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Abstract 

Wetlands are home to a great variety of flora and fauna species and provide several unique 

environmental functions, such as controlling floods, improving water-quality, supporting wildlife 

habitat, and shoreline stabilization. Detailed information on spatial distribution of wetland classes 

is crucial for sustainable management and resource assessment. Furthermore, hydrological 

monitoring of wetlands is also important for maintaining and preserving the habitat of various 

plant and animal species. This thesis investigates the existing knowledge and technological 

challenges associated with wetland mapping and monitoring and evaluates the limitations of the 

methodologies that have been developed to date. The study also proposes new methods to improve 

the characterization of these productive ecosystems using advanced remote sensing (RS) tools and 

data. Specifically, a comprehensive literature review on wetland monitoring using Synthetic 

Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques is provided.  The application 

of the InSAR technique for wetland mapping provides the following advantages: (i) the high 

sensitivity of interferometric coherence to land cover changes is taken into account and (ii) the 

exploitation of interferometric coherence for wetland classification further enhances the 

discrimination between similar wetland classes. A statistical analysis of the interferometric 

coherence and SAR backscattering variation of Canadian wetlands, which are ignored in the 

literature, is carried out using multi-temporal, multi-frequency, and multi-polarization SAR data. 

The study also examines the capability of compact polarimetry (CP) SAR data, which will be 

collected by the upcoming RADARSAT Constellation Mission (RCM) and will constitute the 

main source of SAR observation in Canada, for wetland mapping. The research in this dissertation 

proposes a methodology for wetland classification using the synergistic use of intensity, 

polarimetry, and interferometry features using a novel classification framework. Finally, this work 
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introduces a novel model based on the deep convolutional neural network (CNN) for wetland 

classification that can be trained in an end-to-end scheme and is specifically designed for the 

classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The results of the 

proposed methods are promising and will significantly contribute to the ongoing efforts of 

conservation strategies for wetlands and monitoring changes. The approaches presented in this 

thesis serve as frameworks, progressing towards an operational methodology for mapping wetland 

complexes in Canada, as well as other wetlands worldwide with similar ecological characteristics. 

Keywords: Wetland, remote sensing, Synthetic Aperture Radar (SAR), Interferometric SAR 

(InSAR), coherence, compact polarimetry, RADARSAT Constellation Mission (RCM), 

polarimetric SAR (PolSAR), deep convolutional neural network (CNN). 
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Chapter 1. Introduction 

1.1. Overview  

A simple, straightforward definition of wetland is “land that is saturated with water long enough 

to promote wetland or aquatic processes as indicated by poorly drained soils, hydrophytic 

vegetation and various kind of biological activity adapted to wet environment” [1]. Wetlands 

provide a variety of environmental functions, including a desirable habitat for both plant and 

animal species, freshwater, food supply, water purification, flood control, nutrient retention and 

transformation, carbon sequestration, as well as climate change and erosion mitigation [2]. Despite 

these benefits, wetlands have been increasingly degraded due to both anthropogenic process, such 

as extensive agriculture, oil spills, plant and animal introduction, change in land cover and water 

use, urbanization, industrial and infrastructural developments [3], as well as natural processes, 

such as sea level rise, global warming, changes in precipitation patterns, costal plain subsidence, 

and coastal erosion [2]. Furthermore, the loss of wetland hydrological connectivity due to human 

activities leads to massive destruction of coastal wetlands [4]. Such ecosystem disturbances could 

ultimately result in serious environmental damage and loss of wetland production, as well as long-

term human health issues.  

Since 1884, the U.S government included the locations of marshes and swamps (i.e., two common 

wetland classes) among other features in their topographic maps. The production of the first 

wetland inventory maps in the North America date back to the early 1910s, when the U.S. 

department of Agriculture (USDA) produced the first two national wetland inventory maps for the 

purpose of wetland reclamation for agriculture (e.g., ground surveying) [5]. Survey of peats and 

muck were also conducted by the USDA on their soil survey maps in the early 1900s.  
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Importantly, much effort has been expended in reclamation of wetlands to fulfill human needs 

(e.g., feeding livestock and agricultural activities). The economical and environmental values of 

wetland ecosystems were recognized after a century of reclamation of wetlands in American 

society by government wildlife biologists in the 1950s. Since that time, several activities have been 

initiated for the preservation of these valuable ecosystems. For example, the Ramsar Convention 

on Wetlands was the first modern global intergovernmental treaties on the sustainable management 

of these important natural resources. Specifically, to support global preservation of wetlands, this 

Convention has been in place since 1971, wherein the main purpose is “the conservation and wise 

use of all wetlands through local and national actions and international cooperation, as a 

contribution towards achieving sustainable development throughout the world” [6]. Over the years, 

several countries (163 nations as of January 2013) have joined the convention and demonstrated 

their commitments to wetland preservation.  

Over the last three decades, the advent of remote sensing data and tools has significantly 

contributed to the ongoing efforts of conservation strategies for wetlands. This is because the 

remoteness, vastness, and ever-changing nature of wetland ecosystems make traditional 

approaches to wetland mapping (e.g., ground surveying) laborious and costly. However, advanced 

remote sensing tools have addressed the intrinsic limitations of the traditional approaches. Remote 

sensing data have ameliorated our understanding of wetlands on a large-scale by offering more 

accurate and timely information for better preservation of these natural resources. Despite these 

benefits, wetland mapping using conventional remote sensing tools remains challenging, given the 

diversity and highly dynamic nature of wetlands, as well as the variability of the landscape they 

occupy. As such, more advanced remote sensing techniques are required to address these 

limitations.  
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1.2. Background  

Wetland mapping using the interpretation of aerial photography is the earliest attempt for the 

characterization of wetland ecosystems. These images have been collected since the 1800s and are 

still useful in validating classification results or preparing classification training data [2]. The 

flexibility of the aerial platform for collecting images at certain times is advantageous compared 

to the satellite platform [7]. These images are also characterized by high spatial resolution [8]. 

Nevertheless, the interpretation of aerial photography for wetland mapping is laborious [9], costly 

[10], and requires significant domain expertise [11], [12]. The low spectral resolution further 

hinders the effectiveness of such data for wetland vegetation mapping.  

Multispectral satellite images are the most common earth observation  

(EO) data for wetland mapping [2] and have been broadly applied in several studies [10], [13]. 

Multispectral data are advantageous compared to aerial imagery in terms of spectral resolution and 

could have spatial resolutions as accurate as those of aerial imagery [10], [14]. The infrared region 

of the electromagnetic spectrum is the most suitable portion for wetland mapping, given the high 

reflectance of vegetation and the strong absorption of water in this region. This enhances the 

contrast between water and vegetation, making it advantageous for wetland characterization [15], 

[16]. Multispectral imagery collected by Landsat missions has been extensively used for wetland 

classification, potentially due to the free-availability of such data [9], [14], [15], [17]. The other 

common satellite imagery used for wetland classification is data collected by the SPOT group (e.g., 

fine-to-moderate resolution sensors) [13], [18]. Nevertheless, several studies reported that spatial 

resolution of data collected by Landsat and SPOT precluded the identification of small-sized and 

complex wetland classes, resulting in mixed pixels [9], [19], [20]. Data collected at fine spatial 

resolution by IKONOS and Worldview have drawn attention for wetland mapping and shown 
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promising results in several studies [21], [22]. However, the expense of acquiring such data hinders 

their application for wetland classification on large-scales [23]. Despite these benefits and vast 

applications of multispectral imagery in several research efforts, such data are collected by passive 

sensors, which rely on sun illumination and weather condition [24]. These limitations hinder the 

regular and repetitive collection of such data for several wetland studies, especially for forested 

wetlands.  

Data collected by hyperspectral sensors are characterized by various narrow and continuous 

spectral bands located at the visible and infrared regions of the electromagnetic spectrum [2]. 

Hyperspectral data are advantageous in terms of spectral resolution compared to multispectral 

imagery, yet the former has inferior spatial resolution relative to the latter. This enhanced spectral 

resolution allows the identification of various materials based on their spectral signatures [25]. As 

such, several studies reported the capability of hyperspectral imagery for plant moisture stress 

analysis [26], water quality [27], and discrimination of various salt marsh vegetation types [25]. 

For example, Rosso et al. (2005) demonstrated the capability of hyperspectral imagery for mapping 

marsh vegetation using the spectral mixture analysis technique and multiple endmember spectral 

mixture analysis [28]. Compared to multispectral imagery, hyperspectral data have been less 

examined for wetland classification, possibly due to lower data availability, high spectral 

resolution, and poor spatial resolution [2]. Variation of the spectral signature of wetland classes 

with phenology [29], large data volume [27], and less developed and/or complex image processing 

algorithms [30] are other limitations of such data for wetland characterization. 

As mentioned earlier, optical remote sensing satellites have long been the main source of EO data 

for vegetation and wetland mapping [31], [32], yet cloud cover hinders the acquisition of such 

data. Consequently, as they are not impacted by solar radiation or weather conditions, Synthetic 
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Aperture Radar (SAR) sensors are of special interest, particularly in geographic regions with 

chronic cloud cover, such as Canada, Alaska, and tropical regions [33]. Furthermore, the capability 

of SAR to penetrate through vegetation and soil makes it advantageous for wetland and vegetation 

mapping [34]. The capability of SAR signals to detect and characterize wetland vegetation classes 

depends on their operating parameters, namely wavelength, polarization, and incidence angle. In 

particular, these characteristics of the SAR signal in combination with certain key specifications 

of ground targets, such as the dielectric property, surface roughness, and vegetation structure, 

determine the amount of the backscattering response by the SAR sensor. For example, the 

backscattering response from ground targets in wetland complexes, such as leaves, branches, 

trunks, and soils, is a function of the SAR signal properties, wherein ground targets with a 

relatively similar physical dimension to the incident wavelength produce the highest 

backscattering response [35].  Accordingly, it is beneficial to identify differences in the instrument 

specifications and to determine optimal parameters for the characterization of each wetland class. 

A comprehensive literature review on SAR operating parameters and their influences on the 

backscattering responses of the Canadian wetland classes are presented in Chapter 2.  

The image classification algorithm is another important factor that influences the accuracy of 

wetland classification [2]. Classification algorithms are broadly categorized into unsupervised and 

supervised algorithms, the latter of which is the most popular for land cover classification [36]. 

Unsupervised classification algorithms are advantageous when annotated ground-truth data are 

unavailable. In this case, pixels are automatically assigned to statistically similar clusters and 

stratified by class types according to the interpretation of the image analyst or mathematical 

correlation [36]. Generally, supervised algorithms are divided into parametric and non-parametric 

approaches [37]. In the parametric approach, the statistical distribution of input data is taken into 
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account and training data are required to execute the classifier. The most common parametric 

supervised classification algorithms are the minimum distance (MD) and maximum likelihood 

(ML) classifiers [38]. Although these traditional classification algorithms have shown promising 

results in several studies, especially using multispectral imagery (e.g., [39]–[41]), their capability 

is limited by the distribution of input data.  

Non-parametric classification algorithms, such as decision trees (DT), the support vector machine 

(SVM), and random forest (RF), are advantageous for wetland and land cover mapping, as they 

addressed the limitations of the traditional parametric approaches [41], [42]. In particular, they are 

independent of input data distribution and can handle large multi-temporal data from various 

sources (i.e., different SAR and optical data). DT is comprised of binary decisions, which 

determine the class of either an object or pixel. In particular, the classifier uses training data to 

build a bank of binary decisions using input data. The root node of each decision tree comprises 

both the training data and the possible classes [42]. At each node, the best splitting is determined 

to separate the data into classes and this procedure continues until the terminal nodes contain one 

class. The DT classifier has shown promising results for wetland classification using optical [43], 

SAR [44], and the combination of both types of data [45]. Random forest (RF), which is a 

sophisticated version of DT, is an ensemble classifier that utilizes a set of Classification And 

Regression Trees (CARTs) to make a prediction [46]. RF uses the bootstrap aggregating (bagging) 

approach to grow trees using a random sample from the given training data and determines the 

best splitting of the nodes by minimizing the correlation between trees. A label is then assigned to 

each pixel according to the majority vote of trees. RF was found to be advantageous relative to DT 

in terms of classification accuracy  and is easier to execute compared to SVM [47]. In this research, 
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both RF and SVM classifiers were used for classification and a detailed description of these 

algorithms will be presented in Chapters 3, 4, and 5.  

Despite the great capability of non-parametric approaches for land cover mapping, the accuracy of 

pixel-based classification algorithms may be less than adequate, as they are based only on the 

statistical characteristics of single pixels [48]. Accordingly, object-based approaches that consider 

both spectral and contextual information have drawn attention for land cover mapping [49]. This 

is of particular importance for the classification of complex land cover ecosystems, such as 

wetlands, wherein spectral/backscattering similarity of land cover classes affect the accuracy of 

pixel-based approaches. Incorporating different features, such as object size and shape, combining 

multiple sources of data with different spectral and spatial resolutions, and utilizing spatial and 

hierarchical relations of neighbouring pixels are the main advantages of the object-based approach 

[50]. As such, the success of wetland mapping using an object-based approach with various EO 

data has been demonstrated in recent studies [21], [51], [52].  

To decrease ambiguity within backscattering/spectrally similar wetland classes and increase the 

classification accuracy, conventional classification algorithms (e.g., DT and RF) rely on extracting 

a large number of input features. The process of extracting a large number of features is labor-

intensive and requires careful engineering design and significant domain expertise. This is because 

the effectiveness of each feature in a particular problem is unknown a priori [53]. Furthermore, 

these hand-crafted, low-level features provide insufficient capability for distinguishing complex 

land cover units and for generalization. The latter means that these low-level features are site- and 

data-dependent and, although well suited for a particular problem, they are less useful in many 

other cases.   
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Inspired by the great potential of the human brain for object recognition, Deep Learning (DL) has 

gained highlighted interests within the remote sensing community for several tasks, such as 

speckle reduction [54], object detection [55], and classification [31]. The DL methods are 

characterized by their deep multilayer structures that allow extraction of robust, invariant, and 

high-level features of data. Furthermore, the end-to-end training scheme is another advantage of 

these approaches. This means that they have the capability to learn a series of abstract hierarchical 

features from raw input data and to provide a final, task-specific output, thus removing the heuristic 

feature design [53]. This is advantageous relative to shallow-structured machine learning tools 

(e.g., SVM and RF), which incorporate only the low-level features of data into the semantic 

labelling scheme. 

1.3. Research motivations  

Canada contains 24% of the world’s wetlands within its borders, corresponding to approximately 

1.5 million km2. Furthermore, 22 to 28% of Canadian lands are covered by wetlands [56]. 

Accordingly, wetlands are considered a national environmental health indicator in Canada 

according to the National Round Table on the Environment and Economy [57]. After joining the 

Ramsar Convention in 1981, Canada established the National Wetland Policy in 1991 [6]. 

Subsequently, the importance of wetland conservation has been recognized in Canada and the 

production of wetland inventories has been initiated in several provinces.  

Newfoundland and Labrador (NL) is among the richest Canadian provinces in terms of different 

types of wetlands; however, these valuable ecosystems have been less investigated in this province. 

This is attributable to the remoteness, vastness, and ever-changing nature of wetlands in NL. Given 

the current need for up-to-date information of wetland classes in this province, satellite remote 

sensing data and tools are the most efficient approach for wetland characterization. Due to chronic 
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cloud cover in NL, data collected by SAR sensors are the most reliable source of EO data for this 

purpose. However, several challenges still remain, the most important of which may be the  

backscattering similarity of wetland classes, which hinders the effectiveness of conventional 

classification algorithms. Discrimination of these similar wetland classes with a sufficient (class-

based) classification accuracy using satellite imagery is of great concern in the literature [33], [34]. 

Accordingly, the identification of the most appropriate SAR frequency and polarization during 

specific times in the growing season can contribute to the success of discriminating similar wetland 

classes. The research presented in this dissertation addressed the overarching goal of using SAR 

to monitor wetland complexes through two different, but relevant, aspects: wetland mapping and 

wetland hydrological monitoring. These are dependent as wetland classes significantly vary in 

their hydrology and vegetation. The goal has been to adapt and improve existing methods and 

develop new methods for analyzing and processing SAR data. Furthermore, this research 

investigates the influence of various SAR features extracted from different SAR frequencies on 

the accuracy of wetland classification.   

1.4. Scope and objectives   

The scope of this research is to exploit the capability of interferometry and polarimetric data and 

techniques to improve wetland mapping and monitoring in Canada using advanced remote sensing 

tools. This research also presents a comprehensive literature review on wetland monitoring using 

various interferometric techniques, which has been ignored in the literature. Furthermore, the 

literature reveals that in addition to the capability of the interferometry technique for water level 

monitoring [58]–[60], interferometric coherence also has a diagnostic function and represents high 

sensitivity to land cover changes [61], which is of great value for discriminating similar wetland 
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classes. The methodologies developed in this research are useful for mapping wetlands in other 

Canadian provinces, and potentially wetlands elsewhere with similar ecological characteristics.  

Five chapters (published papers) compose the research contribution of this thesis, and the main 

objectives are to: 

i. present a comprehensive literature review of studies that used the interferometric SAR 

technique and its products for wetland mapping and monitoring (Chapter 1); 

ii. investigate the coherence and SAR backscattering variations of Canadian wetland classes 

using multi-temporal, multi-frequency, and multi-polarization SAR data (Chapter 2);  

iii. identify the discrimination capability of interferometric coherence and examine the 

synergy of interferometry with polarimetry and intensity for wetland classification 

(Chapters 2 and 3); 

iv. determine the influence of highly correlated features on the accuracy of wetland 

classification (Chapter 3); 

v. optimize both the type and number of input features to improve the accuracy of wetland 

classification using an innovative classification scheme (Chapter 3);  

vi. evaluate the capability of compact polarimetric (CP) SAR data for the characterization of 

Canadian wetland classes (Chapter 4); 

vii. propose a new fully convolutional network (FCN) that is specifically designed for wetland 

classification using SAR imagery (Chapter 5).   

1.5. Contribution and novelty   

This section highlights the contributions of this research and its significance in improving the 

existing methods for mapping Canadian wetlands. One of the most important objectives of this 
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research was to integrate interferometry and polarimetry techniques to determine novel methods 

and tools, which are useful to mitigate identified challenges and address the main objectives of 

this research. The following is a summary of the contributions and novelties of this study. The 

details of each identified contribution are presented in the following, relevant chapters of the thesis. 

 1.5.1. InSAR wetland  

Despite the vast application of polarimtric SAR for wetland mapping and monitoring in a variety 

of applications, such as wetland change detection [62] and classification [63], and several literature 

review papers with this topic (polarimetric SAR) (e.g., [33], [64], [65]), the application of InSAR 

for wetland monitoring is substantially limited to a few case studies in the United States (e.g., [59], 

[60]) and China [66]. Accordingly, there is a need to identify the main challenges associated with 

this technique for mapping wetlands elsewhere. With the main focus on InSAR wetlands, this 

research presents a comprehensive literature review of SAR operating parameters and their 

influence on behaviour of wetland classes. To the best of the author’s knowledge, this is the first 

literature review of wetland mapping with a focus on the InSAR technique and its products.  More 

details are provided in Chapter 2.   

1.5.2. Interferometric coherence and SAR backscattering variation of Canadian wetland   

Although Canada contains 24% of the world wetlands, no wetland mapping research has yet been 

carried out to investigate the variation of interferometric coherence as a function of SAR operating 

parameters (e.g., SAR frequency and polarization). Therefore, this study fills this gap by analyzing 

statistical variations in the coherence of Canadian wetland classes. Within a multi-temporal 

framework, this work provides the first insight into the application of the InSAR technique for 

monitoring wetland complexes in Canada. More details are provided in Chapter 3. Furthermore, 

by taking into account that both SAR backscatter and coherence are responsive to the flooding 
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status of vegetation in wetland complexes, this study examines the relationship between these two 

important SAR variables and identifies the discrimination capability provided by each component 

for separating various wetland classes. More details are provided in Chapters 3 and 4. 

1.5.3. Incorporating interferometric coherence into the classification scheme 

Classification of wetland classes with similar backscattering is challenging and often requires the 

combined use of several features that take into account various characteristics of mapping 

ecosystems. Several studies examined the capability of SAR backscattering intensity and 

polarimetric features, or the integration of both, for wetland classification. However, one of the 

main innovative aspects of this research is the application of interferometric coherence for 

classification of wetlands and the joint use of coherence with intensity and polarimetric features. 

Each feature is responsive to the specific characteristics of ground targets. For example, SAR 

intensity is primarily an indicator of ground conditions due to its sensitivity to surface roughness 

and dielectric constant [67]. Polarimetric features characterize the type of the ground target 

scattering mechanism [34], whereas interferometric coherence indicates the mechanical stability 

of the ground targets [61]. Thus, the synergistic use of these features could enhance semantic land 

cover information, which is beneficial for wetland characterization. The contribution of this work 

in terms of using interferometric coherence for wetland applications are twofold: (1) variations of 

interferometric coherence as a function of multi-temporal, multi-frequency, and multi-polarization 

SAR observations are comprehensively investigated, which is of great use for the hydrological 

monitoring of wetlands; and (2) a new application of interferometric coherence is introduced for 

wetland classification, as this feature is responsive to different characteristics of land cover 

compared to other conventional SAR features (i.e., intensity and polarimetry). More details are 

provided in Chapters 3 and 4.   
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1.5.4. Optimization of the number and types of input features for wetland classification 

One of the common approaches for improving the discrimination capability of classes with similar 

backscattering (e.g., wetland classes) is to increase the number of input features. However, several 

of these input features are highly correlated and contain redundant information, meaning that 

employing such input features insignificantly improves overall classification accuracy, as reported 

in the literature (e.g., [68]). Accordingly, the author introduces a novel approach to optimize both 

the type and number of input features to remove redundant, less useful features and enhance the 

discrimination capability of remaining features.  More details are documented in Chapter 4.  

1.5.5. Wetland classification using Compact Polarimetric (CP) SAR data 

The RADARSAT Constellation Mission (RCM), the successor mission of RADARSAT-2, is 

planned to be launched in 2019 and will be the main source of SAR observations in Canada. The 

main purposes of the RCM mission are to ensure data continuity for RADARSAT users and 

increase the operational capability by collecting sub-weekly data (i.e., a four day repeat cycle) for 

various applications, such as maritime surveillance, disaster management, and ecosystem 

monitoring (e.g., wetlands and agricultural applications) [69]. The successful application of such 

important EO data for wetland characterization requires understanding the data collected by such 

a SAR mission. Identifying the ability of such data is important, since it must be compared with 

that of RADASAT-2. A review of the existing literature in this area revealed that while the 

capability of simulated CP SAR data has been extensively examined for sea ice characterization 

(e.g., [70], [71]), its potential has been underrepresented for wetland classification. Accordingly, 

this research comprehensively examines the discrimination capability of extracted features from 

CP SAR data both qualitatively and quantitatively and compares them with those of RADASAT-

2 features. More details are provided in Chapter 5. 
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1.5.6. Wetland classification using deep learning 

Most recently, deep learning (DL) and, in particular, deep convolutional neural network (CNN) 

have drawn attention within the remote sensing community for a variety of applications, including 

object detection [72] and classification [31]. Despite the vast applications of CNNs for several 

tasks, the following shortcomings still remain for their application, since most studies: 

i. focused on the classification of very high resolution aerial and optical imagery from the 

limited publicly available datasets compared to SAR imagery, yet the former data are not 

available in most remote sensing studies;  

ii. classified typical land cover classes (e.g., land, water, and forest) rather than complex land 

cover classes with similar backscattering.  

The novelty of this research is to propose a new fully convolutional network (FCN) that is trained 

in an end-to-end learning scheme and is specifically designed for the classification of wetland 

classes using SAR imagery. More discussion on the applications of CNN and FCN for land cover 

classification and the advantages and novelty of the proposed FCN model are provided in Chapter 

6. 

 

1.6. Organization of the thesis 

This PhD thesis is manuscript-based, including five peer-reviewed journal papers. Table 1.1. 

presents the published papers during the course of this research study.  
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Table 1.1. Organization of the thesis 

Chapter title Paper title 

Chapter 1: Introduction  N/A 

Chapter 2: SAR and InSAR 

wetlands 

Wetland water level monitoring using interferometric synthetic 

aperture radar (InSAR): A review. Canadian Journal of Remote 

Sensing, 44(4), pp.247-262, (2018). 

Chapter 3: Coherence and SAR 

backscatter analyses of Canadian 

wetlands 

Multi-temporal, multi-frequency, and multi-polarization coherence 

and SAR backscatter analysis of wetlands. ISPRS journal of 

photogrammetry and remote sensing, 142, pp.78-93, (2018). 

Chapter 4: Wetland classification  An efficient feature optimization for wetland mapping by synergistic 

use of SAR intensity, interferometry, and polarimetry 

data. International journal of applied earth observation and 

geoinformation, 73, pp.450-462, (2018). 

Chapter 5: Compact Polarimetric 

SAR responses to Canadian 

wetlands  

Full and Simulated Compact Polarimetry SAR Responses to 

Canadian Wetlands: Separability Analysis and Classification, 

Remote Sensing, 11(5), p. 516, (2019).  

Chapter 6: Fully Convolutional 

Network (FCN) for wetland 

classification 

A new fully convolutional neural network for semantic segmentation 

of polarimetric SAR imagery in complex land cover 

ecosystem. ISPRS Journal of Photogrammetry and Remote 

Sensing, 151, pp.223-236, (2019). 

Chapter 7: Summary, 

conclusions, and future outlook  

N/A 

The outline of remaining chapters is described below: 

Chapter 2 presents a comprehensive literature review on SAR operating parameters and their 

influences on wetland classes. Additionally, all existing studies that used the InSAR technique and 

its product for wetland characterization were evaluated in the time interval from 2000 to 2016. 
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Advantages and disadvantages of using SAR and InSAR for wetland mapping are discussed in 

detail and potential solutions are provided.  

Next, a statistical variation of the interferometric coherence of typical Canadian wetland classes 

using SAR data collected by three well-known SAR missions, namely ALOS PALSAR-1 L-band, 

RADARSAT-2 C-band, and TerraSAR-X is presented in Chapter 3. This chapter also highlights 

the great significance of interferometric coherence for further discrimination of wetland classes.  

Chapter 4 contains an investigation of the added value of coherence as an additional input to 

wetland mapping and its synergy with intensity and polarimetry features. In this chapter, the author 

discusses the problems associated with correlated features in classifying a complex land cover 

ecosystem and their influence on the accuracy of the final results. To address these limitations and 

further increase the classification accuracy, a novel classification scheme is proposed.  

The capability of extracted features from full polarimetry and simulated CP SAR data for 

discriminating wetland classes is investigated in Chapter 5. The features providing the best 

discrimination are then identified and used in an object-based classification scheme.  

A novel FCN architecture for classification of wetland complexes using SAR features is proposed 

in Chapter 6. The capability of the proposed architecture is compared with several state-of-the-art 

FCNs, such as FCN-32s, FCN-16s, FCN-8s, and SegNet.  

Finally, this dissertation concludes with Chapter 7. Recommendations and directions of future 

research are also presented in in this chapter.  

1.7. Other publications and book chapter 

In addition to the above-mentioned journal papers, the candidate published or contributed to the 

following peer-reviewed journal papers, either as author or co-author, during her PhD program. 
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• Mohammadimanesh, F., Salehi, B., Mahdianpari, M., English, J., Chamberland, J. and 

Alasset, P.J., 2019. Monitoring surface changes in discontinuous permafrost terrain using 

small baseline SAR interferometry, object-based classification, and geological features: a 

case study from Mayo, Yukon Territory, Canada. GIScience & Remote Sensing, 56(4), 

pp.485-510. 

• Mahdianpari, M., Salehi, B., Mohammadimanesh, F. and Motagh, M., 2017. Random 

forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and 

TerraSAR-X imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 

pp.13-31. 

• Mahdianpari, M., Salehi, B., Mohammadimanesh, F. and Brisco, B., 2017. An 

assessment of simulated compact polarimetric SAR data for wetland classification using 

random forest algorithm. Canadian Journal of Remote Sensing, 43(5), pp.468-484. 

• Mahdianpari, M., Salehi, B. and Mohammadimanesh, F., 2017. The effect of PolSAR 

image de-speckling on wetland classification: introducing a new adaptive 

method. Canadian Journal of Remote Sensing, 43(5), pp.485-503. 

• Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Mahdavi, S., Amani, 

M. and Granger, J.E., 2018. Fisher Linear Discriminant Analysis of coherency matrix for 

wetland classification using PolSAR imagery. Remote sensing of environment, 206, 

pp.300-317. 

• Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F. and Zhang, Y., 2018. 

Very deep convolutional neural networks for complex land cover mapping using 

multispectral remote sensing imagery. Remote Sensing, 10(7), p.1119. 
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• Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Larsen, G. and Peddle, D.R., 

2018. Mapping land-based oil spills using high spatial resolution unmanned aerial vehicle 

imagery and electromagnetic induction survey data. Journal of Applied Remote 

Sensing, 12(3), p.036015. 

• Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S. and Gill, E., 2019. 

The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using 

Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing 

Platform. Remote Sensing, 11(1), p.43. 

• Mahdianpari, M., Motagh, M., Akbari, V., Mohammadimanesh, F. and Salehi, B., 2019. 

A Gaussian Random Field Model for De-speckling of Multi-polarized Synthetic Aperture 

Radar Data. Advances in Space Research. 

• Salehi, B., Mahdianpari, M., Amani, M., Mohammadimanesh, F., Granger, J., Mahdavi, 

S. and Brisco, B., 2018. A collection of novel algorithms for wetland classification with 

SAR and optical data. In Wetlands. IntechOpen. (Book Chapter) 
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Chapter 2. SAR and InSAR wetlands 1  
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and commented on the manuscript. 

Abstract 

The production of spatially detailed quantitative maps of water level variations in flooded 

vegetation, and the detection of flow patterns and discontinuities in both managed and natural 

wetland ecosystems provide valuable information for monitoring these unique environments. 

Hydrological monitoring of wetlands is also critical for maintaining and preserving the habitat of 

various plant and animal species. Over the last two decades, advances in remote sensing 

technologies have supported wetland monitoring and management in several aspects, including 

classification, change detection, and water level monitoring. In particular, Interferometric 

Synthetic Aperture Radar (InSAR) has emerged as a promising tool for hydrological monitoring 

of wetland water bodies. However, a comprehensive review of the status, trends, techniques, 

                                                           
1 Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B. and Motagh, M., 2018. Wetland water level 

monitoring using interferometric synthetic aperture radar (InSAR): A review. Canadian Journal of Remote 

Sensing, 44(4), pp.247-262. 
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advances, potentials, and limitations of this technique is lacking. In this study, we evaluate the use 

of InSAR for hydrological monitoring of wetlands, discuss the main challenges associated with 

this technique, recommend possible solutions to mitigate the main problems identified in the 

literature, and present opportunities for future research.   

Keywords: Wetlands, water level monitoring, Interferometric Synthetic Aperture Radar, flooded 

vegetation, hydrological monitoring. 

2.1. Introduction 

Wetlands are permanently or intermittently wet areas that provide a variety of environmental 

services, including a desirable habitat for both plant and animal species, freshwater, food supply, 

water purification, flood control, as well as climate change and erosion mitigation [1], [2]. Despite 

these benefits, wetlands have been increasingly degraded due to both anthropogenic process, such 

as extensive agriculture, change in land cover and water use, urbanization, industrial and 

infrastructural developments [3], [4] and natural process, such as sea level rise, global warming, 

changing in precipitation patterns, and coastal erosion [2], [5] The sustainable management of 

wetland hydrology requires more specific information about vegetation patterns, annual 

precipitation, flooding paths, water level changes, and the local phenological cycle [4].   

Given the current need for up-to-date information and the wide-spread distribution of wetland 

ecosystems, satellite remote sensing tools are the most time- and cost-efficient method for wetland 

studies [4], [6]. Several studies have used satellite data for wetland classification using optical 

images [7], [8], Synthetic Aperture Radar (SAR) imagery [9]–[12] or the integration of both  [13], 

[14].  
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Hydrological monitoring of wetlands is crucial since they are water-dependent ecosystems [2]. 

During the last decade, Interferometric Synthetic Aperture Radar (InSAR) has gained increased 

attention for water level monitoring of flooded vegetation. Applying the InSAR technique for 

water level monitoring is an important area of study that has not yet been fully exploited. Although 

several conditions should be met and numerous challenges are involved, using the InSAR 

technique holds great promise for wetland water level monitoring.  This is because the relatively 

new application of InSAR provides a high spatial resolution map of water level changes that is not 

obtainable using terrestrial techniques [15]. Furthermore, this technique provides data from 

inaccessible points, which cannot be reached during expensive field investigations. Most wetlands 

are located in remote areas, where hydrology, topography, and vegetation cover make field 

investigations challenging and costly. Therefore, the use of repeat-pass InSAR helps to minimize 

or eliminate the number of field campaigns needed to assess wetlands, particularly, by using 

advanced/new SAR satellite data such as Sentinel-1. Another problem associated with wetland 

monitoring is the variability of their characteristics (e.g., water level, vegetation cover, etc.) over 

time [4], therefore necessitating repeated in-situ investigations; however, wetlands can be easily 

tracked using repeat-pass observations from space. Thus, these issues (i.e., accessibility, 

repeatability, cost, and time) are addressed using remote sensing tools for wetland monitoring. 

Despite the significance of InSAR for water level monitoring (e.g., [16]–[19]), it has not been 

investigated in various wetlands globally. This is unexpected given the importance of wetland 

monitoring worldwide and the availability of the InSAR technique. A collective and comparative 

study of all InSAR applied techniques can, therefore, mitigate the challenges and stimulate more 

extensive applications of InSAR for wetland monitoring.  
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For this study, both Google Scholar and ISI Web of Science were used for browsing papers. The 

main used keywords were as follows: wetland, flooded vegetation, Interferometric Synthetic 

Aperture Radar, InSAR, water level monitoring, coherence, and SAR backscatter. Different 

arrangements of the above keywords were used. Because of the limited number of studies in this 

particular application of InSAR, we did not limit our review using specific criteria. However, we 

considered all studies that have used the InSAR technique or interferomeric products, such as 

coherence (e.g., [20], [21]), for wetland monitoring. The final number of studies that directly used 

the InSAR technique or its products for wetland monitoring, included in this review, was 31.  

The primary objectives of this review article are to: (1) present a detailed overview of the InSAR 

techniques, which have been used for wetland water level monitoring to date; (2) identify the main 

challenges associated with the wetland InSAR technique and possible solutions; (3) evaluate the 

general trends in remote sensing studies using InSAR for water level monitoring; (4) predict future 

trends in applying the InSAR technique for wetland monitoring and recommend any priority topics 

for future research. 

2.2. Wetland water level monitoring using InSAR 

2.2.1. Wetland InSAR  

Using the InSAR technique for wetland water level monitoring, although relatively new, presents 

challenges. For example, substantial altering of reflectance and energy backscatter of wetland 

environments occurs, even within hours or days [4], and low backscatter of the water surface lead 

to difficulties when applying InSAR for monitoring water level fluctuation. As the SAR sensor 

transmits radar pulses at an off-nadir look angle, two different conditions occur for the open water. 
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In the first case, if the open water surface is smooth and calm, it acts as a mirror and causes the 

entire signal to be scattered away from SAR sensors, making open water appears dark in SAR 

images [17]. Alternatively, if the open water surface is rough and turbulent, part of the signal can 

be backscattered to the SAR sensors; however, since two SAR images are captured at different 

times, the SAR signals over open water are not coherent [22].   

