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A B S T R A C T

In this study, the use of Sentinel-1 interferometric coherence data as a tool for crop monitoring has been
explored. For this purpose, time series of images acquired by Sentinel-1 and 2 spanning 2017 have been
analysed. The study site is an agricultural area in Sevilla, Spain, where 16 different crop species were cultivated
during that year. The time series of 6-day repeat-pass coherence measured at each polarimetric channel (VV and
VH), as well as their difference, have been compared to the NDVI and to the backscattering ratio (VH/VV)
and other indices based on backscatter. The contribution of different decorrelation sources and the effect
of the bias from the space-averaged sample coherence magnitude estimation have been evaluated. Likewise,
the usage of 12 days as temporal baseline was tested. The study has been carried for three different orbits,
characterised by different incidence angles and acquisition times. All results support using coherence as a
measure for monitoring the crop growing season, as it shows good correlations with the NDVI (𝑅2 > 0.7),
and its temporal evolution fits well the main phenological stages of the crops. Although each crop shows
its own evolution, the performance of coherence as a vegetation index is high for most of them. VV is
generally more correlated with the NDVI than VH. For crop types characterised by low plant density, this
difference decreases, with VH even showing higher correlation values in some cases. For a few crop types,
such as rice, the backscattering ratio outperforms the coherence in following the growth stages of the plants.
Since both coherence and backscattering are directly computed from the radar images, they could be used
as complementary sources of information for this purpose. Notably, the measured coherence performs well
without the need of compensating the thermal noise decorrelation or the bias due to the finite equivalent
number of looks.
1. Introduction

Data acquired by synthetic aperture radar (SAR) sensors mounted
on board of Earth Observation satellites have proven their potential in
agricultural crop monitoring (Steele-Dunne et al., 2017; Mandal et al.,
2021), especially thanks to the consistent acquisition schedule they pro-
vide, not affected by clouds and day/night time. Radar measurements
are sensitive to structural and dielectric characteristics of the scene
(vegetation and soil), hence providing an excellent complement to the
most widely used monitoring schemes based on optical data.

In optical remote sensing of crops, vegetation indices (VI) are usu-
ally exploited to better match the data with the targeted features in the
scene, as they provide physically interpretable descriptors of vegetation
covers and are correlated with biophysical variables of interest, such
as leaf area index (LAI). Optical VIs are defined as combinations of
values measured at different spectral bands, being NDVI (Normalised
Difference VI) the most widely used (Bannari et al., 1995; Haboudane
et al., 2004). Equivalently, there exists a set of vegetation indices
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defined on the basis of radar data, which are also sensitive to crop bio-
physical variables. SAR vegetation indices are mostly based on either
the backscattered intensity at different polarimetric channels, e.g. by
using ratios (Kim and van Zyl, 2009), or on descriptors extracted from
polarimetry, e.g. polarisation signatures, outputs of decompositions,
etc. A recent review of radar vegetation indices can be consulted
in (Mandal et al., 2021). The use of radar VIs is constrained by the avail-
able polarimetric channels, which depend on the sensor. Consequently,
there are indices defined for dual-, compact-, and quad-polarimetric
data (Mandal et al., 2020a,b).

Besides the observables derived from measured backscattered in-
tensity (backscattering coefficients and polarimetric descriptors), radar
satellites also provide access to interferometric data. In SAR inter-
ferometry (InSAR), pairs of images are combined to produce phase
measurements related to the scene vertical dimension and other scene
properties (Bamler and Hartl, 1998). A key interferometric observable
is the interferometric coherence, which is employed as a direct measure
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on the quality of the associated interferometric phase, and hence of
the derived products. There exist diverse factors that influence the in-
terferometric coherence (Zebker and Villasenor, 1992), whose relative
importance depend on scene characteristics, on sensor features, and on
the interferometric configuration. Therefore, coherence is by itself a
valuable measurement with sensitivity to the properties of the crop in
the scene, as it will be exploited in this work.

When the two images are acquired at different times, repeat-pass
InSAR (Rosen et al., 2000) is useful to detect changes in the scene
since they cause a decrease in interferometric coherence. This loss
of coherence is usually denoted as temporal decorrelation and is the
primary cause of coherence loss over agricultural crops due to the
fast growth of plants and the wind-induced movement of vegetation
elements. In a broader context, repeat-pass interferometry was tested
in the past for land cover mapping by using time series of ERS tandem
data (Strozzi et al., 2000; Engdahl and Hyyppä, 2003), with 1-day
revisit time, and more recently with Sentinel-1 data (Sica et al., 2019;
Jacob et al., 2020), with 6-day revisit time. For the specific application
of crop-type mapping, temporal decorrelation is present in areas with
vegetation, whereas bare surfaces usually keep a high coherence over
longer periods. Therefore, since presence or absence of vegetation pro-
vides information related to the crop calendar, which normally depends
on the crop type, time series of repeat-pass coherence have proven
very useful in crop classification (Busquier et al., 2020; Mestre-Quereda
et al., 2020; Nikaein et al., 2021).

Besides its use in crop-type mapping, repeat-pass coherence was also
evaluated for the estimation of agricultural crop parameters by Weg-
muller and Werner (1997), Engdahl et al. (2001), and Blaes and De-
fourny (2003). In these experiments, ERS images with 1 day of sep-
aration were combined in interferometric pairs, and coherence was
found sensitive to crop height and canopy cover. The physical in-
terpretation provided is based on the high coherence expected from
the soil and the temporal decorrelation produced by the vegetation
layer. The combination of both effects, which depends on crop height
and canopy cover, reflects the crop growth. Unfortunately, the lack of
availability of SAR images acquired with short revisit times disabled
further studies in this direction for a long time. Alternatively, single-
pass interferograms computed with pairs of images acquired by the
TanDEM-X system, formed by two nearly identical satellites flying in
a close formation, have been also used for crop height retrieval more
recently (Erten et al., 2016; Lopez-Sanchez et al., 2017; Lee et al.,
2018; Romero-Puig and Lopez-Sanchez, 2021). In that case, in absence
of temporal decorrelation, the sensitivity of coherence to crop height
is based on volume decorrelation, for which a very large baseline
(distance between the satellites orbits) is required.

With the launch of the Sentinel-1 constellation (S1), which provides
a revisit period of 6 days over Europe and 12 days elsewhere, the
interest in exploring the potential of repeat-pass interferometry in crop
monitoring has grown again. In fact, the analysis of the time series of 6-
day S1 coherence employed by Mestre-Quereda et al. (2020) revealed
obvious temporal patterns which could be easily associated with the
growth of plants for many of the crops present in the test site, as well
as clear differences between the VV and VH channels. The present
work stems from those time series and is firstly intended to provide
an in-depth analysis of them as a function of crop growth.

Recently, the relationship between S1 interferometric coherence
and crop growth has been also explored to some extent by other au-
thors. Nasirzadehdizaji et al. (2021) analysed time series of coherence
and intensity values by comparing them with the growth condition
of three different crops: maize, sunflower, and wheat. Coherence was
useful to estimate the main growth stage of these crops (using a 3-
stage scale: sowing, growth, harvest), and the authors also studied the
difference between VV and VH. Similarly, Pandit et al. (2022) studied
the identification of phenological stages of two crops, i.e. bengal-gram
and tomato, using time series of 12-day S1 coherence in an Indian test
2

site. In this case, only the VV channel was inspected, and its evolution
Table 1
Number of fields and total area occupied by each crop.
Crop type Fields Total area (km2)

Alfalfa 84 4.10
Carrot 74 2.22
Chickpea 26 0.55
Cotton 1369 60.47
Fallow 728 1.17
Maize 173 6.73
Onion 62 1.58
Pepper 33 0.67
Potato 21 0.43
Pumpkin 27 0.96
Quinoa 34 1.08
Rice 300 27.81
Sugar beet 554 21.23
Sunflower 145 6.31
Sweet potato 44 1.27
Tomato 829 32.46
Wheat 107 4.38
TOTAL 4610 173.43

was qualitatively interpreted with the help of NDVI time series obtained
from Sentinel-2 (S2) data.

The present work is aimed at extending previous works on the use
of repeat-pass S1 coherence for agriculture monitoring. With this goal,
the number of crop types studied has been increased up to 16, and
fallow has been also analysed. More importantly, both the coherences
at VV and VH, as well as their difference, have been exploited in a
quantitative analysis by comparing them with the NDVI and with other
radar VIs. In addition, the relative importance of the main sources
of decorrelation which provide sensitivity (temporal decorrelation and
thermal noise decorrelation) has been studied, and the bias induced by
the finite number of samples (especially for very low coherences) has
been taken into account.

