729 research outputs found

    Adaptive Segmentation of Knee Radiographs for Selecting the Optimal ROI in Texture Analysis

    Full text link
    The purposes of this study were to investigate: 1) the effect of placement of region-of-interest (ROI) for texture analysis of subchondral bone in knee radiographs, and 2) the ability of several texture descriptors to distinguish between the knees with and without radiographic osteoarthritis (OA). Bilateral posterior-anterior knee radiographs were analyzed from the baseline of OAI and MOST datasets. A fully automatic method to locate the most informative region from subchondral bone using adaptive segmentation was developed. We used an oversegmentation strategy for partitioning knee images into the compact regions that follow natural texture boundaries. LBP, Fractal Dimension (FD), Haralick features, Shannon entropy, and HOG methods were computed within the standard ROI and within the proposed adaptive ROIs. Subsequently, we built logistic regression models to identify and compare the performances of each texture descriptor and each ROI placement method using 5-fold cross validation setting. Importantly, we also investigated the generalizability of our approach by training the models on OAI and testing them on MOST dataset.We used area under the receiver operating characteristic (ROC) curve (AUC) and average precision (AP) obtained from the precision-recall (PR) curve to compare the results. We found that the adaptive ROI improves the classification performance (OA vs. non-OA) over the commonly used standard ROI (up to 9% percent increase in AUC). We also observed that, from all texture parameters, LBP yielded the best performance in all settings with the best AUC of 0.840 [0.825, 0.852] and associated AP of 0.804 [0.786, 0.820]. Compared to the current state-of-the-art approaches, our results suggest that the proposed adaptive ROI approach in texture analysis of subchondral bone can increase the diagnostic performance for detecting the presence of radiographic OA

    Automatic knee joint space measurement from plain radiographs

    Get PDF
    Abstract. Knee osteoarthritis is a common joint disease and one of the leading causes of disability. The disease is characterized by loss of articular cartilage and bone remodeling. Tissue deformations eventually lead to joint space narrowing which can be detected from plain radiographs. Joint space narrowing is typically measured by an experienced radiologist manually, which can be time consuming and error prone process. The aim of this study was to develop and evaluate a fully automatic joint space width measurement method for bilateral knee radiographs. The knee joint was localized from the x-ray images using template matching and the joint space was delineated using active shape model (ASM). Two different automatic joint space measurement methods were tested and the results were validated against manual measurements performed by an experienced researcher. The first joint space width measurements were done by binarizing the joint space and measuring the local thickness of the binary mask using disk fitting. The second method classified bone pixels to tibia and femur. Classification was based on the ASM delineation. Nearest neighbors between femur and tibia were then used to find the joint space width. An automatic method for tibial region of interest (ROI) selection was also implemented. The algorithms used in this thesis were also made publicly available online. The automatically obtained joint space widths were in line with manual measurements. Higher accuracy was obtained using the disk fitting algorithm. Automatic Tibial ROI selection was accurate, although the orientation of the joint was ignored in this study. An open source software with a simple graphical user interface and visualization tools was also developed. Computationally efficient and easily explainable methods were utilized in order to improve accessibility and transparency of computer assisted diagnosis of knee osteoarthritis.Tiivistelmä. Polvinivelrikko on eräs yleisimpiä niveltauteja sekä yksi merkittävimmistä liikuntavammojen aiheuttajista. Nivelrikolle ominaisia piirteitä ovat nivelruston vaurioituminen ja muutokset nivelrustonalaisessa luussa. Kudosten muutokset ja vauriot johtavat lopulta niveltilan kaventumiseen, mikä voidaan havaita röntgenkuvista. Tavallisesti kokenut radiologi tekee niveltilan mittaukset manuaalisesti, mikä vaatii usein paljon aikaa ja on lisäksi virhealtis prosessi. Tämän tutkielman tavoitteena oli kehittää täysin automaattinen niveltilan mittausmenetelmä bilateraalisille polven röntgenkuville. Polvinivel paikallistettiin röntgenkuvista muotoon perustuvalla hahmontunnistuksella ja nivelväli rajattiin käyttämällä aktiivista muodon sovitusta (active shape model, ASM). Nivelvälin mittaukseen käytettiin kahta eri menetelmää, joita verrattiin kokeneen tutkijan tekemiin manuaalisiin mittauksiin. Ensimmäinen nivelvälin mittausmenetelmä sovitti ympyränmuotoisia maskeja niveltilasta tehtyyn binäärimaskiin. Toinen mittausmenetelmä luokitteli luuhun kuuluvat pikselit sääri- ja reisiluuhun. Luokittelu perustui aikaisemmin tehtyyn automaattiseen nivelvälin rajaukseen. Nivelvälin mittaukseen käytettiin lähimpiä naapuripikseleitä sääri- ja reisiluusta. Työssä kehitettiin myös menetelmä automaattiseen sääriluun mielenkiintoalueiden (region of interest, ROI) valintaan. Käytetyt algoritmit ovat julkisesti saatavilla verkossa. Automaattiset nivelväli mittaukset vastasivat manuaalisia mittauksia hyvin. Parempi tarkkuus saatiin käyttämällä ympyrän sovitusta hyödyntävää algoritmia nivelvälin mittaukseen. Sääriluun mielenkiintoalueet onnistuttiin määrittämään automaattisesti, tosin nivelen orientaatiota ei huomioitu tässä työssä. Lisäksi kehitettiin avoimen lähdekoodin ohjelmisto yksinkertaisella graafisella käyttöliittymällä ja visualisointityökaluilla. Työssä käytettiin laskennallisesti tehokkaita ja helposti selitettäviä menetelmiä, mikä edesauttaa tietokoneavusteisen menetelmien käyttöä polvinivelrikon tutkimuksessa