 Despite numerous challenges, InSAR is promising for water level monitoring of flooded 

vegetation under specific conditions. More precisely, the specific condition, wherein double-

bounce scattering occurs between the horizontal water surface and the vertical flooded vegetation 

[23] should be met when employing the InSAR technique for monitoring water level changes [16]. 

If the vegetation within or adjacent to the standing water is able to backscatter the radar pulse 

towards satellite sensor, water level changes are observable in the phase data [24], [25]. Also, 

vegetation should not be too dense for the penetration of microwave energy [2].  

A majority of InSAR wetland studies focused on using the conventional SAR interferometry 

technique, the so-called repeat-pass interferometry, for wetland water level monitoring. However, 

the main limitation associated with the conventional InSAR technique is that the deformation 

signal is often overprinted by unwanted terms (e.g., noise, atmospheric and orbital phase). Thus, 

in the past two decades, several studies have proposed different techniques, known as advanced 

InSAR techniques, to mitigate these limitations [26]–[28]. The main objective behind the 

development of advanced InSAR technique is to produce a time series of interferometric pairs to 

mitigate the undesirable terms of residual phase (e.g.,  atmospheric phase screen) using a signal 

model of a single point in the stack of interferograms [26]. 
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Using the advanced InSAR technique for wetland water level monitoring has been 

underrepresented due to the specific characteristic of the wetland complex [29]. Wetlands are 

characterized by distributed scatterers because flooded vegetation (i.e., trees, herbaceous 

vegetation, and water) is the primary component of wetland complexes. The backscattering, in 

such an environment, is defined as a coherent sum of many independent scatterers, in which no 

one is stronger than others [30]. Therefore, the persistent scatterer techniques, which have been 

widely used in urban areas due to existence of several PSs (e.g., buildings and roads), are not 

feasible for wetland hydrological monitoring. The time series technique of Small BAseline Subset 

(SBAS) [27], [31] that combines multiple unwrapped interferograms to produce a time series of 

displacement maps , is more favorable as it matches to some extent  to the wetland complex [29], 

[32], [33]. The master and slave pairs for interferograms in a SBAS network are selected based on 

the average baseline parameters for the signal of interest (e.g., 25% of the critical baseline) 

regardless of the temporal baseline [34]. However, ignoring the temporal separation of 

interferograms leads to coherence loss in highly variable phenomena such as monitoring water 

level changes in wetlands. This is because vegetation, as the most important component of wetland 

ecosystem, loses the interferometric coherence in a few weeks (or even days), especially in the 

case of using shorter wavelengths, such as X- and C-band [20]. Accordingly, a modified version 

of SBAS technique, called Small Temporal BAseline Subset (STBAS), has been specifically 

developed for wetland water level monitoring by [32] and its efficiency was examined in the 

Everglades wetlands using both C- and L-band data [33]. The main difference between SBAS and 

STBAS is that, in the latter, the shortest temporal baseline pairs are selected regardless of the 

spatial separation in order to minimize the temporal decorrelation associated with wetland 
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complexes. However, the spatial baseline should be still smaller than the critical baseline 

component. 

According to the Canadian Wetland Classification System (CWCS), wetlands may be categorized 

in five main classes: bog, fen, marsh (i.e., herbaceous wetlands), swamp (i.e., woody wetland), 

and shallow-water [2]. Each wetland classes have different behaviour depending on SAR 

wavelength, polarization, spatial resolution, incident angle, wetland phenology as well as 

environmental variables (e.g., humidity and wind). These factors affect the applicability of the 

InSAR technique for wetland monitoring and are discussed in more detailed in the following 

subsections.  

2.2.1.1. Interferometric coherence of wetland 

Coherence is a quality indicator of InSAR observations and represents the degree of similarity of 

the same pixel in the time interval between two SAR acquisitions [35]. Three main sources of 

losing coherence, the so-called decorrelation, in InSAR observations over wetlands are geometric 

decorrelation caused by different satellite look angles, volumetric decorrelation caused by 

vegetation volume scattering, and temporal decorrelation of vegetation [22], [36]. Geometric 

decorrelation is directly proportional to perpendicular component of the baseline. There is a critical 

baseline value for the interferogram of each sensor, wherein an interferogram with the 

perpendicular baseline beyond the critical value loses its interferometric coherence [37]. The effect 

of baseline decorrelation in surface scattering can be mitigated by applying a common band 

filtering [38]. Volumetric decorrelation primarily occurs within vegetation canopies and forests, 

and is usually controlled by the canopy structure. Volume scattering is often due to multiple 

scattering of the radar pulses within forests and vegetation canopies [36].  
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Temporal decorrelation is the most problematic issue when applying the InSAR technique for 

monitoring wetland complexes due to the ever-changing nature of wetlands. Particularly, any 

condition that alters the physical orientation, composition, or scattering characteristic and 

distribution of scatterers within a returned signal causes temporal decorrelation [36]. There are 

several factors that contribute to temporal decorrelation in the case of land cover mapping, 

including the alterations of (1) leaf and subshrub orientations by wind; (2) the dielectric constant 

by moisture and rain; (3) the dielectric properties and roughness of the canopy structure by 

flooding, as well as factors, such as seasonal phenology, growth, and mechanical variations (e.g., 

cultivation and timber harvesting) [36]. Temporal decorrelation is also a function of wetland 

classes. For example, temporal decorrelation is more severe for herbaceous wetlands (e.g., 

marshes), while it is less prevalent for woody wetlands [17]. Additionally, different wetland 

classes have different coherence level depending on their scattering mechanisms and temporal 

decorrelation. For example, low coherence value (< 0.1) is expected for the open water class given 

the dominant specular scattering mechanism associated with surface water [22]. This contrasts 

with flooded vegetation (e.g., marsh and swamp) with dominant double-bounce scattering 

mechanism, which produces high coherence values. In particular, the coherence varies for flooded 

vegetation depending on the degree of flooding; thus, the coherence can be used for monitoring 

the flooding status of the wetland classes [39]. Furthermore, in non-flooded vegetation, the 

dominant scattering mechanism is volume scattering, which means the signal is diffused in nature 

and, as a result, it is not as bright as double-bounce scattering in a SAR image producing 

low/intermediate coherence degree.  

Additionally, the coherence has a diagnostic function and can be used along with SAR backscatter 

for classification of different wetland classes [40]. For example, Ramsey et al. (2006) compared 
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the potential of interferometric products, coherence and phase, and SAR intensity images for land 

cover classification [36]. They reported that the SAR intensity was less responsive to land covers 

and had high temporal variations. Conversely, the interferometric coherence had a higher variation 

in different classes and provided a better discrimination during leaf-off season.  

Geometric, volumetric, and temporal decorrelations are integrated and determine the portion of 

the SAR signal that is available to produce double-bounce backscattering and, accordingly, 

coherence degree over the wetland complex [22]. Nevertheless, most of studies reported that the 

temporal decorrelation was more severe for wetland InSAR especially when shorter wavelengths 

were employed. While the geometric decorrelation could be problematic when longer wavelengths 

were used [20]. 

2.2.1.2. SAR wavelength 

Interaction of the SAR signal with the vegetation canopy is determined by the SAR wavelength. 

To date, most of SAR satellites have operated in three microwave bands, including X-, C-, and L-

bands with wavelength of 3.1, 5.6, and 23.6cm, respectively (see Table 2.1). The InSAR technique 

has been demonstrated to work well for water level monitoring with all three wavelengths, 

including L-band [17], C-band [22], and X-band [41]. 

Each wavelength has its own advantages and disadvantages.  In particular, the longest wavelength, 

L-band, can pass through the vegetation canopy and detect water beneath the flooded trees and/or 

dense vegetation and, therefore, a higher coherence is maintained over longer time periods. 

Although ionospheric refraction errors, which are caused by the fluctuations of the electron density 

in the ionosphere, have much influence on the L-band signal compared to that of C- and X-band 

[42]. C-band, on the other hand, has less penetration depth, which means it mostly interacts with 

upper parts of the canopy and maybe water beneath the short vegetation and, therefore, is less 
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coherent than L-band [43]. In contrast, it is less affected by the ionospheric effects and atmospheric 

artifacts relative to L- and X-band, respectively [18], [44]. The shortest wavelength, X-band (e.g., 

TerraSAR-X), is usually characterized with high spatial resolution imagery and shorter satellite 

revisit time depending on the satellite mission. The main disadvantages associated with X-band, 

however, are small swath coverage, less penetration depth, and fringe saturation in the case of 

significant water level changes [41]. Furthermore, shorter wavelengths mostly interact with wind-

affected parts of vegetation canopies [45] and lose coherence even in a short period of time [46], 

[47]. 
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Table 2.1. Characteristics of well-known SAR satellite missions that have been used for wetland 

monitoring. 

 

Satellite mission 

 

 

 

Mission life 

span 

 

Repeat cycle 

(days) 

 

Wavelength/band 

(cm) 

 

Mode 

 

Resolution (m) 

(azimuth × range) 

 

Incidence 

angle  

 

Orbital 

inclination 

ERS-1 1991-2000 35, 3, 168 5.66/C-band                                  20 × 30 20°-26° 98.52 ° 

JERS-1 1992-1998 44 23.5/L-band                                   18 × 18 35° 97.7 ° 

ERS-2 1995-2011 35, 3 5.66/C-band                                   20 × 30 

 

20°-26° 98.52 ° 

RADARSAT-1 1995-2013 24 5.66/C-band Fine 8.4 × (8,9) 37°-47° 98.6 ° 

Standard 27 × (21-27) 20°-49° 

Wide 28 × (21,25,33) 20°-45° 

ScanSAR narrow 50 × 50 20°-49° 

ScanSAR wide 100 × 100 20°-49° 

Extended High 27 × (16-18) 52°-58° 

Extended Low 

 

27 × 39 10°-22° 

ENVISAT 2002-2012 35, 30 5.63/C-band Image 30 × (30-150) 15°-45° 98.55 ° 

Alternating- 

polarization 

30 × (30-150) 15°-45° 

Wave 10 × 10 15°-45° 

Wide swath 150 × 150 17°-42° 

Global- 

monitoring 

 

1000 × 1000 17°-42° 

ALOS PALSAR 2006-2011 46 23.6/L-band Fine 1 10 × (7-44) 8°-60° 98.16 ° 

Fine 2 10 × (14-44) 

Polarimetric 10 × (24-89) 8°-30° 

ScanSAR 

 

100 × 100 18°-43° 

RADARSAT-2 2007-Present 24 5.55/C-band Ultra-fine 3 × 3 20°-54° 98.6 ° 

Multi-look Fine 8 × 8 30°-50° 

Fine 8 × 8 30°-50° 

Standard 26 × 25 20°-52° 

Wide 26 × 40 20°-45° 

ScanSAR narrow 50 × 50 20°-46° 

ScanSAR wide 100 × 100 20°-49° 

Extended High 26 × 18 49°-60° 

Fine Quad- 

polarization 

 

8 × 12 

 

 

18°-49° 

TerraSAR-X 2007-Present 11 3.11/X-band Spotlight 2 × (1.5-3.5) 20°-55° 97.4 ° 

High resolution 

spotlight 

1 × (1.5-3.5) 20°-55° 

Stripmap 3 × (3-6) 20°-45° 

ScanSAR (18.5-19.2)× (17-

19.2) 

20°-45° 

 

SAR wavelength also demonstrates the sensitivity of different signals to changes. For example, 

the X-band signal is 3.1cm long, which means it has a higher sensitivity to very small changes. 

Due to their shorter wavelengths, the end-user maps of X- and C-band observations have a higher 
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accuracy when compared to L-band [15]. Applying shorter wavelengths with a higher sensitivity 

to changes is desirable when monitoring solid earth movement, where coherence is maintained 

over longer time periods; however, it may not be the case for wetlands with their dynamic nature.  

Additionally, the selection of an appropriate SAR wavelength depends on the wetland classes since 

the interaction of SAR wavelength varies widely with different vegetation types depending on 

their size. As such, the shorter wavelengths (e.g., C- and X-band) are preferred for monitoring the 

herbaceous vegetation due to relatively same size of SAR wavelength and vegetation canopies 

(e.g., leaf). However, the longer wavelengths are better suited for woody wetlands since incident 

SAR signal interacts with larger trunk and branch components [21], [48]. 

2.2.1.3. SAR polarization 

Interferometric coherence analysis of wetlands demonstrates that HH channel is the best 

polarization for wetland water level monitoring. The HH polarization signal is more sensitive to 

the double-bounce scattering associated with tree trunks in swamp forest and stems in freshwater 

marshes [49]. More specifically, the larger Fresnel reflection of HH polarized signal relative to 

VV is less attenuated by the vertical structural of wetland vegetation, such as trunks and stems 

[18]. The vertically oriented structure of such vegetation enhances the attenuation of VV 

polarization signals and, as a result, the radar signal cannot reach to the water surface below the 

vegetation [48]. However, VV polarization is the second best in this specific application of InSAR 

[41], especially, at the early stages of emerging vegetation when plants have begun to grow in 

terms of height, but have less developed vegetation canopy. The HV polarization is not a preferred 

polarization due to the high sensitivity to the volume scattering inside the canopy [22], [50]. 

However, Hong et al. (2010b) and Hong and Wdowinski (2012) reported that the HV polarized 

data could also maintain adequate degree of the coherence in shorter period of times [41], [44]. 
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They also concluded that both volume and double-bounce scattering were dominant scattering 

mechanisms in cross-pol images. This was due to both observing high coherence and similar fringe 

patterns in cross-polarized images (HV) comparable to that of co-polarizations (i.e., HH and VV) 

over flooded vegetation. This was unexpected since according to the vegetation scattering theories 

only volume scattering can be produced by the cross-polarized observations [51], [52]. 

Nevertheless, the HH/HV ratio is a good indicator of double-bounce scattering mechanism, 

wherein a higher value of this ratio is representative of strong double-bounce scattering [18]. 

2.2.1.4. Other factors 

Spatial resolution and SAR incident angle are other factors, which have effects on InSAR wetland 

observations [20], [21]. For example, Brisco et al. (2015) used different RADARSAT-2 products 

and reported that the coherence was maintained in different acquisition modes with varying 

resolutions as long as the temporal baseline was not exceeded up to 24 days [21]. However, they 

pointed out that high resolution SAR images provided more detailed information about flooding 

status of vegetation and, thus, were better suited for wetland monitoring. Table 2.1 lists the most 

frequently-used SAR satellite data and their spatial resolution. 

SAR incident angle is another factor affecting the backscattering response of wetland classes. The 

effect of different SAR incidence angles on interferometric coherence has been investigated by 

several researchers who reported that small incident angles are preferred for wetland InSAR 

applications [20], [48]. This is because steep incident angles allow a deeper penetration of the 

canopy by the SAR signal and less energy degradation along the radiation path, which enhances 

the chance of double-bounce scattering between water surface and flooded vegetation [15], [20], 

[53], [54].   



36 

 

2.2.2. Wetland Phenology 

The incoherent summation of different scattering mechanisms is the combination of three 

components in the wetland complex: canopy surface backscattering, double-bounce backscattering 

of flooded vegetation, and canopy volume backscattering caused by multiple path interactions of 

canopy structures [55], [56].  

The radar signals from tree trunks or stems stimulate backscatter and they (i.e., tree trunks or 

stems) act like a corner reflector. In the wetland complex, the double-bounce occurrence depends 

on the wetland phenological cycle, which is a function of the complex relation of vegetation 

height/density and the water level height [57]. For example, during the high water season, swamp 

forests and freshwater marshes experience different conditions and, therefore, have different 

signatures in a SAR image. Specifically, a positive correlation between water level height and SAR 

backscatter was reported using L-band data over forested wetlands, wherein an increase in the 

water level enhanced the chance of double-bounce scattering as well as high coherence degree. 

Conversely, an inverse relationship between water level height and SAR backscattering was 

reported in herbaceous wetland, wherein an increase in the water level enhanced the chance of 

specular scattering and thereby, low coherence degree [58], [59]. Other studies also confirmed less 

correlation between water level height and SAR backscatter variation using C-VV [9] and C-HH 

[58] images in the freshwater marsh. 

Vegetative density is another important factor, which determines different backscattering 

mechanisms of wetland classes. For example, Lu and Kwoun (2008) reported that the radar 

backscatter of C-band SAR image during the leaf-off season was much greater than the leaf-on 

season for swamp forests [22]. This is because the high vegetative density and canopy, during the 

leaf-on season, convert double-bounce scattering to the volume scattering in the freshwater 
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swamp, which, in turns, decreases SAR backscatter. Later studies, such as [59], [60], also found 

same results using L-band SAR images in the Congo River Basin. In particular, they reported a 

negative correlation between Vegetation Continuous Field (VCF) products obtained by MODIS 

and SAR backscatter over flooded forests. However, Zhang et al. (2016) reported a positive 

correlation between normalised difference vegetation index (NDVI) and SAR backscatter in 

herbaceous wetland (i.e., reed marsh and rice paddy) using L-HH SAR images in all growing 

cycles [48].  

One practical technique to determine different scattering mechanisms of wetland classes is to apply 

a simple decomposition approach, such as Cloude-Pottier [61], Freeman-Durden [51], or Touzi 

decomposition [62]. By applying a polarimetric decomposition, three dominant scattering 

mechanisms are obtained – surface, double-bounce, and volume scattering – and it is a good 

indicator for applicability of InSAR technique for wetland water level changes in a particular area 

[41], [44]. However, applying a polarimetric decomposition requires PolSAR data.  

2.2.3. The Primary Limitations of InSAR Wetland Application 

Although the InSAR technique has great potential for wetland monitoring, there are several 

limitations that hinder the technique performance. The presence of emergent vegetation inside or 

next to water bodies, which enhances a greater portion of the SAR signal back to the sensor, is the 

most important condition for InSAR wetland application [16], [50]. Particularly, the co-existence 

of both vegetation and water in wetland ecosystems eventuates double-bounce scattering and, 

subsequently, the applicability of the InSAR technique for wetland water level monitoring. 

 As previously discussed, interferometric coherence is another limiting factor, which hinders the 

quality of InSAR observations. Environmental variables, such as flooding condition under the 

vegetation and the phenological cycle, contribute to the coherence loss in the wetland ecosystem 
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[48]. The loss of coherence due to presence of some land cover types, such as open water and man-

made structures (e.g., levees and canals) [20], causes the phase discontinuity in the InSAR 

observations and, accordingly, produces unwrapping errors. 

Atmospheric phase delay also affects the quality of InSAR observations [22]. This may be more 

challenging in wetlands due to the lack of persistent scatterers, which are useful for mitigating 

atmospheric phase screen using advanced InSAR techniques [29], [32]. The atmospheric phase 

screen decreases the accuracy of InSAR water level maps from at least several millimetres, to 

several centimeters in the worst case scenario such as coastal wetlands. Thus, the observed fringe 

patterns should be scrutinized in detail to distinguish signals due to water level changes from 

atmospheric artifacts. In particular, the atmospheric fringe patterns are correlated spatially, while 

uncorrelated temporally, whereas fringes due to water level changes show evidence of being 

controlled by structures, such as levees, canals, and roads [22]. These structures are observable in 

the SAR intensity image and often exhibit sudden changes in the interferometric phase value. Thus, 

the fringes, which have been reoccurred in the same place for several times in a series of produced 

interferograms and controlled by structures, are mainly associated with water level changes [25].   

It is worth noting that when using the InSAR technique for monitoring coastal wetland ecosystems, 

tidal cycles must also be considered. This means that satellite repeat cycles and tidal cycles should 

not be synchronized. More specifically, repeat-pass SAR images, which have been acquired during 

tide-induced water level changes, are not useful for InSAR wetland applications. This is because 

the InSAR technique does not provide reliable information at the same tidal amplitude [5]. 

Another problem, which further complicates matter, is the great dependency of the technique on 

ground-based hydrological observations. In particular, InSAR phase observations only provide 

relative water level changes and, accordingly, hydrological in-situ measurements are required to 
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both calibrate and validate InSAR observations[17], [22]. In other InSAR applications, such as 

landslide or subsidence monitoring, the reference point for converting relative InSAR 

measurements to absolute changes is selected in non-affected areas by deformation, which is not 

applicable to InSAR wetland [41]. Light Detection and Ranging (Lidar) observations, either 

airborne or spaceborn, are useful for validation and calibration purposes [63], [64], although have 

not been investigated to date, probably due to the time and cost constraints. Rather, the common 

approaches, for both calibration and validation of InSAR measurements, are using in-situ gauge 

observations (16 cases) [17] and satellite altimetry data (6 cases) [65]. 

2.2.3.1. In-situ gauge stations 

Although in-situ gauge observations have a good temporal resolution, they have poor spatial 

resolution since gauge stations are usually distributed several or even tens of kilometers from one 

another [15]. Particularly, the gauge measurements are limited to sparse locations which, in turn, 

decrease the accuracy of water level monitoring. These observations are also unable to detect water 

spatial patterns [32]. Moreover, most gauge stations operate in navigable rivers and canals that are 

easy to access and control [18], in open water and near-shore [58] and, in the best case scenario, 

in managed wetlands. However, SAR signals have low backscatter in the river, open water, and 

shore areas, which cause gauge observations to be incomparable with InSAR observations in this 

case. Furthermore, the gauge observations in these locations are independent of water level 

changes in adjacent wetlands. In the managed wetlands, gauge observations are influenced by 

infrastructures, which mean gauge measurements are underestimated near outflows and 

overestimated near inflows [17].  

Another consideration is that multiple gauge stations should be used as vertical references in 

different locations for wetland water bodies that are separated by levees and canals. This is because 
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a single vertical reference point may not provide comparable and sufficient data with InSAR 

measurements in large wetland areas [18]. Using multiple gauges, as vertical references, allow a 

least square analysis to estimate the difference between InSAR and gauge observations. It is 

theoretically expected to obtain an improvement in accuracy by increasing the number of gauge 

observations. However, the accuracy may decrease in some cases if these additional stations are 

located in low coherence areas, or close to hydraulic structures [32], [66]. Majorities of wetland 

InSAR studies, particularly those carried out in the Everglades wetlands, used in-situ gauge 

observations for calibration and validation of the InSAR results [17], [32]. This is because the 

Everglades wetlands complexes are well controlled with several in-situ instruments, including a 

dense network of up to 200 gauge, meteorological, hydro-geologic, and water quality control 

stations [17]. Data from these sources are gathered, processed, and converted to the Everglades 

Depth Estimation Network (EDEN) [67].  

2.2.3.2. Satellite altimetry 

Kim et al. (2009) introduced the suitability of ENVISAT satellite altimetry observations for 

validation of InSAR measurements obtained from ALOS and RADARSAT-1 repeat-pass SAR 

images. An altimeter satellite has a nadir-viewing geometry and operates by transmitting 

microwave pulses toward the ground target. Satellite altimetry offers an alternative solution by 

providing (calibration/validation) data at ungauged locations [68].  However, the coarse spatial 

resolution of satellite altimetry observation, which varies between tens of kilometers depending 

on missions [69], as a reference tool, in comparison to that of InSAR measurements is a limiting 

factor. Particularly, the technique acquires point-wised elevation measurements in a very sparse 

spatial distribution along the satellite flight pass. Satellite passes are also separated by about 50-

100 km from each other, causing several freshwater bodies to be excluded from satellite coverage 
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due to variations in orbit passes [65]. Furthermore, the quality of radar altimetry observation is 

often affected by the topographic relief, the target size, and heterogeneous ground targets in the 

observed scene [68]. 

2.3. Trend in using the InSAR technique for wetland monitoring 

Alsdorf et al. (2000) introduced the applicability of the InSAR technique for water level 

monitoring due to the observation of coherent phase signals over flooded vegetation in the Amazon 

floodplains in Brazil [16]. Subsequently, the capability of the technique has been further examined 

by a number of researchers [16]–[18], [22], [49], [70]. As seen in Figure 1, there is an increasing 

attention in using InSAR for wetland monitoring over the last decade given the accuracy, time and 

cost efficiency of the technique compared to other approaches (e.g., in-situ gauges and satellite 

altimetry). 

 

Figure 2.1. Frequency of studies used InSAR for wetland monitoring in two-year time intervals since 

2000. 
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The increasing number of wetland InSAR studies is due, at least in part, to availability of various 

SAR data, such as ALOS PALSAR-1, ENVISAT ASAR, and ERS1/2 provided by the Alaska 

Satellite Facility (ASF) (https://vertex.daac.asf.alaska.edu/) and the European Space Agency 

(ESA) (https://earth.esa.int/web/guest/data-access). However, although the availability of SAR 

data has proliferated globally, the InSAR technique for wetland monitoring has not been well 

developed worldwide. Specifically, the application of InSAR in wetland studies has been limited 

to particular pilot sites, which is unfortunate, given wetlands cover between 1-2% of the Earth's 

surface and availability of InSAR technique [2]. The location of wetland InSAR studies and their 

frequencies are depicted in Figure 2. Most of the studies have been conducted in the Everglades 

(11 cases) and Louisiana wetlands (5 cases) in the United States, followed by several studies in 

two different locations in China, the Yellow River Delta (3 cases) and Liaohe River (2 cases). A 

handful studies have examined the Amazon floodplain (3 cases) in South America and the Congo 

River (3 cases) in Africa. Finally, other pilot sites, such as the Helmand River in Afghanistan (1 

case), the Sian Ka’an in Mexico (1 case), the Danube Delta in Romania (1 case), the Big Bend 

coastal region of Florida (1 case), the Brockville area in Canada (1 case) have been investigated in 

single studies. It is worth noting that a number of published studies were conducted in multiple 

geographic locations [71], [72]. The studies conducted in the Everglades and Louisiana wetlands 

cause a hot-spot in North America. 
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Figure 2.2. World map illustrating the location and frequency of wetland InSAR studies (red dots). 

Focusing on applied SAR frequency, most of the studies used L-band due to its higher penetration 

capability through vegetation canopies, including JERS-1, ALOS PALSAR-1, and SIR-C SAR 

data (13 cases). The second most exploited frequency was C-band data acquired by ERS1/2, 

RADARSAT-1/2, and ENVISAT ASAR sensors (10 cases). A number of researchers used a 

combination of L- and C-band (6 cases) for water level monitoring. X-band SAR images (e.g., 

TerraSAR-X and COSMO-SkyMed), however, were the least investigated frequency band (2 

cases), though it was found to be promising for wetland InSAR applications [41], [73].   

Concerning on SAR polarization, most of the studies focused on the HH polarization (19 cases) 

followed by all polarization (4 cases) and HH-VV (3 cases). Also, HH-HV and VV polarization 

were less investigated (2 cases). Other studies, however, did not mention the type of applied SAR 

polarization (see Figure 3).  
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Note: * illustrates satellite altimetry. 

Figure 2.3. Summary of studies that have used the InSAR technique for wetland water level monitoring. 

The applied frequencies, wetland classes, polarizations, and validation approaches are indicated.  

 

2.4. Discussion of current constraints and direction of future reseach 

The presented literature on using InSAR for hydrological monitoring of wetland complexes 

demonstrates that there is a large group of studies focusing on not the same, but have been 

concentrated in a few geographic locations. Despite large expanses of wetlands worldwide, most 

of the applied techniques were not developed to account for a large variety of different wetland 
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environments. The selection of these wetland pilot sites has been biased toward favorable 

conditions, such as availability of gauges or radar altimetry data, managed wetland ecosystems, 

and good accessibility.  

 As the validation of InSAR results is important, future work should generally pursue to find an 

alternative method rather than in-situ observations for this purpose. Accordingly, studies 

attempting to determine a relationship between the InSAR measurements and SAR backscatter 

variations hold great promise [58]–[60], [74], although they are currently still in an early 

experimental stage. Despite the results of these studies to date, it would be beneficial to increase 

the number of studies quantify the relationship between InSAR observations and SAR intensity 

variations, particularly for shorter wavelengths (i.e., X- and C-band). This is because both SAR 

backscatter and InSAR observations are acquired simultaneously, while they are independent of 

each other. However, determining water level changes using SAR backscatter variations is 

challenging. A major reason is that SAR backscatter is not only affected by hydrological changes, 

but other factors such as seasonal variations of vegetation and weather conditions may be 

influential [58]. Thus, distinguishing SAR backscatter variations due to water level changes from 

other altering sources is difficult. Importantly, studies that describe the effect of satellite 

geometrical acquisition are likely to contribute to the success of SAR backscatter images for 

calibration and validation. Particularly, the SAR backscatter responses of flooded vegetation 

obtained from descending and ascending satellite acquisitions may provide additional information 

due to the different appearance of the same target in SAR images [58].  

A further general point to be considered in future studies for validation and calibration of InSAR 

observations is the incorporation of local meteorological data (e.g., temperature, evaporation, and 

precipitation), since they are available for most wetlands with high temporal resolution [75]. One 
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obstacle, however, for such an examination is the need for an effective control of wetlands’ inflow 

and outflow from external sources (e.g., dams). Therefore, this approach may particularly be 

efficient for natural wetlands, wherein hydrological conditions are mainly controlled by the local 

weather. 

It would be also desirable to increase the number of studies that integrate SAR and InSAR 

observations (i.e., coherence) for both wetland hydrological monitoring and classification. This is 

because the interferometric coherence shows the mechanical stability of the target, while SAR 

intensity depends on the electromagnetic structure of the targets. However, the application of 

integrating SAR and InSAR observations seems to be an under-examined approach investigated 

in only a few studies [36], [39]. Although SAR backscatter is much noisier than interferometric 

products [76], it is less influenced by atmospheric effects. By contrast, interferometric products 

are less affected by noise, but are more influenced by atmospheric effects [36]. Particularly, 

intensity images may augment the interferometric products to better evaluate the variations in 

hydrological conditions. Therefore, the combination of these two types of observations (i.e., SAR 

and InSAR) can mitigate the uncertainty in the end user wetland products. However, these 

recommendations should be considered in the context of other influential factors (see section 

Wetland InSAR), since both SAR intensity images and InSAR observations are affected by several 

factors with intra-relationship. In addition to these general future prospects, the application of 

multi-temporal interferometric coherence to obtain accurate information about the flooding status 

of vegetation as well as wetland phenology should be considered, as it has rarely been investigated 

to date. Thus, future research should concentrate on using these excellent data sources as a 

promising tool for wetland change detection [77]. 
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Concerning applied methodologies, the literature demonstrates that a large number of studies 

employed the conventional InSAR technique (i.e., the repeat-pass SAR interferometry technique). 

A problem associated with such an approach, however, is uncertainty in the end products due to, 

for example, the atmospheric phase screens [32]. Although advanced InSAR time series methods 

demonstrate great promise for differentiating atmospheric signatures from interferometric 

products in other InSAR applications (e.g., landslide and earthquake) [26], [78]; however, their 

potential for the InSAR wetland applications remain underrepresented [29], [32], [33]. Due to the 

highly dynamic nature of wetland ecosystems, the short temporal baselines are desirable in order 

to mitigate the problem associated with temporal decorrelation. For example, while the (advanced) 

SBAS InSAR technique holds great promise for monitoring distributed scatterers, it requires a 

modification to be applicable for wetland monitoring. Further research should focus on developing 

of InSAR time series techniques, compatible with wetland environments. Hence, one promising 

approach is to develop an algorithm that combines multi-frequency InSAR observations to address 

the limitation of temporal decorrelation. A drawback of such a method, however, is that 

uncertainties associated with different frequencies (e.g., X-, C-, and L-band) can vary from one 

acquisition date to another. Thus, the development of a multi-frequency algorithm requires a 

careful evaluation of uncertainty levels [33]. The suitability of multi-track ALOS PALSAR repeat-

pass observations for wetland monitoring has been previously confirmed by [33]. Therefore, the 

development of algorithms to integrate multi-polarization, multi-frequency, multi-temporal, and 

multi-track InSAR repeat-pass observation is one feasible way to achieve the success of wetland 

InSAR studies by improving both spatial and temporal resolutions.  For example, multi-temporal 

PolSAR data can be utilized to estimate the dominant scattering mechanism of targets in a stack 

of SAR data to increase the number of coherent distributed scatterers in the SBAS technique [79].  
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Thus, the synergy between polarimetry and interferometry techniques is more likely to contribute 

to the application of advanced InSAR techniques for wetland monitoring for future studies.   

Future research should also consider alternative sources of data. For example, the Sentinel-1 

satellite is the latest SAR mission operating at C-band, which was launched in 2014. Sentinel-1 

acquires SAR data for almost every point with a relatively high temporal resolution, while the 

perpendicular baseline is also well controlled [80]. This makes Sentinel-1 SAR images ideal 

sources of data for the STBAS technique. The free availability of Sentinel-1 data is also an 

encouraging factor to investigate the potential of such data for wetland InSAR applications. 

Despite these benefits, no wetland InSAR study has been conducted using Sentinel-1 images to 

date. Further data may also be added from RADARSAT Constellation Mission (RCM) in the near 

future. Particularly, RCM will have three similar C-band satellites, which are expected to be 

launched simultaneously in 2018, offering daily coverage over Canada [81]. RCM provides 

improved operational capability and may address the current limitation of InSAR wetland 

monitoring, namely, destitute temporal resolution. Thus, increasing the number of available SAR 

scenes per time unit further facilitates developing an algorithm for water level monitoring with 

both high temporal and spatial resolutions. 

Finally, the NASA/CNES planned Surface Water and Ocean Topography (SWOT) mission, which 

is a bistatic SAR sensor operating at the Ka-band (8.6 mm) Radar Interferometer (KaRIn) (also 

known as an interferometric altimeter), may further facilitate water level monitoring in the near 

future. It has a near nadir swath and is planned to be launched in 2020. The main mission purpose 

is to enhance the spatial-temporal coverage of continental water surfaces, including oceans, lakes, 

reservoirs, and wetlands (>250 m2) [82]. The short wavelength causes less scattering by the surface 

water; however, it also has lower penetration depth through vegetation [83]. The SWOT mission 
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holds great promise for future applications of InSAR techniques for monitoring wetland water 

level changes. 

2.5. Conclusion 

The main findings of this review article can be summarized as follows: 

(1) Although the application of the InSAR technique for wetland water level monitoring is 

relatively new, the number of studies focusing on the capability of InSAR for monitoring 

flooded vegetation has increased over the last 10 years. However, most of these studies 

were conducted in the Everglades and Louisiana wetlands in the United States, while the 

number of studies conducted in Canada, Europe, and elsewhere was sparse. 

(2) Data- or sensor-driven investigations were the greatest concerns. More specifically, most 

studies applied medium resolution L-band data and reported that L-HH data were the best 

configuration for monitoring flooded vegetation, especially for woody wetlands, due to 

both the higher penetration depth of L-band and greater sensitivity of HH polarization to 

the double-bounce scattering of flooded vegetation. Most of the studies pointed out 

vegetative density and water level both control double-bounce scattering in woody 

wetlands. In particular, the vegetative density decreases the double-bounce scattering and 

enhances the volume scattering, while increasing water level enhances the chance of the 

double-bounce scattering between tree trunks and water surface. For herbaceous wetlands, 

alternatively, shorter wavelengths are preferred because the double-bounce scattering in 

such a class is mainly controlled by water level, while the vegetative canopy and density 

are less influential. In particular, increasing the water level decreases the chance of double-

bounce scattering and converts most of the double-bounce scattering to specular scattering, 

which is in contrast with woody wetlands. These results have been mainly obtained based 
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on L- and C-band observations and while studies on X-band SAR data are still sparse, 

initial results demonstrate their capacity in all polarizations for wetland InSAR 

applications. 