2. Materials and methods

2.1. Test site and data sets

The test site is an agricultural area, named BXII Sector, located in
Sevilla, Spain, centered at 37 N 6.1 W. In this zone, 16 different crop
species were cultivated in 2017, and some fields were left as fallow,
which hence constitutes an additional land cover class. The reference
data and the satellite imagery (S1 and S2 data) employed in this study
are described in this section.

2.1.1. Reference data
The crop types cultivated at each one of the parcels of the test site

are identified in the official land parcel identification system of 2017,
see Fig. 1 and Table 1. This dataset has already been used in previous
works (Mestre-Quereda et al., 2020; Di Martino et al., 2022).

In order to provide visual information about the characteristics of
every crop type, photographs are shown in Fig. 2. It is important to
note how each crop reaches a certain level of ground coverage. Being
aware of this can be helpful to know whether there is a significant
component of the signal received coming from the soil and not from
the vegetation, which will be useful for the physical interpretation of
the SAR measurements. For rice, the ground is flooded before sowing
and is kept flooded for the whole cultivation period.

An approximate calendar for all crop types in this geographical
region is available (Fig. 3). The exact dates of sowing and harvest
vary depending on plots and farmers, showing differences of up to 1–
3 months in some cases. For certain crops, the harvesting of the first
planted fields in the season overlaps with the sowing of the last fields,
therefore no intermediate growth period is shown in this calendar.
Alfalfa is a particular case, since the crop is not fully harvested at once,
but periodically cut and left to resprout, thus having a longer cycle. In
addition, daily rainfall and wind speed data have been obtained from

the Sistema de Información Agroclimática para el Regado (SIAR, 2022).



Remote Sensing of Environment 280 (2022) 113208A. Villarroya-Carpio et al.
Fig. 1. Map of the test site in Sevilla, with the reference data indicating all crop types.
Fig. 2. Photographs of the studied crops during their growing season.
2.1.2. Sentinel-1 data
All available products for 2017 from the S1 A/B satellite constel-

lation in interferometric wide swath mode, with polarisations VV and
VH, have been used (Fig. 4). There are a total of 61 images for each one
3

of the 3 relative orbits that cover the test site: orbits 74, 147 and 154
(Table 2). All have been considered in the study in order to test the
influence of incidence angle and acquisition time, since they change
for the different orbits. The original image resolution is approximately
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Fig. 3. Approximate crop calendar in the region.
Fig. 4. Examples of S1 and S2 images over the study area. On the top left, an RGB composition with the red, green and blue bands from the S2 image for the 5th of August
of 2017. For clear visualisation, the image has been subjected to a histogram equalisation. On its right, the corresponding NDVI image for the same date. On the bottom left, 𝜎0
(dB) at the VH channel measured on the 7th of August. On the bottom right, the coherence amplitude image for the VV channel between the 1st and 7th of August.
2.7 m 𝑥 22 m in slant-range range and azimuth, respectively, with a
pixel size of 2.33 m 𝑥 14 m.

2.1.3. Sentinel-2 data
Reflectance images with Level-2 A processing from both S2 A and

2B have been used (Fig. 4). Despite the revisit time being 5 days, only
33 partially or completely cloud-free images were available for 2017.
Particularly, the images correspond to tiles 29SQA and 29SQB, from
4

orbit 137. The S2 images present a 10 m spatial resolution and were
acquired between 11:00 and 11:20 a.m.

2.2. Processing

The overall processing scheme followed with all the satellite data
is divided into the steps shown in Fig. 5. Since this work is focused on
the exploitation of interferometric coherence, the main input data cor-
respond to the time series of S1 images in SLC format. However, we also
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Table 2
Characteristics of the available S1 orbits. Observation angle refers to the zenith angle.
Orbit Flight direction Subswath Observation angle Acquisition time

74 Ascending IW1 31.5 - 33.5◦ 6 p.m.
147 Ascending IW3 42.5 - 44.5◦ 6 p.m.
154 Descending IW2 38.5 - 40.3◦ 6 a.m.
Fig. 5. Sentinel-1/2 processing workflow. The processing steps for the SLC (shown in brown in the diagram) and optical images (dark green) are discussed in Section 2.2.1.
Section 2.2.2 describes the bias correction for the measured interferometric coherence (light green). Finally, the processing of the GRD images to obtain 𝛾𝑆𝑁𝑅 is explained in
Section 2.2.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
w

used S1 images in GRD to simplify the computation of noise, as it will
be explained in Section 2.2.3. In addition, S2 images were employed for
the computation of the NDVI. The pre-processing steps for the SLC and
optical images are described in Section 2.2.1. Section 2.2.2 describes
the bias correction for the measured interferometric coherence.

2.2.1. Pre-processing
The pre-processing steps of the SLC images are the following ones:

1. Selection of the desired sub-swath and bursts, using TopSAR Split
tool.

2. Refining of the orbit state vectors using Apply Orbit File.
3. Radiometric calibration, with complex output.
4. Coregistration of the images using the S-1 Back-geocoding tool.
5. Speckle filtering and estimation of interferometric coherence.
6. Geocoding.

In the coregistration step, all the images of the 1-year long time
series were coregistered with respect to the image in the middle of
the year, which acted as primary or reference image. Later, for the
computation of the coherence, the previously co-registered images were
considered in pairs of chronologically ordered consecutive dates. For
each pair, the first image and the second image were used as the primary
and secondary image of each interferogram, respectively. All the steps
but the speckle filter were carried out using ESA SNAP toolbox,1
whereas the speckle filtering was undertaken with python routines. A
boxcar filter of 19 samples in range and 4 samples in azimuth was used,
as it is justified in Section 2.2.2. Since one dimension of the kernel was
not an odd number, the boxcar filter implemented in SNAP could not
be used. As a result of the SLC pre-processing, series of backscattering
coefficient (𝜎0) and coherence (𝛾) were obtained.

1 https://step.esa.int/main/toolboxes/snap/
5
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Additionally, a series of different radar vegetation indices for dual-
polarimetric data were computed: the backscattering ratio (VH/VV),
the Radar Vegetation Index (RVI, Mandal et al., 2021), the Dual-pol
Radar Vegetation Index (DpRVI, Mandal et al., 2020a), the Dual-pol
Radar Vegetation Index for GRD data (𝐷𝑝𝑅𝑉 𝐼𝑐 , Bhogapurapu et al.,
2022); and other descriptors defined for GRD data: the co-pol purity
parameter 𝑚𝑐 , the pseudo scattering type parameter 𝜃𝑐 , and the pseudo
scattering entropy parameter 𝐻𝑐 (Bhogapurapu et al., 2021). From all
of them, only the DpRVI requires the use of S1 images in SLC format as
input data, whereas the rest of indices are based on the backscattering
coefficient values (i.e., power or intensity) and hence can be derived
from S1 images in GRD format.

As for the S2 images, the processing was carried out also in ESA
SNAP toolbox, and it consisted of the following steps:

1. Cloud masking, using the cloud mask layer provided by the
product.

2. Mosaicking of the two adjacent tiles.
3. Computing the NDVI, using bands 4 and 8, corresponding to

near-infrared and red wavelengths respectively.

Therefore, the output product of the processing of S2 images corre-
spond to time series of NDVI images.

2.2.2. Coherence estimation and bias
Interferometric coherence constitutes the main feature in this study.

It is defined as

𝛾 =
|𝐸(𝑠1𝑠∗2)|

√

𝐸(|𝑠1|2) ⋅ 𝐸(|𝑠2|2)
(1)

here 𝐸(𝑥) represents the expected value of 𝑥, and 𝑠1, 𝑠2 are two
omplex signals (i.e., the two SLC images).

https://step.esa.int/main/toolboxes/snap/
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Its estimation is carried out by using the sample coherence magni-
tude, which represents the maximum likehood estimate of the coher-
ence magnitude (Touzi et al., 1999). Given 𝐿 signal measurements, the
ample coherence magnitude is calculated as shown in Eq. (2):

𝑒𝑠𝑡 =
|

|

|

∑𝐿
𝑖=1 𝑠1𝑖𝑠

∗
2𝑖
|

|

|

√

∑𝐿
𝑖=1|𝑠1𝑖|2 ⋅

∑𝐿
𝑖=1 |𝑠2𝑖|

2
. (2)

Unfortunately, this is a biased estimator, whose bias depends on
the actual coherence magnitude. From the expression for its probability
density function, the moments of order 𝑘 can be derived as a function
of the actual coherence magnitude 𝛾. The case 𝑘 = 1 corresponds to the
first moment, which is its expected value:

𝐸(𝛾𝑒𝑠𝑡) =
𝛤 (𝐿)𝛤 (3∕2)
𝛤 (𝐿 + 1∕2)

⋅ 3𝐹2
(

3∕2, 𝐿, 𝐿;𝐿 + 1∕2; 1; 𝛾2
)

⋅ (1 − 𝛾2)𝐿 (3)

where 3𝐹2 is the generalised hypergeometric function, and 𝐿 represents
he equivalent number of looks (ENL). The ENL can be used as an
ndicator of speckle noise (Lee and Pottier, 2009).

