371 research outputs found

    Advances in Radar Remote Sensing of Agricultural Crops: A Review

    Get PDF
    There are enormous advantages of a review article in the field of emerging technology like radar remote sensing applications in agriculture. This paper aims to report select recent advancements in the field of Synthetic Aperture Radar (SAR) remote sensing of crops. In order to make the paper comprehensive and more meaningful for the readers, an attempt has also been made to include discussion on various technologies of SAR sensors used for remote sensing of agricultural crops viz. basic SAR sensor, SAR interferometry (InSAR), SAR polarimetry (PolSAR) and polarimetric interferometry SAR (PolInSAR). The paper covers all the methodologies used for various agricultural applications like empirically based models, machine learning based models and radiative transfer theorem based models. A thorough literature review of more than 100 research papers indicates that SAR polarimetry can be used effectively for crop inventory and biophysical parameters estimation such are leaf area index, plant water content, and biomass but shown less sensitivity towards plant height as compared to SAR interferometry. Polarimetric SAR Interferometry is preferable for taking advantage of both SAR polarimetry and SAR interferometry. Numerous studies based upon multi-parametric SAR indicate that optimum selection of SAR sensor parameters enhances SAR sensitivity as a whole for various agricultural applications. It has been observed that researchers are widely using three models such are empirical, machine learning and radiative transfer theorem based models. Machine learning based models are identified as a better approach for crop monitoring using radar remote sensing data. It is expected that the review article will not only generate interest amongst the readers to explore and exploit radar remote sensing for various agricultural applications but also provide a ready reference to the researchers working in this field

    The development of a ground based polarimetric SAR interferometer (GB-POLInSAR)

    Get PDF
    Copyright © 2005 IEE

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Wetland Monitoring and Mapping Using Synthetic Aperture Radar

    Get PDF
    Wetlands are critical for ensuring healthy aquatic systems, preventing soil erosion, and securing groundwater reservoirs. Also, they provide habitat for many animal and plant species. Thus, the continuous monitoring and mapping of wetlands is necessary for observing effects of climate change and ensuring a healthy environment. Synthetic Aperture Radar (SAR) remote sensing satellites are active remote sensing instruments essential for monitoring wetlands, given the possibility to bypass the cloud-sensitive optical instruments and obtain satellite imagery day and night. Therefore, the purpose of this chapter is to provide an overview of the basic concepts of SAR remote sensing technology and its applications for wetland monitoring and mapping. Emphasis is given to SAR systems with full and compact polarimetric SAR capabilities. Brief discussions on the latest state-of-the-art wetland applications using SAR imagery are presented. Also, we summarize the current trends in wetland monitoring and mapping using SAR imagery. This chapter provides a good introduction to interested readers with limited background in SAR technology and its possible wetland applications

    A Collection of Novel Algorithms for Wetland Classification with SAR and Optical Data

    Get PDF
    Wetlands are valuable natural resources that provide many benefits to the environment, and thus, mapping wetlands is crucially important. We have developed land cover and wetland classification algorithms that have general applicability to different geographical locations. We also want a high level of classification accuracy (i.e., more than 90%). Over that past 2 years, we have been developing an operational wetland classification approach aimed at a Newfoundland/Labrador province-wide wetland inventory. We have developed and published several algorithms to classify wetlands using multi-source data (i.e., polarimetric SAR and multi-spectral optical imagery), object-based image analysis, and advanced machine-learning tools. The algorithms have been tested and verified on many large pilot sites across the province and provided overall and class-based accuracies of about 90%. The developed methods have general applicability to other Canadian provinces (with field validation data) allowing the creation of a nation-wide wetland inventory system

    Wetland mapping and monitoring using polarimetric and interferometric synthetic aperture radar (SAR) data and tools

    Get PDF
    Wetlands are home to a great variety of flora and fauna species and provide several unique environmental functions, such as controlling floods, improving water-quality, supporting wildlife habitat, and shoreline stabilization. Detailed information on spatial distribution of wetland classes is crucial for sustainable management and resource assessment. Furthermore, hydrological monitoring of wetlands is also important for maintaining and preserving the habitat of various plant and animal species. This thesis investigates the existing knowledge and technological challenges associated with wetland mapping and monitoring and evaluates the limitations of the methodologies that have been developed to date. The study also proposes new methods to improve the characterization of these productive ecosystems using advanced remote sensing (RS) tools and data. Specifically, a comprehensive literature review on wetland monitoring using Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques is provided. The application of the InSAR technique for wetland mapping provides the following advantages: (i) the high sensitivity of interferometric coherence to land cover changes is taken into account and (ii) the exploitation of interferometric coherence for wetland classification further enhances the discrimination between similar wetland classes. A statistical analysis of the interferometric coherence and SAR backscattering variation of Canadian wetlands, which are ignored in the literature, is carried out using multi-temporal, multi-frequency, and multi-polarization SAR data. The study also examines the capability of compact polarimetry (CP) SAR data, which will be collected by the upcoming RADARSAT Constellation Mission (RCM) and will constitute the main source of SAR observation in Canada, for wetland mapping. The research in this dissertation proposes a methodology for wetland classification using the synergistic use of intensity, polarimetry, and interferometry features using a novel classification framework. Finally, this work introduces a novel model based on the deep convolutional neural network (CNN) for wetland classification that can be trained in an end-to-end scheme and is specifically designed for the classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The results of the proposed methods are promising and will significantly contribute to the ongoing efforts of conservation strategies for wetlands and monitoring changes. The approaches presented in this thesis serve as frameworks, progressing towards an operational methodology for mapping wetland complexes in Canada, as well as other wetlands worldwide with similar ecological characteristics

    Sentinel-1 interferometric coherence as a vegetation index for agriculture

    Get PDF
    In this study, the use of Sentinel-1 interferometric coherence data as a tool for crop monitoring has been explored. For this purpose, time series of images acquired by Sentinel-1 and 2 spanning 2017 have been analysed. The study site is an agricultural area in Sevilla, Spain, where 16 different crop species were cultivated during that year. The time series of 6-day repeat-pass coherence measured at each polarimetric channel (VV and VH), as well as their difference, have been compared to the NDVI and to the backscattering ratio (VH/VV) and other indices based on backscatter. The contribution of different decorrelation sources and the effect of the bias from the space-averaged sample coherence magnitude estimation have been evaluated. Likewise, the usage of 12 days as temporal baseline was tested. The study has been carried for three different orbits, characterised by different incidence angles and acquisition times. All results support using coherence as a measure for monitoring the crop growing season, as it shows good correlations with the NDVI (R2>0.7), and its temporal evolution fits well the main phenological stages of the crops. Although each crop shows its own evolution, the performance of coherence as a vegetation index is high for most of them. VV is generally more correlated with the NDVI than VH. For crop types characterised by low plant density, this difference decreases, with VH even showing higher correlation values in some cases. For a few crop types, such as rice, the backscattering ratio outperforms the coherence in following the growth stages of the plants. Since both coherence and backscattering are directly computed from the radar images, they could be used as complementary sources of information for this purpose. Notably, the measured coherence performs well without the need of compensating the thermal noise decorrelation or the bias due to the finite equivalent number of looks.This work was supported in part by the European Space Agency under Project SEOM-S14SCI-Land (SInCohMap), and in part by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development under Project PID2020-117303GB-C22
    corecore