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ABSTRACT

Knee osteoarthritis is a common joint disease and one of the leading causes of disability. The 

disease is characterized by loss of articular cartilage and bone remodeling. Tissue deformations 

eventually lead to joint space narrowing which can be detected from plain radiographs. Joint space 

narrowing is typically measured by an experienced radiologist manually, which can be time 

consuming and error prone process. The aim of this study was to develop and evaluate a fully 

automatic joint space width measurement method for bilateral knee radiographs.

The knee joint was localized from the x-ray images using template matching and the joint space was 

delineated using active shape model (ASM). Two different automatic joint space measurement 

methods were tested and the results were validated against manual measurements performed by an 

experienced researcher. The first joint space width measurements were done by binarizing the joint 

space and measuring the local thickness of the binary mask using disk fitting. The second method 

classified bone pixels to tibia and femur. Classification was based on the ASM delineation. Nearest 

neighbors between femur and tibia were then used to find the joint space width. An automatic 

method for tibial region of interest (ROI) selection was also implemented. The algorithms used in 

this thesis were also made publicly available online.

The automatically obtained joint space widths were in line with manual measurements. Higher 

accuracy was obtained using the disk fitting algorithm. Automatic Tibial ROI selection was 

accurate, although the orientation of the joint was ignored in this study. An open source software 

with a simple graphical user interface and visualization tools was also developed. Computationally 

efficient and easily explainable methods were utilized in order to improve accessibility and 

transparency of computer assisted diagnosis of knee osteoarthritis.



TIIVISTELMÄ

Polvinivelrikko on eräs yleisimpiä niveltauteja sekä yksi merkittävimmistä liikuntavammojen 

aiheuttajista. Nivelrikolle ominaisia piirteitä ovat nivelruston vaurioituminen ja muutokset 

nivelrustonalaisessa luussa. Kudosten muutokset ja vauriot johtavat lopulta niveltilan 

kaventumiseen, mikä voidaan havaita röntgenkuvista. Tavallisesti kokenut radiologi tekee niveltilan 

mittaukset manuaalisesti, mikä vaatii usein paljon aikaa ja on lisäksi virhealtis prosessi. Tämän 

tutkielman tavoitteena oli kehittää täysin automaattinen niveltilan mittausmenetelmä bilateraalisille 

polven röntgenkuville.

Polvinivel paikallistettiin röntgenkuvista muotoon perustuvalla hahmontunnistuksella ja nivelväli 

rajattiin käyttämällä aktiivista muodon sovitusta (active shape model, ASM). Nivelvälin 

mittaukseen käytettiin kahta eri menetelmää, joita verrattiin kokeneen tutkijan tekemiin 

manuaalisiin mittauksiin. Ensimmäinen nivelvälin mittausmenetelmä sovitti ympyränmuotoisia 

maskeja niveltilasta tehtyyn binäärimaskiin. Toinen mittausmenetelmä luokitteli luuhun kuuluvat 

pikselit sääri- ja reisiluuhun. Luokittelu perustui aikaisemmin tehtyyn automaattiseen nivelvälin 

rajaukseen. Nivelvälin mittaukseen käytettiin lähimpiä naapuripikseleitä sääri- ja reisiluusta. Työssä 

kehitettiin myös menetelmä automaattiseen sääriluun mielenkiintoalueiden (region of interest, ROI) 

valintaan. Käytetyt algoritmit ovat julkisesti saatavilla verkossa.

Automaattiset nivelväli mittaukset vastasivat manuaalisia mittauksia hyvin. Parempi tarkkuus 

saatiin käyttämällä ympyrän sovitusta hyödyntävää algoritmia nivelvälin mittaukseen. Sääriluun 

mielenkiintoalueet onnistuttiin määrittämään automaattisesti, tosin nivelen orientaatiota ei 

huomioitu tässä työssä. Lisäksi kehitettiin avoimen lähdekoodin ohjelmisto yksinkertaisella 

graafisella käyttöliittymällä ja visualisointityökaluilla. Työssä käytettiin laskennallisesti tehokkaita 

ja helposti selitettäviä menetelmiä, mikä edesauttaa tietokoneavusteisen menetelmien käyttöä 

polvinivelrikon tutkimuksessa.
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1. Introduction

Osteoarthritis (OA) is a degenerative joint disease with no known cure and it is one of the 

leading causes for disability [1]. Symptoms of the disease include pain and loss of motion in 

the affected joint, which can lead to reduced mobility and ability to work. OA is also 

associated with increased risk of mortality, due to reduced physical activity [2]. Furthermore, 

OA carries significant economic impact from expensive treatments and reduced participation 

to work force [2,3]. Detection of OA progression and identification of risk factors are 

important steps in determining the intervention methods and treatments for the disease 

[1,4,5]. OA treatment focuses on slowing the disease progression and improving the patients 

quality of life, as there is no known cure for the disease [1,5]. Identifying the risks and 

detecting progression of the disease early is important for effective treatment.

OA is characterized by loss of cartilage and bone remodeling in the affected joint [3,4,5]. 

Joint space narrowing is a strong indicator of OA progression [1]. Joint space narrowing can 

be detected and measured from plain radiographs, by measuring the distance between femoral 

head and tibial plateaus [1,5]. OA induced changes in the subchondral bone can also be 

detected from radiographs using numerical analyses [1]. Bone analyses can be done from 

regions selected from tibial subchondral bone. Manual annotation of images and joint space 

width (JSW) measurements are subject to intra- and inter-observer variability and human 

error [6,7]. In order to alleviate the measurement errors and speed up the analyses, it is 

necessary to develop automatic methods for delineation of the joint space.

In the past 20 years, various computer vision and machine learning algorithms have been 

developed for automatic segmentation and analysis of medical images [8]. Region growing, 

wavelets, deformable models, statistical shape models, and atlas based methods have been 

utilized in image segmentation and delineation of anatomical regions of interest (ROI) 

[7,8,9,10]. Feature extraction methods, such as histograms of oriented gradients (HOG), local 

binary patterns (LBP) and deep convolutional neural networks (CNN) have also been utilized 

in segmentation and classification tasks for medical images [1,11,12,13,14].

1



Aforementioned segmentation algorithms can be utilized in the JSW measurement. By 

delineating the femur and tibia, joint space can be measured by finding the distance between 

appropriate regions from the segmented shapes. Chen et al used HOG to locate landmarks 

around bones on hip, knee and cranial radiographs [11,12]. HOG features were used to 

construct a descriptor for small randomly selected regions around the landmarks. 

Corresponding regions were then identified from test image and a voting based method was 

used to find the landmark points. A statistical shape model was then fit to the bone landmarks 

selected by the algorithm.

Podsiadlo et al. used active shape model (ASM) to delineate cortical bone plates from tibia 

and to select bone ROIs automatically [15]. ASM was used to delineate the cortical bone 

plate from a preprocessed region around the joint. Results of the ASM were then used to 

automatically select tibial ROIs for further analyses. Woloszynski et. al. used similar tibial 

ROIs to predict OA progression based on the numerical analysis of the bone in a follow up 

study [16]. OA progression was predicted based on roughness and anisotropy measurements. 

Hirvasniemi et al also used numerical analyses from tibial ROIs to determine OA progression 

using LBP [1,17].

Modern approaches in image segmentation and analysis typically utilize CNNs [13,14]. 