(3) The literature also demonstrated the high dependency of InSAR wetland monitoring on an 

independent source of data, either in-situ observations or altimetry data, for calibration and 

validation. However, studies attempting to quantitatively determine a relationship between 

SAR backscatter and InSAR observation are still sparse and research efforts towards such 

objectives should be prioritized. 

(4)  The repeat-pass SAR interferometry technique holds great promise for InSAR wetland 

applications. Although studies that have applied advanced InSAR techniques for 

monitoring flooded vegetation are still sparse, initial results illustrate that they have great 

potential for hydrological wetland applications. 

(5) To recapitulate, the literature demonstrated that the suitability of SAR wavelength depends 

on the wetland classes and phenology. However, it was found that HH polarization, small 

incident angle, high spatial resolution, and small temporal baseline are of great value for 

wetland InSAR applications.  
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Chapter 3. Coherence and SAR backscatter analyses of Canadian wetlands 2 

Preface 

A version of this manuscript has been published in the ISPRS Journal of Photogrammetry and 

Remote Sensing. I am a primary author of this manuscript along with the co-authors, Bahram 

Salehi, Masoud Mahdianpari, Brian Brisco, and Mahdi Motagh. I designed and conceptualized the 

study. I developed the model and performed all experiments and tests. I wrote the paper and revised 

it based on comments from all co-authors. I also revised the paper according to the reviewers’ 

comments. The co-author, Masoud Mahdianpari helped in performing the experiments and 

analyzing the results and contributed to revising the manuscript. All co-authors provided editorial 

input and scientific insights to further improve the paper. They also reviewed and commented on 

the manuscript.  

Abstract 

Despite recent research into the Interferometric Synthetic Aperture Radar (InSAR) technique for 

wetland mapping worldwide, its capability has not yet been thoroughly investigated for Canadian 

wetland ecosystems. Accordingly, this study statistically analysed interferometric coherence and 

SAR backscattering variation in a study area located on the Avalon Peninsula, Newfoundland and 

Labrador, Canada, consisting of various wetland classes, including bog, fen, marsh, swamp, and 

shallow-water. Specifically, multi-temporal L-band ALOS PALSAR-1, C-band RADARSAT-2, 

and X-band TerraSAR-X data were used to investigate the effect of SAR frequency and 

polarization, as well as temporal baselines on the coherence degree in the various wetland classes. 

                                                           
2 Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B. and Motagh, M., 2018. Multi-temporal, multi-

frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands. ISPRS journal of 

photogrammetry and remote sensing, 142, pp.78-93. 
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SAR backscatter and coherence maps were also used as input features into an object-based 

Random Forest classification scheme to examine the contribution of these features to the overall 

classification accuracy. Our findings suggested that the temporal baseline was the most influential 

factor for coherence maintenance in herbaceous wetlands, especially for shorter wavelengths. In 

general, coherence was the highest in L-band and intermediate/low for both X- and C-band, 

depending on the wetland classes and temporal baseline. The Wilcoxon rank sum test at the 5% 

significance level found the significance difference (P-value < 0.05) between the mean values of 

HH/HV coherence at the peak of growing season. The test also suggested that L-band intensity 

and X-band coherence observations were advantageous to discriminate complex wetland classes. 

Notably, an overall classification accuracy of 74.33% was attained for land cover classification by 

synergistic use of both SAR backscattering and interferometric coherence. Thus, the results of this 

study confirmed the potential of incorporating SAR and InSAR features for mapping Canadian 

wetlands and those elsewhere in the world with similar ecological characteristics. 

Keywords: Wetland, Interferometric Synthetic Aperture Radar (InSAR), Coherence analysis, SAR 

backscatter, Random Forest. 

3.1. Introduction 

Wetlands are transitional zones between terrestrial and aquatic regions, which are permanently or 

temporarily covered with shallow water [1]. They are considered a desirable habitat for a variety 

of animal and plant species by providing food and shelter. Other wetland ecosystem services 

include flood storage, shoreline stabilization, and water-quality renovation. However, wetlands are 

increasingly degraded due to both natural processes, such as global warming, changes in 

precipitation patterns, and coastal erosion, as well as anthropogenic activities, including industrial 

runoff, road construction, and plant or animal collection and introduction [1], [2]. Furthermore, 
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the loss of wetland hydrological connectivity due to human activities leads to massive destruction 

of coastal wetlands [3].   

Wetland monitoring and management have recently gained more attention thanks to advancement 

in remote sensing technologies in a variety of subjects, including wetland hydrological monitoring 

[4], change detection [5], and classification [6]. Importantly, the advent of Synthetic Aperture 

Radar (SAR) sensors has significantly influenced wetland restoration studies and management [3], 

[7]. This is because microwaves penetrate through soil, cloud, and vegetation and the sensors are 

not reliant on sun illumination, which means SAR sensors operate in all-weather day/night 

conditions. Thus, they have facilitated wetland monitoring especially in geographic regions with 

near-permanent cloud cover.  

Hydrological monitoring of wetlands is crucial since they are water-dependent ecosystems. SAR 

images have been found to be efficient tools for wetland hydrological monitoring using both SAR 

backscattering signatures [8], [9], and a more detailed and quantitative technique, Interferometric 

SAR (InSAR) [4]. The flooded and non-flooded statuses of vegetation in wetland environments 

have distinct differences in radar backscattering response, which plays an important role in 

sustainable hydrological monitoring of wetlands. In particular, a time series analysis of SAR 

backscatter signature has provided information about seasonal patterns of flooding in wetland 

ecosystems and has been examined in number of studies [8], [10], [11].  

The potential of the InSAR technique for water level monitoring was first investigated in the 

Amazon floodplain using SIR-C in C- and L-band frequencies [12]. This study demonstrated that 

vegetation in or adjacent to the standing water backscatters the radar pulse towards the satellite 

sensor due to double-bouncing effect. This provided the possibility for monitoring water level 

changes in the phase data. Subsequently, the capability of the InSAR technique for water level 
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monitoring has been further examined for a number of other places such as Florida Everglades [4], 

[13], [14], Louisiana coastal wetland [15]–[17], China wetlands [18], [19], and most recently the 

Cienaga Grande de Santa Marta (CGSM) wetland located in Colombia [3]. 

In addition to hydrological monitoring of wetlands using InSAR, the interferometric coherence 

may be useful for discriminating different wetland vegetation covers. Currently, little is known 

about the capability of interferometric coherence for classifying different land cover types, which 

may provide information in addition to SAR intensity (i.e., the portion of the backscattered SAR 

signal from ground targets). This is because SAR intensity depends on the electromagnetic 

structure of the targets, while the interferometric coherence shows their mechanical and dielectric 

stability [20]. Furthermore, the SAR intensity is affected by speckle noise, while the speckle noise 

is averaged when two images are integrated to generate the interferometric product [21].  

Ramsey et al. (2006) used ERS1/2 tandem image pairs to compare the potential of interferometric 

products (i.e., coherence and phase) and SAR backscatter images for land cover classification in 

the Big Bend coastal wetland, Florida [21]. They found that intensity was less responsive to land 

covers and had high temporal variations. However, coherence had more variation in different 

classes and provided better discrimination, especially, during the leaf-off season. Kim et al. (2013) 

investigated the interferometric coherence of wetland classes using C- and L-band data in the 

Everglades wetlands [22]. They reported that longer wavelengths and smaller incident angles are 

better suited for wetland InSAR application. Zhang et al. (2015) used interferometric coherence 

obtained by ALOS data for classification of wet and dry marshes in the Liaoh River Delta, China 

[23]. Brisco et al. (2015) looked at the interferometric coherence in the Everglades wetlands for 

different RADARSAT-2 products [14]. They observed an adequate degree of coherence in all 

RADARSAT-2 products, while the coherence was better preserved for images with high spatial 
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resolution and small incidence angle. Most recently, Brisco et al. (2017) evaluated the temporal 

variation of coherence in three wetland types, including swamp, marsh, and shallow open water 

classes using Spotlight RADARSAT-2 images during ice-off and ice-on seasons in Ottawa, 

Ontario [5]. They reported a sufficient degree of coherence in both swamp and marsh during the 

periods of the ice-off season and noted the potential of coherence images for wetland change 

detection.  

 The majority of these studies have investigated the potential of InSAR products for wetland 

monitoring from a very specific point of view. Accordingly, studies attempting to address all 

influential factors for wetland InSAR applications are limited. For example, most of these 

researches applied only C- and especially, L-band data for coherence analysis, and mainly 

concentrated on HH polarization. However, the interferometric coherence of wetland classes using 

X-band SAR imagery, which may contribute to the success of InSAR for wetland applications due 

to high temporal and spatial resolution, has not yet been investigated. The selection of appropriate 

SAR wavelengths and polarizations are two influential factors for wetland monitoring using SAR 

imagery. Thus, the primary goal of this research study was to determine the capability of multi-

frequency SAR imagery, including ALOS PALSAR-1 L-band, RADARSAT-2 C-band, and 

TerraSAR-X images in terms of coherence maintenance for different wetland classes. Specifically, 

the main objectives were: (1) to determine the most appropriate SAR frequency and polarization 

for hydrological monitoring of Newfoundland herbaceous wetlands; (2) to identify the most 

influential factors for coherence preservation of different vegetation types using a multi-temporal 

coherence analysis framework; (3) to assess the relationship between the variation of SAR 

backscatter and coherence in complex wetland ecosystems; and (4) to explore the contribution of 

the interferometric coherence to wetland classification results using an object-based Random 
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Forest approach. Thus, this study advances towards an operational methodology for mapping 

Canadian wetlands, as well as those with similar ecological features and vegetation types, that 

builds upon the relationship between the flooding status of vegetation (i.e., wetland phenological 

cycle), SAR backscattering responses, and variation of interferometric coherence.  

3.2. Methods 

3.2.1. Study area and field data 

This study was carried out within a 700 km2 site located in the northeast portion of Newfoundland 

and Labrador, the Avalon Peninsula, in the Maritime Barren ecoregion (Figure 3.1). 

 

Figure 3.1. Level 3A RapidEye image (bands 3, 2, and 1), acquired on June 18, 2015, illustrating the 

geographic location of the study area with overlays of the Synthetic Aperture Radar (SAR) scenes. The 

circles mark the location of referenced polygons used for the coherence and backscattering analysis. 
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This ecoregion is specified by an oceanic climate, having foggy, cool summers and relatively mild 

winters [24]. Mean annual precipitation varies between 1200 to 1600mm and mean annual 

temperatures are approximately 5.5°C [25]. Figure 3.2 depicts the total precipitation (mm) for each 

month in 2016. 

 

Figure 3.2. Total precipitation in the Avalon study area for each month in 2016. 

The study area contains a dense urban area to the north, where the capital city of St. John’s and 

various closely associated towns and cities are located. Moving south, the urban cover becomes 

sparse, where balsam fir forests, heathland barrens, and expansive peatland (bog and fen) dominate 

[26]. The patterns of forest stands separated by large barrens, common in and around the study 

area, are the result of frequent forest fires, partially a result of colonization [26], [27]. The 

topography largely reflects past glacial activity in which retreating glaciers helped to form the 

numerous lakes and ponds across the rolling ground moraine land cover scattered by isolated rocks 

and boulders [27].  
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This area has eight land cover classes, five of which are wetlands (see Table 3.1). In particular, all 

five class of wetlands categorized by the Canadian Wetland Classification System, including bog, 

fen, marsh, swamp, and shallow-water are found within the study area [28]; however, bog and fen 

are the most dominant wetland classes relative to the occurrence of swamp, marsh, and shallow-

water. For this study, in-situ data were collected in the summers and falls of 2015 and 2016 over 

multiple field-visits during the leaf-on season, and Global Positioning System (GPS) locations 

were recorded. A total of 168 wetland sites were visited and categorized as bog (54), marsh (46), 

fen (29), swamp (24), and shallow-water (15).  

Table 3.1. A description of land cover classes in this study. 

Class Class Description 

Bog Peatland dominated by spahgnum species 

Fen Peatland dominated by graminoid species 

Swamp Mineral wetland dominated by woody vegetation 

Marsh 
Mineral wetland dominated by graminoids and 

emergent plants 

Shallow-water Mineral wetland with standing water at most 2m deep 

Urban Human-made structures 

Deep-water Deep water areas 

Upland Forested dry upland 

Wetland boundary delineation was conducted using ArcMap 10.3.1 with the aid of aerial and 

satellite imagery, including a 50 cm resolution orthophotograph and 5m resolution, multi-date 

RapidEye imagery (June and November 2015). Finally, polygons representing classified and 

delineated wetlands were created. Figure 3.1. displays the location of the polygons in the study 

area, wherein each delineated polygon represents one field-visited wetland. For coherence and 

SAR backscattering analysis, the training pixels in wetland classes (i.e., bog, fen, swamp, marsh, 

and shallow-water) were used. However, for the object-based classification, different sampling 
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polygons, including the training and testing polygons, were applied for training and validating the 

classification, respectively, in order to ensure a robust classification accuracy assessment.  

3.2.2. Satellite images 

Different SAR images in three frequencies, including L-, C-, and X-band have been used in this 

study. Specifically, a total number of 17 ALOS PALSAR-1 L-band images in Fine Beam Double 

(FBD) and Fine Beam Single (FBS) polarization mode in time periods of February 2007 to 

November 2010 have been used. Different products of RADARSAT-2 C-band data with different 

incidence angles and resolutions in either single- or full-polarization, which cover different parts 

of our case study, were also used. RADARSAT-2 images have been acquired in the interval 

between April and August 2016. It is worth noting that due to the small swath of Fine resolution 

Quad-polarization (FQ) beam mode, more than one image was used to cover the whole study area 

(FQ22). Also, a total number of nine HH-polarized TerraSAR-X images in StripMap mode in the 

interval from August to November 2016 has been used as the X-band data. Figure 3.1. depicts 

overlays of Synthetic Aperture Radar (SAR) scenes on the study area. The repeat-pass SAR images 

either partially or completely cover our research region. Table 3.2 represents a detailed description 

of the satellite images used in this study. Notably, RapidEye optical imagery of level 3A products 

with a pixel size of 5m was also used for the initial segmentation.  
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Table 3.2. The characteristics of satellite images used in this study. 

Sensor Acquisition date 

(yyyy.mm.dd) 

Image mode Inc. angle ( °) Resolution 

(m) 

Polarization Direction 

ALOS-1 2007.02.18 FBS 38.7 10 HH Ascending 

2007.04.05 FBS 38.7 10 HH Ascending 
2007.05.21 FBD 38.7 20 HH-HV Ascending 
2007.07.06 FBD 38.7 20 HH-HV Ascending 
2007.08.21 FBD 38.7 20 HH-HV Ascending 
2008.02.21 FBS 38.7 10 HH Ascending 
2008.04.07 FBS 38.7 10 HH Ascending 
2008.10.08 FBD 38.7 20 HH-HV Ascending 
2009.02.23 FBS 38.7 10 HH Ascending 
2009.07.11 FBD 38.7 20 HH-HV Ascending 
2009.08.26 FBD 38.7 20 HH-HV Ascending 
2010.01.11 FBS 38.7 10 HH Ascending 
2010.04.13 FBS 38.7 10 HH Ascending 
2010.05.29 FBD 38.7 20 HH-HV Ascending 
2010.08.29 FBD 38.7 20 HH-HV Ascending 
2010.10.14 FBD 38.7 20 HH-HV Ascending 
2010.11.29 FBD 38.7 20 HH-HV Ascending 

RADARSAT-2 2016.04.21 U16W2 42.13 2.5 HH Descending 

2016.05.15 U16W2 42.13 2.5 HH Descending 
2016.06.08 U16W2 42.13 2.5 HH Descending 
2016.07.26 U16W2 42.13 2.5 HH Descending 
2016.08.19 U16W2 42.13 2.5 HH Descending 
2016.06.07 FQ22 42 8 Quad-pol Ascending 

2016.06.07 FQ22 42 8 Quad-pol Ascending 

2016.07.25 FQ22 42 8 Quad-pol Ascending 

2016.07.25 FQ22 42 8 Quad-pol Ascending 

2016.07.11 FQ30 48 7 Quad-pol Ascending 

2016.08.04 FQ30 48 7 Quad-pol Ascending 

2016.08.28 FQ30 48 7 Quad-pol Ascending 

TerraSAR-X 2016.08.11 StripMap 21.55 3 HH Descending 

 2016.08.22 StripMap 21.55 3 HH Descending 

 2016.09.02 StripMap 21.55 3 HH Descending 

 2016.09.13 StripMap 21.55 3 HH Descending 

 2016.09.24 StripMap 21.55 3 HH Descending 

 2016.10.05 StripMap 21.55 3 HH Descending 

 2016.10.16 StripMap 21.55 3 HH Descending 

 2016.10.27 StripMap 21.55 3 HH Descending 

 2016.11.07 StripMap 21.55 3 HH Descending 

3.2.3. Generation of the coherence images 

SAR interferometry processes two complex SAR images acquired with very similar geometrical 

acquisitions during the time interval of the satellite repeat cycle. Interferometric coherence 

calculation is a well-known method to examine the quality of the interferograms for wetland 

studies [14]. Coherence represents the degree of similarity (i.e., the consistency of the scattering 

mechanism) of the two pixels with the same location in the time interval between two SAR 
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acquisitions. Coherence is calculated by cross-correlation of the two co-registered SAR images 

over a small window of pixels [20]: 

𝛾 =  
| < 𝑆1𝑆2

∗ > |

√< 𝑆1𝑆1
∗ >< 𝑆2𝑆2

∗ >
 

(3.1) 

where 𝑆1 and 𝑆2 denote the complex pixel values of backscattering coefficient, ∗ refers to the 

complex conjugate, and pixel values within <> denote their spatial averaging over a selected 

window size. 𝛾 varies between 0 and 1; if two images are exactly the same, 𝛾 is equal to 1, whereas 

if they do not correspond, 𝛾 is equal to 0. In this study, all interferometric processing was carried 

out using the Gamma Remote Sensing software package. An external Digital Elevation Model 

(DEM), SRTM 3 arc-second (https://earthexplorer.usgs.gov/), was used in the interferometric 

processing of topographic phase removal and the coherence images were produced using a 5x5 

window size. It is worth noting that for the interferometric processing, image co-registration was 

performed at sub-pixel accuracy (better than 0.05 pixels). Also, all interferometric coherence 

images had perpendicular baselines smaller than the critical baseline. 

In this study, ALOS-1 images were acquired in either single- or dual-polarization mode (see Table 

3.2). To integrate both types of images, the dual-polarized images were interpolated in the range 

direction to produce image pixel sizes comparable with that of single-polarized PALSAR images. 

We constrained our coherence analysis for ALOS-1 data to pairs with temporal baselines of up to 

one year. This is because previous studies showed that herbaceous wetlands, which are the 

dominant wetland types in this study, cannot maintain coherence for a longer period of time even 

when L-band is applied [4], [22]. In particular, Kim et al. (2013) reported that herbaceous wetlands 

maintained coherence over six months using JERS-1 L-band data in the Everglades [22]. Thus, a 

https://earthexplorer.usgs.gov/
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total number of 44 PALSAR coherence images were generated, allowing a quantitative analysis 

in term of coherence maintenance for different wetland classes in a multi-temporal framework.  

All possible interferometric pairs for RADARSAT-2 images were considered. More specifically, 

five RADARSAT-2 images in the UltraFine mode were used and 10 coherence images with 

temporal separation of 24 to 120 days were produced. Furthermore, different full polarimetric 

RADARSAT-2 images (i.e., FQ22 and FQ30) were used to evaluate the effect of polarization in 

terms of coherence preservation in different wetland classes. For the full polarimetric FQ22 data, 

only a single pair with a temporal baseline of 24 days was available. Thus, we used this image to 

evaluate the potential of each polarization for coherence maintenance.  

All possible interferometric pairs of TerraSAR-X images were also considered. Using nine 

TerraSAR-X images, 36 coherence images with temporal baselines between 11 and 88 days were 

produced. Notably, RADARSAT-2 and TerraSAR-X images in this study were partially captured 

at the same time. This produced an ideal dataset to compare the capacity of these SAR frequencies 

for coherence maintenance under relatively same period of time and environmental condition.  

After producing coherence imagery, a coherence variation analysis was carried out using 

ecological training data by calculating the mean and standard deviation of coherence for all 

wetland classes. For this purpose, we considered different subsets of each class with relatively 

large areas and the mean coherence was calculated by averaging the coherence values within each 

ecological training class.  

3.2.4. SAR backscatter coefficient images 

SAR backscatter intensity of the ground target is a function of several factors, including SAR 

wavelength, image acquisition geometry, local topography, surface roughness, and the dielectric 
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constant of the targets [21]. SAR intensity also depends on vegetation height, biomass, density, 

and flooding status in wetland complexes [22]. Positive backscatter values indicate a greater 

amount of energy was received by the SAR sensor, whereas negative values show that less energy 

was received. Particularly, an increase in surface roughness and the dielectric constant increase the 

SAR intensity. Furthermore, it has been reported that SAR backscatter changes in wetlands can be 

correlated with water level variations, phenological changes, and soil moisture [8], [22].  

In this study, SAR backscattering coefficient images were produced for ALOS-1, RADARSAT-2 

Ultrafine mode, and TerraSAR-X imagery. In particular, ALOS-1 level 1.0 images were processed 

using the Gamma Remote Sensing software package. The processing consisted of several steps, 

including reading the raw image, generating the multi-look intensity image, de-speckling, and geo-

referencing, which projected all intensity images into UTM coordinate (zone 22, row T) using the 

WGS84 reference ellipsoid. These images were presented in intensity values. They were then 

converted into normalized backscattering coefficient (𝜎0) values in dB, which is the standard unit 

for SAR backscattering representation. The conversion process for ALOS-1 images is as follows: 

𝜎0 = 10 ∗ log10(𝐷𝑁2) + 𝐶𝐹 (3.2) 

where 𝐷𝑁 is the digital number and 𝐶𝐹 is the calibration coefficient for ALOS standard product 

[29]. 

RADARSAT-2 and TerraSAR-X SLC images were processed using the Sentinel Application 

Platform (SNAP) software made available by the European Space Agency (ESA), using provided 

geometric and radiometric tools. After image geo-referencing, an adaptive Lee filter with a 7x7 

window size was applied to suppress the effect of speckle noise. The filtered images represented 

the preservation of the edges and smoothness in homogenous targets. All intensity images were 
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then converted into the normalized backscattering coefficient (𝜎0) values in dB. The conversion 

process for RADARSAT-2 products is presented as follows: 

𝐶𝑉 =
|𝐷𝑁|2

𝐴2
 

(3.3) 

 

where 𝐶𝑉, 𝐷𝑁, and 𝐴 indicate the calibrated value, digital number, and gain value, respectively 

[30]. The normalized backscattering coefficient in dB is obtained as follows: 

𝜎0 = 10 ∗ log (𝐶𝑉) (3.4) 

 For TerraSAR-X images (from intensity values), the beta naught values are represented as 

follows: 

𝛽𝑑𝐵
0 = 10 ∗ 𝑙𝑜𝑔10 (𝑘𝑠 ∗ |𝐷𝑁|2) (3.5) 

 where 𝑘𝑠 is the calibration and processor scaling factor and 𝐷𝑁 is the digital number. The sigma 

naught values in dB are then extracted using beta naught as follows: 

𝜎𝑑𝐵
0 = 𝛽𝑑𝐵

0 + 10 ∗ 𝑙𝑜𝑔10(sin 𝜃𝑙𝑜𝑐) (3.6) 

where 𝜃𝑙𝑜𝑐 is the local incidence angle and is obtained by the Geocoded Incidence Angle Mask 

(GIM) [31]. 

After producing SAR backscattering images, an analysis of 𝜎0 variation was carried out for the 

wetland classes. For this purpose, an average SAR backscattering coefficient was calculated for 

each wetland class, excluding shallow-water, using referenced polygons in a multi-temporal 

framework. Although the study area contains other land cover types (i.e., deep-water, urban, and 

upland) we constrained our coherence and SAR backscattering analysis to wetland classes. This is 
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because the phenology, temporal effect, and flooding status of vegetation are the most influential 

factors altering the interferometric coherence and SAR backscatter in wetland classes, which does 

not hold true for other land cover types.  

3.2.5. Object-Based Random Forest classification 

The per-pixel image analysis algorithm has been used for land cover classification for several years 

due to the coarse resolution of pixels in satellite imagery relative to the size of ground objects. 

However, the Object-Based Images Analysis (OBIA) technique has gained highlighted interest for 

land cover classification compared to the pixel-based approach due to recent improvement of 

satellite imagery in terms of spatial resolution [32], [33]. The main advantages of the object-based 

relative to pixel-based approach are that the former incorporates different input features, such as 

object size and shape, multiple sources of data with different spectral and spatial resolution, and 

the spatial and hierarchical relations between neighbouring pixels rather than a single pixel, results 

in significant improvements in terms of extracted information for a given area. Moreover, it has 

been reported that OBIA outperformed the pixel-based approach for classification of SAR 

imagery. This is because when OBIA is applied, an average backscattering procedure is carried 

out across neighboring pixels, which, in turn, decreases the inherent speckle in the SAR imagery 

[6].  

Multi-Resolution Segmentation (MRS) algorithm is the first step in OBIA [34]. MRS is a region-

merging algorithm, wherein the main objective is to minimize the summed heterogeneity using a 

pairwise comparison of neighboring pixels [29]. The MRS algorithm is usually controlled by three 

user-defined parameters, including shape, compactness, and scale. The optimum values for these 

parameters are obtained by the “trial and error” procedure depending on the research goals [33]. 

In this study, the MRS algorithm was executed by the eCognition Developer software package 
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(V.9.0) [35] using a RapidEye optical image. In particular, MRS analysis was performed with an 

optical image because segmentation using SAR imagery could generate meaningless objects due 

to the inherent speckle noise. Different scale, shape, and compactness parameters were examined 

using an iterative “trial and error” approach and the optimal values were found to be 100, 0.05, 

and 0.5, respectively. 

Image classification is the second step in OBIA. In this study, Random Forest algorithm was 

selected for classification due to its several advantages [36]. RF is a non-parametric classifier that 

operates independent of the input data distribution; this contrasts with parametric classifiers that 

rely on the normality distribution of input data such as the Maximum Likelihood Classifier (MLC) 

[36]; as such, RF is preferential for SAR and polarimetric image classification. RF is also an 

ensemble classifier that utilizes a set of Classification And Regression Trees (CARTs) [36] and 

has shown good results in several research [37], [38]. Furthermore, RF can be effectively used for 

processing large multi-temporal datasets with large numbers of input variables, while 

accommodating different types or scales of input data. It is also not sensitive to noise and 

overtraining and is easily adjusted using two variables: the number of decision trees (Ntree) and 

the number of variables (Mtry) [39]. One of great advantage of RF is that it determines the relative 

importance of input variables in the classification, which indicates the influence of each input 

feature on the overall classification accuracy. Given its numerous advantages and because it better 

accommodates our input data, RF was selected for classification in this study. A total number of 

500 trees (Ntree) were selected for classification and the square root of the number of input 

variables (i.e., the default value) was selected for Mtry.  

For RADARSAT-2 and TerraSAR-X, all coherence and intensity images were used for 

classification. However, due to the time difference between ALOS satellite imagery and in-situ 
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data, only 2010 ALOS imagery (for both coherence and intensity) was used for classification.  This 

resulted in an acceptable time difference between ALOS and ecological field data (~ 5 years). 

Therefore, a total of 108 features were extracted for classifications and three RF classifications 

were performed using different groups of features obtained by coherence (73), intensity (35), and 

combined coherence and intensity layers (108). 

3.3. Results  

3.3.1. Coherence analysis of different SAR wavelengths 

Figures 3.3, 3.4, and 3.5 depict the results of ALOS-1, RADARSAT-2, and TerraSAR-X 

coherence variation as a function of the temporal and perpendicular baselines for all wetland 

classes. As seen, coherence is influenced to a greater degree by the temporal baseline in all 

frequencies, especially for shorter wavelengths (i.e., C- and X                                                                                                                                                                                                                                                                   

-band). This is because shorter wavelengths have less penetration depth and interact primarily with 

the upper sections of the canopy (wind-affected section) and, as a result, lose coherence over a 

shorter period of time. For example, coherence was high for all wetland classes, excluding shallow-

water, in the first satellite repeat cycle (i.e., 11 and 24 days for TerraSAR-X and RADARSAT-2, 

respectively); however, coherence decreased as the temporal baseline increased. One interesting 

observation was also found for the coherence of RADARSAT-2 images, wherein the coherence 

was less than 0.4 for all wetland classes over the first 24-day interval (2016/4/21-2016/5/15). This 

was because of a heavy snowfall on April 21st, which caused a coherence loss between this 

particular interferometric pair (https://stjohns.weatherstats.ca/).  

The coherence variation was independent of the perpendicular baseline for RADARSAT-2 and 

TerraSAR-X imagery. This is because in advanced SAR missions (e.g., TerraSAR-X) the orbital 

tube is always kept within a certain limit in order to keep the baselines small and decrease the 
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effect of baseline decorrelation. As seen, the perpendicular baselines for all RADARSAT-2 and 

TerraSAR-X interferometric pairs were less than 220m. However, the coherence variation 

illustrated a dependency on the perpendicular baseline for ALOS-1 observations, wherein 

coherence was reduced as the perpendicular baseline exceeded about 700m.      

The phenological cycle was also observed in the coherence variation for both ALOS-1 and 

TerraSAR-X imagery, although it was not obtained for RADARSAT-2 imagery due to the limited 

number of images. For example, the coherence level was greater than 0.5 for almost all wetland 

classes (excluding shallow-water) in 46 days interval for ALOS-1 data; however, interferometric 

pairs during the leaf-off season had a lower degree of coherence even for a short period of time 

(see Figure 3.3). Also, all interferometric pairs of TerraSAR-X images with temporal baselines of 

less than 22 days during August and September 2016, corresponding to the leaf-on seasons in the 

Avalon pilot site, illustrated a high degree of coherence due to the summer water table (see Figures 

3.2 and 3.5). These observations illustrated that the degree of flooding controls the coherence 

variation in the wetland classes. The coherence analysis indicated that the shallow-water wetland 

had the lowest coherence (< 0.19) in all frequencies. Thus, the coherence value of 0.19 was 

considered as a representative of the decorrelation level and accordingly, the shallow-water class 

was excluded from further coherence and backscattering analysis in this study.  
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Figure 3.3. ALOS PALSAR-1 coherence analysis results for wetland classes plotted as a function of 

perpendicular and temporal baselines. Dot sizes and colors are proportional to different coherence values. 
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Figure 3.4. RADARSAT-2 (Ultrafine mode) coherence analysis results for wetland classes plotted as a 

function of perpendicular and temporal baselines. Dot sizes and colors are proportional to different 

coherence values. 
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Figure 3.5. TerraSAR-X coherence analysis results for wetland classes plotted as a function of 

perpendicular and temporal baselines. Dot sizes and colors are proportional to different coherence values. 
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3.3.2. Coherence comparison between different SAR wavelengths 

Since the previous section illustrated that the wetland interferometric coherence was highly 

dependent on the temporal baseline and was less influenced by the perpendicular baseline, we 

focused on the coherence variation as a function of the temporal baseline in this section. 

Furthermore, all images (in this section) have HH-polarization to eliminate the effect of SAR 

polarization on the coherence variation. 

As shown in Figure 3.6, ALOS-1 exhibited a higher coherence relative to both RADARSAT-2 and 

TerraSAR-X in all wetland classes among these three wavelengths. Two RADARSAT-2 and three 

TerraSAR-X images were captured during relatively the same period of time (2016/7/26 and 

2016/8/19 for RADARSAT-2 and 2016/8/11, 2016/8/22, and 2016/9/02 for TerraSAR-X). A 

comparative coherence analysis revealed that the coherence of TerraSAR-X images at the 22-day 

mark and the RADARSAT-2 images at the 24-day mark were relatively similar. However, 11-day 

TerraSAR-X interferometric pairs had slightly higher and more stable coherence for all wetland 

classes compared to the 24-day interferometric coherence of RADARSAT-2 images. The 

exponential decay curves also indicated that the coherence decreased at a higher rate for shorter 

wavelengths. 
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ALOS: a = 0.68, b = -0.005; RSAT-2: a = 0.69, b = -0.012; 

TSX: a = 0.69, b= -0.015. 
ALOS: a = 0.64, b = -0.003; RSAT-2: a = 0.56, b = -0.011; 

TSX: a = 0.59, b= -0.014. 

  

ALOS: a = 0.59, b = -0.005; RSAT-2: a = 0.43, b = -0.010; 

TSX: a = 0.52, b= -0.014. 

ALOS: a = 0.61, b = -0.002; RSAT-2: a = 0.45, b = -0.008; 

TSX: a = 0.51, b=-0.014. 

Figure 3.6. Comparison between the interferometric coherence obtained with ALOS-1, RADARSAT-2, 

and TerraSAR-X data for each of the four wetland classes as a function of temporal baselines. Note the 

exponential decay rates between different SAR wavelengths. Also, 𝑓(𝑥) = 𝑎𝑒𝑏𝑥 and coefficients were 

obtained with 95% confidence bounds. 
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3.3.3. Coherence comparison in multi-polarized C-band SAR images 

Figures 3.7 and 3.8 compare the coherence between different polarization channels of FQ22 and 

FQ30 RADARSAT-2 images. Overall, HV polarization had lower coherence, while the mean of 

HH coherence was higher than that of VV polarization in the most cases. However, for the marsh 

wetland, the coherence between different polarizations was found to be relatively similar (see 

Figure 3.8 (a) and (b)). The results also indicated that the coherence was degraded in all 

polarization channels as the temporal baseline exceeded 48 days (Figure 3.8 (b)). August 

interferometric pairs represented the highest coherence, which could be due to an increase in the 

summer water table and maximum vegetation growth that promoted double-bounce scattering 

(Figure 3.8 (c)).  

 

Figure 3.7. Coherence in different polarization channels obtained by RADARSAT-2 FQ22 product for 

wetland classes. The two SAR images were acquired in 2016/06/7 and 2016/07/25.   
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Figure 3.8. The coherence comparison between three polarization channels for wetland classes. Three 

interferometric coherence images are (a) 24, (b) 48, and (c) 24 days apart. 

A non-parametric Wilcoxon rank sum test at the 5% significance level was also used to examine 

the statistical significance in mean values of coherence between different polarizations for FQ30 

datasets. The null hypothesis assumed that there was no significant difference between the mean 

values of coherence in different polarizations. The results of the Wilcoxon rank sum test showed 

P-values higher than 0.05 between different polarization combinations for the first two 

interferometric pairs (Figure 3.8 (a) and (b)). However, P-values of 0.0286, 0.2, and 0.0857 were 

obtained for HH/HV, HH/VV, and HV/VV combination for the last interferometric pair (Figure 

3.8(c)).This observation confirmed that the mean values of coherence between HH/HV 

polarizations were statistically different (P-value < 0.05). For HV/VV polarization combination 

the null hypothesis could not be rejected with 95% confidence, however, it approached 

significance. Conversely, the test found the mean values were not significantly different for 

HH/VV polarization for the last interferometric pair (P-value = 0.2).  
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3.3.4. The relationship between coherence and SAR backscatter variation  

The relationship between SAR backscatter and coherence variation was evaluated for the HH-

polarized images. For this purpose, only interferometric coherence pairs with the smallest temporal 

baselines were used and the mean backscattering images were generated by averaging two SAR 

images, which produced the corresponding coherence images. Thus, a total number of 15, 4, and 

8 images were used for ALOS-1, RADARSAT-2, and TerraSAR-X, respectively. 

