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Abstract: Over the past few years, unmanned aerial vehicles (UAV) or drones have been used for many
applications. In certain applications like surveillance and emergency rescue operations, multiple
drones work as a network to achieve the target in which any one of the drones will act as the master or
coordinator to communicate, monitor, and control other drones. Hence, drones are energy-constrained;
there is a need for effective coordination among them in terms of decision making and communication
between drones and base stations during these critical situations. This paper focuses on providing an
efficient approach for the election of the cluster head dynamically, which heads the other drones in
the network. The main objective of the paper is to provide an effective solution to elect the cluster
head among multi drones at different periods based on the various physical constraints of drones.
The elected cluster head acts as the decision-maker and assigns tasks to other drones. In a case where
the cluster head fails, then the next eligible drone is re-elected as the leader. Hence, an optimally
distributed solution proposed is called Bio-Inspired Optimized Leader Election for Multiple Drones
(BOLD), which is based on two AI-based optimization techniques. The simulation results of BOLD
compared with the existing Particle Swarm Optimization-Cluster head election (PSO-C) in terms of
network lifetime and energy consumption, and from the results, it has been proven that the lifetime
of drones with the BOLD algorithm is 15% higher than the drones with PSO-C algorithm.

Keywords: unmanned aerial vehicle; multiple UAV; clustering; leader election; drones; particle
swarm optimization; spider monkey optimization; network lifetime

1. Introduction

In the past, drones or unmanned aerial vehicles (UAVs) have been used only as expensive military
aircraft or small toys for kids. After the expanded permission of the federal aviation administration
for using drones for commercial and non-hobbyist purposes, drones are being applied in day to day
activities. Drones replace the traditional method of business operations with less human and limited
infrastructure, which helps to reduce the time and cost of commercial and business activities. As a
consequence, drones are widely applicable in various domains such as in agriculture for crop and herd
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monitoring, environmental and natural disaster monitoring, aerial photography, border surveillance,
emergency assistance, search and rescue missions, relay communications and weather monitoring [1,2].
The need for drones has increased linearly over the past decade. According to the Drone Market Report
2019, by the Drone Industry Insights, the sales of the commercial drones are expected to increase
and India will become the third-largest commercial drone market in the year 2024 [3]. Drone-based
communication systems provide two kinds of communication—air to ground (communication with a
base station) and air to air (communication with other drones) [4]. The recent development in drones
and its related technologies opens the market for various commercial applications. Based on the
application or problem to be solved, the drones of various types can be applied. In general, drones can
be classified based on their size, range, and endurance, number of rotors, and altitude, as shown in
Figure 1 [5].
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rotors, and altitude.

UAV network topology is highly complex due to the dynamic, three-dimensional (3D) environment
with changing UAV velocities. Another difficulty is the limitation of the range between UAVs and
the ground station. When the number of UAVs increases, it is essential to use clustering schemes
as they ensure the necessary level of network performance, such as end-to-end delay, throughput,
and energy efficiency. The UAVs are divided into multiple groups or clusters in the clustering technique,
which shares the same geographic location. For such a clustered setup, only the chosen cluster head
(CH) is responsible for inter-cluster and intra-cluster communication [6,7].

Usage of single drones for the applications mentioned above limits the efficiency of missions
and could not be achieved in some cases. In such cases, multiple drones are preferred over a single
drone for successful mission completion. Hence, the need for efficient communication among multiple
drones arises. For the better achievement of this, a leader is elected to co-ordinate the multiple
drones. However, implementing multiple drones in real-time is not as easy when compared to a
single drone because, in the case of multiple drones, many critical factors come into consideration like
communication between the drones and range of communication. To be more precise, controlling
multiple drones in performing a single operation is a hideous process because if there is no proper
communication between multiple drones, there is the chance that one drone may collide with the
other [8]. Further, to improve efficiency in battery capacity and to perform separate tasks, multiple
drones are divided into clusters. Even in these clusters, leaders are elected for better communication
among drones. Figure 2 depicts the schematic representation of each drone communicating with the
base station. Leader election and cluster formation are done based on the bio-inspired optimizations
such as PSO and SMO, respectively.
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drone and base station.