Ambellan et al utilized U-net CNN architecture to segment knee bone and cartilage from 

magnetic resonance imaging (MRI) images [13,18]. Zhou et al used a 2D CNN for multi-

class tissue segmentation from knee MRIs [14]. CNN based approaches usually achieve 

highest accuracy in image analyses and can even perform at human level [19]. However, the 

drawback of CNNs is that they require large datasets and powerful workstations to learn the 

appropriate features from the data [20]. Furthermore, the features extracted by CNNs are not 

easily explained in human terms, and even visualization of the regions used in decision 

making require advanced computational algorithms [19,21]. 

Objective of this study is to develop an automatic method for knee JSW measurement from 

plain radiographs. Fully automatic JSW measurement was performed using template 

matching and ASM. The automatic JSW measurement pipeline is described in Figure 1. Joint 

was first localized using template matching, followed by bone delineation using ASM. The 
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delineation results were used to automatically place tibial ROIs to the radiographs. Finally, 

JSW was measured using two different methods.

Figure 1. Visual representation of the joint space width (JSW) measurement pipeline. At first, the joint is 

localized using template matching, followed by joint delineation. The joint space is delineated using ASM. 

Finally, the JSW is measured and tibial ROIs are placed on the subchondral bone.

3



2. Osteoarthritis

Osteoarthritis (OA) is a degenerative joint disease characterized by loss of cartilage and 

remodeling of bone in the affected joint [1,2,22]. Symptoms of the disease include pain, 

stiffness and loss of motion in the joint [2,22,23]. Intermittent pain is often among the first 

symptoms of the disease, and the pain may become constant over time [2,23]. OA can 

significantly reduce the individual’s quality of life due to pain and reduced mobility [1,2]. 

Higher rates of mortality have also been associated with the disease, most likely due to 

decreased physical activity and the resulting elevated risk of cardiovascular problems [2]. 

Common joints affected by the disease are knees, hip and hands.

Osteoarthritis of knee is the most common form of OA in large load bearing joints, most 

often affecting the medial compartment of the joint [24]. Knee OA is among the leading 

causes of pain and physical disability among adults [1,22,23]. Knee OA affects approximately 

5% men and 7% percent women in Finland and the disease prevalence is expected to increase 

in the future as the population ages [1,3]. Knee OA has a significant economic impact, due to 

treatment costs and reduced participation to the work force [3]. There is no cure for the 

disease, and the existing treatments focus on pain management using medication and 

improvement of mobility with physical therapy [1,2,5,22]. Total knee replacement (TKR) is 

one of the most effective treatments and approximately 108 TKR surgeries are performed per 

100 000 people in Finland alone [3]. Furthermore, approximately 6% of disability pensions 

are granted based on diagnosed knee OA in Finland [3]. Knee OA related costs add up 

approximately 1 billion Euros annually in Finland. Since the disease has no cure and requires 

costly treatments, early detection and diagnosis are important [1,22]. Treatment outcomes are 

improved if the diagnosis is acquired before joint degeneration is advanced, and the disease 

progression can be slowed [2].

Diagnosis of OA is usually done based on symptoms (symptomatic OA), patient history, 

physical examination and radiographs (radiographic OA) [1,2,23]. Native x-ray imaging is 

typically used to diagnose radiographic OA, due the low cost and speed of the imaging 

modality [1,25]. Radiographic features of OA include joint space narrowing, bone remodeling 

and changes in the bone texture [1,2,25]. Joint space narrowing is correlated with the loss of 
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articular cartilage (AC), which may be completely eroded in advanced cases of OA 

[1,5,26,27]. OA induces changes in the bone include osteophytes, also known as bone spurs, 

cysts and subchondral bone sclerosis (bone thickening) [1,2]. Furthermore, numerical 

analysis of the bone texture reveals OA changes not visible or difficult to interpret with the 

naked eye [1,25]. Radiographic OA may be present in patients who display no symptomatic 

OA, as the tissue changes may occur without pain or stiffness [1,25]. Symptomatic OA may 

also occur without radiographic features, although the tissue degeneration may be visible 

using different imaging modality [25].

Risk factors of OA include age, obesity, female sex, genetic factors and previous history of 

injury [1,2,22]. Risk of developing OA increases with aging, possibly due to decreased 

regenerative abilities of the tissue [1,2]. Other risk factors, such as obesity and sedentary 

lifestyle, also increase with aging, leading to higher risk of OA [1,2,28]. Obesity has been 

linked to higher tissue degeneration in load-bearing joints, such as knees, and higher OA risk 

in non-load-bearing joints [2,29]. OA of hands and knees has higher occurrence in female 

patients, and the hip OA progresses more rapidly in women [5]. Joint injuries are also linked 

with higher OA risk [1,2,30]. Meniscal and anterior cruciate ligament (ACL) injuries 

correlate with post-traumatic knee OA development, although the exact reason for the 

increased risk is not known [30]. Potential explanations may be damaged cartilage when the 

injury is received and mechanical changes in the injured joint.

2.1 Osteoarthritis induced tissue degeneration

OA progression induces biochemical and mechanical changes in AC [16,17,27,31,32]. AC is 

a specialized joint tissue, which provides a smooth surface for the articulations and aides in 

load transmission in the joint [31]. AC is comprised of extracellular matrix (ECM) and 

sparsely distributed cells called chondrocytes [27,31]. AC is devoid of blood vessels and 

relies on synovial fluid for metabolism [32]. As the disease progresses, ECM becomes 

disorganized and chondrocyte disorganization and clustering becomes more prominent [27]. 

OA induced biochemical changes in the AC lead to changes in the mechanical properties of 

the tissue. The elastic and shear moduli decrease, resulting in greater deformations of the 

tissue under load [32]. Furthermore, AC degenerates as the disease progresses, manifesting as 
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discontinuities and tears in the tissue [27]. In advanced cases, the tissue might be completely 

lost, leaving the subchondral bone exposed.

The disease also changes the properties of subchondral bone (SB) [1,16,17,27,32,33]. SB 

includes subchondral trabecular bone and subchondral plate, found immediately beneath the 

cartilage [4,18,32,33]. SB has a porous structure which houses blood vessels and nerves [33]. 

Trabecular bone and AC are separated by subchondral plate, which allows diffusion of 

nutrients into the AC [31,33]. Although the subchondral plate is less porous than trabecular 

bone, some blood vessels and nerves penetrate the structure [31]. The micro-architecture of 

the bone changes as a result of OA progression, leading to thinning of subchondral bone plate 

and increased porosity [1,2,33]. However, in advanced cases, the bone density is increased, 

although the mineralization and stiffness of the bone decreases [1,32]. The increased density 

may occur as a compensation for the decreased mineralization and loss of bone stiffness [4]. 

The mechanical properties, such as elastic and shear moduli, are decreased in osteoarthritic 

bone [32].

2.2 Knee anatomy and osteoarthritis

Knee joint is a modified hinge joint and one of the largest weight bearing joints in the human 

body [24,34,35]. The complex structure of the joint allows both anterior-posterior translation 

as well as some axial rotation [34,35]. The joint consists of two distinct articulations, the 

tibio-femoral joint and patello-femoral joint [35]. Tibial and femoral head delineate the tibio-

femoral articulation. The bones are separated by meniscus and AC, which help facilitate the 

relative motion between the bones [34]. Stabilization and motion of the tibio-femoral is 

facilitated by surrounding muscles and ligaments. Muscles, such as quadriceps and the 

hamstring group muscles, facilitate locomotion, with ligaments, such as ACL and PCL, acting 

as antagonists to the muscles and providing stability [35].