The estimated coherence 𝛾𝑒𝑠𝑡 is biased for low coherence values,
here it takes higher values than the actual 𝛾, thus causing a loss

n contrast in areas with low coherence. The bias decreases when
he number of independent samples (i.e. looks) is increased, as the
stimator is asymptotically unbiased (Touzi et al., 1999).

As it was outlined in the Introduction, vegetation produces a strong
emporal decorrelation, so the coherence that will be present during the
rop growing season will be very low in many cases. As a result, if one
ants to keep sensitivity to subtle changes of coherence due to vege-

ation condition, the mentioned bias needs to be carefully considered.
he first implication is that the ENL needs to be high enough to reduce
he impact of the bias. Unfortunately, increasing ENL degrades the
patial resolution, so a trade-off solution is required. This question was
tudied with the same type of data during the ESA-funded SInCohMap
roject (Jacob et al., 2020), and a 4x19 kernel for the boxcar filter
as found as an optimum balance between resolution preservation
nd coherence estimation. Consequently, the same strategy has been
ollowed in this work. Alternatively, Nikaein et al. (2021) proposed the
se of a estimation kernel defined by the parcel boundaries, for which
he available polygons in the reference data could be exploited.

In this work, since we know that the actual coherence can be very
ow, we have also explored the option of compensating the bias. For
his purpose, the value of ENL is required. One possibility consists
n measuring the ENL from the images themselves. Eq. (4) provides
he ENL for a homogeneous area in an intensity SAR image, which is
omputed using the ratio of the standard deviation 𝜎𝑥 and the mean 𝑥̂
or correlated pixels:

𝑁𝐿 = 1∕𝛽2 ; 𝛽 =
𝜎𝑥
𝑥̂

(4)

For our study site, the ENL has been evaluated by selecting a
homogeneous area in the coast, close to the site. A single date, January
8 or 9, depending on the orbit, was chosen. As the processing is the
same for every image in the time series, and, particularly, the window
used is always 4x19, the ENL values obtained have been used for all
the series. It is important to note that the ENL would be different if
a different filter size had been used during the processing. The ENL
obtained is between 41 and 44 for both the VV and VH channels.
Using a value ENL=41 and Eq. (3), the curve that relates the biased
and the actual coherence was obtained (Fig. 6). Fig. 6 can be used to
estimate the unbiased coherence magnitude from the measured sample
coherence. Hereafter, these values will be referred to as 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 and
𝛾𝑏𝑖𝑎𝑠𝑒𝑑 , respectively.

2.2.3. Coherence terms
The interferometric coherence between a pair of SAR images can
6

be expressed as the product of different contributions, which represent
Fig. 6. Coherence magnitude bias for ENL=41. The reference unbiased line is what
would result from using an infinite number of looks. It can be observed how the bias
is present mostly for small coherence values.

the decorrelation produced by different sources (Zebker and Villasenor,
1992; Bamler and Hartl, 1998):

𝛾 = 𝛾𝑝𝑟𝑜𝑐𝛾𝑔𝑒𝑜𝑚𝛾𝑣𝑜𝑙𝛾𝑆𝑁𝑅𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (5)

where each term has a value between 0 and 1, and 𝛾 represents the total
interferometric coherence. In this case, it corresponds to the coherence
after the compensation of the bias, 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 .

The first term in this expression, 𝛾𝑝𝑟𝑜𝑐 , is referred to inaccuracies in
the processing, e.g. coregistration errors, which may affect the inter-
ferometric products. The processing undertaken in this study, based on
SNAP, guarantees that these errors are not present or are negligible,
and this term can be directly eliminated.

The second term, denoted as 𝛾𝑔𝑒𝑜𝑚, represents the so-called geo-
metrical or baseline decorrelation. Due to the different position of
the satellite in the two acquisitions, the difference in incidence angle
generates a loss of coherence which is directly proportional to the
baseline (spatial distance between the two orbital positions). In the case
of S1 the orbits are quite stable and the baselines are small (normally
below 150 m), so this term can be neglected, i.e. 𝛾𝑔𝑒𝑜𝑚 ≈ 1.

The third term, known as volume decorrelation 𝛾𝑣𝑜𝑙, is present
wherever there are more than one scatterer in the same pixel located
at different height. Therefore, it is very characteristic of vegetation
scenarios, i.e. forest and agricultural crops. However, as in the case
of the geometrical decorrelation, its value strongly depends on the
baseline. When the baseline is short and the vegetation is also short
(crops rarely grow up to 3 m), the interferogram is not sensitive to
the height differences in the scene, and volume decorrelation can be
discarded, i.e. 𝛾𝑣𝑜𝑙 ≈ 1.

The remaining two terms will be the most relevant for this study. Af-
ter the previous assumptions, the unbiased coherence can be expressed
simply as:

𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 = 𝛾𝑆𝑁𝑅𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (6)

The term 𝛾𝑆𝑁𝑅 describes the influence of the thermal noise present
in the radar instrument, and it depends on the signal-to-noise ratio
(SNR) measured at each pixel. This term can be readily expressed as:

𝛾𝑆𝑁𝑅 =

√

𝑆𝑁𝑅1
𝑆𝑁𝑅1 + 1

√

𝑆𝑁𝑅2
𝑆𝑁𝑅2 + 1

(7)

where the subscripts 1 and 2 refer to the two images of the pair. Since
the noise is independent from the scene, the presence of thermal noise
is noticeable especially in areas of low backscatter, i.e. areas with low

SNR.
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Using the same expression, the SNR decorrelation can be estimated
from the data in the following way:

𝛾𝑆𝑁𝑅 =

√

𝑆1 −𝑁𝐸𝑆𝑍1
𝑆1

√

𝑆2 −𝑁𝐸𝑆𝑍2
𝑆2

(8)

here 𝑆𝑖 is the measured power or intensity of each image (i.e. mea-
ured backscattering coefficient), and 𝑁𝐸𝑆𝑍𝑖 denotes the Noise Equiv-
lent Sigma Zero, which indicates the noise floor of the image.

The value of 𝑁𝐸𝑆𝑍 depends on the antenna pattern, and, in a
ulti-swath acquisition mode, shows different values in each sub-

wath. For instance, Vincent et al. (2017) offers information about the
ESZ for each sub-swath of the S1 satellites. In addition, the metadata
nd annotations of the S1 products include noise estimations (in form of
olynomial coefficients) which can be employed to estimate the 𝑁𝐸𝑆𝑍
resent at each pixel in the images. Unfortunately, the interpretation
nd usage of these annotated polynomials is not straightforward.

In this study we have used a different method to estimate the
𝐸𝑆𝑍 values, which consists in processing the same images, but in
RD format, and with two different processing chains as it is detailed
ext. The first processing consists of the following steps: TopSAR Split,
pply Orbit File, Thermal Noise Removal, Assembly Orbit, Subset, Calibra-
ion, Speckle filtering and Geocoding. Then, the second processing follows
he same steps but the Thermal Noise Removal step was omitted. Finally,
he 𝑁𝐸𝑆𝑍 for each image is calculated as:

𝐸𝑆𝑍 = 𝐺𝑅𝐷𝑛𝑜𝑖𝑠𝑦 − 𝐺𝑅𝐷𝑛𝑜𝑖𝑠𝑒𝑓𝑟𝑒𝑒 (9)

here 𝐺𝑅𝐷𝑛𝑜𝑖𝑠𝑒𝑓𝑟𝑒𝑒 denotes the backscattering coefficient resulting
rom the first processing (with the Thermal Noise Removal step), and
𝑅𝐷𝑛𝑜𝑖𝑠𝑦 denotes the backscattering coefficient resulting from the

econd processing (without the Thermal Noise Removal step).
In order to validate this method, the range of NESZ values obtained

as compared to the estimations provided by Vincent et al. (2017).
rom this point, 𝛾𝑆𝑁𝑅 can be computed using Eq. (8). This method-
logy (estimating the SNR decorrelation factor for the coherence) was
referred to removing noise from the SLC images using the SNAP noise
emoval process. The reason is that the Thermal Noise Removal for SLC
mages is applied in SNAP to the SLC values, i.e. with speckle, and
ence many values were found to fall below the estimated noise level
and not corrected).