    Machine learning in orthopedics: a literature review

    Get PDF
    In this paper we present the findings of a systematic literature review covering the articles published in the last two decades in which the authors described the application of a machine learning technique and method to an orthopedic problem or purpose. By searching both in the Scopus and Medline databases, we retrieved, screened and analyzed the content of 70 journal articles, and coded these resources following an iterative method within a Grounded Theory approach. We report the survey findings by outlining the articles\u2019 content in terms of the main machine learning techniques mentioned therein, the orthopedic application domains, the source data and the quality of their predictive performance

    Image analysis in medical imaging: recent advances in selected examples

    Get PDF
    Medical imaging has developed into one of the most important fields within scientific imaging due to the rapid and continuing progress in computerised medical image visualisation and advances in analysis methods and computer-aided diagnosis. Several research applications are selected to illustrate the advances in image analysis algorithms and visualisation. Recent results, including previously unpublished data, are presented to illustrate the challenges and ongoing developments

    Novel Approaches to the Representation and Analysis of 3D Segmented Anatomical Districts

    Get PDF
    Nowadays, image processing and 3D shape analysis are an integral part of clinical practice and have the potentiality to support clinicians with advanced analysis and visualization techniques. Both approaches provide visual and quantitative information to medical practitioners, even if from different points of view. Indeed, shape analysis is aimed at studying the morphology of anatomical structures, while image processing is focused more on the tissue or functional information provided by the pixels/voxels intensities levels. Despite the progress obtained by research in both fields, a junction between these two complementary worlds is missing. When working with 3D models analyzing shape features, the information of the volume surrounding the structure is lost, since a segmentation process is needed to obtain the 3D shape model; however, the 3D nature of the anatomical structure is represented explicitly. With volume images, instead, the tissue information related to the imaged volume is the core of the analysis, while the shape and morphology of the structure are just implicitly represented, thus not clear enough. The aim of this Thesis work is the integration of these two approaches in order to increase the amount of information available for physicians, allowing a more accurate analysis of each patient. An augmented visualization tool able to provide information on both the anatomical structure shape and the surrounding volume through a hybrid representation, could reduce the gap between the two approaches and provide a more complete anatomical rendering of the subject. To this end, given a segmented anatomical district, we propose a novel mapping of volumetric data onto the segmented surface. The grey-levels of the image voxels are mapped through a volume-surface correspondence map, which defines a grey-level texture on the segmented surface. The resulting texture mapping is coherent to the local morphology of the segmented anatomical structure and provides an enhanced visual representation of the anatomical district. The integration of volume-based and surface-based information in a unique 3D representation also supports the identification and characterization of morphological landmarks and pathology evaluations. The main research contributions of the Ph.D. activities and Thesis are: \u2022 the development of a novel integration algorithm that combines surface-based (segmented 3D anatomical structure meshes) and volume-based (MRI volumes) information. The integration supports different criteria for the grey-levels mapping onto the segmented surface; \u2022 the development of methodological approaches for using the grey-levels mapping together with morphological analysis. The final goal is to solve problems in real clinical tasks, such as the identification of (patient-specific) ligament insertion sites on bones from segmented MR images, the characterization of the local morphology of bones/tissues, the early diagnosis, classification, and monitoring of muscle-skeletal pathologies; \u2022 the analysis of segmentation procedures, with a focus on the tissue classification process, in order to reduce operator dependency and to overcome the absence of a real gold standard for the evaluation of automatic segmentations; \u2022 the evaluation and comparison of (unsupervised) segmentation methods, finalized to define a novel segmentation method for low-field MR images, and for the local correction/improvement of a given segmentation. The proposed method is simple but effectively integrates information derived from medical image analysis and 3D shape analysis. Moreover, the algorithm is general enough to be applied to different anatomical districts independently of the segmentation method, imaging techniques (such as CT), or image resolution. The volume information can be integrated easily in different shape analysis applications, taking into consideration not only the morphology of the input shape but also the real context in which it is inserted, to solve clinical tasks. The results obtained by this combined analysis have been evaluated through statistical analysis