Patello-femoral joint is delineated by patella and femur and the articulation acts as an 

extensor mechanism in anterior-posterior translation [34,35]. Patella is connected to the joint 

via capsular ligaments and patellar tendons. Tibia is separated from patella via fat pad and 

infrapatellar tendon bursa [35]. Patello-femoral joint is also subject to OA. Patello-femoral 
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OA carries similar symptoms as other forms of OA, and is characterized by similar tissue 

degeneration [36].

Injuries to the supportive and connective tissues of the knee increase the risk of developing 

knee OA [24,30,34,35]. Meniscal tears and ACL injuries carry especially high risk of 

developing post-traumatic OA [24,30]. Furthermore, OA may impact the supportive tissue 

function and the disease has been associated with ACL damage [2,37]. Patients with knee OA 

walk with greater muscle contraction, which may change the load distribution in the joint and 

cause further tissue degeneration [37].

2.3 Radiography and knee osteoarthritis

Native x-ray images are used in knee OA diagnosis along with the patient history, physical 

examination and symptoms [1]. X-ray imaging was developed based on the discovery made 

by Wilhelm Roentgen in 1895 [38]. First medical imaging applications were developed by the 

year 1900. The discovery awarded Roentgen the first Nobel prize in physics. X-ray images 

are 2D projections of the subject, where contrast is a result of the different X-ray attenuation 

between bone and soft tissue [1,38]. The high calcium content of bone gives it higher 

attenuation constant than soft tissue, such as muscles and fat [39]. As x-ray photon pass 

through an object, the intensity of radiation is attenuated according to

I x=I 0× e−µx (1),

where Ix is the intensity of the radiation at depth x, µ is the attenuation constant and x is the 

thickness of the material. Attenuation constant µ is proportional to the atomic number of the 

material, density of the tissue and the energy of the radiation [1].

X-rays are produced by accelerating electrons from a cathode filament to heavy metal anode. 

Electrons are emitted from cathode material via thermoionic emission and the emitted 

electrons are accelerated to the anode using kilo Volt (kV) range voltage [38,40]. As the 

electrons interact with the anode, they are either decelerated or absorbed, resulting in a 
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spectrum with characteristic intensity spikes at certain photon energies [40]. The kinetic 

energy of the photons is emitted as high energy radiation. X-rays are detected after passing 

through the subject, and the intensity of the radiation is measured by a 2D array of detectors. 

The detector is either made using material capable of measuring high energy electromagnetic 

radiation, or with a scintillator which converts the radiation to visible part of the 

electromagnetic spectrum [41].

Radiographic knee OA is evaluated using extended-knee radiograph, where the subject is 

standing and with both knees flexed and a bilateral anterio-posterior radiograph is acquired 

[25]. Tissue specific features, such as osteophytes, bone sclerosis and cysts, are visible from 

plain radiographs with JSW narrowing [1,25]. The severity of radiographic OA is described 

using semi-quantitative metrics, such as Kellgren-Lawrence (KL) scale [1,25,42]. The 

grading scale ranges from 0 (no OA features) to 4 (severe OA) [25,43]. The KL grading scale 

is commonly used as a metric of OA progression, but it’s criticized for assuming OA to 

progression to be linear [25]. Furthermore, because KL grading is semi-quantitative metric, it 

suffers from intra- and inter-observer variability [1].
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3. Computer vision in Medical imaging

Computer vision is a cross-disciplinary field attempting to obtain high level understanding of 

images using mathematical and numerical methods, such as signal processing and pattern 

recognition algorithms [44,45]. Common problems in computer vision include object 

detection and tracking, image classification and segmentation. Computer vision problems are 

difficult, since they are inverse problems, where parameters which characterize the system 

are unknown [44,46]. Humans and animals are able to accomplish these tasks effortlessly due 

to the complex neurological systems involved in vision, while computers may struggle with 

these problems [44]. However, modern computer vision methods can achieve human level 

performance and even outperform humans in certain simple tasks [47].

Designing computer vision applications and algorithms requires extracting non-redundant 

information from an image or a set of images, fine-tuning the parameters of the model and 

model validation. Feature extraction can be done using hand-crafted features, such as HoG, or 

LBP features, or using artificial neural networks, which learn the relevant features from the 

annotated data [48,49,50]. Computer vision model performance can usually be improved by 

fine tuning the model parameters, such as number of bins used to extract HoG features, or 

changing the hyper-parameters of a neural network [48,50]. Selecting appropriate validation 

metrics for the model performance is also important. Statistical analyses of the performance 

metrics can reveal systematic errors and potential edge cases from the dataset, which should 

be taken into account [47].

Computer vision has multitude of applications in medical imaging ranging from image 

registration and segmentation to automatic diagnosis and abnormality detection. Manual 

analysis of medical images can be difficult due to noisy images, unclear boundaries and poor 

contrast between tissues and varying size and shape of the organs [8,51]. Image registration 

can be used in surgical planning and atlas based segmentation tasks [8,52]. Registering an 

annotated image with a test image yields an approximation of the tissue segmentation for the 

test image [52]. This can be done automatically, by detecting and matching landmarks from 

the labeled image and the test image. Automatic tissue segmentation can be done using 
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feature extraction, deformable models or CNNs [11,12,13,14,15,51]. Tissue segmentation can 

be used to examine the geometry of the organs and to find important anatomical landmarks. 

Computer vision and machine learning can also be utilized in automatic diagnosis and disease 

prediction [1,16,17,53]. Medical images contain a large amount of data, which is invisible to 

the naked eye. Numerical analyses of the tissues can reveal changes is tissue microstructure 

and composition [1,16,17,53].

3.1 Digital image processing and medical imaging

Digital image processing (DIP) has been utilized in the analysis of natural images since 

1960s, when computers became powerful enough to process images in a meaningful way 

[54]. Images are represented either as 2D matrices where graylevel intensity is a function of 

the coordinates. The image is then represented by a function f(x,y), where f is the graylevel 

intensity and x and y are coordinates. Natural images are often represented as a 3 dimensional 

tensor, where the third dimension contains red, green and blue channels, while the first two 

dimensions remain as spatial coordinates.

DIP techniques have been used in medical imaging since late 1970s, when advent of 

computed tomography (CT) lead to digitization of the images [41]. Plain radiographs are 2-

dimensional matrices, while CT images and MRI images are 3-dimensional tensors. Color 

channels are typically not utilized, since regular x-ray detectors cannot bin the photons based 

on their energy [41]. DIP techniques are utilized in medical imaging from low-level 

operations, such as denoising and sharpening, all the way to higher level operations such as 

computer vision tasks discussed in the previous chapter. The complexity of DIP operations 

can be characterized by the output of the operation. Output of the low-level operations are 

slightly modified versions of the input images and output of the mid-level operations are 

heavily modified images, such as segmentation masks of objects or gradient images, while 

high-level operations attempt to perform cognitive functions associated with vision and 

generally fall under computer vision [54].

Low level DIP applications in medical imaging include noise reduction and contrast 

enhancement. Low-level noise reduction is typically performed using digital filters, such as 
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mean, median and Gaussian filters.  Example Gaussian kernel is shown in figure 2. Images 

are filtered by sliding a moving filtering kernel over the image, as shown in figure 2. This can 

be expressed mathematically using convolution or correlation, although correlation and 

convolution are often identical operations since the low-level kernels tend to be symmetrical 

[54]. Image sharpening can be done using unsharp masking, where a smoothed image is 

subtracted from the original image, and the result is added to the original image (see equation 

2). Unsharp masking can be expressed as

I sharp=I +( I −G ) (2),

where Isharp is the sharpened image, I is the original image and G is smoothed image. Contrast 

enhancement can be performed using histogram equalization, or gamma-correction. 