The relationship between SAR backscatter and coherence of ALOS-1 images between April 2007 

and November 2010 is depicted in Figure 3.9. A relatively linear relationship was observed 

between coherence and backscattering for both bog and fen. However, the linear relationship was 

only observed at high scattering for marsh (-14 to -11dB) and swamp wetlands (-9.5 to -6.5dB). 

The mean 𝜎0showed a relatively wide range of variation between -16 and -6dB, wherein swamp 

and marsh had the highest and lowest values, respectively. This illustrated that these two classes 

could easily be distinguished using only SAR intensity values. However, bog and fen exhibited 

relatively the same backscattering responses in most cases, indicating that the discrimination 

between these classes could be relatively challenging. The coherence observations also showed a 

large degree of overlap, suggesting that ALOS coherence observations were not useful to 

discriminate complex wetland classes.  
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Figure 3.9. Relationships between interferometric coherence and mean SAR backscattering responses 

for wetland classes in the ALOS-1 observations. 

Figure 3.10 depicts the relationship between SAR backscatter and coherence variation for 

RADARSAT-2 Ultrafine mode data between April and August 2016. An almost linear relationship 

was observed for both bog and swamp at all scattering degrees and for fen at a high scattering level 

(-14 to -13dB). The swamp wetland had the highest mean  𝜎0values, although its coherence was 

low. The marsh wetland exhibited the lowest coherence and  𝜎0values. Similar to L-band intensity 

observations, it was found that the backscattering images could easily discriminate between marsh 

and swamp given the relatively large difference between their backscattering responses. Overall, 

the swamp wetland could easily be distinguished from other wetland classes using only intensity 

observation. However, the discrimination of herbaceous wetland classes (i.e., bog, fen, and marsh) 

was found to be challenging either by intensity or coherence observations.  



85 

 

 

Figure 3.10. Relationships between interferometric coherence and mean SAR backscattering responses 

for wetland classes in the RADARSAT-2 observations. 

The relationship between SAR backscatter and coherence for TerraSAR-X dataset from August to 

November 2016 is depicted in Figure 3.11. An almost linear relationship was obtained between 

SAR backscatter and coherence for all wetland classes, excluding the marsh class. Thus, it was 

concluded that a high coherence is a good indicator of a high SAR backscattering response, 

although a high backscattering may not necessarily produce a high coherence (marsh). Also, a 

great degree of similarity was observed between the backscattering responses of most wetland 

classes, especially between bog and fen. However, the similarity was less pronounced in coherence 

observations, which would contribute to the improved separation of wetland classes using 

coherence imagery. 



86 

 

 

Figure 3.11. Relationships between interferometric coherence and mean SAR backscattering responses 

for wetland classes in the TerraSAR-X observations. 

The Wilcoxon rank sum test was also applied at the 5% significance level to statistically determine 

differences in mean values of coherence and intensity observations (see Table 3.3).  

Table 3.3. P-values of the Wilcoxon rank sum test at the 5% significance level on the difference 

in means of intensity and coherence observations between different wetland classes.    

 Intensity Coherence 

 ALOS RSAT-2 TSX ALOS RSAT-2 TSX 

Bog-Fen 0.042 0.343 0.266 0.648 0.68 0.043 

Bog-Marsh <0.001 0.343 0.111 0.787 0.200 <0.001 

Bog-Swamp 0.0013 0.028 0.0879 0.506 0.685 <0.001 

Fen-Marsh <0.001 0.114 0.368 0.339 0.342 <0.001 

Fen-swamp <0.001 0.047 0.088 0.868 0.685 0.002 

Marsh-Swamp <0.001 0.028 0.069 0.372 0.343 0.151 
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As shown in Table 3.3, all P-values obtained from ALOS intensity observations were less than 

0.05, indicating significant difference between mean values of wetland classes. Conversely, all P-

values obtained from TerraSAR-X intensity observations were higher than 0.05, suggesting that 

there was not enough evidence to reject the null hypothesis. Thus, the mean values for different 

wetland classes obtained from TerraSAR-X intensity were not significantly different. Furthermore, 

the result of this analysis showed that there was significant difference between mean values of 

swamp and other wetland classes in RADARSAT-2 intensity observations (P-values < 0.05).  

Importantly, P-values obtained from TerraSAR-X coherence found significant difference between 

mean values in most of wetland classes (P-values < 0.05). In contrast, there was not enough 

evidence to reject the null hypothesis for ALOS and RADARSAT-2 coherence images (P-values 

> 0.05). Overall, the results of Wilcoxon rank sum test were in agreement with those obtained in 

Figures 3.9, 3.10, and 3.11.   

3.3.5. Classification  

Table 3.4 represents the overall accuracies and Kappa coefficients for the three RF classifications 

based on different input features.   

Table 3.4. Overall accuracies and Kappa coefficients for RF classifications using different input 

features. 

 Coherence Intensity Both 

Overall Accuracy 65.76 68.38 74.33 

Kappa Coefficient 0.58 0.61 0.66 
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A difference of approximately 3% in the overall accuracy was observed between RF classified 

maps of coherence and intensity layers. Although the classification accuracy obtained by the 

coherence layer was lower than that of intensity, there was no significant difference between the 

two. However, the inclusion of both intensity and coherence layers resulted in an overall 

classification accuracy better than 74%. Figure 12 shows the distribution of land cover classes in 

the Avalon study area by integration of the two feature types. The two classes of bog and upland 

covered a large portion of the study area, while swamp and marsh were less prevalent. The 

classification map indicates the clear separation of all land cover types, including shallow- and 

deep-water, bog and fen, upland and swamp, as well as other classes.  

 

Figure 3.12. The land cover map of the most accurate RF classification obtained by inclusion of 

coherence and intensity layers (108 input features).   
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Table 3.5 represents the confusion matrix of RF classified map obtained by synergistic use of two 

feature types.  

Table 3.5. Classification confusion matrix of the most accurate RF classification obtained by the 

inclusion of coherence and intensity layers. An overall accuracy of 74.33% and a Kappa coefficient 

of 0.66 were obtained. 

 

  Reference Data 

 Bog Fen Swamp  Marsh 
Shallow

-water 
Urban 

Deep-

water 
Upland Tot. 

User. 

Acc. 

C
la

ss
if

ie
d

 D
at

a 

Bog 11182 2456 411 849 116 162 45 1859 17080 65.47 

Fen 3750 5673 783 488 121 51 63 382 11311 50.15 

Swamp 278 107 3240 79 74 33 54 1296 5161 62.78 

Marsh 829 1304 205 6561 106 45 89 546 9685 67.74 

Shallow-

water 

27 19 175 931 3437 17 719 418 5743 59.85 

Urban 1261 323 866 1273 49 46803 14 17264 67853 68.98 

Deep-water 11 5 47 364 2085 106 85855 711 89184 96.27 

Upland 59 71 697 573 410 30569 61 56507 88947 63.53 

 Tot. 17397 9958 6424 11118 6398 77786 86900 78983 294964  

 Prod. Acc. 64.28 56.97 50.44 59.01 53.72 60.17 98.80 71.54   

The overall accuracy was 74.33%, with bog correctly classified in 64% of cases, marsh in 59%, 

fen in 57%, shallow-water in 53%, and swamp in 50% of cases. For the non-wetland classes, the 

classifier performed better and, notably, deep-water and upland were correctly classified in 98% 

and 71% of cases, respectively. The largest confusion was found for fen, which had a high 

commission error with other wetland classes. In particular, a large portion of bog was erroneously 
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classified as fen. In a fewer case, swamp and marsh were also misclassified as the fen class 

(commission error). The largest omission error was found for the swamp wetland, where swamps 

were erroneously classified as urban, fen, and upland classes. In general, confusion was found 

between adjacent successional classes, such as bog and fen, marsh and shallow-water, swamp and 

upland, and deep- and shallow-water. 

3.4. Discussion 

Overall, the results confirmed that, among herbaceous wetlands, the bog and fen classes had 

similar coherence, which was also higher than the coherence of the marsh class. However, 

herbaceous wetlands, which are dominated by non-woody structures in the Avalon area, 

decorrelated faster over a shorter period of time (see the rates of decay for herbaceous wetlands in 

Figure 3.13). In these classes, double-bounce scattering occurs between the surface of water and 

the stalks and roots of vegetation, which are more affected by seasonal vegetation growth and, 

especially, wind in the study area. In contrast, the woody wetlands (swamps) showed higher 

coherence for pairs with longer temporal separation since they are less affected by vegetation 

growth and wind compared to the herbaceous classes.  

The results also demonstrated the superiority of ALOS-1 imagery in terms of both coherence 

preservation (see Figure 3.13 ALOS) and a higher 𝜎0 return for monitoring woody wetlands (see 

Figure 3.9). The high coherence of L-band observations means that the phase centers of scatterers 

are more stable, which is due to the deeper penetration through canopy. In this case, the leaves of 

the vegetation canopy are quasi-transparent at longer wavelengths (L-band), which penetrate 

through the branches and trunks to the surface beneath and, as a result, obtain a higher 𝜎0 return 

and maintain coherence over longer time periods. This observation is consistent with the results of 

a previous study [22], which concluded JERS-1 L-band data maintained coherence over longer 
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time periods. In addition to the high coherence of L-band observations for swamps, other wetland 

classes also had high coherence when L-band was applied. However, shorter wavelengths are also 

promising for monitoring herbaceous wetlands, especially when shorter temporal baselines are 

applied (see Fig 3.13 RSAT-2 and TSX). Despite the longer wavelength of C-band compared to 

X-band, higher backscattering responses and coherences were found for the latter when high 

resolution, HH polarized images were compared (U16W2 for RADARSAT-2). This is probably 

due to both the steeper incidence angle of X-band (~21° for TerraSAR-X relative to ~42° for 

RADARSAT-2) that penetrates deeper into the vegetation canopy, resulting in an improved 

double-bounce scattering, as well as the shorter temporal baseline of X-band data, leading to a 

higher coherence preservation. Thus, the results of this study suggest that X-band data are useful 

for monitoring bog and fen wetlands, which are the dominant Canadian wetland types.  
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Figure 3.13. Measured coherence decay for different SAR frequencies as a function of temporal baseline 

in different wetland types. Note that a temporal baseline of less than 20 days is required to obtain a 

coherence of greater than 0.4 for C- and X-band data. 

The results also indicated that temporal baseline was the most influential parameter for shorter 

wavelengths, which had almost no dependency on the perpendicular baseline. However, temporal 

and perpendicular baselines both had an effect on the coherence preservation of longer 

wavelengths. These observations are in agreement with those reported in the literature [22]. It is 

also worth noting that a temporal baseline of less than 20 days is required to obtain a coherence of 

greater than 0.4 for C- and X-band data in most cases (see Figure 3.13). The upcoming 

RADARSAT Constellation Mission (RCM), with a temporal resolution of four days, is, therefore, 
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of great importance for mapping phenomena with the high variability such as wetland complexes 

[38].   

In general, HH polarization had relatively better capability to maintain coherence among the three 

polarizations. The HH polarization signal is more sensitive to the double-bounce scattering 

associated with tree trunks in swamp forests and stems in freshwater marshes. More specifically, 

the larger Fresnel reflection of the HH polarized signal relative to other polarization is less 

attenuated by the vertical structure of wetland vegetation, such as trunks and stems [16]. The 

vertically oriented structure of such vegetation enhances the attenuation of VV-polarized signals 

and, as a result, the radar signal cannot reach the water surface below the vegetation [19]. These 

results fit well with those of other studies [13], [22].  

The results also demonstrated that the wetland phenology and water level both control the flooding 

status of vegetation (i.e., double-bounce scattering) and as such, coherence preservation. In the 

early stage of the growing season, coherence was well preserved in HH and VV polarization 

channels, while HH coherence was slightly higher (see Figure 3.7 and Figure 3.8(a)). In particular, 

the VV polarization can maintain coherence at the early stages of emerging vegetation when plants 

have begun to grow in terms of height, but have a less developed canopy. This was also confirmed 

by the Wilcoxon rank sum test, wherein P-values of higher than 0.05 were obtained for different 

polarization combinations in the early growing season (Figure 3.8 (a) and (b)), suggesting no 

significant difference between different polarizations. However, as the vegetative canopies further 

developed in the middle of the growing season (i.e., August, see Figure 3.8(c)), HH polarization 

maintained higher coherence relative to other polarizations. The high coherence of HH polarization 

could be explained by the increased water level that occurred in August due to precipitation (see 

Figure 3.2). Particularly, an increase in the water level enhanced the chance of double-bounce 
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scattering for flooded vegetation and, since the HH polarization is more sensitive to double-bounce 

scattering, the coherence was better preserved. Accordingly, the coherence has been further 

differentiated between the three polarizations because of summer water levels (see Figure 3.8(c)). 

This conclusion was in agreement with the results of Wilcoxon rank sum test, reporting the P-

value of lower than 0.05 for HH/HV polarization combination (Figure 3.8(c)). Thus, it was 

concluded that C-HH responses were greater influenced by water level fluctuations and less 

affected by vegetative canopies. Kim et al. (2014) also reported that L-HH backscattering 

coefficients were dominated by the single factor of water level fluctuation and unaffected by 

vegetation canopies of the freshwater marshes in the Everglades [9]. Thus, both SAR 

backscattering and coherence reflected the flooding status of vegetation and their peak occurred at 

the period of the highest water table (during the growing season), which was in August and 

September in the Avalon study area (see Figure 3.2). 

Overall, the results indicated a linear relationship between coherence and SAR backscattering for 

most of the wetland classes. However, the coherence of the marsh wetland was saturated at specific 

values for both C- (0.33) and X-band (0.43) and, thereby, indicated no relationship with 

backscattering. Similar behaviour was also reported for relatively the same wetland class (i.e., 

graminoid wetlands which are herbaceous prairie marshes) in the Florida Everglades [22]. 

Furthermore, the results of the backscattering analysis indicated that swamp and marsh were easily 

separable using 𝜎0 values since they had the highest and lowest 𝜎0 returns, respectively, in the 

three SAR frequencies. Importantly, the swamp class was found to be easily distinguished from 

other wetland classes using intensity observations, especially using L-band data. This was 

confirmed by the Wilcoxon rank sum test and was also in agreement with the classification result. 

For example, the confusion matrix represented a lower degree of confusion between the swamp 
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and marsh wetlands. However, a high degree of similarity was found between herbaceous wetlands 

and, especially, between bog and fen in terms of 𝜎0 returns, which was, latter, affirmed by the 

confusion matrix. According to the field biologists’ reports, these two types of wetlands are 

adjacent, successional classes without clear-cut borders contributing to confusion between them. 

Specifically, bog and fen are both peatlands dominated with relatively similar non-woody 

vegetation types (spahgnum and graminoid). However, multi-temporal polarimetric data may be 

useful to differentiate these two classes by monitoring the phase changes due to presence of the 

subsurface water flow using polarimetric decomposition methods, such as Touzi decomposition 

[40]. This is possible because fens are characterized by subsurface water flow, whereas bogs are 

not. Thus, these two classes are expected to be better distinguished by applying polarimetric 

decomposition methods, especially at longer wavelengths with a higher penetration depth. 

Nevertheless, the difficulty of classifying these two classes using both optical and SAR data was 

reported [41].  

The confusion error between shallow- and deep-water classes could be due to the low SAR 

backscattering response of those two classes. Particularly, these classes are generally characterized 

by specular scattering mechanisms that result in very low returned signals in a SAR image thus 

contributing to misclassification. Shallow-water was also misclassified with other wetland classes 

in some cases, especially the marsh wetland. This is likely due to presence of aquatic vegetation 

at the border of small/shallow ponds, which was mixed in the same pixels in the segmentation 

process.  

Another factor affecting the accuracy of different classes is the amount of ecological training data 

applied in a supervised classification. All wetland classes in this study have fewer training samples 

when compared with non-wetland classes. This resulted in relatively higher accuracies for non-
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wetland classes. Among wetland classes, bog has the highest amount of training samples, which 

could explain the relatively high accuracy of the bog class compared to other wetland classes. On 

the other hand, the swamp and shallow-water wetlands have the lowest producer’s accuracies. One 

possible reason could be the insufficient amount of training data for these two classes. 

Theoretically, the accuracies of all classes may improve by the inclusion of a greater amount of 

training data.    

In order to quantitatively examine the contribution of each input feature to the overall classification 

accuracy, an assessment of feature importance was carried out for the most significant results of 

the RF classification (Figure 3.14).   

 

Figure 3.14. Normalized variable importance for the most significant RF classification map.  

Overall, the intensity features had a greater contribution to the overall classification result. The 

intensity represents the power of the backscattering signals after interacting with ground targets 

[42] and was found to be more informative compared to the coherence layer for this classification. 

This finding was also in agreement with results of the Wilcoxon rank sum test. In particular, P-
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values of lower than 0.05 were obtained between all possible wetland classes for L-band intensity 

observations. This, too, occurred in a fewer cases for C-band intensity observations (see Table 

3.3).  

 Despite the higher contribution of intensity images, coherence features were also found to be 

useful, especially, those coherence images with small temporal baselines (e.g., 19 and 31 features). 

Furthermore, all coherence images corresponding to the peak of the high water level (i.e., late 

summer and early fall) indicated a significant contribution to the overall accuracy (e.g., 19, 31, 81, 

and 106 features). In general, the variable importance analysis confirmed, to some extent, the 

results obtained by the coherence and backscattering investigations. For example, the variable 

importance analysis indicated a great contribution of L-band intensity observations to the 

classification result, which was consistent with the results of the backscattering analysis and the 

Wilcoxon rank sum test. One interesting observation was found for full polarimetric RADARSAT-

2 imagery. In particular, the variable importance analysis indicated the greater importance of HV-

intensity (83, 86, and 92 features) relative to HH-intensity (82, 85, and 91 features) in some cases, 

although HH-coherence was found to be more influential than HV-coherence in all cases. This is 

because the cross-polarized observations are due to volume scattering within the vegetation canopy 

and have a higher sensitivity to vegetation structures. Given the large coverage of the study area 

with different wetland vegetation types, HV-intensity indicated a greater contribution relative to 

other polarizations of C-band data when double-bounce was not dominant in the early stages of 

vegetation growth. Although the HV intensities produced a high backscattering response, they 

could not maintain coherence to the same degree as HH polarization since they are more random, 

which resulted in HV-coherence contributing less to the classification results than HH-coherence.    
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Despite Canada’s extensive wetlands and several wetland studies using optical and PolSAR 

imagery, the interferometric coherence of Canadian wetlands has not been thoroughly investigated 

to date. In particular, the analysis of coherence variation for wetland classes has been limited to a 

few studies carried out in the Everglades [22] and Louisiana wetlands [15], both in the United 

States. However, Canadian wetland classes are different than those found in the United States. 

Given the relatively similar wetland types across the country, the results of this research provide 

the first detailed investigation towards Canadian wetland mapping, as well as other wetlands 

worldwide with similar ecological features, from a new perspective based upon the synergetic use 

of intensity and phase observations. Other studies, which have compared the coherence behavior 

of different wetland classes, applied only L- and C-band SAR data obtained by JERS-1, 

RADARSAT-1, and ERS [15], [22]. In addition to examining the capacity of ALOS-1 and 

RADARSAT-2 in terms of coherence maintenance, the results of our study contribute to the 

success of wetland monitoring using X-band data with improved temporal resolution, which is of 

great importance for herbaceous wetlands. The results also indicate the potential of coherence as 

an input feature for wetland classifications, which is another significant contribution of this 

research study. Further improvement in classification accuracy is expected upon the synergistic 

use of intensity, coherence, and polarimetric decomposition features. This is because different 

input features incorporate different characteristics of ground targets, which may play various roles 

(i.e., contribution) in the classification results.    

3.5. Conclusion 

A total number of 38 repeat-pass ALOS PALSAR-1, RADARSAT-2, and TerraSAR-X SAR 

images were used for statistical analysis of SAR intensity and coherence variation for wetland 

classes in a study area located on the northeast of Newfoundland and Labrador, Canada. The 
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coherence analysis, as a function of perpendicular and temporal baselines, illustrated that 

coherence was mainly dependent on the latter and less/not affected by the former, especially for 

shorter wavelengths. Overall, coherence was the highest for L-band SAR data and the X-band data 

had higher coherence than C-band in interferometric pairs with smaller temporal baselines. The 

Wilcoxon rank sum test found that the mean values of coherence maps were not significantly 

different between three polarizations at the early stage of the growing season. However, there was 

significant difference between mean values of HH/HV at the peak of the growing season.   

A linear relationship was observed between coherence and SAR backscattering intensity during 

the leaf-on season in some wetland classes when L- and X-band SAR data were employed. The 

swamp wetland was found to be most easily distinguished from other wetland classes according 

to the backscattering and coherence analysis. Although the confusion matrix found the lowest 

producer’s accuracy of about 50% for the swamp wetland, this was likely due to the smallest 

training samples for swamps compared to other land cover classes. On the other hand, the 

discrimination of herbaceous wetlands was found to be challenging according to the backscattering 

and coherence analysis. Notably, the Wilcoxon rank sum test confirmed the superiority of L-band 

intensity and X-band coherence observations for distinguishing complex wetland classes. Thus, it 

was concluded that interferometric coherence enhanced thematic land cover information when 

integrated with intensity layers, supporting the capacity of coherence for wetland classification. In 

particular, an overall accuracy of about 74% was attained by the inclusion of both features types, 

providing an improvement of about 6% compared to the classification based only on intensity 

layers. The results of this study found that the synergistic use of multiple feature types improved 

discrimination capacity between complex wetland classes. 
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Chapter 4. Feature optimization for wetland mapping 3 

Preface 

A version of this manuscript has been published in the International journal of applied earth 

observation and geoinformation. I am a primary author of this manuscript along with the co-

authors, Bahram Salehi, Masoud Mahdianpari, Mahdi Motagh, and Brian Brisco. I conceptualized 

and designed the study. I developed the model and performed all experiments and tests. I wrote 

the paper and revised it based on comments from all co-authors. I also revised the paper according 

to the reviewers’ comments. The co-author, Masoud Mahdianpari, helped in performing the 

experiments and analyzing the results and contributed to revising the manuscript. All co-authors 

provided editorial input and scientific insights to further improve the paper. They also reviewed 

and commented on the manuscript.  

Abstract 

Wetlands are home to a great variety of flora and fauna species and provide several unique 

environmental services. Knowledge of wetland species distribution is critical for sustainable 

management and resource assessment. In this study, multi-temporal single- and full-polarized 

RADARSAT-2 and single-polarized TerraSAR-X data were applied to characterize the wetland 

extent of a test site located in the north east of Newfoundland and Labrador, Canada. The accuracy 

and information content of wetland maps using remote sensing data depend on several factors, 

such as the type of data, input features, classification algorithms, and ecological characteristics of 

wetland classes. Most previous wetland studies examined the efficiency of one or two feature 

                                                           
3 Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Motagh, M. and Brisco, B., 2018. An efficient feature 

optimization for wetland mapping by synergistic use of SAR intensity, interferometry, and polarimetry 

data. International journal of applied earth observation and geoinformation, 73, pp.450-462. 
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types, including intensity and polarimetry. Fewer investigations have examined the potential of 

interferometric coherence for wetland mapping. Thus, we evaluated the efficiency of using 

multiple feature types, including intensity, interferometric coherence, and polarimetric scattering 

for wetland mapping in multiple classification scenarios. An ensemble classifier, namely Random 

Forest (RF), and a kernel-based Support Vector Machine (SVM) were also used to determine the 

effect of the classifier. In all classification scenarios, SVM outperformed RF by 1.5-5%. The 

classification results demonstrated that the intensity features had a higher accuracy relative to 

coherence and polarimetric features. However, an inclusion of all feature types improved the 

classification accuracy for both RF and SVM classifiers. We also optimized the type and number 

of input features using an integration of RF variable importance and Spearman’s rank-order 

correlation. The results of this analysis found that, of 81 input features, 22 were the most important 

uncorrelated features for classification. An overall classification accuracy of 85.4% was achieved 

by incorporating these 22 important uncorrelated features based on the proposed classification 

framework.  

Keywords: Wetland; Interferometric coherence; Random Forest; Support Vector Machine. 

4.1. Introduction 

Wetlands are areas with either temporarily or permanently saturated soils that affect plant 

establishment, animal life, and soil development. Controlling floods, improving water-quality, 

supporting wildlife habitat for several unique species of flora and fauna, and shoreline stabilization 

are some of the advantages of wetlands [1]. Satellite remote sensing data have significantly 

contributed to wetland mapping given the remoteness, vastness, and ever-changing nature of these 

ecosystems. Importantly, Synthetic Aperture Radar (SAR) sensors are advantageous for wetland 

studies due to their capability to operate independently of solar radiation and day/night conditions. 



105 

 

Furthermore, the SAR signal penetrates through vegetation canopies and soil, making it an ideal 

tool to monitor the flooding status of vegetation [2].  

For several years, per-pixel image analysis has been used for land cover classification due to the 

coarse resolution of pixels in satellite imagery relative to the size of the ground object. However, 

because of continuous development of satellite remote sensing tools and the availability of high 

spatial resolution imagery, the Object-Based Image Analysis (OBIA) technique has become 

popular for land cover classification [3]. Incorporating different features, such as object size and 

shape, combining multiple sources of data with different spectral and spatial resolution, and 

utilizing spatial and hierarchical relations of neighbouring pixels are the main advantages of the 

object-based approach [2]. Moreover, an integration of advanced machine learning tools, such as 

Support Vector Machine (SVM) and Random Forest (RF), with the object-based approach has 

further improved accuracy of land cover classification in recent years [4].  

When classifying complex land cover, accuracy is not only influenced by classifier robustness but 

other factors, such as input features and their discrimination power affect the classification results. 

Although several studies have examined the capacity of SAR intensity and polarimetric 

decomposition methods for wetland classification (e.g., [1], [2]), the potential of interferometric 

coherence has not been thoroughly investigated. Nevertheless, the efficiency of interferometric 

coherence for classification of different land cover types has been noted. In particular, Ramsey et 

al. (2006) investigated the capability of SAR intensity, phase, and interferometric coherence for 

coastal land cover classification [5]. They reported that the SAR intensity was less responsive to 

land covers and had high temporal variations. Conversely, the interferometric coherence of the 

different classes was highly varied and provided a superior capacity for discrimination. In Central 

Siberia, Thiel et al. (2009) used ALOS PALSAR summer-intensity and winter-coherence to 
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discriminate forest and non-forest areas [6]. Jin et al. (2014) also investigated the discrimination 

power gained by synergistic use of intensity, polarimetric, interferometric coherence, and textural 

features using multi-temporal ALOS PALSAR data for land cover mapping in Central New York 

State, USA. They reported the inclusion of four feature types improved classification accuracy of 

about 7% relative to exclusive use of intensity [7]. Zhang et al. (2015) used interferometric 

coherence obtained from ALOS data for classification of wet and dry marshes in the Liaoh River 

Delta, China [8]. Also in China, Jiang et al. (2017) examined the capacity of HH-polarized 

TerraSAR-X intensity and coherence for land cover mapping in the city of Zhuhai, Pearl River 

Delta [9]. Most recently, Wang et al. (2018) used multi-temporal TerraSAR-X backscatter 

intensity and coherence to map permafrost landscapes in a complex sub-arctic environment [10].  

Despite the high capacity of state-of-the-art machine learning algorithms, such as RF and SVM, 

to handle a large number of input features, the classification accuracy can be considerably 

improved upon the inclusion of important uncorrelated features into the classification scheme [11]. 

This highlights the significance of employing an efficient feature selection method to remove 

redundant information within input data, thus alleviating computational complexity. Moreover, 

such a feature selection method deepens the knowledge of which input features are most suitable 

for specific classification tasks [12]. Thus, identifying the best combination of features that have 

more separable land cover information is highly desirable. Accordingly, several feature selection 

methods for remote sensing data have been proposed and can be found in the literature (e.g., [13]). 

Some of these studies noted that RF variable importance can be used as an efficient feature 

selection method for dimensional reduction of remote sensing data [11], [12]. The RF variable 

importance indicates the influence of each feature on the classification accuracy for a set of input 
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data through the out-of-bag estimates and, accordingly, has been successfully employed as a 

feature selection method [11], [12].  

The goal of this study was to investigate the potential of interferometric coherence for wetland 

mapping and the synergistic use of coherence with intensity and polarimetry. Each feature has 

specific characteristics, which may improve the capacity to discriminate between different land 

cover classes. For example, SAR intensity is primarily an indicator of ground conditions due to its 

sensitivity to surface roughness and dielectric constant, polarimetric features characterize the type 

of the ground target scattering mechanism, and interferometric coherence indicates the mechanical 

stability of the ground targets during satellite acquisition time intervals [7]. Thus, the objectives 

of this research were to: (1) determine the contribution of varying input features, including 

intensity, interferometric coherence, and polarimetric decompositions, obtained from multi-

temporal X- and C-band SAR data to the classification results; (2) identify the improved 

discrimination capacity obtained from the synergistic use of different input features; (3) quantify 

the redundancy within a large number of input features and its influence on the classification 

accuracy; (4) optimize both the type and number of input features by integrating RF variable 

importance and Spearman’s rank-order correlation analysis; and (5) compare the performance of 

a kernel-based classifier, SVM, and an ensemble classifier, RF, using an object-based 

classification approach. To the best of our knowledge, this study is the first to investigate the 

synergistic use of such input features for wetland classification. The proposed classification 

scheme serves as a framework, progressing towards an operational methodology for mapping 

wetland complexes in Canada, as well as other wetlands worldwide with similar ecological 

characteristics.  
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4.2. Study Area and Data 

The 700 square kilometer study area is located in the north eastern part of the Avalon Peninsula, 

in Newfoundland and Labrador, Canada (Figure 4.1). Land cover within the Avalon pilot site is 

highly diverse and includes extensive heathland, balsam fir forest, as well as urban and agricultural 

areas. Notably, all wetland classes characterized by the Canadian Wetland Classification System, 

including bog, fen, marsh, swamp, and shallow-water are found within this region. 

 

Figure 4.1. An overview of the study area with overlays of Synthetic Aperture Radar (SAR) scenes.  

Field data were acquired for 257 ground sites in the ice-off seasons of 2015-2017. For reference 

data preparation, reference polygons were sorted by size and alternatingly assigned to training and 

testing groups. An alternative assignment of reference data ensured that both the training and 

testing had an equal assignment of small and large wetland polygons to allow for similar pixel 
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counts and to account for the high variation of intra-wetland size. Fig 4.2 illustrates the distribution 

of the training and the testing polygons for each land cover type across the study area. 

  

Figure 4.2. Distribution of reference data: (Left) training and (Right) testing polygons. 

HH polarized X-band images from TerraSAR-X in StripMap mode were acquired between August 

and November 2016, coinciding with the ice-off season. RADARSAT-2 C-band imagery in either 

single (HH) or quad polarization was acquired in the interval between April and August 2016. Due 

to the small swath of FQ mode, more than one image was needed to cover the whole study area 

(FQ22; see Figure 4.1).  
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Table 4.1. Specification of satellite imagery.  

Sensor Acquisition 

Date 

(yyyy.mm.dd) 

Image Mode Incidence 

angle ( °) 
Resolution 

(m) 

(range × 

azimuth) 

Polarization Direction 

TerraSAR-X 2016.08.11 StripMap 21.55 1.2 × 3.3 HH Descending 

2016.08.22 StripMap 21.55 1.2 × 3.3 HH Descending 

2016.09.02 StripMap 21.55 1.2 × 3.3 HH Descending 

2016.09.13 StripMap 21.55 1.2 × 3.3 HH Descending 

2016.09.24 StripMap 21.55 1.2 × 3.3 HH Descending 

2016.10.05 StripMap 21.55 1.2 × 3.3 HH Descending 

2016.10.16 StripMap 21.55 1.2 × 3.3 HH Descending 

2016.10.27 StripMap 21.55 1.2 × 3.3 HH Descending 

2016.11.07 StripMap 21.55 1.2 × 3.3 HH Descending 
RADARSAT-2 2016.04.21 U16W2 42.13 1.6 × 2.8 HH Descending 

2016.05.15 U16W2 42.13 1.6 × 2.8 HH Descending 

2016.06.08 U16W2 42.13 1.6 × 2.8 HH Descending 

2016.07.26 U16W2 42.13 1.6 × 2.8 HH Descending 

2016.08.19 U16W2 42.13 1.6 × 2.8 HH Descending 

2016.06.07 FQ22 42 5.2 × 7.6 Quad-pol Ascending 

2016.06.07 FQ22 42 5.2 × 7.6 Quad-pol Ascending 

2016.07.25 FQ22 42 5.2 × 7.6 Quad-pol Ascending 

2016.07.25 FQ22 42 5.2 × 7.6 Quad-pol Ascending 

 

4.3. Methods 

Figure 4.3 illustrates the proposed methodology for this study. After SAR data pre-processing, 

different features were extracted and grouped into three major feature types, including intensity, 

interferometric coherence, and polarimetric features. Next, different combinations of features were 

applied to an object-based image analysis framework. The classification results were then 

evaluated using the testing polygons, which were held back for the validation and accuracy 

assessment. However, a number of these input features had redundant information and were not 

useful, meaning that incorporating highly correlated features did not significantly improve 

classification accuracy. They also increased the computational complexity of the classification. 

Thus, we applied an efficient method to optimize both the type and number of input features. In 

particular, we used a combination of RF variable importance and Spearman’s rank-order 
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correlation in a pair-wise correlation framework. Based on these analyses, the most important 

uncorrelated features were extracted and applied to the final classification scheme. 

 

Figure 4.3. Flowchart of the proposed methodology. 

4.3.1. Feature Extraction  

4.3.1.1. SAR backscatter coefficient images 

SAR backscatter coefficients, 𝜎0, were extracted from TerraSAR-X and RADARSAT-2 imagery 

using the PCI Geomatica software package. An external Digital Elevation Model (DEM), SRTM 

3 arc-second (https://earthexplorer.usgs.gov/), was used to geo-reference the  TerraSAR-X and 

RADARSAT-2 level-1 SLC imagery and the images were projected into UTM coordinates (zone 

22, row T) using the WGS84 reference ellipsoid. An adaptive Lee filter with a 7x7 window size 

was then used to suppress the effect of speckle noise. Intensity images were converted into the 

https://earthexplorer.usgs.gov/
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normalized backscatter coefficient (𝜎0) values expressed in dB. Accordingly, a total number of 

nine and five SAR backscatter images for TerraSAR-X and RADARSAT-2 (U16W2) were 

generated, respectively. For RADASAT-2 FQ22, six backscatter images in different polarizations 

were produced.  

4.3.1.2. Interferometric coherence 

The interferometric coherence quantifies the degree of similarity between two co-registered SAR 

images acquired from slightly different look angles. The coherence values range between 0 and 1, 

representing the incoherent and perfectly coherent situations, respectively. Temporal changes (e.g., 

wind and vegetation growth) and volume scattering are the main factors for decorrelation, 

particularly in vegetated areas during the growing season. 

