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ABSTRACT

ELECTROMAGNETIC SCATTERING MODELS FOR
INSAR CORRELATION MEASUREMENTS OF

VEGETATION AND SNOW

MAY 2016

YANG LEI

B.Sc., BEIHANG UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Paul R. Siqueira

Interferometric Synthetic Aperture Radar (InSAR) has proved successful and

efficient in measuring the vertical structure of the distributed targets such as vegeta-

tion and snow, which are dominated by volume scattering. In particular, the InSAR

correlation measurement has been utilized to retrieve the target vertical structural

information. One existing and well-known electromagnetic scattering model of the

InSAR correlation was first brought forward focusing on the single-pass InSAR obser-

vation of a sparse random medium like vegetation. However, the lack of the adaption

of this InSAR scattering model for repeat-pass InSAR observation of vegetation as

well as for single-pass InSAR observation of snow by considering its dense medium

characteristics, essentially constrain fully exploiting InSAR’s capability of measuring

sparse and dense medium characteristics.

x



In this work, the well-known InSAR scattering model will be adapted to accom-

modate the two scenarios: 1) repeat-pass InSAR observation of vegetation and 2)

single-pass InSAR observation of snow and considering its dense medium character-

istics. Theoretical model derivations as well as parameter retrieval approaches are

demonstrated for both of the applications, respectively. Both of the simulated and

ground validation results are also presented. The InSAR scattering models along with

the parameter retrieval analysis described in this work will expand InSAR’s capability

as well as the range of vegetation and snow characteristics that can be retrieved by

single-pass and/or repeat-pass InSAR systems.
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2.2 Different forms of the pair distribution function: Percus-Yevick
function with volume fraction of 0.2 (denoted as “PY (fv = 0.2)”),
Percus-Yevick function with volume fraction of 0.4 (denoted as
“PY (fv = 0.4)”), Hole-Correction function (denoted as “HC”),
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2.3 Illustration of the backscattering of the coherent field through using
the Distorted Born Approximation (DBA). The incident field Einc
penetrates through the slab of discrete scatterers (between the
“black” and “red” dashed lines) and hits the scatterer with
E(Rj, ω), where DBA approximates E(Rj, ω) with the coherent
component 〈E(Rj, ω)〉. The coherent field incident on the
scatterer is then backscattered with the scattering amplitude fj.
By reversing the same path through the intervening medium back
to the radar receiver, the backscattered field due to that
particular scatterer is thus 〈E(Rj, ω)〉 · fj · 〈E(Rj, ω)〉. . . . . . . . . . . . . . 23
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and layer depth (c). Each parameter is investigated by fixing the
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2.6 Illustration of the Random Volume over Ground (RVoG) model. The
topographic height of the underlying ground surface and the top
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the interferometric phase referenced to the top of the medium at
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2.8 Viewing geometry of the repeat-pass InSAR observation. The center
of the resolution cell, R0, is marked as a “red” dot, while the jth

scatterer is shown in “blue”. The spatial coordinates of the

scatterer at Rj
(1)

are represented in its local Cartesian coordinates

(x
(1)
j , y

(1)
j , z

(1)
j ) that is referenced at R0. The reference phase plane

at the center of the resolution cell, R0, is shown as a “red” dashed

line. The range path length from R1 to Rj
(1)

is equivalent to the
one that starts from R1, passes through R0 and reaches the same

phase front as Rj
(1)

, which equals to

|R1 −R0|+ n(y
(1)
j sin θt1 − z(1)

j cos θt1). The attenuation path

length that the wave traveled within the medium to reach Rj
(1)

is

obviously −z(1)
j / cos θt1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 (a) Illustration of the viewing geometry of the Random Volume over
Ground (RVoG) model along with the vertical profiles
characterizing the repeat-pass InSAR correlation components. (b)
is the extinction-weighted backscatter profile which is comprised
by an exponential decaying function characterizing the volume
and a delta function at the ground surface, (c) is the random
motion profile which has a magnitude of one at the ground level
and starts decorrelating as the height increases, and (d) is the
dielectric fluctuation profile which has a differential change
between the volume and the ground. Note through a change of
variables, (a), (b), (c) and (d) have their vertical profiles as a
function of z′ that is referenced at the ground surface (z′ = 0). . . . . . . 55

3.1 Illustration of the observable(s) that have a good sensitivity to the
individual parameters. Note (h+ d) is the topographic height at
the top of the snow surface as indicated in Figure 2.6, which
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combination of snow bottom h (the topographic height at the
ground surface) and the snow layer depth d, it is equivalent to
know both the depth d and the snow top (h+ d). . . . . . . . . . . . . . . . . . 67

3.2 Flowchart of the InSAR processing and the inversion procedure. The
sinc inversion model and the Gauss-Newton algorithm are
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3.3 Geometric illustration of the comparison between two sets of height
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4.10 (a) A rectangular one-hectare plot in Harvard forest of western
Massachusetts. (b) Height of the PolSARproSim simulated
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CHAPTER 1

INTRODUCTION

Synthetic Aperture Radar (SAR) has the capability of mapping the terrestrial

land cover as well as monitoring the land cover (and thus climate) change on a large

scale. For distributed targets (such as vegetation and snow) that are dominated by

volume scattering, an Interferometric SAR (InSAR) has proved successful and effi-

cient in measuring the vertical structure of the targets. As illustrated in Figure 1.1,

an InSAR observing configuration collects a pair of SAR observations from the dis-

tributed targets at two slightly different incidence angles, either using 1) two different

antennas deployed on the same platform (single-pass), or using 2) the same antenna

onboard a platform that revisits the ground area periodically (repeat-pass). In ei-

ther case, the complex InSAR correlation coefficient between the two observations

is the important InSAR metric that is usually utilized to retrieve the target vertical

structure, and can be defined as [64]

γ =
〈E1E

∗
2〉√

〈|E1|2〉〈|E2|2〉
(1.1)

where E1 and E2 are the received electric fields at two antennas (or from two passes of

the same antenna) that are separated by some distance (terms as the interferometric

baseline, and denoted as B). Here the angular brackets represent ensemble averaging,

which can be replaced by spatial averaging [79].

One existing and well-known electromagnetic scattering model of the InSAR corre-

lation was first brought forward by Treuhaft et al., [80, 81], focusing on the single-pass
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E1

E2B

Figure 1.1: Illustration of the observing geometry of SAR interferometry (InSAR)
over land covers such as vegetation and snow. E1 and E2 are the received electric
fields at two antennas (or from two passes of the same antenna) that are separated by
the interferometric baseline, B. The InSAR complex correlation coefficient between

E1 and E2 is thus defined as γ =
〈E1E∗2 〉√
〈|E1|2〉〈|E2|2〉

.

InSAR observation of a sparse random medium such as vegetation. However, the lack

of the adaption of this InSAR scattering model for repeat-pass InSAR observation of

vegetation essentially constrains the utility and explanations of the accumulated data

volume from spaceborne repeat-pass InSAR missions, such as Japan Aerospace eXplo-

ration Agency (JAXA)’s Advanced Land Observing Satellite (ALOS)-1 and -2 [66, 28],

and National Aeronautics and Space Administration (NASA)’s NASA-ISRO SAR

(NISAR) [3]. Furthermore, the same InSAR scattering model has also been directly

used to retrieve the snow characteristics at the lower end of the microwave spectrum

by considering snow as equivalent to a sparse random medium [49, 89]. Therefore,

the lack of the adaption of this InSAR scattering model for the single-pass InSAR

observation of snow by considering its dense medium characteristics, also constrains

fully exploiting InSAR’s capability of measuring dense medium characteristics.
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Therefore, the original contributions of this dissertation are on adapting the well-

known InSAR scattering model so as to accommodate these two scenarios: 1) repeat-

pass InSAR observation of vegetation and 2) single-pass InSAR observation of snow

and considering its dense medium characteristics. In this chapter, the scientific mo-

tivation, the relevant previous work and the merits of this work on the aspect of

SAR/InSAR scattering models for the retrieval of snow characteristics, as well as

single-/repeat-pass InSAR scattering models for the retrieval of vegetation character-

istics, are discussed.

1.1 SAR/InSAR scattering models for the retrieval of snow

characteristics

Snow characteristics, such as Snow Water Equivalent (SWE) and snow grain size,

are important in the monitoring of the hydrological cycle and as indicators of climate

change in snow-dominated regions [6]. As illustrated in Figure 1.2, a dry snow sample

is comprised with ice particles and air bubbles. Dealing with wet snow is beyond the

scope of this work since a high water content will be incorporated making the modeling

more complicated. Therefore, when “snow” is mentioned in this work, it refers to the

dry snow only.

Three independent quantities are usually used to characterize a snow sample:

grain size, volume fraction and layer depth. However, for the hydrological purpose, it

is also desired to know how much equivalent water content there is in the snowpack.

Given a unit area (e.g. 1 m2), SWE is defined as the depth of the water content after

melting the snowpack, and can be expressed as

SWE = volume fraction× layer depth× 0.917, (1.2)
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Figure 1.2: Illustration of the dry snow (comprised with ice particles and air bubbles)
characteristics (i.e., grain size, volume fraction, layer depth) and the Snow Water
Equivalent (SWE) measure. By definition, SWE = volume fraction × layer depth ×
0.917.

where volume fraction and layer depth are both illustratively defined in Figure 1.2

and the constant 0.917 relates to the density of ice.

The utility of a microwave-frequency SAR instrument onboard an aircraft or a

satellite has the potential of measuring the snow characteristics for a large region

at fine resolutions. In order to provide a theoretical basis for characterizing the mi-

crowave remote sensing for a dense medium like snow, a number of electromagnetic

scattering models have been developed over time. Fundamentally, these models can

be divided into two groups. One is to model snow as a continuous random medium

with small perturbations occurring spatially against a uniform background permittiv-

ity [82]. In this approach, a correlation function is used to characterize the spatially-

varying behavior of the permittivity fluctuations [88]. In one such analysis, Ding et

al., [13] introduced a bi-continuous model to capture microstructures within the snow

scattering layer and to numerically solve for the snow scattering properties through

the incorporation of dense medium radiative transfer (DMRT) theory [95, 92].

A second approach is to model a dense medium like snow as a random collection of

discrete scatterers, or particles. In such a model, the conditional probability of finding
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one particle given the location of another is used to characterize the pair-wise correla-

tion between particle locations and is termed the pair distribution function [82]. This

physically-based distribution function is combined with the Quasi-Crystalline Approx-

imation (QCA) and DMRT to solve for the scattering properties analytically [86]. In

such analyses, multi-layer scattering and multiple-sized particle distribution effects

can be incorporated in the model [51, 14, 94].

Existing snow-characteristic retrieval algorithms are primarily based on measure-

ments of SAR backscatter power, where the volume scattering component is charac-

terized by the radiative transfer theory, and the surface scattering part is described

by the Integral Equation Model (IEM) or the Advanced Integral Equation Model

(AIEM) [70, 71, 72, 67, 58]. In the above algorithms, the discrete random medium

representation is used to characterize the snow volume. Since the bi-continuous

model [13] was brought forward, efforts have also been made to combine it with

existing snow retrieval methods that use SAR backscatter power [93].

By contrast, Interferometric SAR (InSAR) measurements have used the complex

correlation to estimate the vertical structure from volume-scattering targets, and in

particular, for vegetation remote sensing using C- and L-band interferometry [80, 81,

57]. The retrieval of snow layer depth for dry snow has also been studied using C-

band and X-band InSAR correlation [49, 89], where the wavelength is much larger

than the snow grain size, and thus the extinction due to multiple-scattering is not

expected to dominate the scattering interaction.

Alternative methods exist as well for measuring snow depth. One example uses

an S-band altimeter whose signal sees both the top and the bottom of the snow layer

(e.g. [41]). Another is a two-frequency system where a combination of low and high

frequency are used to estimate the bottom and top of the snow layer (e.g. see [50] for

one example that used lidar).
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To date, most retrieval algorithms for snow characteristics rely on SAR backscatter

power measurements while only a few are based on InSAR correlation measurements.

For the approaches that use the InSAR correlation, there is lack of a physical scat-

tering model that takes into account the dense medium characteristics of snow. This

work addresses that issue by deriving a physical scattering model that connects In-

SAR correlation measurements to the physical dense-medium characteristics of grain

size, volume fraction and layer depth.

In this work, the discrete random medium representation is used with the Foldy-

Lax multiple scattering equations for modeling a dense medium [82, 26, 16, 35, 36].

In particular, the Foldy-Lax multiple scattering equations are solved using QCA and

the pair distribution function [82] and connecting that to an analytical expression for

the InSAR correlation, as done by [80] for a sparse vegetation medium. It is shown

for the InSAR model derived here, that the InSAR correlation is sensitive to the snow

layer depth (as in [89, 49]) at Ku- to L-band, and to the snow grain size and volume

fraction at Ka-band.

1.2 Single-/repeat-pass InSAR scattering models for the re-

trieval of vegetation characteristics

Since forest structure and aboveground biomass are of great value to terrestrial

ecology, habitat biodiversity, and global carbon storage assessments, it is desired to

monitor and quantify the state of, and change in aboveground biomass and forest

height. Through the sensing of vegetation vertical structure, worldwide, a space-

borne satellite mission such as the once-planned Deformation, Ecosystem Structure

and Dynamics of Ice (DESDynI) mission (with both radar and lidar deployed) from

NASA would have the capability of mapping the global vegetation structural infor-

mation at fine resolutions, which is important to understand and monitor the global

carbon budget and climate change. Since the lidar portion of the mission has been
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Figure 1.3: Illustration of the observing geometry of two future spaceborne InSAR
and lidar missions: NISAR (to be launched in 2020) and GEDI (to be launched in
2019). NISAR has a repeat-pass L-band InSAR deployed revisiting the same ground
area every 12 days with a swath width of 250 km (indicated by the “red” shade
area in the figure). The GEDI lidar is a multi-beam waveform lidar deployed on
the International Space Station with 14 beams that are separated 500 m apart from
each other (illustrated as “green” lines in the figure). Note this figure is a notional
illustration, which does not reflect the exact scale of the spatial dimensions.

cancelled [21], a separate spaceborne lidar mission (Global Ecosystem Dynamics In-

vestigation or GEDI) was recently selected [15], with a separate radar mission formu-

lated known as NISAR [3]. An illustrative overview of two future missions (NISAR [3]

and GEDI [15]) is shown in Figure 1.3. NISAR (or repear-pass InSAR) has complete

spatial coverage while the data interpretation is more difficult leading to a moderate

accuracy in measuring the vertical structure; in comparison, GEDI (or lidar) has a

sparse spatial coverage while the lidar data interpretation is much easier than radar

resulting in a much better vertical confidence. Therefore, it is desired to 1) fully

exploit the capability of repeat-pass InSAR data in measuring the vegetation ver-

tical structure, and 2) combine the complete spatial coverage of repeat-pass InSAR

and precise vertical measurements of lidar so as to generate large-scale (potentially

global-scale) forest structure and disturbance maps.

Multi-baseline, single-pass InSAR and/or Polarimetric InSAR (PolInSAR) corre-

lation observations have been shown to be sensitive to vegetation vertical structure
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and forest height through the use of a physical scattering model [81, 57], often termed

as the Random Volume over Ground (RVoG) model that relates complex correlations

to the vegetation structure and/or height. In repeat-pass SAR interferometry how-

ever, the correlation measurements are additionally effected by changes in the scene

between passes. This causes a temporal decorrelation contribution to the InSAR cross-

correlation [2, 76]. The degree of temporal decorrelation is primarily dependent on

the changes in environmental conditions (e.g. moisture [40, 39], wind [5, 33], tree re-

growth [4], freezing [77]) during the repeat period (referred to as temporal baseline).

The longer the temporal baseline, the more likely the environmental conditions will

have changed. In this work, we will use the term “temporal baseline” to characterize

the possibility of weather changes.

Generally speaking, in repeat-pass InSAR applications, the RVoG model has also

been successfully used to provide estimates of forest heights with airborne temporal

baselines of 40 minutes at both L- and P-band [24]. For moderate temporal baselines

(i.e. less than 15 days), modified versions of the RVoG model have been demonstrated

to account for the effect of ground dielectric change and random motion of the volume

scatterers [40, 56]. Askne et al. [5] and Lavalle et al. [33, 34] have introduced a

coordinate-dependence of the vertical motion profile, which can be incorporated into

the RVoG model characterizing the wind-induced temporal decorrelation.

46 days later 

46 days later 

dielectric fluctuation!

random motion!

(a) 

(b) 

(a) Dielectric Fluctuation

46 days later 

46 days later 

dielectric fluctuation!

random motion!

(a) 

(b) 

(b) Random Motion

Figure 1.4: The temporal decorrelation effects due to dielectric change and random
motion of the volume scatterers within a repeat period of 46 days.
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For spaceborne repeat-pass InSAR systems with large temporal baselines (on the

order of months; at least 46 days for ALOS), the effects of temporal decorrelation

(both dielectric change and random motion; Figure 1.4) often dominate the correla-

tion observations even under the condition of small κz (the interferometric vertical

wavenumber) so that the observed correlation magnitudes are relatively low. Without

a physical scattering model (i.e. a proper modification of the RVoG model), the in-

terpretation and utility of the spaceborne repeat-pass InSAR correlation data, where

large temporal baselines are common, is constrained.

In this work, we use the discrete random medium representation by considering

the forest as a sparse random medium that is comprised with a collection of small

discrete scatterers [80, 81]. The effect of multiple scattering is taken into account

using the Foldy-Lax multiple scattering equations [82, 26, 16, 35, 36]. We make a note

here, although this assumption might not be valid for large dominant scatterers like

tree trunks, it is assumed as such in this work for the sake of simplicity. Moreover,

as will be demonstrated by the simulated and ground validation results that, the

InSAR scattering model derived from this simplified scenario is indeed capable of

characterizing the variation of InSAR correlation measurements with respect to the

medium characteristics of vegetation.

During the repeat period of the SAR platform between passes, the vegetation

components (e.g. leaf, branch, trunk) are expected to move due to wind-induced dis-

placement. At the same time, the scatterers’ dielectric properties (and thus scattering

properties) will fluctuate due to moisture-induced dielectric change. In order to in-

vestigate the temporal decorrelation effects due to dielectric fluctuation and random

motion of the volume scatterers, both the scattering amplitude (as a function of the

dielectric constant) and the spatial position of each scattering element are allowed

to change during the repeat period of the satellite. By following [80] to derive the

single-pass InSAR correlation model, a similar derivation can be performed for the

9



repeat-pass InSAR correlation model. This derived repeat-pass InSAR correlation

model can be represented as a physical augmentation of the random motion model

developed by Askne et al. [5] and Lavalle et al. [33, 34] through the incorporation of

a dielectric fluctuation profile. Since the parameters in the dielectric fluctuation pro-

file are physically defined, this formulation is useful in that it highlights the physical

mechanism for the decorrelation due to dielectric fluctuations in a volume scattering

target and enables a detailed examination of this phenomenon. Once constructed, the

mathematical formulation of this scattering model is cast into a modified version of

the RVoG model such that it can separately take into account dielectric fluctuations

in the ground and volume components.

Using this modified RVoG model, a semi-empirical forest height inversion ap-

proach is then developed. In particular, by assuming (1) the temporal change param-

eters and forest backscatter profile/extinction coefficient follow some mean behavior

across each interferogram; (2) the ground scattering contribution is minimal for cross-

polarization; and (3) the interferometric vertical wavenumber is small, a simplified

inversion approach is developed to link the observed cross-polarized InSAR correlation

magnitude to forest height with the model parameters characterizing the temporal

change effects (both dielectric change and random motion). These model parameters

are thus determined by fitting the InSAR-inverted forest height with ground valida-

tion (such as lidar) height data. The temporal change parameters derived from this

supervised regression are used as the basis for propagating the height estimates to

available interferometric pairs (through the overlaps between adjacent pairs) for a

much larger area, thus creating a large-scale mosaic map of forest height. Further,

an automatic mosaicking algorithm is developed to efficiently perform the mosaicking

task by constructing a matrix formulation of the nonlinear least squares fitting prob-

lem. Also, since repeat-pass InSAR data have a good sensitivity to forest disturbance

(such as selective logging and/or forest degradation), the forest height inversion ap-
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proach developed in this work is also shown to be capable of detecting such forest

disturbance events.

1.3 Organization of this dissertation

This dissertation begins by the introduction (Chapter 1) of the scientific mo-

tivation, relevant previous swork and the significance of this work. In Chapter 2,

adaptions of the well-known InSAR scattering model by [80, 81] are made so as to ac-

commodate the following two scenarios envisioned in the abstract and Chapter 1: 1)

repeat-pass InSAR observation of vegetation and 2) single-pass InSAR observation of

snow and considering its dense medium characteristics, where the theoretical deriva-

tions are demonstrated based on the Foldy-Lax multiple scattering equations and the

Distorted Born Approximation. In Chapter 3, the parameter retrieval approaches are

investigated for inverting snow and vegetation characteristics, respectively. This is

followed by Chapter 4 showing the simulated validation results of the InSAR scat-

tering models along with the parameter retrieval approaches. A large amount of

ground validation results are demonstrated in Chapter 5 for the retrieval of vegeta-

tion characteristics using spaceborne repeat-pass InSAR data. Since the theoretical

electromagnetic modeling involves intensive mathematical derivations, which are not

necessary to understand the major theme of this dissertation, all of the involved

derivations will be demonstrated in Chapter 6. This dissertation will conclude with

Chapter 7 along with four appendices. These appendices are used to provide quali-

tative and/or quantitative proofs for some of the key components of this work, but

are not considered critical in their overall understanding.
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CHAPTER 2

ELECTROMAGNETIC SCATTERING MODELS FOR
INSAR CORRELATION MEASUREMENTS

In this chapter, the InSAR scattering models for random media are derived in a

rigorous and physical manner. First, Section 2.1 introduces a discrete representation

of random media, solves the coherent field and then derives the single-scatterer SAR

backscattered field based on the Foldy-Lax multiple scattering equations and the

Distorted Born Approximation, which establish the foundation of the electromagnetic

scattering in a random volume of discrete scatterers. Next, the derived single-scatterer

SAR backscattered field is applied to the single-pass InSAR observation of snow

(Section 2.2) as well as the repeat-pass InSAR observation of vegetation (Section 2.3),

which are the two original contributions of this dissertation. Although the derivation

in Section 2.1 is partially adapted from the well-known model developed by Treuhaft

et al. for the single-pass InSAR observation of vegetation [80, 81], a different set of

notation and formulation have been accepted in this work so as to create convenient

and consistent derivation, which also conforms with previous work [82, 26, 16, 35, 36].

Another original contribution in the derivation of Section 2.1 is to incorporate the

pair distribution function for characterizing the pairwise interaction between particles,

which is essentially important in a dense medium.

2.1 A discrete representation of random media

Considering a random medium that is comprised with a collection of discrete scat-

terers, the Foldy-Lax multiple scattering equations introduce a pair of equations that
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express the total electric field at any point within the medium in terms of the effective

field (or called exciting field) incident on each scatterer. In particular, the concept of

configuration averaging (i.e. an averaging over both of the scatterer position and its

scattering amplitude) is applied in order to solve the Foldy-Lax multiple scattering

equations. The averaged total field within the random medium is known as the coher-

ent field. Only the scattering of the coherent field by the individual discrete scatterers

is considered in this work, which is equivalent to the Distorted Born Approximation.

Therefore, the backscattered field due to each scatterer at each frequency can be ob-

tained. Moreover, by utilizing the SAR point target response, one can thus derive

the single-scatterer SAR backscattered field, which is the essential component that is

utilized in Section 2.2 and Section 2.3 for further developing the snow and vegetation

InSAR scattering models.

2.1.1 Foldy-Lax multiple scattering formulation

For the sake of simplicity, a half-space random medium scenario is first consid-

ered. In this section, the coherent wave propagation through this half-space medium

is studied. This is equivalent to a refracted wave propagation with an effective prop-

agation constant that is dependent on the medium characteristics. Then, in the

following section, the backscattering of the coherent field due to a finite extent of

discrete scatterers will be treated.

Given an incident wave Einc(R,ω) impinging on the discrete random medium with

N independent scatterers, for each frequency ω, the total electric field at any point

R in the medium can be written as

E(R,ω) = Einc(R,ω) +
N∑
j=1

Eex(Rj, ω)
ejk|R−Rj |

|R−Rj|
fj(R̂1Rj, R̂jR) (2.1)

where k is the free-space wavenumber at frequency ω, E(R,ω) is the total electric

field at an arbitrary point in the random medium, Eex(Rj, ω) is the effective field
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Figure 2.1: Illustration of the multiple scattering effect in the random medium. The
total field inside the random medium is shown (a) without configuration averaging
and (b) with configuration averaging (colored in “red”; termed as the coherent field).
The local Cartesian coordinate system (x, y, z) has its origin referenced to the center
of the resolution cell, R0, which is located on the “air-medium” interface (x-y plane).

(or exciting field) that is applied to the jth scatterer, fj(R̂1Rj, R̂jR) is the scattering

amplitude of the jth scatterer with the incoming direction R̂1Rj, a unit vector from

the antenna position R1 to the scatterer position Rj (when the medium-to-air contrast

is large, the propagation direction of the refracted wave should be considered instead),

and the outgoing direction R̂jR, a unit vector from the scatterer position Rj to R.

Further, the effective field at scatterer j can be attributed to the scattered waves

from all of the other scatterers along with the transmitted wave Einc(Rj, ω), i.e.

Eex(Rj, ω) = Einc(Rj, ω) +
N∑
s=1
s 6=j

Eex(Rs, ω)
ejk|Rs−Rj |

|Rs −Rj|
fs(R̂1Rs, R̂sRj), (2.2)

is a functional equation determining Eex(Rj, ω). Note (2.1) and (2.2) are called the

point target Foldy-Lax multiple scattering equations [82, 26, 16, 35, 36], which serve as

the basis for the following derivation. This configuration is illustrated in Figure 2.1a.
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Note although we refer to the point target Foldy-Lax multiple scattering equations

in this work, a similar derivation can be made by assuming the medium is comprised

with spherical particles with the use of the T-matrix formulation [82]. However,

the InSAR correlation model for this scenario of spherical particles can be shown to

conform with the results derived in this work. It should be noted that we indeed

consider a dense medium consisting of spherical particles while generating the simu-

lation results in Section 4.1. For the sake of convenience and simplicity in the model

derivation, however, we thus consider the point target Foldy-Lax multiple scattering

equations, which is similar to [80, 81]. Another note is, even though some finite-shape

(such as spherical) particles are considered here, they are still considered as electri-

cally small scatterers. In other words, if the scatterers are electrically huge (on the

order of several wavelengths), the electric field at the surface of individual scatterers

will vary from point to point, such that the simple version of Foldy-Lax multiple

scattering equations that are shown here as well as the following effective-medium

assumption will probably be invalid.

2.1.2 Configuration-averaged effective field and coherent field

While solving the Foldy-Lax equations, (2.1) and (2.2), directly is computation-

ally impossible when the number of scatterers is large, the concept of configuration

averaging is introduced. Configuration averaging is averaging over each scatterer’s

position and scattering amplitude. As shown later, the Foldy-Lax equations can be

solved in the sense of configuration averaging. Through taking the configuration av-

erage with respect to the jth scatterer, the Foldy-Lax multiple scattering equations

are rewritten as [82, 26, 16, 35, 36]

〈E(R,ω)〉 = Einc(R,ω) +
N∑
j=1

∫∫
〈Eex(Rj, ω)〉j

ejk|R−Rj |

|R−Rj|
fj

P (Rj)P (fj)dRjdfj (2.3)
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and

〈Eex(Rj, ω)〉j =Einc(Rj, ω) +
N∑
s=1
s 6=j

∫∫
〈Eex(Rs, ω)〉sj

ejk|Rs−Rj |

|Rs −Rj|
fs

P (Rs|Rj)P (fs|fj)dRsdfs, (2.4)

where the scattering amplitudes are assumed independent of the scatterer positions

and the unit-vector arguments in fj and fs are omitted here for conciseness of no-

tation. Here, “〈 〉j” is called the conditional configuration average given scatterer

j is fixed (i.e. the configuration averaging is taken over all of the other scatterers

excluding scatterer j). Similarly, “〈 〉sj” is the conditional configuration average by

fixing both scatterer s and scatterer j. P (Rj), P (fj) are respectively the probability

density function for the scatterer to have position Rj and scattering amplitude fj,

while P (Rs|Rj) and P (fs|fj) are the conditional probability density functions for the

configuration of scatterer s given that of scatterer j.

Note the quantity 〈E(R,ω)〉 is defined as the coherent field since the total electric

field can be decomposed as E(R,ω) = 〈E(R,ω)〉+ ε(R,ω) with ε(R,ω) denoting the

incoherent field. In this work along with [80, 81], only the scattering of coherent fields

is considered while ignoring the incoherent counterparts (or equivalently using the

Distorted Born Approximation as detailed in Section 2.1.3). This is convenient since

firstly the coherent field is expected to dominate; secondly, the coherent field can be

calculated by using the Foldy-Lax multiple scattering equations with the result being

a refracted field propagating inside a random medium with an effective permittivity.

In contrast, the computation of the incoherent field is more difficult, and implies

a concise analytical expression of the InSAR correlation (as will be presented later

in this work) might be prohibited. However, if sufficient accuracy is desired, the

incoherent terms must be incorporated to the models presented in the current work.
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From (2.4), it can be seen that the conditional average with one scatterer fixed,

depends on the conditional average where two scatterers are fixed. It can be shown

that after taking the conditional average of (2.2) with any number of scatterers fixed,

that the right-hand side of the resulting equation can always be written as a condi-

tional average with one more scatterer fixed than the left-hand side. This successive

set of conditional averages creates a set of hierarchical equations that becomes as

large as the number of scatterers in the medium. Instead of solving for the set of

equations which is computationally impossible when the number of scatterers N is

large, the Quasi-Crystalline Approximation (QCA) [36, 82] is used to truncate the

series so that a reasonable solution of 〈Eex(Rj, ω)〉j can be obtained.

Using the Quasi-Crystalline Approximation, an approximation is made such that

〈Eex(Rs, ω)〉sj ≈ 〈Eex(Rs, ω)〉s, (2.5)

which has the physical interpretation that the electric field at particle s, when the

location and scattering amplitudes of particles s and j are known, is equivalent to

the electric field at particle s when only the location and scattering amplitude of

particle s are known. This approximation is suitable for dense media, with a dense

medium defined here as one where it is important to take into account multi-particle

scattering interactions. In the sparse case, QCA reduces to the well-known Foldy’s

approximation [82], where

〈Eex(Rs, ω)〉s ≈ 〈E(Rs, ω)〉, (2.6)

which is simply the coherent field.

To implement the Quasi-Crystalline Approximation, we define the average scat-

tering amplitude, f̃s as
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∫
fsP (fs|fj)dfs = f̃s (2.7)

and the pair distribution function, g(r), of one scatterer’s position given the position

of another, as

P (Rs|Rj) =
g(|Rs −Rj|)

V
, (2.8)

where V is the scattering volume within which g(r) is considered stationary such

that only the relative distance between two scatterers, r = |Rs − Rj|, matters in the

formulation. We can then rewrite (2.4) as

〈Eex(Rj, ω)〉j =Einc(Rj, ω) + τ0

∫
〈Eex(Rs, ω)〉sg(|Rs −Rj|)

ejk|Rs−Rj |

|Rs −Rj|
f̃sdRs, (2.9)

where τ0 = N
V

is the particle number density (assumed constant throughout the

medium).

In the above, the pair distribution function, g(r) can take on a number of func-

tional forms. One of these is the Percus-Yevick pair distribution function (illustrated

in Figure 2.2; [59]), and is appropriate for liquid media where particles in close proxim-

ity to one another cause a radially symmetric ripple in the pair distribution function.

These ripples diminish with distance, and their magnitude and effect are dependent

on the scatterer size, l, and the volume fraction, fv, of scatterers within the volume.

Here, fv is defined as the ratio of the volume occupied by the scatterers to the total

volume of the dense medium, where 0 ≤ fv ≤ 1. For conciseness, the Percus-Yevick

pair distribution function is written as

g(r) = g(r; l, fv). (2.10)

where the scatterer size, l, and volume fraction, fv, are omitted for conciseness.
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Figure 2.2: Different forms of the pair distribution function: Percus-Yevick function
with volume fraction of 0.2 (denoted as “PY (fv = 0.2)”), Percus-Yevick function
with volume fraction of 0.4 (denoted as “PY (fv = 0.4)”), Hole-Correction function
(denoted as “HC”), and the simplified scenario where the pair distribution function
is ignored (denoted as “NO”). The horizontal axis represents the normalized distance
r/l, where l is the grain size.

Although the Percus-Yevick function is obtained for a liquid-like medium, and

more complicated functional forms are expected for dry snow, the Percus-Yevick

function is useful to demonstrate the variability of InSAR correlation measurements

with respect to the dense-medium parameters (such as grain size and volume frac-

tion). It can be seen from Figure 2.2 that the Percus-Yevick function has oscillation

near r/l = 1 with the degree of oscillation dependent on the volume fraction of the

dense medium. For a sparse medium case with small volume fraction, it becomes in-

distinguishable with the Hole-Correction formula. The Hole-Correction formula [82]

is appropriate for an ideal gas where the physical dimensions of one particle exclude

all particles from within its boundary.

Note that in the simplest case where the particle is considered to be infinitely

small or a sparse concentration of discrete scatterers is considered (e.g. gas [82],

19



vegetation [80, 81]), the pair distribution function becomes g(r) = 1 and (2.9) reduces

to Foldy’s approximation [82] as expected. In this extreme case, the InSAR scattering

model reduces to the one presented in [80]. For dense media such as snow however,

the pair distribution function will have an effect on the InSAR correlation and for

this reason has been included both in the theoretical models and the simulated results

(Section 4.1).

The truncated conditional average in (2.9) was derived from the Foldy-Lax equa-

tion, (2.2), and the Quasi-Crystalline Approximation, (2.5). The solution of (2.9)

provides an estimation for the effective propagation constant, K, in the scattering

medium. For a dense random medium such as snow, the constant should take into

account the dielectric and scattering effects within the medium. This is accomplished

by enforcing energy conservation for fields within the medium and is solved numeri-

cally via the generalized Lorentz-Lorenz law, as discussed in [82]. Once determined,

K is used to model both the effects of refraction and signal extinction in the volume-

scattering medium.

In order to implement the full scattering model by taking into account the ge-

ometry of the observing platform, a local Cartesian coordinate system (x, y, z) is

constructed with an origin referenced to the center of the resolution cell, R0, located

at the air-medium interface (denoted by the x-y plane) as illustrated in Figure 2.1.

Following [82] and assuming that the incident field on the half-space dense ran-

dom medium is a plane wave ejk(y sin θi−z cos θi) with incidence angle, θi, and free-space

wavenumber, k, (2.9) can thus be solved with the discrete random medium charac-

terized, on average, as a medium with effective propagation constant K = KR + jKI .

Here, K is determined via (2.9) and depends on the medium’s bulk characteristics

of number density, pair distribution function and mean-scattering amplitude. These

bulk characteristics themselves depend on the physical characteristics of the medium’s

constituents, parameters such as the scatterer size, l, and volume fraction, fv. In
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short, the medium’s dielectric properties are dependent on the physical properties of

the scatterers, and the effective permittivity is written as a function of these charac-

teristics, as in

K = K(l, fv). (2.11)

The relationship between the physical characteristics of the medium and the complex

permittivity in (2.11) is important in that it is through the estimation of the effec-

tive permittivity that these characteristics can be inferred, and that the snow-pack

parameters of grain size, density and snow water equivalent thus determined.

By utilizing a series of mathematical manipulation (see Section 6.1), we have the

configuration-averaged effective field given by

〈Eex(Rj, ω)〉j = aex
ejk|R1−R0|

|R1 −R0|
eKIzj/ cos θtejk(yj sin θi−nzj cos θt), (2.12)

where aex is the amplitude factor introduced by the air-medium interface, R1 is the

antenna position, R0 represents the center of the resolution cell, n is the index of

refraction, and θt is the refraction angle, which satisfies Snell’s law

n =
KR

k
=

sin θi
sin θt

. (2.13)

Substituting (2.12) into (2.3) with a little more mathematical derivation (see Sec-

tion 6.2), the coherent field at an arbitrary point R in the random medium is thus

given by

〈E(R,ω)〉 = a
ejk|R1−R0|

|R1 −R0|
eKIz/ cos θtejk(y sin θi−nz cos θt), (2.14)

where a is the transmission coefficient of the air-medium interface. This coherent

field is also illustrated in Figure 2.1b.
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2.1.3 Backscattering of the coherent field from a single scatterer: Dis-

torted Born Approximation

Since we have obtained the coherent field inside the discrete random medium, let

us now consider the backscattered field from a finite extent of volume scatterers. In

this work, only the backscattering of the coherent field is considered, which is equiv-

alent to the Distorted Born Approximation [82], with the mathematical proof shown

in Section 6.3. Consider a finite extent of discrete random medium that is illustrated

in Figure 2.3. From the Distorted Born Approximation, the total electric field inci-

dent on scatterer j is assumed equal to the coherent field at Rj, i.e., 〈E(Rj, ω)〉, so

the backscattered field at Rj is 〈E(Rj, ω)〉 multiplied by fj. Due to reciprocity, this

backscattered field will exactly reverse the same path through the medium back to

the antenna position R1 just as the coherent field propagates through the interven-

ing medium to reach the scatterer. Therefore, the backscattered field at R1 due to

scatterer j is given by

E(R1, ω; j) = 〈E(Rj, ω)〉 · fj · 〈E(Rj, ω)〉, (2.15)

which is only a function of scatterer j’s configuration and thus does not vary with

any other scatterer’s configuration. By fixing scatterer j’s configuration (i.e., both

Rj and fj are given), E(R1, ω; j) can be considered a constant, and the configuration-

averaged backscattered field is thus written as (by holding scatterer j fixed)

〈E(R1, ω; j)〉j = E(R1, ω; j)

= 〈E(Rj, ω)〉 · fj · 〈E(Rj, ω)〉, (2.16)

Now that the coherent field that is incident on scatterer j is known, (2.14) is

substituted into (2.16), resulting in the backscattered field from the contribution of

scatterer j only, i.e.
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Figure 2.3: Illustration of the backscattering of the coherent field through using the
Distorted Born Approximation (DBA). The incident field Einc penetrates through the
slab of discrete scatterers (between the “black” and “red” dashed lines) and hits the
scatterer with E(Rj, ω), where DBA approximates E(Rj, ω) with the coherent com-
ponent 〈E(Rj, ω)〉. The coherent field incident on the scatterer is then backscattered
with the scattering amplitude fj. By reversing the same path through the interven-
ing medium back to the radar receiver, the backscattered field due to that particular
scatterer is thus 〈E(Rj, ω)〉 · fj · 〈E(Rj, ω)〉.

〈E(R1, ω; j)〉j =a2fj
ej2k|R1−R0|

|R1 −R0|2
e2KIzj/ cos θtej2k(yj sin θi−nzj cos θt)

=A1fje
2KIzj/ cos θtej2kr1j (2.17)

where

A1 =
a2

|R1 −R0|2
, (2.18)

and

r1j = |R1 −R0|+ yj sin θi − n cos θtzj. (2.19)
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Although the field transmission coefficient of the air-to-medium interface is a little

different from that of the medium-to-air interface, we assume they are the same in

this work (denoted by a single variable a) only for simplicity and conciseness of nota-

tion. As shown later, this treatment does not affect the following model derivations

and analysis since the constant factor(s) will be cancelled out when calculating the

normalized InSAR correlation coefficient defined as in (1.1).