Once the term 𝛾𝑆𝑁𝑅 is known, 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 can be obtained from the
nbiased coherence 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 , resorting to Eq. (10):

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑
𝛾𝑆𝑁𝑅

(10)

This last term is the temporal scene coherence and represents the
ecorrelation caused by changes in the scene during the time interval
etween the two images that form the interferogram. In the study area,
ost of these changes can be attributed to vegetation features (plant

rowth, wind-induced movement of leaves and branches), water con-
ent (both in the soil and the vegetation canopy), and agricultural pro-
esses (ploughing, sowing, harvesting, etc.). Another important cause
f temporal decorrelation is the change in the surface scattering due to
ainfall events (this effect is reviewed in more detail in Section 3).

. Results

.1. Pre-processing of the coherence time series

The results displayed in this first section correspond to the S1 data
rom orbit 74. After the image processing outlined in Section 2.2.1, the
eference ground truth data have been used to identify the coherence
alues for pixels corresponding to each crop type across the study
rea. The coherence values at all pixels of each crop type are used to
uild the corresponding time series. The mean value and the standard
7

eviation on each date, computed from all pixels of each crop type, t
Fig. 7. Example of the time series for 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 and 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 at both polarimetric channel
for one crop type (sunflower).

Fig. 8. Example of time series for 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 and its components at each channel: 𝛾𝑆𝑁𝑅
and 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 .

are represented in Figs. 10 to 13. The result is the series of measured
coherence values throughout the year.

As shown in Eq. (3), the unbiased coherence 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 can be esti-
ated as a function of the measured, biased coherence 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 . Fig. 7

hows how the two time series differ for low coherence measure-
ents and present similar values when the interferometric coherence

ncreases. This can be observed for both polarimetric channels.
For the same case, the two main components of the coherence

re shown in Fig. 8. At the VV channel, 𝛾𝑆𝑁𝑅 is mostly constant and
pproximately 1, so the measured coherence is mainly dependent on
emporal decorrelation. At the VH channel, the signal received from the
cene is always lower than at VV, therefore noise has a stronger effect.
nly at the middle of the year (around DoY 180), when the plants are

ully developed, the VH backscatter is large enough to minimise the
ffect of noise.

In both Figs. 7 and 8, there are abrupt changes in the values of
oherence at the beginning and end of the year. These are caused by
hanges on the scene, and hence on the radar data, due to rainfall
vents. The effects are most evident at dates where the surface has little
r no vegetation coverage, which is why the fluctuations appear outside
he crop growth cycle. By using the daily rainfall archives, these data
ave been removed from the time series, hence smoothing the curves
see Fig. 9). The criterion used for removal of data was to eliminate
he acquisition dates for which there had been one or more rain events
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Fig. 9. Change in the time series after the removal of data for dates around rainfall
events. From top to bottom: 𝛾 before filtering, recorded precipitation data, and 𝛾 after
filtering.

(with more than 10 mm of cumulative precipitation) in the previous 2
days.

All these processing steps, i.e., bias compensation, SNR compen-
sation, and rainfall dates removal, have been applied to all series
of coherence in order to better interpret and exploit the information
content of this radar feature on the crop properties and its dynamics.

3.2. Time series by crop type

After the processing described in Sections 2.2 and 3.1, the coherence
time series for each crop type in the study area have been obtained.
The time series of unbiased coherence of the two polarimetric channels,
and their difference, are represented in Fig. 10 for all crop types. These
correspond to the results for orbit 74. Analogous curves were obtained
for the data from orbits 147 and 154. The plotted lines correspond
to the mean coherence values for each date, while the shaded areas
represent the corresponding standard deviation. The 𝑥-axis in this
figure is kept as time (day of year), i.e., the values are represented
at their corresponding acquisition dates. Other figures shown later to
display time series follow the same criterion.

For most crops the time series presents rather constant coherence
values at the beginning and end of the year, since there are little
changes in the fields. These stable periods are separated by a ‘‘valley’’
that corresponds to the decrease in coherence caused by the presence
and growth of vegetation during the crop growing season. The middle
of this valley corresponds to the period of maximum development of
the crop. It is important to note that the mere presence of vegetation
induces temporal decorrelation, but also the crop growth, which entails
changes in the dielectric structure of the plants, contributes to the
observed low coherence values.

This curve is typically not symmetrical due to different reasons. In
first place, the initial vegetative stages and the maturation-senescence
period are usually characterised by a different duration. In second
place, although it depends on the crop type, in many cases the initial
growth stages correspond to a progressive increase of vegetation ele-
ments and their size (e.g. stem elongation), hence covering more the
ground and reducing progressively the soil response. In contrast, har-
vesting is a sudden removal of most of the vegetation, thus producing
a fast increase of coherence in later dates. However, the irregularities
and stretching in the periods of decrease and increase of coherence can
be understood also by considering that the values shown are an average
for all the pixels in the study area, and not all the fields are planted or
harvested at the same time.
8

Regarding the coherence difference between channels, the curve
approaches zero during the maximum growth interval of the crops. At
that stage both coherences are so low that they fall below the minimum
measurable coherence due to the finite ENL. Consequently, there is no
difference between them.

These curves replicate the behaviours seen in previous works (Pan-
dit et al., 2022), where it was observed how the profile of the coherence
was consistent with crop phenology: initial high coherence values
correspond to highly exposed soil, the lowest point corresponds to the
peak vegetative stage, and the later increase in coherence matches
the maturation and senescence of the crop. Another observation that
is corroborated in this case, is that coherence values after harvesting
differ for each crop, probably due to differences in harvesting methods.
Examples of these differences are cotton, maize and wheat, where the
harvesting process implies cutting the whole plant, or alfalfa, where the
crop is not cut completely at once. For the case of the tomato, however,
the curves in Fig. 10 do not show the steady increase in coherence seen
in (Pandit et al., 2022). This is also due to the difference in harvesting
methods: plunking the tomatoes from the plants and then cutting the
plants afterwards versus collecting the whole plant with a harvester
in the case of these fields in Sevilla. As observed by Nasirzadehdizaji
et al. (2021), apart from the dates of maximum growth, the coherence
values are higher for the VV channel than for the VH. This difference is
particularly significant in the period after harvesting. The backscatter
at the VV comes partially from the ground, hence showing a more
stable response, i.e. less affected by temporal decorrelation. Moreover,
as we will see next, the backscattering coefficient at the VV channel is
always greater than at the VH channel, so the SNR is also higher and,
consequently, there is less decorrelation due to thermal noise in the VV
channel.

The measured time series of backscattering coefficient (VV and VH)
and NDVI are shown in Figs. 11 and 12, respectively. They have been
constructed in the same way as the coherence time series, as described
in Section 3.1. As one the of the most used radar vegetation indices,
the ratio between channels is also computed and shown in Fig. 11.
In the case of the backscattering, the expected behaviour is observed:
the VV channel has a higher level than the VH, and the values of 𝜎0
increase during the growing season. Sowing, growth, and harvesting
dates differ for each crop (Fig. 3), giving each curve characteristic
features. These different behaviours allow for the use of radiometric
and inferferometric data for crop classification, as it was exploited
by Mestre-Quereda et al. (2020). One singular case is cotton. Both VV
and VH rise at the same time and almost equally. A possible explanation
for this could be that the plants grow in a structured way, and not by
adding more and more randomly oriented elements (branches, tillers
and leaves) as in most crops. In addition, as with other crops, the size of
cotton leaves is similar to the C-band wavelength. For this reason, they
are not characterised by Rayleigh scattering. The conjunction of both
aspects is probably the reason of such a particular radar response from
cotton. The ripple observed in the backscattering time series, especially
in the ratio, is due to a known calibration difference between the two
S1 sensors (A and B). Their alternation in the time series produces
this effect, which is also reported in previous works (Khabbazan et al.,
2019; Palmisano et al., 2021). In the case of the NDVI time series, the
evolution in the curves responds to variations in the spectral properties
of the scene (changes in its reflectivity) as well as its texture (degree of
vegetation cover).

Despite describing different physical properties of the observed
surface, there are clear similarities between the sets of time series of
coherence, backscatter, and NDVI. This is an incentive to study the
correlation between them, and, in the case of the coherence, explore
the option of using it in a similar way as the already existing vegetation
indices. To better illustrate this similarity, Fig. 13 presents all the curves

together for four different crop types.
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Fig. 10. Time series of unbiased coherence at VV and VH channels, and their difference, for all the different crop types in the case of orbit 74. The average at each date is
represented by a continuous line, whereas the standard deviation is shown as a shaded area around the average.
3.3. Coherence as a vegetation index

In order to evaluate the potential of the interferometric coherence as
a vegetation index, in this section it is compared quantitatively with the
NDVI and with the backscattering ratio (VH/VV). The comparison has
been performed through an analysis of the linear correlation between
the radar time series and the NDVI time series. The coefficient of
determination (𝑅2) is obtained for all cases.