Histogram equalization is performed by mapping the original distribution of the graylevel 

values into a flat distribution. Gamma correction is done by raising the graylevel values to 

some power k (see equation 3). Gamma correction can be expressed as

I γ=I k (3),

where Iγ is the gamma-corrected image, I is the original image and k is some, typically small, 

value. Whether k increases or decreases the luminance, depends on the graylevel values. If 

the graylevel values are scaled between 0 and 1, k<1 increases the luminance, and k>1 

decreases the luminance. If graylevel values are integers, e.g. 8 or 16-bit typically, k<1 

decreases luminance and k>1 increases luminance.

Mid-level DIP operations in biomedical imaging include image stitching, edge detection, and 

simple segmentation methods. Stitching can be used to combine multiple images into a single 

image, which allows high resolution imaging of large samples [55]. Edge detection can be 

performed computing image gradients, which are then thresholded to obtain a binary edge 

image [54,56]. Simple binary segmentation tasks can be performed by thresholding the image 

[54]. However, medical images can be noisy, and tend to have poor contrast between tissues, 

making thresholding a poor choice for medical image segmentation. Decent segmentation can 

be achieved if the thresholding is applied locally, rather than globally (see section 3.3). 
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Segmentation quality also depends on the selected threshold. Appropriate threshold can be 

selected based on graylevel histogram by selecting Nth percentile or by using Otsu’s method 

[57]. Automatic binary segmentation can also be done using the following algorithm:

1. Compute mean graylevel

2. Threshold, and compute mean graylevels for the segmented regions

3. Compute the average of the mean graylevels

4. Threshold image using the average mean graylevel from 3.

5. Repeat 3. and 4. until the average of the two mean graylevels converges.

Binary segmentation results can be improved using morphological operations [54]. 

Morphological operations are based on set theory and include dilation, erosion, opening and 

closing [54]. Dilation and erosion are performed by sliding a structuring kernel over a binary 

image. Dilation of binary image is performed by moving a dilation kernel over the image, 

which add non-zero pixels to the edges of the foreground object. Erosion is performed by 

sliding a similar kernel over the binary image, but pixels are removed from the foreground 

object. Opening is performed by first eroding the image followed by dilation. Closing is 

performed in a similar fashion, but with order of morphological operations reversed, i.e. 

dilation is done before erosion.

Figure 2. Digital image processing kernel visualization. Filtering an image with a Gaussian kernel (figure a) 

yields a blurred image, as the kernel outputs a weighted sum of the area under the receptive field of the kernel 

(figure b). Kernel is moved across the image and the output is recorded in a new image.
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3.2 Feature extraction

Feature extraction is used in computer vision to find non-redundant information from the 

input image. Extracted features are then used in the image analyses. Hand crafted features, 

such as HoG, scale-invariant feature transform (SIFT) and LBP have been used in landmark 

detection, object detection, image classification and segmentation tasks [1,11,12,55,58]. 

Feature descriptors are visualized in figure 3. HoG features are extracted by computing image 

gradients, and then binning the gradients by their orientation. The HoG descriptor has been 

utilized in object detection from natural images and landmark detection from plain 

radiographs [11,12,48]. The input image is split to cells, and the image gradients from each 

pixel belonging to a cell are binned according to their orientation. The cells are then split to 

spatially connected blocks, and the gradient bins belonging to a block are normalized. The 

normalization process reduces the effect of illumination. Chen et al used HoG descriptor to 

find landmarks from hip, knee and cranial radiographs [11,12].

Figure 3. Common feature descriptors. Figure a) shows LBP descriptor. Neighboring pixel values equal or 
greater than the center pixel are set to 1, and a value based on their position is assigned to the non-zero pixels. 
Finally, the binary vector is converted to a numerical value. Figure b) shows a visualization of binned gradient 
features used in SIFT and HoG descriptors. Both of the aforementioned descriptors compile image gradient 
information under a small window, which describes the local image structure efficiently.

SIFT and it’s more modern variant SURF, have been utilized in landmark detection [58,59]. 

SIFT descriptor uses difference of Gaussian (DoG) images to identify landmarks [54]. DoG 

images are computed according to equation 4. DoG computation can be expressed as

D=G1 −G2 (4),
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where D is the DoG image and G1 and G2 are smoothed versions of the input image. The 

input image is smoothed by two Gaussian kernels, constructed using different standard 

deviation [58]. Several DoG images are computed with increasing smoothing using multiple 

spatial resolutions. Keypoints are selected from the adjacent DoG images, followed by 

removal of low-contrast points and edges. Gradient based descriptor similar to HoG 

descriptor is then computed around the keypoints. Landmarks from different images can then 

be matched using Euclidean (see equation 5.) distance between the feature vectors extracted 

from the images. Euclidean distance is given by

S=√( (x1
1− x1

2 )
2
+( x2

1− x2
2 )

2
+...+( xn

1 − xn
2 )

2 ) (5),

where S is the distance, xn
1 and xn

2 are the nth element of the feature vector. Rister et al used a 

3D variant of SIFT descriptor to register brain MR images and abdominal CT scans [60]. 

SIFT based descriptor SURF has been also utilized in biomedical image analyses [59]. Yang 

et al used a modified version of the SURF descriptor to perform automatically stitch high-

resolution rat tissue samples [55].

LBP descriptor is constructed by comparing center pixel of a small radially samples 

neighborhood of pixels to its neighbors [49]. The center pixel is subtracted from the 

neighbors, and results are concatenated in a 1-dimensional vector. Elements below zero are 

set to 0, and rest of the elements are set to 1. Each element of the vector is assigned a value 

between 20 and 2N, where N is the number of neighbors. Hirvasniemi et al used LBP features 

to analyze subchondral bone regions knee radiographs [1,17].

Modern feature extraction algorithms often utilize CNNs to find optimal features for 

computer vision tasks [13,14]. CNNs have been used in computer vision tasks since early 

2000s, but they used to lack mainstream appeal in computer vision and machine learning 

community [50]. CNNs became the dominant approach in computer vision after the success 

of Krizhevsky et al in ImageNet competition, who used a CNN to beat the competitive 

algorithms by a large margin [50,61]. CNNs are trained on a manually labeled dataset. 

Optimization is done using variants of gradient descent algorithm [62]. The algorithm can be 

14



used to learn a new set of optimal features, or a pre-trained network can be used in feature 

extraction, with a classifier trained on top of the pre-trained feature extractor [63]. CNNs 

trained for image segmentation typically use end-to-end training where new features are 

learned directly from the data.

3.3 Active shape models

Active shape model (ASM) was developed by Cootes et al in 1995 [64]. ASM is a 

deformable model, which can be deformed to fit data in a manner, which is consistent with its 

training data. ASM is trained by selecting landmarks from training dataset, which are then 

aligned using Procrustes transformation [51,64]. Principal component analysis (PCA) is then 

used to find the allowed modes of deformation from the aligned training shapes.

Landmarks are typically selected from distinctive locations, such as contour end-points and 

corners. Landmark selection is described in figure 4. Intermittent landmarks are selected from 

less distinct points, typically from half-way points of the more distinct landmarks selected 

initially. Intermittent points are used in order to capture more robust features from the shape. 

Training shapes are aligned by minimizing the energy function, described in equation 6.

E=( x i− M (s ,θ ) [ x j ]−t j)
T
W (x i− M ( s , θ ) [ x j ]− t j ) (6),

where xi is the ith shape vector in format x = [x0, y0, x1, y1, …, xN-1, yN-1,]T, tj is a translation 

vector t = [tx
0, ty

0, tx
1, ty

1, … , tx
N-1, ty

N-1]. W is a diagonal matrix of weights and M(sj, θj)[xj] is 

rotated and scaled jth shape vector. Rotation and scaling is done according to equation 7. 

