225,666 research outputs found

    (±)-Gossypol induces apoptosis and autophagy in head and neck carcinoma cell lines and inhibits the growth of transplanted salivary gland cancer cells in BALB/c mice

    Get PDF
    Racemic Gossypol [(±)-GOS], composed of both (-)-GOS and (+)-GOS, is a small BH3-mimetic polyphenol derived from cotton seeds. (±)-GOS has been employed and well tolerated by cancer patients. Head and neck carcinoma (HNC) represents one of the most fatal cancers worldwide, and a significant proportion of HNC expresses high levels of antiapoptotic Bcl-2 proteins. In this study, we demonstrate that (±)-GOS inhibits cell proliferation and induces apoptosis and autophagy of human pharynx, tongue, and salivary gland cancer cell lines and of mouse salivary gland cancer cells (SALTO). (±)-GOS was able to: (a) decrease the ErbB2 protein expression; (b) inhibit the phosphorylation of ERK1/2 and AKT; (c) stimulate p38 and JNK1/2 protein phosphorylation. (±)-GOS administration was safe in BALB/c mice and it reduced the growth of transplanted SALTO cells in vivo and prolonged mice median survival. Our results suggest the potential role of (±)-GOS as an antitumor agent in HNC patients

    Galacto-oligosaccharides formation during manufacture of different varieties of yogurt. Stability through storage

    Get PDF
    Galacto-oligosaccharides (GOS) have interest in the food industry due to their recognized functional properties. In this work, we studied the effect of a commercial β-galactosidase enzyme from Kluyveromyces lactis (YNL-2, GODO) and Lactobacillus acidophilus La-5, on GOS formation during the manufacture and storage of drinkable and stirred yogurts. In a preliminary step, GOS synthesis and lactose hydrolysis by β-galactosidase was evaluated at different initial lactose concentrations and doses of enzyme. The GOS formation was favored with increasing of lactose concentration and enzyme doses, while the hydrolysis dominated at lower level of lactose. In turn, the presence of GOS was already evident at 45min of fermentation in yogurts with addition of β-galactosidase. Mean concentrations were 0.36 and 0.62g/100g for fresh drinkable and stirred yogurts, respectively. No changes in the GOS levels were observed through storage, indicating that they were stable in the products. The probiotic bacteria added were not able to produce GOS. The diminution of lactose was significant in yogurts with β-galactosidase; contents of residual lactose were around 1.3g/100g. We obtained different varieties of reduced-lactose yogurts enriched in galacto-oligosaccharides. The presence of probiotic and prebiotic would increase the functional properties of yogurts.Fil: Vénica, Claudia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Bergamini, Carina Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Rebechi, Silvina Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Perotti, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentin

    Archimedean superrigidity of solvable S-arithmetic groups

    Get PDF
    Let \Ga be a connected, solvable linear algebraic group over a number field~KK, let SS be a finite set of places of~KK that contains all the infinite places, and let \theints be the ring of SS-integers of~KK. We define a certain closed subgroup~\GOS of \Ga_S = \prod_{v \in S} \Ga_{K_v} that contains \Ga_{\theints}, and prove that \Ga_{\theints} is a superrigid lattice in~\GOS, by which we mean that finite-dimensional representations \alpha\colon \Ga_{\theints} \to \GL_n(\real) more-or-less extend to representations of~\GOS. The subgroup~\GOS may be a proper subgroup of~\Ga_S for only two reasons. First, it is well known that \Ga_{\theints} is not a lattice in~\Ga_S if \Ga has nontrivial KK-characters, so one passes to a certain subgroup \GS. Second, \Ga_{\theints} may fail to be Zariski dense in \GS in an appropriate sense; in this sense, the subgroup \GOS is the Zariski closure of~\Ga_{\theints} in~\GS. Furthermore, we note that a superrigidity theorem for many non-solvable SS-arithmetic groups can be proved by combining our main theorem with the Margulis Superrigidity Theorem

    Structural Comparison of Different Galacto-oligosaccharide Mixtures Formed by beta-Galactosidases from Lactic Acid Bacteria and Bifidobacteria

    Get PDF
    The LacLM-type β-galactosidase from Lactobacillus helveticus DSM 20075 expressed in both Escherichia coli (EcoliBL21Lhβ-gal) and Lactobacillus plantarum (Lp609Lhβ-gal) was tested for their potential to form galacto-oligosaccharides (GOS) from lactose. The Lh-GOS mixture formed by β-galactosidase from L. helveticus, together with three GOS mixtures produced using β-galactosidases of both the LacLM and the LacZ type from other lactic acid bacteria, namely, L. reuteri (Lr-GOS), L. bulgaricus (Lb-GOS), and Streptococcus thermophilus (St-GOS), as well as two GOS mixtures (Br-GOS1 and Br-GOS2) produced using β-galactosidases (β-gal I and β-gal II) from Bifidobacterium breve, was analyzed and structurally compared with commercial GOS mixtures analyzed in previous work (Vivinal GOS, GOS I, GOS III, and GOS V) using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), high-performance size-exclusion chromatography with a refractive index (RI) detector (HPSEC-RI), and one-dimensional 1H NMR spectroscopy. β-Galactosidases from lactic acid bacteria and B. breve displayed a preference to form β-(1→6)- and β-(1→3)-linked GOS. The GOS mixtures produced by these enzymes consisted of mainly DP2 and DP3 oligosaccharides, accounting for ∼90% of all GOS components. GOS mixtures obtained with β-galactosidases from lactic acid bacteria and B. breve were quite similar to the commercial GOS III mixture in terms of product spectrum and showed a broader product spectrum than the commercial GOS V mixture. These GOS mixtures also contained a number of GOS components that were absent in the commercial Vivinal GOS (V-GOS)