So far, we have obtained the backscattered field due to a single scatterer at a

particular frequency. Next, this single-tone expression will be summed up in the

frequency domain to derive the single-scatterer SAR backscattered field.

Here, a useful property of the backscattered coherent field can be obtained as below

through using the Distorted Born Approximation. As shown in (2.15), once scatterer

j’s configuration is fixed, the backscattered coherent field is considered a constant.

Therefore, a similar interpretation can be made for two independent scatterers, e.g.,

scatterer j and scatterer k, that are separately observed by two antennas at R1 and

R2, such that the following relationship can be obtained,

〈E(R1, ω; j)E∗(R2, ω; k)〉jk =
〈
〈E(R1, ω; j)〉j〈E∗(R2, ω; k)〉k

〉
jk

= 〈E(R1, ω; j)〉j〈E∗(R2, ω; k)〉k. (2.20)

2.1.4 Single-scatterer SAR backscattered field

Once the backscattered coherent field due to scatterer j is determined from (2.17)

for each frequency ω, it is possible to determine the average reflected field from this

scatterer through SAR processing. Following [80, 11], the conditional average of the

SAR backscattered field from scatterer j is written as

〈E(R1; j)〉j = A1fje
2KIzj/ cos θt1ej2k0r1jWr(r10 − r1j)Wa(a0 − aj), (2.21)

where
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aj = a0 + xj,

r10 = |R1 −R0|,

r1j = |R1 −R0|+ yj sin θi1 − n cos θt1zj. (2.22)

In the above, r1j and aj are the slant range and azimuth coordinates of scatterer j

as seen from an antenna at R1, and r10 and a0 are the coordinates for the center of

the resolution cell at R0. Further, the weighting functions of Wr and Wa refer to

the slant range and azimuth resolution functions, both of which are band-limited and

thus have a “sinc-like” functional form. In (2.21), k0 is the free-space wavenumber

for frequency ω0, where ω0 is the center frequency of the radar, and θi1 and θt1 are

the incidence and refraction angles as seen from R1.

Note both r10 and r1j represent the equivalent path lengths as if the waves only

propagated in free space. This means: in the air, the equivalent path length is equal

to the physical path length, while inside the random medium, it refers to the physical

path length multiplied by the refractive index. This definition of the equivalent path

length is the well known Optical Path Length and is used in (2.21) because whether

or not the backscattered signal travels through the air or the medium, the SAR

processing cannot distinguish between the two and will always focus the collected

observations according to, k0, the free-space wavenumber at the center frequency of

the SAR receiver. Further, since each scatterer is focused to its zero-doppler plane, r10

and r1j are only calculated in the cross-track direction (i.e. with y- and z- dependence

only).

After substituting the above relations into (2.21) and rearranging terms in Carte-

sian coordinates, we obtain

〈E(R1; j)〉j =A1fje
2KIzj/ cos θt1Wa(xj)Wr (yj sin θi1 − n cos θt1zj)

ejk02[|R1−R0|+yj sin θi1−n cos θt1zj], (2.23)
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To determine the interferometric correlation, we introduce a second antenna at R2,

and assuming the ping-pong observing mode, where both antennas are allowed to

alternately transmit (equivalent to repeat-pass interferometry), the single-scatterer

field from scatterer k observed by the second antenna is given as

〈E(R2; k)〉k =A2fke
2KIzk/ cos θt2Wa(xk)Wr (yk sin θi2 − n cos θt2zk)

ejk02[|R2−R0|+yk sin θi2−n cos θt2zk], (2.24)

where A2 = a2

|R2−R0|2
, and θi2 , θt2 are the incidence and refraction angles as seen from

the second antenna.

Similar to the property (2.20) derived from the Distorted Born Approximation,

and by using the relationship between (2.17) and (2.21), another useful property can

be achieved for the single-scatterer SAR backscattered field, i.e.,

〈E(R1; j)E∗(R2; k)〉jk =
〈
〈E(R1; j)〉j〈E∗(R2; k)〉k

〉
jk

= 〈E(R1; j)〉j〈E∗(R2; k)〉k, (2.25)

which will be used in the following sections for deriving the InSAR correlation models.

2.2 Single-pass InSAR scattering model for snow

In Section 2.1, the single-scatterer SAR backscattered field was derived. Using this

expression for a pair of antennas with the random medium characteristics being the

same, the single-pass InSAR correlation is determined from the cross-product between

two single-scatterer SAR backscattered fields. While the InSAR correlation coefficient

after normalization is an important InSAR metric, it can be further decomposed

so that the volume correlation component can be obtained for the future use of

retrieving snow characteristics. Unlike the case where single-pass InSAR observation
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of vegetation was studied and the effect of pair distribution function was ignored [80,

81], the Percus-Yevick function as mentioned in Section 2.1.2 is exploited for a dense

medium like snow so that the effective propagation constant of the dense medium can

be calculated more precisely.

2.2.1 Model formulation

For a dense discrete random medium with N independent scatterers in a resolution

cell, the total electric field that is received by the SAR antenna at R1 is a superposition

of the single-scatterer backscattered electric fields, as in

E(R1) =
N∑
j=1

E(R1; j), (2.26)

where E(R1; j) is the SAR received electric field due to a single scatterer, j. It

has been shown in (2.23) that the single scatterer field, E(R1; j), depends on its

backscattering amplitude, fj, and its position Rj.

Since we are mostly interested in the InSAR cross-correlation, using (2.26) for a

pair of antennas at the two ends of the baseline, we have

〈E(R1)E∗(R2)〉

=
N∑
j=1

N∑
k=1

〈E(R1; j)E∗(R2; k)〉

=
∑
j 6=k

∫∫∫∫
〈E(R1; j)E∗(R2; k)〉jkP (Rj, Rk, fj, fk)dRjdfjdRkdfk

+
∑
j=k

∫∫
〈E(R1; j)E∗(R2; j)〉jP (Rj, fj)dRjdfj

=
∑
j 6=k

∫∫∫∫
〈E(R1; j)E∗(R2; k)〉jkP (Rj, Rk)P (fj, fk|Rj, Rk)dRjdfjdRkdfk

+
∑
j=k

∫∫
〈E(R1; j)E∗(R2; j)〉jP (Rj)P (fj|Rj)dRjdfj, (2.27)
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where P (Rj, Rk, fj, fk) and P (Rj, fj) are the joint probability density function for the

scatterers’ configuration, P (Rj, Rk) and P (Rj) are the probability density function

for the scatterers’ position, and P (fj, fk|Rj, Rk) and P (fj|Rj) are the conditional

probability density function for the scattering amplitude given the scatterers’ position.

Substituting (2.25) into (2.27) gives

〈E(R1)E∗(R2)〉

=
∑
j 6=k

∫∫∫∫
〈E(R1; j)〉j〈E∗(R2; k)〉kP (Rj, Rk)P (fj, fk|Rj, Rk)

dRjdfjdRkdfk +
∑
j=k

∫∫
〈E(R1; j)〉j〈E∗(R2; j)〉jP (Rj)P (fj|Rj)dRjdfj,

(2.28)

It is apparent that in order to solve for the above cross-correlation, one has to know the

configuration average of the single-scatterer SAR backscattered field, i.e. 〈E(R1; j)〉j
and 〈E(R2; k)〉k, which have already been shown as (2.23) and (2.24) in Section 2.1.4.

2.2.2 Single-pass InSAR correlation

Before substituting (2.23) and (2.24) into (2.28) to solve for the single-pass InSAR

correlation, (2.28) can be simplified by eliminating the terms with j 6= k [80]. This

is because the phase in (2.23) depends on the electrical path from Rj to R1, while

the phase in (2.24) relies on the electrical path from Rk to R2. Since it is assumed

that individual discrete scatterers are independent of each other, the phase difference

of (2.23) and (2.24) will follow a uniform distribution and the double integral with

respect to the spatial coordinates in (2.28) will vanish for the case j 6= k. Similarly, the

double integral with respect to the scattering amplitude in (2.28) will also disappear

for j 6= k. Therefore, only the configuration integrals with j = k remain, and (2.28)

can be rewritten as
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〈E(R1)E∗(R2)〉 =
N∑
j=1

∫∫
〈E(R1; j)〉j〈E∗(R2; j)〉jP (Rj)P (fj|Rj)dRjdfj

=

∫∫
τ0〈E(R1; j)〉j〈E∗(R2; j)〉jP (fj|Rj)dRjdfj, (2.29)

where τ0 = N
V

is the average number density defined in (2.9). Through substitut-

ing (2.23) and (2.24) and separating the yj- and zj-dependent terms as detailed in

Section 6.4, the interferometric correlation is

〈E(R1)E∗(R2)〉 =A1A2e
jk02(|R1−R0|−|R2−R0|) ·

∫
|Wa(xj)|2dxj·∫

|Wr (yj sin θi)|2 ejκyyjdyj ·
∫
τ0σ(zj)e

( 2ke
cos θt

+jκz)zjdzj, (2.30)

where θi =
θi1+θi2

2
, θt =

θt1+θt2
2

. Further,

σ(zj) =

∫
|fj|2P (fj|zj)dfj, (2.31)

is the vertical profile of the averaged backscatter intensity that here is considered

constant in the z-direction such that σ(zj) = σ0, and

ke = 2KI (2.32)

is the extinction coefficient that is dependent on the imaginary component of the

effective permittivity. The interferometric vertical wavenumber, κz in (2.30) relates

the phase of the interferometric correlation for a dense medium to the configurational

geometry of the interferometer, and can be written as [89]

κz = 2k0(sin θi1 − sin θi2)
n cos θt
sin θi

+ 2k0(n cos θt2 − n cos θt1) (2.33)

and

κy = 2k0(sin θi1 − sin θi2) (2.34)
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is the interferometric ground-range wavenumber from [96].

Using Snell’s law, (2.13), and trigonometric identities, it can be shown that (see

Section 6.5)

κz = κ̃z
n cos θi
cos θt

(2.35)

where

κ̃z =
4πB⊥
λR sin θi

(2.36)

is the conventional form of the interferometric wavenumber given in [64, 49]. In (2.36),

B⊥ is the perpendicular baseline, λ is the wavelength, R is the slant range from the

radar to the center of the resolution cell. Further, following this same methodology,

it can be shown that the interferometric ground-range wavenumber can be written as

κy =
4πB⊥
λR

cos θi. (2.37)

In the above, when modeling sparse concentrations of volume scatterers (e.g. veg-

etation), the effect of refraction is not strong enough to bias κz from κ̃z since n ≈ 1

and θt ≈ θi [23, 80]. However, for dense media like snow, this effect is significant and

the use of (2.35) is warranted.

After dropping the subscript j for conciseness, and normalization of the correla-

tion by the geometric mean of the reflected power, the complex InSAR correlation

coefficient conforms to the expressionns given by [80, 96, 89] where

γ =
〈E(R1)E∗(R2)〉√
〈|E(R1)|2〉〈|E(R2)|2〉

= ejk02(|R1−R0|−|R2−R0|)
∫
|Wr (y sin θi)|2 ejκyydy∫
|Wr (y sin θi)|2 dy

∫
τ0σ0e

( 2ke
cos θt

+jκz)z
dz∫

τ0σ0e
2ke

cos θt
z
dz

.

(2.38)

The physical interpretation of this equation is that first term is the interferometric

phase at the center of the resolution cell, the second describes the baseline decorre-
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lation (that can be calibrated by common-band filtering [19]), and the last term is

the desired volumetric correlation that can be used for retrieving the vertical char-

acteristics of the medium. The thermal noise decorrelation, which would show up as

additional terms to the received electric fields at R1 and R2 is not included in (2.38),

and can be corrected separately, as in [96].

These results are derived for the ping-pong mode of SAR interferometry. In the

case where a single antenna is used for transmit and two antennas are used for receive

(often termed the standard mode of InSAR), similar proofs apply. These results are

given in Section 6.6.

Also, note that in (2.38), both the number density and the backscatter intensity

are considered constant in the vertical direction. These constants are not removed

from (2.38) however because this formulation enables a convenient generalization of

the InSAR correlation model should those variables depend on z. For example, if the

dense medium is layered, the effective propagation constant K (and thus ke and κz)

will also be z-dependent, and the estimation of the layer parameters would require

an observing configuration similar to multibaseline interferometry (e.g. [80]) which is

beyond the scope of this work.

2.2.3 Simplified dense-medium InSAR correlation model

2.2.3.1 Connection of the InSAR volumetric correlation to the dense

medium parameters

From (2.38), the y-integration can be computed by using known forms of Wr or

offsetting the signal center-frequency during the processing step [19], and hence the

effects of baseline decorrelation removed. The remaining correlation signal is the

InSAR volumetric correlation (denoted as γv) and is written as
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γv = ejφ0
∫
τ0σ0e

( 2ke
cos θt

+jκz)z
dz∫

τ0σ0e
2ke

cos θt
z
dz

= ejφ0

∫ 0

−d τ0σ0e
( 2ke
cos θt

+jκz)z
dz∫ 0

−d τ0σ0e
2ke

cos θt
z
dz

, (2.39)

where the volume layer depth, d, is explicitly specified, φ0 = 2k0

(
|R1 −R0| − |R2 −R0|

)
is the interferometric phase at the center of the resolution cell R0. Substitutions are

made to connect the extinction coefficient, ke, to the imaginary part of the effective

permittivity, KI ,

2ke
cos θt

=
4KI

cos θt
=

4KI√
1− k20 sin2 θi

K2
R

, (2.40)

as well as to connect the interferometric vertical wavenumber for a dense medium,

κz, to the real part of the effective permittivity, KR, as in

κz = κ̃z
n cos θi
cos θt

= κ̃z

KR
k0

cos θi√
1− k20 sin2 θi

K2
R

. (2.41)

From (2.40) and (2.41), it can be seen that the unknown parameters have been

translated into the real and imaginary parts (i.e. KR and KI) of the dense-medium

effective propagation constant along with the InSAR instrumental parameters (e.g. θi

and κ̃z). Since the instrumental parameters are already known, and also the effective

propagation constant K relates to the medium characteristics (e.g. scatterer size l

and volume fraction fv) as in (2.11), a relationship can thus be established between

the InSAR volumetric correlation measurements and the desired dense medium char-

acteristics via the effective propagation constant K. A flowchart illustration that

connects the dense-medium parameters (grain size, volume fraction, layer depth) to

the InSAR volumetric correlation is shown in Figure 2.4.
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Figure 2.4: Flow chart illustration that connects the dense-medium parameters (grain
size, volume fraction, layer depth) to the InSAR volumetric correlation. The dashed
rectangular window indicates the implicit connection of grain size and volume frac-
tion to the effective propagation constant as modeled by (2.11). The sets of arrows
following the dashed window indicate that the inputs and outputs are related through
solving (2.9) and (2.39), respectively.

Compared to previous work on snow InSAR models [89, 49], the InSAR volumetric

correlation model as expressed in (2.39) explicitly have both the extinction coefficient

and the interferometric vertical wavenumber connected to the real and imaginary

parts of the effective propagation constant. This constant in turn is shown to depend

on the dense medium parameters (such as grain size and volume fraction) as modeled

by (2.11).

2.2.3.2 Random Volume (RV) model of the dense medium InSAR volu-

metric correlation

In order to study the sensitivity of InSAR correlation measurements to the phys-

ical parameters that describe a dense medium, the InSAR correlation model for the

random volume (RV) without a contribution from ground scattering is first consid-

ered. Such a model is appropriate for a dense-medium half-space, or one where the
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surface scattering from the ground interface is small compared to the volume above it.

In this formulation, after canceling out the constant number density and backscatter

intensity from (2.39), we have

γv = ejφ0

∫ 0

−d e
( 2ke
cos θt

+jκz)z
dz∫ 0

−d e
2ke

cos θt
z
dz

= ejφ0 ·
2ke

cos θt
2ke

cos θt
+ jκz

· 1− e−( 2ke
cos θt

+jκz)d

1− e−
2ke

cos θt
d

. (2.42)

Combining (2.42) with (2.40) and (2.41), where the real and imaginary parts of the

effective propagation constant are known as functions of the scatterer size and the

volume fraction, the random volume model establishes a connection between the com-

plex InSAR volumetric correlation measurement γv and the parameters that describe

the medium characteristics (volume depth d, scatterer size l, volume fraction fv). If

we assume that the interferometric phase φ0 is referenced to a fixed point R0, and

thus does not vary with the parameters of the random volume, the functional rela-

tionship between the interferometric correlation and the dense medium parameters

can be written as

γv = M




l

fv

d


 . (2.43)

The model dependence on these three parameters is illustrated as Figure 2.5, where

each of the three dense medium parameters is allowed to vary while keeping constant

the other two parameters.
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Figure 2.5: Illustration of the Random Volume (RV) model as a function of the snow
volume parameters, i.e. grain size (a), volume fraction (b), and layer depth (c). Each
parameter is investigated by fixing the other two parameters constant. φ0 denotes
the interferometric phase referenced to the center of the resolution cell R0.

2.2.3.3 Random Volume over Ground (RVoG) model of the dense medium

InSAR volumetric correlation

The inclusion of a more physical model that incorporates a return from the ground

surface increases the number of parameters, and specifically includes a term that

characterizes the ratio of scattered power from the ground to the total volume. Such

a model is termed the random volume over ground (RVoG) model (similar to [81, 57]

for a sparse medium like vegetation).

This model is developed through a change of variables z′ = z + d that shifts the

reference point from the top of the dense medium, to the bottom. Hence, (2.39) can

be rewritten as

γv = ejφ0e−jκzd
∫ d

0
τ0σ0e

2ke
cos θt

(z′−d)
ejκzz

′
dz′∫ d

0
τ0σ0e

2ke
cos θt

(z′−d)
dz′

. (2.44)
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Given the ground surface at z′ = 0, the two-layer backscatter intensity profile can be

defined as

τ(z′)σ(z′) = τ0σ0 + σGδ(z
′), (2.45)

where σG represents the reflected power from the ground (here, the term that would

be related to ground scatterer density, τG, is removed), and δ(z′) is a Dirac delta

function at z′ = 0.

By replacing τ0σ0 with τ(z′)σ(z′) as defined in (2.45), (2.44) can be rewritten as

γv =ejφ0e−jκzd
∫ d

0
τ0σ0e

2ke
cos θt

(z′−d)+jκzz′dz′ + σGe
− 2ke

cos θt
d∫ d

0
τ0σ0e

2ke
cos θt

(z′−d)
dz′ + σGe

− 2ke
cos θt

d

=ejφg
γvol +m

1 +m
, (2.46)

where

φg = φ0 − κzd, (2.47)

is the interferometric phase referenced to the ground surface (and thus depends on

the ground topographic height, denoted as h),

γvol =

∫ d
0
τ0σ0e

2ke
cos θt

(z′−d)
ejκzz

′
dz′∫ d

0
τ0σ0e

2ke
cos θt

(z′−d)
dz′

(2.48)

is the InSAR volumetric correlation component that is due to the dense medium

(volume scatterers) only, and

m =
σGe

− 2ke
cos θt

d∫ d
0
τ0σ0e

2ke
cos θt

(z′−d)
dz′

(2.49)
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is the “ground-to-volume” ratio. Further, by canceling terms for the constant number

density and backscatter intensity for volume scatterers as in (2.42), (2.48) can be

written as

γvol =
2ke

cos θt
2ke

cos θt
+ jκz

· e
( 2ke
cos θt

+κz)d − 1

e
2ke

cos θt
d − 1

, (2.50)

Similar to the Random Volume model (RV), the Random Volume over Ground

model connects the complex InSAR volumetric correlation measurement γv to the

three dense medium parameters (volume depth d, scatterer size l, volume fraction fv)

and two ground parameters, which are ground interferometric phase φg (or equiva-

lently a function of the ground topographic height, h) and ground-to-volume ratio m,

i.e.,

γv = M





l

fv

d

h

m




. (2.51)

This is illustrated in Figure 2.6, where the reference interferometric phase, φ0 and the

ground interferometric phase, φg are indicated.

2.3 Repeat-pass InSAR scattering model for vegetation

Similar to Section 2.2, by using the expression of the single-scatterer SAR backscat-

tered field for a pair of antennas allowing the random medium characteristics (both

scatterers’ dielectric property and spatial position) to change between overpasses,

one can also determine the repeat-pass InSAR correlation from the cross-product

between two single-scatterer SAR backscattered fields. The normalized repeat-pass
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Figure 2.6: Illustration of the Random Volume over Ground (RVoG) model. The
topographic height of the underlying ground surface and the top of the medium are
indicated as h and (h+ d), respectively. Within a resolution cell that is marked by a
pair of dashed lines, the interferometric phase referenced to the top of the medium at
R0 is denoted as φ0, while the interferometric phase referenced to the bottom (where
the ground resides) is denoted by φg.

InSAR correlation coefficient can be further decomposed so that the coupled corre-

lation component due to volume scattering and temporal change can be obtained for

the future use of retrieving vegetation characteristics.

2.3.1 Model formulation

Using (2.26) to represent two SAR observations from a repeat-pass InSAR system,

and allowing each scatterer to have a change in the scattering amplitude and its

position between overpasses, the repeat-pass InSAR cross-correlation can be written

as
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〈E(R1)E∗(R2)〉 =
N∑
j=1

N∑
k=1

〈E(R1; j)E∗(R2; k)〉

=
N∑
j=1

N∑
k=1

∫∫∫∫
〈E(R1; j)E∗(R2; k)〉jk

P (Rj
(1)
, Rk

(2)
, f

(1)
j , f

(2)
k )dRj

(1)
dRk

(2)
df

(1)
j df

(2)
k

=
N∑
j=1

N∑
k=1

∫∫∫∫
〈E(R1; j)E∗(R2; k)〉jkP (Rj

(1)
, Rk

(2)
)

P (f
(1)
j , f

(2)
k |Rj

(1)
, Rk

(2)
)dRj

(1)
dRk

(2)
df

(1)
j df

(2)
k , (2.52)

where the superscripts “(i)” (i = 1, 2) are used to distinguish the position and the

scattering amplitude of each scatterer in the ith pass of the SAR platform. The

random motion of the volume scatterers is embodied in P (Rj
(1)
, Rk

(2)
), which is the

joint probability density function for the scatterer j at Rj
(1)

during the 1st pass and

scatterer k at Rk
(2)

during the 2nd pass of the interferometer. The effect of dielectric

fluctuations in the scatterers is captured by the joint probability density function

for the scattering amplitude f
(1)
j of scatterer j at Rj

(1)
during the 1st pass and the

scattering amplitude f
(2)
k of scatterer k at Rk

(2)
during the 2nd pass (both f

(1)
j and

f
(2)
k depend on the dielectric constants), which is given by P (f

(1)
j , f

(2)
k |Rj

(1)
, Rk

(2)
).

The temporal change effects of volume scatterers in (2.52) are illustrated in Fig-

ure 2.7. Note that Figure 2.7 is a notional illustration. Volume scatterers are assumed

randomly oriented with various polarization signatures in each pass and the position

as well as orientation can change between passes.

Substituting (2.25) into (2.52) gives

〈E(R1)E∗(R2)〉 =
N∑
j=1

N∑
k=1

∫∫∫∫
〈E(R1; j)〉j〈E∗(R2; k)〉kP (Rj

(1)
, Rk

(2)
)

P (f
(1)
j , f

(2)
k |Rj

(1)
, Rk

(2)
)dRj

(1)
dRk

(2)
df

(1)
j df

(2)
k . (2.53)
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Figure 2.7: Illustration of the temporal change effects (dielectric fluctuation and/or
random motion) associated with each scattering element (illustrated as a cylinder
with the “black dot” being its position in each pass).

In order to model the cross-correlation, it is important to know the SAR backscattered

field contributed from individual scatterers between overpasses, i.e. 〈E(R1; j)〉j and

〈E(R2; k)〉k.

By using (2.23), the single-scatterer SAR backscattered field due to scatterer j

from the 1st pass can be rewritten as

〈E(R1; j)〉j = A1f
(1)
j X1(Rj

(1)
) (2.54)

with
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X1(Rj
(1)

) =e2K
(1)
I z

(1)
j / cos θt1Wa(x

(1)
j )Wr

(
y

(1)
j sin θi1 − n cos θt1z

(1)
j

)
e
j2k0

(
|R1−R0|+y(1)j sin θi1−n cos θt1z

(1)
j

)
. (2.55)

where the subscript “1” is used to describe the incidence and refraction angles during

the 1st pass while the superscript “(1)” is also used to allow for changes of the scat-

terer’s spatial coordinates and scattering amplitude from pass to pass. The geometric

relationship is illustrated in Figure 2.8.

z

0

x

yR0

R1

R2

θi1

θt1
Rj

(1)yj
(1) sinθt1
−zj

(1) cosθt1

−zj
(1) cosθt1

R1 − R0

Figure 2.8: Viewing geometry of the repeat-pass InSAR observation. The center of
the resolution cell, R0, is marked as a “red” dot, while the jth scatterer is shown

in “blue”. The spatial coordinates of the scatterer at Rj
(1)

are represented in its

local Cartesian coordinates (x
(1)
j , y

(1)
j , z

(1)
j ) that is referenced at R0. The reference

phase plane at the center of the resolution cell, R0, is shown as a “red” dashed line.

The range path length from R1 to Rj
(1)

is equivalent to the one that starts from

R1, passes through R0 and reaches the same phase front as Rj
(1)

, which equals to

|R1 − R0| + n(y
(1)
j sin θt1 − z

(1)
j cos θt1). The attenuation path length that the wave

traveled within the medium to reach Rj
(1)

is obviously −z(1)
j / cos θt1 .
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Similarly, using (2.24) for the repeat observation, we have the single-scatterer SAR

backscattered response from scatterer k given as

〈E(R2; k)〉k = A2f
(2)
k X2(Rk

(2)
) (2.56)

with

X2(Rk
(2)

) =e2K
(2)
I z

(2)
k / cos θt2Wa(x

(2)
k )Wr

(
y

(2)
k sin θi2 − n cos θt2z

(2)
k

)
e
j2k0

(
|R2−R0|+y(2)k sin θi2−n cos θt2z

(2)
k

)
. (2.57)

Note in (2.55) and (2.57), the superscript “(i)” (i = 1, 2) is used to distinguish KI ,

the imaginary part of the effective propagation constant between overpasses, since it

varies with the moisture-induced dielectric/scattering amplitude fluctuation of the

scatterers. However, the real part KR, equivalently the refractive index n, is assumed

constant between passes since n ≈ 1 for a sparse random medium such as a forest

canopy [23].

2.3.2 Repeat-pass InSAR correlation

Before substituting (2.54) and (2.56) into (2.53) to solve for the repeat-pass InSAR

correlation, the same argument can be applied as has been used in deriving (2.29)

such that the terms with j 6= k can be eliminated. Therefore, (2.53) can be rewritten

as
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〈E(R1)E∗(R2)〉 =
N∑
j=1

∫∫∫∫
〈E(R1; j)〉j〈E∗(R2; j)〉jP (Rj

(1)
, Rj

(2)
)

P (f
(1)
j , f

(2)
j |Rj

(1)
, Rj

(2)
)dRj

(1)
dRj

(2)
df

(1)
j df

(2)
j

=
N∑
j=1

∫∫∫∫
〈E(R1; j)〉j〈E∗(R2; j)〉jP (Rj

(2)|Rj
(1)

)P (Rj
(1)

)

P (f
(1)
j , f

(2)
j |Rj

(1)
, Rj

(2)
)dRj

(1)
dRj

(2)
df

(1)
j df

(2)
j

=

∫∫∫∫
τ(Rj

(1)
)〈E(R1; j)〉j〈E∗(R2; j)〉jP (Rj

(2)|Rj
(1)

)

P (f
(1)
j , f

(2)
j |Rj

(1)
, Rj

(2)
)dRj

(1)
dRj

(2)
df

(1)
j df

(2)
j , (2.58)

where τ(Rj
(1)

) is the scatterer number density, and P (Rj
(2)|Rj

(1)
) is the conditional

probability of the scatterer’s position during the 2nd pass given its position in the

1st pass. For single-pass SAR interferometry (Section 2.2.2), setting j = k in (2.53)

eliminates all of the joint and/or conditional probabilities; however, for repeat-pass

InSAR, since there are changes in both the scatterer’s position and scattering am-

plitude between passes, the joint or conditional probabilities still exist and will be

utilized to characterize the dielectric fluctuation and random motion effects on the

repeat-pass InSAR correlation.

By substituting (2.54) and (2.56) into (2.58), it reduces to

〈E(R1)E∗(R2)〉 =

∫∫∫∫
τ(Rj

(1)
)A1f

(1)
j X1(Rj

(1)
)A2f

(2)∗
j X∗2 (Rj

(2)
)P (Rj

(2)|Rj
(1)

)

P (f
(1)
j , f

(2)
j |Rj

(1)
, Rj

(2)
)dRj

(1)
dRj

(2)
df

(1)
j df

(2)
j

=A1A2

∫∫
τ(Rj

(1)
)D(Rj

(1)
, Rj

(2)
)X1(Rj

(1)
)X∗2 (Rj

(2)
)

P (Rj
(2)|Rj

(1)
)dRj

(1)
dRj

(2)
(2.59)

with

D(Rj
(1)
, Rj

(2)
) =

∫∫
f

(1)
j f

(2)∗
j P (f

(1)
j , f

(2)
j |Rj

(1)
, Rj

(2)
)df

(1)
j df

(2)
j , (2.60)
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where D is a function of the spatial coordinates of scatterer j. It can be noticed

that the statistical averaging over scattering amplitude f
(i)
j (i = 1, 2) by using the

joint probability is treated differently from averaging over scatterer’s position Rj
(i)

(i = 1, 2) where the conditional probability is used. The reason is that there is lack

of statistical information for the scattering amplitude change, so the most general

treatment that can be made is by using the joint probability; however, for the random

motion of a scatterer, it is usually assumed that the position in the 2nd observation

given its position in the 1st observation follows some statistical distribution (e.g.

Gaussian [96, 33]), hence the conditional probability is more suitable to characterize

this temporal change as will be shown later. Here, the expression of D(Rj
(1)
, Rj

(2)
)

is consistent with the definition of the covariance between f
(1)
j and f

(2)
j given the

scatterer’s positions, i.e.

D(Rj
(1)
, Rj

(2)
) = 〈f (1)

j f
(2)∗
j 〉f |R, (2.61)

where “〈 〉f |R” is averaging only over the scattering amplitude given the scatterer’s

positions, which is part of the configuration averaging by fixing the spatial coordinates

of the scatterer. Further, we can define the Pearson correlation coefficient for the

scattering amplitudes of scatterer j between the 1st and the 2nd pass of the instrument,

i.e., f
(1)
j and f

(2)
j as,

St(Rj
(1)
, Rj

(2)
) =

〈f (1)
j f

(2)∗
j 〉f |R√

〈|f (1)
j |2〉f |R〈|f

(2)
j |2〉f |R

, (2.62)

which is a complex-valued number with a magnitude less than or equal to one. Also,

we refer to the backscatter profile as the average of the backscatter intensity, i.e.

σ1(Rj
(1)

) = 〈|f (1)
j |2〉f |R =

∫
|f (1)
j |2P (f

(1)
j |Rj

(1)
)df

(1)
j (2.63)
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for the SAR observation during the 1st pass, and

σ2(Rj
(2)

) = 〈|f (2)
j |2〉f |R =

∫
|f (2)
j |2P (f

(2)
j |Rj

(2)
)df

(2)
j (2.64)

for the 2nd SAR observation after the repeat period. Therefore, (2.61) can be written

as

D(Rj
(1)
, Rj

(2)
) = St(Rj

(1)
, Rj

(2)
)

√
σ1(Rj

(1)
)σ2(Rj

(2)
). (2.65)

Assuming that the random motion effect of the volume scatterers is not large such

that

St(Rj
(1)
, Rj

(2)
) ≈ St(Rj

(1)
, Rj

(1)
) = St(Rj

(1)
), (2.66)

and

σ2(Rj
(2)

) ≈ σ2(Rj
(1)

), (2.67)

then by substituting (2.65), (2.66) and (2.67) into (2.59), we achieve

〈E(R1)E∗(R2)〉 =A1A2

∫∫
τ(Rj

(1)
)St(Rj

(1)
)

√
σ1(Rj

(1)
)σ2(Rj

(1)
)X1(Rj

(1)
)

X∗2 (Rj
(2)

)P (Rj
(2)|Rj

(1)
)dRj

(1)
dRj

(2)

=A1A2

∫
τ(Rj

(1)
)St(Rj

(1)
)

√
σ1(Rj

(1)
)σ2(Rj

(1)
)X1(Rj

(1)
)

F (Rj
(1)

)dRj
(1)
, (2.68)

where

F (Rj
(1)

) =

∫
X∗2 (Rj

(2)
)P (Rj

(2)|Rj
(1)

)dRj
(2)
. (2.69)
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It can be noticed that in (2.68) the goal is to express each component as a function

of Rj
(1)

. Hence, in (2.69), it is also preferred to replace the argument in X∗2 from

Rj
(2)

to Rj
(1)

by accounting for the extra phase shift caused by the change of scatterer

position. In particular, by assuming that the effect of scatterer motion is not large,

e.g., as in (2.66) and (2.67), such that the amplitude of X∗2 (Rj
(2)

) in (2.57) can be

approximated as the amplitude of X∗2 (Rj
(1)

), but not necessarily the phase. This

is accomplished by letting the jth scatterer displacement be ∆Rj = Rj
(2) − Rj

(1)
=

[ ∆xj ∆yj ∆zj ] in Cartesian coordinates and substituting into the phase term of

(2.57). This gives

X∗2 (Rj
(2)

) = X∗2 (Rj
(1)

)ej2k0(∆yj sin θi2−n cos θt2∆zj). (2.70)

Within the conditional probability P (Rj
(2)|Rj

(1)
), it is assumed that the displacement

vector obeys a three dimensional Gaussian distribution [33, 96] with zero-mean and

standard deviation of σr(Rj
(1)

), as in

P (Rj
(2)|Rj

(1)
) = P (∆Rj|Rj

(1)
) =

1

(
√

2π)3σ3
r(Rj

(1)
)

exp

(
− |∆Rj|2

2σ2
r(Rj

(1)
)

)

=
1

(
√

2π)3σ3
r(Rj

(1)
)

exp

(
−∆x2

j + ∆y2
j + ∆z2

j

2σ2
r(Rj

(1)
)

)
. (2.71)

Substituting (2.70) and (2.71) into (2.69), and integrating over x (which has no effect

on the interferometric phase), we have
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F (Rj
(1)

) =

∫
X∗2 (Rj

(2)
)P (∆Rj|Rj

(1)
)d∆Rj

=X∗2 (Rj
(1)

)

∫∫∫
ej2k0(∆yj sin θi2−n cos θt2∆zj)

1

(
√

2π)3σ3
r(Rj

(1)
)

exp

(
−∆x2

j + ∆y2
j + ∆z2

j

2σ2
r(Rj

(1)
)

)
d∆xjd∆yjd∆zj

=X∗2 (Rj
(1)

)

∫∫
ej2k0(∆yj sin θi2−n cos θt2∆zj)

1

(
√

2π)2σ2
r(Rj

(1)
)

exp

(
−∆y2

j + ∆z2
j

2σ2
r(Rj

(1)
)

)
d∆yjd∆zj. (2.72)

By assuming that the effective refractive index n ≈ 1 (and thus θi2 ≈ θt2) for a sparse

medium like a forest canopy [23], we can thus define the radial displacement along

the line of sight as ∆rj = ∆yj sin θi2 − n cos θt2∆zj ≈ ∆yj sin θi2 − cos θi2∆zj, and

express (2.72) through a change of variables [33], i.e.

F (Rj
(1)

) = X∗2 (Rj
(1)

)

∫
ejk02∆rj

1
√

2πσr(Rj
(1)

)
exp

(
− ∆r2

j

2σ2
r(Rj

(1)
)

)
d∆rj

= X∗2 (Rj
(1)

) exp

[
−(2k0)2

2
σ2
r(Rj

(1)
)

]
= X∗2 (Rj

(1)
)ρr(Rj

(1)
) (2.73)

with

ρr(Rj
(1)

) = exp

[
−(2k0)2

2
σ2
r(Rj

(1)
)

]
, (2.74)

which is the term associated with the random motion of the scatterers. For the height-

dependent motion variance, different functional forms have been assumed in various

studies: [33] uses a linear form while [5] and this work exploit a quadratic form. No

matter what functional form is used, the expression for ρr(Rj
(1)

) in (2.74) serves as

the general model of the vertical random motion profile, which is also consistent with
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previous works [33, 34, 5]. This section only focuses on the derivation of the general

repeat-pass InSAR model, leaving the selection of the functional form of the motion

variance to be discussed in Section 3.2 and Section 5.3.

By substituting (2.73) into the repeat-pass InSAR correlation (2.68), we obtain

〈E(R1)E∗(R2)〉 = A1A2

∫
τ(R)St(R)

√
σ1(R)σ2(R)ρr(R)X1(R)X∗2 (R)dR, (2.75)

where the superscript “(1)” and subscript “j” have been dropped since the volume

integration is taken only over Rj
(1)

. The effect of the baseline and the signal extinction

have been incorporated into X1(R)X∗2 (R) at this stage and will be factored out as

shown below.

Before we further utilize the expression in (2.75) to derive the normalized repeat-

pass InSAR correlation coefficient, we first compare this result with the single-pass

scenario, which has been shown in Section 2.2.2. Following (2.29), the single-pass

InSAR correlation can be written as

〈E(R1)E∗(R2)〉 = A1A2

∫
τ(R)σ(R)X1(R)X∗2 (R)dR, (2.76)

where the number density profile, τ(R), and the backscatter profile, σ(R), are further

assumed only dependent on the vertical coordinate, z. Since the normalized InSAR

correlation coefficient is defined as [64]

γ =
〈E(R1)E∗(R2)〉√
〈|E(R1)|2〉〈|E(R2)|2〉

, (2.77)

after representing (2.76) in Cartesian coordinates (i.e. x, y and z) and separating the

integrals associated with each variable (see Section 2.2.2 along with Section 6.4), the
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normalized InSAR volumetric correlation (i.e. the correlation component associated

with z) is given by

γv =

∫
τ(z)σ(z)e

( 2ke
cos θt

+jκz)z
dz∫

τ(z)σ(z)e
2ke

cos θt
z
dz

, (2.78)

where ke = 2KI is the extinction coefficient, and κz = 2k0B⊥
R sin θi

is the interferometric

vertical wavenumber under the condition of the refractive index n ≈ 1 (and thus

θi ≈ θt) for a sparse concentration of volume scatterers such as a forest canopy [23].

Here, B⊥ is the perpendicular baseline and R is the slant range from SAR to the

resolution center.