In previous sections we have seen that the coherences measured
at both channels, as well as their difference, show a clear temporal
9

pattern that resembles the NDVI evolution, yet with a different dynamic
range and/or sign, so the three of them will be evaluated. Moreover, we
have also explained how the measured coherence can be modified by
partially correcting its bias and by compensating the estimated thermal
noise decorrelation. Therefore, it is convenient to test whether these
processing steps are useful to better exploit coherence as a vegetation
index. To this aim, the correlation analysis will be carried out sepa-
rately for the measured (biased) coherence, the unbiased coherence,
and the temporal coherence (i.e., after removing the thermal noise
decorrelation).
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Fig. 11. Time series of 𝜎0 at VV and VH channels, and their ratio, all expressed in dB, for all the different crop types in the case of orbit 74. The average at each date is
represented by a continuous line, whereas the standard deviation is shown as a shaded area around the average.
The data points considered in each case have been limited to those
within the time interval corresponding to the growing season of each
crop. This interval has been determined by inspection, crop by crop,
with help of the approximate crop calendar (Fig. 3). To be able to
compare the data, the coherence and backscattering time series have
been linearly interpolated to the dates with valid NDVI data. This
was the preferred option because the radar time series exhibit better
continuity, which leads to a simpler interpolation and, thus, with less
unwanted artefacts. For illustration purposes, four examples of the
10
scatter plot and the linear fitting between the time series are displayed
in Fig. 14.

The number of points considered in the regressions are shown in
Table 3. As the different time series are always interpolated to the
NDVI, this information also applies to later regressions, discussed in
Sections 3.3 to 3.6. The amount of points used guarantee the statistical
significance of the results with high values for the coefficient of deter-
mination (𝑅2). For instance, when working with a confidence interval
of 95% (𝛼 = 0.05), having at least 10 points guarantees that a result
where 𝑅2 = 0.40 is statistically significant (𝑝 = 0.0498). When using 15
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Fig. 12. Time series of NDVI for all the different crop types. The average at each date is represented by a continuous line, whereas the standard deviation is shown as a shaded
area around the average.
or more points (the case for 14 out of the 16 crops), a regression with
𝑅2 = 0.30 or higher is statistically significant (𝑝 = 0.0348).

The correlation results obtained are listed in Table 4 for orbit 74.
The best results for each crop are highlighted in boldface. Fallow has
not been considered in this analysis because it is not really a crop type.
Therefore, the correlation analysis is restricted to 16 crop types.

A first inspection of Table 4 reveals that for 14 out of the 16 crop
classes some of the coherence features present correlations with 𝑅2

around or above 0.7. The exceptions are alfalfa and rice. Alfalfa is
cultivated differently from other species because it has a multi-annual
11
growing cycle and is harvested from time to time, and not for all fields
at once. Consequently, as it was shown in Figs. 10, 11, and 12, the time
series of all observations (radar and optical) of alfalfa are quite constant
for the whole year. In the case of rice, coherence behaves differently
with respect to the rest of the crops (see Fig. 10) because of the
influence of the flooded ground, which reduces the coherence during
the first part of the growing cycle (even before sowing). However,
the backscattering coefficients show the typical increase when plants
develop, and the backscattering ratio behaves as for most crops. In fact,
the 𝑅2 between NDVI and ratio is 0.80.
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Fig. 13. Comparison of the different time series for certain crops. For each of the crops, the curves shown correspond to: (top) ratio of 𝜎0 for each channel, (centre) coherence
for each channel and their difference, (bottom) NDVI.
Regarding the rest of the crops, the backscattering ratio shows
𝑅2 values around or above 0.7 for 10 crops. However, it is poorly
correlated with the NDVI in the case of cotton and sunflower. By
inspection of Figs. 11–13, it can be seen how the time series for the
backscattering ratio and the NDVI are not temporally aligned in these
cases. In fact, the individual backscattering coefficient, especially VH,
is better aligned with NDVI than the ratio. The reason for this is that
the ratio is driven by differences in the pair of channels, as mentioned
previously for the case of cotton.
12
Table 4 also tells us that the VV and VH coherences are more
correlated to the NDVI than the difference between them and also more
than the backscatter ratio.

Following the analysis of the results shown in Table 4, we observe
that there are not noticeable differences among 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 , 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 , and
𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 when studying each polarimetric channel separately, i.e., VV
and VH. This means that the extra processing steps required to obtain
them are not really needed to exploit the coherence as a vegetation
index, what constitutes a good feature of this radar observable and
facilitates its potential adoption for this purpose.
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Fig. 14. Example of scatter plots between 𝛾𝑉 𝐻 − 𝛾𝑉 𝑉 and NDVI, obtained for orbit 74. The linear fits between the two sets of data are shown in purple, with the dashed lines
representing the confidence interval with a confidence level of 95%. The measured coefficient of determination 𝑅2 for each case is displayed. To be able to establish a comparison
between the two time series, with different acquisition dates, the coherence data was interpolated to the dates for the NDVI time series.
Table 3
Number of points used for the linear regressions discussed in Sections 3.3
and 3.6. These correspond to the number of data points in the NDVI time
series inside each crop growth cycle.

# of points # of points

Alfalfa 23 Pumpkin 22
Carrot 15 Quinoa 16
Chickpea 15 Rice 19
Cotton 18 Sugar beet 18
Maize 22 Sunflower 15
Onion 12 Sweet Potato 24
Pepper 20 Tomato 29
Potato 10 Wheat 18

As for the coherence difference between channels (𝛾𝑉 𝐻 − 𝛾𝑉 𝑉 ), the
selection of which coherence component to use has a clear impact
on the correlation with NDVI. For most crop types (13 out of 16),
the highest correlations with NDVI are obtained for 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 , usually
followed by 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 , and with 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 exhibiting the worst correlation.
On the one hand, addressing the bias for low coherence extends the
range of values for both channels (Fig. 7), with a greater relative impact
on VH, therefore helping to emphasise differences between them. On
the other hand, removing the contribution from the thermal noise (to
obtain 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙) eliminates one of the two terms that provide sensitivity
to the presence of vegetation: the signal-to-noise ratio. The fact that the
SNR depends on the polarimetric channel, because the received power
is different at VH and VV, makes the difference in SNR decorrelation at
VH and VV sensitive to the crop growth. Consequently, when this term
is compensated, the remaining difference is much less sensitive to the
vegetation growth and, as a result, the correlation with NDVI is smaller
13

than when the SNR is not compensated.
To understand the reason why the coherence is more correlated with
the NDVI for a certain channel, the potential influence of differences in
vegetation height, plant density, spatial homogeneity, and seasonality
among crops has been considered. To begin with, results do not show
any distinct trend for short or tall crop types. VV coherence is generally
more correlated with the NDVI than VH coherence. This difference is
smaller in the case of crops that present less density of plants or lower
fractional vegetation cover, such as carrot, chickpea, onion, pepper,
pumpkin, sweet potato and tomato. In some of these cases (carrot and
onion), the VH channel shows higher correlation values. Regarding the
influence of the dates of the growing season, it has been observed that
having an incomplete time series for the NDVI may have a noticeable
effect. The lack of data in February and March, due to clouds, results
in part of the crops having lower correlations. Considering the dates
for each growing season (Fig. 3), as well as Figs. 10 to 12, the crops
that grow early in the year obtain lower correlation values than the
rest. This is the case for carrot, chickpea, quinoa, sugar beet, sunflower
and wheat. In contrast, the values for 𝑅2 are higher for crops that
reach maturity around the middle of the year (maize, onion, pumpkin,
tomato) or later (cotton or pepper).

3.4. Comparison of satellite orbits

The correlation results obtained for the other two orbits are shown
in Tables 5 and 6, which correspond to orbits 147 and 154, respectively.
Despite providing values different to the ones measured at orbit 74, the
overall comments are equally valid for these orbits. First, most crop
types exhibit high correlation between the interferometric coherence
(in any of its forms) and NDVI. Second, the coherence at individual
channels is more correlated with NDVI than the difference between
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Table 4
Coefficient of determination (𝑅2) for the linear regressions between the radar time series and the NDVI time series for orbit 74. The best results for
each crop are highlighted in bold.

