343 research outputs found

    Extrapolation of Airborne Polarimetric and Interferometric SAR Data for Validation of Bio-Geo-Retrieval Algorithms for Future Spaceborne SAR Missions

    Get PDF
    Spaceborne SAR system concepts and mission design is often based on algorithms developed and the experience gathered from airborne SAR experiments and associated dedicated campaigns. However, airborne SAR systems have better performance parameters than their future space-borne counterparts as their design is not impacted by mass, power, and storage constraints. This paper describes a methodology to extrapolate spaceborne quality SAR image products from long wavelength airborne polarimetric SAR data which were acquired especially for the development and validation of bio/geo-retrieval algorithms in forested regions. For this purpose not only system (sensor) related parameters are altered, but also those relating to the propagation path (ionosphere) and to temporal decorrelation

    Estimation of Forest Height Using Spaceborne Repeat-Pass L-Band InSAR Correlation Magnitude over the US State of Maine

    Get PDF
    This paper describes a novel, simple and efficient approach to estimate forest height over a wide region utilizing spaceborne repeat-pass InSAR correlation magnitude data at L-band. We start from a semi-empirical modification of the RVoG model that characterizes repeat-pass InSAR correlation with large temporal baselines (e.g., 46 days for ALOS) by taking account of the temporal change effect of dielectric fluctuation and random motion of scatterers. By assuming (1) the temporal change parameters and forest backscatter profile/extinction coefficient follow some mean behavior across each inteferogram; (2) there is minimal ground scattering contribution for HV-polarization; and (3) the vertical wavenumber is small, a simplified inversion approach is developed to link the observed HV-polarized InSAR correlation magnitude to forest height and validated using ALOS/PALSAR repeat-pass observations against LVIS lidar heights over the Howland Research Forest in central Maine, US (with RMSE \u3c 4 m at a resolution of 32 hectares). The model parameters derived from this supervised regression are used as the basis for propagating the estimates of forest height to available interferometric pairs for the entire state of Maine, thus creating a state-mosaic map of forest height. The present approach described here serves as an alternative and complementary tool for other PolInSAR inversion techniques when full-polarization data may not be available. This work is also meant to be an observational prototype for NASA’s DESDynI-R (now called NISAR) and JAXA’s ALOS-2 satellite missions

    The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space

    Get PDF
    The primary objective of the European Space Agency's 7th Earth Explorer mission, BIOMASS, is to determine the worldwide distribution of forest above-ground biomass (AGB) in order to reduce the major uncertainties in calculations of carbon stocks and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with Land Use Change, forest degradation and forest regrowth. To meet this objective it will carry, for the first time in space, a fully polarimetric P-band synthetic aperture radar (SAR). Three main products will be provided: global maps of both AGB and forest height, with a spatial resolution of 200 m, and maps of severe forest disturbance at 50 m resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions). After launch in 2022, there will be a 3-month commissioning phase, followed by a 14-month phase during which there will be global coverage by SAR tomography. In the succeeding interferometric phase, global polarimetric interferometry Pol-InSAR coverage will be achieved every 7 months up to the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be used to eliminate scattering from the ground (both direct and double bounce backscatter) in forests. In dense tropical forests AGB can then be estimated from the remaining volume scattering using non-linear inversion of a backscattering model. Airborne campaigns in the tropics also indicate that AGB is highly correlated with the backscatter from around 30 m above the ground, as measured by tomography. In contrast, double bounce scattering appears to carry important information about the AGB of boreal forests, so ground cancellation may not be appropriate and the best approach for such forests remains to be finalized. Several methods to exploit these new data in carbon cycle calculations have already been demonstrated. In addition, major mutual gains will be made by combining BIOMASS data with data from other missions that will measure forest biomass, structure, height and change, including the NASA Global Ecosystem Dynamics Investigation lidar deployed on the International Space Station after its launch in December 2018, and the NASA-ISRO NISAR L- and S-band SAR, due for launch in 2022. More generally, space-based measurements of biomass are a core component of a carbon cycle observation and modelling strategy developed by the Group on Earth Observations. Secondary objectives of the mission include imaging of sub-surface geological structures in arid environments, generation of a true Digital Terrain Model without biases caused by forest cover, and measurement of glacier and icesheet velocities. In addition, the operations needed for ionospheric correction of the data will allow very sensitive estimates of ionospheric Total Electron Content and its changes along the dawn-dusk orbit of the mission