Rotation and scaling is performed on jth coordinate matrix according to

M j=(s cos (θ )  -s sin (θ )

s sin (θ ) s cos (θ ) )( x
y ) (7),

15



where x and y are vectors of coordinates, s is a scaling factor and θ is the angle of rotation. 

The output is formatted as Mj = [Mjx1, Mjy1,..,Mjx(N-1),,Mjy(N-1)]. Shapes are aligned iteratively, 

according to following:

1. Align training shapes with the first shape

2. Compute mean shape

3. Align shapes with the mean shape

4. Repeat 2. and 3. until convergence.

Once the shapes are aligned, PCA is used to find k unit eigenvectors P and eigenvalues λ 

which cover ~97% of the total shape variance. Any allowed deformation of the model can be 

expressed using equation 8. Allowed deformations are given by

x=xmean+Pb (8),

where x is a shape, xmean is the mean shape, P is matrix of k eigenvectors and b is a vector of 

weights. The weights in equation 8 are constrained to a range -3√λk ≤ bk ≤ 3√λk.

Figure 4. Active shape model (ASM) landmark selection. Landmarks are typically selected from distinct region 
such as corners and structure extrema. Intermediate points between more distinct landmarks can be used to 
create more robust representation of the object shape.
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New landmarks are selected from test image by inspecting the grayvalues of the test image 

along the contour normals of the ASM. An appearance model or grayscale model can be 

constructed from the local grayvalues or their gradients sampled along the contour normal 

around the training points. Landmark points are sampled from a new image along the contour 

gradients after selecting an initial location for the model points. Best matching landmark 

points are selected from the image, and the model is transformed to fit the new landmarks, 

using equation 6. Residual adjustments are computed by subtracting the fitted model from the 

new landmarks, and shape constraints imposed by the eigenvalues are enforced using 

equation 8. Shape constraints are enforced by selecting weights b from a range set by the 

eigenvalues. Equation can written as

b=PT ( x − xmean ) (9).

Since the columns of P are mutually orthogonal and unit length, equation 9 holds as PT = P-1. 

The landmark search is repeated until the model converges to a location.
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4. Aim of the Thesis

Main goals of this thesis were:

1. Development of automatic joint space delineation algorithm using template matching and 

ASM.

2. Development and comparison of two automatic joint space width measurement algorithms.

3. Implementation of the algorithms in an open source software, with robust visualization 

tools for the results.

Plain radiography is an important tool in osteoarthritis diagnosis due to the low cost and wide 

availability. Manual analyses of radiographs are susceptible to human error and intra- and 

inter-observer variability, which can be alleviated by automating the analysis process. 

Automatic segmentation and measurement results are repeatable as well as faster than manual 

analyses. In this study, ASM based algorithm was used to delineate the joint space. The 

acquired landmarks were then used in JSW measurements. ASM can be trained using a 

relatively small dataset, and the model does not require high-end computer for the analyses, 

making the model accessible to larger number of users. Secondary goal of this thesis includes 

automatic ROI placement. A simple ROI selection method, which uses the automatically 

obtained landmarks, was implement in the software. Tibial ROIs are selected below the 

approximate middle point of the delineated tibial contours. More refined approach to ROI 

placement is beyond the scope of this study.

The algorithm was implemented using python programming language, and graphical user 

interface was developed for the analyses (see figure 5). Furthermore, data visualization was 

implemented in the software. Radiographs can be viewed using the software, and the images 

can be automatically analyzed. The software can also visualize the delineation, JSW 

measurement and ROI placement results. The source code of the software is published on 

github (https://github.com/jfrondel/KneeAnalyzer).
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Figure 5. Picture of the graphical user interface for the analysis software. The software allows user to manually 
annotate knee radiographs and to train segmentation models. Multiple images can be later selected for sequential 
automated analyses, which will run in the background.
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5. Dataset and Methods

Bilateral weight bearing posterior-anterior radiographs with knees in semi-flexion were 

acquired (DigitalDiagnost, Philips Medical Systems, 60 kVp, automatic exposure) from 107 

subjects (66 female, 43 male) with and without OA. Spatial resolution of the radiographs was 

0.148x0.148 mm2. OA severity was assessed using KL grading scale. 4 knees were omitted 

from the analyses, due to TKR prostheses. Experienced researcher performed manual JSW 

measurements and tibial ROI selection from the images. Tibial and femoral contours were 

delineated for this study using custom python software. The images were then split to training 

and test set for the analyses. The knees were stratified based on their KL grading, and training 

dataset and test dataset were generated automatically.

Automated JSW analyses and delineation of the joint contours was performed with a custom 

made software written in python 3.5. Graphical user interface was made using Qt based 

PyQt5 library [65]. Visualization was handled using Visualization Toolkit (VTK) library for 

python [66]. VTK was also used to implement the manual delineation to the software. Basic 

image processing tasks were performed using OpenCV library [67]. Automatic joint 

localization algorithm and JSW measurement algorithms were implemented in python and 

integrated into the software. 

5.1 Manual bone contour delineation and ASM construction

Manual delineation of the knee contours was performed using python software with 

visualization and drawing tools implemented using VTK library. Samples were delineated in 

4 parts, as shown in figure 6. Lateral and medial tibia contours were drawn staring from the 

neck of the tibia, to the tibial spines. Starting point from the neck was selected based on the 

underside of tibio-femoral joint. Lateral and medial femur contours were drawn from the 

femoral neck to the midpoint of the joint. Starting location was selected based on the top of 

the patella.
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Each of the four contours was split into 20 landmarks using k-means clustering [68]. The full 

knee model was created by concatenating the 20 point models into a single 80 point model. 

Separate 40 point tibial and femoral models were also created. Finally 20 points were 

selected from the tibial and femoral heads, and concatenated into a 40 point joint model. The 

four models were used to automatically delineate the joint space in 3 stages. Semi-

automatically generated landmarks were used due to small amount of distinct landmarks 

present around the knee joint.

ASM was constructed for each of the models as described in section 2.3. A modification was 

made to the alignment process, where a constant size was enforced for the model during the 

alignment. Height and width of the model was recorded from the first mean shape by 

measuring the distance between the maximum and minimum x- and y-coordinates. The mean 

shape was scaled to same height and width during the alignment. This modification was 

necessary to prevent the model from shrinking during the alignment process. PCA was 

performed to find the unit eigenvectors and eigenvalues for the shape constraints. N 

eigenvectors were selected, as they covered > 97% of the variance.

Figure 6. Knee annotations and bone ASM. The joint was annotated in 4 separate parts (lateral tibia (green line), 
medial tibia (orange line), lateral femur (blue line) and medial femur (purple line)). The annotation contours 
were clustered to 80 points (red points) and points from the training dataset were used to train the ASM. 
Separate tibial (green points), femoral (blue points) and JS (teal points) models were also constructed from the 
training dataset, which were used to annotate the test dataset in steps.

5.2 Automatic delineation and joint space measurement

At first, the joint center was localized by binarizing the test image, taking the cross-

correlation of the binarized image and a black and white image of the knee ASM mean shape. 

DoG and Canny edge detection algorithm were used in the binarization. DoG was computed 
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using Gaussian filters with 5x5 kernel size and standard deviations 1 and 5. DoG image was 

then binarized by thresholding the pixels in the top 20th percentile to 1, and rest to 0. 