Therefore, by assuming St(R) (which is a correlation profile that depends on the

dielectric/scattering amplitude fluctuation), random motion profile ρr(R) and the

backscatter profiles σ1(R) and σ2(R) are only z-dependent, we utilize the similarity

between (2.75) and (2.76) to further simplify the derivation. That is, by separating the

z-dependent components, the repeat-pass InSAR coupled correlation coefficient due

to volume scattering and temporal changes (both dielectric fluctuation and random

motion) is given by

γv&t =

∫
τ(z)St(z)ρr(z)

√
σ1(z)σ2(z)e

ke1
cos θt1

z
e

ke2
cos θt2

z
ejκzzdz√∫

τ(z)σ1(z)e
2ke1

cos θt1
z
dz ·

∫
τ(z)σ2(z)e

2ke2
cos θt2

z
dz

=

∫
St(z)ρr(z)

√
σ1(z)σ2(z)ejκzzdz√∫

σ1(z)dz ·
∫
σ2(z)dz

, (2.79)

where kei (i = 1, 2) is the extinction coefficient for the ith pass. Note the number

density profile, τ(z), and the exponential extinction profile, e
2kei

cos θti
z
, have been as-

similated into the backscatter profile in the last equation for conciseness of notation.

That is, (2.63) and (2.64) can be rewritten as
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σ1(z) = τ(z)e
2ke1

cos θt1
z
∫
|f (1)
j |2P (f

(1)
j |z)df

(1)
j (2.80)

and

σ2(z) = τ(z)e
2ke2

cos θt2
z
∫
|f (2)
j |2P (f

(2)
j |z)df

(2)
j , (2.81)

where σ1(z) and σ2(z) are the extinction-weighted backscatter profiles.

In order to further understand how different decorrelation components (i.e., di-

electric fluctuation, random motion, volume structure) contribute to the repeat-pass

InSAR correlation in (2.79), we enumerate these three causes below and analyze each

one individually.

• Moisture-induced Dielectric/Scattering Amplitude Fluctuation

In this scenario, the random motion is eliminated from the problem and the

baseline is set to zero, which implies ρr(z) = 1 and κz = 0. The repeat-pass

InSAR correlation in (2.79) can be simplified as

γv&t =

∫
St(z)

√
σ1(z)σ2(z)dz√∫

σ1(z)dz ·
∫
σ2(z)dz

, (2.82)

In the above, the source of decorrelation is from two components: one is St(z)

(which is defined in (2.62)), the other is everything that remains except St(z),

which consists of integrals of the extinction-weighted backscatter profiles that

are defined in (2.80) and (2.81). There is decorrelation due to this second

source since the numerator and denominator have different functional forms.

As shown in (2.82), both of the sources of decorrelation are coupled. Further,

the two sources of decorrelation are correlated, as both depend on the scattering

amplitude (and thus dielectric) fluctuation. Therefore, the overall decorrelation
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due to moisture-induced dielectric/scattering amplitude fluctuation will involve

the coupled effect from both sources mentioned here.

To take into account the effect of dielectric fluctuations on the observed InSAR

correlation, it is desired to follow a similar functional form as has been used

for characterizing random motion and baseline effects, which is to have a single

backscatter profile, i.e., the geometric mean between observations that is defined

as

σ(z) =
√
σ1(z)σ2(z) (2.83)

and a single profile in the numerator to characterize the net effect of these

moisture-induced dielectric fluctuations, denoted as γd(z).

In order to achieve this goal, (2.82) is manipulated as

γv&t =

∫ √
σ1(z)σ2(z)dz√∫

σ1(z)dz
∫
σ2(z)dz

∫
St(z)

√
σ1(z)σ2(z)dz∫ √

σ1(z)σ2(z)dz

= R ·
∫
St(z)σ(z)dz∫
σ(z)dz

=

∫
γd(z)σ(z)dz∫
σ(z)dz

, (2.84)

where

R =

∫ √
σ1(z)σ2(z)dz√∫

σ1(z)dz
∫
σ2(z)dz

, (2.85)

can be considered a constant normalization factor that can be absorbed into

the dielectric correlation profile γd(z), as

γd(z) = RSt(z) (2.86)
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which characterizes the overall decorrelation due to moisture-induced dielec-

tric/scattering amplitude fluctuation.

With this new functional form in (2.84), it is clear that the geometric mean pro-

file, σ(z), is shown in both of the numerator and denominator, while the overall

decorrelation due to moisture-induced dielectric fluctuation is incorporated as

a new correlation profile γd(z), which fulfills the motivation of rewriting (2.82)

as mentioned above.

Further, it can be seen from the Cauchy-Schwartz Inequality,

(∫ √
σ1(z)σ2(z)dz

)2

≤
∫
σ1(z)dz

∫
σ2(z)dz, (2.87)

that 0 ≤ R ≤ 1, and |St(z)| ≤ 1 as defined in (2.62), and thus |γd(z)| ≤ 1.

In the extreme case of single-pass SAR interferometry, where there is no moisture-

induced dielectric change, i.e., f
(1)
j = f

(2)
j (and thus σ1(z) = σ2(z)), we have

R = St(z) = 1 (thus γd(z) = 1), and (2.84) comes up with the expected result

of having no decorrelation.

It is useful to make the clarification that, although the geometric mean profile

σ(z) is a function of the extinction-weighted backscatter profiles σi(z) (i = 1, 2)

which are affected by the dielectric change, it is reasonable and equivalent to

treat the geometric mean profile σ(z) as an independent profile. This is because

in (2.84), σ(z) itself does not introduce decorrelation; rather, R is the compo-

nent that represents the decorrelation effect due to the variation of σi(z).

• Zero-baseline Wind-induced Random Motion
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In the case of wind-induced random motion, the moisture-induced dielectric

change is set to zero, i.e., f
(1)
j = f

(2)
j (and thus St(z) = 1, σ1(z) = σ2(z) = σ(z)),

and if the baseline is zero, κz = 0. Hence, (2.79) can be simplified as

γv&t =

∫
ρr(z)σ(z)dz∫
σ(z)dz

, (2.88)

which is consistent with previous work [33, 34, 5], and clearly shows that the

motion profile ρr(z) accounts for the decorrelation due to wind-induced motion.

In the extreme case of single-pass SAR interferometry, where there is no random

motion among the scatterers, i.e., the motion standard deviation is zero, from

(2.74), ρr(z) = 1 and (2.88) reduces to unity, as expected.

• Single-pass Baseline-induced Volume Structure

In the simplest scenario, equivalent to single-pass SAR interferometry, where

the interferometric vertical wavenumber, κz 6= 0 and the temporal decorrelation

is not present, f
(1)
j = f

(2)
j (and thus St(z) = 1, σ1(z) = σ2(z) = σ(z)), and

ρr(z) = 1. Therefore, (2.79) can be simplified to

γv&t =

∫
σ(z)ejκzzdz∫
σ(z)dz

, (2.89)

which is consistent with previous work (e.g., [80, 81, 57]), and shows the effect

of κz, or equivalently the baseline accounts for the decorrelation due to volume

structure, i.e. often termed the Volumetric Decorrelation. In the extreme case

that the baseline is zero, i.e. κz = 0, (2.89) reduces to unity, as expected.

• Generic Form
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From the above analysis, by using the geometric mean profile and factoring out

R as in (2.84), (2.79) can be rewritten as

γv&t = R

∫
St(z)ρr(z)σ(z)ejκzzdz∫

σ(z)dz

=

∫
γd(z)ρr(z)σ(z)ejκzzdz∫

σ(z)dz
(2.90)

where γd(z) is defined in (2.86).

Similar to [33, 34, 5], ρr(z) is associated with the random motion within the

volume scatterers (with σr(z) being the height-dependent motion standard de-

viation). Different from [33, 34, 5], (2.90) now contains the term γd(z), which

may also be spatially varying and depends on the target dielectric change (per-

haps due to rain), and also the geometric mean backscatter profile σ(z) is con-

sidered rather than just using the conventional single-pass backscatter profile

σi(z) (i = 1, 2).

2.3.3 Modified Random Volume over Ground (RVoG) model

In Section 2.3.2, the repeat-pass InSAR correlation model (2.90) was derived that

took into account the effects of the dielectric fluctuation and random motion. The

derivation is based on the center of the resolution cell being at the top of the canopy

as illustrated in Figure 2.8, i.e., z = 0 for the top of the canopy and z = −hv for

the bottom, where hv denotes the physical canopy height. For a two-layer scenario

(with the random volume over the ground surface), it is useful to perform a change

of variables z′ = z + hv so that z′ = 0 for the ground surface and z′ = hv for the top

of the canopy, as illustrated in Figure 2.9(a). Therefore, (2.90) can be rewritten as
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Figure 2.9: (a) Illustration of the viewing geometry of the Random Volume over
Ground (RVoG) model along with the vertical profiles characterizing the repeat-pass
InSAR correlation components. (b) is the extinction-weighted backscatter profile
which is comprised by an exponential decaying function characterizing the volume
and a delta function at the ground surface, (c) is the random motion profile which
has a magnitude of one at the ground level and starts decorrelating as the height
increases, and (d) is the dielectric fluctuation profile which has a differential change
between the volume and the ground. Note through a change of variables, (a), (b), (c)
and (d) have their vertical profiles as a function of z′ that is referenced at the ground
surface (z′ = 0).

γv&t =

∫ 0

−hv γd(z)ρr(z)σ(z)ejκzzdz∫
σ(z)dz

=

∫ hv
0
γd(z

′ − hv)ρr(z′ − hv)σ(z′ − hv)ejκz(z′−hv)dz′∫ hv
0
σ(z′ − hv)dz′

= e−jκzhv
∫ hv

0
γd(z

′ − hv)ρr(z′ − hv)σ(z′ − hv)ejκzz′dz′∫ hv
0
σ(z′ − hv)dz′

. (2.91)

Note ρr(z) is the random motion profile referenced at the top of the canopy (z = 0)

with z varying from −hv to 0; however, ρr(z
′ − hv) is a new function of z′, which

characterizes the same segment of the profile but referenced at the ground surface

(z′ = 0) with z′ varying from 0 to hv. To keep the concise notation, ρr(z
′ − hv) can

be written as ρr(z
′) with the definition of the motion profile allowed to be inferred
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from the context (e.g., from the “prime” notation used in the z coordinate), with a

similar interpretation made for γd(z
′) and σ(z′). The profiles σ(z′), ρr(z

′) and γd(z
′)

are shown by example in Figure 2.9(b), (c), (d). Under this change of variables, (2.91)

becomes

γv&t = e−jκzhv
∫ hv

0
γd(z

′)ρr(z
′)σ(z′)ejκzz

′
dz′∫ hv

0
σ(z′)dz′

(2.92)

To take into account a specific term for the ground scattering component, the

extinction-weighted backscatter profiles can be modified as (i.e. Figure 2.9(b))

σ′1(z′) = σ1(z′) +G1δ(z
′);

σ′2(z′) = σ2(z′) +G2δ(z
′), (2.93)

where G1 and G2 represent the extinction-weighted Radar Cross Section (RCS) of

the ground return at z′ = 0. Thus by replacing σ1(z) and σ2(z) in (2.85) with σ′1(z′)

and σ′2(z′), it can be shown that

Rwg =

∫ hv
0

√
σ′1(z′)σ′2(z′)dz′√∫ hv

0
σ′1(z′)dz′

∫ hv
0
σ′2(z′)dz′

=

∫ hv
0

√
σ1(z′)σ2(z′)dz′ +

√
G1G2√

(
∫ hv

0
σ1(z′)dz′ +G1)(

∫ hv
0
σ2(z′)dz′ +G2)

≤ 1, (2.94)

where Rwg is the R factor now with a ground scattering contribution.

If the effect of dielectric fluctuation is ergodic and stationary (such a formulation

characterizes its mean behavior) throughout the random medium, the z-dependence

of St(z
′) can be ignored within the random volume. By allowing for there to be a
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differential change in St(z
′) (and thus γd(z

′)) for the volume scatterers and the ground

as illustrated in Figure 2.9(d), we thus have

St(z
′) =


Svt 0 < z′ ≤ hv

Sgt z′ = 0

, (2.95)

and the total correlation component due to dielectric fluctuation from the ground and

the volume is then

γd(z
′) = RwgSt(z

′) =


γvd 0 < z′ ≤ hv

γgd z′ = 0

. (2.96)

Assuming that the random motion at the ground level is negligible, i.e. σ2
r(z
′ =

0) = 0, using (2.74), we have ρr(z
′ = 0) = exp

[
− (2k0)2

2
σ2
r(z
′ = 0)

]
= 1 as shown in

Figure 2.9(c).

By replacing σ1(z′) and σ2(z′) in (2.92) with σ′1(z′) and σ′2(z′) and following [81,

57, 33], the modified double-layer Random Volume over Ground (RVoG) model is

given as

γv&t = e−jκzhv
γvd
∫ hv

0
ρr(z

′)σ(z′)ejκzz
′
dz′ + γgd

√
G1G2∫ hv

0
σ(z′)dz′ +

√
G1G2

= e−jκzhv
γvd

∫ hv
0 ρr(z′)σ(z′)ejκzz

′
dz′∫ hv

0 σ(z′)dz′
+ γgdm

1 +m
, (2.97)

where m =
√
G1G2/

∫ hv
0
σ(z′)dz′ is the ground-to-volume ratio in repeat-pass SAR

interferometry.

This gives the general model for the volume and temporal interferometric corre-

lation as

γv&t = e−jκzhv
γvdγv&m + γgdm

1 +m
, (2.98)
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with

γv&m =

∫ hv
0
ρr(z

′)σ(z′)ejκzz
′
dz′∫ hv

0
σ(z′)dz′

. (2.99)

Note that the first term in (2.98) is associated with the ground interferometric phase.

Similar to [33, 34, 5], γv&m is the correlation associated with the coupled effect from

volume scattering and random motion, while different from [33, 34, 5], γvd (|γvd | ≤ 1)

and γgd (|γgd | ≤ 1) are the complex correlation components characterizing the dielectric

fluctuation for the volume and the ground, respectively. Note importantly, γvd , γgd and

m are expected to be polarization-dependent.

Equation (2.98) is derived for a simplified scenario, where the dielectric fluctu-

ation is assumed ergodic and stationary throughout the random medium, and thus

becomes a multiplicative factor that is decoupled from the volume scattering and ran-

dom motion effects. Despite the simplification, this modified RVoG model is expected

to characterize the temporal dielectric fluctuation to the first order (the ergodic and

stationary assumption allows us to characterize the mean effect of dielectric fluctua-

tion) while also taking account of the random motion and volume scattering effects.

For the case where the temporal change effect of dielectric fluctuation is spatially

varying, the random medium can be considered as a layered ergodic and stationary

medium where all of the above analyses (such as (2.92)) can be adapted.

2.3.4 The physical mechanism of the dielectric fluctuation effect

2.3.4.1 Statement of problem

In order to study the physical mechanism of the dielectric fluctuation effect, it is

desired to consider the electromagnetic wave scattering by individual tree components

(i.e. leaf, branch, trunk) that can be further modeled as dielectric cylinders and/or

circular disks [30]. In this work, we investigate the model at L-band for simplicity,

in which case the contributions from the branches and trunks (modeled as dielectric
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cylinders) dominate the scattered fields. However, similar results at a higher frequency

can be shown by considering the contributions from leaves (modeled as dielectric

circular disks).

Ulaby [87] proposes a physical dielectric model that relates the dielectric constant,

εr, of vegetation components (e.g. leaf, stalk, branch, trunk) to the gravimetric mois-

ture content, Mg. Typical values of Mg are: 0.07 (low value), 0.26 (intermediate value)

and 0.68 (high value). As for vegetation samples with various moisture contents, it is

found that both the real and imaginary parts of the dielectric constants have a large

dynamic range, which implies that the scatterer’s dielectric constant could be highly

target-dependent. During a long period of time between overpasses that is usually

on the order of months, it is reasonable to expect obvious moisture change (and thus

changes in the dielectric constants; perhaps due to rainfall), i.e.

νMg(Rj) =
M

(2)
g (Rj)

M
(1)
g (Rj)

, (2.100)

where M
(i)
g (Rj) (i = 1, 2) is the moisture content of the scatterer at position Rj during

the ith satellite pass, and νMg(Rj) is the corresponding ratio that characterizes the

moisture change. In response to the moisture-induced dielectric changes, there is thus

fluctuation in the complex scattering amplitude (that is a function of the dielectric

constant). We thus define the ratio associated with the scattering amplitude change

as

νf (Rj) =
f

(2)
j (Rj)

f
(1)
j (Rj)

. (2.101)

2.3.4.2 A dielectric fluctuation model

To begin, we note that the averaging “〈 〉f |R” defined in (2.62), (2.63) and (2.64)

for the complex scattering amplitude is an ensemble averaging. Assuming the di-

electric/scattering amplitude fluctuation is an ergodic and stationary random process
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throughout the random medium, the ensemble averaging can be replaced by the spa-

tial averaging for the convenience of calculation [22]. That is, the ratio characterizing

the scattering amplitude change at any spatial position Rj has the same statistics,

i.e. a stationary mean value α0 plus a zero-mean random fluctuation term α1(Rj)

with the stationary variance 〈α1(Rj)
2〉 = δ2, where both α0 and δ2 are invariant of

the spatial coordinates Rj under this assumption of ergodicity and stationarity.

Note such a formulation characterizes the mean behavior of the dielectric fluctu-

ation effect throughout the random medium, which is analogous to the permittivity

fluctuation model by Vallese and Kong (1981; [88]), where ergodicity and stationarity

are utilized to characterize the permittivity fluctuation in snow and ice samples.

Based on the above analysis, a simple dielectric fluctuation model is thus given as

follows,

νf (Rj) =
f

(2)
j (Rj)

f
(1)
j (Rj)

= α0 + α1(Rj) (2.102)

where α0 is the stationary mean value of the scattering amplitude change, and α1(Rj)

is a random fluctuation term describing the scattering amplitude fluctuation during

the repeat period with 〈α1(Rj)〉 = 0 and 〈|α1(Rj)|2〉 = δ2 for any spatial point Rj.

Note both α0 and α1(Rj) can be complex-valued with the real and imaginary parts

satisfying the same equation (2.102).

To take into account the collection of discrete vegetation components, noting that

both of the branches and trunks can be modeled as finite-length dielectric cylinders,

the fluctuation uncertainty of νf (Rj) is primarily attributed to the following four

aspects:

• Scatterers have different orientations with respect to the line of sight and/or

the incidence polarization.
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• Scatterers have different physical dimensions (e.g. branches and trunks can be

modeled as dielectric cylinders with different radius a and length l).

• Scatterers have different levels of moisture contents (i.e. M
(1)
g (Rj)).

• Scatterers have different ratios characterizing the moisture change (i.e. νMg(Rj)).

In Section 4.2.3, electromagnetic simulations will be presented for the effects as

enumerated above. In the following analysis, the introduced small-scale dielectric

fluctuation parameters (i.e. α0 and α1(Rj)) are related to the macroscopic repeat-

pass InSAR correlation components St(z) and R in (2.90). Here, only the vertical

coordinate z is used to represent the spatial (i.e. Rj) dependence of the associated

quantities.

2.3.4.3 Effect of dielectric fluctuation on St(z)

Substituting (2.102) and denoting the backscatter intensity in the 1st SAR obser-

vation as p(z) = |f (1)
j (z)|2, we have the following results

〈f (1)
j (z)f

(2)∗
j (z)〉 = α∗0〈p(z)〉+ 〈p(z)α∗1(z)〉,

〈|f (1)
j (z)|2〉 = 〈p(z)〉,

〈|f (2)
j (z)|2〉 = |α0|2〈p(z)〉+ 〈p(z)|α1(z)|2〉+ 2〈p(z)<[α0α

∗
1(z)]〉,

(2.103)

where < is the real part operator. Here, the subscript “f |R” in (2.62) has been

dropped to keep the notation concise, and the spatial dependence is explicitly written

out by incorporating the vertical coordinate, z.
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From (2.62), St(z) can be calculated as

St(z) =
〈f (1)
j (z)f

(2)∗
j (z)〉√

〈|f (1)
j (z)|2〉〈|f (2)

j (z)|2〉

=
α∗0〈p(z)〉+ 〈p(z)α∗1(z)〉√

〈p(z)〉
√
|α0|2〈p(z)〉+ 〈p(z)|α1(z)|2〉+ 2〈p(z)<[α0α∗1(z)]〉

(2.104)

In Section 4.2.3, it will be noticed that the ratio of scattering amplitude change

fluctuates around its mean value, while the backscatter intensity changes indepen-

dently. In other words, the statistical correlation between the fluctuation term α1(z)

and the backscatter intensity p(z) is very low, i.e. α1(z) can be considered in-

dependent of p(z). This can be mathematically expressed as 〈ψ(p(z))φ(α1(z))〉 =

〈ψ(p(z))〉〈φ(α1(z))〉 for any given functions of ψ and φ [22].

Noticing that 〈α1(z)〉 = 0, (2.104) is simplified as

St(z) =
α∗0√

|α0|2 + 〈|α1(z)|2〉
=

α∗0
|α0|
· 1√

1 + 〈|α1(z)|2〉
|α0|2

. (2.105)

Since the dielectric fluctuation of the random medium is assumed ergodic and station-

ary, after substituting the constant variance of dielectric fluctuation 〈|α1(z)|2〉 = δ2,

(2.105) is rewritten as

St(z) =
α∗0
|α0|
· 1√

1 + δ2

|α0|2

= St, (2.106)

which is also a constant value independent of the vertical coordinate.

If there is no dielectric fluctuation, i.e. α1(z) = 0 for all z, (2.106) reduces to

St =
α∗0
|α0|

. (2.107)
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Then, |St| = 1 and there is no decorrelation effect as expected (in the case of single-

pass interferometry). Also, if the fluctuation uncertainty is very small, i.e. δ2

|α0|2 � 1,

a Taylor series expansion of (2.106) can be performed as

St =
α∗0
|α0|
·
(

1− 1

2

δ2

|α0|2
· · ·
)

(2.108)

It is clearly shown that decorrelation occurs due to dielectric/scattering amplitude

fluctuation.

2.3.4.4 Effect of dielectric fluctuation on R

Similarly, with the use of (2.102), and denoting the extinction-weighted backscat-

ter intensity in the 1st SAR observation as q(z) = τ(z)e
2ke

cos θt
z|f (1)

j (z)|2, we can thus

express (2.80) and (2.81) as

σ1(z) = 〈q(z)〉,

σ2(z) = |α0|2〈q(z)〉+ 〈q(z)|α1(z)|2〉+ 2〈q(z)<[α0α
∗
1(z)], (2.109)

where the change in the extinction profile has been ignored.

Assuming that the fluctuation term, α1(z), is independent of the extinction-

weighted backscatter intensity term, q(z) (similar to the argument in Section 2.3.4.3),

the constant normalization factor R in (2.85) can be calculated as

R =

∫ √
σ1(z)σ2(z)dz√∫

σ1(z)dz
∫
σ2(z)dz

=

∫ √
〈q(z)〉

√
|α0|2〈q(z)〉+ 〈q(z)|α1(z)|2〉+ 2〈q(z)<[α0α∗1(z)]〉dz√∫

〈q(z)〉dz
∫

(|α0|2〈q(z)〉+ 〈q(z)|α1(z)|2〉+ 2〈q(z)<[α0α∗1(z)]〉) dz

=

∫ √
〈q(z)〉

√
|α0|2〈q(z)〉+ 〈q(z)〉〈|α1(z)|2〉dz√∫

〈q(z)〉dz
√∫

(|α0|2〈q(z)〉+ 〈q(z)〉〈|α1(z)|2〉)dz
. (2.110)
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Also, noticing 〈α1(z)〉 = 0 with 〈|α1(z)|2〉 = δ2 under the assumption of ergodicity

and stationarity, (2.110) can be further simplified as

R =

∫
〈q(z)〉

√
|α0|2 + δ2dz√∫

〈q(z)〉dz
√∫
〈q(z)〉(|α0|2 + δ2)dz

= 1 (2.111)

Therefore, there is no decorrelation effect due to R under the condition of ergodic

and stationary dielectric fluctuation. In this case where 〈α1(z)〉 = 0 and 〈|α1(z)|2〉 =

δ2, since R does not introduce decorrelation, the decorrelation from St dominates

the temporal decorrelation due to dielectric fluctuation. Note if the statistics of the

dielectric fluctuation is spatially varying along the vertical coordinate, we can treat

the random medium as a layered medium with each vertical layer still being ergodic

and stationary. In such a scenario, (2.105) and (2.110) still hold with both the

stationary mean and variance dependent on the vertical coordinate. However, when

the fluctuation uncertainty 〈|α1(z)|2〉
|α0|2 is small, a Taylor series expansion is performed on

both equations. It can be found that R always introduces higher order infinitesimals

than St(z); in other words, St(z) is the dominant term that accounts for the temporal

decorrelation due to dielectric fluctuation.
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CHAPTER 3

PARAMETER RETRIEVAL APPROACHES

In this chapter, parameter retrieval algorithms will be developed so as to ex-

ploit the InSAR scattering models derived in Chapter 2. First, in Section 3.1, a

dual-frequency InSAR observational configuration is proposed to relate the volume

parameters (such as snow grain size, volume fraction, layer depth) as well as those as-

pects that characterize ground scattering contributions (such as ground topographic

height and ground-to-volume ratio) to the single-pass InSAR correlation data. Fur-

ther, in Section 3.2, a simple and efficient approach is developed to retrieve forest

height from repeat-pass InSAR correlation measurements, where temporal decorrela-

tion effects such as target dielectric change and random motion dominate.

3.1 Retrieval of snow characteristics using single-pass InSAR

3.1.1 Schematic outline for retrieving snow characteristics

The actual design of the snow retrieval approach for using single-pass InSAR data

relies on the sophisticated investigation of the experimentally collected InSAR data

along with a reliable error analysis, which is beyond the scope of this dissertation

and serves as an important future work. In contrast, this section only provides the

schematic outline and examines the feasibility for retrieving snow characteristics from

single-pass InSAR correlation data, which is based on the derived InSAR scattering

models in Section 2.2.3 and the simulated results that will be shown in Section 4.1.

From the simulated results (Section 4.1), Ka-band InSAR phase is sensitive to the

snow grain size and volume fraction, while L-band InSAR coherence and phase have
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a good sensitivity to the snow depth information. Therefore, the combination of Ka-

band and L-band InSAR data have the potential of measuring the snow characteristics

(grain size, volume fraction, depth). According to the simplified RVoG model, (2.51),

it is helpful to consider the following generic form,



φKa

AL
HH

φL
HH

AL
HV

φL
HV

AL
VV

φL
VV



= M





l

fv

d

mL
HH

mL
HV

mL
VV

h





(3.1)

where AL and φL denote the L-band InSAR correlation magnitude and phase, and

the subscripts “HH”, “HV” and “VV” are used to represent different polarizations of

the L-band InSAR observations. Note for L-band data, the ground-to-volume ratio

is explicitly written as polarization-dependent. However, the ground scattering can

be ignored (i.e. m ≈ 0) for Ka-band since the penetration depth is quite small (<

0.5 m) from the simulated results in Section 4.1. As will be shown in Section 4.1,

since the Ka-band InSAR coherence is close to the unity and invariant with respect

to snow grain size and volume fraction, it is thus sufficient to only use the Ka-band

interferometric phase φKa. Therefore, (3.1) clearly shows that the observable space

and the parameter space have been connected via the RVoG model (2.51).

Note that in (3.1), none of the observables is sensitive to all of the parameters.

In fact, (3.1) can be decomposed into several components based on the sensitivity

of the observable(s) with respect to individual parameters, which is illustrated in

Figure 3.1. From Figure 3.1, Ka-band InSAR phase is the only observable that is

sensitive to the snow grain size and volume fraction, however, this quantity is also
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Figure 3.1: Illustration of the observable(s) that have a good sensitivity to the in-
dividual parameters. Note (h + d) is the topographic height at the top of the snow
surface as indicated in Figure 2.6, which corresponds to the center of the resolution
cell. Given the combination of snow bottom h (the topographic height at the ground
surface) and the snow layer depth d, it is equivalent to know both the depth d and
the snow top (h+ d).

determined from the topographic height at the snow top surface (or equivalently the

reference InSAR phase φ0) according to the RV model presented in Section 2.2.3.

Here, the RV model is sufficient to model the Ka-band InSAR phase, since when

m ≈ 0, the RVoG model reduces to the RV model. For each polarization of L-band

data, both the coherence and phase are dependent on the ground-to-volume ratio,

the layer depth and the ground topographic height. Hence, all of the sensitivity

components in Figure 3.1 rely on the determination of the snow layer depth and the

ground topographic height.

There are several methods that can be utilized to measure the snow layer depth

and ground topographic height independently, such as the polarimetric InSAR (a.k.a.

PolInSAR) techniques [57, 49] (such a method differentiates the volume scattering

component from the ground scattering contribution with use of polarimetric signa-

tures), or alternatively 2) retrieval methods using SAR backscatter power [71] as well

as 3) radar and/or lidar altimetry techniques [41, 50].

Therefore, given the snow depth and ground topographic height, only the sen-

sitivity component that connects the Ka-band InSAR phase to snow grain size and

volume fraction remains in Figure 3.1. By referring to the RV model (2.43), this can
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be formulated as

φKa = M


 l

fv


 . (3.2)

Here, we have two unknown parameters l and fv along with a single observable φKa,

which implies that a unique solution is by no means achievable. Rather, a functional

relationship between snow grain size l and volume fraction fv will be obtained, which

will be simulated in Section 4.1.3. This is termed as Ka-band InSAR phase ambiguity

in measuring the snow grain size and volume fraction.

To this end, it can be concluded that by only using Ka-band and L-band In-

SAR correlation measurements, the snow layer depth and the ground topographic

height can be inverted, as well as a functional relationship between the snow grain

size and volume fraction. The unique determination of both the grain size and vol-

ume fraction requires to incorporate auxiliary measurements. For example, the vol-

ume fraction (equivalently snow density) can be independently retrieved from SAR

backscatter power measurements [70]. Once the volume fraction and layer depth are

both determined, the Snow Water Equivalent (SWE) measure can be calculated as

in (1.2).

3.1.2 More discussion on practical implementation

As for the practical design and implementation of the InSAR-based snow retrieval

approach, several practical issues that must be addressed in future work are discussed

as below.

First, the proposed dual-frequency inversion approach is able to estimate the snow

depth to a plausible accuracy, however, it cannot uniquely determine the snow grain

size and volume fraction; rather, a functional relationship between these two quan-

tities can be determined. This is similar to [71], although it is the dual-frequency

68



SAR backscatter power data that were used instead of InSAR correlation data. This

relationship can be augmented with auxiliary field data, prior knowledge and results

from other methods/sensors such as L-band SAR backscatter power [70] to uniquely

determine the grain size and volume fraction.

Also, the dominating error source for the InSAR-based snow retrieval approach

is due to the InSAR correlation measurement uncertainty. However, there is a limit

of reducing the measurement uncertainty (and thus the error in the inverted snow

parameters) through the use of multi-look averaging in estimating the InSAR corre-

lation, e.g., as illustrated in Figure 4.7, when the number of looks L reaches 200, the

measurement uncertainty does not improve substantially as L continue increases. In

order to overcome this performance limit and further enhance the inversion accuracy,

multi-pixel averaging is therefore proposed to the inverted snow parameters, which is

able to reduce the error by a factor of
√
M where M is the number of pixels in this

averaging. So, a trade-off between the inversion accuracy and the spatial resolution

must be carefully examined and designed.

In this work, all of the modeled analysis along with the simulated results are

based on the Percus-Yevick pair distribution function. Although the Percus-Yevick

function is capable of reflecting the variation of InSAR phase as a function of snow

parameters, in practice, however, the pair distribution function for densely-packed

dry snow could be very complicated in the modeling aspect. As for the accurate

inversion performance, experimentally determined pair distribution functions can be

incorporated. For example, a look-up table and/or database relating the SAR/InSAR

measurements to different choices of snow parameters can be constructed so as to

determine the pair distribution function.

The layer effects of dry snow is not considered in this work, since Ka-band data

is utilized so that the extinction effect dominates and the penetration depth is quite

short. In other words, the inverted snow grain size and volume fraction are only valid
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for the top layer. However, given the snow layer depth, and combining with prior

geophysical knowledge of snow layer accumulation, it is also possible to recover the

vertical structural variation of snow parameters.

Both of the InSAR correlation model and the retrieval method performance rely on

the accuracy of the local incidence angle. This is a potential limitation of the InSAR-

based snow retrieval approach as well as the one that uses SAR backscatter power

in [70, 71]; however, an accurate Digital Elevation Model (DEM) can be incorporated

to overcome this restriction.

Even though the above limitations exist, the dense-medium InSAR scattering

model derived in this work as well as the associated parameter retrieval analysis have

the potential of contributing complimentary observations of snow characteristics to

existing snow retrieval techniques, as well as an observational prototype for future

Ka-band (e.g. NASA’s Surface Water and Ocean Topography or SWOT [18]) and

L-band (e.g. NISAR [3]) InSAR missions.

3.2 Retrieval of vegetation characteristics using repeat-pass

InSAR

In this section, a simplified semi-empirical forest height inversion method is first

introduced and then implemented through the use of a Least Squares curve fitting. As

an overall guide, the flowchart is demonstrated below in Figure 3.2 showing the asso-

ciated InSAR processing and inversion procedure. Specifically, Section 3.2.1 discusses

the modified RVoG model, Section 3.2.2 derives the simplified Sinc inversion model,

Section 3.2.3 describes the semi-empirical forest height inversion approach utilizing

nonlinear Least Squares fitting along with the Gauss-Newton numerical method, and

the InSAR processing details will be further provided in Section 5.1.
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SAR image #1 

SAR image #2 

Interferogram 
Correct for geometric decorrelation, 
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correlation sampling bias 
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volume scattering and 
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Sinc inversion model with 
Gauss-Newton algorithm 

Ground validation 
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Temporal change 
parameters  
Sscene, Cscene 

Estimated forest 
height 

Figure 3.2: Flowchart of the InSAR processing and the inversion procedure. The
sinc inversion model and the Gauss-Newton algorithm are discussed in Section 3.2.2
and Section 3.2.3, respectively, while InSAR processing details are to be provided in
Section 5.1.

3.2.1 Discussion on the modified RVoG model

From the modified RVoG model that is derived in Section 2.3.3, the correlation

component of the coupled effect from volume scattering and temporal change is writ-

ten as (with the ground interferometric phase omitted)

γv&t =
γvdγv&m + γgdm

1 +m
(3.3)

with

γv&m =

∫
exp

[
−1

2
(4π
λ

)2σ2
r(z)

]
σV (z) exp (−jκzz) dz∫

σV (z)dz
(3.4)

where m is the ground-to-volume ratio, and σV (z) is the extinction-weighted backscat-

tering profile (i.e. the geometric mean of those from the two passes) for the volume

only. The variables γvd and γgd represent the temporal correlation component due to

dielectric change for the volume and the underlying ground, respectively, and γv&m is

the coupled correlation component due to volume scattering and random motion. In
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the above, κz is the interferometric vertical wavenumber (in units of rad/m), σr(z) is

the random motion standard deviation along the line of sight, and λ is the wavelength.

The motion standard deviation in (3.4) is here assumed to be linear as a function

of height, i.e.,

σr(z) =
σref

href

z (3.5)

where σref denotes the motion standard deviation at some reference height href (se-

lected to be 15 m in this work and also as in [33]). Equation (3.5) is equivalent

to [5] and in contrast to [33] (where the motion variance is assumed linear in the

vertical coordinate) because results created using the assumption in (3.5) created a

“best fit” between ground validation observations and height in this application (to

be discussed later in Section 5.3). Moreover, the ground motion term used in [33] is

not used in this model since the wind-induced ground-motion is expected to be small

in comparison to volume-motion. In contrast, dielectric change of the ground surface

is accounted for by including a term for ground dielectric change, γdg , as in [5, 40, 56].

The model parameters, γvd , γgd and σr, in (3.3) through (3.5) are a function of the

temporal decorrelation, which is target dependent [2, 76] and results from a combi-

nation of factors, including wind and rain effects [33, 40, 56, 5]. Even though these

factors are expected to be spatially varying throughout a scene, it is reasonable to

assume that they follow some degree of mean behavior (Appendix A), and it is this

behavior that the model is meant to use for estimating forest height. For those inter-

ferograms where the spatial variation is non-stationary, or that the spatial variation

is the dominant signature, the interferogram may be eliminated and another used in

its place given plenty of interferograms over the same area (e.g., it is not uncommon

that dozens of interferograms from ALOS/PALSAR are available). This is possible,

because the errors that appear due to spatially varying temporal decorrelation, are

detectable within individual scenes (showing up as non-physical height estimates),
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and when scenes are mosaicked together, because of large differences in forest height

solutions between adjacent scenes.

By setting γvd = Sscene and γgd = S ′scene, and substituting (3.5) into (3.3), a general

model for the combined volumetric and temporal decorrelation can be written as

γv&t = Sscene
γv&m + µm

1 +m
(3.6)

with

γv&m =

∫
exp

[
−1

2
(4πσref
λhref

)2 z2
]
σV (z) exp (−jκzz) dz∫

σV (z)dz
(3.7)

and

µ =
S ′scene
Sscene

(3.8)

where Sscene and S ′scene are complex numbers with magnitudes less than or equal to

one, and µ being the “ground-to-volume ratio” of the temporal decorrelation induced

by dielectric fluctuations, which has a complex value with |µ| ∈ [0,∞).

The values of Sscene, S
′
scene and m are polarization-dependent, making the use of

(3.6) through (3.8) potentially very difficult. Simplified scenarios where this polariza-

tion dependence is reduced (e.g., [56, 9]) are often used under the assumption of short

temporal baselines [56, 40], in order to apply PolInSAR techniques [57]. When the

time between observations for an interferometric pair is on the order of months, both

Sscene and S ′scene are expected to be strongly polarization-dependent, which makes

the PolInSAR formulation of determining the vegetation height an underdetermined

problem. In this study, we investigate the effect of this polarization-dependence on

the inversion using HH-pol and HV-pol channels (Appendix B), although ultimately,

it is the HV-pol data that is used for forest height inversion.
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3.2.2 Sinc inversion model

In practice, there is always a ground scattering component (i.e., m 6= 0 in (3.6))

over bare surfaces or sparse forests. It is also possible that a polarization-dependence

exists for the parameters m and µ (see previous section). In Appendix B, simula-

tion results are demonstrated on the performance of the forest height inversion model

presented here for HH-pol (characterized by a large value for m) and HV-pol (char-

acterized by a small value for m) data with various choices of µ. Because of the

second-order scattering dependence of cross-polarized fields, it is observed that for

HV-pol data, the assumption of a small m (not necessarily to be zero) with µ close

to 1 works well over almost the entire height range and hence performance of this

inversion approach is equivalent to the case of m = 0. Therefore, the absence of a

ground-scattering term (i.e., m = 0 [24, 33]; see also Appendix B), for cross-polarized

fields is assumed here only in order to simplify the analysis and the derivation of the

semi-empirical forest height inversion model.

