter matrices E  and T are 

chosen to be E  = T  = 1-2 for simplicity. The upper bound on the norm of the torque input 

for this experiment is

IMI < Am a x { K p )  + Am a x { K D } + ( c \ \ B \ \ 2

< 10 +  2 0 +  (0.5)(0.13)

< 30.065Nm, (7.42)

where B  = [0.3 0.2]T. The simulation results are generated by the Planar Manipulators 

Toolbox [160].

Figures 7.1 - 7.3 summarise the results from the first simulation scenario. Figure 7.1 

shows that both controllers asymptotically stabilise the manipulator to the commanded 

set-point. From Figure 7.2, we can observe that with the PD-controller, link 1 reaches a 

maximum velocity of approximately 1.2rad/s, for link 2, the maximum velocity reached is 

1.4rad/s. With the BPBC-controller, our objective of constraining the velocity of link 1 

to 0.3rad/s and link 2 to 0.2rad/s is achieved. From Figure 7.3, it is clear that the torque 

demanded by the BPBC-controller is less than the calculated bound given by (7.42), 

whereas the torque demanded by the PD-controller reaches a maximum of approximately 

31.5Nm.

Figures 7.4 - 7.6 depict the results of the second simulation scenario. Once again, 

asymptotic stability of the closed-loop system is achieved by both controllers as shown 

by Figure 7.4. For the BPBC-controller, the joint velocities remain within the imposed 

bounds. It is interesting to note that the maximum torque demanded by the PD-controller
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in this Simulation scenario has increased to 33.4Nm whilst the torques demanded by the 
BPBC-controller is still within the calculated bound of 30.065Nm.

Rem ark 7.11. From the simulation results, it is quite clear that the maximum torque 
demanded by the BPBC-controller is much smaller than the predicted bound of 30.065Nm 
given by (7.42). This raises the possibility that the arguments used in deriving the absolute 
bound on the norm of the demanded torque input may be too conservative. It would be 
interesting, and recommended for future research, to investigate whether a less conservative 
estimate of the bound on the magnitude of the demanded torque input can be obtained.

7.4 G eneral Euler-Lagrange system s

Although we have considered only the dynamics of robot manipulators in this chapter, 
the proposed control design is applicable to any n-degrees of freedom fully-actuated Euler- 
Lagrange system with no external forces, whose dynamics is given by

V{q)q + C{q, q) + g{q) + ~ ^ ( q) = T,

where q, q, r, V, C, g(q), and ^ ( q )  are as defined in Chapter 6, and satisfies Properties 
6.1-6.3, Assumptions 7.4, 7.5 and

where € M+ is a constant.

< < / ,

7.5 C hapter sum m ary

In this chapter, we have proposed a controller design to solve the set-point regulation 
problem for revolute-joint robot manipulators subject to bounded torque and joint velocity 
constraints. By combining the ideas of passivity-based control and artificial potential field 
methods, asymptotic stabilisation of the closed-loop system is guaranteed and all joint 
velocity constraints are strictly satisfied for all time. Furthermore, the demanded torque 
input is bounded in norm, irrespective of the initial condition. The resulting controllers 
are modified PD-controllers, which are intuitive, robust, and can easily be implemented 
in practice. Although we have only considered the dynamics of robot manipulators, the 
proposed control design is applicable to any Euler-Lagrange system that satisfies the stated 
properties and assumptions. The validity and effectiveness of the proposed control design 
are illustrated through simulations on a 2-link planar manipulator.
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Chapter 8

C onclusions and future research

In this thesis, we have developed constructive nonlinear control design procedures to 
address the stabilisation problem for constrained nonlinear systems, and applied these pro­
cedures to solve practical engineering problems in the fields of aerospace and robotics. The 
focus was principally on state constraints, which can arise from performance limitations, 
such as aerodynamic stall in aircraft, or spatial limitations, such as a robot manipulator 
operating in a cluttered environment. The constraints are incorporated into the design 
procedures in a natural manner by modifying the energy function of the system to include 
barrier function characteristics at the constraint boundaries.

