289 research outputs found

    A Survey: Spider Monkey Optimization Algorithm

    Get PDF
    Swarm intelligence is a one of the areas for evaluating the optimization states. Many algorithms have been developed by simulating the swarming behaviour of various creatures like ants, honey bees, fishes, birds and their results are found as very motivating for solving optimization problems. In this paper, a new approach for optimization is proposed by modelling the social behaviour of spider monkeys. Spider monkeys have been categorized as fission-fusion social structure based animals. The animals which follow fission-fusion social systems, initially work in a large group and based on need after some time, they divide themselves in smaller groups led by an adult female for foraging. There- fore, the proposed strategy broadly classified as inspiration from the intelligent foraging behaviour of fission-fusion social structure based animals

    Delay aware optimal resource allocation in MU MIMO-OFDM using enhanced spider monkey optimization

    Get PDF
    In multiple users MIMO- OFDM system allocates the available resources to the optimal users is a difficult task. Hence the scheduling and resource allocation become the major problem in the wireless network mainly in case of multiple input and multiple output method that has to be made efficient. There is various method introduced to give an optimal solution to the problem yet it has many drawbacks. So we propose this paper to provide an efficient solution for resource allocation in terms of delay and also added some more features such as high throughout, energy efficient and fairness. To make optimal resource allocation we introduce optimization algorithm named spider monkey with an enhancement which provides the efficient solution. In this optimization process includes the scheduling and resource allocation, the SNR values, channel state information (CSI) from the base station. To make more efficient finally we perform enhanced spider - monkey algorithm hence the resource allocation is performed based on QoS requirements. Thus the simulation results in our paper show high efficiency when compared with other schedulers and techniques

    Bold:Bio-inspired optimized leader election for multiple drones

    Get PDF
    Over the past few years, unmanned aerial vehicles (UAV) or drones have been used for many applications. In certain applications like surveillance and emergency rescue operations, multiple drones work as a network to achieve the target in which any one of the drones will act as the master or coordinator to communicate, monitor, and control other drones. Hence, drones are energy-constrained; there is a need for effective coordination among them in terms of decision making and communication between drones and base stations during these critical situations. This paper focuses on providing an efficient approach for the election of the cluster head dynamically, which heads the other drones in the network. The main objective of the paper is to provide an effective solution to elect the cluster head among multi drones at different periods based on the various physical constraints of drones. The elected cluster head acts as the decision-maker and assigns tasks to other drones. In a case where the cluster head fails, then the next eligible drone is re-elected as the leader. Hence, an optimally distributed solution proposed is called Bio-Inspired Optimized Leader Election for Multiple Drones (BOLD), which is based on two AI-based optimization techniques. The simulation results of BOLD compared with the existing Particle Swarm Optimization-Cluster head election (PSO-C) in terms of network lifetime and energy consumption, and from the results, it has been proven that the lifetime of drones with the BOLD algorithm is 15% higher than the drones with PSO-C algorithm

    Spider Monkey Optimization Based Optimal Sizing of Battery Energy Storage for Micro-Grid

    Get PDF
    The ever-increasing need for power in today\u27s environment calls for a secure and effective energy supply network. Distributed renewable options such as Diesel Generator (DG), wind turbine (WT) and photovoltaic (PV) solar energy may be integrated inside a micro grid (MG) to supply electricity to customers in a sensible manner. In order to provide a more efficient and affordable source of electricity, the battery storage device is built into the micro grid. This article identifies the cost-based approach to calculate the optimum size of the Battery energy storage (BES) for MG operations. Some constraints, i.e., the power output of the Distributed Generators (DGs), the power and energy capacity of BES, the charging/discharge performance of BES, the working reserve and the fulfilment of the load requirement, should also be considered. In this article the Spider Monkey (SM) algorithm is a modern evolutionary technology that is used to build correction policies and to execute less costly dispatch. Four different cases have been studied. The results are compared with recently developed Fire Fly (FF) algorithm to corroborate the effectiveness of the proposed algorithm. The results show that the proposed algorithm has low power loss and the operating cost of the proposed SM technique is 0.0129% less than existing FF algorithm based micro-grid system. Here, IEEE 33 bus system performed to prove the effectiveness of the proposed SM algorithm over the FF algorithm

    Spider monkey optimization routing protocol for wireless sensor networks

    Get PDF
    Uneven energy consumption (UEC) is latent trouble in wireless sensor networks (WSNs) that feature a multiple motion pattern and a multi-hop routing. UEC often splits the network, reduces network life, and leads to performance degradation. Sometimes, improving energy consumption is more complicated because it does not reduce energy consumption only, but it also extends network life. This makes energy consumption balancing critical to WSN design calling for energy-efficient routing protocols that increase network life. Some energy-saving protocols have been applied to make the energy consumption among all nodes inside the network equilibrate in the expectancy and end power in almost all nodes simultaneously. This work has suggested a protocol of energy-saving routing named spider monkey optimization routing protocol (SMORP), which aims to probe the issue of network life in WSNs. The proposed protocol reduces excessive routing messages that may lead to the wastage of significant energy by recycling frequent information from the source node into the sink. This routing protocol can choose the optimal routing path. That is the preferable node can be chosen from nodes of the candidate in the sending ways by preferring the energy of maximum residual, the minimum traffic load, and the least distance to the sink. Simulation results have proved the effectiveness of the proposed protocol in terms of decreasing end-to-end delay, reducing energy consumption compared to well-known routing protocols