Morphological closing was then applied to the resulting image, using a 3x3 kernel. Binary 

objects with area less than 20 pixels were removed from the image. Second binary image was 

constructed using Canny edge detection followed by morphological dilation with a 3x3 

kernel. The intersection of the two images was then used to localize the joint center using the 

cross-correlation of the binary image and the knee model image. Joint localization is 

described in figure 7.

The joint center location was then refined by cropping a 120x120 mm2 area around the initial 

joint coordinate. The cropped image was thresholded, by setting the bottom 40th percentile of 

the pixels to 0 and rest to 1. A sliding window was used to find lateral and medial edges of 

the knee. Window size was 120x11.84 mm2, and the edge of the joint was determined to be at 

the location where more than 50% of the pixels were 1. Center of the found knee edges was 

then used as x-coordinate for the joint center. Vertical location, or the y-coordinate, was 

measured by taking the sum 5.92 mm wide window around the x-coordinate along x-axis, and 

finding the strongest gradient of the resulting vector. The vector was down-sampled with a 

factor of 15, in order to reduce noise for the gradient computation.
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Figure 7. Joint localization pipeline. The image is first binarized by computing DoG image and using Canny 
edge detection. ASM mean shape is used to produce initial localization of the joint center, which is then refined 
using image processing and signal analysis methods. Analysis region is then selected around the joint center. 

The mean shape of the ASM was centered around the refined joint center, and new landmarks 

were found as described in section 2.3. Once the full knee model converged, the landmarks 

were used as an initial location for tibial and femoral ASMs. Finally, the femoral and tibial 

head landmarks from the previous step were used as an initial location for the joint ASM. 
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Joint ASM landmark locations were refined as described in section 2.3. Joint delineation 

progression is shown in figure 8.

Figure 8. ASM delineation progression. Full knee model is aligned initially with the joint image. Tibia and 
femur contour locations are then refined by aligning separate models for the different bones. Finally, a joint 
model is aligned to the image, producing the final delineation result.

JSW was measured around the automatically obtained landmarks. JSW measurements are 

visualized in figure 9. The input image was first cropped around the segmentation. The 

cropped area was selected from the minimum and maximum coordinates of the joint 

landmarks, with 7.4 mm added to the top and bottom of the area. Height of the area was 

increased in order to ensure that the full joint space and the surrounding bone were included 

in the image used in the measurements, in case of delineation errors. The cropped image was 

then binarized, using the automatic thresholding method described in section 2.1. The image 

was split to three regions along its width, and each third was thresholded. Binary disks with 

decreasing radius were fitted to the resulting binary image, and the maximum radius of the 

disks were recorded at each pixel. Minimum, maximum, mean and median radii were 

obtained from the area under the delineated joint.

Second JSW measurement was performed by binarizing the image and finding the edges of 

the resulting binary mask. Edge pixels were then classified to lateral tibia, medial tibia, lateral 

femur and medial femur using the joint delineation. A contour corresponding to each 

anatomical region was selected from the joint landmarks, and edge pixels were classified 

using nearest neighbor search. Finally, the JSW was measured by finding nearest neighbors 

between the tibial and femoral pixels.
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Subchondral bone ROIs were selected automatically using the joint delineation. The center of 

each ROI was placed below the 5th landmark of lateral and medial tibial contour. Smaller 

ROI (6.1x14.1 mm2) was set to 1mm below the landmark, and larger ROI (14.1x14.1 mm2) 

was set immediately below the smaller ROI.

Figure 9. JSW measurements and ROI placements. First JSW measurement method selects lateral and medial 
regions where spherical binary masks are fitted, as shown in figure a). Largest radius of a masks that fits to the 
region is recorded at each pixel, and JSW metrics are extracted within the masks. Second method binarizes the 
joint and classifies the binary pixels to lateral and medial femur and tibia. Nearest neighbors between the 
contours are then used to measure the JSW, as shown in figure b). Figure b) also shows automatic tibial ROI 
placements.

5.3 Data analyses

Model performance was analyzed by measuring the Euclidean distance and Sørensen-Dice 

coefficient between manual and automatic annotations [69,70]. Automatic JSW measurement 

was compared to the manual measurement using Pearson correlation coefficient and root 

mean squared error. Automatic ROI placement was evaluated by measuring the Sørensen-

Dice coefficient as well as the Euclidean distance between the center locations of the ROIs.
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6. Experiments and results

Samples were split to test and training datasets before the experiments. Each dataset 

contained 50% of the samples (103 training samples, 103 test samples). Landmark search 

radius was optimized experimentally before the automatic JSW measurements. Search radius 

optimization was done by fitting the ASM to the images and varying the landmark search 

radius. Best performing parameters were then used in the JSW measurements.

JSW was measured after optimizing the landmark search radius using two different methods. 

At first, JSW was measured by fitting circles in a binarized joint space image cropped around 

the ASM landmarks. Minimum, maximum, mean and median radii of the circles were 

recorded under the are delineated by the ASM landmarks. The second JSW measurement was 

done by detecting the bone contours from the cropped joint space image. The contour pixels 

were then classified to tibia and femur using the ASM landmarks. JSW was then measured by 

finding nearest neighboring points between the tibia and femur contour pixels. Finally, 

subchondral bone ROIs were placed on the images based on the ASM delineation. Automatic 

ROI placements were evaluated against manual placements by using Soerensen-Dice 

coefficient and distance between the ROI centers.

6.1 Optimizing landmark search radius

The landmark search radius was optimized by delineating the knees using different radii for 

the landmark search. Experiments were performed at 10 (1.48 mm) pixel increments ranging 

from 10 pixels (1.48 mm) to 120 pixels (17.76 mm). Performance of the full knee model as 

well as tibial and femoral models at different search radii is shown in figure 10. Automatic 

alignment of the models were evaluated against the full ground truth (GT) model of the knee. 

Best automatic alignment of the full knee ASM was achieved with 60 pixels (8.88 mm) 

search radius for the test dataset and 70 pixel (10.36 mm) search radius for the training 

dataset. RMSEs were 6.05 mm and 5.23 mm respectively. The 60 pixel search radius was 

used in the rest of the experiments, as it yields slightly faster performance due to smaller 

amount of computations needed for the model alignment and performs better with the test 

dataset.
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Tibial and femoral models were aligned to the radiographs using the automatically aligned 

full ASM of the knee as initial location and aligning separate models of the tibial and femoral 

contours to the image. The 60 pixel search radius was used in the full model alignment, and 

search radius experiments were conducted using the same 10 pixel increments for the tibial 

and femoral models as in the previous experiments. Alignment was evaluated against the full 

GT contour by concatenating the tibia and femur models into a single set of points. Best 

alignment was obtained using 10 pixel (1.48 mm) search radius for both the training and test 

datasets. RMSEs were 5.84 mm for the test dataset and 5.11 mm for the training dataset.

Figure 10. RMSE between aligned ASM and GT models against landmark search radius. Full model alignment 
performed best when the landmark search radius was 10.4 mm (70 pixels) for training dataset (RMSE 5.23 mm). 
Best performing search radius was 8.88 mm (60 pixels) for test dataset (RMSE 6.05 mm). Best performing 
landmark search radius was 1.48 mm (10 pixels) when separate tibia and femur models were fitted to the image. 
Same search radius achieved best performance for both test and training datasets (RMSEs 5.11 mm and 5.84 
mm respectively).