VV VH VH–VV 𝜎0𝑉 𝐻∕𝜎0𝑉 𝑉

𝛾𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (dB)

Alfalfa 0.01 0.01 0.01 −0.01 −0.02 0.00 0.07 0.19 0.08 0.20
Carrot 0.37 0.34 0.33 0.66 0.65 0.59 −0.02 0.10 −0.05 0.48
Chickpea 0.68 0.68 0.68 0.60 0.61 0.61 0.65 0.69 0.61 0.50
Cotton 0.93 0.94 0.93 0.84 0.85 0.87 0.83 0.84 0.86 −0.03
Fallow – – – – – – – – – –
Maize 0.88 0.88 0.88 0.75 0.76 0.81 0.74 0.78 0.60 0.68
Onion 0.65 0.64 0.64 0.83 0.83 0.81 0.35 0.46 0.23 0.79
Pepper 0.89 0.89 0.89 0.71 0.73 0.80 0.66 0.76 0.58 0.83
Potato 0.92 0.91 0.92 0.75 0.76 0.83 0.86 0.88 0.69 0.67
Pumpkin 0.80 0.81 0.82 0.77 0.78 0.79 0.71 0.78 0.65 0.76
Quinoa 0.82 0.82 0.82 0.68 0.68 0.76 0.61 0.72 0.44 0.39
Rice 0.18 0.19 0.20 0.07 0.09 0.03 0.16 0.09 0.39 0.80
Sugar beet 0.85 0.84 0.85 0.78 0.79 0.79 0.83 0.91 0.79 0.82
Sunflower 0.72 0.74 0.74 0.77 0.78 0.71 0.63 0.61 0.62 −0.02
Sweet Potato 0.78 0.78 0.78 0.72 0.73 0.77 0.67 0.80 0.65 0.77
Tomato 0.85 0.84 0.85 0.80 0.81 0.85 0.70 0.79 0.50 0.81
Wheat 0.72 0.72 0.72 0.52 0.54 0.59 0.61 0.63 0.47 0.70
Table 5
Coefficient of determination (𝑅2) for the linear regressions between the radar time series and the NDVI time series for orbit 147. The best results for
each crop are highlighted in bold.

VV VH VH–VV 𝜎0𝑉 𝐻∕𝜎0𝑉 𝑉

𝛾𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (dB)

Alfalfa 0.05 0.05 0.05 0.03 0.03 0.04 0.16 0.29 0.20 0.40
Carrot 0.52 0.49 0.49 0.71 0.70 0.68 −0.01 0.07 −0.03 0.63
Chickpea 0.69 0.70 0.70 0.63 0.64 0.64 0.73 0.72 0.72 0.69
Cotton 0.89 0.90 0.90 0.87 0.88 0.89 0.67 0.68 0.67 −0.04
Fallow – – – – – – – – – –
Maize 0.88 0.88 0.88 0.83 0.83 0.85 0.61 0.62 0.51 0.66
Onion 0.74 0.74 0.74 0.79 0.79 0.78 0.48 0.57 0.45 0.84
Pepper 0.84 0.84 0.84 0.73 0.75 0.76 0.58 0.66 0.57 0.85
Potato 0.72 0.72 0.73 0.58 0.60 0.63 0.62 0.74 0.57 0.82
Pumpkin 0.83 0.83 0.84 0.83 0.84 0.84 0.70 0.76 0.69 0.76
Quinoa 0.87 0.87 0.88 0.73 0.73 0.78 0.61 0.63 0.50 0.40
Rice 0.07 0.09 0.10 0.06 0.07 0.02 −0.06 −0.06 0.08 0.58
Sugar beet 0.87 0.87 0.87 0.80 0.81 0.81 0.82 0.89 0.81 0.77
Sunflower 0.63 0.65 0.65 0.70 0.71 0.69 0.53 0.52 0.52 0.20
Sweet Potato 0.76 0.77 0.77 0.68 0.70 0.69 0.63 0.73 0.60 0.82
Tomato 0.83 0.83 0.83 0.79 0.80 0.79 0.67 0.74 0.56 0.89
Wheat 0.67 0.68 0.68 0.61 0.62 0.64 0.55 0.57 0.51 0.70
Table 6
Coefficient of determination (𝑅2) for the linear regressions between the radar time series and the NDVI time series for orbit 154. The best results for
each crop are highlighted in bold.

VV VH VH–VV 𝜎0𝑉 𝐻∕𝜎0𝑉 𝑉

𝛾𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝛾𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (dB)

Alfalfa 0.03 0.03 0.03 0.02 0.02 0.03 0.06 0.14 0.10 0.26
Carrot 0.27 0.25 0.26 0.68 0.68 0.66 −0.08 −0.07 −0.06 0.25
Chickpea 0.62 0.62 0.63 0.63 0.64 0.66 0.56 0.58 0.48 0.62
Cotton 0.93 0.94 0.94 0.88 0.89 0.91 0.82 0.83 0.87 −0.04
Fallow – – – – – – – – – –
Maize 0.85 0.85 0.86 0.82 0.83 0.85 0.61 0.66 0.54 0.74
Onion 0.75 0.74 0.75 0.82 0.82 0.80 0.38 0.43 0.25 0.84
Pepper 0.81 0.82 0.82 0.68 0.69 0.72 0.68 0.78 0.73 0.71
Potato 0.83 0.84 0.85 0.73 0.75 0.80 0.55 0.63 0.34 0.58
Pumpkin 0.75 0.75 0.76 0.78 0.79 0.80 0.59 0.69 0.61 0.65
Quinoa 0.78 0.78 0.79 0.74 0.73 0.80 0.31 0.34 0.12 0.38
Rice 0.09 0.11 0.10 0.04 0.05 −0.03 0.04 −0.04 0.24 0.40
Sugar beet 0.83 0.83 0.83 0.80 0.81 0.82 0.72 0.81 0.71 0.82
Sunflower 0.75 0.77 0.77 0.82 0.83 0.82 0.66 0.64 0.61 −0.08
Sweet Potato 0.75 0.74 0.74 0.69 0.70 0.71 0.48 0.57 0.42 0.81
Tomato 0.86 0.85 0.86 0.84 0.85 0.85 0.64 0.74 0.54 0.90
Wheat 0.65 0.66 0.66 0.57 0.59 0.64 0.53 0.52 0.38 0.67
channels. Third, the three versions of coherence (biased, unbiased, and
temporal) perform equally for the individual channels.

It must be noted that the different acquisition conditions of the three
orbits (Table 2) introduce changes in the coherence which need further
14
explanation. In first place, the measurements for orbits 74 and 147 are
done in the evening, when wind speeds are the highest in this geograph-
ical location (SIAR, 2022), whereas the images of orbit 154 are acquired
at 6 a.m., which is a time in the day characterised by absence of wind.
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Fig. 15. Examples of coherence time series for different orbits. The curves correspond to 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 for VH, VV, and VH–VV.
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The presence of wind increases the temporal decorrelation caused by
vegetation due to the movement induced in the plant elements. This
should produce higher coherences for orbit 154 than for the other
two. Additionally, each orbit has a different incidence angle (Table 2)
which affects the combination or balance of radar responses from the
vegetation and the ground. The smaller angles correspond to the steeper
observations, for which there is more backscatter from the ground.
Contrarily, the larger angles correspond to shallower incidences, for
which the backscatter from the vegetation tends to dominate. As a
result, one expects to measure higher coherence values at the steeper
incidence angles, since the ground is more stable and hence less prone
to temporal decorrelation. Regarding the backscattering ratio, the data
measured at the shallowest incidence angle (orbit 147) are the most
correlated with NDVI, which is a direct consequence of the mentioned
balance of the vegetation and ground responses as a function of the
incidence angle.

Fig. 15 exemplifies the effect of the observation conditions in the
coherence measurements for two different crop types. The curves of
each crop show qualitatively the same behaviour in all orbits: the
increase and decrease of the curves occur at the same dates and with
similar slopes, VH–VV is nearly zero (VV and VH are very similar)
around mid-season, and they seem to share the same sources of fluc-
tuations, evidenced by sharp changes in values outside the period of
crop growth, for example, around days 75 and 315. However, there are
some differences: the VH coherence of orbit 74 shows values lower than
the other two orbits along the whole year, and when comparing the
difference between channels, orbit 74 shows a wider range of values,
followed by orbit 154, and then by orbit 147. In fact, while the values
of the VH–VV difference of coherence approach zero during mid-season
in all orbits, the difference between channels is bigger or smaller for
each orbit at the early and late stages of the crop cycle. The different
dynamic range has a direct effect on the observed correlations between
coherence and NDVI.

To better compare the results of the three orbits, the 𝑅2 values of all
rbits are shown in Table 7 for the case of 𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 . In general, when the
bservation is more vertical, the correlation with the NDVI improves.
he steepest angle corresponds to orbit 74, with the best results. The
bservations for orbit 154 were performed during the morning, with
early null wind speeds. Despite this potential benefit, orbit 74 remains
15

s the best overall case. b
3.5. Effect of the temporal baseline

While S1 offers a 6-day revisit time in Europe, its temporal resolu-
tion for most of the rest of the world is 12 days (Potin et al., 2021).
Due to this, other similar studies (Nasirzadehdizaji et al., 2021; Pandit
et al., 2022) have worked with a 12-day separation between images.
Additionally, S1-B suffered technical problems on the 23rd of December
of 2021, which caused it to stop operations. At the time of this research
work, only images from S1-A are available, starting from that date.