Researchers have proposed many bio-inspired optimization algorithms to solve complex
computational problems. They are stimulated or inspired by the biological behavior of animals
or birds. The optimal solution is found by exploring and exploiting the search spaces using different
methods [1]. The widely used algorithms include Particle Swarm Optimization, Grey Wolf Optimization,
Ant Colony Optimization, Artificial Bee Optimization, and so on [9–12]. Particle Swarm Optimization
(PSO) proposed by Eberhart and Kennedy, which is derived from the study on flocking of birds or fish
schooling ich behavior of animals and considers an example that a group of birds is searching for a
single piece of food in a random area [13]. Every bird does not know the location of the food particle,
but it can be found out in repeated iterations. Thus, the practical strategy is to find the bird which
is closest to the food. In the PSO, random particles (solutions) are first initialized, and an optimal
solution is found in successive iterations [13]. The Spider Monkey Optimization (SMO) technique uses
the social behavior of spider monkeys for solving optimization problems. It is based on a fission-fusion
methodology. Generally, they live in large groups of individuals. If there is a need, they separate
(fission) from the group and reunite (fusion) later when needed. This method is widely used for
clustering techniques [14].

The effective utilization of battery energy is one of the most crucial factors for the operation of
the drones. The battery power in the drones is used for wireless communications between the drones
and to the base station, data processing, drone hovering, and various other purposes depending
on the application of the drone. This requirement gives rise to the design and implementation of
an energy-efficient algorithm for real-time processing of drone data. In the case of multiple drones,
numerous communication and coordination challenges need to be solved. The high velocity of the
drones ranging from 35 km/h to 70 km/h is another challenge because collisions can be avoided only
when the obstacle avoidance algorithm is executed immediately [15]. For this purpose, drones need to
make formations according to their flying environment. The research gaps that need to be solved are:

• When multiple drones are deployed in the environment, communication among the drones and
communication with the base station takes place.

• If each drone communicates separately with the base station, more energy will be consumed,
and thus the lifetime of the network may decrease.

• When the communication between the drones fails, then collision may occur as the drones are
not aware of their neighbor’s position.

Our contributions to overcome the problems above are:
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• A cluster head CH is elected dynamically based on its current position (nearer to the base station
and all other drones),residual energy (benergy), and velocity using a method based on Particle
Swarm Optimization (PSO).This elected leader CH alone communicates with the base station
and other drones, thereby decreasing the communication energy, which in turn extends the
network lifetime.

• Clusters are formed using Spider Monkey Optimization (SMO) based on the proximity of the
drones to each other, its connectivity to other nodes (using RSSI), and the residual energy of the
drones. The clusters formed will have equal average residual energy for increasing the network
lifetime furthermore.

• Simulation of the proposed algorithm, to compare and study its efficiency with the
existing algorithm.

Our assumptions are as follows:

• The network model is initially considered to have homogenous drones with the same amount of
residual energy, and their moving direction is random.

• The drones used are attached with a global positioning system(GPS) from which its position can
be calculated at any instance and thereby calculating the distance traveled by it at the given period.

• Communication cost among the drones is considered to be high rather than the computation cost
between the drones and the base station.

• The algorithm might not run continuously, but only when either the battery of the leader is less
than 40% or when there is an extreme change in the network topology or connectivity.

• The drone d is initially elected as the leader at the ground level, and after some time, the leader
election may take place among the clusters in the flying environment.

• The target for all the drones is considered to be the same. Sometimes, when multiple targets are
considered, they are assumed to be nearby.

The rest of the paper is arranged as follows: Section 2 draws a literature survey focusing on
the present research works. In Section 3, the proposed work is illustrated with necessary system
architecture and mathematical modeling. The proposed BOLD algorithm is discussed in detail in this
section, as well. The implementation of the proposed algorithm based on which the performance
evaluation is drawn can be found in Section 4. Finally, the study is concluded in Section 5 with
a conclusion.