Finally, the landmark search radius was optimized for the joint model. Joint ASM used joint 

space landmarks from the aligned tibial and femoral models as initial locations. Joint ASM 

was aligned to the radiograph after aligning the tibial and femoral models using search 

parameters obtained from the previous experiments. Joint RMSE was also evaluated for the 

full knee model as well as tibial and femoral models during the landmark search. 

Performance of the joint ASM as well as the other models around the joint space, is shown in 

figure 11. Best joint ASM alignment was obtained using search radius of 20 pixels (2.96 mm) 

for both training and test datasets. RMSEs were 3.78 mm and 4.63 mm. RMSEs are 

significantly lower than ones obtained from aligned full knee model (training dataset RMSE 
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4.65 mm, test dataset RMSE 5.46 mm) or tibial and femoral models (training dataset RMSE 

4.33 mm, test dataset RMSE 5.09 mm).

Figure 11. Joint ASM and GT model RMSE against landmark search radius. Best performing landmark search 
radius was 2.96 mm (20) for training (RMSE 3.78 mm) and test dataset (RMSE 4.63 mm) for the joint ASM. 
Model performance was evaluated from 40 landmarks around the joint space. Evaluation was done for full knee 
ASM as well as tibial and femoral models. Best performance was acquired when landmark search radius was 
10.36 mm (70 pixels) for full knee ASM training dataset (RMSE 4.65 mm) and 8.88 mm (60 pixels) for test 
dataset (RMSE 5.46 mm). Best joint space landmark alignment from tibial and femoral models was obtained 
when the search radius was 1.48 mm (10 pixels) for both training (RMSE 4.33 mm) and test datasets (RMSE 
5.09 mm).

6.2 Automatic JSW measurement from disks

Automatic JSW measurements using disk fitting were validated against manually measured 

JSWs. JSW was measured from a region located within the joint delineation. Measurements 

were done by fitting disks to a binarized image, and recording the maximum radius of the 

disk at each pixel in the region. Minimum, maximum, mean and median radii were then 

obtained from the pixels within the automatically selected area. Pearson correlation 

coefficient and RMSE were measured between the automatically obtained values and 

manually measured ground-truth JSW. RMSE, Pearson correlation coefficient and 

corresponding p-values between automatically obtained JSWs and GT JSWs for the training 

dataset are reported in table 1. Visual representation of the results for training dataset is 

provided in figure 12 and for the test dataset in figure 13. Automatically measured mean JSW 

had the smallest RMSE (1.39 mm on lateral side, 1.57 mm on medial side) and best 

correlation (Pearson R 0.68 on lateral side and 0.61 on medial side, p-values < 0.05) with the 

GT JSW on the training dataset. Mean JSW also had smallest RMSE (1.69 mm on lateral 

side, 1.46 mm on medial side) with the test dataset measurements. Highest correlation 
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(Pearson R 0.58) was obtained from automatic mean JSW on lateral side measurements from 

the test dataset. On medial side, highest correlation was obtained from automatic median JSW 

(Pearson R 0.59) although the RMSE was slightly higher (1.60 mm). Results for the test 

dataset are shown in table 2. The visual representation of the results is shown in figure 13.

Table 1. Automatic JSW measurements vs. GT JSW measurements for training dataset.

Measurements Lateral Medial

RMSE (mm) Pearson P-value RMSE 
(mm)

Pearson P-value

Minimum 4.56 0.08 0.41 3.33 0.13 0.20

Maximum 2.00 0.68 <0.05 2.97 0.44 <0.05

Mean 1.39 0.64 <0.05 1.57 0.61 <0.05

Median 1.65 0.57 <0.05 1.71 0.59 <0.05

Table 2. Automatic JSW measurements vs. GT JSW measurements for test dataset.

Measurements Lateral Medial

RMSE (mm) Pearson P-value RMSE 
(mm)

Pearson P-value

Minimum 4.67 0.12 0.20 3.35 0.12 0.21

Maximum 2.35 0.41 <0.05 3.17 0.32 <0.05

Mean 1.69 0.52 <0.05 1.46 0.57 <0.05

Median 1.97 0.46 <0.05 1.60 0.59 <0.05
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Figure 12. Correlations between automatic JSW and GT JSW for training dataset. Mean and median JSWs have 
the strongest correlation with the GT JSW on lateral and medial side respectively. On the medial side, mean and 
median JSWs have comparable correlations to the manually measured JSW.
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Figure 13. Correlations between automatic JSW and GT JSW for test dataset. Mean and median JSWs have the 
strongest correlation with the GT JSW on lateral and medial side respectively. On the medial side, mean and 
median JSWs have comparable correlations to the manually measured JSW.
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6.3 Automatic JSW measurement using nearest neighbors

JSW was also measured from the binarized joint images by classifying the binarized pixels to 

femur and tibia. Classification was obtained by finding nearest neighbors from the 

automatically delineated joint space landmarks for the binary image edge pixels at the joint 

space. Binarization was done the same way as in the previous measurements, followed by 

edge detection. Edge detection was done by computing gradient image from the binarize 

image, and setting bottom 80 percentile of the pixels to 0. After the classification, JSW was 

measured by finding nearest neighbors between femur and tibia edges. Separate 

measurements were performed on lateral and medial sides. Results for training dataset are 

shown in figure 14, and results for test dataset are shown in figure 15.

Figure 14. Automatic JSW measurement from edge pixels for training dataset. Pearson correlation coefficient on 
lateral side was 0.717 and 0.670 on medial side. P-values were <0.05.

Figure 15. Automatic JSW measurement from edge pixels for test dataset. Pearson correlation coefficient on 
lateral side was 0.296 and 0.577 on medial side. P-values were <0.05.
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6.4 Automatic ROI placements

Tibial ROIs were automatically selected based on the delineation of the joint space. Smaller 

subchondral bone ROIs were placed 1.48 mm (10 pixels) below the middle landmarks. The 

landmark placements were validated using Soerensen-Dice coefficient, and by measuring the 

distance between automatically and manually placed ROIs. Center distance measurements 

were used since the images were rotated for the manual ROI placements, which has an impact 

on the Dice coefficient. Mean scores for the training and test datasets are presented in table 3. 

Smaller tibial ROIs achieved higher Dice coefficients across the experiments (0.716, 0.700, 

0.699 and 0.678 for lateral train, lateral test, medial train and medial test dataset respectively) 

than the larger Subchondral bone ROIs (0.590, 0.580, 0.559 and 0.520 for lateral train, lateral 

test, medial train and medial test datasets). ROI center placement differed less between tibial 

and subchondral bone ROIs. Mean distance between automatically and manually placed ROIs 

were 4.16 mm and 4.29 mm for tibial and subchondral ROIs for the train dataset on lateral 

side. On medial side distances, were 4.59 mm and 4.61 mm between automatically and 

manually placed tibial and subchondral ROIs. With the test dataset, corresponding distances 

were 4.28 mm, 4.38 mm, 5.32 mm and 5.06 mm.

Table 3. Automatic ROI placement metrics.

Dice (train) Center distance 
(mm) (train)

Dice (test) Center distance 
(mm) (test)

Subchondral, 
lateral

0.590 4.16 0.580 4.28

Tibial, lateral 0.716 4.29 0.700 4.38

Subchondral, 
medial

0.559 4.59 0.520 5.32

Tibial, medial 0.699 4.61 0.678 5.06
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7. Analysis software

Automatic JSW measurements and ROI placement methods were implemented in custom 

made open source python software. Software usage is demonstrated in figure 15. Source code 

is published on github (https://github.com/jfrondel/KneeAnalyzer). Python language was used 

to implement the software, due to its open source nature and the high availability of external 

libraries. Open source libraries were used implement the data visualization and the user 

interface. Many of the necessary mathematical operations were also imported from the 

external libraries.