    The Glasgow outcome at discharge scale: an inpatient assessment of disability after brain injury

    Get PDF
    This study assesses the validity and reliability of the Glasgow Outcome at Discharge Scale (GODS), which is a tool that is designed to assess disability after brain injury in an inpatient setting. It is derived from the Glasgow Outcome Scale-Extended (GOS-E), which assesses disability in the community after brain injury. Inter-rater reliability on the GODS is high (quadratic-weighted kappa 0.982; 95% confidence interval [CI] 0.968, 0.996) as is concurrent validity with the Disability Rating Scale (DRS) (Spearman correlation −0.728; 95% CI −0.819, −0.601). The GODS is significantly associated with physical and fatigue subscales of the short form (SF)-36 in hospital. In terms of predictive validity the GODS is highly associated with the GOS-E after discharge (Spearman correlation 0.512; 95% CI 0.281, 0.687), with the DRS, and with physical, fatigue, and social subscales of the SF-36. The GODS is recommended as an assessment tool for disability after brain injury pre-discharge and can be used in conjunction with the GOS-E to monitor disability between hospital and the community

    Galacto-Oligosaccharides : production, properties, applications, and significance as prebiotics

    Get PDF
    Galacto-oligosaccharides (GOS) have now been definitely established as prebiotic ingredients after in vitro and animal and human in vivo studies. Currently, GOS are produced by glycoside hydrolases (GH) using lactose as substrate. Converting lactose into GOS by GH results in mixtures containing GOS of different degrees of polymerization (DP), unreacted lactose, and monomeric sugars (glucose and galactose). Recent and future developments in the production of GOS aim at delivering purer and more efficient mixtures. To produce high-GOS-content mixtures, GH should not only have good ability to catalyze the transgalactosylation reaction relative to hydrolysis, but also have low affinity for the GOS formed relative to the affinity for lactose. In this article, several microbial GH, proposed for the synthesis of GOS, are hierarchized according to the referred performance indicators. In addition, strategies for process improvement are discussed. Besides the differences in purity of GOS mixtures, differences in the position of the glycosidic linkages occur, because different enzymes have different regiochemical selectivity. Depending on oligosaccharide composition, GOS products will vary in terms of prebiotic activity, as well as other physiological effects. This review focuses on GOS production from synthesis to purification processes. Physicochemical characteristics, physiological effects, and applications of these prebiotic ingredients are summarized. Regulatory aspects of GOS-containing food products are also highlighted with emphasis on the current process of health claims evaluation in Europe.Agência da Inovação-Progama IDEIA (Portugal)Fundação para a Ciência e a Tecnologia (FCT

    Enzymatic Synthesis of Galactooligosaccharides From Whey Permeate

    Get PDF
    Galactooligosaccharides (GOS) are prebiotics that have a beneficial effect on human health by promoting the growth of probiotic bacteria in the gut. GOS are commonly produced from lactose in a reaction catalysed by β-galactosidase, termed transglycosylation. In the present work the synthesis of GOS from Whey Permeate (WP) using commercially available β-galactosidases was studied. The enzymes used were from Kluyveromyces lactis (Maxilact® L2000) and Escherichia coli. Initially, a novel quantitative TLC-based assay to monitor GOS synthesis was developed. This method was employed for kinetic analysis but precision and bias problems in quantification were observed. An HPLC assay was subsequently developed and used to quantitate the kinetics of GOS synthesis. The influence of substrate concentrations of WP and enzyme concentrations were examined. The reaction kinetics showed an exponential consumption of lactose, while the GOS reached a maximum level and decreased thereafter. The data showed that the enzyme and WP concentrations influenced the maximum level of GOS synthesis. The maximum yield of GOS from WP was found to be 24%. Modelling of GOS synthesis profiles using a full reaction mechanism (Kim et al., 2004) fitted the experimental data. However, high correlation between kinetic parameters and high standard errors in parameter estimates were found. Therefore, a simplified GOS synthesis mechanism based on simplifying assumptions previously identified in literature was devised. This reduced model fitted data appropriately and parameter estimation and associated uncertainty was improved. The influence of low amounts of organic solvents on GOS synthesis was examined. The progress curve in the presence of solvents was probed using the reduced reaction mechanism model. To examine the influence of the source of enzyme on GOS synthesis, two β- galactosidases were compared. Data showed that when reaction conditions were identical there was no significant difference in GOS synthesis observed. These studies show Whey Permeate is a useful material for GOS synthesis. They confirm the literature observations that enzyme and substrate concentrations strongly influence GOS yields. The use of organic solvents was found to modify the reaction kinetics, with promising applications to increase GOS yield. However, the source of enzyme may not influence GOS synthesis to the extent believed in the literature