2. Literature Survey

In earlier literature, motifs, as a basic unit for mission planning, were proposed by Liu, J. et al. [15],
which, was based on dynamic reconfiguration since UAV swarm communication with limited resources
was difficult. Using the solution of motif-based swarm configuration, they used a multidimensional
dynamic list scheduling algorithm to create a mission planning scheme. Dynamic topology has
been used by Flying ad hoc networks (FANETs). However, UAV’s limited battery power and
mobility cause unstable routing within the FANET. Khan minimized this issue [16] with the aid of an
optimal clustering method. The authors have suggested a bio-inspired clustering scheme for FANETs
(BICSF), which combines both the glow-worm swarm optimization (GSO) and krill herd (KH) method.
For optimizing the consumption of energy and the election of fixed group leader, a framework for
unmanned aerial vehicle wireless sensor networks (UAV-WSN) using weighted k-means cluster and
simulated annealing (WKMC-SA) was developed by Hui-Ru Cao et al. [1]. The WKMC was used to
group land WSN and assigned leaders of the group as fixed nodes to reduce the consumption of energy
and retransmission rate. The SA algorithm was used to optimize the flight path planning. However,
the group leaders were stationary re-election of a new leader in case of failures were not addressed by
the author.

An algorithm that detects the formation of multiple UAVs was developed by Wang, Y. et al. [17].
The algorithm used here is the Weighted Component Stitching (WCS) algorithm. Here the formation
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of a network was calculated using the inter UAV distance with the help of the Ultra-Wide Band (UWB)
module. However, this became difficult when the network becomes sparse and noisy. The problem,
as mentioned above, was solved by reliable grouping components of a graph into groups and thereby
calculating the formation of more extensive and sparse networks with accuracy. Further, for tracking
the formation over a while, the Kalman filter was integrated into the WCS algorithm. These algorithms
were compared with existing ARAP (as rigid as possible), ASAP (as soon as possible), and SDP (semi
definite programming) algorithms. The series of results showed that WCS converged much quicker
than ARAP; however, complexities remained the same. Tracking simulation also proved that WCS
and WCKF had better accuracy than that of the existing approaches. A method that is based on a
distributed consensus-based algorithm which combines the sensing capabilities was proposed by
Tao Feng et al. [18]. Cluster heads communicate within the cluster or with cluster heads of other
clusters using frame relay. Homogeneous UAV clusters have the same communication distances and
capacities. The above-mentioned problem was simplified by assuming the capacity will not change
with respect to its location and remains constant for all directions. This method gives an extensive
knowledge about the state transitions of UAVs and also improves the coordinated control of UAV
cluster. The feasibility of the consensus-based algorithm was performed by repeated simulations and
proves that the algorithm is scalable and adaptable.

Spider Monkey Optimization (SMO) is an algorithm inspired by the social Fission-Fusion (FFS)
structure of spider monkeys during their foraging activity. Due to its high efficiency, the algorithm was
used to solve complex problems. [14]. Spider monkey optimization has been applied in various fields
like big data [19], image processing [20], cluster routing protocols for WSNs. In Reference [21], research
was carried out to understand the mechanism of SMO in WSN route optimization by implementing
a mathematical model of its behavioral patterns based on SMO-C. It transmits the data from the
clusters to the base station via the optimal path. Furthermore, the SMO-C is considered to be better
than the conventional routing protocols in terms of less energy usage and better network service
efficiency. A Hybrid Particle Swarm Optimization and Genetic Algorithm (HPSOGA), which solved the
multi-UAV formation reconfiguration problem, was proposed by Duan et al. [22]. This new approach,
when combined with the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), finds the
time-optimal solutions. The HPSOGA was compared with the simple PSO algorithm, and the results
showed that the former is better than the later in solving both multi-UAV formation reconfiguration
problems and finding time-optimal solutions under complicated environments.