In Chapter 3, the main problem considered is the stabilisation of certain classes of non- 
affine, nonlinear systems subject to a single or two consecutively constrained states. Two 
design procedures, which are based on the backstepping methodology, were proposed. The 
first approach, or the “non-strict” approach, assumes that no strict cLfs are available, and 
involves imposing bounds on the stabilising functions and the error variables pertinent 
to the constrained states and propagating those boundedness properties through each 
step of the backstepping methodology. These modifications are seamlessly integrated into 
the backstepping framework. One disadvantage associated with the approach is that it 
produces comparatively more complicated control laws for high-order systems due to the 
presence of barrier function-like terms in the structure of the proposed cLfs. Each time 
these terms are differentiated, the number of terms in the final control law significantly 
increases. The second approach, or the “ISS” approach, generally leads to simpler control 
laws but requires the construction of ISS-cLfs, a typically much harder task than the 
construction of non-strict, non-ISS-cLfs. Consequently, the applicability of the second 
approach is more limited than the first. Furthermore, only symmetric constraints can be 
accommodated using the “ISS” approach. The “non-strict” approach was then applied 
to design asymptotically stabilising controllers for two practical systems, the active car 
suspension system subject to suspension travel limits, and the Reaction Wheel Pendulum 
subject to angular velocity and torque input limits. Closed-loop simulations demonstrated 
that the proposed control design procedures are valid, and yield effective controllers.

In Chapter 4, we extended the design procedures developed in Chapter 3 to address 
the problem of multiple state constraints. The adaptation of the “ISS” approach to ac-

153
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commodate multiple state constraints is simple as the only additional ingredient required 
is the assumption that all nonlinearities in the system’s dynamic model and their time 
derivatives are bounded in norm. Once again, the applicability of the approach to practical 
systems is limited due to the requirement to construct ISS-cLfs.

For the “non-strict” design procedure, the extension is more complicated. The tra­
ditional backstepping approach of cancelling the cross-terms does not work because the 
cross-terms escape to infinity close to the constraint boundaries. Consequently, we adopted 
an approach that employed domination rather than cancellation of the cross-terms. The 
outcome of the proposed design procedure is a set of constraints on the controller param­
eters. Satisfying these constraints ensures that the closed-loop system is asymptotically 
stable, and the states are bounded in norm. From these constraints, nonlinear bounds for 
the stabilising functions and error variables, and ultimately, for the system states, in terms 
of the controller parameters were computed. Together, the constraints on the controller 
parameters, the computed bounds on the system states, and the prescribed state bounds 
provide the ingredients for a multi-criteria constrained optimisation routine to tuning the 
controller parameters. The result is a set of controller parameters which guarantees that 
the closed-loop system is asymptotically stable, and yields the maximum possible con­
straint admissible region given the prescribed state bounds and the constraints imposed 
by the proposed design procedure. There remains a distinct possibility, due to the worst- 
case arguments employed in deriving some of the constraints on the controller parameters, 
that in certain cases, the optimisation routine is ill-conditioned. Two alternative meth­
ods were then proposed to tuning the controller parameters, a gain-scheduling approach 
and a manual approach. The validity of the manual tuning approach was demonstrated 
via closed-loop simulations of a 4t/l-order integrator cascade. Due to time limitations, 
the feasibility and performance of the proposed gain-scheduling approach could not be 
examined.

In Chapter 5, we proposed backstepping-based controllers to regulate the altitude of 
the Aerosonde UAV. It was found that application of traditional backstepping results in a 
very aggressive controller which demands elevator deflections that are proportional to the 
magnitude of the altitude change command. When the magnitude of the altitude change 
command is sufficiently large, the resultant elevator deflection demands from the controller 
will lead to stall. To remedy this problem, we imposed a hard bound on the climb rate 
of the aircraft. The controller was re-designed using the results developed in Chapter 
3. Closed-loop simulations on a fully nonlinear, 6-DOF dynamic model of the Aerosonde 
UAV demonstrated that the constrained backstepping controller design provides excellent 
tracking command, and achieves our objective of limiting the climb rate, and ultimately 
the elevator deflections, thus preventing stall from occurring, irrespective of the magnitude 
of the altitude change commands. In addition, the controller can be tuned to provide an 
almost time-optimal command tracking response, given the imposed constraint on the
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climb rate.
Chapters 6 and 7 were devoted to developing control laws to stabilise constrained 

robot manipulators. The proposed controller designs are based on the PBC framework, 
with modifications made to both the kinetic and potential energy terms in the cLf in 
classical PBC. The modifications can be thought of as a form of energy shaping, and the 
structure of the proposed cLfs closely resembles those used in the artificial potential field 
method. In Chapter 6, the general problem of autonomous, or online, obstacle avoidance 
of robot manipulators subject to joint position and joint rate constraints was addressed. 
For arbitrary constraints, closed-loop asymptotic stability can not be guaranteed due to 
the possible presence of local minima in the structure of the proposed cLfs. However, in 
special cases where the active constraints possess certain convexity properties, asymptotic 
stability of the closed-loop system is assured.