For these reasons, the effect of changing from a 6-day to a 12-day
temporal baseline has been assessed. In a process analogous to the steps
described in Sections 3.1 and 3.2, the time series for a 12-day time
interval have been built. For this, every second date from the data
was chosen, as if only the images from one of the two satellites were
available. The satellites used for each orbit were selected to have the
images at the same dates, so the comparison among orbits is possible
without side effects due to date differences between the acquisitions at
different orbits. These time series were compared to the NDVI in the
same way as described in Sections 3.3 and 3.4. The results in Table 8
show the correlation between the coherences measured with a 12-day
separation and the NDVI. The differences between Tables 7 and 8 serve
to illustrate how the temporal baseline affects the coherence in this
scenario.

For the majority of the crops, the 𝑅2 values decrease when using
the 12-day interval, but for 9 crops the values are still around or above
0.7, hence keeping a clear sensitivity to crop growth. As expected, the
increase in the temporal baseline reduces the coherence outside the
period of maximum growth of the crop, whereas it is as low as in the
6-day case during the interval with full vegetation development. For
this reason, there is a smaller dynamic range in the coherence values.
In addition, some isolated changes detected with a 6-day coherence are
missing in the 12-day case due to the reduced sampling rate. In some
cases, the level of correlation with NDVI remains very high (𝑅2 above
.85), such as for cotton, maize, tomato and sugar beet.

.6. Use of other radar vegetation indices

The level of correlation between the ratio of backscattering coeffi-
ient at the two polarisation channels (VH and VV) and the NDVI has

een examined in previous sections. The performance of the rest of the
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Table 7
Coefficient of determination (𝑅2) for the linear regressions between the unbiased coherence (𝛾𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 ) and the NDVI, for each orbit. The
regressions with the NDVI have been performed for each interferometric channel and the difference between them. The best results
for each crop are highlighted in bold.

ORBIT 74 ORBIT 147 ORBIT 154

𝛾𝑉 𝑉 𝛾𝑉 𝐻 𝛾𝑉 𝐻 − 𝛾𝑉 𝑉 𝛾𝑉 𝑉 𝛾𝑉 𝐻 𝛾𝑉 𝐻 − 𝛾𝑉 𝑉 𝛾𝑉 𝑉 𝛾𝑉 𝐻 𝛾𝑉 𝐻 − 𝛾𝑉 𝑉

Alfalfa 0.01 −0.02 0.19 0.05 0.03 0.29 0.03 0.02 0.14
Carrot 0.34 0.65 0.10 0.49 0.70 0.07 0.25 0.68 −0.07
Chickpea 0.68 0.61 0.69 0.70 0.64 0.72 0.62 0.64 0.58
Cotton 0.94 0.85 0.84 0.90 0.88 0.68 0.94 0.89 0.83
Fallow – – – – – – – – –
Maize 0.88 0.76 0.78 0.88 0.83 0.62 0.85 0.83 0.66
Onion 0.64 0.83 0.46 0.74 0.79 0.57 0.74 0.82 0.43
Pepper 0.89 0.73 0.76 0.84 0.75 0.66 0.82 0.69 0.78
Potato 0.91 0.76 0.88 0.72 0.60 0.74 0.84 0.75 0.63
Pumpkin 0.81 0.78 0.78 0.83 0.84 0.76 0.75 0.79 0.69
Quinoa 0.82 0.68 0.72 0.87 0.73 0.63 0.78 0.73 0.34
Rice 0.19 0.09 0.09 0.09 0.07 −0.06 0.11 0.05 −0.04
Sugar beet 0.84 0.79 0.91 0.87 0.81 0.89 0.83 0.81 0.81
Sunflower 0.74 0.78 0.61 0.65 0.71 0.52 0.77 0.83 0.64
Sweet Potato 0.78 0.73 0.80 0.77 0.70 0.73 0.74 0.70 0.57
Tomato 0.84 0.81 0.79 0.83 0.80 0.74 0.85 0.85 0.74
Wheat 0.72 0.54 0.63 0.68 0.62 0.57 0.66 0.59 0.52
Table 8
Coefficient of determination (𝑅2) for the linear regressions between the unbiased coherence with a 12-day temporal baseline and the
NDVI for each polarimetric channel and each of the orbits. These results are analogous to those in Table 7, which correspond to the
6-day interval.

ORBIT 74 ORBIT 147 ORBIT 154

𝛾𝑉 𝑉 𝛾𝑉 𝐻 𝛾𝑉 𝐻 − 𝛾𝑉 𝑉 𝛾𝑉 𝑉 𝛾𝑉 𝐻 𝛾𝑉 𝐻 − 𝛾𝑉 𝑉 𝛾𝑉 𝑉 𝛾𝑉 𝐻 𝛾𝑉 𝐻 − 𝛾𝑉 𝑉

Alfalfa 0.00 0.00 0.11 0.07 0.08 0.21 0.07 0.07 0.23
Carrot 0.17 0.54 0.12 0.39 0.63 −0.01 0.06 0.59 −0.08
Chickpea 0.51 0.31 0.54 0.52 0.41 0.56 0.43 0.34 0.53
Cotton 0.80 0.65 0.72 0.67 0.72 0.60 0.82 0.86 0.64
Fallow – – – – – – – – –
Maize 0.79 0.83 0.66 0.77 0.83 0.51 0.77 0.86 0.53
Onion 0.50 0.77 0.50 0.66 0.83 0.41 0.54 0.69 0.36
Pepper 0.54 0.50 0.57 0.58 0.58 0.60 0.62 0.78 0.53
Potato 0.21 0.16 0.53 −0.02 −0.05 0.36 −0.02 0.19 0.03
Pumpkin 0.55 0.68 0.52 0.50 0.46 0.60 0.53 0.67 0.42
Quinoa 0.80 0.62 0.76 0.75 0.81 0.45 0.58 0.63 0.45
Rice 0.03 −0.03 −0.03 0.10 0.05 −0.05 −0.04 −0.02 −0.02
Sugar beet 0.74 0.59 0.85 0.80 0.72 0.84 0.72 0.68 0.78
Sunflower 0.57 0.57 0.50 0.49 0.49 0.44 0.58 0.56 0.54
Sweet Potato 0.58 0.62 0.59 0.74 0.63 0.77 0.58 0.70 0.41
Tomato 0.77 0.84 0.75 0.78 0.78 0.70 0.73 0.77 0.62
Wheat 0.58 0.36 0.58 0.54 0.45 0.48 0.55 0.46 0.54
backscatter-based radar VIs in this particular scope is analysed in this
section. For this purpose, the 𝑅2 values provided by the ratio (in both
dB and linear scale) and the rest of radar VIs are included in Table 9.

It can be seen how the values for 𝑅2 are quite similar for all the
indices, with maximum differences below 0.1. In fact, the descriptors
𝑚𝑐 , 𝜃𝑐 , 𝐻𝑐 and 𝐷𝑝𝑅𝑉 𝐼𝑐 are directly derived from the ratio in linear
scale, and the differences between using 𝜎0𝑉 𝐻∕𝜎0𝑉 𝑉 in linear or log-
arithmic scale are negligible in most cases. On the other hand, the
results for the DpRVI and the 𝐷𝑝𝑅𝑉 𝐼𝑐 are identical. In summary, apart
from small numerical differences, the main conclusions regarding the
performance of the backscattering ratio can be adopted also for the rest
of backscatter-based VIs.

4. Discussion

This work obviously constitutes an extension of previous studies
in which repeat-pass coherence was explored for crop monitoring or
classification. With respect to the early works in this domain (Weg-
muller and Werner, 1997; Strozzi et al., 2000; Engdahl et al., 2001;
Blaes and Defourny, 2003; Engdahl and Hyyppä, 2003) here we have
exploited Sentinel-1 to gather a one-year long time series of coherence
measured with a 6-day temporal baseline, hence using a much more
16

complete dataset than those available with tandem ERS data, which
consisted of only a few acquisitions. Regarding the more recent works
based on Sentinel-1 data (Mestre-Quereda et al., 2020; Nikaein et al.,
2021; Nasirzadehdizaji et al., 2021; Pandit et al., 2022), the additions
are relevant in a wide range of aspects. The first and most important
novelty is the quantitative characterisation of coherence as a vegetation
index, for which its correlation with NDVI (the most widely used index)
has been measured. The performance of coherence as a VI has been
tested for 16 crop classes which comprise a large variety of vegetation
features. Another novelty with respect to previous works is the analysis
of the coherence measured at the two available channels, VV and VH, as
well as their difference, in order to identify the most sensitive feature.
In addition, the separation of the two decorrelation sources (thermal
noise and temporal) which provide sensitivity to the crop growth has
been undertaken for the first time for this purpose. In order to provide
an exhaustive study on the applicability of S1 coherence as a vegetation
index, the influence of the orbit, i.e. incidence angle and acquisition
time, has been assessed by using 3 different datasets. Finally, the effect
of the temporal baseline, i.e. 6 or 12 days, has been analysed. In
summary, a significant number of new insights have been provided by
this work with respect to the literature. The most relevant findings are
discussed in the rest of this section.