PSO-C, an energy-aware cluster head election using the PSO algorithm, was proposed by
Latiff et al. [23]. This algorithm optimized the network energy consumption using intra-cluster distance
and ratio of initial energy to the total energy of the network. However, in some cases, non-cluster heads
were assigned as cluster heads in the clusters formed, which decreased the lifetime of the network due
to insufficient energy consumption, and sink distance was not used in fitness computation. The PSO-C
algorithm was compared with LEACH (Low Energy Adaptive ClusteringHierarchy) and LEACH-C
(Low Energy Adaptive Clustering Hierarchy-cluster based protocol). J. Sanchez-Garcia et al. [24]
proposed a novel dynamic Particle Swarm Optimization for UAV networks (dPSO-U). This dPSO-U
was for a path optimization in the rescue operations of the given disaster situation. It was compared to
the optimal trajectory planning algorithm, and the results were found to be more efficient than that.

Particle Swarm Optimization is a swarm intelligence algorithm based on birds flocking behavior.
Let NP be the number of particles in PSO. A particle Pi has position Xi and velocity Vi. The fitness
function is used to evaluate each particle for checking the quality of the solution. Initially, each particle
is assigned with a random position and velocity values. Each particle computes its own best called
Pbesti and global best called Gbest for every iteration. To reach the global best solution, it uses its
personal and global best to update the velocity Vi and position Xi using the following Equations (1)
and (2).

Vi(t + 1) = w×Vi + c1 × χ1 ×
(
XPbesti −Xi

)
+ c2 × χ2 × (XGbest −Xi) (1)

Xi(t + 1) = Xi + Vi(t + 1) (2)
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where w is the inertia weight, c1, c2 are acceleration coefficients and χ1, χ2 are randomly
generated values.

Pbesti =

{
Pi, if (Fitness(Pi) < Fitness(Pbesti)

Pbesti, . . . otherwise
(3)

Gbest =
{

Pi, if (Fitness(Pi) < Fitness(Gbest)
Gbest, . . . otherwise

(4)

After getting a new updated position, the particle evaluates the fitness function and updates
Pbesti as well as Gbest from Equations (3) and (4).

Stochastic optimization was proposed by modeling the social behavior of spider monkeys foraging.
Spider monkeys have been categorized as fission-fusion social structure based animals. The animals
which follow fission-fusion social systems, initially work in a large group and based on need after
some time, they divide themselves into smaller groups led by an adult female for foraging.

Initially, the SM group starts food foraging and approximates their own distance from the food.
Next, based on the distance from the foods, group members update their positions and again evaluate
the distance from the food sources. Furthermore, in the third step, the local leader updates its best
position within the group and if the position is not updated for a specified number of times then all
members of that group start searching for the food in different directions. Finally, in the fourth step,
global leader, updates its best-ever position and in case of stagnation, it splits the group into smaller
size subgroups. All the four steps mentioned aforesaid, are continuously executed until the desired
output is achieved. The population initialization, local leader election and global leader election are
given by Equations (5)–(7) respectively.

spmxy = spmminy + v(0, 1) ×
(
spmmaxy − spmminy

)
(5)

where spmxy, is spmx in the yth direction, range of v between 0 to 1; spmmaxy and spmminy are minimum
and maximum bounds.

spmnewxy = spmxy + v(0, 1) ×
(
Lbestkj − spmxy

)
+ v(−1, 1) ×

(
spmry − spmxy

)
(6)

spmnewxy = spmxy + v(0, 1) ×
(
Gbesty − spmxy

)
+ v(−1, 1) ×

(
spmry − spmxy

)
(7)

spmnewxy is the new location of spm; Lbest and Gbest are the local and global leaders of
the population.

From the literature, it has been observed that in recent years, the multiple drones are widely used
in many applications, but still, some significant aspects like clustering, cluster head election are not
considered when multiple drones are deployed for single target events in the environment [25–28].
The re-election of cluster heads in case of failures was also not considered. Network lifetime is a
significant parameter in any ad-hoc and mobile networks when a substantial amount of nodes in the
network dies; there is a high probability of network disconnection, which reduces network lifetime.
Another challenge in the highly dynamic networks like UAV is topology control; when a node moves
far away from the network coverage, it will affect the topology and the process of achieving the target.
The main idea of our proposed algorithm is the election of cluster head and formation of clusters,
a hierarchical topology network, which can minimize the energy consumption and maximize the
network lifetime. In the hierarchical clustering approach, the nodes are grouped into clusters or again
as sub-clusters, a cluster head(CH) is elected. The CH is responsible for the coordination of the cluster
members(CM), intra-cluster, and inter-cluster communications. The clustering approach minimizes
the communication overhead eliminates the communication between CMs and the base station(BS),
which will extend the network lifetime, increase network scalability, and also reduce routing overhead.
Later sections will provide a solution to these problems.
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3. Proposed Work