    Energy-efficient device-to-device communication in internet of things using hybrid optimization technique

    Get PDF
    Device-to-device (D2D) communication has grown into notoriety as a critical component of the internet of things (IoT). One of the primary limitations of IoT devices is restricted battery source. D2D communication is the direct contact between the participating devices that improves the data rate and delivers the data quickly by consuming less battery. An energy-efficient communication method is required to enhance the communication lifetime of the network by reducing the node energy dissipation. The clustering-based D2D communication method is maximally acceptable to boom the durability of a network. The oscillating spider monkey optimization (OSMO) and oscillating particle swarm optimization (OPSO) algorithms are used in this study to improve the selection of cluster heads (CHs) and routing paths for D2D communication. The CHs and D2D communication paths are selected depending on the parameters such as energy consumption, distance, end-to-end delay, link quality and hop count. A simulation environment is designed to evaluate and test the performance of the OSMO-OPSO algorithm with existing D2D communication algorithms (such as the GAPSO-H algorithm, adaptive resource-aware split-learning (ARES), bio-inspired cluster-based routing scheme (Bi-CRS), and European society for medical oncology (ESMO) algorithm). The results proved that the proposed technique outperformed with respect to traditional routing strategies regarding latency, packet delivery, energy efficiency, and network lifetime

    Device-to-device based path selection for post disaster communication using hybrid intelligence

    Get PDF
    Public safety network communication methods are concurrence with emerging networks to provide enhanced strategies and services for catastrophe management. If the cellular network is damaged after a calamity, a new-generation network like the internet of things (IoT) is ready to assure network access. In this paper, we suggested a framework of hybrid intelligence to find and re-connect the isolated nodes to the functional area to save life. We look at a situation in which the devices in the hazard region can constantly monitor the radio environment to self-detect the occurrence of a disaster, switch to the device-to-device (D2D) communication mode, and establish a vital connection. The oscillating spider monkey optimization (OSMO) approach forms clusters of the devices in the disaster area to improve network efficiency. The devices in the secluded area use the cluster heads as relay nodes to the operational site. An oscillating particle swarm optimization (OPSO) with a priority-based path encoding technique is used for path discovery. The suggested approach improves the energy efficiency of the network by selecting a routing path based on the remaining energy of the device, channel quality, and hop count, thus increasing network stability and packet delivery

    A Cloud Computing-based Research on the Relationship between Educational Internship and Pre-Service English Teachers' Professional Development

    Get PDF
    Educational internships are a crucial component of teacher education programs, as they evaluated the experience practical opportunities for preschool teachers with the development of skills, experience of practical scenarios, and experience feedback. Through educational internships, pre-service teachers can also develop their professional identities and gain a deeper understanding of the complex challenges and rewards of teaching. This paper explores the relationship between educational internships and heuristic optimization cloud environments for the professional development of English pre-service teachers. The research presents a novel approach called Cloud Spider Wolf Optimization (CSWO) that utilizes cloud computing technology to enhance the effectiveness of educational internships. The study evaluates the impact of CSWO on pre-service teachers' professional development by examining their learning outcomes and perceptions of the internship program. The data for the analysis is collected through primary data among the pre-service English teachers. The data for analysis is collected from 200 pre-service teachers in academic schools in China. The results indicate that CSWO significantly improves pre-service teachers' professional development by providing them with opportunities to engage in authentic, real-world tasks that enhance their knowledge and skills in English language teaching. The study also suggests that the use of cloud computing technology can provide a valuable tool for enhancing the effectiveness of educational internships. The findings have important implications for teacher preparation programs and suggest that the integration of cloud computing technology and heuristic optimization techniques can be used to improve the quality of teacher education

    A PCA-SMO Based Hybrid Classification Model for Predictions in Precision Agriculture

    Get PDF
    The human population is growing at an extremely rapid rate, the demand of food supplies for the survival and sustainability of life is a gleaming challenge. Each living being in the planet gets bestowed with the healthy food to remain active and healthy. Agriculture is a domain which is extremely important as it provides the fundamental resources for survival in terms of supplying food and thus the economy of the entire world is highly dependent on agricultural production. The agricultural production is often affected by various environmental and geographical factors which are difficult to avoid being part of nature. Thus, it requires proactive mitigation plans to reduce any detrimental effect caused by the imbalance of these factors. Precision agriculture is an approach that incorporates information technology in agriculture management, the needs of crops and farming fields are fulfilled to optimized crop health and resultant crop production. The proposed study involves an ambient intelligence-based implementation using machine learning to classify diseases in tomato plants based on the images of its leaf dataset. To analytically evaluate the performance of the framework, a publicly available plant-village dataset is used which is transformed to appropriate form using one-hot encoding technique to meet the needs of the machine learning algorithm. The transformed data is dimensionally reduced by Principal Component Analysis (PCA) technique and further the optimal parameters are selected using Spider Monkey Optimization (SMO) approach. The most relevant features as selected using the Hybrid PCA-SMO technique fed into a Deep Neural Networks (DNN) model to classify the tomato diseases. The optimal performance of the DNN model after implementing dimensionality reduction by Hybrid PCA-SMO technique reached at 99% accuracy was achieved in training and 94% accuracy was achieved after testing the model for 20 epochs. The proposed model is evaluated based on accuracy and loss rate metrics; it justifies the superiority of the approach
    corecore