By making this assumption for HV-pol InSAR correlation data, (3.6) is reduced

to

γHV
v&t = Sscene

∫
exp

[
−1

2
(4πσref
λhref

)2z2
]
σV (z) exp (−jκzz) dz∫

σV (z)dz
(3.9)

This expression is further simplified under the zero-baseline scenario (only to

simplify the derivation; to be discussed later), when κz = 0, where (3.9) is rewritten

as

γHV
v&t = Sscene

∫
exp

[
−1

2
(4πσref
λhref

)2z2
]
σV (z)dz∫

σV (z)dz
(3.10)

By utilizing the mean value theorem for integration, it can be shown that there

exists an intermediate height, ξ, between the ground and the maximum forest height,
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hv, (i.e., ξ ∈ [0, hv]) such that (3.10) can be rewritten as

γHV
v&t = Sscene · exp

[
−1

2
(
4πσref

λhref

)2ξ2

]
(3.11)

Assuming forests with different height values are of the scaled versions of extinction-

weighted backscattering profile and height-dependent motion profile (in Section 4.2.1

both extinction coefficient and random motion level are considered constant in the

mean’s sense in order to ensure this assumption; see Appendix A), ξ is thus propor-

tional to hv, i.e., ξ = αhv with the proportionality constant 0 ≤ α ≤ 1. Therefore,

we have

|γHV
v&t| = Sscene · exp

[
−1

2
(
4πσrefα

λhref

)2h2
v

]
≈ Sscene · sinc

(
hv

Cscene

)
, for hv < πCscene (3.12)

where

Cscene =
λhref

2π2σrefα
(3.13)

After taking the magnitude of γv&t, Sscene becomes |Sscene|; however, in order to

maintain a concise notation, Sscene is used here instead of |Sscene|, with the exact

definition of Sscene allowed to be inferred from the context. Here, the scaling factor

Cscene primarily relates to the random motion level (e.g., due to wind and/or tree

regrowth) of the volume scatterers. At the current stage, we know that the higher

dielectric change is, the smaller Sscene we have, while the greater random motion is,

the smaller Cscene we have.

Note, importantly, that the sinc function in (3.12) is used to approximate the

“Gaussian-like” function in the derivation. This has the benefit of obtaining an upper
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limit (i.e., πCscene) on the maximum inverted height in the presence of uncertainty in

measuring the correlation. Without this simplifying approximation, the expression in

(3.12) is significantly more complicated and the inverted height will approach infinity

as the observed correlation magnitude becomes very low. This is also important,

because there is a large uncertainty in estimating low correlation magnitude signals

(<0.2; [79]) when the number of sampled looks is small, as is usually the case for

spaceborne missions (e.g., 20 looks were used in the study presented here). In such a

scenario, the estimation error encountered in the inversion of the Gaussian function

of (3.12) will create significant errors in the long “tail” regions of a Gaussian curve,

as the forest heights get larger. The validity of using this Sinc function instead of a

Gaussian curve is elaborated in Appendix D.

Futhermore, for spaceborne repeat-pass InSAR systems, it is difficult to have

κz = 0, and therefore it is also not possible to separate its effect from (3.9). Small

values of κz (<0.15 rad/m; which is taken as the effective range of κz values for this

study in Appendix C) can be accommodated by the model in (3.12) under a small-κz

assumption (described in Appendix C). This assumption manifests itself as a bias

in (3.10) and a κz-dependent correction factor is included in α (and thus Cscene) in

(3.13). Hence, under the small-κz assumption, α depends on the extinction-weighted

backscattering profile, the height-dependent motion profile, and κz. If a uniform

backscattering profile along with an exponential extinction profile is considered (as

used in Section 4.2.1), α (and thus Cscene) only depends on the extinction coefficient

(denoted by ke), random motion level σref and interferometric vertical wavenumber

κz, and can be written as

α = α (ke, σref, κz) (3.14)

It should be noted that the sinc function of (3.12) is not related to the sinc

solution derived for forest height estimation in Polarization Coherence Tomography,
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PCT [8], where a uniform extinction-weighted backscattering profile is assumed in

the absence of temporal change effects. In deriving (3.12), a small-κz assumption

(see Appendix C) is used, and thus the temporal decorrelation effects from dielectric

fluctuations and random motion dominate the repeat-pass InSAR correlation rather

than the volumetric component associated with PCT. In (3.12), Sscene derives from

the target dielectric change (perhaps due to moisture change e.g., rain), while Cscene

(defined as (3.13)) primarily describes the level of random motion (resulting from

wind and/or changes in the forest structure). While the expression in (3.12) is not

restricted to uniform profiles, in the simulations that follow (Section 4.2.1), a uniform

backscattering profile with an exponential extinction profile are used in order to

illustrate how the model behaves under conditions of varying motion and forest height.

Since this model utilizes the temporal change effects (both dielectric change and

random motion) under the conditions of small, but not zero, values of κz, the perfor-

mance of this inversion approach does not rely on the ground topography.

3.2.3 Semi-empirical forest height inversion approach

Before we look at the parameter estimation, we first discuss and define the reso-

lution in this work. As will be shown later in Section 5.1, all of the interferograms in

this work are at a resolution of 20 m × 30 m. However, due to the observational error

in the correlation measurements (i.e., correlation sampling noise [79]) and the target-

dependent behavior of the temporal change effects (which is different from stand to

stand), spatial averaging (which is referred to as “multi-pixel averaging” in this work)

must be performed in order to remove these uncertainties. This gives resolution on

the order of 10 hectares with RMSE < 4 m.

The observed repeat-pass HV-pol InSAR correlation magnitude, |γHV
v&t|, due to

the coupled effect of volume scattering and temporal change can be related to the

desired height estimates, hv, by analytically inverting (3.12) over the region of validity,
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hv < πCscene. An equivalent, more computationally efficient approach, is to use a look-

up table. In either case, forest height estimates are based on the fitting parameters,

Sscene and Cscene. These parameters can be determined from overlap with regions

of known forest height (such as where lidar data is available), or in overlap regions

of scenes created by adjacent orbits or along-track observations of the satellite. The

process of estimating values of Sscene and Cscene follows.

In these overlap areas, the set of known heights can be written as, hv1 , which

are considered as the reference. The heights determined by (3.12) are specified as

hv2 , and are dependent on both the observed correlation magnitude and the model

parameters, Sscene and Cscene. With a set of initial values for Sscene and Cscene, a

scatter plot of hv1 versus hv2 can be made, such as that shown in Figure 3.3, where

the cloud of data points, on a pixel-by-pixel basis are illustrated by an ellipse.

Height 1 

 H
ei

gh
t 2

 

1:1  

!

m1

m2

Figure 3.3: Geometric illustration of the comparison between two sets of height es-
timates. The data cloud is considered an ellipse, with the angle between the major
axis and the horizontal axis denoted by φ, and their average heights denoted as m1

and m2. Here Height 1 is considered as the reference height.

Ideally, all points in these overlap regions would follow along the diagonal repre-

senting the 1:1 line in Figure 3.3, and in the presence of error sources, would have the

ellipse align itself along the line. In general, this is not the case, and there is a offset

associated with the location of the ellipse centroid, and its tilt angle. Both of these
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parameters can be determined through an optimization procedure which will achieve

this alignment.

To achieve this goal, a principal components analysis routine [55] was used here to

determine the slope k of the ellipse’s major axis (i.e., the tangent of the tilt angle φ

shown in Figure 3.3), and the offset b of the ellipse centroid from the 1:1 line (i.e., the

relative difference between the mean heights m1 and m2 in Figure 3.3). Therefore,

we have the following definitions for k and b, i.e.,

k = tanφ

b =
m1 −m2

(m1 +m2)/2
(3.15)

Specifically, in order to solve for the slope k, we denote h
(i)
v1 and h

(i)
v2 to be the

reference height and the InSAR-inverted height for the ith averaged pixel. Suppose

there are N averaged pixels in total, we can write the covariance matrix of these two

estimates of height as

X =


N∑
i=1

(h
(i)
v1 −m1)2

N∑
i=1

(h
(i)
v1 −m1)(h

(i)
v2 −m2)

N∑
i=1

(h
(i)
v1 −m1)(h

(i)
v2 −m2)

N∑
i=1

(h
(i)
v2 −m2)2



=

 P11 P12

P21 P22


 λ1 0

0 λ2


 P11 P12

P21 P22


−1

(3.16)

where the eigen value decomposition is applied in the last equation. Here, λ1 and λ2

are the eigen values in the descending order, while

 P11

P21

 and

 P12

P22

 are their

corresponding eigen vectors, respectively. Then, the slope k can be calculated as

k =
P21

P11

(3.17)
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With k and b determined, Sscene and Cscene are adjusted such that the long-axis

of the ellipse is aligned with the 1:1 line (i.e., k ≈ 1 and b ≈ 0). Hence, we come up

with the following fitting metric (denoted as the “k-b” fitting metric), i.e.,

(S∗scene, C
∗
scene) = argmin

Sscene,Cscene

(k − 1)2 + (b− 0)2 (3.18)

which is equivalent to a nonlinear least squares fit (since the fitting parameters k and

b are nonlinear functions of the model parameters Sscene and Cscene), where S∗scene and

C∗scene are the desired optimum values of the model parameters. To solve the above

nonlinear least squares problem, a Gauss-Newton algorithm [54] is applied, i.e.,

 S∗scene

C∗scene

 = (JTJ)−1JT

 1− k0

0− b0

+

 Sscene0

Cscene0

 (3.19)

where Sscene0 and Cscene0 are the initial guess of the model parameters, and k0 and

b0 are the fitting parameters corresponding to this initial case. The matrix J is the

Jacobian matrix (calculated at the initial point) that is defined as in (3.20) and can

be computed numerically, i.e.,

J =

 ∂k
∂Sscene

∂k
∂Cscene

∂b
∂Sscene

∂b
∂Cscene


∣∣∣∣∣∣∣Sscene0
Cscene0

(3.20)

The Gauss-Newton algorithm is an iterative numerical method, which iteratively

considers the derived model parameters on the left-hand side of (3.19) as the new

initial point for another circulation of (3.19). Regardless of the accuracy of the initial

point, convergence for the type of data in the present work has been achieved after

the third iteration.

An alternative to the “k-b” fitting metric would be to use the Euclidean norm

instead. This is successful when the Root Mean Squared Error (RMSE) between the
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Figure 3.4: The two dimensional residual error distribution over the Sscene and Cscene
plane with (a) the Euclidean norm as the fitting metric and (b) the “k-b” fitting
metric for the experimental data with RMSE of 3.9 m.

ground validation and initial height estimates is small. However, when the RMSE is

large, i.e., > 3 m, the “k-b” fitting metric proves more robust. An example is shown

in Figure 3.4, where the input data RMSE is 3.9 m. This figure shows the residual

error plotted as a function of Sscene and Cscene, the two parameters that are being

determined, using the two different error metrics: the Euclidian norm (Figure 3.4a)

and the “k-b” fitting metric (Figure 3.4b). As can be seen in the set of figures, it

is difficult to determine the global minimum using the Euclidean norm, whereas the

“k-b” fit is much more well behaved. The reason is that when the RMSE is large, the

Euclidean norm metric is not sensitive to the orientation of the data cloud depicted

in Figure 3.3. Here, even though the RMSE will be small, it will not guarantee a

good linear relationship with the ground validation data. Use of the “k-b” metric,

as described in (3.18), and illustrated in Figure 3.4b, the global minimum is better

defined and guarantees this linear relationship (since k ≈ 1) while also maintaining a

small RMSE.
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CHAPTER 4

SIMULATED VALIDATION RESULTS

In this chapter, simulated results are presented so as to validate the InSAR scatter-

ing models in Chapter 2 and the inversion algorithms proposed in Chapter 3. These

results are shown for the single-pass InSAR observation of snow (Section 4.1) and

repeat-pass InSAR observation of vegetation (Section 4.2), respectively.

4.1 Single-pass InSAR observation of snow

4.1.1 Optimal InSAR observing configuration

It can be seen in (2.43) and (2.51) that any one observation of the complex cor-

relation that would contain at most two independent variables (e.g. the magnitude

and phase), that it is not possible to invert for the parameters that describe a dense

random medium. Further, it should be noted that some of the parameters are con-

sidered nuisance-parameters, and it may be some combination of their values that is

of ultimate interest. Such would be the case when estimating the snow water equiv-

alent (SWE), which is a combination of the snow depth and volume fraction. With

the availability of a forward model that relates these desired characteristics to the

interferometric observables, it is possible to use simulations of the forward model to

determine what combination of observations would best yield a retrieval for these

desired parameters.

To begin, we consider a snow layer with spherical ice particles with a dielectric

constant of εr = 3.2 + j0.001 at microwave frequencies [82]. Given a choice of snow

particle size and volume fraction, the pair distribution function and the effective
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propagation constant can be calculated numerically as described in [82, 85, 83]. In

this work, the software package Electromagnetic Wave MATLAB Library (EWML)

developed by the University of Washington is utilized and modified to perform these

calculations [84].

In this section, the RV model as in (2.42) is utilized by assuming the interferomet-

ric phase φ0 referenced at R0 is fixed as illustrated in Figure 2.5, and thus omitted in

the simulated InSAR phase results. In such a way, only the dense medium parameters

are allowed to vary and thus the sensitivity of the InSAR correlation measurements to

the medium parameters can be investigated by isolating the underlying ground. After

the InSAR observational configuration with optimal sensitivity to the dense medium

parameters is chosen, the RVoG model can be utilized to retrieve snow characteristics

which constitutes a potential future work, as outlined in Section 3.1.

For the following simulation, a typical airborne InSAR observational configuration

is considered that is consistent with NASA/JPL’s UAVSAR viewing geometry [63].

At L-band (operating frequency f0 = 1.27 GHz), the incidence angle is selected as

θi = 30◦, and the perpendicular baseline is set to be B⊥ = 100 m at an altitude

of H = 12 km such that the conventional interferometric wavenumber is calculated

as κ̃z = 0.76 rad/m. This is used as the default configuration for the simulations

implemented here. When the simulations are performed at different frequencies, the

value of κz is maintained by appropriately scaling the frequency and the baseline but

not the incidence angle.

In the simulated InSAR correlations, a Ka-band system with frequency, f0 = 35.75

GHz (the same as NASA’s SWOT mission [18]) is used because the wavelength is

comparable to the snow grain size, and hence is expected to exhibit a strong volume-

scattering signature. As shown in Figure 4.1, both the InSAR coherence and the

interferometric phase-inverted penetration depth (phase divided by κz; such a quan-

tity defines the InSAR phase center inside the dense medium with zero phase depth
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Figure 4.1: InSAR coherence and phase-inverted penetration depth (phase divided
by κz) as a function of snow characteristics (grain size l, volume fraction fv, layer
depth d) at Ka-band (f0 = 35.75 GHz). The InSAR viewing geometry is chosen as:
incidence angle θi = 30◦ and perpendicular baseline B⊥ = 3.5 m at an altitude of
H = 12 km (κ̃z = 0.76 rad/m).

representing the top surface) are plotted as a function of the snow characteristics

(grain size l, volume fraction fv, snow depth d). Here, each of the three snow char-

acteristic parameters is studied by keeping the other two parameters fixed.

It can be seen from Figure 4.1 that the interferometric phase is very sensitive

to the grain size and volume fraction; however, the InSAR coherence seems to be

very close to one and insensitive to the scatterer size and volume fraction. This

is due to the fact that the baseline (and thus κz) is small compared to the small

layer depth (only 1 m) and thus the coherence in (2.42) is close to the unity. At

Ka-band, ke is large, and strongly dependent on the grain size and volume fraction

(e.g. Section 4.1.2). However, the dependence of ke on grain size or volume fraction

is scarcely detectable in the InSAR coherence; rather, its effect is evident in the

interferometric phase in (2.42). At 35 GHz, this depth appears to be limited to only
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Figure 4.2: InSAR coherence and phase-inverted penetration depth (phase divided by
κz) as a function of snow characteristics (grain size l, volume fraction fv, layer depth
d) at L-band (f0 = 1.27 GHz). The InSAR viewing geometry is chosen as: incidence
angle θi = 30◦ and perpendicular baseline B⊥ = 100 m at an altitude of H = 12 km
(κ̃z = 0.76 rad/m).

the top few tens of centimeters of the medium. This can be seen in the bottom-right

subplot of Figure 4.1 where the apparent depth of the snow no longer changes after

0.5 m.

The effect of volume scattering on signal extinction is expected to have less an

effect on the interferometric signature at frequencies where the snow grain size is

significantly smaller than the wavelength. For UAVSAR’s L-band radar [63], the

free-space wavelength is 24 cm. The results are shown in Figure 4.2 using κ̃z =

0.76 (the same as with Figure 4.1). For this result, both the InSAR coherence and

intereferometric phase appear insensitive to the grain size and volume fraction, but

are sensitive to the snow depth. This is because the extinction coefficient, ke, is

85



0 20 40 60 80 1000

5

10

15

Frequency / GHz  

In
SA

R
 p

ha
se

 s
en

si
tiv

ity
 to

 g
ra

in
 s

iz
e 

(d
eg

/m
m

)

0 20 40 60 80 1000

5

10

15

20

25

30

In
SA

R
 p

ha
se

 s
en

si
tiv

ity
 to

 la
ye

r d
ep

th
 (d

eg
/m

)

L C X Ku Ka V W

Figure 4.3: InSAR phase sensitivity to the snow grain size and the snow layer depth
over the entire range of microwave frequency. The phase sensitivity to the grain
size/layer depth is defined as the mean derivative of the phase variation curve with
respect to the grain size/layer depth as shown in Figure 4.1 and Figure 4.2.

weakly dependent on snow grain size and volume fraction, but due to ke is small, the

penetration depth is dependent on the total depth of volume scattering.

The combination of Figure 4.1 and Figure 4.2 shows that Ka-band InSAR phase is

sensitive to the scatterer information (both the grain size and volume fraction), while

L-band InSAR phase and coherence are sensitive to the depth information. This

statement can be generalized as illustrated in Figure 4.3, where the mean derivative

of InSAR phase variation with respect to the grain size and the layer depth are plotted

for a range of microwave bands. The figure shows that the scatterer information is

best measured at frequencies where the wavelength is comparable to the scatterer

size while lower frequencies (such as L-, C-, X- and Ku-band) are more suited for

measuring the depth of the snow layer. To this end, it implies that the combination

of Ka- and L-band data has the potential of measuring all three snow parameters
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Figure 4.4: The Ka-band InSAR phase analysis with the use of the Percus-Yevick
pair distribution function. Both the InSAR phase-inverted penetration depth (phase
divided by κz) and the imaginary part of the effective propagation constant (i.e.
KI) are illustrated, while the same InSAR observational configuration is used as
Figure 4.1.

(grain size, volume fraction and layer depth), which constitutes a potential future

work for the retrieval of snow characteristics, as outlined in Section 3.1.

4.1.2 Effect of pair distribution function on the InSAR phase

In Section 2.1.2, three forms of the pair distribution function were discussed. In

this section, the effect of the pair distribution function on Ka-band interferometric

phase is further developed. The microwave frequency of Ka-band is chosen here

because the wavelength is at a similar scale as the snow grain size, and hence, the

most dependent on the pair distribution function. The effects of the pair distribution

function using the RV model are shown in Figure 4.4-4.6 for both the Ka-band InSAR

penetration depth and the imaginary part of the effective propagation constant, KI .
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Figure 4.5: The Ka-band InSAR phase analysis with the use of the Hole-Correction
pair distribution function. Both the InSAR phase-inverted penetration depth (phase
divided by κz) and the imaginary part of the effective propagation constant (i.e.
KI) are illustrated, while the same InSAR observational configuration is used as
Figure 4.1. Note only the positive values of KI (which have a physical meaning of
extinction) are shown in the figure, i.e. the missing points in the left-column subplots
correspond to the negative values of KI .

In Figure 4.4, the InSAR phase depth variation for the Percus-Yevick pair distri-

bution function is the same as shown in Figure 4.1. As the volume fraction increases

from a value of zero to 0.4, the imaginary component of the effective permittivity

goes through a resonance effect at fv ≈ 0.2 after which KI decreases as the contrast

reduces between the permittivity of the scatterers and the background permittivity of

the medium. Eventually, KI becomes a non-physical number (i.e. negative) indicat-

ing that (2.5) can no longer be used as an approximation. When the Hole-Correction

formula is used as the pair distribution function, shown in Figure 4.5, this point is

reached much earlier, when fv = 0.15 (a result that is consistent with [82]). For this

reason, care should be used when interpreting plots such as the penetration depth,
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Figure 4.6: The Ka-band InSAR phase analysis by ignoring the pair distribution
function. Both the InSAR phase-inverted penetration depth (phase divided by κz)
and the imaginary part of the effective propagation constant (i.e. KI) are illustrated,
while the same InSAR observational configuration is used as Figure 4.1.

where inflection points of the penetration depth are associated with grain sizes of

l ≈ 2 mm and volume fractions of fv ≈ 0.15 when the Hole-Correction formula is

used.

When the infinitely small scatterer or sparse random medium approximation is

used for the pair distribution function, KI in Figure 4.6 grows almost linearly with

volume fraction. For low values of volume fraction, this is expected, as the degree

of scattering increases with the number and size of scatterers. At some point, as

a function of volume fraction, this trend should reverse when the real part of the

effective permittivity approaches that of the inclusions, and the degree of scattering

reduces. This effect is not evident in Fig 4.6 and highlights the non-physical nature

of this function for volume fraction values larger than a few percent.
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This set of simulations and figures illustrates the importance of the pair distribu-

tion function in the medium’s scattering behavior. While the Percus-Yevick form is

sufficient in the current work to demonstrate the potential of using InSAR correla-

tion for modeling the interferomtric signature of snow, more accurate models, perhaps

experimentally derived, would be expected to give better results.

4.1.3 Ka-band InSAR phase ambiguity in measuring snow grain size and

volume fraction

As mentioned in Section 3.1, given the ground topographic height and snow depth,

a functional relationship between snow grain size and volume fraction can be inverted

from Ka-band InSAR phase. In this section, we show the simulated inversion results

using the RV model.

In this simplified scenario, the RV model as expressed in (2.43) reduces to (3.2).

Since the relationship between the parameters and the observable cannot be analyt-

ically expressed, a direct inversion of (3.2) is not feasible. In order to determine the

desired snow parameters, a brute-force search can be performed over the two dimen-

sional space (l, fv) so that some distance metric between the model-predicted value

(denoted as φKa
mod) and the observed Ka-band InSAR phase measurement (denoted as

φKa
obs) can be minimized. In this work, a Least Squares fitting metric is utilized as

below,

(l∗, f ∗v ) = argmin
(l,fv)

(
φKa
obs − φKa

mod

)2
(4.1)

Given the layer depth d = 1 m along with a fixed ground topographic height,

the actual snow parameters are chosen as: grain size l = 1.5 mm, volume fraction

fv = 0.2. The Ka-band InSAR instrumental parameters along with the viewing

geometry are exactly the same as selected in Section 4.1.1. Therefore, the simulated

InSAR observables can be calculated through the use of the RV model.
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Figure 4.7: Standard deviation of the InSAR coherence (a) and phase (b) measure-
ments as a function of the actual InSAR coherence with different number of looks, L,
in the InSAR correlation estimation.

Figure 4.8: The two-dimensional histogram of the inverted snow grain size and volume
fraction (“colored value” represents the normalized frequency counts within each bin)
from 10,000 Monte Carlo simulations of the inversion only using Ka-band InSAR
phase. The actual parameters are: grain size l = 1.5 mm and volume fraction fv = 0.2.

Further, the observational error can be introduced to the simulated InSAR phase

measurements as illustrated in Figure 4.7. According to [79], the error in the InSAR

coherence estimation is dependent on the actual InSAR coherence and the number
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of looks L, which is illustrated in Figure 4.7a. Similarly, from [38], the estimation

uncertainty of the interferometric phase also depends on the actual InSAR coherence

and the number of looks L, which is illustrated in Figure 4.7b. In the following

simulation, it is assumed 200 independent SAR looks are utilized in estimating the

InSAR complex correlation, i.e. L = 200.

A two dimensional search grid is then established by partitioning the grain size

from 0.5 mm to 2.5 mm with step size of 0.05 mm, the volume fraction from 0 to

0.4 with step size of 0.01. The two-dimensional brute-force search as in (4.1) is next

performed in order to determine the optimal set of snow parameters. In particular,

for each randomized Ka-band InSAR phase measurement, (4.1) will be executed over

the two-dimensional search grid with the global minimum determined. After 10,000

Monte Carlo simulations, the two-dimensional histogram of the determined grain size

and volume fraction is shown in Figure 4.8, which implies that the desired snow

parameters (at the center of Figure 4.8) cannot be uniquely determined; rather, a

functional relationship can be determined between the grain size and the volume

fraction, which is consistent with the above analysis.

In order to uniquely determine the snow grain size and volume fraction, another

measurement must be incorporated into the observation vector in (3.2). For example,

in [70], L-band dual-polarized SAR backscatter power is shown to be capable of

estimating the volume fraction (and thus snow density) independently with a relative

error of 10%. From the functional relationship in Figure 4.8, given a 10% relative

error in estimating the volume fraction, the snow grain size can be determined to an

absolute error of 0.08 mm (a relative error of 5.3%).

4.2 Repeat-pass InSAR observation of vegetation

In this section, simulated results will be presented in order to validate the forest

height inversion approach. In particular, the forest height inversion approach is in-
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vestigated first by exploiting the analytical model (i.e., the modified RVoG model)

as expressed in Section 3.2.1, where the InSAR correlation will be simulated un-

der the noiseless condition. In contrast, we will also simulate the repeat-pass InSAR

correlation and validate the inversion method by modifying a numerical simulator Pol-

SARproSim which enables full-polarization electromagnetic simulations of vegetation

components at moderately high accuracy. In this case, the PolSARproSim simulated

results will be provided under the condition of correlation sampling noise. Finally,

we will simulate the electromagnetic scattering by individual dielectric cylinders so

as to validate the dielectric fluctuation model proposed in Section 2.3.4.

4.2.1 Validation of the forest height inversion approach using the analyt-

ical model

In this section, the simulated InSAR correlation magnitude (a Gaussian-like curve)

is generated by using the modified RVoG model ((3.9) without any simplification;

where the thermal noise and the correlation sampling noise [79] are set to zero), while

the estimated forest height is determined from fitting the sinc function in (3.12)

into the simulated InSAR data. As a result, under this noiseless scenario, the es-

timated forest height should correspond to the actual height very well within the

non-saturation region of the invertible height range [0, πCscene] while small height es-

timation bias will occur in the saturation region (as detailed in Appendix D). The

simulation setup is described as follows.

The correlation due to the coupled effect of volume scattering and temporal change

can be simulated by numerically computing the integral in (3.9), while the height

estimates obtained from the simulations are determined by inverting (3.12) through

the adjustment of the model parameters Sscene and Cscene (Section 3.2.3). For the

extinction-weighted backscattering profile in (3.9), σV (z), a uniform backscattering

profile along with an exponential extinction profile are used. The basic simulation
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parameters are chosen such that the extinction coefficient ke = 0.1 dB/m (e.g., a

sparse forest; less than the values used in [57, 33] at L-band), the interferometric

vertical wavenumber κz = 0.05 rad/m (corresponding to B⊥ = 500 m with ALOS’s

viewing geometry), the magnitude of the correlation component due to dielectric

fluctuation Sscene = 0.7 and the motion standard deviation σref = 2 cm at the reference

height href = 15 m (i.e., σr(z) = 0.0013z). By assuming a constant temporal change

and forest backscatter profile/extinction coefficient (Appendix A), all of the above

parameters are assumed constant in the mean’s sense for different values of forest

height. The simulation result is illustrated in Figure 4.9a, with the left-hand side plot

showing the estimated heights compared to the actual height, and the right-hand side

showing the simulated correlation magnitude by using (3.9) compared to the fitted

solution of (3.12). Through curve fitting, the parameter Cscene is determined to be

10.92, which primarily corresponds to σref = 2 cm (at a reference height of href = 15

m), and Sscene fitted to be 0.7. Using (3.13), α is calculated to be 0.82. We make a

note here that such simulation parameters are selected to mimic the ground validation

results of Section 5.3.

In the remaining three simulations of Figure 4.9, we allow the relevant parameters

to vary and study the sensitivity of the inversion results. Specifically, the extinction

coefficient is changed to 0.3 dB/m (e.g., a dense forest [33]; Figure 4.9b), the vertical

wavenumber is changed to 0 (zero-baseline; Figure 4.9c), and the motion standard

deviation is changed to 6 cm at href = 15 m (greater level of random motion; Fig-

ure 4.9d). It is clear that σref is the most important parameter that dominates the

value of Cscene, which is noticed to have a weak dependence on the extinction coef-

ficient. Here, the κz-dependence of Cscene can be ignored for κz’s up to 0.05 rad/m,

and plays a weak role for κz < 0.15 rad/m (small κz assumption; Appendix C). Using

(3.13), the α values for all of the three subplots are 0.93, 0.82 and 0.65, respectively,

which demonstrates the dependence of α on σr and ke. The κz-dependence of α can
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Figure 4.9: Simulation Results. (a) serves as the basis of the simulations, showing
the estimated height vs. the actual height (on the left), and the simulated correlation
component vs. the sinc approximation (on the right). The simulation parameters for
this basic case are: extinction coefficient of 0.1 dB/m, κz of 0.05 rad/m, Sscene of 0.7,
motion standard deviation of 2 cm at the reference height of 15 m. (b) shows the
result with a different extinction coefficient (0.3 dB/m); (c) shows the result with a
different κz (0 rad/m); while (d) shows the result with a different motion standard
deviation (6 cm at the height of 15 m). In all of the subplots, the upper bound of the
invertible height range (i.e., πCscene) is indicated by a dashed vertical line.

be neglected for κz < 0.05 rad/m, although it is noticeable for κz up to 0.15 rad/m

(Appendix C).

Larger random motion levels (possibly induced by higher wind speed) results in

smaller values of Cscene, which will make the saturation point occur at a low height

value. In such a scenario, meaningful forest height inversion will be hindered due to
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the loss of sensitivity of the model in (3.12) to changes in forest heights. Similarly,

larger dielectric changes (possibly due to moisture change) results in smaller values

of Sscene, which will suppress the measured correlation component γv&t (see (3.9)) by

a large amount causing the information to be dominated by the correlation sampling

noise [79] as discussed above.

4.2.2 Validation of the repeat-pass InSAR model and the forest height

inversion approach using the numerical simulator PolSARproSim

In this section, a modified version of the numerical simulator PolSARproSim [91],

part of the PolSARpro package developed by the European Space Agency (ESA) for

analyzing polarimetric SAR data, is used to perform electromagnetic simulations of

the repeat-pass InSAR correlation measurements accounting for the temporal change

effects (e.g. both random motion and dielectric change) for a typical forest in a

manner that is consistent with the validation of the repeat-pass InSAR model being

studied in this work. Simulated results are also shown to validate the forest height

inversion approach, as well as to characterize the forest dynamics-induced error in

the SAR/InSAR metrics.

4.2.2.1 Introduction to the study area and the simulator

The Harvard forest region (Western Massachusetts, US) has a mean carbon con-

tent of 120 MgC/ha, an average height of 30 m, on the order of 800 mature trees/ha,

and mostly occupied with red pines, red maples and birch, etc. Because of the study

site’s long history in forestry and forest ecology, it has been a valuable resource for

remote sensing algorithm development. It is expected that the Harvard forest re-

gion is a more complex environment in terms of the temporal decorrelation effects,

which makes it an attractive test case for extending the work demonstrated, and

investigating the associated errors.
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Figure 4.10: (a) A rectangular one-hectare plot in Harvard forest of western Mas-
sachusetts. (b) Height of the PolSARproSim simulated HV-pol phase center as a
function of the ground range for a given azimuth slice of the rectangular plot. The
known topography is shown as a “blue” curve while the trees as “green” vertical bars.
The phase centers are marked as “red circles” (“red stars”) for the simulated HV-pol
InSAR measurements with (without) forest canopy above the underlying surface. (c)
Simulated HV-pol radar backscatter power imagery (in unit of dB) with the dynamic
range shown in the color bar. The tree stems are indicated by black circles overlaid
on the imagery. Clearly discernible in the image is the radar effect of layover, where
the reflection from the top of the trees appears “advanced” by approximately 40 m
in the ground range.
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Figure 4.11: (a) Simulated HV-pol repeat-pass InSAR correlation magnitude (κz =
0.1 rad/m) for the above-shown one-hectare plot with randomized selective logging
(50% trees are randomly chosen and removed) in the upper half-plot between suc-
cessive passes. The effect from this disturbance event can also be seen from the
histograms (b). The one to the left shows the histogram of correlation magnitude
without logging while the one to the right with selective logging. With κz being
small, the disturbance effect essentially reduced the repeat-pass InSAR correlation
magnitude.
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In Figure 4.10, a one-hectare plot modeled from a stem map collected at the Har-

vard forest is demonstrated through using FVS (Forest Vegetation Simulator; [10]).

This plot is mostly occupied with red pines, red maples and birch, etc. Preliminary

tests can be shown by using PolSARproSim program. In Figure 4.10, both from the

phase center analysis and the radar backscatter power imagery, it seems that the radar

instrument observed some trees over the open surface areas in front of (with respect

to the line of sight) the forest canopy, which is known to be a standard radar con-

cept termed as “layover”. We also tested the PolSARproSim package by simulating

repeat-pass InSAR correlation measurements with disturbance events (e.g. selective

logging) between overpasses. In Figure 4.11a, 50% trees in the upper half-plot are

randomly logged between the two passes. The κz value is selected as 0.1 rad/m,

which implies the volumetric decorrelation is not significant compared to the tempo-

ral decorrelation. This is also shown in the comparison plot of Figure 4.11b, where

two histograms are demonstrated: the lower half-plot without logging (characterized

by high correlation magnitude) and the upper half-plot with logging (characterized

by low to moderate correlation magnitude). Also in the simulations of this section,

a SAR resolution is 1.5 m × 1.5 m, while the window size for the estimation of the

InSAR correlation is 10 range looks and 10 azimuth looks leading to a resolution of

15 m × 15 m in the simulated interferograms.

4.2.2.2 Modified PolSARproSim for repeat-pass InSAR observation

As shown in the preliminary results, the PolSARproSim program is capable of

characterizing the single-pass and repeat-pass InSAR correlation measurements. In

order to simulate the possible remote sensing returns, we propose to modify this pro-

gram. The primary extension of the PolSARproSim program for this purpose will be

the creation of repeat-pass interferometric simulations of existing forest stands taking

account of dielectric change and random motion between overpasses. In particular,
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(a) (b)

(c) (d)

Figure 4.12: The simulation of the HV-pol repeat-pass InSAR correlation magnitude
due to the random motion of the volume scatterers. (a) shows the single-pass InSAR
coherence map, while (b), (c) and (d) show the different choices of the random motion
level σref = 1 cm, σref = 2 cm and σref = 6 cm at a reference height of href = 15 m,
respectively. The interferometric vertical wavenumber is chosen to be κz = 0.1 rad/m
indicating the volume decorrelation is minor compared to the temporal decorrelation.

the simulator needs to be parameterized such that the output results better mimic

those observed with ALOS/PALSAR and UAVSAR. Note only HV-pol InSAR cor-

relation magnitude data is simulated in this work so as to validate the forest height

inversion approach in Section 3.2.
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In this example, the PolSARproSim program was modified to incorporate the

random motion and the dielectric fluctuation effects of individual volume scatterers.

In particular, a Gaussian random motion was introduced to all of the vegetation

components (e.g. trunk, branch, leaf) through specifying the vertical dependence of

the motion standard deviation σr(z) as assumed in (3.5), i.e.

σr(z) =
σref

href

z, (4.2)

where σref denotes the motion standard deviation at some reference height href. Note

σref is the only input parameter accounting for the random motion level given that

the reference height is set to href = 15 m as a constant. The simulated repeat-pass

InSAR correlation magnitudes (without the moisture-induced dielectric fluctuation)

are shown in Figure 4.12, where the simulated results for the cases of σref = 1 cm,

σref = 2 cm, σref = 6 cm are shown. As a comparison, the case where σref = 0 cm

(i.e. no random motion effect) is given in Figure 4.12(a). Note, the rectangular

one-hectare test site is flipped 90◦ in order to create a longer projection along the

cross-track direction so that the transition regions due to the layover effect occupy a

smaller fraction of the entire forest stand.

It can be seen in Figure 4.12 that the temporal decorrelation becomes more dom-

inant as the random motion level increases. Further, a dielectric fluctuation for all

of the vegetation components (e.g. trunk, branch, leaf) in PolSARproSim was in-

corporated by using a Gaussian random number assigned to describe the moisture

change ratio, i.e. νMg = Mg2/Mg1 , where Mg1 and Mg2 are the gravimetric moisture

content level for each vegetation component during the two separate passes. How-

ever, as assumed in Section 2.3.3 and Section 2.3.4, the moisture change (or dielectric

fluctuation) is considered as an ergodic and stationary random process in the spatial

domain, i.e. the mean and the standard deviation of νMg are constant everywhere

in the test site. Therefore, as for this extension, two additional input parameters
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: The simulated |γdv | of the HV-pol repeat-pass InSAR correlation mag-
nitude due to the dielectric fluctuation of the volume scatterers. Different choices of
the moisture change ratio νMg are illustrated: (a), (c) and (e) show the results of
1± 0.125, 1± 0.25 and 1± 0.5, respectively; while (b), (d) and (f) show the results
of 1.5± 0.1875, 1.5± 0.375 and 1.5± 0.75, respectively. Other simulation parameters
are the same as in Figure 4.12(a).
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are used for the simulation: the mean and the standard deviation of the moisture

change ratio, νMg . Since PolSARproSim assigns low vegetation on top of the ground

surface, it can be assumed that in (2.98), the temporal correlation component due

to ground dielectric change is the same as the one due to volume dielectric change,

i.e. γdg ≈ γdv . From (2.98) and by only considering the moisture change among the

scatterers between overpasses (i.e., the random motion effect is excluded), the ratio of

the repeat-pass HV-pol InSAR correlation magnitude |γHV
v&t| to the single-pass InSAR

correlation magnitude |γv&m+m
1+m

| (illustrated in Figure 4.12(a)) can be shown to give

the value of |γdv |.

Using this ratio, in Figure 4.13 the simulated |γdv | from the HV-pol repeat-pass

InSAR correlation magnitude due to the dielectric fluctuation effect only is shown. In

Figure 4.13, each moisture change ratio νMg is represented as “mean±standard devi-

ation”. Particularly, in the left column of Figure 4.13, the cases of 1± 0.125, 1± 0.25

and 1 ± 0.5 are shown, while in the right column are the cases for 1.5 ± 0.1875,

1.5 ± 0.375 and 1.5 ± 0.75. It can be seen in this figure that for each column (i.e.

given the same mean value of the moisture change ratio), the larger that standard

deviation of the moisture change is, the more temporal decorrelation due to the di-

electric fluctuation effect occurs. Moreover, the left column corresponds to the right

column visually very well, which implies that the parameter |γdv | is a function of

the relative moisture change (i.e. standard deviation
mean ), which validates the dielectric

fluctuation model in Section 2.3.4. Under the assumption of ergodicity and station-

arity, given a random distribution of the moisture change ratio, the simulated |γdv |

in Figure 4.13 indeed seems to be ergodic and stationary across the image both with

and without the presence of vegetation.