The interferometric processing was performed using the GAMMA Remote Sensing V.4.1 software 

package and the topographic phase was removed using DEM. A total number of 36 interferometric 

coherence images for TerraSAR-X imagery with temporal baselines varying from 11 to 88 days 

were produced. Using five RADARSAT-2 U16W2 images, 10 coherence images with temporal 

baselines between 24 and 120 days were produced. For RADARSAT-2 FQ22 product, three 

coherence images in HH, HV, and VV polarizations were generated.   

4.3.1.3. Polarimetric decomposition 

The two well-known incoherent decomposition methods, namely Cloude-Pottier and Freeman-

Durden [14], were employed to compare the strength of the polarimetric descriptors with intensity 

and interferometric coherence (see Table 4.2). These approaches determine the relative 

contributions from different scattering mechanisms. The incoherent decompositions were selected 

since they are better suited for wetland complexes characterized by distributed scatterers compared 

to coherent decompositions (e.g., Krogager). The coherent decompositions are usually applied to 
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man-made targets, wherein the scattering occurs within only one or few point scatterers and, as 

such, the phase can be measured and analyzed. However, incoherent decompositions usually apply 

an initial averaging of the returned signals and thus, the direct reference to the phase of the 

elementary targets is not maintained [15].  

Table 4.2. An overview on extracted features in this study. 

Name of feature Variables Data Number of features 

Intensity 𝜎𝐻𝐻
0  TerraSAR-X 9 

 𝜎𝐻𝐻
0  RADARSAT-2 (U16W2) 5 

 𝜎𝐻𝐻
0 , 𝜎𝐻𝑉

0 , 𝜎𝑉𝑉
0  RADARSAT-2 (FQ22) 6 

Coherence 𝛾𝐻𝐻 TerraSAR-X 36 

 𝛾𝐻𝐻 RADARSAT-2 (U16W2) 10 

 𝛾𝐻𝐻 , 𝛾𝐻𝑉 , 𝛾𝑉𝑉 RADARSAT-2 (FQ22) 3 

Polarimetry 𝐶𝑙𝑜𝑢𝑑𝑒 − 𝑃𝑜𝑡𝑡𝑖𝑒𝑟 RADARSAT-2 (FQ22) 6 

 𝐹𝑟𝑒𝑒𝑚𝑎𝑛 − 𝐷𝑢𝑟𝑑𝑒𝑛 RADARSAT-2 (FQ22) 6 

4.3.2. Image classification 

Multi-Resolution Segmentation (MRS) is the first step in OBIA and was performed in this study 

using the eCognition Developer 9 software package. MRS analysis is controlled by three user 

defined parameters, namely scale, shape, and compactness. There is no standard, widely accepted 

approach to determine the optimal segmentation parameters; however, imagery with a high 

resolution and identifiable ground objects are advantageous for this purpose. Accordingly, high 

resolution RapidEye optical imagery, which provides enough detail and produces well-defined 

objects appropriate for delineating wetland classes, was used for segmentation in this study. SAR 

data, however, may not provide a sufficient degree of detail due to speckle noise and lower ground 

feature distinguishability [1], [16]. Although SAR imagery was not used in the multi-resolution 

segmentation step, the polygons (segments) obtained from the segmentation of the optical image 

were superimposed on extracted features from SAR data. The segmentation parameters were 

obtained based on (a) previous similar studies (e.g., [1], [2]) and (b) a trial-and-error approach. 

Accordingly, the optimal values for scale, shape, and compactness were found to be 100, 0.05, and 
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0.5, respectively. The shape parameter of 0.05 emphasises image radiometry rather than shape and 

the compactness of 0.5 balances the compactness and smoothness of objects equally [2]. Scale 

values ranging from 10 to 300 were examined, and a value of 100 was found to be appropriate for 

this study according to the visual analysis of the segmentation results. In particular, a scale value 

of 100 resulted in more well-defined objects for delineating wetland classes with various size and 

shapes. 

SVM is a supervised non-parametric classifier and has performed well for land cover classification 

using satellite imagery [17]. Its main goal is to identify an optimum hyperplane that discriminates 

the dataset into a specific number of classes. An advantageous generalization characteristic of 

SVM is that it uses a subset of training samples within the margin, the so-called support vectors, 

to determine the hyperplane, rather than the entire available training dataset. When the classes are 

not linearly separable in their original space, a kernel function is usually used to project the input 

data into a feature space. Non-linear, sigmoid, polynomial, and radial basis functions are 

commonly used kernels for this purpose, although the two latter approaches are better matched for 

classification of remote sensing imagery. In this study, the radial basis function (RBF) was 

selected. The training of the radial basis function requires tuning two parameters: the kernel 

parameter, known as gamma (𝛾), and the cost parameter (𝐶). The former parameter is used in all 

kernel types, excluding the linear kernel function. The latter parameter prevents the classifier from 

being over-fitted to datasets and, accordingly, controls the classifier generalization capacity. In 

this study, these parameters were obtained using a heat-map of the classifier’s cross-validation 

accuracy as a function of 𝛾 and 𝐶 (Figure 4.4). The optimal values of  𝛾 and 𝐶 were found to be 

10-5 and 103, respectively. 
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Figure 4.4. Visualization of SVM tuning parameters of 𝛾 and 𝐶 for RBF kernel.  

Random Forest is a sophisticated version of the decision tree (DT) algorithm, wherein a group of 

tree classifiers is employed to make a prediction [18]. RF is especially well suited for classifying 

multi-dimensional remote sensing data since it is not sensitive to noise and over-training and is 

also easily adjustable using two parameters, the number of decision trees (Ntree) and the number 

of variables (Mtry) [15]. In this study, a total number of 500 trees were selected in each 

classification scenario and the square root of the number of input variables was selected for Mtry. 

Table 4.3 represents different classification scenarios using the multiple features examined in this 

study.  
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Table 4.3. Different classification scenarios employed in this study.  

Scenario Features Satellite data # features 

    TSX RADARSAT-2  

 Intensity Coherence  Polarimetry  U16W2 FQ22  

1 ✓    ✓    9 

2 ✓     ✓   5 

3 ✓      ✓  6 

4 ✓    ✓  ✓  ✓  20 

5  ✓   ✓    36 

6  ✓    ✓   10 

7  ✓     ✓  3 

8  ✓   ✓  ✓  ✓  49 

9   ✓    ✓  12 

10 ✓  ✓   ✓  ✓  ✓  69 

11 ✓   ✓  ✓  ✓  ✓  32 

12  ✓  ✓  ✓  ✓  ✓  61 

13 ✓  ✓  ✓  ✓  ✓  ✓  81 

14 Important uncorrelated features ✓  ✓  ✓  22 

4.3.3. Variable reduction  

A fundamental advantage of RF is that it measures the importance of input variables to the overall 

classification results. However, a recent study reported that the most important variables identified 

by RF varied in different iterations even when applying the same input features and training data 

[11]. They also pointed out that the most important features identified by RF are biased toward 

highly correlated variables. Accordingly, in this study, we optimized the number and type of input 

variables in two steps. First, the most important features were determined using the RF variable 

importance analysis. These features were extracted by applying the RF classifier 15 times and 

recording the variables’ rankings. Next, the correlations between the input features were 

determined using Spearman’s rank-order correlation. This allowed us to perform the final 

classification based on only important uncorrelated features.   
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4.4. Results and Discussion  

Table 4.4 presents the classification overall accuracies and Kappa coefficients for different 

classification scenarios.  

Table 4.4. Overall accuracies and Kappa coefficients for different classification scenarios. 

Scenario Random Forest Support Vector Machine 

 OA (%) Kappa OA (%) Kappa 

1 61.42 0.56 65.33 0.61 

2 58.06 0.52 61.85 0.58 

3 63.39 0.59 68.07 0.64 

4 69.84 0.63 73.24 0.69 

5 58.93 0.54 63.41 0.60 

6 55.19 0.49 57.58 0.53 

7 54.58 0.49 58.96 0.53 

8 67.89 0.63 71.39 0.67 

9 66.12 0.62 70.08 0.65 

10 72.60 0.68 75.12 0.71 

11 73.93 0.69 75.96 0.72 

12 70.89 0.65 72.51 0.68 

13 78.90 0.74 82.43 0.78 

14 81.79 0.76 85.40 0.82 

Note: See Table 4.3 for an overview of the features used to define the scenarios presented in Table 4.4.   

Among the three feature types, intensity features were found to produce the highest overall 

accuracies (e.g., scenarios 4, 10, 11, and 13). Polarimetry and coherence features were found to 

have a relatively similar strength in terms of classification accuracy (see scenarios 8 and 9). 

Although they were less successful than the intensity layers, combining these features with 

intensity resulted in an improvement in overall accuracy. For example, the exclusive application 

of intensity features was only successful for classifying different wetland classes to an overall 

accuracy of about 69% in the best case for the RF classifier. However, the inclusion of intensity 

with either coherence or polarimetric features improved the classification accuracies for scenarios 

10 and 11 relative to scenario 4 by about 2.5 to 4%. Thus, it was concluded that both coherence 

and polarimetric features were informative and contained thematic information complementary to 

intensity features.  
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SVM outperformed the RF classifier in all classification scenarios in this study. For example, SVM 

was 3.5% more accurate than RF in scenario 13. The superior performance of SVM relative to RF 

for land cover classification has been previously noted [4], [17]. The results also demonstrated the 

better discrimination capacity of X-band relative to C-band when only HH polarized images were 

compared for both intensity and coherence features (scenario 1 versus 2 and 5 versus 6). This could 

be attributed to the higher temporal resolution of TerraSAR-X (i.e., 11 days) compared to 

RADARSAT-2 (i.e., 24 days), suggesting a better capability of the former observations to map 

hydrological variation and flooding status of vegetation. This is because wetlands are characterized 

as being highly dynamic and may change rapidly, particularly in areas with a short leaf-on season, 

such as NL. This indicates the importance of multi-temporal SAR images with high temporal 

resolution for the accurate discrimination of different wetland classes [2]. The X-band data used 

in this study also have a steeper incidence angle compared to those of C-band, contributing to 

deeper penetration into the wetland vegetation and providing more detailed information about 

flooding status (see Table 4.1). Figure 4.5 shows classification maps obtained by incorporating 

three feature types into RF and SVM classifiers.  
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Figure 4.5. The classification maps obtained from combining all feature types using (Left) RF and (Right) 

SVM classifiers (scenario 13 using 81 features). 
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Table 4.5. Confusion matrix for scenario 13 using the RF classifier (OA: 78.90%).  

 

  Classified Data 

 
Bog Fen Swamp Marsh  Shallow-

water  

Urban Deep-

water  

Upland Tot. Prod. 

Acc. 

R
ef

er
en

ce
 D

at
a
 

Bog 
38259 4697 2170 819 0 524 0 5328 51797 73.86 

Fen 
2567 10297 167 57 0 0 0 1253 14341 71.80 

Swamp 
45 494 6972 39 0 28 0 2190 9768 71.38 

Marsh  
102 668 901 7804 1049 9 31 1202 11766 66.33 

Shallow-

water 

51 14 34 722 15290 0 5883 108 22102 69.18 

Urban 
8669 165 1059 1217 0 42041 0 8941 62092 67.71 

Deep-water 
0 0 0 0 1983 0 88478 0 90461 97.81 

Upland 
4582 261 11 215 9 14912 504 66381 86875 76.41 

 Tot. 
54275 16596 11314 10873 18331 57514 94896 85403 349202  

 User. Acc. 70.49 62.05 61.62 71.77 83.41 73.10 93.24 77.73   

As seen in Table 4.5, the overall accuracy of scenario 13 using the RF classifier was 78.9%, with 

bog correctly classified in 74% of cases, fen in 72%, swamp in 71%, marsh in 66%, shallow-water 

in 69%, urban in 68%, deep-water in 98%, and upland in 76% of cases.  
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Table 4.6. Confusion matrix for scenario 13 using the SVM classifier (OA: 82.43%). 

 

  Classified Data 

 
Bog Fen Swamp Marsh  Shallow-

water  

Urban Deep-

water  

Upland Tot. Prod. 

Acc. 

R
ef

er
en

ce
 D

at
a
 

Bog 
41346 4199 1256 791 0 229 0 3976 51797 79.82 

Fen 1884 10308 270 36 0 0 0 1843 14341 71.88 

Swamp 724 679 7483 67 0 21 0 794 9768 76.61 

Marsh  169 458 566 7595 1224 57 17 1680 11766 64.55 

Shallow-

water 

0 0 19 603 18534 0 2946 0 22102 83.86 

Urban 
7066 135 1017 855 0 49614 0 3405 62092 79.90 

Deep-water 0 0 0 0 4083 0 86378 0 90461 95.49 

Upland 6813 278 361 189 54 12487 102 66591 86875 76.65 

 Tot. 
58002 16057 10972 10136 23895 62408 89443 78289 349202  

 User. Acc. 71.28 64.20 68.20 74.93 77.56 79.50 96.57 85.06   

For SVM, however, the overall accuracy was 82.43%, with bog correctly classified in 80% of 

cases, fen in 72%, swamp in 77%, marsh in 64%, shallow-water in 84%, urban in 80%, deep-water 

in 95%, and upland in 77% of cases.  

Although the classification map obtained by SVM was approximately 3.5% more accurate than 

that of RF, the two classifiers had relatively the same results in some cases. For example, in both 

cases the marsh wetland had the lowest producer’s accuracies, which were about 66% and 64% 

for RF and SVM, respectively. Particularly, a great degree of confusion was found between marsh, 

shallow-water, and upland classes, wherein the marsh class was erroneously classified as the other 
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two classes (omission error). The confusion between shallow-water and marsh could be due to the 

complex mixture of these classes in the study area. In particular, the shallow-water class is defined 

as mineral wetlands dominated by submerged and floating vegetation, which are mostly marshes 

in the Avalon area. Also, the deep-water class had the highest producer’s accuracy of above 95% 

in both cases. Overall, confusion was found between adjacent land cover classes, such as bog and 

fen, marsh and shallow-water, and shallow- and deep-water. This could be attributed to the 

heterogeneous mixture of these classes in the study area. For example, bog and fen classes are both 

peatland characterized by non-woody herbaceous vegetation. These two classes were reported to 

be hardly distinguishable by ecological biologists familiar with wetland sites. A higher degree of 

similarity for herbaceous wetland is also more pronounced when shorter wavelengths, which are 

strongly attenuated by vegetative density, are applied [2].    

A comparison of user’s accuracies also revealed the difficulty of discriminating wetland classes 

compared to non-wetland classes. This could be attributed to the larger amount of training data 

available for non-wetland classes, which contributed to an improvement in the overall 

classification results. Similarly, the higher producer’s accuracies of bog and shallow-water classes 

could be due to the availability of a larger amount of training data for these classes relative to other 

wetland classes. Importantly, there is a variation of pixel counts in reference data within different 

wetland classes that can be attributed to the accessibility to different wetlands and the distribution 

and ecological characteristics of wetlands in the study area. For example, bogs are more frequently 

visited during field data collection and can also be easily distinguished using satellite imagery. 

This is because of their natural ecological characteristics and the Newfoundland climate, which 

encourages peatland formation [19]. In contrast, the swamp class is usually inaccessible and 

smaller in size, which resulted in fewer pixels relative to other wetland classes.  
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As mentioned earlier, we quantified the contribution of different input features to the overall 

classification accuracy using RF variable importance. In order to obtain the most accurate and 

stable results, the RF classification was executed 15 times using the same input, training, and 

testing data and then the ranking of the variables was recorded (Figure 4.6).  

 

Figure 4.6. Normalized variable importance for scenario 13.  

The variable importance revealed that the polarimetric features of Freeman-Durden (1-6) and HV 

intensity features for both dates (14th and 17th), as well as Cloude-Pottier entropy feature (10th) and 

HH intensity of date 2 (16th), were the most important features of the full polarimetric data (i.e., 

FQ22). For the Wide Ultra-Fine mode data, however, only the two latest intensity features (22nd 

and 23rd), as well as the last coherence feature (45th) were found to be important. For TerraSAR-

X data, all intensity images (24-30), excluding the last two features (features 31-32), and coherence 

images with a small temporal baseline, were found to be influential (e.g., the 46th, 47th, and etc.). 

Thus, a total number of 10, 3, and 19 features were found to be important for RADARSAT-2 

FQ22, RADARSAT-2 U16W2, and TerraSAR-X data, respectively.  
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In scenario 13, a total number of 81 input features were applied, which resulted in the highest 

classification accuracy. However, some of these input features may be correlated and, as such, 

may include redundant information. Thus, the correlation between different input features was 

determined using Spearman’s rank-order correlation in a pair-wise framework so that redundant 

information could be identified and removed from subsequent analysis (see Figures 4.7, 4.8, and 

4.9).  

 

Figure 4.7. The correlation matrix of full polarimetric RADARSAT-2 (FQ22) features obtained using 

Spearman’s rank-order correlation ranging between 0 (i.e., no correlation) and 1 (i.e., the highest 

correlation). Different features are represented as follows: F1 (𝜎𝐻𝐻
0 − 𝐷1), F2 (𝜎𝐻𝑉

0 − 𝐷1), F3 (𝜎𝑉𝑉
0 − 𝐷1), 

F4 (𝜎𝐻𝐻
0 − 𝐷2), F5 (𝜎𝐻𝑉

0 − 𝐷2), F6 (𝜎𝑉𝑉
0 − 𝐷2), F7 (𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 − 𝐻𝐻), F8 (𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 − 𝐻𝑉), F9 

(𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑉𝑉), F10 (𝐹𝐷 − 𝐷𝐵 − 𝐷1), F11 (𝐹𝐷 − 𝑉 − 𝐷1), F12 (𝐹𝐷 − 𝑂𝐷𝐷 − 𝐷1), F13 (𝐹𝐷 −

𝐷𝐵 − 𝐷2), F14 (𝐹𝐷 − 𝑉 − 𝐷2), F15 (𝐹𝐷 − 𝑂𝐷𝐷 − 𝐷2), F16 (𝐶𝑃 − 𝐸𝑁𝑇 − 𝐷1), F17 (𝐶𝑃 − 𝛼 − 𝐷1), F18 

(𝐶𝑃 − 𝐴 − 𝐷1), F19 (𝐶𝑃 − 𝐸𝑁𝑇 − 𝐷2), F20 (𝐶𝑃 − 𝛼 − 𝐷2), and F21 (𝐶𝑃 − 𝐴 − 𝐷2). Note that the 

feature abbreviations are as follows: FD (Freeman-Durden), CP (Cloude-Pottier), D1 (Date1), D2 

(Date2), DB (double-bounce scattering), V (volume scattering), and ODD (surface scattering). 
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The correlation matrix revealed that, among intensity features, there was a correlation of up to 0.5 

between the corresponding polarizations for dates 1 and 2 (e.g., 𝜎𝐻𝐻
0  for dates 1 and 2). Overall, 

the results illustrated that the correlation between intensity features was not high. There was, 

however, a high correlation between the HV intensity and the volumetric component of the 

Freeman-Durden decomposition (0.9). Among the model-based polarimetric decomposition 

features, a moderate correspondence between DB-D1 and DB-D2 (0.5), V-D1 and V-D2 (0.4), and 

ODD-D1 and ODD-D2 (0.4) was observed. For the eigenvector-based decomposition features, 

entropy and alpha scattering angle had a correlation of 0.65. Since the volumetric component of 

the Freeman-Durden decomposition and the HV intensity were highly correlated, the HV intensity 

features were removed, which resulted in a total of eight features being included for FQ22 data for 

the final classification scheme. For RADARSAT-2 (U16W2) and TerraSAR-X data, a correlation 

was determined between intensity and coherence features. 

 

Figure 4.8. The correlation matrix of single polarized RADARSAT-2 (U16W2) features obtained using 

Spearman’s rank-order correlation. Different features are represented as follows: F1- F5 (𝜎𝐻𝐻
0  sorted by 

time) and F6- F15 (coherence sorted by time). Note: see Table 4.1 for the time sequence.  
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The correlation between intensity features ranged between 0.50 and 0.76. Likewise, the correlation 

between coherence features was found to be similar and reached 0.78. Thus, the degree of 

correlation between these features was insignificant and, accordingly, the feature selection was 

performed based only on the variable importance results of RF, resulting in a total number of three 

features.  

 

Figure 4.9. The correlation matrix of single polarized TerraSAR-X features obtained using Spearman’s 

rank-order correlation. Different features are represented as follows: F1- F9 (𝜎𝐻𝐻
0  sorted by time) and 

F10- F45 (coherence sorted by time). Note: see Table 4.1 for the time sequence. 

In the case of X-band, the correlation varied from 0.40 to 0.75 and 0.40 to 0.89 among intensity 

and coherence features, respectively. Thus, all intensity features identified by variable importance 
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of RF were selected. However, we removed coherence features with a correlation higher than 0.8, 

which resulted in four remaining important uncorrelated coherence features. Accordingly, 11 

features of TerraSAR-X were found to be important uncorrelated features and used as input for the 

final classification.  

Importantly, the correlation between intensity and coherence features was negligible and varied 

between 0.05 and 0.15 for both C- and X-bands. Thus, intensity and coherence features were 

independent and their synergistic use should improve thematic land cover information.  

Given the results obtained using variable importance analysis of RF and Spearman’s rank-order 

correlation, the most important uncorrelated features were extracted. This analysis allowed us to 

perform a final classification using only 22 important uncorrelated features. Thus, these important 

uncorrelated features were applied to scenario 14 and SVM was once again found to be more 

accurate than RF (see Table 4.4). 
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Figure 4.10. The final land cover map in this study obtained from the SVM classifier using 22 important 

uncorrelated features (OA: 85.40%).  

The final classified map is clear and accurately represents the real-world features according to the 

interpretation of the optical imagery and as confirmed by ecological experts familiar with the study 

area. The confusion matrix for the final classified map is presented in Table 4.7.  
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Table 4.7. Confusion matrix of the SVM classifier based on 22 important uncorrelated features 

(OA: 85.40%). 

 

  Classified Data 

 
Bog Fen Swamp Marsh  Shallow-

water  

Urban Deep-

water  

Upland Tot. Prod. 

Acc. 

R
ef

er
en

ce
 D

at
a
 

Bog 44926 3371 241 738 0 366 0 2155 51797 86.73 

Fen 978 10439 351 0 0 0 0 2573 14341 72.79 

Swamp 839 67 7730 371 0 182 0 579 9768 79.14 

Marsh  
33 375 299 9441 856 0 0 762 11766 80.24 

Shallow-

water 

0 0 146 938 18053 0 2975 0 22102 81.64 

Urban 5259 127 992 618 0 47365 0 7731 62092 76.28 

Deep-water 0 0 0 0 1180 0 89281 0 90461 98.70 

Upland 5283 359 628 157 0 9437 0 71011 86875 81.74 

 Tot. 57318 14738 10387 12263 20089 57350 92256 84811 349202  

 User. Acc. 78.38 70.83 74.42 76.99 89.87 82.59 96.78 83.73   

 

The overall classification accuracy improved by about 3% when only important uncorrelated 

features were used for classification. In terms of class-based accuracies, the accuracy for all 

wetland classes, excluding shallow-water, was improved by an average of 7%, with bog being 

correctly classified in 87% of cases, fen in 73%, swamp in 79%, and marsh in 80%, representing 

improvements of approximately 7%, 1%, 3%, and 16%, respectively.  
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4.5. Conclusion  

In this study, the synergistic use of multiple types of features extracted from multi-temporal 

RADARSAT-2 and TerraSAR-X for wetland mapping was investigated. Different combinations 

of features, including intensity, polarimetry, and interferometric coherence were applied to object-

based RF and SVM classifications. In all cases, SVM outperformed RF in terms of classification 

accuracy. However, RF was found to be easily adjustable compared to SVM, since the latter 

required tuning the number of parameters, which was computationally intensive.  

The results demonstrate that integrating multiple feature types enhanced thematic land cover 

information and, accordingly, the classification accuracy. In particular, the combination of all 

feature types resulted in an overall accuracy of 82.43% when SVM was employed. Based on the 

integration of variable importance analysis of RF and Spearman’s rank-order correlation, a high 

classification accuracy of 85.40% was attained using the most important uncorrelated features 

extracted by this method. This represents a 3% overall improvement for all classes and a 7% 

improvement for only wetland classification. The results show that both polarimetric and 

interferometric features augment land cover information, providing additional information 

unavailable from intensity features alone.  

The proposed classification framework provides a detailed spatial resolution map based on an 

advanced object-based image analysis using optimum feature types. The results demonstrate the 

significance of employing a feature selection method when a large number of potentially redundant 

features are used for classification. The proposed algorithm was found to be promising for land 

cover classification and will contribute to further scientific research in this region and in other 

wetlands elsewhere with similar ecological characteristics. Moreover, the use of this method for 

classifying land cover types beyond wetlands offers a potential avenue for further research.   
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Chapter 5. Compact Polarimetric SAR responses to Canadian wetlands 4 

Preface 

A version of this manuscript has been published in the Remote Sensing journal. I am a principal 

author of this manuscript along with the co-authors, Bahram Salehi, Masoud Mahdianpari, Brian 

Brisco, and Eric Gill. I and the co-author, Masoud Mahdianpari, conceptualized and designed the 

study. I developed the model and performed all experiments and tests. I wrote the paper and revised 

it based on comments from all co-authors. I also revised the paper according to the reviewers’ 

comments. The co-author, Masoud Mahdianpari helped in performing the experiments and 

analyzing the results and contributed to revising the manuscript. All co-authors provided editorial 

input and scientific insights to further improve the paper. They also reviewed and commented on 

the manuscript. 

Abstract 

Detailed information on spatial distribution of wetland classes is crucial for monitoring this 

important productive ecosystem using advanced remote sensing tools and data. Although the 

potential of full- and dual-polarimetric (FP and DP) Synthetic Aperture Radar (SAR) data for 

wetland classification has been well examined, the capability of compact polarimetric (CP) SAR 

data has not yet been thoroughly investigated. This is of great significance, since the upcoming 

RADARSAT Constellation Mission (RCM), which will soon be the main source of SAR 

observations in Canada, will have CP mode as one of its main SAR configurations. This also 

highlights the necessity to fully exploit such important Earth Observation (EO) data by examining 

                                                           
4 Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B. and Gill, E., 2019. Full and Simulated Compact 

Polarimetry SAR Responses to Canadian Wetlands: Separability Analysis and Classification. Remote Sensing, 11(5), 

p. 516. 
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the similarities and dissimilarities between FP and CP SAR data for wetland mapping. 

Accordingly, this study examines and compares the discrimination capability of extracted features 

from FP and simulated CP SAR data between pairs of wetland classes. In particular, 13 FP and 22 

simulated CP SAR features are extracted from RADARSAT-2 data to determine their 

discrimination capabilities both qualitatively and quantitatively in three wetland sites, located in 

Newfoundland and Labrador, Canada. Seven of 13 FP and 15 of 22 CP SAR features are found to 

be the most discriminant, as they indicate an excellent separability for at least one pair of wetland 

classes. The overall accuracies of 87.89%, 80.67%, and 84.07% are achieved using the CP SAR 

data for the three wetland sites (Avalon, Deer Lake, and Gros Morne, respectively) in this study. 

Although these accuracies are lower than those of FP SAR data, they confirm the potential of CP 

SAR data for wetland mapping as accuracies exceed 80% in all three sites. The CP SAR data 

collected by RCM will significantly contribute to the efforts ongoing of conservation strategies for 

wetlands and monitoring changes, especially on large scales, as they have both wider swath 

coverage and improved temporal resolution compared to those of RADARSAT-2. 

Keywords: wetland classification; RADARSAT-2; compact polarimetry; RADARSAT 

Constellation Mission; RCM; Earth Observation 

5.1. Introduction 

Wetlands are regions where water is the main factor affecting the ecosystem and the associated 

flora and fauna [1]. In such an environment, the water table is either at or near to the land surface 

or the land surface is covered by shallow-water [2]. Wetlands are natural infrastructures that 

facilitate the interactions of soils, water, plants, and animals, thus making them one of the most 

productive ecosystems. Wetlands serve a number of purposes, including water storage and 

purification, flood mitigation, storm protection, erosion control, shoreline stabilization, carbon 
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dioxide sequestration, and climate regulation [3]. To support global preservation of wetlands, the 

Ramsar Convention on Wetlands has been in place since 1971, wherein the main purpose is “the 

conservation and wise use of wetlands globally” [1]. Over the years, several countries (163 nations 

as of January 2013), including Canada, have joined to the convention and demonstrated their 

commitments to wetland preservation. 

Over the past two decades, remote sensing tools and data have significantly contributed to wetland 

mapping and monitoring [4]. Optical remote sensing satellites have long been the main source of 

Earth Observation (EO) data for vegetation and wetland mapping [5], [6], yet cloud cover hinders 

the acquisition of such data. Consequently, as they are not impacted by solar radiation or weather 

conditions and can penetrate vegetation canopies (depending on wavelength), Synthetic Aperture 

Radar (SAR) sensors are of special interest, particularly in geographic regions with chronic cloud 

cover, such as Canada [7]. The interaction of SAR signal with vegetation canopies depends on 

SAR wavelengths [8]. Overall, longer wavelengths (e.g., L-band) are preferred for monitoring 

woody wetlands [8], whereas shorter wavelengths (e.g., C- and X-band) are useful for mapping 

herbaceous wetlands [9]. Several studies reported of great benefit of L-band data collected by 

JERS-1 and ALOS PALSAR-1 for inundation and vegetation dynamic mapping in various 

geographic locations, such as the Amazon floodplain [10], [11], the Alligator Rivers region of 

northern Australia [12], and wetlands in Africa [13]. Other studies demonstrated the capability of 

shorter wavelengths, such as C-band data collected by ERS-1/2 [14], RADARSAT-1 [15], 

RADARSAT-2 [16], [17], and Sentinel-1 [18] for wetland classification. X-band data collected by 

TerraSAR-X were also found to be useful for mapping heterogeneous structure of wetland 

ecosystems and their dynamics, given its high temporal and spatial resolution [19], [20].  
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Wetland phenology also affects SAR backscattering responses of flooded vegetation and depends 

on complex relation of vegetation height/density and the water level height in the wetland 

ecosystem [21]. For example, during high water seasons, the classes of swamp forest and 

freshwater marsh experience different conditions. In particular, an increase in water level height 

increases the chance of double-bounce scattering for swamps, resulting in an enhanced SAR 

backscattering response [22]. In contrast, an increase in water level height may decrease the chance 

of double-bounce scattering for marshes, as it converts double-bounce scattering to the specular 

scattering mechanism [23]. This results in little backscattering responses on SAR imagery in this 

case. Vegetative density is another influential factor and was examined in several research. For 

example, Lu and Known (2008) found that high vegetative density and canopy in swamp forest 

during the leaf-on season converted double-bounce scattering to volume scattering in southeastern 

coastal Louisiana wetlands using ERS and RADARSAT-1 imagery, which decreased SAR 

backscattering responses over swamp forest [24]. Later studies, such as [25], [26], found relatively 

similar results using ALOS PALSAR L-band data for forested wetlands in the Congo River in 

Africa.    

In addition to SAR wavelength and wetland phenology, polarization of SAR signal is also an 

important factor. Given the capability of full-polarimetric (FP) SAR sensors to collect full 

scattering information of ground targets, the potential of these sensors for mapping various wetland 

classes has been well established [27]. In particular, a FP SAR sensor transmits a fully-polarized 

signal toward ground targets while receiving both fully-polarized and depolarized backscattering 

responses from a ground target [28]. This configuration also maintains the relative phase between 

polarization channels, thus allowing the application of advanced polarimetric decomposition 
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methods [29]. The polarimetric decompositions are beneficial for distinguishing similar wetland 

classes through characterizing various scattering mechanisms of ground targets.  

Notably, decomposition techniques allow the polarimetric covariance or coherency matrixes to be 

separated into three main scattering mechanisms: single/odd-bounce scattering, which represents 

direct scattering from the vegetation or ground surface (e.g., rough water); double/even-bounce 

scattering, which represents scattering between, for example, flooded vegetation within smooth 

open water; and volume scattering, which represents multiple scattering within developed 

vegetation canopies. As such, several studies reported the success of wetland classification using 

FP SAR data in different geographic regions, such as China [30], Europe [31], the United States 

[32], and Canada [33]. However, the main limitations associated with the FP SAR configuration 

are the time constraints caused by the alternative transmitting of H and V polarizations toward 

ground targets, the large satellite mass caused by higher system power requirements, and the small 

swath coverage caused by doubling pulse repetition frequency (PRF) [34]. The small swath 

coverage precludes the potential of such data for applications on large-scales [35], for example, 

for the production of daily ice charts and annual crop inventories. 

Dual-polarimetric (DP) SAR data cover a larger swath width and, currently, are the main source 

of SAR observations for operational applications. Such a SAR data configuration is currently 

available on Sentinel-1 SAR mission satellite of the Copernicus program by the European Space 

Agency (ESA) [36]. The main purpose of this mission is to provide full, free, and open access 

SAR observations for environmental monitoring [37]. Furthermore, the 12-days satellite revisit 

time makes Sentinel-1 SAR data ideal for monitoring phenomena with highly dynamic natures 

such as wetlands [18], [38], as well as assistant with operational applications such as sea ice 

monitoring [39] and crop mapping [40]. However, insufficient polarimetric information is 
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available within such data. Furthermore, DP SAR data cannot maintain a relative phase between 

polarization channels, thus diminishing their capability to distinguish similar land and wetland 

classes through advanced polarimetric decomposition techniques [29]. To move forward with both 

polarization diversity and swath coverage, the compact polarimetry (CP) SAR configuration was 

introduced. CP SAR sensors are in the same group as that of DP but differ in terms of the choice 

of polarization channels [41]. This configuration collects greater polarimetric information 

compared to that of DP, while covering a much larger swath width relative to that of FP SAR data. 

CP SAR sensors also maintain the relative phase between two received polarization channels, 

which further makes them advantageous relative to DP SAR sensors for a variety of applications.    

Importantly, the upcoming RADARSAT Constellation Mission (RCM), which is the successor 

mission to RADARSAT-2, that is planned to be launched in 2019, will have a circularly 

transmitting, linearly receiving (CTLR) CP mode as one of its main SAR data collection 

configurations [42]. The main purposes of RCM are to ensure data continuity for RADARSAT-2 

users and ameliorate the operational capability of SAR data by leveraging a more advanced 

spaceborne mission [35]. In particular, RCM comprises three identical small (relative to 

RADARSAT-2) C-band satellites to gain greater satellite coverage over a much shorter satellite 

revisit time (only four-day) [43]. This is of great importance for applications, such as maritime 

surveillance and ecosystem monitoring, which heavily rely on frequent SAR observations.  

Various SAR configurations and polarizations are available with RCM. These include single-

polarimetry (SP), conventional DP, and CTLR CP modes. In the CTLR mode, RCM transmits a 

right-circular polarized signal and receives two coherent orthogonal linear (both horizontal and 

vertical) polarized signals (RH and RV) and their relative phase [44]. Lower PRF and system 

power and less on-board mass and data volume are other advantages of RCM compared to 
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RADARSAT-2 [45]. Despite these benefits, less polarimetric information is available within CP 

SAR data compared to that of FP SAR data. Furthermore, Noise Equivalent Sigma Zero (NESZ) 

values potentially range between –25 to -17 dB for RCM data [43], which are higher than those of 

RADARSAT-2 in most cases. This decreases the sensitivity of the RCM SAR signal to ground 

features with low backscattering values, such as open water and sea ice.  