3.1. System Architecture

The architecture of the proposed work, BOLD, is shown in Figure 3, which represents that when
multiple drones are deployed, network parameters like energy, the distance between drones and
processing power are taken into consideration and using Algorithm 1 (BOLD algorithm).Based on
the mentioned parameters, the fitness function is computed for each node, and the best or optimized
leader is elected as CH, and this elected leader communicates with the base station and all other drones
in our model. Iteratively, the network undergoes re-evaluation, which triggers the BOLD algorithm to
elect new CH.
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3.2. Mathematical Models of BOLD

Let the model consist of n drones. The battery and positions of each drone are initialized based on
the real-time values. The initial position of the drones are assumed to be in between the co-ordinates
of 10.000◦ N–25.500◦ N (latitude) and 80.000◦ E–95.500◦ E (longitude) and their flying direction is
considered to be random. The base station is assumed to be at the location 12.9483◦ N and 80.1399◦ E,
as shown in Figure 4.
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The fitness value (Bopt) for each drone is calculated using Equation (8).

Fitness value
(
Bopt

)
=

(
k× davg

)
+

(
0.5× benergy

)
(8)

where,
davg is the average distance between the nodes
benergy is the residual energy
K is a variable ranging in value from 0.2 to 0.4
The value of k is computed experimentally to range from 0.2 to 0.4 because, in this range, the leader

elected is said to be more optimized and capable of running for more iterations.
The average distance davg between the nodes is computed to find the drone which is nearer to the

base station and to all other drones using Equation (9).

davg =
d1 + d2 + . . .+ dn + dBS

n + 1
(9)

where,
n is the number of nodes
dBS is the distance between drone and base station.
After computing the fitness value (Bopt) of each drone at time t, the position and the battery

values of the drone are updated using the below-mentioned formulas and after updating, the fitness
value (Bopt) at time t + 1 is calculated again for all the drones. The Haversine formula calculates
the distance(d) between two drones in 3-dimensional space as Equation(10) [29].The diagrammatic
representation is shown in Figure 5.

z = R× c (10)

where,
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R is the radius of the earth (6371 km)
c is computed by the formula

c = 2× a× tan 2
(
√

a,
√
(1− a

)
) (11)

a = sin2
(∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2). sin2

(∆λ
2

)
(12)
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where,
∆ϕ = ϕ2 −ϕ1 (13)

∆λ = λ2 − λ1 (14)

where,
ϕ is the latitude value for the drone
λ the longitude value for the drone
After calculating the value of z, we used Equation (15) to determine the distance between two

drones based on the altitude. This distance (d) is used in Equation (8) for calculating the distance
between the nodes.

d =
√

z2 − ∆alt2 (15)

∆alt = alt2 − alt1 (16)

Since the energy of drones decreases with time, we used the energy model Equation (17) to
calculate the updated battery value for every iteration.

benergy = benergy −
(
l× Eelec + l× Eamp × d2

)
(17)

where,
l is the number of bits transmitted per second
d is the distance between the drones
E_elec is the energy dissipated
E_amp is the amplifier energy to update the position of each drone, we add the distance covered

by them with their current position. To calculate the distance covered we used Equation(18).

Distance =
Speed
Time

(18)

The average range of velocity of drones deployed was from 58 to 61 mph.
The position shift of the drones was updated by updating the latitude and longitude positions

using (19) and (20),
λ = λ+ distance (19)

ϕ = ϕ+ distance. (20)

The new latitude (ϕ) and longitude (λ) were again used in Equations (13) and (14) to calculate the
distance of the drones.