Next, we combine the moisture change effect and the random motion effect in

simulating the repeat-pass HV-pol InSAR correlation. Particularly, the moisture

change ratio is chosen as 1.5±0.75 (as illustrated in Figure 4.13(f)), while the random
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(a) (b)

Figure 4.14: (a) The simulated HV-pol repeat-pass InSAR correlation magnitude due
to both effects of dielectric fluctuation and random motion of the volume scatterers.
The moisture change ratio is chosen as 1.5 ± 0.75 as illustrated in Figure 4.13(f),
while the random motion level is selected to be σref = 2 cm at a reference height of
href = 15 m as illustrated in Figure 4.12(c). (b) The direct product of the dielectric
fluctuation term |γdv | in Figure 4.13(f) and the term |γv&m+m

1+m
| in Figure 4.12(c) due

to the coupled effects of volume scattering and random motion.

Figure 4.15: Histograms of the simulated repeat-pass InSAR correlation magnitude
in Figure 4.14(a) as marked by “transparent red”, and the modeled correlation mag-
nitude values in Figure 4.14(b) as indicated by “transparent blue”.
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motion level is selected to be σref = 2 cm at a reference height of href = 15 m (as

illustrated in Figure 4.12(c)). The resulting simulated repeat-pass InSAR correlation

magnitude is shown in Figure 4.14(a). However, as implied by the modified RVoG

model that is derived in Section 2.3.3 (i.e. see (2.98)) and given γdg ≈ γdv as in

the above-mentioned simulation setup, the repeat-pass InSAR correlation can be

decomposed into the dielectric fluctuation term γdv and the term with the coupled

effects of volume scattering and random motion, γv&m+m
1+m

. Therefore in Figure 4.14(b),

we show the direct product of the dielectric fluctuation term |γdv | in Figure 4.13(f)

and the term |γv&m+m
1+m

| in Figure 4.12(c) due to the coupled effects of volume scattering

and random motion. Both of the correlation magnitude maps in Figure 4.14 as well as

their histograms in Figure 4.15 statistically show very good consistency which implies

that the modified RVoG model (as expressed in (2.98)) is capable of characterizing

both the dielectric fluctuation and the random motion effects.

As for realizing these extensions to the PolSARproSim software, we used an op-

timized C implementation (with a multithreaded environment using OpenMP), and

found that the repeat-pass InSAR simulation of a typical 15-m tall one-hectare plot

can be processed on the order of twenty minutes.

4.2.2.3 Validation of the forest height inversion approach

We next validate the forest height inversion approach presented in Section 3.2

using the PolSARproSim-simulated repeat-pass InSAR observations. By assuming

that the test site has experienced some dielectric change (with moisture change ra-

tio 1.5 ± 0.75) and random motion (with the motion level 2 cm referenced to 15 m)

between the two passes, and by scaling the tree height values in the rectangular one-

hectare plot such that a stand-averaged height of 5 m, 10 m, 15 m, 20 m, 25 m and

30 m can be obtained, we can thus perform simulations of repeat-pass InSAR obser-

vations for forest stands with various mean heights. After curve fitting as described
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Figure 4.16: Validation of the forest height inversion approach for PolSARproSim-
simulated repeat-pass InSAR observations. The moisture change ratio is 1.5 ± 0.75
while the random motion level is 2 cm referenced to 15 m. The forest heights in the
original stem map of the rectangular one-hectare plot are scaled such that a stand-
averaged height of 5 m, 10 m, 15 m, 20 m, 25 m and 30 m can be obtained. In such
a manner, simulated forest stands of various mean heights are created. The inverted
height vs. actual height along with the error bar are illustrated for each mean height
value. Both the fitted model parameters (Sscene and Cscene) and the fitting accuracy
(RMSE and R) are also indicated.

in Section 3.2.3, the inverted forest height is demonstrated in Figure 4.16 with the

model parameters determined to be Sscene = 0.76 and Cscene = 10.8. The estimated

forest height under the saturation point (i.e. 25 m) is well linear in the actual height

with RMSE of 0.26 m and R of 0.9996.

To visualize the estimated forest height compared to the actual height, the inver-

sion results are particularly illustrated for a 15 m tall forest stand as in Figure 4.17

with the simulated repeat-pass InSAR correlation magnitude shown in Figure 4.14a.

Comparing Figure 4.17d with Figure 4.17c, it is obvious that the layover effect is con-

siderably reduced through the use of the radar viewing geometry and also given the

known topography. The forest height that has been corrected for the layover effect

corresponds to the ground truth averaged height very well visually. Through multi-

pixel averaging (as described in Section 3.2.3), the mean heights are calculated for
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Figure 4.17: Forest height inversion results for a 15 m tall forest stand. (a) is the
stem map with the mean height scaled to 15 m, (b) is the ground truth height after
spatial averaging that is consistent with the resolution of the interferogram (each
pixel is 15 m × 15 m), while (c) and (d) show the inverted forest heights with and
without layover effect, respectively. Other simulation parameters are the same as in
Figure 4.12a.

both the ground truth height and the InSAR correlation magnitude-inverted height

over the rectangular one-hectare plot. By doing so repeatedly for the other mean

forest height values, we thus obtain the forest height inversion curve in Figure 4.16.
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4.2.2.4 Forest dynamics and error analysis for the SAR/InSAR metrics

For the physical forest realizations (input of the simulator) in the above simulation

results, the stem map and forest inventory data have been exploited to serve as the ba-

sis for direct simulation of remote sensing observations. However, by utilizing a forest

dynamics model FVS, they will serve as a point of initialization resulting in an exten-

sion of the inventory and therefore large regions of simulated forest with varying forest

density and relocated stem positions. An error analysis of the observed SAR/InSAR

quantities can thus be performed by utilizing the extended PolSARproSim program

and the FVS program. In particular, we will 1) vary the forest density of the original

rectangular one-hectare plot by randomly logging a particular portion of the trees, 2)

relocate the stem positions using a pure random number generator, 3) regenerate the

stem maps using the FVS program.

First, we will investigate the error propagation to the estimated model parameters

(Sscene and Cscene) in the forest height inversion by varying the forest realization. The

results are shown in Figure 4.18, Figure 4.19 and Figure 4.20, respectively, which

correspond to the three tasks as mentioned above. In Figure 4.18, ten scenarios are

demonstrated where the forest density is varied by randomly logging a portion of the

trees. For example, 100% represents that the density is 100% of the original stem

map (i.e. no logging occurred), while 10% means the density is reduced to 10% of

the original stem map (i.e. 90% of the trees in the original stem map have been

logged). It can be observed that as the forest density decreases, Sscene will not be

affected while Cscene tends to increase, which is consistent with the simulated results

in Section 4.2.1 by using the analytical model. In Figure 4.19, another ten scenarios

are simulated with the tree stem locations randomly distributed through using a pure

random number generator, while Figure 4.20 shows those scenarios where the stem

maps are simulated with the use of the FVS program. Both cases seem to provide the

similar level of fluctuation of the inverted model parameters Sscene and Cscene around
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Figure 4.21: The forest dynamics-induced error analysis of the simulated SAR
backscatter power for ten realizations of 15 m tall forest stand: (a) with varying
forest density, (b) with relocated tree stem positions through using a pure random
number generator, (c) with regenerated stem maps through using the FVS program
and (d) the functional relationship between the SAR backscatter power and forest
height. Other simulation parameters are the same as in Figure 4.16.

the point of initialization (shown in Figure 4.16), which implies that given the limited

types of tree species (i.e. red pine and/or deciduous) in the PolSARproSim program,

the stem positions and/or stem maps that are simulated either using a pure random

number generator or using the FVS program (which accounts for the ecological and

environmental conditions) cannot be discerned from each other.

Further, by varying the forest realization, it is possible to examine the error prop-

agation to the simulated SAR backscatter power. The results for a 15 m tall forest
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stand are shown in Figure 4.21. In Figure 4.21a, the simulated SAR backscatter power

is shown as a function of the forest density, which seems to obey an exponential curve

fitting. The statistics of the simulated SAR backscatter power is illustrated in Fig-

ure 4.21b with the tree stem positions relocated by utilizing a pure random number

generator and in Figure 4.21c with the tree stem maps regenerated by utilizing the

FVS program. As noticed above in Figure 4.19 and Figure 4.20, the signatures in

Figure 4.21b and Figure 4.21c essentially demonstrate the same statistical properties,

which again implies that the stem positions and/or stem maps that are simulated

either using a pure random number generator or using the FVS program cannot be

discerned from each other given the current version of the PolSARproSim program

(where the types of tree species are limited). In comparison to the forest height inver-

sion result using the InSAR correlation magnitude (i.e. Figure 4.16), the capability of

inverting forest height through the use of SAR backscatter power is also investigated

in Figure 4.21d, where the simulated SAR backscatter power is shown as a function

of forest height, which is also observed to follow an exponential fit (consistent with

the ground validation results in Section 5.5).

4.2.3 Validation of the dielectric fluctuation model

As mentioned in Section 2.3.4, there are four independent effects that induce the

fluctuation of the scatterers’ dielectric property and/or scattering amplitude. In this

section, electromagnetic simulations will be presented individually for those effects as

enumerated in Section 2.3.4.

4.2.3.1 The effect of scatterer orientation

We first look at the effect from the orientation of the scattering element (e.g.

branch and trunk). At L-band, both branch and trunk can be modeled as finite-

length dielectric cylinders. The electromagnetic bi-static scattering amplitudes for

finite-length dielectric cylinders are calculated in [29]. Assuming that the cylinder
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Figure 4.22: Illustration of coordinate transformation of the cylinder from its reference
frame (X, Y, Z) to the local frame (X ′, Y ′, Z ′) through the selection of α, β and γ
angles [29]. The effective range of (α, β, γ) is 0◦ ≤ α ≤ 90◦, 0◦ ≤ β ≤ 90◦, γ = 0◦.

is arbitrarily oriented, the observing geometry is illustrated in Figure 4.22. In order

to calculate the scattered fields for any orientation of the cylinder, we first solve

the problem in the local frame (X ′, Y ′, Z ′) of the cylinder and then transform the

fields to the reference frame (X, Y, Z) with a proper choice of (α, β, γ). Therefore, in

the backscattering scenario with the incidence direction/polarization fixed, all of the

possible orientations can be covered by varying (α, β, γ) from 0◦ to 360◦. However,

due to cylindrical symmetry, it is sufficient to define the effective range of (α, β, γ) as

0◦ ≤ α ≤ 90◦, 0◦ ≤ β ≤ 90◦, γ = 0◦, since for any other combinative choice, there

exists some point in the effective range such that their scattered fields are either equal

to or conjugate of each other (and thus correlated).

For the sake of brevity, we only deal with cross-polarization in this work so as to

be consistent with the presented forest height inversion approach (which only utilizes

HV-pol data); however, it should be noted that the adaption to co-polarization is

straightforward. The simulation results are shown by randomly sampling the effective

range of (α, β, γ) with a resolution of 1◦ (i.e. only integer values are sampled).
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Figure 4.23: Simulation results of (a) the complex scattering amplitude f
(1)
j (Rj)

and (b) the ratio characterizing the scattering amplitude change νf (Rj), where the
scatterer’s orientation is uniformly randomized within 0◦ ≤ α ≤ 90◦, 0◦ ≤ β ≤ 90◦,
γ = 0◦. Other parameters are chosen as M

(1)
g = 0.24 (εr = 6 − j2), νMg = 1.5

(M
(2)
g = 0.36), λ = 23.6 cm, a = 14 cm, l = 15a.

In order to isolate from the other three fluctuation effects, the relevant parameters

are selected as such and fixed as constants: moisture content level M
(1)
g = 0.24 (i.e.

εr = 6 − j2 as in [29] using the dielectric model given by Ulaby [87]), ratio charac-

terizing the moisture change νMg = 1.5 (i.e. which gives M
(2)
g = 0.36), wavelength

λ = 23.6 cm (as used by ALOS/PALSAR), cylinder radius a = 14 cm (large cylin-

ders at L-band i.e. λ ∼ 2a), cylinder length l = 15a (as used in [29]) for all of the

scatterers. In other words, only the orientation angle of the scatterers is allowed to

change.

First, 10,000 independent samples are generated, however, for the cases where

zero backscatter is observed, νf (Rj) will be a undetermined number that is meaning-

less. Therefore, after eliminating the undetermined numbers, only 9799 independent

samples remain, as illustrated in Figure 4.23.
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From Figure 4.23, we notice that although the complex scattering amplitude is

completely random with large uncertainty by varying the orientation of the cylinder,

the ratio characterizing the scattering amplitude change tends to have a complex mean

value plus a small random fluctuation term. For example, νf (Rj) in Figure 4.23(b)

can be represented as

νf (Rj) = [1.18 + j0.08] + [rand(Rj; 0, 0.04) + jrand(Rj; 0, 0.04)], (4.3)

where rand(Rj;µ, σ) denotes a random number at position Rj with mean µ and

standard deviation σ. By letting α0 = 1.18 + j0.08 and α1(Rj) = rand(Rj; 0, 0.04) +

jrand(Rj; 0, 0.04), we have

νf (Rj) = α0 + α1(Rj) with
〈|α1(Rj)|2〉
|α0|2

= 0.0025. (4.4)

Note that the fluctuation uncertainty as a function of spatial coordinates, 〈|α1(Rj)|2〉,

relies on the actual stochastic distribution of the scatterer orientation. However, by

adopting a uniform randomization over the effective range of the orientation angles

as shown in Figure 4.23, a worst-case scenario can be achieved resulting in the largest

possible fluctuation uncertainty. For this reason, a uniform randomization of the rel-

evant scatterer parameters will be used in the following sections for investigating the

other three effects associated with dielectric/scattering amplitude fluctuation.

4.2.3.2 The effect of scatterer dimension

Next, the effect of dimension is investigated for different scattering elements, i.e.

branches and trunks have various length and radius. In order to isolate this effect from

the other three effects, the orientation of the cylinder is fixed by choosing α = 0◦, β =

0◦, γ = 45◦. Furthermore, let M
(1)
g = 0.24 (εr = 6−j2), νMg = 1.5 (M

(2)
g = 0.36) as in

Section 4.2.3.1. As for the physical dimension of the cylinders, the radius a is allowed
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Figure 4.24: Simulation results of (a) the backscatter intensity |f (1)
j (Rj)|2 and (b)

the ratio characterizing the scattering amplitude change νf (Rj), where a continuously
goes from 0 cm to 30 cm. Other parameters are chosen as α = 0◦, β = 0◦, γ = 45◦,
M

(1)
g = 0.24 (εr = 6− j2), νMg = 1.5 (M

(2)
g = 0.36), λ = 23.6 cm. Both l = 15a and

l = 30a are considered: two vertical-axis labels are used to differentiate one another
in (a), while both cases result in exactly the same ratio in (b).

to vary from 0 cm to 30 cm with the length proportional to the radius as above, i.e. l =

15a. However, since the cylinder length (and thus the proportionality) can also vary

from scatterer to scatterer, we also examine the case where l = 30a as a comparison.

The results are illustrated in Figure 4.24. In Figure 4.24(a), both scenarios have the

same type of functional form for the backscatter intensity curves which only differ by

a scaling factor. However, in Figure 4.24(b), the ratios characterizing the scattering

amplitude change are exactly the same for l = 15a and l = 30a.

Although the ratio νf (Rj) tends to be drastically varying with the dimension of the

scatterers (and thus highly target-dependent) in the Rayleigh (2a� λ) and Mie (2a ∼

λ) scattering regions of Figure 4.24(b), it can be noticed that their corresponding

backscatter intensities are very small compared to the large scatterers, and thus have

much less contributions to the resulting InSAR correlation component.
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Figure 4.25: Simulation results of (a) the complex scattering amplitude f
(1)
j (Rj)

and (b) the ratio characterizing the scattering amplitude change νf (Rj), where a is
uniformly randomized between 0 cm and 30 cm. Other parameters are chosen as
α = 0◦, β = 0◦, γ = 45◦, M

(1)
g = 0.24 (εr = 6 − j2), νMg = 1.5 (M

(2)
g = 0.36),

λ = 23.6 cm, l = 15a.

Letting l = 15a, 500 independent samples are generated by uniformly randomizing

a from 0 cm to 30 cm. The randomized results are illustrated in Figure 4.25. Similar

to Figure 4.23, the complex scattering amplitude is completely random with large

uncertainty; however, the ratio associated with the scattering amplitude change can

be represented as

νf (Rj) = α0 + α1(Rj), (4.5)

where α0 = 1.18 + j0.09 and α1(Rj) = rand(Rj; 0, 0.36) + jrand(Rj; 0, 0.54) with

〈|α1(Rj)|2〉
|α0|2 = 0.2968.

Compared to Figure 4.23, it is noticed that given the same moisture level and

ratio characterizing the moisture change, the effect due to a scatterer’s dimension

surpasses that due to the scatterer’s orientation in terms of the uncertainty of the

scattering amplitude fluctuation.

118



0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

1

2

3

4

5

6

7

8x 104

moisture content

ba
ck

sc
at

te
r i

nt
en

si
ty

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.72

1

0

1

2

3

4

5

moisture content

ν
f
(R

j
)

 

 

real part
imaginary part

(b)

Figure 4.26: Simulation results of (a) the backscatter intensity |f (1)
j (Rj)|2 and (b) the

ratio characterizing the scattering amplitude change νf (Rj), where M
(1)
g continuously

varies from 0.07 to 0.68. Other parameters are: νMg = 1.5, α = 0◦, β = 0◦, γ = 45◦,
λ = 23.6 cm, a = 14 cm, l = 15a.

4.2.3.3 The effect of scatterer moisture content level

Similarly, in order to study the effect from the moisture content level, M
(1)
g is

allowed to vary between 0.07 (dry) and 0.68 (high) as in [87]. Note typical values

that have been used are within this range, e.g. 0.24 (intermediate; εr = 6 − j2 as

in [29]) and 0.51 (high; εr = 18 − j6 as in [12]). The other parameters are chosen

as such: νMg = 1.5, α = 0◦, β = 0◦, γ = 45◦, λ = 23.6 cm, a = 14 cm, l = 15a,

which are consistent with Section 4.2.3.1-4.2.3.2. The simulated backscatter intensity

is shown in Figure 4.26(a), while the ratio characterizing the scattering amplitude

change νf (Rj) is illustrated in Figure 4.26(b). Similar to Figure 4.24, it seems that

the ratio νf (Rj) is strongly varying with the moisture content of the scatterers (and

thus target-dependent) only when the backscatter intensity is very small and thus

have much less contributions to the resulting InSAR correlation component.
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Figure 4.27: Simulation results of (a) the complex scattering amplitude f
(1)
j (Rj) and

(b) the ratio characterizing the scattering amplitude change νf (Rj), where M
(1)
g is

uniformly randomized between 0.07 and 0.68. Other parameters are: νMg = 1.5,
α = 0◦, β = 0◦, γ = 45◦, λ = 23.6 cm, a = 14 cm, l = 15a.

Hence, in order to study the spatial fluctuation of νf (Rj), 500 independent samples

are generated by randomizing the moisture content from 0.07 to 0.68. Figure 4.27(a)

shows that the simulated complex scattering amplitude is quite random; however, the

ratio characterizing the scattering amplitude change is shown in Figure 4.27(b), and

can be written as a complex mean value plus a small fluctuation term, i.e.

νf (Rj) = α0 + α1(Rj), (4.6)

where α0 = 1.22 + j0.08 and α1(Rj) = rand(Rj; 0, 0.49) + jrand(Rj; 0, 0.46) with

〈|α1(Rj)|2〉
|α0|2 = 0.3083.

4.2.3.4 The effect of scatterer moisture change

In Section 4.2.3.3 and Section 2.3.4, it is known that the moisture content Mg

(and thus the dielectric constant εr) is highly target-dependent. In fact, the ratio νMg
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Figure 4.28: Simulation results of the ratio characterizing the scattering ampli-
tude change νf (Rj), where (a) νMg continuously varies from 0.29 to 2.83; (b) νMg

is uniformly randomized between 0.29 and 2.83. Other parameters are chosen as
M

(1)
g = 0.24, α = 0◦, β = 0◦, γ = 45◦, λ = 23.6 cm, a = 14 cm, l = 15a.

characterizing the moisture change between repeat observations is also expected to be

target-dependent. As illustrated in Figure 4.28(a), by fixing M
(1)
g = 0.24 and allowing

M
(2)
g to vary from 0.07 (dry) to 0.68 (high) [87], νMg goes from 0.29 to 2.83 with the

mean around 1.5, which is also consistent with Section 4.2.3.1-4.2.3.3. The simulated

ratio characterizing the scattering amplitude change, νf , tends to be oscillating and

increasing as the ratio characterizing the moisture change, νMg , increases.

Based on the above-mentioned reasons, M
(2)
g is thus uniformly randomized over

the entire range (i.e. between 0.07 and 0.68). To see the fluctuation uncertainty of

νf (Rj), 500 independent samples are generated and shown in Figure 4.28(b) that can

still be represented by the following form, i.e.

νf (Rj) = α0 + α1(Rj), (4.7)

where α0 = 1.10 + j0.14 and α1(Rj) = rand(Rj; 0, 0.35) + jrand(Rj; 0, 0.13) with

〈|α1(Rj)|2〉
|α0|2 = 0.1124.
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To this end, we conclude that the dielectric fluctuation model (as expressed in

(2.102); Section 2.3.4) is valid, where the fluctuation uncertainty 〈|α1(Rj)|2〉 is at-

tributed to all of the four effects associated with each scattering element as discussed

above as well as in Section 2.3.4, i.e. orientation, dimension, moisture content level

and ratio characterizing the moisture change.
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CHAPTER 5

GROUND VALIDATION RESULTS FOR THE
RETRIEVAL OF VEGETATION CHARACTERISTICS

USING REPEAT-PASS INSAR OBSERVATION

In this chapter, concrete ground validation results will be provided for the forest

height inversion model that is presented in Section 3.2. First, the InSAR processing

details are described in Section 5.1. Then, the ground validation results over the

ILCP in Queensland, Australia and the Howland forest in central Maine, US will be

shown in Section 5.2 and Section 5.3, respectively. As an important product of this

work, mosaic maps of forest height along with an automatic mosaicking algorithm

will be demonstrated in Section 5.4. In Section 5.5, the spaceborne SAR/InSAR

metrics are compared in the capabilities of estimating forest height. Finally, genera-

tion of the forest disturbance map along with the forest height map is demonstrated

in Section 5.6.

5.1 Preprocessing of InSAR correlation measurements

In Section 5.1.1, the decomposition of the measured repeat-pass InSAR correlation

data is described. Then, the removal of the correlation magnitude bias and the

correction for the thermal noise decorrelation will be covered in Section 5.1.2 and

Section 5.1.3, respectively.

5.1.1 Decomposition of repeat-pass InSAR correlation

A necessary component of the study was to analyze the contribution of different

components to the observed repeat-pass InSAR correlation, i.e., geometric, thermal
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noise, volumetric and temporal decorrelation. To begin, the InSAR correlation is

defined as [64, 60]

γ =
〈E1E

∗
2〉√

〈|E1|2〉〈|E2|2〉
, (5.1)

where E1 and E2 are the received signals from two antennas separated by a baseline.

In repeat-pass interferometry, E1 and E2 are the received signals observed during

different passes (or orbits) of the platform. The ensemble average in (5.1) can be

approximated with multi-look averaging, which gives [79]

γ =

L∑
i=1

E1E
∗
2√

L∑
i=1

|E1|2
L∑
i=1

|E2|2
, (5.2)

where L is the number of independent samples (or looks). This correlation can also

be factorized into the following components as has been partially derived in (2.38),

(2.90) and in [64, 96, 33, 5]

γ = γgeoγSNRγv&t, (5.3)

where γgeo is the correlation of the two echoes with slightly different cross-track

and along-track viewing geometries in successive passes, γSNR is the correlation at-

tributable to thermal noise contaminating both radar channels, and γv&t takes into ac-

count of the coupled decorrelation effects of volume scattering and temporal changes.

Geometric decorrelation is removed by first applying common band filtering [19], to

account for a shift in the echo spectrum due to slight changes in the viewing geometry.

In order to exploit repeat-pass InSAR correlations to invert forest height, calibration

of the InSAR correlation data was first undertaken as below.
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5.1.2 Removal of correlation magnitude bias

Implementation of (5.2) implies that InSAR correlation measurements are ob-

tained through spatially averaging adjacent multiple looks. It is noted that [79] the

sampled correlation magnitude is a biased estimate, and both the bias and the stan-

dard deviation decrease as the number of looks increase. For the case where L = 20

(as used in this work), the biased mean and standard deviation of the sampled corre-

lation magnitude are plotted as red “x” markers along with error bars in Figure 5.1a.

For ground surfaces where low signal-to-noise ratios are usually observed (particularly

at HV-polarization), the observed correlation magnitude is often < 0.5, even under

minimal temporal decorrelation. In such cases, the bias in the correlation measure-

ments becomes challenging. However, this bias can be reduced (if impossible to be

removed) by mapping the sampled correlation magnitudes to the true values through

the use of the curve in Figure 5.1b, which is the inverse function of the biased mean in

Figure 5.1a and considered as a lookup table. By generating 10,000 20-look random

samples at each correlation magnitude, in Figure 5.1a, we also show the mean with

reduced bias as magenta “o” markers and the corresponding standard deviation as

green error bounds, respectively. Since the sampled correlation magnitude is biased

to higher values and always greater than 0.2, we can use the curve in Figure 5.1b

to remove this bias from the observed correlation magnitudes that are greater than

0.2. However, considering the biased mean curve in Figure 5.1a, no value can be

mapped to observed correlation magnitudes that are smaller than 0.2. Therefore,

those low correlation magnitudes (< 0.2) are mapped to zero in the lookup table. As

the new mean curve in Figure 5.1a implies, the bias becomes a problem only when

the actual correlation magnitude is below 0.1, which usually occurs for disturbance

events (e.g. selective logging) or water bodies, where the inverted height is no longer

meaningful because of high temporal decorrelation. Therefore, the above-mentioned

bias-reduction method is valid for the present study.
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Figure 5.1: Correction for the bias in the sampled correlation magnitude: (a) shows
the biased mean and its standard deviation as red “x” markers and error bars (L = 20)
with the corrected mean and the associated standard deviation as magenta circles and
green error bounds; (b) is the correction function, which is the inverse function of the
biased mean in (a).

The green error bounds in Figure 5.1a illustrate the confidence in the estimation

of correlation magnitudes. Since ground surfaces have a lower reflectivity (and hence

reduced SNR and correlation magnitude) it is more difficult to estimate correlations

over surfaces compared to bright targets, such as forests, which have a larger reflec-

tivity and better SNR. This will, in turn, translate into noisy ground features in the

inverted forest height maps, even though the surfaces are barren.

5.1.3 Correction for thermal noise decorrelation

Prior to calibrating observed correlations for thermal noise, common band filtering

and bias-reduction will have been applied. Further, additive thermal noise is incoher-

ent with the SAR received signal, and thus affects the inter-channel correlation. The

correlation associated with this thermal effect can be modeled as a function of the

SAR receiver’s signal-to-noise ratio (SNR). By treating the two channels (i.e. two
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Figure 5.2: Histograms of the HH-pol (a) and HV-pol (b) backscatter intensities
of the ALOS/PALSAR data collected on July 16, 2007 over ILCP in Queensland,
Australia.

ends of the baseline) differently, γSNR can be expressed as [96]

γSNR =
1√

1 + SNR−1
1

√
1 + SNR−1

2

, (5.4)

where SNR1 and SNR2 are the signal-to-noise ratios for the two SAR channels. Since

the observed backscatter intensity is a sum of signal and noise powers, the image

data can be converted into pixel-level SNR imagery through the use of an estimate of

thermal noise level, which is assumed to be uniform throughout the imagery. Because

the SNR depends on the target reflectivity, the thermal noise correlation also varies

spatially. Therefore, to achieve accurate estimates of the coupled decorrelation effect

of volume scattering and temporal changes, correction of the observed correlations

for thermal noise is necessary.

The choice of the thermal noise level can be estimated by analyzing histograms

of backscatter intensities within “dark regions” of the imagery. To demonstrate this
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Figure 5.3: The mode values of the HH-pol (a) and HV-pol (b) ALOS/PALSAR
backscatter intensities over all the water bodies in Maine, US between 2007 and
2010.

process, two histograms of the radar backscatter coefficient (intensity) taken from a

sample imagery acquired over ILCP in Queensland, Australia, are shown in Figure 5.2.

As this section analyzes the SAR backscatter power, we would like to provide the

complete results for both the HH-pol and the HV-pol data. As there are a large

number of relatively barren surfaces within our study area, the peak values in the

histogram (i.e., 0.0225 or -16.48 dB for HH-pol and 0.0145 or -18.39 dB for HV-

pol data respectively) represent returns from ground surfaces, and therefore are a

combination of the reflected radar signal from the surfaces and thermal noise inherent

to the system. In this case, the intensity value of the peak will be greater than the

noise level. Figure 5.3 illustrates the mode values (i.e., the most frequent value)

of the ALOS/PALSAR backscatter intensities over water bodies (lakes, rivers, and

ocean) in the US state of Maine. These scene-wide mode values over water bodies

are collected from 94 ALOS InSAR scenes. Both of the HH-pol and HV-pol scenarios

have a consistent estimate of thermal noise determined from the histogram mode
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of reflectivity for data between 2007 and 2010. Because the thermal noise level is

an inherent characteristic of the SAR receiver that operates in a stable condition,

we therefore consider these minimum mode values as thermal noise levels, which

are -22.3 dB for HH-pol and -19.4 dB for HV-pol. These values are different from

reported Noise-equivalent sigma-zero (NESZ) value (-32 dB for FBD HH-pol and -34

dB for FBD HV-pol over wind-slick regions in Hawaii; [74]) that selects the minimum

backscatter intensity during the 20 s of PALSAR data, our method is a statistical one

that utilizes the minimum mode value of backscatter intensities collected over water

bodies, which have extremely low reflectivity.

5.2 Ground validation at ILCP, Queensland, Australia

In this section, the ground validation results are demonstrated for the forest height

inversion approach over the test site at ILCP, in Queensland, Australia. In particular,

Section 5.2.1 introduces the study area of ILCP and the experimental data that is

used for the validation, while Section 5.2.2 provides the forest height inversion results

in comparison with airborne/spaceborne LiDAR data.

5.2.1 Study area and experimental data

5.2.1.1 Study area

The study focused on a 90 × 90 km region (see Figure 5.4a) centered on the In-

june Landscape Collaborative Project (ILCP; Latitude −25◦32′, Longitude 147◦32′)

research site, which is located within the Brigalow Belt Bioregion of central south-

east Queensland. The area is comprised of open forests (canopy cover > 30 %) and

woodlands (between 10 and 30 %) and agricultural land used primarily for cattle pro-

duction. The forests in the ILCP are mostly comprised of Eucalyptus species, with

E. populnea (poplar box) and E. melanaphloia (silver-leaved ironbark) dominating

and being up to 25 m tall. Callitris glaucophylla (white cypress pine) also domi-
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(a)

(b)

Figure 5.4: (a) shows the study area (90 × 90 km) at ILCP, Australia along with
validation sites: the grid of PSU sites (500 × 150 m for each grid point) and test
site #1 (25 × 20 km). (b) shows the clustered ICESAT forest heights over the same
study area at ILCP.
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nates many stands on sandy soils with heights being between 4 and 12 m although

individual trees may exceed 25 m [78]. Stands dominated by Callitris species are har-

vested commercially through selective logging. Other species occurring include the

widely dispersed Angophora leiocarpa and A. floribunda (smooth and rough barked

apple respectively), with these often extending 30 m in height. Regrowth following

abandonment or neglect of previously cleared agricultural land is often dominated by

brigalow (Acacia harpophylla).

As illustrated in Figure 5.4a, two test sites are selected in consideration of different

purposes. First of all, a grid within the ILCP research area is marked in red, which

consisted of 150 500×150 m Primary Sampling Units (PSUs), with each divided into

30 50 × 50 m Secondary Sampling Units (SSUs). The airborne LiDAR data have

been acquired over this grid of PSU sites in 2000 and also 2009. Therefore, the ALOS

InSAR height estimates will be compared with the airborne LiDAR data over this

PSU grid. Test site #1 (25 × 20 km) is selected for the comparison of the ALOS

heights with the clustered ICESAT heights (see Figure 5.4b).

5.2.1.2 Available data

Through JAXA’s Kyoto and Carbon Initiative (K&C), over 20 dual-pol and quad-

pol ALOS/PALSAR scenes were acquired over the ILCP between 2006 and 2010.

However, while the site is seasonally dry and semi-arid and hence the likelihood of

obtaining InSAR data that are minimally affected by temporal decorrelation is in-

creased, only three interferometric pairs were selected with two of them (acquired in

2007 and 2008, respectively) identified as having a relatively high average of corre-

lation magnitude and hence suitable for retrieving forest height [46]. For each in-

terferometric pair, fine-beam dual-polarization (FBD) data were available. However,

due to the regional rainfall occurring over the study area in the InSAR acquisition of

2008, which violated the constant temporal change effects across the scene (see Ap-
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pendix A), only the interferogram collected in 2007 has the best correlation magnitude

average, and therefore is most suitable for forest height inversion.

To validate the forest height retrieved from InSAR correlation magnitude, esti-

mates of clustered forest height (top 95% height) obtained from ICESAT GLAS data

(see Figure 5.4b) were available for objects generated across the entire ILCP through

segmentation of ALOS/PALSAR HH and HV data and Landsat-derived Foliage Pro-

jective Cover (FPC) data. Using these two datasets, the segments generated were of

varying dimension but found to be relatively homogeneous in terms of vertical struc-

ture, as determined through reference to airborne LiDAR data acquired in 2000 and

also 2009. As mentioned earlier, these airborne data had been acquired previously

over the PSU grid. The measures of vertical structure, including median stand height,

retrieved from the airborne LiDAR were validated with reference field data collected

in 2000 [78]. The clustered ICESAT forest heights and 2009 airborne LiDAR data

are used to validate the proposed approach.

5.2.2 Results and discussions

5.2.2.1 Interferogram generation

For each interferogram, the complex correlation was calculated by averaging mul-

tiple looks (i.e., two range looks along with ten azimuth looks) using the Gamma

Remote Sensing processing software [90]. The range and azimuth common band

filtering for each interferometric pair were applied to compensate for the effect of ge-

ometric decorrelation [19, 68]. The data were then transformed into map coordinates

(at a spatial resolution of 30× 30 m) such that they were coincident with the Shuttle

Radar Topography Mission (SRTM) Digital Surface Model (DSM), through a lookup

table. The observed correlations were then corrected for correlation magnitude bias

and thermal noise decorrelation, as described in Section 5.1.2 and Section 5.1.3, re-

sulting in the correlation component attributable to volume scattering and temporal
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changes. The inverted pixel-based height estimates will be further averaged to achieve

the forest height estimates (on the order of 10 hectares) in order to reduce the noise

in the sampled correlation magnitudes.

5.2.2.2 Validation with airborne LiDAR data

To determine the model parameters (i.e. Sscene and Cscene) for the 2007 inter-

ferometric pair, the 2009 airborne LiDAR data over the grid of PSU sites was used.

A similar comparison was made with airborne LiDAR data collected in 2000, which

provide almost the same results as data collected in 2009. LiDAR-derived metrics of

RH100 and RH70 were tested, with both generating similar results with one another

(with the normalized RMSE of 20.1% for RH100 and 20.2% for RH70). In this work,

RH100 was used because of its larger dynamic range. The comparison result is illus-

trated in Figure 5.5 with each point corresponding to a PSU stand of 500 m × 150

m.

From Figure 5.5a, the HV-pol InSAR correlation magnitude-inverted forest height

is comparable to the airborne LiDAR height data. Basically, the estimation error in

this forest height inversion approach results from the imperfectness of the assumption

that Sscene and Cscene are constant for all of the targets in an InSAR scene (see

Appendix A), i.e. spatial variation of these model parameters across the scene cannot

be sufficiently described by a unique pair of parameters. However, as we have observed

so far, this error source provides a RMSE of 5 m for forest stands of 7.5 hectares,

which is good for most cases. Figure 5.5a also validates Appendix B, where the HV-

pol data can be characterized by the modified RVoG model (3.6) with a small m

and µ ≈ 1 (see Figure B.1b). The data points above the “1:1” line are indicators of

disturbance events, e.g., selective logging (to be discussed in Section 5.2.2.5).

As a comparison, Figure 5.5b illustrates the HH-pol inverted forest height. Prac-

tically, the Sscene of HH-pol data is probably different from that of HV-pol. However,
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Figure 5.5: Quantitative comparison of the ALOS InSAR-inverted heights from the
HV-pol (a) and HH-pol (b) 2007 interferometric pair with the 2009 airborne LiDAR
heights over the grid of PSU sites. Each point corresponds to a forest stand of 500 m
× 150 m.

since the HH-pol data is less sensitive to volume scattering and Sscene describes the

temporal correlation due to volume dielectric change, the HH-pol Sscene should be

greater than or equal to that of HV-pol. Also, we have Sscene = 1 for HV-pol data

(see Figure 5.5a), which implies the volume dielectric change can be ignored. So it is

reasonable to conclude that Sscene = 1 for HH-pol data. By applying the same Cscene

as the HV-pol counterpart, it can be seen that the result in Figure 5.5b is similar to

Figure B.1a and can be characterized by the modified RVoG model (3.6) with a large

m and µ 6= 1 (Appendix B).

5.2.2.3 Forest height map generation

The HV-pol map and the HH-pol map of the InSAR-inverted heights over the

study area of ILCP are illustrated in Figure 5.6 by using the model parameters derived

from Section 5.2.2.2, and overlain on the optical imagery of Google Earth. Both maps
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(a) (b)

Figure 5.6: The InSAR-inverted forest height maps for the study area of ILCP, Aus-
tralia are shown for HV-pol (a) and for HH-pol (b). Both maps are coded with a
color scale (“red” being 45 m, “blue” being surfaces).

share the same color scale from 0 to 45 m, with “blue” being ground surfaces and “red”

being 45 m tall trees. Note both the maps are at the original resolution (i.e. 30 m ×

30 m) without spatial averaging. Comparison between Figure 5.6a and Figure 5.6b

reveals that the HH-pol map is very sensitive to the ground contribution and therefore

the use of this polarimetric combination in this application for estimating forest height

in a dry shrubland is problematic.

In regions where drastic changes in the land cover are occurring (e.g. selective

logging), an unusually large value of decorrelation is observed with similarly large

(and unrealistic) estimates of forest height (as discussed in Section 5.2.2.5). While

these regions are considered a source of error in forest height estimation, a threshold

can be used in their detection and a highlight in the image made where these sorts

of changes are occurring (a useful output as well).
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(a) (b) (c)

Figure 5.7: The InSAR-inverted forest height maps over test site #1 superimposed
on the optical image (a) are shown for HV-pol (b) and HH-pol (c) data.

5.2.2.4 Validation with the clustered ICESAT data

Test site #1 is selected for verifying the model parameters derived using airborne

LiDAR data over the PSU grid. The maps of inverted forest height over test site #1

are shown in Figure 5.7 with the quantitative comparison results plotted in Figure 5.8.

In Figure 5.8, each point represents a forest stand of 480 m × 480 m. Although the

ICESAT segments are of varying sizes, the mean segment is on the order of 480 m ×

480 m. The quantitative plots in Figure 5.8 demonstrate similar features compared

to Figure 5.5. In fact, the combination of Figure 5.5 and Figure 5.8 validate the

polarization dependence of this inversion approach as discussed in Appendix B.