    Analyzing fibrous tissue pattern in fibrous dysplasia bone images using deep R-CNN networks for segmentation

    Get PDF
    Predictive health monitoring systems help to detect human health threats in the early stage. Evolving deep learning techniques in medical image analysis results in efficient feedback in quick time. Fibrous dysplasia (FD) is a genetic disorder, triggered by the mutation in Guanine Nucleotide binding protein with alpha stimulatory activities in the human bone genesis. It slowly occupies the bone marrow and converts the bone cell into fibrous tissues. It weakens the bone structure and leads to permanent disability. This paper proposes the study of FD bone image analyzing techniques with deep networks. Also, the linear regression model is annotated for predicting the bone abnormality levels with observed coefficients. Modern image processing begins with various image filters. It describes the edges, shades, texture values of the receptive field. Different types of segmentation and edge detection mechanisms are applied to locate the tumor, lesion, and fibrous tissues in the bone image. Extract the fibrous region in the bone image using the region-based convolutional neural network algorithm. The segmented results are compared with their accuracy metrics. The segmentation loss is reduced by each iteration. The overall loss is 0.24% and the accuracy is 99%, segmenting the masked region produces 98% of accuracy, and building the bounding boxes is 99% of accuracy

    PyPore3D: An Open Source Software Tool for Imaging Data Processing and Analysis of Porous and Multiphase Media

    Get PDF
    n this work, we propose the software library PyPore3D, an open source solution for data processing of large 3D/4D tomographic data sets. PyPore3D is based on the Pore3D core library, developed thanks to the collaboration between Elettra Sincrotrone (Trieste) and the University of Trieste (Italy). The Pore3D core library is built with a distinction between the User Interface and the backend filtering, segmentation, morphological processing, skeletonisation and analysis functions. The current Pore3D version relies on the closed source IDL framework to call the backend functions and enables simple scripting procedures for streamlined data processing. PyPore3D addresses this limitation by proposing a full open source solution which provides Python wrappers to the the Pore3D C library functions. The PyPore3D library allows the users to fully use the Pore3D Core Library as an open source solution under Python and Jupyter Notebooks PyPore3D is both getting rid of all the intrinsic limitations of licensed platforms (e.g., closed source and export restrictions) and adding, when needed, the flexibility of being able to integrate scientific libraries available for Python (SciPy, TensorFlow, etc.)

    Analysis, Segmentation and Prediction of Knee Cartilage using Statistical Shape Models

    Get PDF
    Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along with the hip). Due to rising healthcare costs associated with OA, it is important to fully understand the disease and how it progresses in the knee. One symptom of knee OA is the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role in painting the biomechanical picture of the knee. This work attempts to quantify the cartilage thickness of healthy male and female knees using statistical shape models (SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from magnetic resonance imaging (MRI) and estimation algorithms from computer tomography (CT) or x-rays are proposed to facilitate the efficient development and accurate analysis of future treatments related to the knee. Cartilage morphology results suggest distinct patterns of wear in varus, valgus, and neutral degenerative knees, and examination of contact regions during the deep knee bend activity further emphasizes these patterns. Segmentation results were achieved that were comparable if not of higher quality than existing state-of-the-art techniques for both femoral and tibial cartilage. Likewise, using the point correspondence properties of SSMs, estimation of articulating cartilage was effective in healthy and degenerative knees. In conclusion, this work provides novel, clinically relevant morphological data to compute segmentation and estimate new data in such a way to potentially contribute to improving results and efficiency in evaluation of the femorotibial cartilage layer
    • …
    corecore