In Chapter 7, we extended the literature in a different direction and solved the stabil­
isation problem of robot manipulators subject to joint velocity and input torque limits. 
The resulting controllers are modified PD-controiiers, which are simple and can easily be 
implemented in practice. The validity and effectiveness of the proposed controller designs 
were illustrated via closed-loop simulations on a 2-link planar manipulator.

The attractiveness of the controller designs exposed in Chapters 6 and 7 lies in their 
simplicity and their basis in the concept of energy-based stabilisation, leading to simple 
and effective control laws that satisfy all imposed state constraints for all time.

8.1 Future research

Further research can be pursued in the following three directions:

• There exists a distinct possibility, due to the worst-case arguments employed in de­
riving some of the constraints on the controller parameters, that in certain cases, the 
optimisation routine associated with the “non-strict” design procedure proposed in 
Chapter 4 is ill-conditioned. Although two alternative methods were proposed, which 
are gain-scheduling and manual tuning, the issue of whether the gain-scheduling ap­
proach provides better performance and robustness than the “global” approach and 
manual tuning is unresolved. A detailed analysis into the gain-scheduling approach 
should therefore be considered. However, it should be noted that the proposed ap­
proach is highly complex, and leads to complicated control laws. It is therefore 
unlikely that such an approach would be suitable for implementation on practical 
systems such as commercial UAVs.

• In Chapter 6, we have identified that for arbitrary constraints, asymptotic stability 
may not be attainable due to the possibility of local minima in the structure of the 
proposed cLfs. An investigation into means to overcome the local minima problem is
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recommended. A plausible and direct approach is to manipulate the constraint func­
tions, for example, by introducing artificial constraints that shape the cLf to avoid 
the creation of local minima. This method is however, mathematically involved, 
and is highly problem-dependent. A more pragmatic approach would be to try and 
integrate methods from the artificial potential field literature such as random walk 
into the control design process.

• In Chapter 7, simulation results indicate that there is a possibility that the arguments 
used in deriving the explicit upper bound for the demanded torque input axe too 
conservative. It would be interesting to investigate whether a more accurate estimate 
of the bound on the norm of the demanded torque input can be obtained.
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A .l  P roof of Lemma 3.3, pg. 29

Proof. Since the functions 2, and are continuous in the set <S =  {s G M | — a < 
s < ß},  y(s ) is continuous in the same set S  as a direct result. To prove that y(s)  is 
positive in »S, we use calculus to establish that y(s ) has one and only one minimum in «S, 
and that the value of y(s) at this minimum is positive. Differentiating y(s) with respect 
to s once gives

dy _ —a ß
ds (<j +  s ) 2 +  (ß -  s)2 '

Equating ^  =  0 yields
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Next, we test for which of s i, S2 , or whether both lie in S. Case s\
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and
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Case S2

s 2
ß y / ä + a y / ß  ^  

y f ä - y ß  P
V ß  +  <7 0 , Vcr, ß  G IR+, (A.6)

which is not in S.  Differentiating y(s) with respect to s twice yields
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Vs G (~a,ß), Vcr, ß  G K+ (A.7)

Prom (A.5), (A.6), and (A.7), we can conclude that y(s) has one and only one minimum 
in S  at s =  . Substituting s =  back into ?/(s) and simplifying yields
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A .2 P roof o f Lemm a 3.12, pg. 51

Proof. Since y(s) is a composition of functions which are all continuous in the set S  = {s G 
R I — a < s < ß}, y(s) is continuous in S.  The boundedness of y(s) in S  is established 
by first proving that the numerator of y(s)

N ( s ) =  (a + s) (ß -  s) (A.8)

is bounded. Using calculus, one can easily obtain

0 < N(s) < i (a + ß )2 , V s € ( - a , ß ) ,  V tr,/3eR + . (A.9)

We also established in the proof of Lemma 3.3 that the denominator of y(s)

D(s) = 2 -  — S
a + s ß — s

(A.10)

is lower bounded by

D(s)>  1 + ^ ?  V «€(-<r,/3), Vcr,/3 € R+. (A .ll)
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From (A.9) and (A .ll), we can conclude that
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