3.3. BOLD Algorithm

The BOLD algorithm can be divided into two phases, namely leader election, and cluster
formation. In the leader election phase, the distance and residual energy of the drone were taken as
the parameters for selecting the leader. For cluster formation, as shown in Figure 6, the drones were
grouped into clusters based on their proximity and their residual energy. The overall algorithm is
proposed in Algorithm 1, and the flowchart is shown in Figure 7. The description for leader election
and cluster formation is explained below.

The main objective of the proposed algorithm is to elect an energy-efficient leader CH to extend
the lifetime of the network. For this, residual energy of the drone and distance parameters such as
the distance of the drone from the base station and distance between the two drones was considered.
Let Bopt be the fitness value for the particular drone calculated using Equation (8). This calculation is
carried out in loop for each drone, and if the present Bopt value is higher than the previous Bopt value,
then the current Bopt value is taken as the gbest. At the end of the iteration, the gbest is optimized fitness
value of the drone to be elected as the leader. After some time, the residual energy decreased based on
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Equation (17). For the next iteration, the updated position and residual energy value are considered
for leader election. The algorithm for leader election is given in Algorithm 2.

Algorithm 1. BOLD ALGORITHM

Let drone d initially be the leader with fitness value gbest.
for each drone do
Initialize each drone with its position and benergy;
end
Divide dronei . . . .k into smaller groups;
for each group do
for dronek do
Calculate the distance of dronek from other drones;
Update dronek position;
Calculate Bopt value;
if Bopt ≥ gbest then
gbest = Bopt;
end
Elect dronek as leader;
end
end
for each drone do
Calculate drone velocity;
Update drone position;
Update drone benergy using Equation (17);
end
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The cluster formation is based on the node’s proximity and the residual energy value of the drones.
When drones closer to each other are assigned to the same cluster, then the transmission range will be
less and thereby decrease energy consumption. Moreover, cluster formation takes place in such a way
that the average residual energy of the clusters is equal. The residual energy is sorted in ascending
order and is divided into clusters where each cluster as the same average residual energy value.
The algorithm for cluster formation is given in Algorithm 3. Then, the leader election is performed
again on these clusters separately using the leader election algorithm. Hence, the new leader is elected
for each iteration based on the formulas given above. This is an elected leader from each cluster will
communicate with the base station.
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Algorithm 2. LEADER ELECTION ALGORITHM

for every iteration do
for dronei do

Calculate distance of dronei from other drones;
Update dronei position from GPS;

Update node velocity;
Calculate Bopt value;
if Bopt ≥ gbest then

gbest = Bopt;
end
Elect dronei as leader;

end
for each drone do

Calculate drone velocity;
Update drone position;
Update drone benergy;

end
end
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Algorithm 3. CLUSTER FORMATION

for i: 1 to N
j = i;
while(j > 1 &&benergy (j − 1) >benergy (j))
swap(benergy (j), benergy (j − 1))
swap(lat(j), lat(j − 1))
swap(long(j), long(j − 1))
swap(alt(j), alt(j − 1))
j = j − 1;
end
end
for all drones n :
q = n/4;
h = n/2;
hq = h+q;
arr1 = arr(1:q);
arr2 = arr(q + 1:h);
arr3 = arr(h + 1,hq);
arr4 = arr(hq + 1,n);
optarr1[arr1 ][arr4 ];
optarr2[arr2] [arr3 ];
end
for each cluster do
for dronek do
Calculate distance of dronek from other drones;
Update dronek position ;
Calculate Bopt value;
if Bopt ≥ gbest then
gbest = Bopt;
end
end
Elect dronek as leader;
end

4. Implementation and Performance Evaluation

This section discusses the simulation and analysis of the proposed work’s results. The simulation
was done using MATLAB and parameters like, (i) energy consumption vs. the number of drones,
(ii) residual energy vs. the number of iterations, (iii) number of alive nodes vs. the number of iterations,
(iv) network lifetime vs. the number of drones, (v) cluster building time vs. the number of nodes were
plotted and analyzed by comparing the proposed BOLD and PSO-C.