It is beneficial to compare both the similarities and differences of CP SAR data collected by RCM 

with those of RADARSAT-2 in different applications, prior to the availability of RCM data for 

operational monitoring. Given that maritime surveillance is one the main application of RCM data 

[45], the potential of simulated or real CP SAR data has been well examined for sea ice 

classification and monitoring in several recent studies (e.g., [35], [41], [46], [47]). However, the 

potential of CP SAR data for other applications, such as wetland characterization, remains an 

active research area, requiring much investigation to fully exploit the capability of such data for 

other purposes, such as ecosystem monitoring (e.g., agriculture, wetland, and forestry). Notably, 

two previous studies have highlighted the capability of simulated CP SAR data from RADARSAT-

2 for wetland mapping. Brisco et al. (2013) first reported the potential of CP SAR data for wetland 

classification in southwestern Manitoba, Canada, using 12 CP SAR features but for wetland classes 

different from typical Canadian wetland classes (i.e., bog, fen, marsh, swamp, and shallow-water, 

as classified based on the Canadian Wetland Classification System, CWCS) [48]. White et al. 

(2017) evaluated the potential of simulated CP SAR data from RADARSAT-2 with a larger 

number of CP features, yet only for peatland classes (i.e., poor fen, open shrub bog, and treed bog) 

in a small area in Southern Ontario, Canada [49]. However, the latter study exploited the synergy 

of CP and FP SAR data with digital elevation model (DEM) and Landsat-8 optical data for 

classifying peatland classes [49]. Although their methodology and results were sound, much 
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investigation is still required to fully understand the compact polarimetric responses of various CP 

SAR features to standard wetland classes (according to the definition of CWCS). 

The present research was built on the knowledge gained from our previous work, wherein the 

potential of CP SAR features for wetland mapping was investigated [29]. However, unlike in [29], 

in the present study, three wetland sites were selected and the main objectives here were to identify 

the most useful CP features for similar wetland class discrimination and to improve image 

interpretation using both qualitative and quantitative approaches. Specifically, this study aimed to: 

(1) explore the effect of the difference in polarization between FP (RADARSAT-2) and simulated 

CP SAR data for the classification of wetland complexes; (2) determine the separability between 

pairs of wetland classes with various CP SAR features both visually, using box-and-whisker plots, 

and quantitatively, using the Kolmogorov-Smirnov (K-S) distance measurement; and (3) classify 

wetland complexes using the most effective CP SAR features using an object-based random forest 

(RF) algorithm.  

5.2. Study Area and Data 

5.2.1. Study Area and In-Situ Data 

The three study areas located in Newfoundland and Labrador, Canada, at the eastern, center, and 

western portions of the island were selected for this research (see Figure 5.1). In general, the island 

of Newfoundland has a humid continental climate, which is greatly affected by the Atlantic Ocean. 
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Figure 5.1. The red polygons illustrate the geographic location of the three study areas. 

The first pilot site is the Avalon area, located in the most eastern part of the island in the Maritime 

Barren ecoregion. It has an oceanic climate of foggy, cool summers, and relatively mild winters. 

The second pilot site is the Deer Lake area, located in the the northern (center) portion of the island 

in the Central Newfoundland ecoregion and experiences a continental climate of cool summers 

and cold winters. Finally, the third pilot site is the Gros Morne area, located on the extreme western 

coast of the island, in the Northern Peninsula ecoregion. This area has a maritime-type climate 

with cool summers and mild winters [50]. As elsewhere in Newfoundland, frequent rain and fog 

are dominant due to the proximity of the pilot sites to the Atlantic Ocean. This highlights the great 

significance of SAR data for remote sensing studies for the island.  

The study areas contain all wetland classes categorized by the CWCS, namely bog, fen, marsh, 

swamp, and shallow water, although bog and fen are the most dominant classes. Other land cover 

classes include urban, upland, and deep water. Figure 5.2 illustrates examples of land cover classes 

in the Avalon study area.  
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Figure 5.2.  Examples of land cover classes in the Avalon study area, including (a) bog, (b) fen, (c) marsh, 

(d) swamp, (e) shallow water, (f) urban, (g) deep water, and (h) upland. 

For this study, in-situ data were collected over multiple visits during the summers and falls of 

2015, 2016, and 2017. Potential and accessible wetland sites in all study areas were flagged based 

on prior knowledge of wetland sites, interpretation of high resolution Google Earth imagery, and 

the CWCS definition of wetlands. Other considerations for site visitation included accessibility via 

public roads and the public and private ownership of lands. Significant effort was devoted to collect 

in-situ data covering a wide range of wetland and non-wetland classes with vast spatial 

distributions across all study areas. In each location, one or more Global Positioning System (GPS) 

points were collected, depending on the size of each wetland class. Digital photographs and 

ancillary notes (e.g., dominant vegetation, hydrology, dates, and the name of locations) were also 

recorded to facilitate preparation of the training samples. Notably, data from wetlands of various 

sizes were collected during the first year of data collection, resulting in the production of several 

small-size classified polygons. However, wetlands with sizes greater than one ha (where possible) 
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were selected during the following years to restrict the production of small-size polygons to a 

feasible extent.  

Recorded GPS points were then imported in ArcMap10.6, and polygons indicating classified 

delineated wetlands were produced using a visual interpretation of 50 cm resolution 

orthophotographs and 5 m resolution RapidEye optical images by remote sensing and biologist 

experts familiar with the studies areas. Notably, any human error in both recording GPS points 

during in-situ data collection and preparing the reference polygons may affect the results of 

separability analysis and classification. Next, polygons were sorted based on their size and 

alternately assigned to either training or testing groups. This alternative assignment ensured that 

both the training (~50%) and testing (~50%) polygons had relatively equal numbers of small and 

large polygons. Furthermore, the training and testing polygons were obtained from independent 

samples to ensure robust accuracy assessment. Table 5.1 presents the number of training and 

testing polygons for each class in the three pilot sites.  

Table 5.1. Number of training and testing polygons for each class in the three pilot sites. 

 Avalon Deer Lake Gros Morne 

Class  Training  Testing Training  Testing  Training  Testing  

Bog 42 41 16 15 19 19 

Fen 20 19 27 27 15 16 

Marsh 25 25 12 12 16 15 

Swamp 22 23 20 20 21 21 

Shallow water 20 20 11 12 13 14 

Urban 36 35 17 18 19 19 

Deep water 7 8 3 3 3 2 

Upland 29 29 12 11 42 43 

Total 201 200 118 118 148 149 
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5.2.2. Satellite Imagery 

A total number of seven Single Look Complex (SLC) RADARSAT-2 images were used in this 

study. These images were acquired using the Fine Quad-polarization (FQ) mode on August 2015 

from descending orbits (see Table 5.2).  

Table 5.2. Characteristics of RADARSAT-2 imagery used in this study. 

Pilot site Date  # Images Mode Image coverage 

(km)* 

Incidence 

angle (°) 

NESZ (dB) Resolution 

(m)*  

Avalon 20150821 2 FQ4 25×25 22.1-24.1 -34.6 to -37.8 5.2×7.6 

Deer Lake  20150810 2 FQ3 25×25 20.9-22.9 -34.4 to -37.7 5.2×7.6 

Gros Morne 20150803 3 FQ2 25×25 19.7-21.7 -34 to -38.4 5.2×7.6 

*Note that image coverage is represented in (ground range × azimuth) and resolution is represented in (slant range × azimuth). 

Notably, the leaf-on season in Newfoundland starts by late May/early June. August corresponds 

to the peak of the growing season in the study area, wherein both the vegetative density and water 

level height are at their optimum. Accordingly, imagery was selected from August, as our recent 

study demonstrated that flooding status of vegetation is at the highest, resulting in the maximum 

occurrence of double-bounce scattering at this time period [51].  

As indicated in Table 5.2, RADARSAT-2 images were collected in 2015; our in-situ data used for 

both classification and separability analysis were collected during the summers and falls of 2015, 

2016, and 2017. We assumed that no change had occurred in the wetland properties during the 

three year interval given very limited human activities in the studies areas. Furthermore, this time 

difference (i.e., < three years) between satellite data acquisition and the collection of ecological 

training data is acceptable and agrees with those used in previous research (e.g., [51], [52]). 
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5.3. Methods 

5.3.1. Full Polarimetric SAR Data Processing 

The main preprocessing steps were speckle reduction, orthorectification, and image mosaicking. 

Speckle reduction is a necessary preprocessing step, as the radiometric quality of SAR images is 

hindered by speckle noise, which affects subsequent image processing steps (e.g., segmentation 

and classification) [53]. Accordingly, a 5x5 Boxcar filter was employed to suppress speckle and 

increase the number of looks prior to extraction of polarimetric features. A small filter size was 

selected, as it maintains the boundaries between natural and human-made objects and is 

appropriate for wetland classes with small sizes (e.g., swamp and marsh in this study). 

Orthorectification of de-speckled RADARSAT-2 images was performed in PCI Geomatica’s 

OrthoEngine 2017 software using the rational function model [54], [55]. Satellite orbital 

information and an external digital elevation model (DEM), released by Natural Resource Canada, 

were employed for orthorectification. All images were projected into UTM coordinates, zone 

22/row T for the Avalon study area and zone 21/ row U for the Deer Lake and Gros Morne study 

areas, respectively. Two scenes from the Avalon and Deer Lake pilot sites and three from the Gros 

Morne study region were then mosaicked into single strips of data.  

A total of 13 features were extracted from the full polarimetric RADARSAT-2 images. In 

particular, three SAR backscattering coefficient images, namely 𝜎𝐻𝐻
0 , 𝜎𝑉𝑉

0 , and 𝜎𝐻𝑉
0 , were 

extracted. 𝜎𝐻𝐻
0  is sensitive to double-bounce scattering and, as such, is useful for discriminating 

flooded and non-flooded wetland classes [9]. It is also beneficial for discriminating water from 

non-water (e.g., upland) classes, given its lower sensitivity to surface roughness on water 

compared to 𝜎𝑉𝑉
0  [9]. 𝜎𝑉𝑉

0  is suitable for distinguishing herbaceous wetland classes, especially bog 

and fen classes [56]. It is also sensitive to soil moisture [57], [58]  and is useful for discriminating 
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sparsely vegetated areas. 𝜎𝐻𝑉
0  is sensitive to the vegetation structure and has shown promising 

results for distinguishing wetland classes [8].  

Three incoherent decomposition methods, namely Cloude-Pottier [59], Freeman-Durden [60], and 

Yamaguchi [61], were also employed. These methods decompose the SAR backscattering 

responses of distributed ground targets into various scattering mechanisms, which are of great use 

for discriminating similar wetland classes. This is because wetland classes are characterized by 

varying scattering mechanisms depending on SAR wavelength, roughness, and vegetation 

structure through the growing season.  

The Cloude-Pottier method is a decomposition that considers three secondary components, 

including the entropy, anisotropy, and alpha angle, which are derived from eigenvalues and 

eigenvectors. Entropy ranges from 0 to 1 and indicates the degree of randomness. Lower entropy 

values demonstrate that a single scattering mechanism is dominant (low depolarization); whereas 

values approaching 1 suggest that multiple scatterings are present. Anisotropy is the 

complementary component to entropy and represents the relative importance of the secondary 

scattering mechanism. The alpha angle varies between 0° and 90° and is also useful for 

characterizing different scattering mechanisms. Surface, volume, and double-bounce scattering 

produce low, intermediate, and high alpha angles, respectively.  

The Freeman-Durden and Yamaguchi decompositions are known as physical model-based 

decomposition approaches with three and four components, respectively. In particular, the 

Freeman-Durden approach, which assumes reflection symmetry, decomposes target scattering as 

the linear sum of the surface, double-bounce, and volume scattering mechanisms [60]. The 

Yamaguchi decomposition has similar components as those of Freeman-Durden; however, it 

benefits from an additional term, known as the helix scattering component. This component takes 
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into account cases of non-reflection symmetry (i.e., the correlation between co- and cross-

polarized channels), which usually occur in complex urban areas. Additionally, the volume 

scattering term of the Yamaguchi decomposition for vegetation was further modified by 

employing a different probability density function than that used by the Freeman-Durden approach 

[61].   

 

5.3.2. Compact Polarimetry SAR Data Processing 

The Canada Centre for Mapping and Earth Observation (CCMEO) simulator was used to simulate 

the RCM CP data [45]. The CCMEO calibrates the RADARSAT-2 SLC product using the Sigma 

Naught (𝜎0) calibration. The calibrated product is stored in a 3x3 covariance matrix format and is 

then downsampled to a 2x2 covariance matrix to the defined spatial resolution for each mode. The 

CCMEO software simulates both CP and DP data at various spatial resolutions with varying noise 

floors. In this study, CP SAR data were simulated at medium resolution (i.e., -24 NESZ at a 16 m 

spatial resolution) imaging modes. All CP features were produced using a 5x5 kernel size to take 

into account the effects of speckle noise (i.e., Boxcar filter). Although advanced speckle reduction 

methods (e.g., adaptive Lee filter) are advantageous for PolSAR image processing, as they 

preserve polarimetric information and the resulting de-speckled images are less affected by 

blurring effects, the simple Boxcar filter was used in this study. This is because it was the only 

available speckle reduction method in the CCMEO software at the time of data processing. 

However, this filter was used for both FP and CP SAR data to mitigate any potential differences 

due to employing different speckle reduction methods. As such, any observed differences between 

the results of FP and CP SAR data are due to differences in polarization, NESZ, and spatial 

resolution.  
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A total of 22 CP SAR features were extracted from the simulator and these features can be broadly 

categorized into five main groups, namely intensity, Stokes vector, Stokes child, CP 

decompositions, and other features (see Table 5.3). 

Table 5.3. An overview of the investigated CP SAR features in this study. 

Name of feature Description  CP feature 

Intensity features  SAR backscattering coefficients  𝜎𝑅𝑅
0 , 𝜎𝑅𝐿

0 , 𝜎𝑅𝐻
0 , 𝜎𝑅𝑉

0  

Stokes vector  First element  𝑆0 =< |𝐸𝑅𝐻 |
2 + |𝐸𝑅𝑉 |

2 >  

 Second element  𝑆1 =< |𝐸𝑅𝐻 |
2 −  |𝐸𝑅𝑉 |

2 > 

 Third element  𝑆2 = 2𝑅𝑒 < 𝐸𝑅𝐻𝐸𝑅𝑉
∗ >  

 Fourth element 𝑆3 = −2𝐼𝑚 < 𝐸𝑅𝐻𝐸𝑅𝑉
∗ > 

Stokes child parameters  Circular polarization ratio  
𝜇𝑐 =

𝑆0 − 𝑆3

𝑆0 + 𝑆3

 

 Degree of polarization 
𝑚 =

√𝑆1
2 + 𝑆2

2 + 𝑆3
2

𝑆0
2  

 Relative phase between RV and RH  
𝛿 = tan−1(

𝑆3

𝑆2

) 

 Ellipticity of the compact scattered 

wave (Cloude 𝛼𝑠) 𝛼𝑠= 
1

2
tan−1(

√𝑠1  
2 +𝑠2  

2

𝑆3
) 

CP decompositions m-delta decomposition  𝑚 − 𝛿 − 𝑂𝑑𝑑 

𝑚 − 𝛿 − 𝐸𝑣𝑒𝑛 

𝑚 − 𝛿 − 𝑉𝑜𝑙𝑢𝑚𝑒 

 m-chi decomposition 𝑚 − 𝜒 − 𝑂𝑑𝑑 

𝑚 − 𝜒 − 𝐸𝑣𝑒𝑛 

𝑚 − 𝜒 − 𝑉𝑜𝑙𝑢𝑚𝑒 

Other features  Conformity coefficient  
𝜇 =

2 𝐼𝑚 < 𝑆𝑅𝐻𝑆𝑅𝑉
∗ >

< 𝑆𝑅𝐻𝑆𝑅𝐻
∗ > + < 𝑆𝑅𝑉𝑆𝑅𝑉

∗ >
 

 Correlation coefficient of RV and RH  𝜌

= |
√< 𝑆𝑅𝐻𝑆𝑅𝑉

∗ >

√< 𝑆𝑅𝐻𝑆𝑅𝐻
∗ > + < 𝑆𝑅𝑉𝑆𝑅𝑉

∗ >
| 

 Shannon entropy intensity  
𝑆𝐸𝐼 = 2log (

𝜋𝑒𝑇𝑟(𝑇2)

2
) 

 Shannon entropy polarimetry  
𝑆𝐸𝑃 = log (

4|𝑇2|

𝑇𝑟(𝑇2)2
) 
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The Stokes vector parameters are extracted from the 2x2 simulated covariance matrix of CP SAR 

data [28] and are useful for characterizing the scattering properties of ground targets. Note that in 

the Stokes vector, E is the electric field vector in the subscripted polarization, wherein the first and 

second subscripts indicate the transmitted and received polarizations, respectively, * indicates 

complex conjugate, and 𝑅𝑒 and 𝐼𝑚 denote the real and imaginary parts of the complex cross-

product amplitude, respectively [42]. The first element of the Stokes vector (𝑆0) represents the 

total scattering power, whereas the second component indicates the degree of the linear horizontal 

(𝑆1 > 0) or vertical (𝑆1 < 0) polarization. The third component illustrates whether the SAR signal 

is polarized at tilt angle 45° (𝑆2 > 0) or 135° (𝑆2 < 0). The last component (𝑆3) characterizes the 

left-circular (𝑆3 > 0) or right-circular (𝑆3 < 0) polarization wave [7] (see Table 5.3). 

The second group of parameters, the Stokes child features, are extracted from the Stokes vector. 

The circular polarization ratio represents the ratio between the same circular polarization intensity 

and the opposite circular polarization intensity, wherein values greater and lower than one 

correspond to double-bounce and surface scattering mechanisms, respectively [62]. The degree of 

polarization represents the state of polarization [28], wherein 0 and 1 indicate purely depolarized 

and polarized waves, respectively [34]. The relative phase (𝛿) [45] is potentially similar to the co-

polarized phase difference and varies from −180° to 180°. This parameter is useful for identifying 

whether surface (𝛿 > 0) or double-bounce (𝛿 < 0) scattering is dominant [62]. The Cloude 𝛼𝑠 

[63] has similar behaviour as that of the alpha angle of Cloude-Pottier decomposition, describing 

the dominant scattering mechanism [41]. 

Six CP decomposition parameters were also examined. They were obtained from m-delta [45] and 

m-chi decompositions [28], each of which has three components. The extracted features from the 

m-delta and m-chi decompositions describe the physical scattering mechanisms of even-bounce, 
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double-bounce, and volume scattering analogous to those obtained from the Freeman-Durden 

decomposition. For example, 𝑚 − 𝛿 − 𝑉 reflects a dominant depolarized backscattering 

mechanism (volume scattering). However, 𝛿 discriminates the dominant scattering mechanism 

between odd-bounce (𝛿 > 0 ∴ 𝛿 − 𝑂 > 𝛿 − 𝐸) and even-bounce ( 𝛿 < 0 ∴ 𝛿 − 𝑂 < 𝛿 − 𝐸).  

The conformity coefficient is independent of Faraday rotation (FR) and varies between -1 and 1 

[64]. Note that in the conformity coefficient equation, 𝑆 is the element of the scattering matrix in 

the subscripted polarization, wherein the first and second subscripts indicate the transmitted and 

received wave polarizations, respectively. For the distributed targets under the reflection symmetry 

hypothesis: (1) 𝜇 is positive and approaches 1 when surface scattering is dominant; (2) 𝜇 is 

negative and approaches -1 when double-bounce scattering is dominant; and (3) 𝜇 has an 

intermediate value when volume scattering is dominant [64]. The correlation coefficient varies 

between 0 and 1 and indicates the degree of correlation between RV and RH intensity [47]. The 

last two parameters are Shannon entropy intensity and polarimetry features. The Shannon entropy 

intensity is potentially similar to 𝑆0 (the first element of the Stokes vector), as it represents the 

total backscattering power [65] and has shown high correlation with 𝑆0 in the previous studies  

[35], [66]. The Shannon entropy polarimetry represents the polarimetric contribution, depends on 

the Barakat degree of polarization [65], and is, therefore, correlated with the degree of polarization 

[66].  

5.3.3. Backscattering and Separability Analyses 

Backscattering analysis was performed for several FP and CP SAR features to visually interpret 

the discrimination capacity between similar wetland classes. A quantitative analysis of the 

separability between pairs of wetland classes was then followed by the two-sample Kolmogorov-

Smirnov (K-S) distance. The K-S distance is a nonparametric separability measurement that 
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determines the maximum difference between two cumulative distribution functions [67]. It varies 

between 0 and 1, wherein lower (~0) and higher (~1) values correspond, respectively, to low and 

high discrimination potentials between two classes using a given input feature. The K-S distance 

was calculated for all extracted CP and FP features between each pair of wetland classes. This 

discrimination analysis resulted in four groups of classes with: (1) poor separability, or, the K-S 

distance values lower than 0.5 (𝐾 − 𝑆 < 0.5); (2) some degree of separability, or, the K-S distance 

values ranging between 0.5 and 0.7 (0.5 ≤ 𝐾 − 𝑆 ≤ 0.7); (3) good separability, or, the K-S 

distance values ranging between 0.7 and 0.85 (0.7 < 𝐾 − 𝑆 ≤ 0.85); and (4) excellent 

separability, or, the K-S distance greater than 0.85 (𝐾 − 𝑆 > 0.85). These selected thresholds are 

appropriate for the purpose of this study and are matched with recent similar studies of feature 

analysis and selection (e.g., [35], [41], [66]). Notably, the same training polygons were used for 

backscattering and separability analyses of both the FP and CP SAR data. For this purpose, 

different subsets of each class with relatively homogeneous and large areas were selected.  

5.3.4. Classification Scheme 

An object-based classification scheme was employed in this study. Multi-resolution segmentation 

(MRS) analysis was used for object-based classification. Scale, shape, and compactness are three 

user-defined parameters for MRS analysis [68]. These parameters were adjusted using key 

directions from previous studies (e.g., [33]) and a trial-and-error procedure. Accordingly, the 

optimal values for scale, shape, and compactness were found to be 100, 0.1, and 0.5, respectively. 

Notably, the compactness of 0.5 balances the compactness and smoothness of the objects equally. 

Scale values ranging between 25 and 300 were examined and a value of 100 was found to be 

optimal according to the visual analysis of the segmentation results.  
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The random forest (RF) algorithm was selected for classification [69]. RF is a non-parametric 

classifier and is insensitive to outliers and overtraining. It also has potential to handle high 

dimensional remote sensing data. RF is an ensemble classifier that comprises a set of Classification 

and Regression Trees (CART) to make a prediction [70]. RF is advantageous relative to decision 

trees in terms of classification performance and is much easier to execute compared to support 

vector machine (SVM) [70]. In particular, RF can be easily adjusted using two input parameters, 

namely the number of trees (Ntree) and the number of variables (Mtry) [70]. About two thirds (i.e., 

in-bag) of the training samples are selected to produce trees with high variance and low bias using 

a bootstrap aggregating (bagging) approach. The remaining one third (i.e., out-of-bag, OOB) of 

the training samples are employed for an internal cross-validation accuracy assessment [71]. The 

best splitting of the nodes is determined by minimizing the correlation between trees and the final 

label is based on the majority vote of the trees [70]. 

The two inputs of the RF classifier were determined based on (a) our previous studies (e.g., [33], 

[72]), and (b) a trial-and-error approach. Specifically, the parameter of Mtry was assessed for the 

following values when Ntree was adjusted to 500: (a) one third of the total number of polarimetric 

features; (b) the square root of the total number of polarimetric features; (c) half of the total number 

of polarimetric features; and (d) all polarimetric features. This resulted in little or no influence on 

the classification accuracies. Accordingly, Mtry was adjusted to the square root of the total number 

of polarimetric features, as suggested in [69]. Then, the value of Ntree was assessed for the 

following values when Mtry was set to the optimal value: (a) 400; (b) 500; (c) 600; (d) 700; (e) 

800; (f) 900; and (g) 1000. A value of 500 was then found to be optimal, as accuracies remained 

approximately constant for Ntree values exceeding 500. 
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5.3.5. Evaluation Indices 

This study examined two commonly used evaluation indices, namely overall accuracy (OA) and 

Kappa coefficient (K). Overall accuracy characterizes the overall efficiency of the algorithm and 

can be determined by dividing the total number of correctly-identified pixels (i.e., the diagonal 

elements of the confusion matrix) by the total number of testing pixels. The Kappa coefficient 

measures the degree of agreement between the ground truth data and the classified map. Both 

user’s accuracy (UA) and producer’s accuracy (PA) were also reported for the classification results 

of the Avalon study area. Producer’s accuracy is measured by dividing the total number of 

correctly-classified pixels in a category by the total number of pixels in that category obtained 

from the reference data (i.e., the testing samples) and is also a representative of omission error. 

User’s accuracy is measured by dividing the total number of correctly-classified pixels in a 

category by the total number of classified-pixels in that category as derived from the classified 

map and is also a representative of commission error [73]. 

5.4. Results and Discussion  

5.4.1. Backscattering Analysis 

5.4.1.1. Full Polarimetric SAR Data 

Figures 5.3 to 5.5 depict box-and-whisker plots of the various wetland classes extracted from SAR 

backscattering intensity features, as well as the Freeman-Durden and H/A/alpha decompositions. 
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Figure 5.3. Box-and-whisker plots demonstrating the distribution of the SAR backscattering coefficients 

of FP SAR data for wetland classes obtained from the pixel values of the training data set. Note that the 

horizontal bars within boxes indicate median values, boxes illustrate the lower and upper quartiles, and 

whiskers range from minimum to maximum values. 

As illustrated in Figure 5.3, the shallow-water class is easily separable from other wetland classes 

using all intensity features, as it has the lowest SAR backscattering response in all cases. This is 

because the dominant scattering mechanism for the shallow-water class is specular scattering, 

resulting in little to no SAR backscattering return for this class in three polarizations. All wetland 

classes have higher backscattering responses in 𝜎𝐻𝐻
0 , given the high sensitivity of the HH-

polarization signal to double-bounce scattering. This is particularly true for marsh, for which 

double-bounce scattering was potentially dominant given the optimum height of water level at the 

time of SAR data acquisition. Despite the greater responses in the HH-polarization signal, most 

wetland classes are not distinguishable from each other using this feature due to the high degree 

of overlap between some wetland classes, such as bog/fen and marsh/swamp. However, the classes 

of bog and fen are separable using 𝜎𝑉𝑉
0 . This is because the dominant scattering mechanism for 

these classes is surface scattering and 𝜎𝑉𝑉
0  is sensitive to this scattering mechanism. This 
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corroborates the results of past studies (e.g., [49], [74]), which concluded that surface scattering is 

an important contributor to the classification of bogs and fens. Overall, 𝜎𝑉𝑉
0  is useful for 

distinguishing herbaceous wetland classes (i.e., bog, fen, and marsh) in this study. Notably, the 

swamp class is more effectively separated from other herbaceous wetland classes (especially bog 

and fen) using 𝜎𝐻𝑉
0 , given the increased volume scattering and depolarization of the SAR signal in 

its canopies due to the multiple scattering mechanisms. Although volume scattering is dominant 

in swamps, double-bounce between trunks/branches and standing water could be present. This 

finding agrees with the results of previous studies, such as those appearing in [74]. Nevertheless, 

the capability of C-band data for mapping forested wetland is hindered by its shallow penetration 

depth, especially when the forest canopy is dense.  

 

Figure 5.4. Box-and-whisker plots for extracted features from the Freeman-Durden decomposition for 

wetland classes obtained from the pixel values of the training data set. 

As illustrated in Figure 5.4, double-bounce, volume, and surface scattering are the dominant 

scattering mechanisms for the marsh, swamp, and bog and fen classes, respectively. These 

contribute to distinguishing these classes from other wetland classes. For example, the marsh class 
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is separable from other wetland classes using the double-bounce scattering mechanism, whereas 

the volume scattering component of the Freeman-Durden decomposition is the most useful feature 

for discriminating swamps from other wetland classes. Shallow-water is distinguishable based on 

its dominant specular scattering mechanism, producing the lowest backscattering responses.  

 

Figure 5.5. Box-and-whisker plots for extracted features from the Cloude-Pottier decomposition for 

wetland classes obtained from the pixel values of the training data set. Note: H: entropy, A: anisotropy, 

and 𝛼: alpha angle. 

As shown in Figure 5.5, the alpha angle (𝛼) and, to a lesser extent, entropy (H) are useful for 

discriminating similar wetland classes. In particular, entropy is lowest for the bog class, illustrating 

a low degree of depolarization and randomness. This is characteristic of a relatively smooth 

surface. Other wetland classes have a relatively large entropy value, which indicates the presence 

of different scattering mechanisms. Although the dominant scattering mechanism for fens is 

surface scattering from the uniform grass, other scattering types could also be present. Notably, 

the bog class is distinguishable from other wetland classes using the entropy feature, but this 

feature is less useful for discriminating other wetland classes. However, the alpha angle is efficient 
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for discriminating various classes, especially herbaceous wetland classes. This is logical given that 

the alpha angle discriminates features according to their types of scattering mechanisms. As 

shown, the bog and fen classes have a low alpha angle, illustrating a dominant surface scattering 

mechanism. The swamp wetland is characterized by intermediate alpha values, indicating 

dominant volume scattering. The alpha angle for marshes mostly ranges from 40° to 50°, 

corresponding to a dominant double-bounce scattering mechanism. In contrast to the entropy and 

alpha angle, anisotropy is less useful for discriminating similar wetland classes. This is in line with 

the findings of other studies, such as [75], which reported a lower efficiency of the anisotropy 

feature for crop mapping.  

5.4.1.2. Compact Polarimetric SAR Data 

Figures 5.6 to 5.8 depict box-and-whisker plots of various wetland classes extracted from the 

features of the CP SAR data. 

 

Figure 5.6. Box-and-whisker plots demonstrating the distribution of the SAR backscattering coefficients 

of CP SAR data for wetland classes obtained from the pixel values of the training data set. The red 

horizontal line highlights the nominal NESZ (-24 dB) of the RCM medium resolution mode. 
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As is the case for FP SAR data, the shallow-water class is distinct from other classes in all four 

polarizations. 𝜎𝑅𝑅
0  exhibits clear advantages for classifying herbaceous wetland classes. It is also 

useful for discriminating swamps from bogs and fens. However, the two classes of swamp and 

marsh are not separable using 𝜎𝑅𝑅
0 . These two classes are better distinguished using 𝜎𝑅𝑉

0  and 𝜎𝑅𝐿
0 ; 

however, confusion remains between them. Among wetland classes, only shallow-water has values 

below the noise floor of the RCM medium resolution mode (-24 dB; see the red horizontal line in 

Figure 6). All other wetland classes produce a backscattering response considerably higher than 

the nominal NESZ of the RCM medium resolution mode. Thus, the higher noise floor of RCM 

medium resolution CP SAR data is not problematic for wetland mapping, but may have some 

impacts on surface water mapping. 

 

Figure 5.7.  Box-and-whisker plots for extracted features from the m-delta decomposition for wetland 

classes obtained from the pixel values of the training data set. 

A comparison between Figures 5.4 and 5.7 reveals that the backscattering responses of the wetland 

classes in the m-delta decomposition are very similar to those of the Freeman-Durden 

decomposition. In particular, the marsh and swamp classes are characterized by double-bounce 
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and volume scattering mechanisms, respectively. Surface scattering is, however, dominant for 

bogs and fens. 

 

Figure 5.8. Box-and-whisker plots for extracted features from the CP SAR data for wetland classes 

obtained from pixel values of the training data set. Note: 𝜇𝑐: circular polarization ratio, 𝑚: degree of 

polarization, 𝜇: conformity coefficient, and 𝜌: correlation coefficient. 

As shown in Figure 5.8, most of the features extracted from the CP SAR data are able to distinguish 

wetland classes. For example, the circular polarization ratio distinguishes marsh from all other 

classes. This feature is also useful for discriminating bogs from other wetland classes and fens 

from shallow-water. The degree of polarization is also useful in distinguishing bogs from other 

wetland classes, excluding the marsh class. This is because the degree of polarization for bogs 

tends to 1, indicating a relatively pure polarized wave. This is consistent with our observations 

from the Cloude-Pottier decomposition, wherein bogs had the lowest entropy and alpha angle, both 

of which indicate a relatively pure polarized wave. The conformity coefficient is also promising 

for separating all wetland vegetation classes. Likewise, the correlation coefficient is efficient for 

differing some wetland classes, for example, bogs from other wetland classes.  
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5.4.2. Separability Analysis 

5.4.2.1. Full Polarimetric SAR Data 

Figure 5.9 illustrates the separability between pairs of wetland classes from the FP SAR data using 

the K-S distance.  

 

Figure 5.9. K-S distances between pairs of wetland classes using the extracted features from FP SAR 

data. Note that gray, blue, green, and yellow indicate poor, some, good, and excellent separability, 

respectively. 

As expected, the shallow-water class is easily separable from most wetland classes, as several 

features represent good and excellent separability in this case (see the fourth, seventh, and last two 

columns in Figure 5.9). Bogs also are discernible from swamp and marsh, as several features 
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indicate either good or excellent separability between these classes. Thus, bog (excluding bog-fen) 

and shallow-water classes are distinguishable from other classes based on both backscattering 

analysis and the K-S distances. This is attributable to the dominance of a single scattering 

mechanism for these classes (i.e., surface scattering for bogs and specular scattering for shallow-

water), which results in good or excellent separability using different SAR features. 

Conversely, other wetland classes exhibit some degree of separability in the best case. For 

example, fen-marsh, fen-swamp, and marsh-swamp are separable using two, five, and three of 13 

features, respectively, with some degree of separability (see the blue color for these pairs of 

wetland classes). Notably, the alpha angle is useful for discriminating fens and marshes (i.e., 

approaching good separability). However, there remains similarity between them, potentially due 

to their vegetation structures, such as sedge meadows and reeds, as has been previously reported 

[74]. Likewise, bogs and fens are also found to be hardly distinguishable using the FP SAR 

features, albeit with a greater number of features (six of 13 features with some degree of 

separability). Bogs and fens are both peatlands with very similar vegetation types, which are 

typically short vegetation with smooth canopies. This contributes to the similarity between these 

classes. Overall, the difficulty of discriminating these classes using C-band data has been reported 

in the literature [74]. The results of our separability analysis indicate that only the anisotropy 

feature of the Cloude-Pottier decomposition is not useful for wetland mapping. Accordingly, this 

feature was removed for classification in the following sections. 

5.4.2.2. Compact Polarimetric SAR Data 

The separability between pairs of wetland classes from the extracted features of the CP SAR data 

using the K-S distance is depicted in Figure 5.10. 
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Figure 5.10. K-S distances between pairs of wetland classes using the features extracted from CP SAR 

data. See Table 5.3 for parameter description. 

The K-S distance analysis of CP SAR features indicates relatively similar behavior as that of the 

FP SAR data. However, the number of more separable features is higher, given that 22 CP SAR 

features were examined in this case as compared to 13 features from the FP SAR data. Specifically, 

several features exhibit an excellent separability between shallow-water from other wetland classes 

(𝐾 − 𝑆 > 0.85). For example, the SAR backscattering coefficient features indicate either excellent 

or good separability between the shallow-water and other wetland classes, given the lowest 

backscattering responses were from shallow-water.  