The comparison of forest height inverted from HV-pol data with the clustered

ICESAT data (see Figure 5.8a) shows both underestimation and overestimation of

FSH. Data points above the “1:1” line are primarily indicators of disturbance events,

e.g., selective logging, but can also result from the error in the ICESAT-derived height

estimates. Uncertainties of InSAR-derived forest height at lower heights in Figure 5.8a

can be attributed to the fact that no ICESAT heights are under 10 m for test site

#1. This error in the ICESAT height data is known for this region, and is evident
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Figure 5.8: Quantitative comparison of the HV-pol (a) and HH-pol (b) ALOS InSAR
inverted heights with the clustered ICESAT heights and themselves over test site #1.
Each point in (b) corresponds to a forest area of 480 m × 480 m, while that in (a)
corresponds to a segment having a similar size to a 480 m × 480 m area.

upon examination of optical imagery. As for the HH-pol comparison (Figure 5.8b),

we utilized the HV-pol ALOS InSAR inverted height as the ground truth height

instead of using the clustered ICESAT height data since it can be noticed that from

Figure 5.8a, the clustered ICESAT data has low accuracy for this type of study.

Moreover, from both Figure 5.5a and Figure 5.8a, the HV-pol InSAR inverted height

is observed to be consistently comparable to the ground validation heights.

A comparison between Figure 5.7b and Figure 5.7c illustrates that the HH-pol

inverted forest height is very sensitive to not only temporal changes of the ground

dielectric properties but also the disturbances of the ground dielectric change (shown

as “red” spots in Figure 5.7c), while the HV-pol inverted height are much more

sensitive to the volume than the ground.
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(a) (b)

(c) (d)

Figure 5.9: A closeup of the central region of the study area that illustrates the
capabilities of the interferometric correlation and the RCS intensity in measuring
forest change where selective logging is known to have occurred. (a) is the optical
image from Google Earth, (b) is the RCS/backscatter intensity, (c) is the inverted
forest height using InSAR correlation magnitude, and (d) is the RCS change.

5.2.2.5 Characterization of forest change

In many regions of the inverted forest height maps (see Figure 5.9, which is taken

from a central region of Figure 5.6a, the large InSAR-inverted heights (marked in

red) are the consequences of change in the forest canopy rather than an indication

of taller trees. This is confirmed through reference to hyper-temporal observations

using Landsat and MODIS-simulated Landsat sensor data and time-series compari-

son of high-resolution optical data from the 2000 airborne campaign and Worldview

observations in 2010 which concludes that selective logging is occurring at these lo-
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cations [52]. Subtle changes such as these are not readily observed in the backscatter

intensity image.

Establishing which areas of the image are indicative of structure or a disturbance

event is difficult without the use of other datasets (e.g., time-series of Landsat Foliage

Projective Cover (FPC), as used for statewide mapping and reporting of change) as

the effects from volume scattering, temporal changes and disturbance events are all

coupled together. However, if a “best effort” is performed to remove the effect of

volume scattering and temporal changes by utilizing part of the test data as training

set as well as other validation data (e.g., LiDAR/forest inventory data) to remove γv&t,

a quantitative description of the disturbance behavior can be obtained. This effort

will be elaborated in Section 5.6, where a forest disturbance map can be generated

along with the inverted forest height map.

Taken over a larger area and over a longer time period, this type of work can be

extended to provide a model of forest changes that will be important for detecting

land cover change, such as selective logging and forest degradation, and is a useful

result in its own right. Such information is also important for understanding the

limitation of the proposed InSAR technique for estimating vegetation height, and for

characterizing this error source for DESDynI-R (now called NISAR) like missions [3].

5.3 Ground validation at the Howland Research Forest, Maine,

US

In this section, ground validation results are provided for the forest height inver-

sion approach over the Howland research forest in central Maine, US. Particularly,

Section 5.3.1 introduces the study area and the experimental data, while Section 5.3.2

demonstrates the forest height inversion results in comparison with airborne LiDAR

data.
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5.3.1 Study area and experimental data

5.3.1.1 Site description

To validate the inversion model, the chosen study area extends over a 83 km ×

71 km region in central Maine (see Figure 5.10), where the Howland Research Forest

(Latitude 45◦12′, Longitude −68◦43′) and the Penobscot Experimental Forest (Lati-

tude 44◦51′, Longitude −68◦37′) are located. Two climate observing stations that are

close to the Howland forest and the Penobscot forest are illustrated in Figure 5.10

with the historical weather record available from National Oceanic and Atmospheric

Administration (NOAA)’s National Climate Data Center (NCDC) [1].

About 35 miles north of Bangor, ME, the 202-ha Howland research forest is a

boreal-northern hardwood transition forest consisting of spruce-hemlock-fir, aspen-

birch, and hemlock-hardwood mixtures with average tree height of 20 m [25]. The

forest has not been selectively logged since 1900 and is considered as an “overmature”

forest. The climate over this area is primarily cold, humid, and continental with the

snowpack being of up to 2 m from December through March. The annual temper-

ature and rainfall in this region are measured as 6.1 ± 1.0 ◦C and 988 ± 170 mm.

The topography around this area varies from flat to gently rolling with a maximum

elevation change of < 68 m within 10 km.

Similarly, the 1619-ha Penobscot experimental forest adjacent to Bangor, ME

across the Penobscot river is located in Acadian Forest, which is an ecotone between

the eastern broadleaf and boreal forests consisting of a mixture of northern conifers

and hardwoods dominated by spruces, balsam fir, and eastern hemlock [69]. The

average tree height is 18.4 m. The climate is cool and humid with the annual tem-

perature average of 6.6 ◦C (e.g., −7.0 ◦C for February and 20.0 ◦C for July). Annual

precipitation is about 1060 mm, with 48% falling from May through October, and

annual snowfall averages 239 cm.
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10 km 

N 

Figure 5.10: Study area in Maine, US. The grey image shows the correlation magni-
tude of the interferogram 10 July–25 August 2007 over the central Maine area, where
the Howland research forest and the Penobscot experimental forest are encompassed
and marked. The overlaid color map is an LVIS strip of height, and serves as the
ground validation data for forest height inversion. Two climate observing stations
(“North Station” and “South Station”) are also indicated.
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5.3.1.2 LVIS lidar data

Ground validation data exists in the form of a narrow strip (63 km × 7 km) of

Laser Vegetation Imaging Sensor (LVIS; [7]) data collected over the Howland forest

and the Penobscot forest in 2009. LVIS is an airborne full-waveform scanning laser

altimeter, which is developed by NASA’s Goddard Space Flight Center (GSFC). It

operates at an altitude of 10 km producing swath up to 1000 km wide and normally

with 25-m wide footprints and 10-cm height accuracy. The LVIS height data in this

study is demonstrated as a color strip map in Figure 5.10 with a spatial resolution

of 50 m × 50 m in raster grid. The data products of LVIS Lidar data has various

metrics: RH50, RH75 and RH100, etc. Here, “RH” means relative height, and RH100

height stands for the height above the detected ground at which 100% of the waveform

energy has been returned, and is typically associated with the maximum tree height

within a resolution beam of the lidar. In this study, RH100 metric is used as the

ground truth forest height and found to be well related to the ALOS InSAR-inverted

forest heights, as will be shown in Section 5.3.2.2.

5.3.1.3 ALOS/PALSAR data

ALOS/PALSAR is a repeat-pass L-band SAR developed by JAXA through the

K&C Initiative [74, 66]. The repeat period of ALOS/PALSAR is 46 days. In this

central Maine area, there also exists eight FBS (fine-beam single-polarization) and ten

FBD (fine-beam dual-polarization) ALOS/PALSAR scenes (Table 5.1). In Table 5.1,

we also show the temperature and the precipitation on the observation date, as well

as the accumulated precipitation during the past three days prior to the data collec-

tion (denoted as “3-day accumulated precipitation”), all of which are available from

NOAA’s NCDC [1]. For each observation date, the weather record for both climate

observing stations are demonstrated. The “3-day accumulated precipitation” is used

because it happens that there might not be rainfall on the observation date; however,
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Table 5.1: ALOS/PALSAR acquisitions over the central Maine area between 2007 and 2011.
For each acquisition, weather conditions are provided over the “North Station” (denoted by
“(N)”) as well as the “South Station” (denoted by “(S)”). “3-day Accumulated Precipitation”
stands for the accumulated precipitation during the past three days prior to the observa-
tion date.

Collection Date Data Mode Precipitation (mm)
3-day Accumulated
Precipitation (mm)

Temperature
(Max/Min; ◦C)

20070107 FBS
7.6 (N)
0.0 (S)

20.6 (N)
16.3 (S)

12.8/3.3 (N)
6.7/−3.9 (S)

20070222 FBS
0.0 (N)
0.0 (S)

1.3 (N)
0.0 (S)

0.0/−15.6 (N)
−1.7/−20.6 (S)

20070710 FBD
2.8 (N)
0.0 (S)

3.3 (N)
0.0 (S)

19.4/9.4 (N)
28.9/12.2 (S)

20070825 FBD
19.1 (N)
1.0 (S)

5.3 (N)
8.4 (S)

22.2/17.8 (N)
29.4/15 (S)

20071010 FBD
0.5 (N)
0.0 (S)

4.6 (N)
1.0 (S)

16.7/3.3 (N)
12.2/7.2 (S)

20080110 FBS
2.5 (N)
0.0 (S)

0.3 (N)
0.3 (S)

11.1/2.8 (N)
6.7/−4.4 (S)

20080225 FBS
0.0 (N)
0.0 (S)

3.8 (N)
4.3 (S)

3.9/−12.2 (N)
5/−13.3 (S)

20080411 FBS
0.0 (N)
0.0 (S)

0.0 (N)
0.0 (S)

12.2/1.1 (N)
11.1/0.6 (S)

20080527 FBD
0.5 (N)
0.0 (S)

2.3 (N)
0.0 (S)

22.2/11.1 (N)
26.7/6.7 (S)

20080712 FBD
0.0 (N)
0.0 (S)

8.6 (N)
0.0 (S)

24.4/8.9 (N)
26.1/8.3 (S)

20090227 FBS
0.3 (N)
7.6 (S)

0.3 (N)
0.0 (S)

2.2/−12.2 (N)
8.9/−6.7 (S)

20090830 FBD
14.0 (N)
0.0 (S)

2.5 (N)
51.3 (S)

11.7/10 (N)
21.1/10.6 (S)

20091015 FBD
0.0 (N)
0.0 (S)

9.1 (N)
10.2 (S)

7.8/−3.3 (N)
5.6/−3.9 (S)

20100417 FBS
0.0 (N)
0.0 (S)

0.0 (N)
0.0 (S)

11.1/0.6 (N)
6.1/2.2 (S)

20100602 FBD
17.8 (N)
0.0 (S)

0.0 (N)
11.4 (S)

15.6/12.2 (N)
22.2/12.2 (S)

20100718 FBD
2.5 (N)
0.0 (S)

0.0 (N)
0.0 (S)

30.6/16.7 (N)
28.9/17.2 (S)

20101018 FBD
0.0 (N)
0.0 (S)

45.2 (N)
41.1 (S)

16.1/4.4 (N)
10/1.1 (S)

20110305 FBS
0.3 (N)
0.5 (S)

1.0 (N)
1.8 (S)

−1.7/−25 (N)
5.6/−3.3 (S)
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the humidity level is still high due to the accumulated rainfall in the past few days,

e.g., “20101018”. It can also be seen that some of the PALSAR scenes have uniform

weather conditions over the northern and southern sites, e.g., “20070710”, “20071010”

and “20100718”. However, some of them seem to have nonuniform weather conditions

(e.g., “20070825”), which we would like to avoid in order to apply the assumption

of constant temporal change parameters as discussed in Section 3.2.1 and in Ap-

pendix A (i.e., the weather conditions for each acquisition of the interferogram is

uniform). Such an effect can be seen in Figure 5.10 where the grey-scale image shows

the correlation magnitude of the interferogram 07/10/2007–08/25/2007. Here, the

correlation magnitude is significantly affected by the nonuniform weather conditions

on 08/25/2007 due to the rainfall occurred over the northern site.

5.3.2 Results and discussions

In this section, we first describe the InSAR processing details and then validate

the forest height inversion model by comparing ALOS InSAR correlation magnitude-

inverted heights with LVIS heights (i.e., supervised regression) over the Howland and

Penobscot forests in central Maine.

5.3.2.1 InSAR processing

All interferograms described in this work were created using Gamma Remote

Sensing software [90] with a correlation estimation window size of 5× 5 (i.e., 5 range

looks along with 5 azimuth looks for the estimation of InSAR correlation) and a

multi-look averaging (two range looks along with ten azimuth looks) afterwards. The

data were transformed into map coordinates (at a resolution of 20 m × 30 m) that

are coincident with the Shuttle Radar Topography Mission (SRTM) data through a

look-up table. The common-band filtering (both range and azimuth) is applied to

ensure the geometric decorrelation is removed [19, 68]. The estimation bias in the

sampled correlation magnitudes and the thermal noise decorrelation are corrected as
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Figure 5.11: Scene-wide correlation magnitude averages and κz values of the 153
interferometric pairs over central Maine (as blue circles) along with the 37 pairs
covering the entire state of Maine (as red stars). All of the scenes have been calibrated
for the geometric decorrelation. For the central Maine area, five best scenes are
marked by the collection dates with their κz < 0.06 rad/m.

in Section 5.1.2 and Section 5.1.3, respectively. The remaining correlation component

only deals with the coupled effect of volume scattering and temporal change.

Specifically, common-band filtering was applied to the eight FBS and ten FBD ob-

servations so that interferograms could be formed out of all combinations [90]. These

were processed into 153 interferograms with the scene-wide correlation magnitude

averages and their κz values shown as blue circles in Figure 5.11. From Figure 5.11, it

can be seen that even for κz < 0.06 rad/m, the ALOS scenes collected between July

and October in both 2007 and 2010 have the best correlations amongst the possible

combinations (even after accounting for the effects of baseline and volumetric decorre-

lation). While this may be a surprising result because it implies that the summer/fall

data has the best correlations as opposed to winter scenes, we allowed the data to

indicate the best scenes to use for this analysis. Such information may be pertinent

to future spaceborne missions such as DESDynI-R (now called NISAR) and ALOS-2.
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Note that we define the “best” scene as the one with the highest correlation magni-

tude. Although we utilize the temporal change effects to invert forest height, this does

not contradicts considering the “best” scene with highest correlation magnitude (or

equivalently the least temporal change effects). As seen in Figure 5.11, even for the

best interferometric pair 07/10/2007–08/25/2007 with almost zero baseline, the cor-

relation magnitude average is as low as 0.5, which is primarily dominated by temporal

change effects with large temporal baseline (e.g., at least 46 days) and is believed to

be sufficient for forest height inversion. Having a lower correlation magnitude average

(or equivalently more temporal change effects) will make the inversion less robust and

reliable due to the presence of correlation sampling noise [79]. Therefore, for repeat-

pass InSAR data with large temporal baselines (on the order of months; at least 46

days for ALOS), we would like to seek the highest level of scene-wide correlation

magnitude average in order to have reliable estimates of forest height.

As indicated in Figure 5.11 and also in [77] (under the unfrozen condition), the

smaller κz value, the more likely a high correlation magnitude average can be ob-

tained (although the lower the sensitivity to height and vertical structure from the

volume decorrelation). However, at a fixed κz value, it is the level of the tempo-

ral change effects that determines whether a high correlation magnitude could be

achieved. By referring to Table 5.1 for the weather conditions that relate to the five

best interferometric pairs in Figure 5.11, we noticed that given a fixed κz value, an

interferometric pair with less precipitation on both observation dates and less 3-day

accumulated precipitation prior to the observations is more likely to have a higher

correlation magnitude average. That is why even for some of the interferometric pairs

with almost zero baseline, the observed correlation magnitude average are still very

low (<0.3). It is possible for them to have larger temporal baselines, i.e., the larger

temporal baseline, the more likely to have larger temporal change effects. However,

the fundamental reason is that the temporal change effects (e.g., rainfall, wind, forest
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growth, selective logging, freezing) are so pronounced for those observations that the

SAR returns are barely correlated any more.

5.3.2.2 Validation with LVIS lidar data

Figure 5.12: The optical image (a) from GoogleEarth is compared with the LVIS
height data (b) and the ALOS correlation magnitude-inverted forest height (c) over
the Howland research forest in central Maine. (d) shows the map from (c) with the
values over water bodies removed. (b–d) are coded with the same color scale (“blue”
being surfaces, “red” being 45 m). (c,d) are from the interferogram 07/10/2007–
08/25/2007, which have been divided into three segments to characterize the spatial
variation of temporal change effect. The spatial resolution of (b–d) is 50 m × 50 m.

As seen from Figure 5.11, the ALOS interferometric pair 07/10/2007-08/25/2007

for central Maine had the largest correlation magnitude, and thus was most suitable

to be utilized for comparison with LVIS data. Through the proper estimation of the

fitting parameters Sscene and Cscene (as in Section 3.2.3), the ALOS InSAR correla-

tion magnitude-inverted height estimates are comparable with the LVIS RH100 height
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Figure 5.13: Quantitative comparison results between ALOS correlation magnitude-
inverted forest height and LVIS height. (a) shows the result (comparison between
Figure 5.12b and Figure 5.12d) for the interferogram 07/10/2007–08/25/2007, which
is divided into three segments to account for different temporal change levels (RMSE
= 3.6 m and R = 58%); while (b) shows the result of the interferogram 07/10/2007–
10/10/2007, which seems to have uniform effect of temporal change (RMSE = 3.9 m
and R = 49%). The resolution is 160 m × 480 m after multi-pixel averaging.
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data as illustrated in Figure 5.12. Since repeat-pass InSAR correlation magnitude is

sensitive to temporal decorrelation, the inverted height estimates are expected to be

very large over water bodies (as shown by Figure 5.12c). After removing those height

values by identifying open water regions with the National Land Cover Database

2006 (NLCD2006; [17]), the resulting map (i.e., Figure 5.12d) corresponds well to the

LVIS data (i.e., Figure 5.12b). A quantitative comparison between these two images

is shown in Figure 5.13a, where the resolution is 160 m × 480 m after multi-pixel av-

eraging. In order to compensate for a spatial variation in the temporal decorrelation,

the strip of InSAR height map (in both Figure 5.12c and Figure 5.12d) is divided into

three segments with each segment allowed to have its own unique model parameters

in order to fit best to the LVIS observations (as shown by the three different markers

and their associated model parameters in Figure 5.13a). This spatial variation of

temporal change effect (and thus the model parameters) has been verified with the

use of the precipitation data from the National Climate Data Center (NCDC; [1]) in

Appendix A, where the characterization of the spatial homogeneity is also discussed.

In comparison, Figure 5.13b shows the result for the second best interferomet-

ric pair 07/10/2007–10/10/2007, which tends to have a uniform degree of temporal

decorrelation throughout the image, i.e., a single pair of model parameters can be

applied to all of the targets in the same test region. In Figure 5.13a, the RMSE of

the ALOS InSAR correlation magnitude-inverted heights compared to LVIS heights

is 3.6 m (correlation coefficient R = 58%), while in Figure 5.13b the RMSE is 3.9 m

(R = 49%). In order to test the inherent homogeneity of temporal change parame-

ters from the second best interferometric pair, we evenly divided the LVIS strip into

two parts (i.e., northern and southern parts), and performed a cross-validation by

taking the northern heights as training samples and inverting the southern heights

with the model parameters derived from the northern part. The derived parameters

for the northern part are Sscene = 0.59, Cscene = 9.42 (as opposed to Sscene = 0.6,
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Cscene = 9.95 in Figure 5.13b for the entire strip) with RMSE of 3.6 m and R of 56%,

while by applying these parameters on the southern part we achieved the regression

results with RMSE of 4.4 m and R of 47%. Note, it is the spatially correlated be-

havior of temporal change parameters that cause the consistency in these regression

results over the LVIS strip (about a 44,000-hectare area).

Note the uncertainty at the lower end of the height range is related to extra

temporal decorrelation (e.g., where water bodies are not thoroughly removed; farm-

ing activities, etc.), and poor SNR in ground scattering due to the thermal noise

decorrelation (which makes the total correlation magnitude dominated by the sam-

pling noise [79]). These overestimated values can be removed through the utility of a

forest/non-forest classification map, which will be discussed later.

To this end, we have noticed the linear relationship between the InSAR correlation

magnitude-inverted forest height and lidar height, which is obtained through the use

of (3.5) or equivalently as in [5]. However, by using the linear motion variance as

in [33], we observed a noticeable quadratic relationship between the InSAR-inverted

height and lidar height. This can be explained as below. Given that the InSAR-

inverted height using (3.5) is linear with the lidar height (e.g., Figure 5.13), we have

(3.12) being the correct relationship between the observed correlation magnitude and

actual forest height, i.e., |γobs| ∝ exp−ch
2
v (where c is a constant factor). However, if we

used the linear motion variance in [33] to derive a similar model for the correlation

magnitude, we would have the modeled correlation magnitude given as |γmod| ∝

exp−c
′h′v (where c′ is another constant factor and h′v is the estimated forest height).

Therefore, in order to fit the modeled correlation magnitude to the observed value, we

would achieve the estimated height being quadratic in the actual height, i.e., h′v ∝ h2
v.
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5.4 Generation of forest height mosaic

In this section, we will propagate the inverted forest height as well as the model

parameters that are derived over the ground validation site in central Maine area (see

Section 5.3) throughout the entire state of Maine utilizing the overlap areas between

adjacent interferometric pairs, and therefore create a state mosaic of forest height for

the US state of Maine. In particular, Section 5.4.1 describes a manual mosaicking

approach, and Section 5.4.2 provides an automatic mosaicking algorithm with the

refined mosaic results shown in Section 5.4.3.

5.4.1 Mosaic map generation for the entire state of Maine

Based on the observation dates where the highest correlation magnitude average

existed for the central Maine region, a set of ALOS images (about 0.6 million hectares

for each image) was identified to create a state mosaic (about a 9 million-hectare area)

of correlation magnitude (and hence forest height). Specifically, 94 ALOS scenes with

multiple dates in the summer/fall 2007 and 2010 timeframe were analyzed, from which

37 interferometric pairs (see Table 5.2) had the best correlations with small κz values

(illustrated as red stars in Figure 5.11).

Assuming the parameters (Sscene and Cscene) of the temporal change effect are

constant within each scene (the scenes are selected with high level of homogeneity

that is discussed in Appendix A), the spatial overlapping regions of adjacent ALOS

interferometric scenes with different frame and orbit numbers in Table 5.2 can be

used to propagate the derived model parameters and forest heights from the strip of

LVIS data throughout the entire state of Maine. Although the best interferometric

pair of Figure 5.13a has a smaller RMSE than the pair of Figure 5.13b, we prefer

to utilize the second pair as the basis for propagating the analysis since it has more

homogeneous effect of temporal change across the scene.
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Table 5.2: Interferometric pairs utilized for generating the state mosaic. Each interferogram
is indexed by its unique ALOS coordinate (frame # and orbit #), and named by the
collection dates.

hhhhhhhhhhhhFrame #
Orbit #

124 123 122 121 120 119 118 117

930
20070727
20070911

20070710
20070825

20070808
20070923

920
20100706
20100821

20070727
20070911

20070710
20070825

20070808
20070923

910
20100706
20100821

20070727
20070911

20070710
20070825

20070808
20070923

900
20070715
20070830

20100706
20100821

20070611
20070727

20070710
20070825

20070808
20070923

890
20070616
20070801

20070715
20070830

20100706
20100821

20070727
20070911

20070710
20071010

20070808
20070923

20070722
20070906

880
20070703
20071003

20070616
20070801

20070715
20070830

20100706
20100821

20070611
20070727

20070710
20071010

20070808
20070923

870
20070703
20071003

20070616
20070801

20100723
20100907

20100706
20100821

20070611
20070911

860
20070818
20071003

20100809
20100924

The procedure for propagating the LVIS ground validation through the overlap

regions of the ALOS data is illustrated in Figure 5.14. Here, we would like to propa-

gate the inverted model parameters (and thus forest heights; Figure 5.14b) from the

ALOS InSAR scene (orbit #: 119 and frame #: 890; denoted by “119 890”) in central

Maine where the LVIS strip is located, to achieve the parameters and forest heights

for the ALOS InSAR scene (orbit #: 118 and frame #: 890; denoted by “118 890”)

on the right side. By choosing the model parameters of the InSAR scene“118 890” as

Sscene = 1 and Cscene = 8.85 obtained from a rough estimate of these values, we have

the resulting forest height map superimposed on the optical image in GoogleEarth

(Figure 5.14c).

A quantitative comparison result is shown in Figure 5.15a for the overlapping re-

gion of these two scenes. It can be seen here that the estimated heights of the InSAR

scene “118 890” do not match the reference heights of the InSAR scene “119 890”

well. However, by adjusting the model parameters as Sscene = 0.75 and Cscene = 13.86
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Figure 5.14: Illustration of the propagation procedure: the inverted model parameters
and forest heights over central Maine (orbit #: 119 and frame #: 890) are exploited
as the basis and propagated through the overlapping area to the interferogram on the
right side (orbit #: 118 and frame #: 890). (a) shows the optical image available
within GoogleEarth. As for the ground reference height, (b) shows the inverted
forest height of the InSAR scene “119 890”. (c) shows the inverted forest height of
the InSAR scene“118 890” using inaccurate model parameters, while (d) shows the
result with correct model parameters. All of the forest height maps are color-coded
from 0 to 45 m with a spatial resolution of 20 m × 30 m.

through a curve fit (Section 3.2.3), the inverted forest height map is shown in Fig-

ure 5.14d with the quantitative comparison shown in Figure 5.15b, both of which

imply that the estimated and ground reference heights correspond with each other

well (RMSE = 2.69 m and R = 80% for all of the data points except those from water

bodies). Note that the overestimated data points are from water bodies (identified

by utilizing the water classification of NLCD2006 and shown as a different color in

the figure) where high temporal decorrelation is expected.

153



(a) (b)

Figure 5.15: Quantitative comparison results between the inverted forest heights in
the InSAR scene “118 890” and the ground reference heights in the InSAR scene
“119 890” (only for their spatial overlap): (a) corresponds to Figure 5.14c while (b)
corresponds to Figure 5.14d (RMSE = 2.69 m and R = 80% for the “red” points).
The resolution is 340 m × 750 m after multi-pixel averaging. The height estimates
over water bodies are identified by using the water classification of NLCD2006 and
represented as green dots.

Following the same procedure to propagate the analysis and the model parameters

(and thus forest heights) as outlined in Figure 5.16, a state mosaic of forest height

can be generated. This is shown in Figure 5.17. In Figure 5.16, along with the

model parameters Sscene and Cscene, an indication of the regression quality measures

(i.e., RMSE and R) are included for the cross-track direction (most of the scenes

in the along-track direction are collected on the same date giving RMSE < 0.5 m

and R > 99%). It can be seen that even though the cross-track scenes are collected

with temporal baselines on the order of months (e.g., at least 46 days), there is

indeed noticeable consistency (e.g., RMSE as low as 2 m and R up to 80%) between

the inverted forest heights. Again, this verifies the homogeneity of temporal change

parameters and implies that the errors in this type of inversion are manageable. Note
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Figure 5.16: The outline of the mosaicking scheme. Each interferogram in Table 5.2 is repre-
sented by “orbit# frame#”. The mosaicking process starts from the InSAR scene “119 890”
(marked in “red”), and propagates the analysis as well as the inverted forest heights by se-
quentially going through the interferograms marked in “green”, “yellow”, “blue”, “magenta”,
“pink”, “cyan”, “violet” and finally “grey”. The model parameters Sscene and Cscene along
with RMSE (in units of m) and R in the cross-track direction are indicated.

155



Figure 5.17: A map of forest height for the state of Maine, US. The state mosaic is
color-coded as indicated (“blue” being 0 m and “red” being 45 m). All of the values
over water bodies have been removed. Most of the “orange” and “red” spots are
indicators of high temporal decorrelation rather than large trees.

that regions with a small R value are more indicative of a small dynamic range of

forest height rather than inhomogeneous temporal change effects.

Because height estimates over water bodies are affected by extreme temporal

decorrelation, inverted values over water bodies have been removed by using the

water classification of NLCD2006 [17]. The remaining regions of unusually tall trees

(i.e., colored orange and red) are most likely due to localized sources of high temporal

decorrelation (e.g., farming activity and urban activity), which should be flagged and

treated separately. A forest/non-forest map can be utilized to remove those over-

estimated values. It can also be noticed that there are artifacts in the mosaic map

of Figure 5.17, e.g., striping problem. Note, this does not imply the assumption of
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Figure 5.18: The histogram of the utilized instrumental parameters (a) and the scene-
wide scatter plot of the derived model parameters (b) in the mosaic generation.

constant temporal change parameters is wrong; rather, it is due to the drawback (e.g.,

“wallpapering” problem) of the manual mosaicking algorithm. Improving the mosaic

map with the use of an automatic mosaicking algorithm along with a forest/non-forest

map will be described in Section 5.4.2 and Section 5.4.3.

The perpendicular baselines (and hence κz’s) for data used in the mosaic are plot-

ted in Figure 5.18a. The range of the utilized κz’s for this application was < 0.15

rad/m and most often < 0.05 rad/m hence fulfilling the small-κz assumption (Ap-

pendix C). A plot of the model parameters Sscene and Cscene is shown in Figure 5.18b.

The horizontal axis represents the scene-wide correlation magnitude average (from

Figure 5.11), which emphasizes the correlated behavior between the model parame-

ters and the temporal changes of weather conditions. As mentioned earlier, a smaller

Sscene means larger dielectric change, while a smaller Cscene implies higher level of

wind-induced motion. For rainy and windy days, both Sscene and Cscene are expected

to be small, while for stable weather (e.g., without rainfall), both of the parameters

are expected to be large.
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5.4.2 An automatic mosaicking algorithm

This manual mosaicking approach is prone, however, to what can be termed as

the “wallpapering” problem (that is, by fixing one or two points of the wallpaper

and gradually attaching the remaining part, larger deviation will occur as distance

from the fixed points increases). Here, scenes that are farther away from the ground

validation sites result in larger uncertainty in the determined estimates of the model

parameters. In addition to this effect, the propagation path/sequence is non-unique,

leading to a non-unique solution in determining the model parameters. The solution

to this problem is to introduce an automatic mosaicking algorithm that estimates the

desired model parameters simultaneously and arrives at a solution that is mathemat-

ically traceable and has a globally-minimized error.

In order to propagate the inverted forest height through scene overlap areas, it

is necessary to explicitly define a fitting metric given any pair of overlapping forest

height estimates. In particular, a nonlinear least squares problem is formulated to

characterize the fitting metric. We then investigate the solution for a three-scene

mosaicking problem that serves as a simplified scenario and, finally, generalize the

matrix formulation for multiple overlapping scenes.

5.4.2.1 Nonlinear least squares fitting metric

To begin, a comparison is made between two sets of forest height estimates in

their overlapping region. According to (3.12), the observed repeat-pass HV-polarized

InSAR correlation magnitude, |γHV
v&t|, due to the coupled effects of volume scattering

and temporal change, is related to the desired forest height estimate hv as,

|γHV
v&t| = Sscene · sinc

(
hv

Cscene

)
, for hv < πCscene (5.5)

where Sscene (unitless; 0 ≤ Sscene ≤ 1) characterizes the dielectric fluctuation of the

volume scatterers (perhaps due to moisture change, e.g., rainfall; a smaller Sscene
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indicates a bigger dielectric change), while Cscene (in meters; Cscene > 0) represents

the random motion of volume scatterers (perhaps due to wind; a smaller Cscene implies

a higher level of motion). Only the main lobe of the sinc function is used in (5.5).

Through inverting (5.5), the forest height estimates can thus be considered as a

function of the correlation measurements |γHV
v&t| and the fitting parameters (Sscene and

Cscene).

Suppose there exist two sets of forest height estimates in an overlap area with the

height estimates inverted as below,

hv1 = f(|γHV
v&t1
|, Sscene1 , Cscene1) = f1(Sscene1 , Cscene1) (5.6)

hv2 = f(|γHV
v&t2
|, Sscene2 , Cscene2) = f2(Sscene2 , Cscene2). (5.7)

Here, f is the above-mentioned implicit function performing the forest height

inversion, where we further omit the variable |γHV
v&t| to keep the notation concise,

since the correlation magnitude is invariant in the process of data fitting. Subscripts

i = 1, 2 are used to differentiate the forest height estimate, as well as the model

parameters from the i-th set.

To proceed, it can be assumed that the inverted forest heights from the repeat

observations, on average, are comparable to each other, and therefore, a metric is

desired so that the difference between hv1 and hv2 can be minimized. In Section 3.2.3,

a fitting metric comprised with two parameters was used that was comprised of the

slope k and offset b, which is illustrated in Figure 3.3.

In Figure 3.3, the two sets of forest height estimates are considered as the horizon-

tal and vertical axes with the data cloud illustrated as an ellipse. The slope parameter

k describes the slope of its major axis, while the offset parameter b represents the

relative difference between the average forest height estimates. In particular, k and b

are written as:
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k = tan(φ) (5.8)

b =
m1 −m2

m
with m =

m1 +m2

2
(5.9)

where φ is the angle between the major axis and the horizontal axis and m1 and

m2 are the average forest height estimates. The calculation of these parameters is

obtained through a principle component analysis-based method as in Section 3.2.3.

In order to have hv1 and hv2 match one another, a nonlinear least squares criterion

is used to seek the proper model parameters Sscenei and Cscenei (i = 1, 2), such that

the following residual error can be minimized, i.e.,

T = (k − 1)2 + (b− 0)2. (5.10)

During a non-automated mosaicking process (shown in Section 5.4.1), for a par-

ticular overlap area, one set of forest heights is always known prior to the inversion of

the other, and thus, (5.10) is repeatedly used as the residual error that is minimized

in order to achieve the optimal estimates of the model parameters (and, thus, forest

heights) for the other InSAR scene. In other words, only the estimates from one In-

SAR scene are considered unknown each time the optimization step is run. However,

if multiple overlapping scenes are used, it is desired to come up with the estimates

simultaneously with the residual fitting error minimized globally. In order to see this,

we next consider the three-scene mosaicking problem as a simplified scenario.

5.4.2.2 Three-scene mosaicking problem

As shown in Figure 5.19, we thus apply this fitting metric (characterized by k

and b) to a simple three-scene mosaicking problem. There are three InSAR scenes

along with a narrow validation site, where the forest heights hv0 are predetermined

and considered as ground truth data. In this example, three overlap areas can be

obtained, i.e., Scene 1 with the validation site, Scene 1 with Scene 2 and Scene 1
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Figure 5.19: Illustration of mosaicking three InSAR scenes. The “blue” bar is a
ground validation site with the heights predetermined. In this example, there are
three InSAR scenes (i.e., three pairs of model parameters Sscene and Cscene need to
be determined) along with three overlap areas (i.e., three pairs of fitting parameters
k and b can be computed).

with Scene 3. A set of three equations, f1, f2 and f3, for these overlap areas can be

summarized as:


hv1 = f1(Sscene1 , Cscene1) with hv0 in Overlap 1

hv1 = f1(Sscene1 , Cscene1) with hv2 = f2(Sscene2 , Cscene2) in Overlap 2

hv1 = f1(Sscene1 , Cscene1) with hv3 = f3(Sscene3 , Cscene3) in Overlap 3

.

In the overlap regions (which includes the overlap of the central scene with ground

validation data), two fitting parameters, i.e., ki and bi, are specified, where i ∈

{1, 2, 3}. The vector representation is defined as:

ξ = G(ρ) (5.11)

where:
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ξ =



k1

b1

k2

b2

k3

b3


, ρ =



Sscene1

Cscene1

Sscene2

Cscene2

Sscene3

Cscene3


(5.12)

and G is the implicit function that relates ξ to ρ. The least squares solution ρ∗ can

be obtained by minimizing the target function:

ρ∗ = arg min
ρ
‖ξ − ξ∗‖2 = arg min

ρ
‖G(ρ)− ξ∗‖2 (5.13)

where:

ξ∗ =



1

0

1

0

1

0


(5.14)

and “‖ · ‖2” is the Euclidean norm of a vector. Since G is a nonlinear function,

we can solve this nonlinear least squares problem by utilizing the Gauss-Newton

algorithm [54]. Particularly, we first perform the Taylor series expansion of G at an

initial point ρ
0

(that is close to the optimal point ρ∗), and keep the terms up to the

first order, i.e.,

G(ρ) ≈ G(ρ
0
) + J · (ρ− ρ

0
) (5.15)
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where J is the 6× 6 Jacobian matrix calculated at the initial point ρ
0

and defined as:

J =



∂k1
∂Sscene1

∂k1
∂Cscene1

∂k1
∂Sscene2

∂k1
∂Cscene2

∂k1
∂Sscene3

∂k1
∂Cscene3

∂b1
∂Sscene1

∂b1
∂Cscene1

∂b1
∂Sscene2

∂b1
∂Cscene2

∂b1
∂Sscene3

∂b1
∂Cscene3

∂k2
∂Sscene1

∂k2
∂Cscene1

∂k2
∂Sscene2

∂k2
∂Cscene2

∂k2
∂Sscene3

∂k2
∂Cscene3

∂b2
∂Sscene1

∂b2
∂Cscene1

∂b2
∂Sscene2

∂b2
∂Cscene2

∂b2
∂Sscene3

∂b2
∂Cscene3

∂k3
∂Sscene1

∂k3
∂Cscene1

∂k3
∂Sscene2

∂k3
∂Cscene2

∂k3
∂Sscene3

∂k3
∂Cscene3

∂b3
∂Sscene1

∂b3
∂Cscene1

∂b3
∂Sscene2

∂b3
∂Cscene2

∂b3
∂Sscene3

∂b3
∂Cscene3



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ρ=ρ

0

(5.16)

Thus, by letting ρ = ρ∗ and rearranging the terms in (5.15), we have:

ρ∗ ≈ ρ
0

+ J−1 · [ξ∗ −G(ρ
0
)] (5.17)

where J is assumed invertible (which is usually true in practice). Because it is difficult

to express the function G analytically, derivatives in (5.16) are calculated numerically.

If G is a linear function, the result of (5.17) is exactly the desired optimal point.

However, since G is nonlinear, the Gauss-Newton algorithm is an iterative numerical

method, which considers the result of (5.17) as a new initial point and refines the

value of ρ∗ through another circulation of (5.17).

5.4.2.3 Multi-scene mosaicking problem: the matrix formulation

With the matrix form of the least squares solution for the three-scene case es-

tablished, a generalized treatment of multiple connected InSAR scenes along with

multiple validation sites can be formulated. To begin, out of N repeat-pass InSAR

scenes that are connected with one another, M will have validation sites. The num-

ber of the connected pairs is given by E. This is shown in Figure 5.16, where each

InSAR scene is represented as a node, each connected pair is described as an edge

and only the central scene (marked in “red”) has a validation site. For the state
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mosaic of Maine, this gives N = 37, M = 1 and E = 57. As another example, in

the three-scene case of Figure 5.19, N = 3, M = 1 and E = 2. For the generalized

scenario, there are (E +M) overlap areas (and, thus, 2(E +M) fitting parameters k

and b) in total along with N InSAR scenes (and, thus, 2N model parameters Sscene

and Cscene).