4.1. Simulation Setup and Network Topology

The proposed methods were simulated using the MATLAB 2018a version. MATLAB is a
multi-paradigm numerical computing environment developed by MathWorks. Network simulation
parameters and respective specifications are shown in Table 1. As a study, the deployment and
movement of five drones and 10 drones concerning latitude, longitude, and altitude are shown in
Figures 8 and 9, respectively. The CH being elected at that particular instance is highlighted in red.
The two cluster formation is represented in Figure 10 where cluster 1 has three drones while cluster 2
has two drones.

The data and computation results of the finding distance and optimal fitness value, as mentioned
above, are tabulated in Tables 2 and 3.
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Table 1. Network parameters and specifications for BOLD.

Parameters Symbol Value

Latitude λ 10.000◦ N–25.500◦ N
Longitude ϕ 80.000◦ E–95.500◦ E
Altitude alt 0.3–0.7 km

Velocity of drone v 50–70 mph
Target area a 500 × 500 m2

Residual energy Renergy 11.1 V Transmitter Pack 27.75 Wh
Energy dissipated Eelec 0.0000005 nJ/bit
Amplifier energy Eamp 0.00000000001 pJ/bit/sq.m

Transmission Range trange 1 mile
Packet length l 4000 bits

Number of drones n 5, 10, 15, 20, 25, 30, 35
Number of clusters Nc 2

Number of iterations Ni 0–800
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Table 2. Drone Parameters considered for implementation.

Drone 1 2 3 4 5

at 7.9426 12.9427 14.9428 11.9429 9.9425
Long 81.1366 80.1366 81.1367 81.1365 80.1364

Alt(km) 0.301 0.4983 0.3999 0.4121 0.35
Renergy (J) 2095 2146 2493 2575 2032

Table 3. The calculated values of distance and Bopt attained after the first iteration.

Drone 1 2 3 4 5

Dist (km) 9582.5939 9307.8798 11,018.12557 12,359.87325 14,377.20102
Bopt 2964.02 2934.58 3450.13 3759.47 3891.44

The initial values of the five drones are specified in Table 2. For iteration 1, the distance calculated
using Equation (9) and Bopt value using Equation (8) is specified below in Table 3.

Since the Bopt value of drone 5 is higher than the rest of the drones, D1 is selected as the leader for
the first iteration. Before the next iterations begin, the latitude, longitude, and battery values of the
drones are updated using Equations (20), (19), (17) respectively.

In Figure 11, the fitness value (Bopt) of the drones is plotted, which decreases with an increase in
the number of iterations. It is because the battery value decreases after each iteration, and the position
of the drone also changes.Sensors 2020, 20, x FOR PEER REVIEW 15 of 20 
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4.2. Result and Discussions

In mobile ad-hoc networks, most of the battery power of the nodes are consumed for
communication than the computation and operation. Drones are high mobility nodes, which spent
most of their battery energy not only for communication but also operation like flying and balancing
themselves in the atmosphere. Thus, when the leader CH is elected, it takes charge of communication
so that the energy is consumed less by other CM, which in turn increases the lifetime of the drones.
The observed sample values residual energy after some iterations are given in Table 4 and plotted
in Figure 12. From both, it is observed that the residual energy of the nodes decreases after some
iterations of CH elections. Figure 13 and Table 5 represent the average energy consumption is increases
concerning network scalability. The proposed BOLD performs better in average energy when compared
to PSO-C. This is because only the elected CH drone communicates with the base station and so the
energy consumption is reduced for all other drones. Since the CH is elected dynamically, the energy
value of all drones in the network decreases gradually. The energy consumption of BOLD is 0.5% less
than the PSO-C. In battery-operated drones, the maximum fly time will be from 30 to 45 min, the 0.5 %
of each node will extend the network lifetime.

Table 4. Residual energy (J) vs. number of iterations.

Number of Iterations
Residual Energy (J)

PSO-C BOLD

0 9.9 9.9
50 8.4 8.7

100 7.1 8
150 6.3 7.4
200 5.1 6.5
250 3.9 5.1
300 2.4 4.3

Table 5. Energy consumption (J) vs the number of drones (1 unit = 104 Joules).