    Polarimetric SAR Interferometry Evaluation in Mangroves

    Get PDF
    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data)

    Biomass estimation in Indonesian tropical forests using active remote sensing systems

    Get PDF

    Simultaneous Estimation of Sub-canopy Topography and Forest Height with Single-baseline Single-polarization TanDEM-X Interferometric Data Combined with ICESat-2 Data

    Get PDF
    To address the challenge of retrieving sub-canopy topography using single-baseline single-polarization TanDEM-X InSAR data, we propose a novel InSAR processing framework. Our methodology begins by employing the SINC model to estimate the penetration depth (PD). Subsequently, we establish a linear relationship between PD and phase center height (PCH) to generate a wall-to-wall PCH product. To achieve this, space-borne LiDAR data are employed to capture the elevation bias between actual ground elevation and InSAR-derived elevation. Finally, the sub-canopy topography is derived by subtracting the PCH from the conventional InSAR-based DEM. Moreover, this approach enables the simultaneous estimation of forest height from single-baseline TanDEM-X data by combining the estimated PD and PCH components. The approach has been validated against Airborne Lidar Scanning data over four diverse sites encompassing different forest types, terrain conditions, and climates. The derived sub-canopy topography in the boreal and hemi-boreal forest sites (Krycklan and Remningstorp) demonstrated notable improvement in accuracy. Additionally, the winter acquisitions outperformed the summer ones in terms of inversion accuracy. The achieved RMSEs for the winter scenarios were 2.45 m and 3.83 m, respectively, representing a 50% improvement over the InSAR-based DEMs. And the forest heights are also close to the ALS measurements, with RMSEs of 2.70 m and 3.33 m, respectively. For the Yanguas site in Spain, characterized by rugged terrain, sub-canopy topography in forest areas was estimated with an accuracy of 4.27m, a 35% improvement over the original DEM. For the denser tropical forest site, only an average elevation bias could be corrected.This work is funded by the National Key R&D Program of China (No. 2022YFB3902605), the National Natural Science Foundation of China (Nos. 42227801, 42030112, 42204024, 42104016, 42330717), the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development under Project PID2020-117303GB-C22/AEI/10.13039/501100011033, the Natural Science Foundation for Excellent Young Scholars of Hunan Province (No. 2023JJ20061), and in part by the China Scholarship Council Foundation to the Joint Ph.D. Studies at University of Alicante (No. 202106370125)

    A Review of Crop Height Retrieval Using InSAR Strategies: Techniques and Challenges

    Get PDF
    This article compares the performance of four different interferometric synthetic aperture radar (SAR) techniques for the estimation of rice crop height by means of bistatic TanDEM-X data. Methods based on the interferometric phase alone, on the coherence amplitude alone, on the complex coherence value, and on polarimetric SAR interferometry (PolInSAR) are analyzed. Validation is conducted with reference data acquired over rice fields in Spain during the Science Phase of the TanDEM-X mission. Single- and dual-polarized data are exploited to also provide further insights into the polarization influence on these approaches. Vegetation height estimates from methodologies based on the interferometric phase show a general underestimation for the HH channel (with a bias that reaches around 25 cm in mid-July for some fields), whereas the VV channel is strongly influenced by noisy phases, especially at large incidences [root-mean-square error (RMSE) = 31 cm]. Results show that these approaches perform better at shallower incidences than the methodologies based on coherence amplitude and on PolInSAR, which obtain the most suitable results at steep incidences, with RMSE values of 17 and 23 cm. On the contrary, at shallower incidences, they are highly affected by very low input coherence levels. Hence, they tend to overestimate vegetation height.This work was supported by the Spanish Ministry of Science and Innovation, in part by the State Agency of Research, and in part by the European Funds for Regional Development under Project TEC2017-85244-C2-1-P. The work of Noelia Romero-Puig was supported in part by the Generalitat Valenciana and in part by the European Social Fund under Grant ACIF/2018/204
    • 

    corecore