Further, the same vector notation as in Section 5.4.2.2 can be applied to this

generalized case. In particular, (5.11) and (5.13) still hold with ξ and ξ∗ being 2(E+

M)× 1 vectors, ρ and ρ∗ 2N × 1 vectors. By letting ρ = ρ∗, (5.15) is rewritten as:

ξ∗ −G(ρ
0
) ≈ J · (ρ∗ − ρ

0
) (5.18)

where the Jacobian matrix is 2(E +M) rows by 2N columns. More explicitly,

J =



∂k1
∂Sscene1

∂k1
∂Cscene1

· · · ∂k1
∂SsceneN

∂k1
∂CsceneN

∂b1
∂Sscene1

∂b1
∂Cscene1

· · · ∂b1
∂SsceneN

∂b1
∂CsceneN

...
...

. . .
...

...

∂k(E+M)

∂Sscene1

∂k(E+M)

∂Cscene1
· · · ∂k(E+M)

∂SsceneN

∂k(E+M)

∂CsceneN
∂b(E+M)

∂Sscene1

∂b(E+M)

∂Cscene1
· · · ∂b(E+M)

∂SsceneN

∂b(E+M)

∂CsceneN



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ρ=ρ

0

(5.19)

As long as all of the InSAR scenes are connected with one another and there is at

least one validation site available, the relationship (E+M) ≥ N holds, which satisfies

the prerequisite of the Gauss-Newton algorithm [54]. Therefore, in order to solve for

the optimal point ρ∗, the more general form of (5.17) is written as [54]:

ρ∗ ≈ ρ
0

+ (JTJ)−1JT · [ξ∗ −G(ρ
0
)] (5.20)

Note that when J is a square matrix, (5.20) reduces to (5.17).
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The manual mosaicking process in Section 5.4.1 sequentially propagates the infor-

mation from the validation sites throughout the adjacent-scene overlap areas. There-

fore, the propagation of errors will manifest itself as the “wallpapering” problem

described earlier. However, the nonlinear least squares solution has the benefit of

estimating the desired model parameters simultaneously and minimizing the fitting

error globally and, thus, resolves the “wallpapering” problem. Moreover, it is a ro-

bust system that is mathematically traceable. The accuracy and the computational

complexity of this automatic mosaicking algorithm depend on the choice of the initial

point, the number of iterations, the number and the quality of the InSAR scenes

that are to be mosaicked together, as well as the number and the distribution of the

ground validation sites.

5.4.3 Refined mosaic results and discussions

In this section, the Gauss-Newton algorithm is used to solve for the nonlinear least

squares solution of the model parameters (Sscene and Cscene). With these results, a

new mosaic map of forest height for the U.S. state of Maine can be generated and

compared with the LVIS height data and the National Biomass and Carbon Dataset

(NBCD) Basal Area Weighted (BAW) height.

5.4.3.1 Generation of the new mosaic map

Before running the automatic mosaicking algorithm, we want to exclude one In-

SAR scene (i.e., “120 870” in Figure 5.16) and its associated pairwise connection (i.e.,

the directed edge pointing from “120 880” to “120 870” in Figure 5.16), because the

temporal change effect occurring within this InSAR scene is so severe (characterized

by Sscene = 0.3 and Cscene = 4.89) that the global error minimization will be biased.

Therefore, in this scenario, we end up with N = 36, M = 1 and E = 56.

The essential part in the implementation of (5.20) is the numerical calculation

of the Jacobian matrix J expressed in (5.19). Because the elements of J are the
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Figure 5.20: Residual error at each iteration of running the automatic mosaicking
algorithm. The blue triangles indicate the results by using the average values of
the model parameters (Sscene = 0.65 and Cscene = 13) for all of the InSAR scenes
as the initial point, while the red circles show the results by considering the model
parameters determined from the manual mosaicking process as the initial point.

partial derivatives of k and b with respect to Sscene or Cscene, numerical derivatives

are calculated by allowing Sscene (or Cscene) to have a small increment of 10−6 (or 10−5

m). The Jacobian matrix is then computed on a column-by-column basis. Given a

small increment of the i-th element of ρ, the vector derivative of ξ is equivalent to

the i-th column of the Jacobian matrix. The initial point ρ
0

is chosen from the model

parameters determined from the manual mosaicking process in Section 5.4.1. After

ten iterations, the residual error (i.e., the Euclidean norm in (5.13)) is plotted as red

circles in Figure 5.20.

It can be seen that after the third iteration, the residual error becomes very

stable, which implies that the initial point (determined from the manual mosaicking

process in Section 5.4.1) is close to the optimal point. The effect of the initial point

on convergence can be tested by assigning a uniform value (e.g., Sscene = 0.65 and

Cscene = 13) for all of the InSAR scenes. As shown by the blue triangles in Figure 5.20,
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Figure 5.21: The new mosaic map of forest height for the state of Maine, U.S. The
state mosaic is color-coded as indicated (“blue” being 0 m and “red” being 45 m).
All of the values over water bodies have been removed by using NLCD2006. Most
of the “orange” and “red” spots are indicators of high temporal decorrelation rather
than large trees.

it is demonstrated that although the initial residual error is higher than that from

the manual mosaicking process, the final result after ten iterations is similar to that

when initial values were chosen from the manual mosaicking results.

By utilizing the refined model parameters (Sscene and Cscene) after the tenth iter-

ation, a new mosaic map of forest height is created for the U.S. state of Maine, as

shown in Figure 5.21, where all of the values over water bodies have been removed

by using National Land Cover Database (NLCD) 2006 [17].

A comparison of forest height estimates between the old and new mosaic maps

highlights the systematic propagation of errors that occurs in the manual mosaicking
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Figure 5.22: Illustration of the residual error between the automated and manual
mosaicking approaches. Here, the absolute error in the forest height estimates between
the old and new mosaic maps is illustrated and color-coded as indicated (“blue” being
0 m and “red” being 5 m). All of the values over water bodies have been removed by
using NLCD2006. It can be observed that the “wallpapering” problem occurs, since
the scenes that are far away from the central Maine area (where the Howland Forest
is located) are more likely to have larger uncertainty in the forest height estimates.

process (the “wallpapering” problem). This is illustrated in Figure 5.22. It can be

seen in the figure that the scenes that are far away from the central Maine area (where

the Howland Forest is located) are more likely to have larger uncertainty in the forest

height estimates (and, thus, the model parameters).

5.4.3.2 Validation over Howland forest

Once constructed, a comparison can be made of the mosaic map of forest height

with heights available from the LVIS sensor [7] (from the year 2009 over the Howland

forest in central Maine) and NBCD BAW height [31] (from the year 2000 over the

entire state of Maine). Note that it is desirable to compare this mosaic map of forest
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Figure 5.23: The optical image (a) from Google Earth is compared with the LVIS
height (b), the ALOS InSAR correlation magnitude-inverted forest height (c) and
the NBCD BAW height (d) over the Howland research forest in central Maine. The
values over water bodies are removed with the use of NLCD2006. The color maps
are coded with the same color scale (“blue” being surfaces, “red” being 45 m) and
a spatial resolution of 50 m × 50 m. The inherent bias of the NBCD BAW data,
discussed in the text, is highlighted by a “red” rectangular window over the urban
area.

height with high spatial resolution LiDAR height data over various sites in Maine;

however, this is restricted due to the LVIS data collection, which is restricted to the

data strip between the Howland research forest and the Penobscot experimental forest

in the state of Maine that has been used in Section 5.3.2.2. Therefore, in this work,

we only compare our mosaic results with the NBCD BAW height data over the areas

outside the LVIS LiDAR strip. In this section, we first show the comparison results

within the LVIS LiDAR strip over the Howland forest.

Although the Maine mosaic of forest height (i.e., Figure 5.21) was determined

with the use of the LVIS height at the ground validation site, it is useful to compare
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the inverted height estimates from the final mosaic with the LVIS data. As shown

in Figure 5.23, it can be seen that the ALOS InSAR correlation magnitude-inverted

heights correspond visually well with the LVIS heights. By contrast, the NBCD BAW

height seems to have a much shorter dynamic range, although it does indicate similar

features as those derived from LVIS and ALOS data. Note that the underestimation

(termed as “inherent bias” in this work) of the NBCD BAW height can be observed

in comparison to the LVIS height data, especially over the urban area that is marked

by a “red” window in Figure 5.23d.
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Figure 5.24: Quantitative comparison results between various height metrics. (a)
The comparison between the ALOS InSAR correlation magnitude-inverted height
(Figure 5.23c) and the LVIS height (Figure 5.23b) with RMSE of 3.8 m and R value
of 0.48; (b) the comparison between the NBCD BAW height (Figure 5.23d) and the
LVIS height (Figure 5.23b) with RMSE of 5.6 m and R value of 0.3. Each point
corresponds to a forest area of 160 m × 480 m through multi-pixel averaging. The
data points pertaining to the inherent bias of the NBCD BAW height are indicated
by a dashed circle.

A quantitative comparison of results is illustrated in Figure 5.24. Each point

in Figure 5.24 represents a forest area of 160 m × 480 m derived from multi-pixel

averaging. Figure 5.24a shows the consistency between the ALOS InSAR correla-

tion magnitude-inverted heights and the LVIS heights. The root mean square error
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(RMSE) of this fit is 3.8 m, and the statistical R value is 0.48. Figure 5.24b compares

the NBCD BAW and LVIS-derived heights. In this part of the figure, it can be seen

that the NBCD BAW height has a smaller dynamic range, as well as some inherent

bias compared to the LVIS heights. This is likely due to the fact that the NBCD

is basal area weighted and less sensitive to the height of dominant trees within a

resolution element, as is the case for the LVIS-derived heights.

The presence of unusually high temporal decorrelation (e.g., in agriculture and

water-covered regions) is known to bias forest heights derived from the ALOS In-

SAR correlation measurements. This can be seen in Figure 5.24a at the lower end of

the LVIS-derived height range, where water bodies, farmlands and urban activities,

not thoroughly removed from the ALOS imagery, yield forest height estimates sig-

nificantly larger than those observed by LVIS. Regions such as this can be detected

because of the estimates of unrealistically large trees (40 m and larger) and/or re-

moved in the larger mosaic using a forest/non-forest classification map, which will be

discussed later.

5.4.3.3 Validation over the entire state of Maine

Next, we compare our mosaic results with the NBCD BAW height data over the

areas outside the LVIS LiDAR strip. The NBCD data consists of a 30-m resolution

estimate of basal area weighted height, aboveground live dry biomass and standing

carbon stock for the conterminous United States in 2000. The dataset was derived

by utilizing the empirical modeling approach, which combines USDA Forest Service

Forest Inventory and Analysis (FIA) data with 2000 SRTM InSAR data and optical

remote sensing data acquired from the Landsat ETM+ sensor [31]. The mosaic map

of the NBCD BAW height is illustrated in Figure 5.25 for the entire state of Maine.

Compared to Figure 5.21, it can be seen that the mosaic of NBCD BAW height

has a much shorter dynamic range. The quantitative comparison result between

171



45 m 
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Figure 5.25: The mosaic map of the NBCD BAW height for the state of Maine, U.S.
This mosaic is also color-coded as indicated (“blue” being 0 m and “red” being 45
m). All of the values over water bodies have been removed by using NLCD2006.

the mosaic of forest height inverted from ALOS InSAR correlation magnitude (i.e.,

Figure 5.21) and the mosaic of the NBCD BAW height (i.e., Figure 5.25) is shown in

Figure 5.26. Each point in Figure 5.26 corresponds to a forest area of 500 m × 500

m through multi-pixel averaging. The inherent bias of the NBCD BAW height that

appears in Figure 5.24b can also be seen here for the whole mosaic map.

Overestimation of forest height from the ALOS InSAR correlation magnitude-

inverted height, due to the temporal decorrelation in urban areas, farmlands etc., is

evident in the upper right-hand corner of Figure 5.21. This part of the state of Maine

consists of scattered farmlands and shows up as the colors “orange” and “red” in the

imagery, indicating heights of 35 m and taller, which is much larger than average

tree heights in the region. While this may be a useful tool for detecting change,
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Inherent bias of NBCD BAW height 

Figure 5.26: Quantitative comparison result between the mosaic of
forest height inverted from ALOS InSAR correlation magnitude (i.e.,
Figure 5.21) and the mosaic of the NBCD BAW height (i.e., Fig-
ure 5.25) for the entire state of Maine, U.S. Each point corresponds to a
500 m × 500 m forest area through multi-pixel averaging. The data points
that are affected by the inherent bias of the NBCD BAW height and by the temporal
decorrelation of the ALOS InSAR data (e.g., farmlands and urban area) are indicated
by dashed circles, respectively.

even within a forest (e.g., selective logging), here, it is considered a primary source

of error, which can be improved by combining the mosaic with a land cover database

that differentiates forested and non-forested regions. Typical forest/non-forest maps

have already been derived from the ALOS SAR backscatter power, as demonstrated

in [75, 73]. However, as noticed in this work, another resource for such a classification

can be the NBCD BAW height mosaic, where any non-forest region is identified

with the use of a flag value. The refined mosaic map is illustrated in Figure 5.27.

Comparing with Figure 5.21, it can be seen that the overestimated height values over

the non-forest regions (shown as “orange” and “red” spots in Figure 5.21) have been

removed in the updated forest height mosaic.
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Figure 5.27: The refined mosaic map after removing the height estimates over non-
forest regions by using the NBCD mosaic. This mosaic is also color-coded as indicated
(“blue” being 0 m and “red” being 45 m). All of the values over water bodies have
been removed by using NLCD2006. A large, one million hectare validation site is
selected and indicated by the “red” rectangular window.

Although the NBCD mosaic has a small dynamic range of heights compared to the

LVIS and ALOS-derived heights, it still captures similar features. In order to better

demonstrate this, a large, one million hectare validation site is selected in Figure 5.27

(indicated by a “red” rectangular window). In Figure 5.28, a comparison of results

between the refined Maine mosaic and the NBCD mosaic is shown over the selected

large validation site. The color scale for the refined Maine mosaic is consistent with

the other color maps that are shown throughout this work (i.e. “blue” being 0 m and

“red” being 45 m); however, in order to improve the contrast in the NBCD mosaic, a

different color scale (i.e. “blue” being 10 m and “red” being 28 m) is chosen for the

174



NBCD mosaic. It can be seen that although the NBCD mosaic still lacks some of the

height detail evident in the ALOS-derived mosaic, both maps share similar features.

45 m 

0 m 

(a)

28 m 

10 m 

(b)

Figure 5.28: Illustrative comparison between the refined Maine mosaic and the NBCD
mosaic over the large validation site as indicated in Figure 5.27. (a) shows the forest
heights from the refined Maine mosaic (i.e. Figure 5.27) with a color scale from 0 m
(“blue”) to 45 m (“red”), while (b) shows the forest heights from the NBCD mosaic
(i.e. Figure 5.25) with a color scale from 10 m (“blue”) to 28 m (“red”).

5.4.3.4 More discussion on practical implementation

In this work, there are several practical concerns that should be considered with

the proposed improvements that are related to the implementation of this forest height

inversion approach and its automated mosaicking process.

First, temporal decorrelation (e.g., harvesting over farmlands, urban activities) is

noticeable and embodied as overestimated height values over the non-forest regions in

the mosaic map. One practical approach is to remove the non-forest regions through

the use of a forest/non-forest map. For example, in this work, the NBCD mosaic

map has been utilized to serve as a forest/non-forest map. However, forest/non-

forest maps derived from SAR backscatter power [75, 73] can alternately be used so

that SAR/InSAR observations from the same spaceborne mission are fully exploited

(i.e., InSAR correlation magnitude data are used to generate a forest height mosaic,

while SAR backscatter power is used to create a forest/non-forest map). This would

alleviate the need for external maps. Further, a forest/non-forest classification map
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can be applied to the InSAR coherence map prior to the forest height inversion,

instead of being a post-processing step to the mosaic results, as in this work, so that

the accuracy of the forest height inversion can thus be improved by precluding non-

forest regions being used in overlap regions. Note that the forested plots that are

affected by selective logging and/or forest degradation cannot be removed by using

the forest/non-forest map and will also embody themselves as overestimated “large”

forest heights, which could be useful for monitoring the global forest change, and will

be treated separately as in Section 5.6.

Second, because of the repeatable nature of SAR data collections, there are often

many scenes available over the same area, but separated in time by weeks, if not

months. However, due to the unreliable nature of the temporal decorrelation effects,

only a few of them are suitable for the use of forest height inversion. Compared to a

stable weather condition, a windy and/or rainy day will decrease the observed InSAR

correlation magnitude by a great amount. Although the data with smaller correlation

magnitude still have the vegetation structural and temporal change information that

could be utilized for forest height inversion, this bit of information is often masked

by correlation sampling noise [79], making the inversion much noisier and less robust.

Furthermore, if the weather condition changes non-uniformly, such as a regional rain-

fall, the temporal change effects may vary across each InSAR scene, so that the model

parameters cannot be assumed constant over the whole scene any more. In this work,

through a careful selection of ALOS InSAR scenes over the same study area, only one

or two out of the dozens of available scenes are best suited for forest height inversion.

It is recommended and desired to have more reliable spaceborne repeat-pass InSAR

data with moderate (less than a month; 12 days for NISAR [3] and 14 days for ALOS-

2 [28]) or large (on the order of months; 46 days for ALOS) temporal baselines, so

that the best InSAR scene(s) can be selected and utilized to generate a reliable forest

height mosaic.
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(a) (b) (c) (d) 

Figure 5.29: Comparison of different spaceborne SAR/InSAR metrics in the capabil-
ities of estimating forest heights over the Howland forest: (a) is the LVIS height, (b)
is the forest height inverted from ALOS SAR backscattering power (HV-pol), (c) is
the inverted height from ALOS differential InSAR phase (HV-pol), while (d) is the
ALOS HV-pol InSAR correlation magnitude-inverted height (from the state mosaic
in Figure 5.21). The values over water bodies have been removed for all of the maps
that are at a spatial resolution of 50 m × 50 m and color-coded from 0 m to 45 m.

5.5 Comparison of spaceborne SAR/InSAR metrics

It has been shown by others that backscattering intensity/power is an important

SAR metric relating to the forest biomass and/or forest height (e.g. [53]) using a

simple model fit between lidar heights and the observed radar cross section. Further,

using SAR interferometry, the signal phase can be used to derive topography [64].

Through the use of a ground surface Digital Elevation Model (DEM), it can be shown

that the differential interferometric phase (by taking out the topographic phase) cor-

responds to a mean height somewhere between the ground surface and the crown of

the canopy [32].
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Figure 5.29 shows estimates of inverted forest height maps over the Howland forest

and Penobscot experimental forest by using ALOS SAR backscattering power (HV-

pol), ALOS differential InSAR phase (HV-pol), and ALOS InSAR correlation magni-

tude (HV-pol). All of the maps are coded with the same color scale (“blue” being 0 m,

“red” being 45 m). The data processing steps are detailed as follows. In particular, the

ALOS SAR backscatter intensity map was converted to forest height values through

a regression method (e.g. an exponential curve fitting; y = 0.45 ∗ (1− exp−0.12∗x) in

deriving Figure 5.29(b) with y denoting the backscatter intensity and x denoting the

forest height). As for the use of the ALOS InSAR phase, the effect of the topography

was first removed by using the DEM from National Elevation Dataset (NED; [20]),

which leads to the differential InSAR phase. This was further calibrated sequentially

by correcting for the tropospheric delay effects through using the software package

PyAPS [27], fitting and eliminating a 3rd-order two-dimensional polynomial function,

and applying a constant phase shift factor to the residual differential InSAR phase.

The corrected differential InSAR phase was divided by the interferometric vertical

wavenumber κz in order to achieve the inverted forest height in Figure 5.29(c). Fig-

ure 5.29(d) is the central strip from the state mosaic of forest height (i.e. Figure 5.21)

that coincides with the LVIS derived heights. The values over water bodies are re-

moved for all of the maps.

A statistical comparison of the inverted heights is shown in Figure 5.30. The

logarithm-like relationship linking SAR backscattering power to biomass [53] is also

observed for forest height, and the saturation of the backscatter power occurs at

the taller end of the height range. This primarily explains why the estimated for-

est height by using ALOS SAR backscattering power has the largest uncertainty for

tall trees, although it works for small trees quite well. While the forest height ob-

tained from ALOS differential InSAR phase has a smaller standard deviation (with

a good R measure) than the backscatter-derived heights, it is still greater than that
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Figure 5.30: Statistical analysis of the inverted forest heights from different space-
borne SAR/InSAR metrics compared to LVIS height. Both the standard deviations
(varying with the actual height) and the statistical R values are calculated and shown
in the plot.

obtained from ALOS InSAR correlation magnitude. The estimation uncertainty by

using ALOS differential InSAR phase is caused by several possible sources of error.

The primary reason relates to the fact that the correction of tropospheric delay effect

is not sufficient. Although the standard approach for this type of correction is ap-

plied through using the PyAPS software (followed by a polynomial fit), there is still

spatially-varying large uncertainty in the residual differential InSAR phase (and thus

the phase-inverted height; noticeable as the slowly-varying pattern in Figure 5.29(c)).

Other reasons involve that 1) the correlation sampling noise that is relevant to the

phase (as in [79] for the magnitude) has to be corrected for and 2) region to region

variation in forest temporal change effects is enough to distort the phase of the com-

plex Sscene, but does not appreciably affect the correlation magnitude. It is clear that

the forest height inverted by using ALOS InSAR correlation magnitude has the best

estimation uncertainty almost across the entire height range (with the overall height
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estimation RMSE of 4 m and a R measure of 48% on the order of 10 hectares). Note

the higher uncertainty at the lower end of the height range is related to high tempo-

ral decorrelation (e.g. where water bodies are not thoroughly removed; farming and

urban activities, etc.), poor SNR in ground scattering due to the thermal noise decor-

relation (which makes the total correlation magnitude overwhelmed by the sampling

noise [79]), and also that there are fewer samples of forest areas below 5 m tall.

From the analysis, it was implied that, due to the saturation effect in the SAR

backscattering power and the tropospheric delay effect in the differential InSAR phase,

the spaceborne InSAR correlation magnitude is most suitable to create a large-scale

mosaic of forest height map. However, the SAR backscattering power and the differ-

ential InSAR phase also consist of some meaningful information that may be useful

in order to improve the estimation of forest height, e.g., through combining the SAR

backscattering power for short vegetation and the InSAR correlation magnitude for

the medium to tall trees.

5.6 Generation of forest height and disturbance maps

So far, the concentration has been placed on the forest height estimation under

the condition of few or no forest disturbance events. However, in reality, forest distur-

bance, such as selective logging, tree regrowth or forest degradation, is unavoidable.

This section improves the forest height inversion approach presented in Section 3.2.3

by generating both the forest height map along with the forest disturbance map.

Given a scene with the presence of (but not dominated by) forest disturbance, the

major trend in a scatterplot (e.g. Figure 5.13) captures the Sinc relationship between

the repeat-pass InSAR correlation magnitude and the physical tree height. However,

with moderate or relatively high level of forest disturbance involved, the forest height

estimation based on the multi-pixel averaging described in Section 3.2.3 will be biased
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to various degrees. Neither an accurate forest height map nor a forest disturbance

map can be generated.

(a) (b)

Figure 5.31: Illustrative comparison between the InSAR inverted forest height and
the LVIS lidar height over the Howland forest in central Maine with the multi-pixel
averaged scatterplot shown previously in Figure 5.13b. (a) shows the height compar-
ison without multi-pixel averaging, while (b) shows the 2D histogram of (a), where
the bin size of the histogram is chosen as 0.5 m.

An improvement step is developed here to replace the plain multi-pixel averaging

in Section 3.2.3 such that both of the forest height map and forest disturbance map

can be generated for the sites where ground validation height data (such as lidar) is

available. As illustrated in Figure 5.31a, this scatterplot shows the pixel-wise InSAR

inverted height compared to the LVIS height over the lidar strip in central Maine.

Compared to Figure 5.13b, where multi-pixel averaging was applied, Figure 5.31a

shows the same set of data but without multi-pixel averaging. This pixel-wise com-

parison itself does not reveal any significant features of the forest areas. However,

since the disturbance events only occupy a smaller portion of the data points, draw-

ing a two-dimensional histogram of the scatterplot will particularly highlight the

major trend in the forest height information within the data. This is demonstrated
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(a) (b) (c) (d) 

Howland Forest 

Figure 5.32: Illustration of the forest height and disturbance maps over the Howland
research forest in central Maine: (a) is the optical image from GoogleEarth that is
compared with the LVIS height data (b) and the ALOS InSAR correlation magnitude-
inverted forest height (c). (d) shows the forest disturbance map which is the height
difference (“absolute value”) between (b) and (c). (b–c) are coded with the same
color scale (“blue” being surfaces, “red” being 45 m), while (d) is coded from 0 to
10 m. The spatial resolution of (b–d) is 50 m × 50 m with the height values over
non-forest areas removed.

in Figure 5.31b, where the 2D histogram of the scatterplot in Figure 5.31a shows

the underlying relationship between the InSAR inverted height and LiDAR height.

Since the 2D histogram calculates the density of the data cloud, as for the practical

implementation, it is sufficient to use high density data points instead of the conven-

tional multi-pixel averaged data points. This step is then followed by the non-linear

least squares fit that is exactly the same as presented in Section 3.2.3. In order to

quantitatively define a high-density data point, in this work, a threshold of 0.5 times

the maximum density (calculated with the bin size of the 2D histogram being 0.5 m)

is selected and proved to be plausibly sufficient.
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Utilizing this improvement step, an accurate forest height map can thus be gen-

erated for the site where ground validation data exists. Further, a forest disturbance

map can be obtained by taking the differential height between the InSAR inverted

height and the ground validation height. As for the data cloud in Figure 5.31, both

forest height and disturbance maps are demonstrated in Figure 5.32 for the LVIS

lidar strip over the Howland forest in central Maine area. In the forest disturbance

map, the differential height is induced by two sources: one is due to the disturbance

events between the two InSAR collection dates (usually with the InSAR inverted

height overestimated), the other source is due to the disturbance occurring between

the collection dates of InSAR and lidar (with the InSAR inverted height either greater

or lower than the lidar height depending on which data is collected earlier as well as

what the cause of the disturbance is, e.g. selective logging or tree regrowth). How-

ever, no matter what the potential cause of the disturbance event is, this improved

forest height inversion approach is capable of exporting a forest disturbance map

along with an accurate forest height map (with RMSE less than 4 m on the order

of 10 hectares) for the ground validation site, where low to moderate level of forest

disturbance exists.
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CHAPTER 6

MATHEMATICAL DERIVATION

As this dissertation involves a lot of derivation steps that are associated with the

theoretical modeling of multiple scattering effect inside a random medium as well as

calculation of the SAR/InSAR metrics, all of these derivation steps are treated rigor-

ously in this chapter. However, it should be noted that this chapter is not necessary

to understand the major theme of this work and only serves as the supplementary

materials for the readers with particular interests of the mathematical derivation.

6.1 Solution of the configuration-averaged effective field

In this section, we will derive the configuration-averaged effective field as discussed

in Section 2.1.2. In order to determine the averaged effective field at particle j, the

location of the particle is taken into account with respect to the reference origin of

the coordinate system that defines the center of the resolution element, as shown in

Figure 6.1. Here, the reference plane is shown as a red dashed line, where the incident

wave is assumed to have a unit-amplitude and zero-phase. The path that the signal

takes from this reference plane to the scatterer j can be modeled as

〈Eex(Rj, ω)〉j = ejkη1aexejKη2 , (6.1)

where aex is the amplitude factor introduced by the air-medium interface and the

path segments η1 and η2 are illustrated in Figure 6.1. Using the index of refraction,

n, and θt to represent the angle of transmission, which satisfies the Snell’s law (2.13),
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Figure 6.1: Illustration on the derivation of 〈Eex(Rj, ω)〉j. The local Cartesian coor-
dinate system (x, y, z) has its origin referenced to the center of the resolution cell, R0,
on the “air-medium” interface (shown as the x-y plane). The reference phase plane
is colored in “red”. The scatterer j at Rj = (xj, yj, zj) is marked as a “black” dot.
η1, η2, η3 and η4 are the path segments that are associated to the ray tracing from
the reference phase plane to the scatterer j. η0 is the distance between the intersec-
tion points of the two “blue” rays crossing the “air-medium” interface. The incident
wave is transmitted from the antenna position R1, incident upon the “air-medium”
interface at the angle θi and refracts within the medium at the angle θt.

and, following Figure 6.1, η1 = η0 sin θi = nη0 sin θt = nη4. Hence, the free-space path

length of η1 can be related to the within-medium path length of η4, as in

kη1 = KRη4. (6.2)

By substituting K = KR + jKI and (6.2) into (6.1), we have

〈Eex(Rj, ω)〉j = ejkη1aexej(KR+jKI)η2

= aexe−KIη2ej(kη1+KRη2)

= aexe−KIη2ej(KRη4+KRη2)

= aexe−KIη2ejKRη3 (6.3)
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where η3 = η2 + η4 as illustrated in Figure 6.1. Note that now two different path

lengths (i.e., η2 and η3) are used for the real and imaginary parts of K, respectively.

This is due to the reference of zero-phase to the center of the resolution cell and the

path-length difference being associated with the position of scatterer j in relation to

this reference point. While this path-length difference η3 affects the phase, the atten-

uation of field amplitude however is only related to the actual propagation path inside

the medium (i.e. η2 in Figure 6.1). Noting that both η2 and η3 can be represented in

the local Cartesian coordinates as η2 = −zj/ cos θt, and η3 = yj sin θt − zj cos θt, the

expression can be written as

〈Eex(Rj, ω)〉j = aexejKR(yj sin θt−zj cos θt)eKIzj/ cos θt . (6.4)

In order to take into account the spherical wave propagation of the transmitted

signal from the source antenna located at R1, the incident wave at the center of

the resolution cell R0 will have an additional factor dependent on the propagation

distance, |R1 − R0| which affects both the signal amplitude and phase, and (6.4)

becomes

〈Eex(Rj, ω)〉j = aex
ejk|R1−R0|

|R1 −R0|
eKIzj/ cos θtejKR(yj sin θt−zj cos θt). (6.5)

Substituting (2.13) into (6.5), we have

〈Eex(Rj, ω)〉j = aex
ejk|R1−R0|

|R1 −R0|
eKIzj/ cos θtejk(yj sin θi−nzj cos θt)

=
aex

|R1 −R0|
eKIzj/ cos θtejk(|R1−R0|+yj sin θi−nzj cos θt). (6.6)

This concludes the proof of (2.12).
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6.2 Solution of the coherent field

In this section, (2.3) and (2.4) will be rewritten such that the generic relationship

can be found between the configuration-averaged effective field and the coherent field.

In such a manner, the expression of the coherent field can be conveniently obtained

by using the configuration-averaged effective field that is already derived as (6.6) in

Section 6.1.

Since (2.4) has been rewritten as (2.9) in Section 2.1.2, we now focus on (2.3) with

a similar treatment. Hence, it can be shown that (2.3) reduces to

〈E(R,ω)〉 = Einc(R,ω) +

∫
τ0f̃j〈Eex(Rj, ω)〉j

ejk|R−Rj |

|R−Rj|
dRj, (6.7)

where τ0 = N
V

is the number density, and f̃j =
∫
fjP (fj)dfj, both of which are

consistent with the notation in deriving (2.9).

By rearranging the terms, (6.7) can be rewritten as

〈E(R,ω)〉 =

{
Einc(R,ω) +

∫
τ0f̃j〈Eex(Rj, ω)〉jg(|R−Rj|)

ejk|R−Rj |

|R−Rj|
dRj

}

+

∫
τ0f̃j〈Eex(Rj, ω)〉j

[
1− g(|R−Rj|)

] ejk|R−Rj |
|R−Rj|

dRj. (6.8)

where the terms within the curly brackets exactly conforms with the right side of

(2.9), and should be equal to the left side, which gives the configuration-averaged

effective field evaluated at position R, i.e., 〈Eex(R,ω)〉j. Here, the subscript j turns

to be a dummy variable once the spatial position R is given according to the solution

of 〈Eex(Rj, ω)〉j presented in Section 6.1.

As for the remaining term in (6.8), noticing that the pair distribution function

only deviates from unity when the distance is smaller than several diameters of the

scatterer (see Figure 2.2), the volume integral thus only exists for Rj being close to
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R. Hence, by factoring out the configuration-averaged effective field, this remaining

term can be rewritten as

〈Eex(R,ω)〉j
∫
τ0f̃j

[
1− g(|R−Rj|)

] ejk|R−Rj |
|R−Rj|

dRj. (6.9)

As a result, (6.8) reduces to

〈E(R,ω)〉 =〈Eex(R,ω)〉j + 〈Eex(R,ω)〉j
∫
τ0f̃j

[
1− g(|R−Rj|)

] ejk|R−Rj |
|R−Rj|

dRj

=〈Eex(R,ω)〉j
[

1 +

∫
τ0f̃j

[
1− g(|R−Rj|)

] ejk|R−Rj |
|R−Rj|

dRj

]

=〈Eex(R,ω)〉j
[
1 + β(R; l, fv)

]
, (6.10)

where

β(R; l, fv) =

∫
τ0f̃j

[
1− g(|R−Rj|)

] ejk|R−Rj |
|R−Rj|

dRj, (6.11)

is a function of R with the functional form dependent on the number density τ0,

scattering amplitude f̃j and pair distribution function g, which in turn depend on the

scatterer size l and volume fraction fv. This argument is similar to the interpretation

in deriving (2.11). Due to the spherical symmetry of g, it can be noticed that (6.11)

is invariant of R, i.e., β(R; l, fv) = β(l, fv).

Therefore, by substituting (6.6), the solution of the coherent field at an arbitrary

point R can be shown as

〈E(R,ω)〉 =〈Eex(R,ω)〉j [1 + β(l, fv)]

=aex
ejk|R1−R0|

|R1 −R0|
eKIz/ cos θtejk(y sin θi−nz cos θt) [1 + β(l, fv)]

=a
ejk|R1−R0|

|R1 −R0|
eKIz/ cos θtejk(y sin θi−nz cos θt), (6.12)
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where a = aex [1 + β(l, fv)] is the transmission coefficient of the air-medium interface.

This concludes the proof of (2.14).

Note importantly, for infinitely small scatterers or a sparse concentration of scat-

terers (e.g. gas, vegetation), i.e. g = 1 and/or τ0 ≈ 0, (6.11) reduces to zero.

Substituting β(l, fv) = 0, (6.10) immediately gives 〈E(R,ω)〉 = 〈Eex(R,ω)〉j, which

implies that the coherent field can be well approximated as the configuration-averaged

effective field. This special case is known as the Foldy’s approximation [16, 26, 82, 80].

6.3 A proof of the Distorted Born Approximation

In Section 2.1.3, the backscattered field has been solved by using the Distorted

Born Approximation, which approximates the total electric field incident on each

scatterer with use of the coherent field. In this section, a mathematical proof is

derived in a similar manner as has been done in [80] although a different set of

notation that is consistent with the current work has been adopted.

Through denoting the field translated from scatterer j to R as E(R,ω; j), we have

(2.1) rewritten as

E(R,ω) = Einc(R,ω) +
N∑
j=1

E(R,ω; j). (6.13)

Utilizing (6.13) and assuming the scatterers are identically-distributed, the coher-

ent intensity is given as
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〈E(R,ω)〉〈E(R,ω)∗〉

=Einc(R,ω)E∗inc(R,ω) + Einc(R,ω)〈
N∑
j′=1

E∗(R,ω; j′)〉+

E∗inc(R,ω)〈
N∑
j=1

E(R,ω; j)〉+ 〈
N∑
j′=1

E∗(R,ω; j′)〉〈
N∑
j=1

E(R,ω; j)〉

=Einc(R,ω)E∗inc(R,ω) +NEinc(R,ω)〈E∗(R,ω; j)〉+

NE∗inc(R,ω)〈E(R,ω; j)〉+N2〈E∗(R,ω; j)〉〈E(R,ω; j)〉. (6.14)

Similarly, substituting (6.13) into the total intensity leads to

〈E(R,ω)E(R,ω)∗〉

=Einc(R,ω)E∗inc(R,ω) + 〈
N∑
j=1

N∑
j′=1

E(R,ω; j)E∗(R,ω; j′)〉+

E∗inc(R,ω)〈
N∑
j=1

E(R,ω; j)〉+ Einc(R,ω)〈
N∑
j′=1

E∗(R,ω; j′)〉

=Einc(R,ω)E∗inc(R,ω)+

Einc(R,ω)〈
N∑
j′=1

E∗(R,ω; j′)〉+ E∗inc(R,ω)〈
N∑
j=1

E(R,ω; j)〉+

〈
∑
j=j′

E(R,ω; j)E∗(R,ω; j′)〉+ 〈
∑
j 6=j′

E(R,ω; j)E∗(R,ω; j′)〉. (6.15)

Assuming the scatterers are independent of each other and comparing (6.15) with

(6.14), the total intensity can be represented as the coherent intensity plus additional

terms, i.e.,
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〈E(R,ω)E(R,ω)∗〉

=〈E(R,ω)〉〈E(R,ω)∗〉+ 〈
∑
j=j′

E(R,ω; j)E∗(R,ω; j′)〉+

〈
∑
j 6=j′

E(R,ω; j)E∗(R,ω; j′)〉 −N2〈E∗(R,ω; j)〉〈E(R,ω; j)〉

=〈E(R,ω)〉〈E(R,ω)∗〉+N〈E(R,ω; j)E∗(R,ω; j)〉+

(N2 −N)〈E(R,ω; j)〉〈E∗(R,ω; j)〉 −N2〈E∗(R,ω; j)〉〈E(R,ω; j)〉

=〈E(R,ω)〉〈E(R,ω)∗〉+

N
[
〈E(R,ω; j)E∗(R,ω; j)〉 − 〈E(R,ω; j)〉〈E∗(R,ω; j)〉

]
. (6.16)

It can be seen from (6.13) that, E(R,ω) is on the order of N times E(R,ω; j).

Therefore, the first term in the last equation of (6.16) is on the order of N2 times

〈E(R,ω; j)〉〈E∗(R,ω; j)〉, while the second term (i.e. in the square bracket) is on the

order of N times the variance of E(R,ω; j). As long as the number of scatterers N

is very large, and assuming the variance is small, the first term dominates, so that

(6.16) immediately reduces to

〈E(R,ω)E(R,ω)∗〉 ≈ 〈E(R,ω)〉〈E(R,ω)∗〉. (6.17)

This result implies that, E(R,ω) = 〈E(R,ω)〉 is a deterministic number with zero

variance, and thus does not vary with the configuration of the scatterers in the

medium. In other words, the total field is thus dominated by the coherent field,

which concludes the proof for the Distorted Born Approximation.

6.4 Derivation of the InSAR cross-correlation

This section will start from (2.29) and derive the InSAR cross-correlation by

separating the x-, y- and z-dependent integrals, which gives the final result of (2.30).
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In particular, by substituting (2.23) and (2.24), (2.29) reduces to

〈E(R1)E∗(R2)〉 =

∫
τ0〈E(R1; j)〉j〈E∗(R2; j)〉jP (fj|Rj)dRjdfj

=

∫
τ0A1A2σ(Rj)|Wa(xj)|2Wr (yj sin θi1 − n cos θt1zj)

W ∗
r (yj sin θi2 − n cos θt2zj) e

j2k0(|R1−R0|−|R2−R0|)

ej2k0yj(sin θi1−sin θi2 )ej2k0zj(n cos θt2−n cos θt1 )

e2KIzj(1/ cos θt1+1/ cos θt2 )dRj, (6.18)

where

σ(Rj) =

∫
|fj|2P (fj|Rj)dfj, (6.19)

is the averaged backscatter intensity profile.