No. of Drones
Energy Consumption (×104J)

PSO-C BOLD

5 1.7 1.3
10 2.3 1.9
15 2.8 2.4
20 3.3 2.9
25 4.1 3.5
30 4.9 4.1
35 5.6 4.9Sensors 2020, 20, x FOR PEER REVIEW 16 of 20 
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In ad-hoc networks, the network lifetime can be defined in several ways like, when 50% of the
nodes are dead, or 100% of the nodes are dead. Drones are more energy-constrained, and even a single
drone can perform operations alone. Hence, here we considered the iterations until the death of the
last node. The simulation was performed for comparing the network lifetime in terms of iterations
varying from 0 to 800 iterations, as shown in Figure 14 and in terms of the number of drones ranging
from five to 35 as shown in Figure 15. The tabular values are shown in Tables 6 and 7, respectively.
From Figures 14 and 15, it is observed that the network lifetime of BOLD is more than PSO-C, because
in BOLD apart from residual energy, the drone which is closer to the base station and all other drones
in the network is selected as a CH, whereas in PSO-C the leader election is based only on the residual
energy. From the graph shown in Figure 15, it is clear that the network lifetime of BOLD is 15% higher
than the PSO-C.
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Figure 15. Network lifetime vs number of drones.

Table 6. Number of alive drones vs number of iterations.

Number of Iterations
Number of Alive Drones

PSO-C BOLD

0 50 50
100 35 42
200 26 39
300 22 34
400 8 25
550 0 17
600 0 5
720 0 0

Table 7. Network lifetime vs number of drones.

Number of Drones
Network Lifetime (Min)

PSO-C BOLD

5 50 60
10 45 59
15 40 57
20 37 53
25 32 49
30 28 45
35 25 40

By using the fitness value of each node, the cluster is built, and the time is taken to form a cluster
is called cluster building time. The cluster building time is the measure of the algorithmic complexity
of the proposed algorithm. A high cluster building time denotes that the algorithm consumes more
energy, in turn affecting the network lifetime. Figure 16 shows that the cluster building time of BOLD
is 5.2% less than the PSO-C. The tabular values are shown in Table 8.
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Table 8. Cluster building time vs the number of drones.

Number of Drones
Cluster Building Time (s)

PSO-C BOLD

5 60 50
10 59 45
15 57 40
20 53 37
25 49 32
30 45 28
35 40 25

From the implementation results, it is clear that the energy consumption of the BOLD algorithm is
0.5 % lesser than the PSO-C, which gives a higher lifetime of 15% for the drones using BOLD when
compared to those using PSO-C.

5. Conclusions

In this paper, an efficient approach has been proposed for leader election among multiple
drones using bio-inspired optimization techniques. The stimulation has been performed considering
the three-dimensional position (latitude, longitude, and altitude) of the drones rather than the
two-dimensional structure, as proposed in earlier research. An enhanced algorithm for the election
of the efficient cluster head and for the formation of clusters called the BOLD algorithm has been
presented. The BOLD algorithm elects the CH among multi drones based on specific parameters
such as distance and residual energy at different time periods. As per the mission requirement,
the drones divide themselves into clusters based on their residual energy. The cluster is divided in
such a manner that average residual energy for each cluster is equal. The leader election also takes
place in these clusters.

The PSO-C algorithm, where the fitness value is based only on the residual energy has been
compared with the BOLD algorithm, where the fitness value has been calculated based on both the
residual energy and the distance between the drones, and the results that we have found from this
study depict that the proposed BOLD algorithm is more efficient than the former in terms of extending
the network lifetime by reducing communication energy consumption.

In the future, the transmission range and transmission frequency should be considered when the
drones are communicating with each other. It will play a vital role in the election of the leader since,
if the transmission range is very less or very high, it may lead to inefficient network communication.
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Moreover, the algorithm can be tested in the real-world environment with the help of drone simulators
like X-PLANE.
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