To start the discussion of the results it is important to understand

that optical and SAR imagery are based in different physical principles
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Table 9
Coefficient of determination (𝑅2) for the linear regressions between different radar vegetation indices and the NDVI, for orbit
74. The best results for each crop are highlighted in bold.

RVI DpRVI 𝐷𝑝𝑅𝑉 𝐼𝑐
𝜎0𝑉 𝐻

𝜎0𝑉 𝑉
(dB) 𝜎0𝑉 𝐻

𝜎0𝑉 𝑉
(lin) 𝑚𝑐 𝜃𝑐 𝐻𝑐

Alfalfa 0,21 0,20 0,20 0,20 0,22 0,21 0,23 0,19
Carrot 0,49 0,48 0,48 0,48 0,50 0,49 0,50 0,46
Chickpea 0,50 0,50 0,50 0,50 0,47 0,50 0,44 0,53
Cotton −0,05 −0,04 −0,04 −0,03 −0,06 −0,05 −0,06 −0,02
Fallow – – – – – – – –
Maize 0,71 0,72 0,72 0,68 0,70 0,71 0,69 0,70
Onion 0,79 0,78 0,78 0,79 0,80 0,79 0,80 0,77
Pepper 0,86 0,86 0,86 0,83 0,86 0,86 0,86 0,86
Potato 0,66 0,66 0,66 0,67 0,64 0,66 0,61 0,69
Pumpkin 0,78 0,79 0,79 0,76 0,78 0,78 0,77 0,79
Quinoa 0,38 0,38 0,38 0,39 0,37 0,38 0,36 0,40
Rice 0,79 0,80 0,80 0,80 0,79 0,79 0,78 0,78
Sugar beet 0,85 0,84 0,84 0,82 0,84 0,85 0,82 0,86
Sunflower −0,03 −0,02 −0,02 −0,02 −0,03 −0,03 −0,04 −0,02
Sweet Potato 0,81 0,83 0,83 0,77 0,80 0,81 0,77 0,83
Tomato 0,88 0,86 0,86 0,81 0,90 0,88 0,91 0,83
Wheat 0,70 0,74 0,74 0,70 0,69 0,70 0,68 0,71
and surface characteristics, and thus, the NDVI exhibits different sen-
sitivity on the evolution of vegetation and its own limitations. It tends
to saturate in scenes with a large amount of vegetation, for which it is
not sensitive to small changes, and, instead, it is sensitive to the ground
when there is low vegetation cover (Huete, 1988). Another clear issue
is the limited availability of data due to the presence of clouds, as
observed in Section 3.3. Consequently, the correlations obtained for
coherence and backscatter ratio with respect to the NDVI need to
be properly interpreted and are limited to the data available in the
study case. The interpretation is based on using the NDVI as a direct
vegetation descriptor, but the applicability of coherence as a vegetation
index would need to be further studied by comparing coherence with
actual physical descriptors of the crop, like LAI, biomass, or any other
relevant physical feature. Regarding the data availability, additional
analyses over other years would help confirm the current observations
and, in case of less cloud coverage, fix the potential loss of correlation
due to missing data.

A key aspect that has been pointed out in this work is that coherence
values measured at both VV and VH channels are well correlated to
NDVI (𝑅2 > 0.7) for most crop types, and which one is best depends on
the crop properties. The VV channel has proved to better describe the
development of most crops, although the VH channel is comparably or
better correlated for less dense crops. Therefore, the dual-pol operation
of Sentinel-1 is an important asset to exploit coherence as a vegetation
index, since the performance of one channel or another depends on the
crop type.

In addition, we have found that the difference between the coher-
ence measured at the two channels is also correlated to NDVI, but in
a clearly lower degree than the channels separately. Consequently, its
use is not recommended for crop monitoring.

From a broader point of view, a final purpose of this study was to ex-
plore further the potential of using radar data as a tool for agricultural
monitoring. Results show that interferometric coherence can, in many
cases, emulate the behaviour of the NDVI better than the backscat-
tering time series. Therefore, both information sources (intensity and
interferometry) appear to be complementary, as it was demonstrated
previously for crop-type mapping (Mestre-Quereda et al., 2020). A
notable example is rice, where the changes in the scene properties are
better described by backscattering than by coherence. In the literature,
the good correlation between SAR and optical time series has been
exploited for data fusion, as well as for time series gap filling, i.e., for
generating values for the optical sensors whenever they are missing,
e.g., due to cloud presence. For instance, some works show the esti-
mation of time series of vegetation parameters (derived initially from
optical imagery) by using either SAR backscattered intensity (Mazza
et al., 2018) or the RVI (Pipia et al., 2019). In addition, Efremova
17

et al. (2022) combined S1 with S2 images to produce time series of soil
moisture estimations by avoiding gaps. In this vein, the interferometric
coherence measured with S1 could also be exploited for these purposes,
since we found it to be well correlated with NDVI. The performance of
this approach is left for a future study.

Attending to the practical usage of S1 coherence for crop moni-
toring, we have evaluated the necessity to take into account the bias
estimation due to finite ENL and the impact of SNR decorrelation. Re-
sults have shown that the extra processing steps required to cope with
these features are not worth because they have not shown noticeable
improvements when trying to correlate the coherence time series with
the NDVI curves. Therefore, the coherence directly estimated from the
SLC images can be readily exploited. However, it must be noted that
the ENL, and hence the estimation window size, must be large enough
to ensure the measurable values to be low (below 0.4 and down to 0.2).
Otherwise, the dynamic range will be severely affected and coherence
would not be sensitive to scene changes along the growing cycle. If
the final application is designed to monitor crops at field level, the
estimation window can be locally adapted by exploiting the known field
boundaries, as it is recommended by Nikaein et al. (2021).

The correlations obtained for different orbits have shown the influ-
ence of the observation conditions upon the usage of coherence as a
vegetation index. The increase in coherence achieved by some orbits
during the initial and final stages of the growing season entails an
increased dynamic range, which translates in better correlation with
the NDVI and, therefore, a better performance as a vegetation index. It
has been seen how an orbit with an acquisition time for a moment of the
day with slower winds, as well as a steeper observation, is preferable,
with the second factor having the biggest influence.

Finally, the use of a longer temporal baseline (12 days instead of
6 days) resulted in generally worse correlations with NDVI. However,
most of the crops still provided high 𝑅2 values (around or above 0.7).
This is a key positive aspect because 12 days is the nominal baseline
outside Europe, as well as over Europe since the end of 2021 due to
the failure of S1-B.

5. Conclusions

The main conclusions of the analysis carried out in this work are
summarised in the next bullet points:

• Time series of 6-day repeat-pass coherence from S1 data, mea-
sured at both VV and VH channels, can be effectively applied as
vegetation indices for agricultural crop monitoring.

• VV coherence is overall the best option at describing the evolution
of crops, while VH is better suited for certain less dense crop types

(carrot and onion).
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• In case more than one orbit is available, the orbit with steepest
observation is preferable.

• The processes of bias removal and the separation of sources of
decorrelation are not necessary, since they do not provide notice-
able improvements when working with VV and VH individually.
Therefore, the measured coherence can be directly exploited with-
out any additional processing, provided that the ENL is large
enough.

• Interferometric coherence and backscatter (image intensity) pro-
vide complementary information as vegetation indices and could
be jointly exploited.

• The performance obtained with 12-day temporal baseline is worse
than with 6 days but still acceptable for monitoring most of the
crops present in the test site.

In this work the performance of coherence as a vegetation index
as been evaluated by correlating it with another vegetation index,
DVI. Obviously, the actual contribution of coherence still needs to
e studied by comparing it with crop biophysical variables measured
n field campaigns. In addition, extending the study to different years
nd in different geographical locations would help to confirm and fully
ssess the potential of coherence as a vegetation index for agriculture.
elated to this, recent initiatives to generate wide scale (even global)
oherence maps with S1 data, as the one conducted by Kellndorfer
t al. (2022), would help users to adopt this type of data for new
pplications, like crop monitoring, for which it has been used much
ess than backscatter.
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