Assuming the backscatter intensity profile only depends on the vertical coordinate,

(6.18) can be rewritten as

〈E(R1)E∗(R2)〉

=τ0A1A2e
j2k0(|R1−R0|−|R2−R0|) ·

∫
|Wa(xj)|2dxj·∫

σ(zj)e
2KIzj(1/ cos θt1+1/ cos θt2 )ej2k0zj(n cos θt2−n cos θt1 ){∫

Wr (yj sin θi1 − n cos θt1zj)W
∗
r (yj sin θi2 − n cos θt2zj)

ej2k0yj(sin θi1−sin θi2 )dyj

}
dzj

≈τ0A1A2e
j2k0(|R1−R0|−|R2−R0|) ·

∫
|Wa(xj)|2dxj·∫

σ(zj)e
4KIzj/ cos θtej2k0zj(n cos θt2−n cos θt1 ){∫

|Wr (yj sin θi − n cos θtzj)|2 ej2k0yj(sin θi1−sin θi2 )dyj

}
dzj, (6.20)

where θi =
θi1+θi2

2
, and θt =

θt1+θt2
2

.
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Utilizing the shift property of Fourier transform, we can separate the integral over

the ground range, yj, from that over the vertical coordinate, zj. That is,

〈E(R1)E∗(R2)〉

=τ0A1A2e
j2k0(|R1−R0|−|R2−R0|) ·

∫
|Wa(xj)|2dxj·∫

|Wr (yj sin θi)|2 ej2k0yj(sin θi1−sin θi2 )dyj·∫
σ(zj)e

4KIzj/ cos θtej2k0zj(n cos θt2−n cos θt1 )e
j2k0(sin θi1−sin θi2 )

n cos θt
sin θi

zjdzj

=A1A2e
j2k0(|R1−R0|−|R2−R0|) ·

∫
|Wa(xj)|2dxj·∫

|Wr (yj sin θi)|2 ejκyyjdyj ·
∫
τ0σ(zj)e

( 2ke
cos θt

+jκz)zjdzj, (6.21)

where

ke = 2KI (6.22)

is the extinction coefficient associated with the vertical penetration,

κz = 2k0(sin θi1 − sin θi2)
n cos θt
sin θi

+ 2k0(n cos θt2 − n cos θt1) (6.23)

is the interferometric vertical wavenumber, and

κy = 2k0(sin θi1 − sin θi2) (6.24)

is the interferometric ground-range wavenumber. This concludes the derivation for

(2.30).
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6.5 Simplification of the interferometric vertical wavenum-

ber

In this section, we will simplify the expression of κz in (2.33), which was defined

as

κz = 2k0(sin θi1 − sin θi2)
n cos θt
sin θi

+ 2k0n(cos θt2 − cos θt1). (6.25)

By denoting ∆θi = θi1−θi2 , ∆θt = θt1−θt2 and then using the trigonometric identities

sin θi1 − sin θi2 = ∆θi cos θi,

cos θi2 − cos θi1 = ∆θi sin θi,

cos θt2 − cos θt1 = ∆θt sin θt, (6.26)

(6.25) can be simplified as

κz = 2nk0
∆θi cos θi cos θt

sin θi
+ 2nk0∆θt sin θt. (6.27)

Further, using (2.13), sin θi = n sin θt, and computing the derivatives of both sides

gives

cos θi∆θi = n cos θt∆θt =
sin θi cos θt∆θt

sin θt
. (6.28)

Substituting (6.28) into (6.27), we have

κz = 2nk0
∆θt cos2 θt

sin θt
+ 2nk0∆θt sin θt

= 2nk0
∆θt

sin θt

= 2k0
∆θi

sin θi

n cos θi
cos θt

= κ̃z
n cos θi
cos θt

(6.29)
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which is equivalent to (2.35) with κ̃z defined in (2.36). Here, the last step used

∆θi = B⊥
R

, where B⊥ is the perpendicular baseline, and R is the slant range from the

radar to the volume target.

6.6 Standard-mode dense medium InSAR correlation model

In the standard-observing mode for SAR interferometry [64], only one antenna is

used as the transmitter while two antennas receive. Following the same development

in Section 2.1.4, the conditional average of the single-scatterer SAR backscattered

field is obtained. This field is the same as (2.23) for the 1st antenna, while for the

2nd antenna, it is necessary to perform an exchange of variables in (2.24) such that

|R2−R0| −→ |R1−R0|+|R2−R0|
2

, sin θi2 −→
sin θi1+sin θi2

2
, cos θt2 −→

cos θt1+cos θt2
2

. For this

field, observed by the second antenna, (2.24) becomes

〈E(R2; k)〉k =A2e
2KIzk/(

cos θt1
+cos θt2
2

)Wa(xk)

Wr

(
yk

sin θi1 + sin θi2
2

− ncos θt2 + cos θt1
2

zk

)
ejk0[yk(sin θi1+sin θi2 )−n(cos θt2+cos θt1 )zk]ejk0[|R1−R0|+|R2−R0|], (6.30)

where A2 = a2

|R1−R0||R2−R0|
.

Substituting (6.30) for (2.24), the normalized InSAR correlation coefficient has

the same functional form as (2.38) while the only difference is in the definitions of κz

and κy. Continuing with the same substitution of variables described above, these

coefficients become

κz = k0(sin θi1 − sin θi2)
n cos θt
sin θi

+ k0(n cos θt2 − n cos θt1), (6.31)

and

κy = k0(sin θi1 − sin θi2). (6.32)
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After applying Snell’s law and trigonometric identities (as in Appendix 6.5),

κz = κ̃z
n cos θi
cos θt

(6.33)

with κ̃z = 2πB⊥
λR sin θi

(which is the conventional interferometric vertical wavenumber for

standard-mode InSAR [64]), and

κy =
2πB⊥
λR

cos θi. (6.34)

Using the standard-mode interferometric vertical wavenumber derived here, model-

ing of the interferometric signature for snow parallels that of the “ping-pong” mode

derived in Section 2.2.3.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary

In this dissertation, InSAR’s capabilities in retrieving characteristics of volume

scatterers such as snow and vegetation are systematically studied and expanded. In

particular, this work concentrated on two scenarios (that can be adapted from the

well-known single-pass InSAR model for a sparse medium like vegetation [80, 81]):

1) single-pass InSAR model for a dense medium like snow, and 2) repeat-pass In-

SAR model for vegetation. The electromagnetic scattering models of InSAR correla-

tion were derived from a discrete representation of the volume scatterers by utilizing

the Foldy-Lax multiple scattering equations, the Quasi-Crystalline Approximation

(QCA) and the Distorted Born Approximation. In particular, the coherent field that

propagates inside the medium with an effective propagation constant was obtained

by solving the Foldy-Lax equations with the use of QCA. The Distorted Born Ap-

proximation was then applied to derive the single-scatterer SAR backscattered field.

Therefore, through a superposition, the InSAR correlation can be formulated for the

above-mentioned two scenarios respectively.

Based on the single-pass InSAR correlation model for snow, a connection was

established between the InSAR correlation measurement and the snow volume pa-

rameters (grain size, volume fraction and layer depth) as well as those aspects that

characterize ground scattering (ground topographic height and ground-to-volume ra-

tio). From simulated validation results, it is noticed that the low-frequency InSAR

(Ku-band to L-band) correlation measurements are sensitive to snow depth while the
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high-frequency InSAR data (e.g., Ka-band) are sensitive to the microscopic scatterer

information such as snow grain size and volume fraction. A dual-frequency (Ka- and

L-band) InSAR configuration was then considered having the potential to retrieve

the snow characteristics. However, as a restriction, Ka-band InSAR phase is the

only InSAR observation that is sensitive to the snow grain size and volume fraction.

Therefore, there is an ambiguity in determining both grain size and volume fraction

by only using InSAR correlation data, and thus only a functional relationship between

the two parameters can be achieved. Also, since the dense medium characteristics

is essentially described by the pair distribution function, we examined three func-

tional forms, among which the Percus-Yevick form appears to be more physical and

accurate.

Regarding the application of the repeat-pass InSAR correlation model for veg-

etation, a simple and efficient forest height inversion approach was developed that

utilize the temporal change effects (both dielectric change and random motion) of the

forest between overpasses. Since the random motion effect has been extensively stud-

ied [96, 5, 33], as a complimentary study, this dissertation particularly examines the

dielectric fluctuation effect in the repeat-pass InSAR correlation data. Consequently,

a dielectric fluctuation model was developed and validated by using the electromag-

netic simulations of a finite-length dielectric cylinder. Further, the proposed forest

height inversion method was validated through the computer simulation results both

using the analytical InSAR correlation model and modifying the numerical simulator

PolSARproSim. This approach was also extensively validated with the use of space-

borne repeat-pass InSAR data (i.e. ALOS/PALSAR) against with spaceborne lidar

(i.e. clustered ICESAT) and airborne lidar (e.g. LVIS) data over various test sites

such as Queesland, Australia and Northeast, US. For ALOS/PALSAR with the repeat

period on the order of months (at least 46 days), the RMSE for this type of height

inversion is < 4 m at the resolution of 10 hectares. As one of the direct products of
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this approach is to create a large-scale mosaic map of forest height, an efficient and

automatic mosaicking algorithm was developed with a state mosaic of forest height

generated for Maine, US. In the meantime, different spaceborne SAR/InSAR met-

rics are compared in terms of forest height estimation with the InSAR correlation

magnitude (that is particularly used in this work) proved to be the best. Finally,

an improvement technique was developed so as to generate a forest disturbance map

along with an accurate forest height map for a disturbed forest area, where ground

validation data (such as lidar) is also available.

7.2 Contributions and Conclusions

Below are the primary conclusions as well as contributions of this dissertation.

• The single-pass InSAR correlation model for a dense medium like snow was

rigorously derived. Snow characteristics (such as grain size, volume fraction,

and snow depth) is thus related to the InSAR correlation measurements for

the first time through incorporating the pair distribution function (and thus an

accurate estimate of the effective propagation constant). The derivation of the

dense-medium InSAR correlation model for snow is also described in [44, 47].

• The repeat-pass InSAR correlation model for vegetation was derived physically

by incorporating the temporal change effects (both dielectric change and ran-

dom motion). Although this topic has been studied extensively, the previous

works [40, 39, 56, 33, 34, 5, 76, 2] have proved to be different variants of the

general model derived in this work under simplified conditions. The derivation

of the repeat-pass InSAR model for vegetation is also shown in [48].

• Simulations were performed to test the sensitivity of the InSAR correlation

measurements to the snow grain size, volume fraction and layer depth (with

the product of volume fraction and layer depth characterizing the Snow Water
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Equivalent or SWE). A dual-frequency InSAR configuration (e.g. Ka- and L-

band) was proposed to have the potential of retrieving snow characteristics

which also serves as an observing prototype for the future spaceborne Ka- and

L-band InSAR missions, such as SWOT [18] and NISAR [3]. These results and

associated analysis expand InSAR’s capability to measure the dense medium

characteristics, and also is a complimentary tool to existing approaches [70, 71,

72, 67, 58, 93] that use SAR backscatter power observations for the estimation

of snow characteristics. The simulation results for validation of the snow InSAR

model were also included in [44, 47].

• A simple and efficient forest height inversion approach was proposed to estimate

forest height from repeat-pass InSAR correlation measurements and validated

through use of simulation results and ground validation data. As a direct appli-

cation of this approach is to generate large-scale mosaic maps of forest height,

an automatic mosaicking algorithm was developed with a state-mosaic of for-

est height generated for Maine, US. Importantly, this method has found a way

to use archival repeat-pass InSAR observations (JAXA’s JERS-1 [65], ALOS-

1 [66, 75], ALOS-2 [28], NASA’s NISAR [3], ESA’s BIOMASS [37]) to map

vegetation height over large regions, potentially at a continental scale, and to

our knowledge, our method is the first one that successfully utilizes spaceborne

repeat-pass InSAR data to create large-scale forest height mosaics in the InSAR

vegetation community. The present approach described here also serves as an

alternative and complementary tool for other PolInSAR inversion techniques

when single-pass InSAR and/or full-polarization data may not be available.

The forest height inversion approach along with the ground validation results

in Maine, US have been published in [43]. The automatic mosaicking algorithm

and the state-mosaic generation for Maine, US have been published in [45, 42].
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7.3 Future Work

The future work entails two separate directions, which are: 1) single-pass InSAR

observation of snow, and 2) repeat-pass InSAR observation of vegetation.

For the single-pass InSAR observation of snow, this dissertation only demonstrates

the simulated validation results of the dense-medium InSAR scattering model leaving

the development of the snow retrieval approach along with experimental data valida-

tion for future work. So far, there is no single-pass InSAR mission that is optimized

for the snow retrieval problem that was discussed in this dissertation, since the pro-

posed InSAR observing configuration has to exploit two frequencies (e.g. Ka- and

L-band) with the incidence angle and interferometric baseline specifically designed in

order to extract the microscopic scatterer information. Therefore, it is recommended

to first deploy a ground-based interferometer or an airborne InSAR system to test

the retrieval algorithm according to the analysis in this work. As simulated in this

dissertation, the low-frequency (e.g. Ku-band to L-band) InSAR is most suitable to

estimate snow depth, while the high-frequency (essentially Ka-band) InSAR data is

very sensitive to snow grain size and volume fraction. The experimental validation can

thus be split into two separate parts: the low-frequency one and the high-frequency

one, with each case investigated given some prior knowledge of the other. Since only

a functional relationship between snow grain size and volume fraction can be deter-

mined, auxiliary data and/or allometric equations must be used to uniquely estimate

the snow parameters. For example, if SAR backscatter power [70] can be incorpo-

rated, snow grain size and volume fraction can thus be uniquely determined, which

implies an error analysis can be made directly for the Snow Water Equivalent (SWE),

an important snow metric for modeling the hydrological cycle. Through the ground

validation experiments, it is also helpful to investigate the actual functional form

of the snow pair distribution function, along with its effect in the observed InSAR

correlation data.
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For the problem of retrieving vegetation characteristics from repeat-pass InSAR

observations, both the simulated and ground validation results have been shown in

this dissertation. The future work is thus to apply the forest height inversion approach

as well as the associated analysis proposed in this work to different test sites where

ground validation data (such as lidar) is available. Through extensive validation, it is

desirable to characterize the error and validity of this type of inversion approach over

different forest types and/or heights under various weather conditions. Since a signif-

icant part of this work is to create large-scale mosaic maps of forest height, it is also

desired to utilize the archival spaceborne repeat-pass data (especially JAXA’s ALOS-

2 and NASA’s NISAR with a shorter repeat period, i.e. 12-14 days, than ALOS-1;

and thus more reliable height estimation accuracy) to create mosaic maps of forest

height at a national scale, or even at a continental scale. By the time of writing this

dissertation, a Python-based forest height inversion and mosaicking software package

has been developed from this work through the collaboration of Microwave Remote

Sensing Laboratory (MIRSL) at University of Massachusetts (UMass) Amherst and

a private company Applied GeoSolutions, and is currently being tested over the en-

tire Northeast region (around 18 million hectares) of the United States. Therefore,

in the future, it is desired to seamlessly merge this developed software to existing

free SAR/InSAR processing tools such as ROI PAC [61] or ISCE [62] so as to create

an automatic processing line for the generation of large-scale forest height mosaics.

Another competitive edge of using InSAR is to detect and monitor the forest change

and degradation, which is important to understand the global carbon cycle and cli-

mate change. Therefore, through the disturbance analysis in this dissertation, further

efforts can be devoted to interpreting the generated forest disturbance maps so as to

provide a large-scale map of forest change when equipped with an extensive collection

of ground validation data such as spaceborne lidar data, e.g. GEDI [15].
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APPENDIX A

THE ASSUMPTION OF CONSTANT TEMPORAL
CHANGE PARAMETERS AND FOREST

BACKSCATTER PROFILE/EXTINCTION COEFFICIENT

In Section 2.3.3 and Section 3.2.1 of this work, a distinction is made between the

modified RVoG (i.e., (3.3)) and those of previous works (e.g., [40, 56, 5, 33]). Here, in

(3.3), although the parameters of temporal change effects (i.e., γvd , γgd and σref) tend

to be spatially varying (i.e., target-dependent), it is assumed that they follow some

scene-wide mean behavior (and thus are constant) for all of the targets in an interfer-

ogram (i.e., InSAR “scene”), which implies that both the dielectric change and the

wind-induced motion level are uniform. This is different from the target-dependent

effect of temporal decorrelation in [40, 56, 76, 2], where the height-dependent term in

γv&m was not introduced, and the wind-induced motion was included in the variable,

γvd . The effect of this difference is that the temporal correlation coefficient γvd becomes

biased, and is a target (e.g., height) -dependent estimator.

Noting the above difference, in this work, both the height-dependent and height-

independent terms are considered with the target-varying parameters set to be con-

stant values, which will have the effect of increasing estimation error with the benefit

of employing a simplified model that can be applied scene-wide as shown in Chap-

ter 5. The target-dependence of these parameters across a scene leads to RMSE < 4

m on the order of 10 hectares in the forest height estimation. Note importantly, this

assumption only works under the conditions that the temporal decorrelation does not

exhibit a spatially-varying gradient across the scene. When the temporal decorrela-

tion has a strong gradient across the scene (e.g., see Figure 5.13a; primarily caused
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by nonuniform precipitation), the scene can be broken into smaller component parts,

and in so much as ancillary measures of forest heights are available, these variations

can be accounted for. In the case that the spatial variation of the model parame-

ters is not desired, different time periods for the observations (with no precipitation

occurring) can be chosen (as in Figure 5.13b).

To provide more insight into the temporal decorrelation gradient observed in Fig-

ure 5.13a, a comparison can be made with ancillary observations of precipitation data

that were collected from NOAA’s National Climate Data Center (NCDC; [1]) during

the time period of the satellite passes. For the inversion shown in Figure 5.13a, it

can be seen that the “upper” (i.e., northern) segment has smaller values of Sscene

and Cscene than the “lower” (i.e., southern) portion. This implies that the weather

conditions over the northern region were changing more compared to the southern re-

gion during the repeat period 07/10/2007–08/25/2007. These results were compared

to the inversion shown in Figure 5.13b which used observations from 07/10/2007–

10/10/2007, and can be characterized by a single set of temporal change parameters,

implying that the weather conditions were uniform over the region.

In Figure 5.10, the locations of two climate observing stations (marked as “North

Station” and “South Station”) in central Maine are shown. The precipitation data

associated with these two stations in July, August and October 2007 are given in

Figure A.1. The collection dates of the interferograms are indicated by vertical dashed

lines. For interferogram 07/10/2007–08/25/2007, it can be seen that the precipitation

for both north and south stations are similar on 07/10/2007, while the north station

recorded a heavier rainfall on 08/25/2007 than the south station. In contrast, for

interferogram 07/10/2007–10/10/2007, both north and south stations experienced

similar level of precipitation on 07/10/2007 and 10/10/2007, hence providing evidence

for the source of the temporal decorrelation gradient observed in Figure 5.13a, and

not observed in Figure 5.13b.
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Figure A.1: Precipitation data from NOAA’s National Climate Data Center in July,
August and October 2007. The data was recorded at both north and south stations in
central Maine. The collection dates of the corresponding interferograms are indicated
by dashed lines.

An alternative way to look at this homogeneity issue while performing the mosaick-

ing task is through the overlapping regions from adjacent interferometric estimates

of forest height. When there is a spatially-varying feature of the temporal change ef-

fects across the region, large errors are occurring and scenes should be replaced with

alternate or new observations. In Figure A.2, we illustrate an examination of this

scene-wide homogeneity utilizing the mosaicking task. By creating a four-scene mo-

saic, the effect of non-uniform temporal decorrelation on forest height estimation error

(R, RMSE and the target function T as defined in (5.10)) can be observed by testing

with the above two scenes (interferogram 07/10/2007–08/25/2007 and interferogram

07/10/2007–10/10/2007). In Figure A.2a, the central scene (marked as red) was from

interferogram 07/10/2007–08/25/2007 with rainfall occurring over the northern re-

gion of the scene, while in Figure A.2b, interferogram 07/10/2007–10/10/2007 was

used instead with no rainfall recorded. Measures of the error metrics: R, RMSE and
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T , show that the inhomogeneous scene can be automatically identified (with much

worse error metrics) and removed from the mosaic.
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Figure A.2: The forest height estimation error is illustrated for a four-scene mosaic
by selecting the central scene (a) with and (b) without rainfall.

Since we already considered constant wind-induced motion level in the mean sense,

for the constant extinction coefficient as mentioned above and utilized in Section 4.2.1,

we can still apply the same idea by considering its mean value across the whole scene.

As seen from Figure 4.9, the fitting parameter Cscene has a weak dependence on the

extinction coefficient ke (Figure 4.9b) compared to the wind-induced motion level σr

(Figure 4.9d). Therefore, if we can consider constant motion level in terms of its

mean behavior, we can also safely treat the extinction coefficient in the same way,

since the target-dependence of ke is expected to have a smaller effect on the fitting

parameter Cscene than that due to σr.

Another assumption that is made in enforcing a constant value for the parameter

Cscene in deriving (3.12) is that, all of the forests with different height values across

the given scene have the scaled versions of extinction-weighted backscattering profile

and height-dependent motion profile. To examine this assumption in more detail, the

reader is referred to Figure A.3 where a short forest stand of height h1 and a taller

forest stand with height h2 (h2 = c · h1, where c is a scaling constant) are shown.
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Denoting the Gaussian motion profile in (3.10) as, ρr(z), the mean-value theorem can

be applied to (3.10) for h1 and h2 such that

∫ hi
0
ρ

(i)
r (z)σ

(i)
V (z)dz∫ hi

0
σ

(i)
V (z)dz

= ρ(i)
r (ξi) for i = 1, 2 (A.1)

Mathematically, the choice of the mean value ξ depends on the functional forms

of both σV (z) and ρr(z). By using a change of variables, it can be shown that if

ρ
(2)
r (z) = ρ

(1)
r ( z

c
) and σ

(2)
V (z) = σ

(1)
V ( z

c
), then ξ2 = c·ξ1 or equivalently ξ2

h2
= ξ1

h1
. That is,

when the extinction-weighted backscattering profile and the height-dependent motion

profile of different forest stands are scaled versions of each other, the proportionality

of the mean value with respect to the forest height is the same for all of the forest

stands.

h1

h2 h2

0 0 01 1 1
(a) (b) (c) 

z z z

Figure A.3: Illustration of different functional forms of the extinction-weighted
backscattering profile (normalized; “green” curve) and the height-dependent motion
profile (“red” curve). (a) shows the profiles for a short forest stand at height h1, (b)
shows the profiles that are scaled versions of (a) for a taller forest stand at height
h2, while (c) shows the profiles for the taller forest stand at height h2 using the same
functional forms of σV (z) (i.e., constant extinction coefficient) and ρr(z) (i.e., con-
stant wind-induced motion level) as (a). Note the highlighted curve segments in (c)
exactly correspond to the profiles in (a).

In most cases, however, this requirement is not strictly satisfied, as illustrated in

Figure A.3. Here, for forests with constant extinction coefficient and constant wind-
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induced motion level as assumed in Section 4.2.1 (e.g., Figure 4.9a), the profiles of

σV (z) and ρr(z) are illustrated in Figure A.3a,c for heights h1 and h2, respectively.

However, in order to guarantee the same proportionality of the mean value, we would

desire the profiles at height h2 are nothing more than scaled versions of the ones

at height h1, i.e., Figure A.3b. Therefore, the proportionality (denoted by α in

Section 3.2.2) will have a perturbation for various forest heights in Figure 4.9a. For

example, the standard deviation of α is calculated as 0.07, which in turn results in

a standard deviation of 1.11 for Cscene through using (3.13). In spite of this small

perturbation of α (and thus Cscene), the overall fit as shown in Figure 4.9a is still quite

good (RMSE = 0.25 m and R = 99.97% for heights under the saturation point). So

far, we have seen that the requirement of the scaled versions of profiles for different

heights could be weakly satisfied with small perturbation occurring but the overall

quality of the fitting is still good.
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APPENDIX B

POLARIZATION-DEPENDENCE OF THE FOREST
HEIGHT INVERSION PROCEDURE

The forest height inversion procedure is based on (3.9) which is a version of the

correlation model (3.6), simplified by assuming that m = 0 for HV-pol data. For

the more general case, where both µ, the ground-to-volume temporal decorrelation

ratio due to dielectric change, and m, the ground-to-volume power ratio, are not

trivial values (e.g., for the case of co-polarized transmit and receive channels), the

contribution of ground scattering can be further investigated.

To understand these effects of undoing these assumptions, the general correlation

model, (3.6), is rewritten as

γv&t = Sscene · γ′v&m (B.1)

with

γ′v&m =
γv&m + µm

1 +m
(B.2)

where µ and m will bias γ′v&m from γv&m.

To obtain the inverted forest height, (3.12) is used to determine hv, while we

maintain the same Sscene and Cscene as in the simplified model (see Figure 4.9a) but

γv&t is replaced by (B.1) while calculating the simulated correlation magnitude. When

m = 0, this reduces to the simplified model. Figure B.1 demonstrates the simulated

inversion results when m = 1 (large m, or HH-pol data) and m = 0.01 (small m or
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HV-pol data), where the value of m is referenced to a 30 m tall canopy as in [57]. Both

subplots demonstrate the inversion model performance with µ = 1, ej
π
8 , 0.95, 0.95ej

π
8

allowing µ to have magnitude and/or phase bias in comparison with µ = 1.

From the plots shown in Figure B.1 it can be seen that significant contributions

from ground scattering (from the HH-polarized case in (a)) create a non-linear rela-

tionship between actual and estimated heights, whereas for the HV-pol data (small

m), the model works well under almost all values of heights. For the small m case,

differences between the simulated and estimated heights only exist at the short and

very tall extremes of the inversion. It is for this reason that a preference is given for

the use of cross-polarized data in the inversion, a fact that has been borne out in

observational data as well.
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Figure B.1: Simulated forest height inversion results using (a) m = 1 (HH-pol) and
(b) m = 0.01 (HV-pol). The instrumental and forest parameters are the same as in
Figure 4.9a, so are the fitting parameters (Sscene and Cscene). Results are shown with
µ = 1, ej

π
8 , 0.95, 0.95ej

π
8 .

Although it would be better to make a rigorous mathematical proof in order to

validate this assumption, we note the above simulation method (e.g., Figure B.1) is

sufficient at this stage. The purpose of this assumption is to show when m 6= 0,
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bias exists in the inverted forest height. However, as long as m is small, this only

affects the lower end of the height range (e.g., short vegetation and ground), which

can be tolerated if m is small enough, or alternatively can be masked out through

the use of a forest/non-forest map since there is usually extra temporal decorrelation

causing overestimation of the low heights. The fact of HV-polarized data withm being

small enough in the present work has been validated both by the simulation results

(Figure B.1b) and the experimental results (see Chapter 5, especially Figure 5.5,

Figure 5.8, Figure 5.13 and Figure 5.15).

In the above simulation, an extinction coefficient of ke = 0.1 dB/m (less than the

values used in [57, 33]) is used to characterize a sparse forest at L-band. If a dense

forest is studied with a greater ke = 0.3 dB/m (as in [33]), the bias in the lower end

of the height range will become much less pronounced, i.e., the model performs much

better. However, if a very spare forest is examined, the extinction effect will be so

small that the ground-to-volume ratio will be huge even for a 30 m tall canopy. The

inversion result for the HV-polarized data in this case will look very much like the

HH-polarized data in the above simulation (Figure B.1a). The forest heights will thus

be severely underestimated, however, since the forest is very sparse, the mean ground

truth height will also be very small (close to the ground). As this work deals with the

forest height through averaging a large area (not the maximum height), the biased

difference between the estimated and ground truth heights can be tolerated for very

sparse forests.

In the presence of temporal decorrelation, it is important to note that Sscene, m

and µ will be polarization-dependent. Therefore, the PolInSAR version [9, 40] of this

problem will have additional unknowns when temporal decorrelation is expected to

play a role in the observations, and thus the inversion becomes an underdetermined

problem [56]. While sophisticated techniques (e.g., adapting PolInSAR methods to

accommodate (3.6)) might lead to more accurate inversion, the simplified inversion
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model shown here (based on HV-pol data only) has been shown to generate meaningful

results from repeat-pass InSAR correlation measurements with long repeat periods.

Such algorithms thus are important tools for making use of accumulated data from the

JERS-1 [65], ALOS-1 & -2 data sets [66, 75, 28], as well as the planned DESDynI-R

(now called NISAR) mission [3].
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APPENDIX C

EFFECTIVE RANGE OF INTERFEROMETRIC
VERTICAL WAVENUMBER AND THE SMALL-κZ

ASSUMPTION

Generally speaking, an InSAR correlation magnitude varies with the κz value as

indicated in Figure 5.11 and in [77] (under unfrozen conditions). In this appendix, the

range of κz values that can be used for this inversion model are explored. In order

to do this it is useful to differentiate the decorrelation effects from the variety of

sources, as they change with respect to κz. Although these decorrelation components

are demonstrated here as simulation results, as mentioned in Section 4.2.1, these

simulation parameters are intentionally chosen to be such in order to mimic the

experimental results in Chapter 5. To create an example, a 20 m tall canopy is used

and the κz-dependence of various correlation components is illustrated in Figure C.1

with the same forest parameters as in Figure 4.9a, and using a viewing geometry

consistent with ALOS/PALSAR.

In Figure C.1, the “Volume Only” contribution is from volume scattering and no

motion, “Dielectric” is the model for the loss of correlation magnitude due to di-

electric changes in the volume (a constant factor that manifests itself in the model

constant, Sscene), “Volume+Motion” is the magnitude of the coupled correlation

component due to volume scattering and random motion (|γv&m|), and “Total (Vol-

ume+Motion+Dielectric)” is the combined correlation magnitude from all volume

scattering and temporal changes, |γv&t|. In this example, it is assumed that the geo-

metric decorrelation has been compensated for and that the thermal noise correlation

is negligible for 20 m tall canopy.
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Figure C.1: Illustration of the κz-dependence for all of the correlation components
involved in the current work by utilizing ALOS’s viewing geometry over a 20 m tall
canopy. The forest and temporal change parameters are chosen as in Figure 4.9a.
The effective range of κz for this study is κz < 0.15 rad/m.

From Figure C.1, it can be seen that as the vertical wavenumber increases, the to-

tal observed correlation decreases, as expected (which agrees with the observations in

Figure 5.11), and that the combined effect of all correlations can make this total cor-

relation quite low (below a value of 0.3). This has the effect of making the correlation

magnitude difficult to measure [79], and also is an indication of a loss of information

in the observation itself. For these reasons, for any model and subsequent inversion

used, it is important to use those correlations that have the highest values, such as

those shown in Figure 5.11. Because of the variety of sources of decorrelation when

a 46 day repeat-period is introduced (i.e., both dielectric and motion changes occur

in the target), those observations with the shortest baselines will have the largest

correlations, and hence information content. So long as there is a height-dependent

sensitivity of the decorrelation on these changes (e.g., [5, 33]), a signature will exist

that can be exploited to estimate forest height.
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Figure C.2: The κz-dependence of the inversion model degradation. Particularly,
the fitted parameter Cscene is shown as a function of κz with πCscene related to the
invertible range of forest height characterizing the model performance. The smaller
Cscene, the worse model performance. The forest and temporal change parameters
in this simulation are set to be the same as Figure 4.9a. The case where κz = 0.15
rad/m (i.e., boundary of the effective range for small κz in this study) is indicated
by a vertical dashed line.

The effect of changing the vertical wavenumber, κz, from zero to some other

value, under these circumstances will lead to a graceful degradation in the model’s

performance, because the effect of this larger wavenumber will only be to decrease

the correlation. Note that when κz 6= 0, a non-zero value of κz will be included in the

model via the scene-wide parameter, Cscene, derived in (3.9) through (3.13). While in

that derivation, the vertical wavenumber was assumed to be zero, a non-zero but small

value of that parameter will have the effect of scaling the argument of the exponential

function given in (3.10), or equivalently, scaling the argument of the sinc function

used in (3.12). In other words, the fitting parameter Cscene will be κz-dependent in

order to compensate the model degradation. This effect can be better illustrated by

Figure C.2, which shows the fitted parameter Cscene as a function of κz with other

simulation parameters fixed as in Figure 4.9a. As mentioned in Section 3.2.2 and

discussed in Appendix D, the value πCscene represents the invertible range of forest
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height through using the simplified inversion model (“sinc” relationship) with fitting

parameters Sscene and Cscene. If Cscene becomes very small (e.g., <5 m as seen in

Figure C.2), this simplified inversion approach will be insufficient to characterize the

height variation of natural forests under the presence of correlation measurement

uncertainty. Note for the small κz values (i.e., κz < 0.15 rad/m and preferably

< 0.05 rad/m as stated above), the value of Cscene is only slightly changed, which is

in agreement with Figure 4.9a (κz = 0.05 rad/m) and Figure 4.9c (κz = 0 rad/m).

The reason for this can be seen in the effect of κz on the total decorrelation curve

shown in Figure C.1, where the behavior of the curve for small values of κz is at its

peak, and relatively unchanged for values of κz < 0.15 rad/m (as indicated by the

vertical dotted line included in Figure C.1), which serves as the effective range of κz

for this study. Therefore, we have demonstrated that for any non-zero small κz, this

simplified inversion model (i.e., the sinc relationship as in (3.12)) can always work

well with Cscene being weakly dependent on κz (in comparison to (3.13) where κz was

neglected), which is referred to as the “small-κz assumption” in this study.
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APPENDIX D

THE VALIDITY FOR THE SINC APPROXIMATION TO
THE GAUSSIAN-LIKE FUNCTION

In Section 3.2.2, we utilized the main lobe of a sinc function with a scaling factor

to approximate the Gaussian-like curve. In this appendix, we will explain why this is

necessary under the presence of measurement uncertainty and quantitatively describe

the fitting error by comparing the Gaussian curve with the fitted sinc solution (i.e.,

(3.12) along with (3.13)) as well as two alternative functional forms. Further, we will

look at the translation of the fitting error in the InSAR correlation magnitude to the

estimation bias of forest height.

First, we show the Gaussian-like curve of InSAR correlation component compared

with the fitted sinc solution in Figure D.1 and explain why the fitted sinc function

is used in this study to approximate the Gaussian-like function although there is

still fitting error between them as noticed in Figure D.1. This is because that the

fitted sinc function has the benefit of obtaining an upper limit (i.e., πCscene) on the

maximum inverted height in the presence of uncertainty for measuring the InSAR

correlation [79]. Without this simplifying approximation, the Gaussian expression in

(3.12) is significantly insensitive to forest height in the nonlinear long “tail” region,

and the inverted height as well as the height estimation uncertainty will approach

infinity as the observed correlation magnitude becomes very low (which also implies

that characterizing the height estimation uncertainty as a function of forest height is

prohibited). This is important, because there is a large uncertainty in estimating low

correlation magnitude signals (<0.2 as seen in Section 5.1.2; [79]) when the number

of sampled looks is small, as is usually the case for spaceborne missions (e.g., 20-look
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Figure D.1: The Gaussian-like curve of InSAR correlation magnitude as a function of
forest height compared to the fitted sinc function along with two alternative functional
forms, i.e., the quadratic term of Taylor series and its corresponding sinc function.
The illustration of height estimation bias is shown by the “red” lines, with point A and
point B denoting the actual and estimated heights, respectively. The uncertainty in
measuring the InSAR correlation magnitude and the uncertainty in the forest height
estimation are illustrated as shaded areas in “green” and “red”, respectively.

averaging was used for the estimation of InSAR correlation in the study presented

here, which leads to the pixel size of 20 m × 30 m). In such a scenario, the In-

SAR estimation error encountered in the inversion of the Gaussian function of (3.12)

will create significant height estimation errors in the long “tail” region of a Gaussian

curve, as the forest height gets larger. In Figure D.1, we use the “green” shaded

area to indicate the uncertainty (see Section 5.1.2) in measuring the InSAR correla-

tion magnitude at hv = πCscene (point A), the upper bound of the invertible height

range. By using the Gaussian curve without sinc approximation, this measurement

uncertainty is in turn translated into infinity for the height estimation uncertainty;

however, by using the fitted sinc function, the height estimation uncertainty can be
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remarkably reduced as illustrated by the “red” shaded area, although the mean value

is shifted from point A to point B (as illustrated by the “red” lines) leading to a

height estimation bias.

Next, we will study the height estimation bias through the use of different fitting

functional forms. In Figure D.1, we also illustrate two alternative functional forms:

“quadratic term of Taylor series” and “alternative sinc function” along with the fitted

sinc function. Note, both sinc function and Gaussian function have their first two

terms of Taylor series expansion being in a quadratic form. Therefore, in Figure D.1,

“quadratic term of Taylor series” denotes the first two terms (i.e., a quadratic func-

tion) in the Taylor series expansion of the Gaussian curve; while “alternative sinc

function” denotes the corresponding sinc function that has the same quadratic terms

in its Taylor series expansion. It can be noticed that the fitted sinc solution is the clos-

est one on average to the Gaussian curve within the invertible height range [0, πCscene]

and starts deviating at the higher end of the height range. The quadratic term and

the corresponding sinc function fit very well to the Gaussian curve at the lower end of

the height range as expected, i.e., even better than the fitted sinc solution, however,

they start deviating at a much lower height value. As illustrated by the “red” lines

in Figure D.1, an actual forest height at point A will be estimated as the one at point

B through using the fitted sinc solution, and the difference between them is referred

to as the height estimation bias. We can thus plot the height estimation bias as a

function of actual forest height for all of the three fitting functional forms from Fig-

ure D.1, and this is shown in Figure D.2. It is observed that, although the quadratic

term and its corresponding sinc function have smaller bias at the lower end of the

height range, the fitted sinc solution is the best functional form on average within

the invertible height range. Particularly, as the “green” lines indicate, the estimation

bias within most (almost 4
5
) of the height range [0, πCscene] is as small as 0.027πCscene,

while for the height values close to the upper bound of the invertible height range,
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Figure D.2: The height estimation bias as a function of forest height for three different
choices of fitting functional form as illustrated in Figure D.1. Here, the estimation
bias from this sinc approximation are bounded by the “green” lines.

the estimation bias keeps increasing up to 0.12πCscene as the estimated height begins

to saturate.

Note importantly, the exact mathematical expression of Cscene does not affect

the practical inversion performance, since Cscene along with Sscene are just fitting

parameters with different factors lumped into them. In practice, both of the fitting

parameters Sscene and Cscene will be optimally estimated given some ground validation

heights so that the estimated forest height can match the actual height very well for

hv ∈ [0, πCscene]. In other words, the modeled estimation bias (that may not be

sufficiently corrected) from this sinc approximation as well as other error sources will

result in an overall forest height estimation uncertainty (e.g., < 4 m at the resolution

of 10 hectares in this study). This has been verified from the simulation in Section 4.2

and the experimental validation in Chapter 5.
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