    STRATEGI PEMASARAN TERHADAP PENINGKATAN AGENT GOS (GARUDA ONLINE SALES) PADA PT. GARUDA INDONESIA (PERSERO) CABANG BANDA ACEH

    Get PDF
    BAB VPENUTUP5.1Kesimpulan Berdasarkan permasalahan yang muncul pada strategi pemasaran terhadap peningkatan agent GOS maka dapat disimpulkan beberapa hal sebagai berikut:1. Dari data yang diperoleh melalui website Garuda Online Sales (GOS), penulis menemukan daftar anggota GOS yang terdapat di Aceh. Data tersebut kemudian disaring berurutan untuk melihat performa GOS mulai dari yang tertinggi hingga terendah pada bulan Januari, Februari, Maret pada tahun 2014/2015. 2.Membantu mencari tahu apakah sistem GOS nya lancer atau ada kendala. Dengan cara menelpon member GOS apa bila ada kendala penulis mencatat semua datanya dan di laporkan kepada pembimbing kendala apa saja yang member dapatkan dan akan di survey langsung ke travel tersebut. Penulis juga diajarkan berkomunikasi dengan benar dan sopan3.Selain itu tim marketing bersosialisasi ke konsumen yang belum menjadi iGOS/GOS member, tujuannya untuk mengenalkan produk GOS. Jika agent tersebut ingin menjadi GOS member maka tim marketing akan membantu registrasi5.2SaranBerdasrkan kesimpulan di atas, penulis dapat memberikan saran dari kinerja Tenaga Kerja PT. Garuda Indonesia (Persero) Cabang Banda Aceh:1.Sudah terlihat baik dalam memberikan pelayanan kepada para Agent yang melakukan reservesi pada sistem GOS, saran penulis agar dapat meningkatkan dan tetap menjaga kinerjanya dalam melayani Agent, sehingga dapat memberikan kepuasan pada Agent dan pelayanan yang maksimal.2.Untuk PT. Garuda Indonesia teruskan kualitas dan pelayanan yang sudah terlaksana dengan bagus, teruslah memberi konsep pelayanan dengan warna baru dan tentunya membawa pengaruh positif bagi PT.Garuda Indonesia

    Information Properties of Generalized Order Statistics and Renyie Information

    Get PDF
    Our  aim  at  this  paper  is  to  investigate  properties  of  Shannon   and  REnyie entropy, Kullback-Leibler (K-L) information and mutual information of generalized order statistics (GOS). We show that discrimination information and Renyie information between distribution of GOS and parent distribution, the discrimination information among the GOS and the mutual information between GOS are all distribution free. We also discuss Renyie information properties of  GOS . Some bounds for K-L information is constructed

    Impact of galactooligosaccharides delivered in ovo on mitigating negative effects of heat stress on performance and welfare of broilers

    Get PDF
    ABSTRACT: Galactooligosaccharides (GOS) delivered in ovo improve intestinal health of broiler chickens. This study aimed to demonstrate the impact of in ovo stimulation with GOS prebiotic on day 12 of egg incubation on performance and welfare traits in broiler chickens. The incubating eggs were divided into 3 groups, based on the substance injected in ovo: 3.5 mg of GOS dissolved in 0.2 mL physiological saline (GOS), 0.2 mL physiological saline (S), or uninjected controls (C). Constant heat stress (HS) was induced on days 32 to 42 post-hatch by increasing environmental temperature to 30°C. Thermoneutral (TN) animals were kept at 25°C. The performance (body weight [BW], daily feed intake [DFI], daily weight gain [DWG], and feed conversion rate [FCR]) were measured and mortality was scored for starter (days 0 to 13), grower (days 14 to 27), and finisher (days 28 to 42) feeding phases. Rectal temperature was scored on days 32 to 42. Food-pad dermatitis (FPD) was scored post-mortem (day 42). GOS increased (P < 0.01) BW on day 42 (2.892 kg in GOS vs. 2.758 kg in C). Heat stress significantly reduced (P < 0.01) final BW (2.516 kg in TN vs. 3.110 kg in HS). During finisher phase, DFI was significantly higher in GOS vs. C (173.2 g vs. 165.7 g; P < 0.05). FCR calculated for the entire rearing period (days 0 to 42) ranged from 1.701 in C to 1.653 in GOS (P < 0.05). GOS improved FCR in HS animals during finisher phase (P < 0.05). Rectal temperature of GOS chickens under HS reached 42.5°C 1 day earlier than C and S (P < 0.05), which suggests that those birds recovered earlier from the high environmental temperature. Heat stress increased (P < 0.05) mortality about 5 times compared to TN during finisher phase (from 1.59% in TN to 7.69% in HS). GOS decreased FPD in TN conditions by 20% (no lesions in 81% in GOS vs. 60% in C). GOS delivered in ovo mitigated negative effects of HS on performance and welfare in broiler chickens
    corecore