The two classes of bog and fen fall within either the poor separability class or some separability 

class (six of 22 features) using the CP SAR features. For example, the volumetric components of 
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m-chi and m-delta decompositions produce a K-S distance of 0.65. This finding may be explained 

by the fact that the dominant scattering mechanism for bogs is surface scattering, whereas fen may 

also produce volume scattering (see also Figure 5.7). Bog and marsh were distinguished using 

several CP features, with three of 22 features representing excellent separability, six of 22 features 

representing good separability, and five of 22 features representing some degree of separability. 

The discrimination between these classes is due to the fact that the dominant scattering mechanism 

for bogs is surface scattering as compared to dominant double-bounce scattering in marshes. This 

results in different responses for these two classes in several CP SAR features (see Figures 5.6-

5.8), which contribute to discrimination between them. Likewise, bogs and swamps are also 

discernible using several CP features, with four of 22 features representing excellent separability, 

four of 22 features representing good separability, and two of 22 features representing some 

separability. The volumetric component of the m-chi and m-delta decompositions, as well as 𝜎𝑅𝑅
0 , 

are among the most separable features between bogs and swamps, potentially due to the different 

dominant scattering mechanisms for these classes. As for the extracted features from the FP SAR 

data apart from a slight deviation, the separability between fen-marsh, fen-swamp, and marsh-

swamp mostly falls into the class of some separability. 

As shown in Figure 5.10, some CP SAR features are very promising for discriminating similar 

wetland classes. For example, intensity features, the first and last components of the Stokes vector, 

the circular polarization ratio, the volumetric components of the m-chi and m-delta 

decompositions, and the Shannon entropy features are among the most useful CP SAR features, 

as they exhibit an excellent separability between at least two pairs of wetland classes. Other studies 

also found that Shannon entropy was an important feature for wetland mapping, given its capability 

to discriminate saturated soils from unsaturated soils [76], as well as flooded vegetation from open 
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water [77]. This is further confirmed in this study, because the Shannon entropy intensity feature 

indicates an excellent separability between the shallow-water class and other wetland classes, as 

illustrated in Figure 5.10. Conversely, some features, such as the second and third components of 

the Stokes vector, as well as the relative phase were less useful because they poorly separated 

wetland classes in most cases. As such, these three features were removed from further analysis in 

the following sections. 

5.4.3. Classification Results 

Table 5.4 represents the overall accuracies and Kappa coefficients for three case studies using FP 

and CP SAR data. Overall, the results indicate the superiority of the FP SAR data compared to 

those of CP in the three case studies. In particular, an overall accuracy of 87.89%, 80.67%, and 

84.07% were obtained from the CP SAR data for the Avalon, Deer Lake, and Gros Morne study 

areas, respectively. These indicated a decrease of about 2.8%, 4%, and 6.9% in overall accuracies 

for the Avalon, Deer Lake, and Gros Morne study areas, respectively, relative to the FP SAR data.   

Table 5.4. The overall accuracies and Kappa coefficients obtained from FP and CP SAR data for 

the three case studies. 

Case study  Type of data Overall accuracy (%) Kappa coefficient  

Avalon 
FP 90.73 0.88 

CP 87.89 0.85 

Deer Lake 
FP 84.75 0.81 

CP 80.67 0.77 

Gros Morne 
FP  90.93 0.88 

CP 84.07 0.80 

The most accurate result using CP SAR data was obtained for the Avalon study area, as more 

training data were available for this site compared to the other two pilot sites (see Table 5.1). In 
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particular, more wetland sites were available for visitation in the Avalon area due to their proximity 

to public roads and, in particular, this area is close to the capital city, St John’s. As such, significant 

effort was devoted to collecting in-situ data from this site, compared to those of other sites. Figures 

5.11, 5.12, and 5.13 demonstrate the classified maps of the Avalon, Deer Lake, and Gros Morne 

study areas, respectively.  

 

Figure 5.11. (a) A true color composite of RapidEye optical imagery (bands 3, 2, and 1) acquire on June 

18, 2015. The classification maps of the Avalon study area obtained from (b) FP (OA: 90.73%, K: 0.88) 

and (c) simulated CP SAR data (OA: 87.89%, K: 0.85). 
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Figure 5.12. (a) A true color composite of RapidEye optical imagery (bands 3, 2, and 1) acquire on June 

18, 2015. The classification maps of the Deer Lake study area obtained from (b) FP (OA: 84.75%, K: 

0.81) and (c) simulated CP SAR data (OA: 80.67%, K: 0.77). 

 

 

Figure 5.13. (a) A true color composite of RapidEye optical imagery (bands 3, 2, and 1) acquire on June 

18, 2015. The classification maps of the Gros Morne study area obtained from (b) FP (OA: 90.93%, K: 

0.88) and (c) simulated CP SAR data (OA: 84.07%, K: 0.80). 
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Overall, there is an agreement between the classification maps of FP and CP SAR data. Taking the 

Avalon area as an example (Figure 5.11(b),(c)), bog and fen are the most prevalent wetland classes 

in the two classified maps. This is in line with biologists’ reports recorded during in-situ data 

collection. Furthermore, the dominance of urban areas in the center of the study area (capital city 

of St John’s) was correctly identified in the two classification maps, and again this is in agreement 

with real world objects. This consistency also exists between the classification maps for Deer Lake 

and Gros Morne. Tables 5.5 and 5.6 represent the confusion matrices of the classification maps for 

the Avalon area. 

Table 5.5. The confusion matrix of the Avalon classification map obtained from the FP SAR data. 

An overall accuracy of 90.73% and Kappa coefficient of 0.88 were achieved. 

  Reference data    

C
la

ss
if

ie
d

 d
a
ta

 

 Bog Fen Marsh Swamp Shallow-

water 

Urban Deep-

water 

Upland Total User Acc. 

(%) 

Bog 3659 139 68 142 0 52 0 459 4519 80.97 

Fen 442 1981 95 58 0 37 0 25 2638 75.09 

Marsh 122 44 809 33 71 55 7 49 1190 67.98 

Swamp 156 82 102 729 0 4 0 81 1154 63.17 

Shallow-water 3 2 171 0 1732 7 205 4 2124 81.54 

Urban 114 16 41 14 2 5777 0 5 5969 96.78 

Deep-water 2 0 0 0 54 0 8621 0 8677 99.35 

Upland 59 37 24 128 0 0 0 8122 8370 97.04 

Total  4557 2301 1310 1104 1859 5932 8833 8745 34641  

Producer Acc. 

(%) 

80.29 86.09 61.76 66.03 93.17 97.39 97.60 92.88   
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Table 5.6. The confusion matrix of the Avalon classification map obtained from the CP SAR data. 

An overall accuracy of 87.89% and Kappa coefficient of 0.85 were achieved. 

  Reference data    

C
la

ss
if

ie
d

 d
a
ta

 

 Bog Fen Marsh Swamp 
Shallow-

water 
Urban 

Deep-

water 
Upland Total 

User Acc. 

(%) 

Bog 3278 317 23 105 0 43 0 165 3931 83.39 

Fen 524 1629 78 111 2 79 1 202 2626 62.03 

Marsh 163 149 946 53 88 63 0 18 1480 63.92 

Swamp 182 142 47 723 0 57 0 34 1185 61.01 

Shallow-water 6 2 118 0 1588 12 392 3 2121 74.87 

Urban 247 51 51 7 2 5539 0 6 5903 93.83 

Deep-water 0 0 0 0 175 0 8440 0 8615 97.97 

Upland 157 11 47 105 4 139 0 8317 8780 94.73 

Total  4557 2301 1310 1104 1859 5932 8833 8745 34641  

Producer Acc. 

%) 
71.93 70.8 72.21 65.49 85.42 93.47 95.55 95.11   

Although both FP and CP SAR data successfully classify the non-wetland classes with user and 

producer’s accuracies exceeding 92%, FP SAR data are advantageous for wetland classes in most 

cases. Specifically, an overall accuracy of 90.73% was obtained using the FP SAR data, with bogs 

correctly classified in 80.29% of cases, fens in 86.09%, marshes in 61.76%, swamps in 66.03%, 

and shallow-water in 93.17% of cases. These demonstrate an improvement of about 2.8% in terms 

of overall accuracy, as well as 8.4%, 15.3%, 0.5%, and 7.7% improvements in terms of producer’s 

accuracies for bogs, fens, swamps, and shallow-water, respectively, compared to those of the CP 

SAR data. Interestingly, marshes were better distinguished using CP SAR data relative to the FP 

SAR data, demonstrating an improvement of about 10.4% in terms of producer’s accuracy. 

Among wetland classes, the highest producer’s accuracy was obtained for shallow-water. This is 

in line with results of the backscattering and separability analyses, both of which demonstrated 
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that shallow-water is easily separable from other wetland classes. Furthermore, bogs were 

classified with relatively acceptable accuracies in most cases. This further supports the findings of 

the backscattering and separability analyses, which indicated bogs are distinguishable from other 

wetland classes. In particular, the K-S distance revealed that bogs are most separable from marsh, 

swamp, and shallow-water with K-S distances exceeding 0.7 using several features. However, 

there was similarity between bogs and fens according to the separability analysis because they had 

a K-S distance up to 0.7. This latter observation is also in agreement with the confusion matrix, as 

a high confusion error exists between bogs and fens.     

The producer’s accuracies are lower for swamp, as well as marsh (only for FP SAR data) compared 

to those of other classes. This is relatively in line with the results of the backscattering and 

separability analyses. For example, the two classes of marsh and swamp were found to be hardly 

distinguished from other wetland classes according to the backscattering analysis. This is further 

supported by the confusion matrix, as these classes had the lowest accuracies in most cases. This 

could be attributed to the lower amount of training data for the swamp and marsh compared to 

those of other classes. Note that these two classes had training polygons with the small sizes 

compared to other wetland classes (e.g., bog). This is because of the natural ecological 

characteristics of NL wetlands and its cool and moist climate, which contribute to extensive 

peatland formation (i.e., bog and fen). Accordingly, bogs and fens are more frequently visited 

during in-situ data collection and are easily spotted during interpretation of the aerial and satellite 

imagery. This resulted in the production of large and homogeneous training polygons for these 

classes. Conversely, swamps are usually inaccessible and hardly distinguishable using visual 

interpretation of satellite imagery. They also exist in physically small areas, such as in transition 
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zones between a wetland and another land cover class. This resulted in the production of small size 

training polygons for this class. 

5.5. Conclusions 

The spatial distribution of wetlands is of particular interest for the sustainable management of this 

important, productive ecosystem. In this study, the capability of full and simulated compact 

polarimetric (FP and CP) SAR data for wetland mapping was investigated in three pilot sites in 

Newfoundland and Labrador, Canada. A total of 13 FP and 22 simulated CP SAR features were 

extracted to identify the discrimination capability of these features between pairs of wetland 

classes both qualitatively, using backscattering analysis, and quantitatively, using the two-sample 

Kolmogorov-Smirnov (K-S) distance measurement. The most useful features were then identified 

and incorporated into the subsequent classification scheme.   

Among wetland classes, bog and shallow-water were found to be easily distinguished according 

to both the backscattering analysis and the K-S distance. Several features indicated either good or 

excellent separability between pairs of shallow-water-other classes and bog-other classes. Among 

FP features, backscattering intensity features, the Cloude-Pottier alpha angle, the volumetric 

components of the Freeman-Durden and Yamaguchi decompositions, as well as the surface 

scattering component of Yamaguchi decomposition were useful, as they indicated an excellent 

separability (𝐾 − 𝑆 > 0.85) between at least one pair of wetland classes. With regard to the CP 

SAR features, SAR backscattering coefficients, the first and last components of the Stokes vector, 

the circular polarization ratio, conformity coefficient, correlation coefficient, Shannon entropy, 

and both volume and surface scattering components of the m-chi and m-delta decompositions were 

useful features.  
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The overall accuracies of 87.89%, 80.67%, and 84.07% were obtained from the CP SAR data for 

the Avalon, Deer Lake, and Gros Morne study areas, respectively. The overall accuracies obtained 

from the FP SAR data were 90.73%, 84.75%, and 90.93% for the Avalon, Deer Lake, and Gros 

Morne study areas, respectively, which were higher than those of CP. Although the classification 

results demonstrated the superiority of FP SAR data compared to that of CP, the latter remains 

advantageous. This is because CP SAR data, which will be collected by RCM, will have a wider 

swath coverage and improved temporal resolution compared to those of RADARSAT-2. This is 

of great significance for efficiently mapping phenomena with highly dynamic natures (e.g., 

wetlands) on a large scale. Thus, the results of this research suggest that CP SAR data available 

on RCM hold great promise for discriminating conventional Canadian wetland classes. The 

analysis presented in this study contributes to further scientific research for wetland mapping and 

serves as a predecessor study for RCM, which will soon be the primary source of SAR observations 

in Canada. 
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Chapter 6. Fully Convolutional Network (FCN) for wetland classification 5 

Preface 

A version of this manuscript is published in the ISPRS journal of photogrammetry and remote 

sensing. I am a primary author of this manuscript along with the co-authors, Bahram Salehi, 

Masoud Mahdianpari, Eric Gill, and Matthieu Molinier. I and the co-author, Masoud Mahdianpari, 

conceptualized and designed the study. I developed the model and performed all experiments and 

tests. I wrote the paper and revised it based on comments from all co-authors. I also revised the 

paper according to the reviewers’ comments. The co-author, Masoud Mahdianpari helped in 

performing the experiments and analyzing the results and contributed to revising the manuscript. 

All co-authors provided editorial input and scientific insights to further improve the paper. They 

also reviewed and commented on the manuscript. 

Abstract  

Despite the application of state-of-the-art fully Convolutional Neural Networks (CNNs) for 

semantic segmentation of very high-resolution optical imagery, their capacity has not yet been 

thoroughly examined for the classification of Synthetic Aperture Radar (SAR) images. The 

presence of speckle noise, the absence of efficient feature expression, and the limited availability 

of labeled SAR samples have hindered the application of the state-of-the-art CNNs for the 

classification of SAR imagery. This is of great concern for mapping complex land cover 

ecosystems, such as wetlands, where backscattering/spectrally similar signatures of land cover 

units further complicate the matter. Accordingly, we propose a new Fully Convolutional Network 

                                                           
5 Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Gill, E. and Molinier, M., 2019. A new fully convolutional 

neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem. ISPRS 

Journal of Photogrammetry and Remote Sensing, 151, pp.223-236. 
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(FCN) architecture that can be trained in an end-to-end scheme and is specifically designed for the 

classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The proposed 

architecture follows an encoder-decoder paradigm, wherein the input data are fed into a stack of 

convolutional filters (encoder) to extract high-level abstract features and a stack of transposed 

convolutional filters (decoder) to gradually up-sample the low resolution output to the spatial 

resolution of the original input image. The proposed network also benefits from recent advances 

in CNN designs, namely the addition of inception modules and skip connections with residual 

units. The former component improves multi-scale inference and enriches contextual information, 

while the latter contributes to the recovery of more detailed information and simplifies 

optimization. Moreover, an in-depth investigation of the learned features via opening the black 

box demonstrates that convolutional filters extract discriminative polarimetric features, thus 

mitigating the limitation of the feature engineering design in PolSAR image processing. 

Experimental results from full polarimetric RADARSAT-2 imagery illustrate that the proposed 

network outperforms the conventional random forest classifier and the state-of-the-art FCNs, such 

as FCN-32s, FCN-16s, FCN-8s, and SegNet, both visually and numerically for wetland mapping.     

Keywords: Deep Learning, land cover, wetland, Convolutional Neural Network (CNN), Fully 

Convolutional Network (FCN), encoder-decoder, Polarimetric Synthetic Aperture Radar 

(PolSAR). 

6.1. Introduction  

Semantic segmentation, also known as land cover classification in remote sensing, is the process 

of assigning a pre-designed label to each pixel of an image. This is a fundamental methodology to 

provide pixel-based output maps that are needed in many remote sensing applications [1]. K-

means, minimum distance, maximum likelihood, and logistic regression are among the traditional 
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methods for semantic segmentation [2]. The main limitations of these algorithms are their 

dependency on the distribution of input data and their inefficiency in dealing with a large number 

of input features. Some machine learning tools, such as Support Vector Machine (SVM) and 

Random Forest (RF), address the limitations of traditional algorithms and have been successful in 

solving several pixel-based classification problems [3], [4] 

Despite the potential of conventional machine learning tools (e.g., SVM and RF), the labelling 

accuracy of complex land cover units, such as wetlands and sea ice, provided by such tools is still 

less than adequate [5]. For example, wetlands are characterized by high intra- and low inter-class 

variance due to the juxtaposition of a mixture of backscattering/spectrally similar vegetation types. 

This poses challenges to conventional machine learning tools when relying on the exclusive use 

of backscatter/spectral information for the semantic segmentation of spectrally similar land cover 

classes [6]. This is of great concern for classification of Synthetic Aperture Radar (SAR) and 

polarimetric SAR (PolSAR) images, wherein pixels are polluted by speckle noise that affects the 

performance of pixel-based polarimetric decomposition features [7]. In such a case, the image 

texture contains a large amount of semantic information compared to that provided by the 

individual pixel intensity. Thus, there has been a growing interest in the extraction of spatial and 

textural features from the raw image to explicitly distinguishing land-cover units [8]–[10].  

Notably, conventional machine learning tools mainly focus on mitigating ambiguity within 

backscattering/spectrally similar land cover classes by enhancing semantic information via a large 

number of input features. The process of extracting features is laborious and requires careful 

engineering design and significant domain expertise. This is because the efficiency of each feature 

in a particular problem is unknown a priori [11]. Furthermore, these hand-crafted, low-level 

features have an inferior capability to discriminate complex land cover units and for generalization. 
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The latter means that these low-level features are site- and data-dependent and, while they work 

well for a particular problem, they are less efficient in many other cases.  

Inspired by the great potential of human brains for object recognition, Deep Learning (DL) has 

drawn attention within the remote sensing community. The popularity of applying DL methods is 

attributed to both their deep multilayer structure, allowing extraction of robust, invariant, and high-

level features of data, and to their end-to-end training scheme [11]. This means that they have the 

capability to learn a series of abstract hierarchical features from raw input data and to provide a 

final, task-specific output, thus removing heuristic feature design. This is advantageous relative to 

shallow-structured machine learning tools (e.g., SVM and RF), which incorporate only the low-

level features of data into the semantic labelling scheme.  

Deep Convolutional Neural Networks (CNNs) are the most well-known DL methods for image 

processing tasks (e.g., supervised classification), as they are well-aligned with the intrinsic 2-D 

structure of remote sensing images [12]. In particular, CNNs are capable of extracting contextual, 

high-level 2-D spatial features by employing a hierarchy of convolutional filters using multiple 

nonlinear transformations [13]. Notably, CNNs have led to tremendous success in several remote 

sensing tasks, such as scene classification [10], object (e.g., vehicle) detection [14], [15], and 

image classification [16], [17] using optical remote sensing imagery. Also, CNNs have been found 

to be useful for feature extraction [18] and classification of PolSAR imagery [19]. Further 

improvement in PolSAR image classification was obtained when a complex-valued CNN (CV-

CNN) [20] and a polarimetric-feature-driven deep CNN were proposed [21].  

Over the past few years, the Fully Convolutional Network (FCN), proposed by Long et al. (2015), 

has gained recognition due to its ability to address pixel-based classification tasks in an end-to-

end fashion [11], [23]. Accordingly, several FCN architectures have been developed for the 
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semantic labelling of very high-resolution optical remote sensing data. In particular, Kampffmeyer 

et al. (2016) employed a FCN architecture to perform pixel-based labelling of high-resolution 

aerial imagery [24]. In another study, Volpi and Tuia (2017) proposed a downsample-then-

upsample FCN architecture, wherein high-level features are learned using convolution layers and 

spatial information loss is minimized using transposed convolutional layers [11]. Subsequent 

success in developing new FCN architectures has been achieved by proposing the Hourglass-

Shaped Network (HSN) [23], the Fine Segmentation Network (FSN) [5], the Edge-loss Reinforced 

Network (ERN) [25], the symmetrical normal shortcut FCN (SNFCN), and the symmetrical dense-

shortcut FCN (SDFCN) [26] for semantic segmentation of very high-resolution optical imagery. 

Interestingly, the capability of FCNs for the classification of PolSAR imagery has been examined 

to a lesser extent than for optical imagery. This could be attributed to the smaller amount of 

publicly available annotated SAR samples, complex scattering mechanisms within SAR imagery, 

and random speckle noise. Notably, the fine-tuning of well-known pre-trained networks for SAR 

image classification is inefficient due to the intrinsic differences between the imaging mechanisms 

of SAR and those of optical imagery. Most parameters obtained from pre-trained networks using 

optical imagery are ineffective for SAR/PolSAR imagery since they cannot properly preserve 

substantial polarimetric and geometrical information.  

Despite the limitations mentioned above, FCNs have been found to be effective for SAR and 

PolSAR image applications. For example, Wang et al. (2018) integrated deep spatial features 

extracted from FCNs with sparse and low-level features to classify PolSAR imagery [27]. Li et al. 

(2018) later introduced the sliding window FCN and sparse coding (SFCN-SC) for PolSAR image 

classification [29]. FCN was also found to be useful for road segmentation using single polarized 

SAR imagery [30]. Furthermore, Wu et al. (2019) introduced manually-annotated PolSAR 
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imagery, obtained from the Chinese airborne PolSAR C-band system, to support the pixel-based 

classification of PolSAR imagery [31]. However, this dataset has 50 image patches consisting of 

256x256 pixels and only contains typical land cover classes, including road, water, built-up, and 

vegetation.  

Although the methodologies and results obtained from FCNs using both optical and PolSAR 

imagery are sound, the previously mentioned studies focused only on the classification of typical 

broad land cover classes (e.g., water, vegetation, and built-up) from a limited publicly available 

dataset. Consequently, the pixel-based classification of complex land-cover units, such as similar 

wetland classes and sea ice types, remains challenging. This highlights the necessity of designing 

a new FCN architecture specifically suited for the classification of complex land cover classes but 

potentially applicable to other research areas. Accordingly, the main objectives of this research 

were to: (1) propose a new FCN architecture for the classification of wetland complexes using 

PolSAR imagery; (2) leverage skip connections and the memorized max-pooling indices to 

alleviate information loss due to the pooling operations; (3) improve multi-scale inference and 

enrich contextual information using inception modules; and (4) employ an in-depth examination 

of learned features by opening the “black box”. To the best of our knowledge, this study is the first 

to investigate the potential of such a new 2-D encoder-decoder architecture for the classification 

of complex land-cover units using PolSAR imagery. 

6.2. Convolutional Neural Network 

Two common approaches can be found in the literature for land cover classification using CNNs: 

patch-based CNNs and FCNs [32]. The former approach divides a large input image into small 

patches and a typical CNN model is applied to predict a single label for the center of each patch 

[33]. Then, the class labels are sorted to produce a two dimensional classified map as the output. 
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Although promising results have been obtained using patch-based CNN models for the semantic 

segmentation of remote sensing data  (e.g., [34]), this approach may be inefficient [11]. This is 

because patch-based CNNs introduce artifacts on the boundaries of the adjacent patches and may 

result in oversmoothing of the object boundaries and uncertainty in the semantic segmentation 

results [36]. Notably, densely overlapped patch-based methods at least partially address these 

limitations; however, they include excessive redundant information in image processing and 

consequently, they are computationally intensive. 

The second approach, FCNs, is better suited for remote sensing imagery and has shown promising 

results in several recent studies for the semantic segmentation of very high-resolution aerial 

imagery [5], [23], [25]. In FCNs, the fully connected layers, which convert the two-dimensional 

structure of an image to a vector representation, are replaced with convolutional layers. This allows 

FCNs to maintain a two-dimensional output image structure and increases the efficiency of 

network training. Given the ease of implementation, the high accuracy, and the computational 

efficiency of the FCN architecture relative to the patch-based CNNs [37], the  FCN model was 

employed in this study. We first introduce the main components of our network, which is then 

followed by a detailed explanation about the proposed FCN architecture for PolSAR image 

classification in this study. 

 

6.2.1. Convolutional layers  

The core of a CNN is its convolutional layers. A convolutional layer is a collection of simple filters 

(neurons) with learnable parameters (w,b). Given the input image 𝑋𝑖
𝑙−1 (size:  𝑊1 × 𝐻1 × 𝐷1), 

applying a dot product of the weights and the input, the output volume 𝑌𝑗
𝑙 (size:  𝑊2 × 𝐻2 × 𝐷2) 

of each filter is defined as [38]: 
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𝑌𝑗
𝑙 = 𝑓( ∑ 𝑤𝑖,𝑗

𝑙

𝑖∈𝑀𝑗

∙  𝑋𝑖
𝑙−1 + 𝑏𝑗

𝑙) 
(6.1) 

where the learnable parameters 𝑤𝑖,𝑗
𝑙  and 𝑏𝑗

𝑙 are the weight and bias of the 𝑗𝑡ℎ neuron (filter) in the 

𝑙𝑡ℎ layer, respectively, and 𝑓(𝑥) is the nonlinear activation function (see Section 2.2). The spatial 

dimension of the output can be represented as: 

𝑊2 =
𝑊1 − 𝑃 + 2𝑍

𝑆
+ 1 𝐻2 =

𝐻1 − 𝑄 + 2𝑍

𝑆
+ 1 

(6.2) 

where S is the stride (i.e., a distance between two consecutive convolutional windows) and Z is 

the number of zero rows and columns added to the borders of the input, also known as zero 

padding. 𝑃 × 𝑄 is the convolutional patch size. Each convolutional filter is applied using a 

rectangular sliding window with a pre-defined stride over the entire input volume (see Figure 6.1 

(a)). Each filter seeks out a specific pattern within the input volume X. Accordingly, the learnable 

weights and biases for all convolutional filters in a given channel of 𝑌 are shared because the same 

pattern is sought across all spatial locations in the input image [23]. This is called the “weight-

sharing property” of the convolutional layer and it decreases the number of parameters for this 

layer relative to fully connected layers, thus mitigating the overfitting problem during the training 

stage [13].  
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(a) Convolutional layer: the input image, 

(X), with size 𝑊1 × 𝐻1 = 5; the 

convolutional patch size 𝑃 × 𝑄 = 3;  𝑆 =

 1 and 𝑍 =  0. The output image, (Y), with 

size 𝑊2 × 𝐻2 = 3. 

(b) Transposed convolutional layer: this is equivalent to a 

convolution layer with the input image, (X), with size 

𝑊1 × 𝐻1 = 5 (a 3×3 input with 1 zero inserted between 

inputs); the convolutional patch size 𝑃 × 𝑄 = 3;  𝑆 =  1 

and 𝑍 = 1. The output image, (Y), with size 𝑊2 × 𝐻2 = 5. 

Figure 6.1. An illustration of (a) convolutional and (b) transposed convolutional layers.  

 

6.2.2. Non-linear function layer   

The non-linear function layer, also known as an activation function, adds non-linearity to the 

network and enhances the network’s capacity to express more complex non-linear mapping [5]. 

Notably, such non-linearity considerably decelerates weight convergence during the training stage. 

This is because the derivatives tend to zero when input magnitudes are large and, accordingly, the 

updates for the weights nearly vanish. Consequently, several non-linearity functions have been 

proposed to address this so-called vanishing-gradient problem. The Rectified Linear Unit (ReLU), 

Sigmoid, 𝑇𝑎𝑛𝐻, and leaky ReLU function are common activation functions [11]. The ReLU 

function,  𝑓(𝑥) = max(0, 𝑥), which performs a threshold operation on each input element, has 
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shown promising results in several deep-learning studies (e.g., [23]). Accordingly, the ReLU 

function was used in our proposed network because it simplifies the calculation of the partial 

derivatives and expedites stochastic gradient descent (SGD) convergence [39].  

6.2.3. Spatial pooling layer   

The pooling layer, also known as the down-sampling layer, spatially reduces the size of the input 

volume and preserves discriminant information. In particular, a rectangular sliding window (e.g., 

2 × 2)  over the feature map is applied and returns a single value from the information within the 

window. This layer generalizes the output of the convolutional layer into a higher level, submits 

more abstract features to the next layer, and maintains the scale invariant of the output feature 

maps. Accordingly, the pooling layer lightens computational complexity during the training stage 

by reducing the size of the feature map and, thus alleviates the overfitting problem. The maximum, 

minimum, and average functions are well-known pooling layers. In our proposed network, we used 

the max-pooling function due to its stability and efficiency in deep-learning research.  

6.2.4. Transposed convolutional layer  

The transposed convolutional layer retrieves the lost feature details introduced by pooling layers 

or other down-sampling operations. The transposed convolutional layers include un-pooling and 

convolution. In contrast to the max-pooling operation, which gradually shrinks the feature maps, 

the un-pooling operation expands the height and widths of the feature maps during the decoding 

stage. Similar to SegNet [40], we used the memorized max-pooling indices that record the location 

of the max-value from the corresponding encoded feature map to recover more accurate 

information during the decoding stage. This produces sparse feature maps to which the 

convolutional operation is applied to obtain dense feature maps. 
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6.3. Proposed network for classification of PolSAR imagery  

As mentioned earlier, our proposed network follows a FCN architecture (i.e., pixel-based 

approach) and the generic encoder-decoder paradigm. Figure 6.2 illustrates the proposed network 

for classification of PolSAR imagery. The encoder stage is similar to the conventional CNNs and 

extracts deep abstract features through down-sample pooling. However, the decoder stage exists 

only in FCNs that retrieves the precise boundary localization and provides a dense label map 

through up-sampling [26]. In particular, the input image is first traversed across a stack of 

convolutions, ReLU, and max-pooling layers during the encoding stage. The latter layer seeks out 

the spatial locations of the maximum value within the given window. The encoding stage produces 

an output with poor spatial resolution. The output of this bottleneck is the input of the decoding 

stage, wherein transposed convolutional layers consecutively up-sample the low resolution output 

result to the spatial resolution of the original input image and produces a dense label map.  

The down-sampling, which is intrinsic to the encoding stage mentioned above, causes a loss in 

detail. This consequently results in less accurate predictions near the boundaries of the pixels. To 

reduce information loss due to down-sampling, the proposed network uses skip connections to 

integrate high-resolution feature maps from the encoding stage to the decoding stage, along with 

stepwise transposed convolutions to recover more accurate end detailed output. In particular, skip 

connections combine deep, coarse, and semantic features with shallow and fine features to re-

introduce high-frequency image details into the decoding stage [23], [39]. Furthermore, they are 

useful in alleviating the vanishing gradient problem that arises during network training [39], thus 

improving the gradient propagation and the network’s performance [26]. These skip connections 

should provide sufficient retrievable details at our target resolution for wetland classification and 

further edge enhancement/detection does not enrich detailed information. This is because, as 
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reported in a previous study [41], adding boundary detection improved the labelling accuracy of 

human-made objects in very high-resolution aerial imagery (spatial resolution < 0.5m), whereas 

no improvement was observed for vegetation classes given their intrinsically fuzzy boundaries.  

 

Figure 6.2. The proposed network architecture in this study. Note that the encoder and decoder stages of 

the network are presented in solid-line and dashed-line boxes, respectively.   

A detailed configuration of the proposed network is presented in Table 6.1. In the encoding stage, 

the proposed network begins with a convolutional layer that has a filter patch size of 𝑃 × 𝑄 = 3.  

A small patch size is used to decrease model parameters and manipulate the insufficient number 

of training samples. Furthermore, small kernels add nonlinearity to the network, thus producing 

more discriminative features useful for wetland classes with varying sizes. A total of 64 filters are 

employed in this layer. Notably, the filter patch size remains unchanged for all convolutional layers 

in the encoding stage of the network. The first layer is followed by two convolutional layers with 

a total of 128 filters in each. The red layer is the max-pooling layer with a down-sampling factor 

of two. A total of two max-pooling layers are used to down-sample the feature maps for obtaining 

wider receptive fields.   
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The last convolutional layer in the encoding stage has 256 filters. Accordingly, the number of 

feature maps increases as the network grows into deeper convolutional layers. This results in 

maintaining the time complexity appropriate to each layer within the designed network. Notably, 

all convolutional layers in the encoding stage of the network are followed by both batch 

normalization and the non-linear ReLU function. Batch normalization increases the training speed 

and decreases the network sensitivity to initialization. This layer normalizes the activations and 

lightens gradient propagation across the network. Specifically, batch-normalization allows setting 

a larger learning rate and results in larger updating parameters, thus simplifying optimization [38].   

Table 6.1. Configuration of the proposed network in this study. 

 Layer type Filter size 

  

  
 E

n
co

d
er

 

Convolution  3 x 3, 64 

Residual module -, 64 

Convolution  3 x 3, 128 

Max pooling  2 x 2 

Convolution  3 x 3, 128 

Residual module -, 128 

Convolution  3 x 3, 256 

Max pooling 2 x 2 

Inception module -, 256 

Inception module -, 512 

   

  

D
ec

o
d

er
 

Transposed convolution -, 512 

Convolution 3 x 3, 256 

Convolution 3 x 3, 128 

Transposed convolution -, 64 

Convolution 1 x 1, 8 

 Softmax  - 
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Two inception modules are also used in this network [42]. The inception block is useful given the 

various sizes of wetland classes in the study region, which may hinder the effectiveness of 

conventional convolutional layer with a single, specific filter size. This is because some wetland 

classes, such as swamp, tend to occur in physically smaller areas relative to that of other classes. 

Conversely, some other classes (e.g., bog) are often more expansive. Accordingly, the inception 

module is useful since benefits from filters with different sizes in one layer, which contribute to 

multi-scale inference and enhance contextual information. 

The structure of the inception module is depicted in Figure 6.3 (a). As shown, the inception block 

is comprised of three branches. The first two branches contain a sequence of two convolutional 

filters, wherein the patch sizes of the first convolution are both 1 × 1 and those of the second are 

5 × 5 and 3 × 3, respectively. The third branch has only one convolutional filter with a patch size 

of 1 × 1. Both batch normalization and ReLU follow convolutional layers in the inception 

modules. A detailed configuration of the inception modules is presented in Table 6.2. 

 

 

(a) (b) 

Figure 6.3. Architecture of (a) inception and (b) residual modules in this study.   

Two skip connections, which directly transfer information from the encoding stage to its 

corresponding decoding one, are used after the first and third convolutional layers [43]. In 
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particular, feature maps at varying resolutions are integrated to enhance both the recognition and 

localization within the network by employing skip connections [5]. This is because the feature 

maps from the shallower layers (before pooling) submit high frequency details on a small receptive 

field while the feature maps from the deep layers submit low spatial details (because of the pooling 

operation) on a wider receptive field. This highlights the necessity of combining feature maps at 

different resolutions to take into account the trade-off between recognition and localization.  

The structure of the residual module used in this study is demonstrated in Figure 6.3 (b) and its 

detailed configuration is presented in Table 6.2. As shown in Figure 6.3 (b), the residual block 

consists of two branches. The first branch is composed of a stack of three convolutional filters with 

patch sizes of 1 × 1 , 3 × 3, and 1 × 1, respectively. The last branch has one convolutional filter 

with a patch size of 1 × 1. The number of filters in each branch is presented in Table 6.2. All 

convolutional filters in the residual module are followed by batch normalization. The two branches 

are integrated using an element-wise summation. 

Table 6.2. Configuration of inception and residual modules in this study.  

  Convolution configuration  Operation Output 

Inception I 1 x 1, 128  5 x 5, 128 Concatenation 256 

1 x 1, 64  3 x 3, 64 

 1 x 1, 64  

II 1 x 1, 256  5 x 5, 256 Concatenation 512 

1 x 1, 128  3 x 3, 128 

 1 x 1, 128  

      

Residual I 1 x 1, 32 3 x 3, 64 1 x 1, 64 Element-wise sum 64 

 1 x 1, 64  

II 1 x 1, 64 3 x 3, 128 1 x 1, 128 Element-wise sum 128 

 1 x 1, 128  

In the decoding stage, the transposed convolutional layers with an up-sampling factor of two are 

used to gradually up-sample the feature maps to the original resolution of the input image from the 

abstract features. As mentioned earlier, the memorized max-pooling indices [40] are used in this 
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study to recover more accurate detailed information (see the dashed-lines in Figure 6.2). The 

outputs of the transposed convolutional layers are concatenated with information that is directly 

transferred from the encoding stage to the decoding stage. Finally, the output feature map of the 

network is passed through the top-most layer, the Softmax function, to transform 2D deep features 

into a classification map.   

6.4. Experimental design     

6.4.1. Study area and dataset  

This study was carried in the northeast portion of the Avalon Peninsula, Newfoundland and 

Labrador, Canada. Figure 6.4 illustrates the geographic location of the study area.  

 

Figure 6.4. The geographic location of the study area. The yellow square displays one tile of the testing 

set, which was selected for the purpose of illustration. 



193 

 

The study area has eight land cover classes, five of which are wetlands, including bog, fen, marsh, 

swamp, and shallow water (i.e., mineral wetlands with standing water at most 2 m deep). The other 

land cover classes in the study area are urban, upland, and deep water (e.g., lakes and ponds greater 

than 2 m in depth). Figure 6.5 depicts examples of land cover classes in the study area.  

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 6.5. Ground reference photos illustrating land cover classes in the study area: (a) bog, (b) fen, (c) 

marsh, (d) swamp, (e) shallow water, (f) urban, (g) deep water, and (h) upland. 

6.4.2. RADARSAT-2 data and feature extraction   

Two RADARSAT-2 images in Fine mode Quad polarization (FQ22) were used for classification. 

This imagery was acquired on June 7 and July 25, 2016 from an ascending orbit with a resolution 

of 5.2 m in the range direction, 7.6 m in the azimuth direction, and an incidence angle of 42°. 
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RADARSAT-2 level-1 SLC imagery was geo-referenced using an external digital elevation model 

(DEM, SRTM 3 arc-second), which projected the intensity imagery into UTM coordinates (zone 

22, row T) using the WGS84 reference ellipsoid.  An adaptive Lee filter with a 3x3 window size 

was used to suppress the effect of speckle noise. This window size should be sufficient at this stage 

as it is able to maintain information within the input data. Further suppression of speckle noise 

was carried out during training of networks, as convolutional layers are  able to address speckle 

noise [31]. Next, intensity images were converted into normalized backscattering coefficient 

images in dB (i.e., the standard unit for SAR backscattering representation). The conversion 

process for RADARSAT-2 images is as follows: 

𝐶𝑉 =
|𝐷𝑁|2

𝐴2
 

(6.3) 

where CV is the calibrated value, DN is the digital number, and A is the gain value [44]. The 

normalized backscattering coefficient 𝜎0in dB is derived as 

𝜎0 = 10 ∗ log(𝐶𝑉). 
(6.4) 

Following this procedure, a total of six SAR backscattering coefficient images were produced 

using the PCI Geomatica software package.  

Coherence indicates the degree of similarity between two co-registered SAR images and this varies 

between 0 and 1, illustrating purely incoherent and coherent conditions, respectively. Coherence 

images were used in this study, as our previous study [45] demonstrated that interferometric 

coherence provides complementary information to SAR intensity and is more responsive to land 

cover changes relative to SAR intensity. This is of great importance for characterizing highly 
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dynamic land cover classes, such as wetland complexes. To produce coherence images, an external 

DEM was used for removing topographic phase and the coherence imagery was generated with a 

5x5 window size using the GAMMA remote sensing software package. Notably, image co-

registration was performed with sub-pixel accuracy. In this way, three coherence images in 

different polarizations were produced and used as the input data in all experiments.   

6.4.3. Training and testing  

In-situ data for eight land cover classes were collected for 257 sites during the summer and fall of 

2015, 2016, and 2017 by recording Global Positioning System (GPS) points at each location. 

Accordingly, a total of 270,000 points were labeled based on GPS points on SAR imagery. These 

points were categorized as bog (~15.3%), fen (~4.6%), marsh (~2.7%), swamp (~3.6%), shallow 

water (~ 6.3%), urban (~19%), deep water (~23.8%), and upland (~24.7%) classes to produce the 

reference polygons. Next, these reference polygons, 50 cm resolution orthophotographs, 5 m 

resolution RapidEye optical imagery, and Pauli RGB image of full polarimetric SAR data were 

used to manually label approximately 80% of the pixels on the SAR imagery in ArcMap 10.6 by 

both remote sensing and biologist experts familiar with the study area. To avoid possible errors 

between the boundaries of adjacent classes, a circular disc with a radius of three-pixel was applied 

to each delineated class during the preparation of the ground truth data.  

Notably, the study area was divided into 14 tiles, each consists of 1000x1000 pixels. A total of 8, 

4, and 2 tiles were selected for training, validation, and testing, respectively. The yellow square 

within Figure 6.4 shows one tile of the testing set, which was selected for the purpose of 

illustration.  Significant effort was devoted to maintain this ratio (i.e., 8: 4: 2) for all wetland classes 

by assigning tiles with a dominant class (e.g., bog) to the training, validation, and testing groups. 

The 8: 4: 2 ratio for the training, validation, and testing tiles is consistent with similar studies  (e.g., 
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[23], [41]), which applied FCNs to semantic segmentation of very high-resolution optical imagery. 

This ratio was also found to be optimal because when a fewer and larger number of tiles were 

assigned to the training (5 vs. 8 tiles) and testing (5 vs. 2 tiles) groups, respectively, the producer’s 

accuracy for some wetland classes (e.g., marsh) sharply decreased (less than 40%), although the 

overall accuracy remained high (above 80%). The decrease in the producer accuracy was due to 

the limited availability of training data for some wetland classes in the training tiles in this case. 

This is because the distribution of wetland classes varies spatially and when a fewer number of 

tiles is considered for training, it influences the classification accuracy of less prevalent classes 

(e.g., marsh and swamp) in the study area.  

The proposed network was trained using the cross-entropy loss function and stochastic gradient 

descent with a momentum (SGDM) optimizer and mini-batch size of 16. The learning rate was set 

at 10−5 and was stepped down ten times every five epochs. The image patch size was 256x256 

pixels with 50% overlap because the remote sensing images are too large to be directly used in 

FCNs. Data augmentation was carried out to mitigate overfitting by flipping (vertically and 

horizontally) and  rotating (at 90° intervals) the training patches. The training and testing processes 

were carried out on an Intel CPU i7 4790 k machine with 3.6 GHz and 32 GB RAM memory. A 

NVIDIA GeForce GTX 1080 Ti GPU with 11 GB of memory under CUDA version 8.0 was also 

employed in this study. 

6.4.5. Evaluation methods  

To evaluate the performance of the proposed network, a conventional machine learning tool, 

namely random forest (RF), as well as benchmark networks, FCN-8s, FCN-16s, FCN-32s, and 

SegNet, were employed. RF is an ensemble of classifiers that benefits from a collection of 

Classification And Regression Trees (CARTs) [46].  It is a non-parametric classifier and has 
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produced good results for land cover classification using SAR/PolSAR imagery [47], [48]. In this 

study, RF was employed by setting two parameters, namely the number of decision trees (Ntree = 

500) and the number of variables (Mtry = the square root of the number of input variables).  

FCN-8s, FCN-16s, and FCN-32s compose the first generation of FCN architecture, proposed by 

[22], wherein their encoder stages were transplanted from VGG-16 [49]. All three networks have 

decoder stages that up-sample deep feature maps to a dense pixel-based prediction map. FCN-8s 

and FCN-16s have two and one skip connections, respectively, which fuse semantic information 

from a deep, coarse layer with appearance information obtained from shallow, fine layers. 

However, FCN-32s produces dense pixel-based labelled maps by employing one transposed 

convolutional layer with no skip connection. Notably, FCN-32, FCN-16s, and FCN-8s follow the 

single-, two-, and three-stream learning procedure [22].  

SegNet [40] is characterized by a FCN architecture and follows a encoder-decoder paradigm. Its 

encoder architecture is similar to the 13 convolutional layers of the VGG-16 network [49]. There 

are 13 layers at the decoder stage of the network (corresponding to the encoder stage), as SegNet 

is symmetrical. In addition to the transposed convolutional layers, SegNet uses memorized max-

pooling indices (i.e., the location of the maximum feature value in each max-pooling operation 

during the encoding stage) from the corresponding encoder feature map to perform non-linear up-

sampling during the decoding stage. This preserves substantial spatial information by recording 

the pooling indices in the encoding stage. The encoder and decoder stages of the network are then 

followed by a multi-class Softmax classifier to produce a dense pixel-based classification map. In 

this study, all FCNs were trained using a similar strategy to that described in Section 6.4.3. Table 

6.3 represents the training time per epoch for training FCNs in this study. The proposed method 

exhibits a slightly slower convergence than the baseline FCNs and SegNet methods, given its 
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relatively complex architecture. The average inference time (Table 6.5) of the proposed method 

is, however, the second fastest, by a small margin. 

Table 6.3. The training time (in seconds) per epoch for training FCNs in this study.  

Methods  FCN-32s FCN-16s FCN-8s SegNet The proposed method 

Time per epoch (s) 750 758 775 735 794 

 

6.4.6. Evaluation metrics 

To examine the performance of different methods, four evaluation metrics, including overall 

accuracy (OA), average accuracy (AA), Kappa coefficient, and F1-score were employed. Overall 

accuracy quantifies the amount of correctly-labeled area within an input image. It can be measured 

by dividing the total number of correctly-labeled samples by the total number of test samples. The 

average accuracy measures the average value of the labelling accuracies of all land cover types. 

The Kappa coefficient represents the degree of agreement between the ground truth data and the 

final labeled map. The F1-score is a harmonic mean between precision and recall. It is useful for 

imbalanced classes and is obtained as: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. 

 

(6.5) 

Here precision (or positive predictive value) counts how many detected pixels in each class are 

true and is given by: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
, 

(6.6) 

and recall or sensitivity, defined as 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
, 

(6.7) 

represents how many actual (true) pixels are identified in each class. It is worth noting that for 

both the proposed network and the evaluation methods (e.g., SegNet), all evaluation indices were 

obtained by averaging values across all test tiles.   

6.5. Results and discussion  

6.5.1. Open the black box: feature visualization 

In seeking an understanding of the black box of the proposed network, an in-depth investigation 

of the learned features was carried out. Figure 6.6 illustrates the visualized features from the first 

convolutional block once the training has been terminated.  
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Figure 6.6. Visualization of learned features from the first convolutional block once the training has been 

terminated. The yellow-dashed squares demonstrate 4 of 64 features selected for further evaluation.   

Figure 6.6 shows a total of 64 learned feature maps, each of which unfolds the various structures 

that are activated by different convolutional filters. We selected 4 of 64 learned features in order 

to further examine the characteristics of the convolutional filters in the first convolutional block 

(see the yellow-dashed squares in Figure 6.6).  
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Figure 6.7. Four learned features from the first convolutional block and their frequency responses. 

As shown in Figure 6.7 (b), the output feature map of #49 reveals that this filter is responsive to 

vegetation cover in the scene, whereas the output feature map of #58 hinders the representation of 

this class. The frequency response for the feature map of #49 shows greater weights for the HV 

channel compared to those of VV and HH. This is in agreement with the expected volume 

scattering mechanism of vegetation canopies, which have higher backscattering responses in the 

HV channel [50]. On the other hand, the feature map of #58 tends to highlight the urban land cover. 

The frequency response of this feature map shows a greater response in the HH channel relative 

to the other two polarizations. This, too, agrees well with the expected scattering mechanism of 

human-made objects, since HH polarization is more sensitive to double-bounce scattering. The 
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feature map of #59 illustrates the activation of the water class with no deterministic behavior in 

the three polarizations. Notably, several filters from the first convolutional block, such as #34, 

demonstrate random speckle noise behaviors. Accordingly, we believe that the proposed network 

has the capability to extract both spatial and polarimetric features using different convolutional 

filters. This visualization also reveals that polarimetric features can be learned using deep CNNs 

and, thus can mitigate the tedious process of feature engineering. Figure 6.8 demonstrates 16 of 

128 feature maps of the third convolutional block. As shown, more abstract feature maps are 

generated as the network grows into its deeper stage.  
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#4 #13 #23 #29 

  
 

 

#34 #41 #48 #52 

 
   

#56 #60 #62 #77 

 

 

  

#84 #96 #103 #126 

Figure 6.8. Visualized 16 of the 128 output feature maps from the third convolutional block. Note that 

more abstract feature maps are produced as the network becomes deeper. 
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6.5.2. On the importance of inception module and skip connections - ablation study  

To examine the effectiveness of skip connections and residual modules, two ablation experiments 

were carried out. In the first analysis, the inception layers were replaced with the typical 

convolutional layers in the proposed architecture to explore the possible benefits of these 

components while the skip connections were maintained. To investigate the effect of skip 

connections on accuracy, they were removed in the second experiment while the other components 

of the proposed FCN remained constant. Table 6.4 contains a comparison of the results of the first 

(no inception, NI) and the second (no skip, NS) ablation experiments with those of the proposed 

network.  

Table 6.4. Experimental results of the importance of the inception module and skip connections. 

The most accurate results are indicated in bold.  

 OA (%) AA (%) K F1-score 

The proposed network-NI* 87.28 79 0.84 0.77 

The proposed network-NS* 90.55 81 0.87 0.80 

The proposed network 92.82 83 0.91 0.84 

* Note: NI: no inception module and NS: no skip connections.  

As may be observed from Table 6.4, both skip connections and inception modules are beneficial 

for wetland classification. The results indicate that inception modules are more advantageous, as 

a sharp decrease in both overall accuracy (~ 5.5%) and F1-score (0.07) occurred when they were 

removed from the proposed architecture. This finding is potentially explained by the fact that 

inception modules characterise complex patterns by extracting multi-scale contextual information. 

This is attributed to the existence of filters with various sizes that allow the exploitation of 

enhanced contextual information, which is of great significance for the classification of wetland 
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classes with different sizes. Skip connections are also useful for retrieving sufficient spatial 

information and were found to be useful in this study (see Table 6.4). 

6.5.3. Classification results  

Table 6.5 presents the evaluation indices for wetland classification obtained from RF, FCNs, 

SegNet, and the proposed network.  

Table 6.5. Assessment of the segmentation results obtained from different methods. The most 

accurate results are indicated in bold. 

 OA (%)* AA (%)* K* F1-score AIT (s) ** 

RF 75.88 74 0.71 0.74 19 

FCN-32s 69.37 68 0.61 0.69 5 

FCN-16s 82.59 76 0.74 0.75 7 

FCN-8s 89.60 79 0.87 0.81 11 

SegNet 86.91 78 0.83 0.76 17 

The proposed network 92.82 83 0.91 0.84 6 

*Note: OA, AA, and K stand for overall accuracy, average accuracy, and Kappa coefficient, respectively. ** Note: AIT 

is the average inference time per image tile in seconds.   

As illustrated in Table 6.5, FCN methods, excluding FCN-32s, outperform the baseline shallow-

structured machine learning method (RF), with overall accuracies exceeding 80%. Importantly, 

the proposed network outperforms all FCNs with an overall accuracy of approximately 93%, 

illustrating an improvement of about 3% and 23% relative to FCN-8s and FCN-32s, respectively. 

Our network is also advantageous for wetland classification in terms of other evaluation indices. 

Specifically, the proposed network achieves the highest average accuracy of 83%, a Kappa 

coefficient of 0.91, and an F1-score of 0.84 (see Table 6.5). The average inference time of the 

proposed method is also the second fastest, by a small margin. Figure 6.9 demonstrates the 
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classification results obtained from different methods for one of the testing tile in this study (see 

also Figure 6.4).  

 

Figure 6.9. (a) True color composite of RapidEye optical image (bands 3, 2, and 1) and (b) ground truth 

map. The classification maps obtained from (c) RF, (d) FCN-32s, (e) FCN-16s, (f) FCN-8s, (g) SegNet, 

and (h) the proposed method.  

As shown in Figure 6.9 (c), the classification map obtained from RF is the most affected by noisy 

scatter points since it only considers the backscattering property of SAR imagery. This occurrence 

is known as “salt and pepper” noise and is inherent in classification algorithms that rely on the 
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exclusive use of the spectral/backscattering value of each pixel in their classification scheme. 

However, the classification maps obtained from FCNs and the proposed network alleviated this 

problem, as both backscattering and contextual information are taken into account. This is of great 

significance for the classification of SAR imagery, wherein the radiometric quality of the images 

is degraded by speckle noise.  

Overall, the semantic segmentation results revealed the difficulty of identifying similar wetland 

classes compared to non-wetland classes. Among convolutional networks, FCN-32s has an inferior 

capability for distinguishing details of wetland classes and its output, especially on borders, is 

coarse compared to other approaches. This further confirmed the importance of skip connections 

for semantic segmentation, as leveraging skip connections in FCN-16s and FCN-8s significantly 

contributed to the improvement of the segmentation results by retrieving more spatial details. 

Much detail, however, was obtained from FCN-8s due to employing two skip connections relative 

to FCN-16s. Overall, segmentation results obtained from FCN-8s, SegNet, and the proposed 

method are similar, albeit with minor differences in identifying small wetland classes. In particular, 

the proposed method is advantageous for discriminating bog and shallow water. For example, a 

comparison between the ground truth map and the segmentation results revealed that bogs were 

better distinguished using the proposed method compared to SegNet and FCN-8s (see bottom of 

Figure 6.9 (b), (f), (g), and (h)). The shallow water class was also identified more accurately with 

the proposed method relative to SegNet and FCN-8s. Specifically, the perimeter of deep water 

classes was correctly classified as belonging to the shallow water class (see the center of 

segmentation results in Figure 6.9(h)) using the proposed method.  

The superiority of our proposed network compared to state-of-the-art FCNs could be attributed to 

the existence of the inception module within the architecture of the proposed network, as filters 
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with various sizes in one layer (i.e., inception module) contributed to producing multi-scale 

receptive fields. This enriched the contextual information, which is very important for 

distinguishing wetland classes with various sizes. For example, the classes of bog and fen are the 

most difficult to discriminate due to high intra- and low inter-class variance; however, the proposed 

method successfully classified most of these classes, as its pixel-based labelling is clear, accurate, 

and comparable to the ground truth map. 

Figure 6.10 illustrates the normalized confusion matrices for the three most accurate FCNs, namely 

FCN-8s, SegNet, and the proposed network. As shown in Figure 6.10, all three methods accurately 

distinguished the non-wetland classes with producer’s accuracies exceeding 90%, yet the proposed 

method indicated slight improvements for these classes compared to other approaches. However, 

there are differences between the producer’s accuracies of wetland classes among the top most 

successful FCNs. Importantly, the proposed method is advantageous in terms of producer’s 

accuracies for all wetland classes, excluding swamp, relative to other methods. Specifically, the 

proposed method classified bog and shallow water with producer’s accuracies up to 82%. The 

classes of fen and swamp were identified with accuracies beyond 70%. The lowest producer’s 

accuracy was obtained for marsh, possibly due to the lowest number of training samples for this 

class relative to the other land cover classes in this study. 
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Figure 6.10. Normalized confusion matrices for wetland classification using (a) FCN-8s, (b) SegNet, and 

(c) the proposed network.  

As expected, the confusion is more pronounced among wetland classes compared to non-wetland 

classes. As shown in Figure 6.10, a great degree of confusion arises among herbaceous wetland 

classes, namely bog, fen, and marsh. The confusion between bog and fen is possibly due to their 

similar visual appearance and similarity of the backscattering signatures of these classes in PolSAR 

imagery [51]. These two classes are both peatland-dominated with very similar species of 

Sphagnum in bogs and Graminoid in fens (see also Figure 6.5). As field notes suggest, these classes 

were adjacent successional classes without clear-cut borders, which made them difficult to 

distinguish by biologists during in-situ data collection.  

The confusion error is also pronounced for non-herbaceous wetland classes, namely swamp and 

shallow water. The swamp wetland is characterized by woody structures and is mostly confused 

with upland, which is characterized by forested dry land. Accordingly, these two classes may have 

very similar visual features. Furthermore, the dominant scattering mechanism for both classes is 

volume scattering, especially when C-band is employed. This results in very similar SAR 

backscattering signatures for these classes that further contributes to misclassification between 

them. These two classes are expected to be better distinguished using longer wavelengths, such as 
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L-band, that have a deeper penetration capacity [48]. The confusion error is also found between 

the shallow- and deep-water classes, potentially due to their very similar visual features. This, too, 

occurs to a lesser extent (see Figure 6.10) between shallow water and marsh, possibly due to the 

heterogeneous nature of these classes in the study area.  

Overall, all methods are successful in discriminating the non-wetland classes. This is partially 

attributed to the availability of a larger number of training samples for the non-wetland classes as 

compared to the wetland classes. Furthermore, these classes have different SAR backscattering 

signatures, which results in the generation of discriminative polarimetric features. Theoretically, 

the accuracies of all wetland classes should be improved upon the inclusion of a greater number 

of training samples.  

The high dimensional extracted features from the last convolutional block are visualized using the 

Uniform Manifold Approximation and Projection (UMAP) algorithm [52] (see Figure 6.11). 

UMAP is a novel technique for non-linear dimension reduction and has been developed recently 

based on Riemannian geometry and algebraic topology. As noted by McInnes and Healy (2018), 

UMAP is superior to the t-distributed stochastic neighbor embedding (t-SNE) algorithm in terms 

of both preserving the global structure of the data and the running time [52]. Accordingly, UMAP 

was used in this study to further demonstrate the ability of the proposed network for learning the 

intrinsic structure of the input data. As shown in Figure 6.11, the output features from the proposed 

network share less overlap and are farther from each other compared to those of SegNet and FCN-

8s. Although some wetland classes, such as bog and fen, demonstrate some degree of overlap, 

most classes, including marsh, upland, urban, and shallow- and deep-water, illustrate clear 

semantic clustering using the proposed network. This further confirms the effectiveness of our 

proposed architecture in extracting discriminative features from PolSAR imagery. 
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(a) (b) (c) 

Figure 6.11. Feature visualization using the UMAP algorithm [52] for the extracted features from the last 

convolutional layer of (a) FCN-8s, (b) SegNet, and (c) the proposed network.  

6.6. Conclusion 

In this study, a new end-to-end fully convolutional neural network that follows an encoder-decoder 

paradigm was proposed for classification of PolSAR imagery particularly for distinguishing 

wetland classes. The proposed architecture has two main components: (1) an encoder, wherein 

high-level abstract features are extracted using a stack of convolutional filters; and (2) a decoder, 

wherein the output feature map of the encoder stage is gradually up-sampled to the spatial 

resolution of the input volume using a stack of transposed convolutional filters. 

In the proposed architecture, inception modules were also employed to extract information from 

the multi-scale receptive field and to enrich contextual information, allowing filters with different 

sizes to be employed in one layer. Furthermore, skip connections with residual units were used to 

directly transfer information from encoder layers to the corresponding decoder layers of the 

network. This also resulted in the recovery of more accurate spatial information and simplified 

optimization. An in-depth examination of learned features demonstrated the effectiveness of the 

proposed architecture in extracting discriminative polarimetric features. Our proposed network 

achieved a competitive classification accuracy of about 93%, providing an improvement of about 
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3% and 23% relative to FCN-8s and FCN-32s, respectively, which were the second best and the 

worst evaluation methods in this study. Although the top three successful methods illustrated 

relatively equal strengths for discriminating non-wetland classes (i.e., urban, upland, and deep 

water) with accuracies beyond 90%, our proposed network was more advantageous for 

distinguishing similar wetland classes.  

Overall, the classification results obtained from the proposed architecture are strongly positive, 

taking into account the complexity of similar wetland classes, and demonstrate the large number 

of pixels that were correctly labeled. The proposed architecture is simple and straightforward and 

will substantially contribute to the success of PolSAR image classification using state-of-the-art 

deep learning tools. Given the limited availability of ground truth data in most remote sensing 

applications, future work will focus on designing an end-to-end deep CNN architecture for 

classification of PolSAR imagery in a semi-supervised scheme.   
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Chapter 7. Summary, conclusions, and future outlook 

7.1. Summary 

This study investigated the capability of data collected from different SAR sensors with varying 

wavelengths, including ALOS PALSAR L-band, RADARSAT-2 C-band, and TerraSAR-X, for 

wetland mapping and monitoring in Newfoundland and Labrador, which is a home to a variety of 

flora and fauna. The research took into account different aspects of SAR data and techniques for 

both hydrological monitoring of wetlands using interferometric coherence and wetland 

classification. These are related, as wetland vegetation classes significantly vary in their hydrology 

and vegetation types.   

Given a wider application of SAR polarimetry data and tools for wetland studies and several 

literature review papers on this topic, this work identified the main technological challenges 

associated with InSAR wetland studies. Additionally, the effect of various SAR operating 

parameters (e.g., polarization and wavelength) on both SAR backscattering responses and the 

interferometric coherence of wetland classes was evaluated and discussed based on the literature 

review and was later supported by experimental results. In particular, the interferometric coherence 

of Canadian wetland classes was examined for the first time in this work.  

The concept of incorporating interferometric coherence as an additional input feature in wetland 

classification was introduced in this work by integrating it with other commonly used SAR features 

(i.e., intensity and polarimetry). In particular, the study demonstrated the usefulness and strength 

of coherence in improving the accuracy of wetland classification, given the high sensitivity of 

coherence to land cover changes compared to other features. The research also revealed the 

importance of considering the correlation and dependency of a large number of input features on 
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the accuracy of wetland classification. An efficient classification scheme was then proposed to 

address the limitations of highly correlated features, thus improving the accuracy of wetland 

classification.  

As data collected by the upcoming RADARSAT Constellation Mission will be the main source of 

SAR observations in Canada, this work examined the capability of CP data for one of its main 

applications, namely wetland mapping and monitoring. Furthermore, the discrimination ability of 

CP and FP SAR data were compared in preparation for RCM. The thesis also demonstrated the 

effectiveness of deep learning approaches for semantic segmentation of SAR imagery by 

proposing a new FCN architecture.  

7.2. Conclusions 

Over the last two decades, wetland mapping and monitoring using satellite images have drawn 

attention within the remote sensing community [1]–[5]. This is because these advanced tools can 

be used to address the intrinsic limitations of conventional methods (e.g., surveying) for mapping 

highly dynamic ecosystems where remoteness and vastness further hinder the efficiency of those 

approaches [6]. This thesis advances toward operational methodologies and tools for effective 

monitoring of wetlands in Canada, with a special focus on Newfoundland wetlands. Leveraging 

the capability of interferometry and polarimetry SAR data and tools, the research introduces 

several advanced techniques of great use for mapping Canadian wetlands and wetlands elsewhere 

with similar ecological characteristics. The resulting maps and products provide essential 

information that will significantly contribute to sustainable management of the wildlife habitat of 

both terrestrial and aquatic species in this province. The specific conclusions of this research are 

described bellow. 
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Although several studies reported that longer wavelengths are advantageous for wetland InSAR 

applications [7]–[9], this finding seems to be neither generally accepted nor well discussed in the 

literature, particularly with regard to the lower efficiency of shorter wavelengths. This research 

further explores and discusses this issue by examining the interferometric coherence of Canadian 

wetland classes using data collected by three commonly used SAR frequencies, including L-, C-, 

and X-bands. The results revealed the superiority of L-band data for mapping forested wetlands 

(e.g., swamp), whereas shorter wavelengths were found to be promising for monitoring herbaceous 

wetlands during short periods of time. However, choice of the best SAR wavelength for wetland 

monitoring varies geographically and depends on the stage of wetland classes in their phenological 

cycle. A statistical variation of interferometric coherence as a function of temporal and 

perpendicular baselines demonstrated that coherence greatly depends on the former, especially for 

herbaceous wetland classes when shorter wavelengths are employed.  The results of coherence 

analysis also illustrated that although three polarizations could maintain coherence with an 

adequate degree, HH polarized SAR data were advantageous, as they are the most sensitive to 

double-bounce scattering.  

In this thesis, a variety of features from multi-temporal, multi-frequency, and multi-polarization 

SAR data were extracted to identify the capability of different features for discriminating similar 

wetland classes. The concept of using interferometric coherence for characterization of wetland 

classes was also introduced. The results demonstrated that an integration of interferometric 

coherence into the classification scheme enhances semantic land cover information, as it provides 

information unavailable within SAR intensity and polarimetry features. Notably, the best 

classification accuracy was obtained by incorporating three types of features (e.g., interferometry, 

intensity, and polarimetry). This research discussed the importance of considering the effect of 
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highly correlated features on the accuracy of wetland classification. The findings from the 

experimental results highlighted that ignoring this issue could result in a decrease of the overall 

classification accuracy. As such, an integration of RF variable importance and Spearman’s rank-

order correlation analysis was found to be a promising and flexible approach for identifying the 

most important uncorrelated features and improving the accuracy of wetland classification.   

The classification results also indicated that the discrimination between wetland classes is more 

challenging compared to that of the non-wetland classes. This is because non-wetland classes 

produce a single deterministic backscattering response. Overall, the results demonstrated that the 

accuracy of wetland classes depends on the number of training samples, as higher accuracies were 

achieved for classes with a larger number of training polygons.  

Furthermore, backscattering and separability analyses of wetland classes using several FP and CP 

SAR features revealed that bog and shallow-water are much easier to distinguish from other 

wetland classes. This is because a single scattering mechanism is dominant for these classes (i.e., 

surface and specular scattering mechanisms for bog and shallow-water, respectively), thus 

contributing to the discrimination of these classes.  

Similarly, a comparison of extracted features from CP SAR data with those of FP revealed that 

several CP features (e.g., 𝜎𝑅𝑅
0 , the first and last components of the Stokes vector, and surface and 

volume scattering components of m-chi and m-delta decomposition) are effective for 

discriminating similar wetland classes and have comparable capability with those of FP. The 

results also demonstrated that the higher noise floor of RCM data is not problematic for wetland 

vegetation characterization; however, it may have some impact on surface water mapping. 

Although the classification accuracy obtained from the simulated CP SAR data was lower than 

that of FP, it is still advantageous for operational applications on large scales. This is because data 
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collected by RCM will have a wider swath coverage and improved temporal resolution, both of 

which are advantageous for mapping phenomena with highly dynamic natures on a large scale.   

Notably, the results revealed the superiority of deep learning approaches for classification of 

wetland complexes compared to shallow-structured machine learning tools (RF). The proposed 

FCN architecture in this study was advantageous compared to several well-known FCNs (e.g., 

SegNet and FCN-8s), currently employed in several computer vision tasks. This is attributed to 

the fact that the proposed FCN architecture benefits from recent advances in CNN designs, namely 

the addition of inception modules and skip connections with residual units, both of which 

demonstrated great significance for discriminating similar wetland classes of various sizes.  

7.3. Future outlook 

Although SAR imagery has been widely used for wetland mapping and characterization for the 

last two decades [10]–[13], several challenges still remain, and new questions arise as the areas of 

application further expand. The discrimination between visually and spectrally (backscattering) 

similar wetland classes has long proven challenging for operational wetland classification [11], 

[14]. Much investigation on the effect of SAR operating parameters and determining the most 

useful features for wetland characterization is required. These topics and issues are addressed in 

this dissertation. This research, however, can be further pursued in future work, as presented in the 

following.    

Over the last two decades, the capability of multi-polarization data for wetland characterization 

has been demonstrated in the literature, including the papers presented in this dissertation (e.g., 

[15], [16]). In particular, most studies focused on multi-polarized data collected by C-band sensors, 

especially RADARSAT-2. For example, the coherence analysis of wetland classes in a multi-
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polarized framework in the present study was limited to RADARSAT-2 data, as it was the only 

available FP data at that time. As such, significant investigation will be required to verify the 

results obtained from this research for multi-polarized data collected from other SAR frequencies. 

Furthermore, this work confirmed the potential of ALOS PALSAR-1 data for characterizing 

wetland vegetation classes, yet data collected by the currently operating L-band mission (i.e., 

ALOS PALSAR-2) should be further evaluated.  

The effect of other SAR operating parameters, such as incidence angle, is another issue to consider, 

as it has not been addressed herein. This is because data with various incidence angles were 

unavailable for this research; however, incidence angle variations may have some impact on 

characterization of different wetland classes.  

This research identified the most useful features for distinguishing similar wetland classes. A 

larger number of features from a larger data set should be included to examine the consistency in 

feature discriminability. A comparison between the proposed method in this research with more 

advanced methods of feature selection also offers a potential avenue for future research.   

The results obtained from the simulated CP SAR data and the most useful CP features for 

discriminating wetland classes identified in this research should be verified when RCM is 

launched. Furthermore, the analysis presented in this work was limited to simulated CP SAR data 

at medium resolution. Future research could extend this work by examining the capability of 

simulated or real CP SAR data at high resolutions. This is of great importance, as a larger swath 

coverage, enhanced temporal resolution, and coherent dual-polarization capability of data 

collected by RCM will improve the capability of SAR signals for wetland applications [17].  
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Access to wetland training data for coherence/backscattering analysis and classification was 

essential to carry out the work presented in this research. Efforts to collect wetland training data 

from various parts of NL should be continued to further expand and evaluate the presented work. 

Another opportunity to consider is the availability of large-volume open access remote sensing 

data and the development of powerful cloud computing resources, which may significantly 

contribute to the success of land cover and wetland mapping on large scales [18]. For example, 

open access SAR data collected by the Sentinel-1 mission satellite of the Copernicus program by 

the European Space Agency (ESA) offer unprecedented opportunities for wetland mapping [19]. 

The main purpose of the Sentinel-1 mission is to provide full, free, and open access SAR data for 

environmental applications [20]. Thus, future research could explore the capability of such data 

and cloud computing resources for wetland characterization on provincial- or national-scales.  

Although SAR is an efficient tool for wetland mapping and monitoring, and the current research 

suggests that even more information and new opportunities (e.g., RCM) will be added by such data 

in the near future, the synergistic use of SAR data with other types of EO data (e.g., multi-spectral, 

UAV, and DEM) could be further explored. This is because while SAR data are sensitive to the 

structural and physical characteristics of wetland vegetation classes, optical data collected from 

multi-spectral sensors are sensitive to chemical and molecular characteristics of vegetation [6]. 

UAV data are also characterized by very high spatial resolution and, as such, could improve the 

discrimination of small sized wetland classes [21]. High resolution DEMs acquired from Light 

Detection and Ranging (LiDAR) were found to be useful in improving the accuracy of wetland 

classification [14]. Thus, future studies could examine and compare the efficiency of various 

sources of EO data for wetland classification.  
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Overall, the research presented in this dissertation provides new methodologies, insights, and 

guidance using advanced remote sensing tools and data that has been lacking investigation in the 

existing literature. This improves our understanding for accurate wetland mapping and monitoring 

in Canadian provinces. 
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