 The data was read from DICOM format using PyDicom library [71]. Image pre-processing 

was performed using OpenCV and NumPy libraries, which were also used to implement the 

analysis scripts, along with Scikit-Learn library [67,72,73]. The data and results were 

visualized using VTK library [66]. Graphical user-interface was developed using PyQT5 

library [65]. Results were saved in csv format for the sake of accessibility using pandas 

library [74]. The software includes ASM annotation tools which allow the user to draw 

continuous bone contours manually. The software then selects landmarks from the 

annotations using k-means clustering. Tools for manual ROI placements and JSW 

measurements are included. ASM can be trained once the data is annotated. The software 

uses 50% of the annotated data to train the model. Stratified split is generated automatically 

from a table containing the KL grades for the dataset. The user must specify a path to a table 

containing the grades. Automatic delineations and measurements can be generated either for a 

single knee or multiple knees from all of the selected radiographs with a single button press. 

The data is analyzed in a separate thread running while the software is running, allowing user 

to visualize the results for the already analyzed samples. The status of the analyses is 

provided to the user in the graphical user interface (see figure 16.).
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Figure 16. Knee analysis software usage. The software has tools for manually annotation of the bone contours 
(figure a)) as well as manual measurement of JSW (figure b)). Furthermore, the tibial ROIs can be placed 
manually on the bone. The software has minimalistic menu based user interface as shown in figure c). Useful 
information about the analyses are shown to the user (figure d)) at the bottom left corner. The software displays 
sample name, leg which is currently viewed, and the JSW measurement results including whether they were 
obtained automatically or manually.
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8. Discussion

Detection of OA induced changes in the joint is an important part of OA diagnosis. In the 

future, automatic methods for image analyses may be required in clinical and research 

setting, due to the disease prevalence and increasingly larger amounts of available data. In 

this study, fully automatic methods for joint localization and joint space measurements were 

implemented using image processing and computer vision methods. Computational cost was 

kept low by using more traditional methods, allowing the algorithms to be run on low-end 

workstation, and thus making the models available to larger number of users. Furthermore, 

the algorithms can be easily scaled for multiple processors.

Two different methods for joint space measurement were implemented and compared after 

the joint delineation. The joint delineation was performed using ASM with a simple gradient-

based feature for selecting new landmark locations for the model. Automatic joint space 

measurements were done using pixel classification and fitting circular masks to a binarized 

joint space image. The results correlate well with the manually obtained GT joint space 

widths. Joint space measurements were generally more accurate when the measurements 

were performed by fitting disks to the binarized image. Furthermore, a simple method for 

automatic tibial ROI placement was implemented. The full joint analysis pipeline was 

implemented in a python software, and the source code was made publicly available. Model 

performance will be discussed in greater detail in following sections.

8.1 ASM Performance

Accurate delineation of JSW was obtained using multi-stage ASM. The landmark search 

radius was optimized before the actual measurements. Optimization was done by measuring 

the error between the points obtained from manual annotations and the automatic delineation. 

Optimization improved the results significantly. The model could be further optimized by 

tuning other parameters, such as the number of landmarks and the number of principal 

components used in the ASM adjustments. However, these optimization steps were beyond 

the scope of this study. The number of landmarks was selected to be 80 for the full knee. 
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Selection was based on initial experiments made during the development, since it provided 

good accuracy with low computational cost. The number of landmarks could have been set to 

~100, while still maintaining the stability of the model, since the training dataset included 

similar amount of samples. Changing the number of principal components changes the 

allowed deformations in the model alignment, which impacts the performance of the model. 

The number of principal components for each model was selected automatically based on the 

criteria that the corresponding eigenvalues cover >97% of the total variance. The 97% 

threshold was obtained from the literature [64]. A lower threshold has been used in other 

studies using ASM to delineate the knee contours [15]. Future work should also include 

stratification by KL grade when aligning the models. OA induced changes in the varus-valgus 

alignment of the joint can impact the model performance, especially when using a model of 

the full joint. The allowed deformations of the model are constrained by the variance in the 

dataset. If the training data does not include enough deformed joints, the performance of the 

model may suffer.

The full knee model was relatively rigid and could not capture the shape of the joint space as 

well as the smaller models. However, it provided a good initial for the joint landmark. The 

results were improved using separate models for tibia and femur. Separating the two contours 

was helpful for cases, where the bones were incorrectly aligned due to the disease 

progression. The greatest improvement to the model accuracy was obtained using the smaller 

model comprised of joint space landmarks. The joint space model was able to better follow 

the contours of the joint, as the landmarks outside the joint space did not impact the 

alignment. The multi-stage model also allowed using very simplistic model for the landmark 

appearance. A simple gradient magnitude was used to determine a new landmark during the 

alignment, which requires a good starting location for the model. Good initial locations for 

the joint landmarks were obtained using accurate joint localization and multiple bone 

delineations with different models. Example results are given in figure 17.
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Figure 17. Example ASM delineation results. Figure a) shows a well aligned model. Ground truth landmarks are 
shown in the left-most image. Second image from the left shows aligned full knee model. The full model 
delineates the contours of the bones well, but the joint landmark alignment requires improvement. The third 
image from the left shows tibial and femoral model alignment. Now the models are able to follow the bone 
contours better at the joint region. The medial tibia contour is slightly mis-aligned. Finally, the right-most image 
show joint model alignment. Tibial landmarks are now correctly aligned in both lateral and medial regions. 
Figure b) show poorly aligned model. Manual annotation, full model, tibial and femoral models and the joint 
model are in the same order as in the figure a). The model was now aligned to the small structures in the bone, 
yielding a poor overall alignment. However, this is compensated by the joint model alignment, which follow the 
contours of the tibia and femur, making measurements still feasible from the delineation.

Drawback of selecting new landmarks from strongest image gradient locations is the 

susceptibility of the model to noise and poor contrast. If the bones do not have good contrast 

against the surrounding tissue, aligning the model to the correct location could be difficult. 

Furthermore, strong edges in the bone can cause the model to converge to a wrong location. 

Using multiple model alleviated these issues, since the joint space was typically clearly 

visible from the images in the dataset. Even if the initial alignment of the larger models was 

sub-optimal, the joint space model was able to converge to the appropriate location.

The automatic delineation results are comparable to landmark detection method implemented 

by Chen et al in [11]. Chen et al achieved higher accuracy by combining a sparse shape 

model with their automatic landmark detection algorithm. The ASM based joint delineation 
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method utilized here is significantly less complex. Combining multiple different statistical 

models for the joint space delineation was beyond the scope of this study. The delineation 

accuracy could be further improved by using more advanced features in landmark selection 

and aligning a new model after the initial landmark localization using the gradient feature.

8.2 JSW measurements

Two separate methods were tested for the JSW measurements. The first method utilized disk-

shaped binary kernels to find the distance between the bones and the second method searched 

nearest neighbors between the bone contours. Overall performance of the disk method was 

better than the nearest neighbor method, although the nearest neighbor method achieved 

better performance with the training dataset. All of the JSW metrics collected under the joint 

segmentation regions had significant correlation with the ground truth JSW measurement, 

excluding minimum automatic JSW. Minimum JSW measured from the JS mask typically 

consisted of one pixel, thus lacking any useful information. The maximum JSW under the 

mask typically over estimated the distance between tibia and femur, most likely due to noisy 

binarization of the joint. Automatically obtained mean and median JSWs correlated with the 

manual measurements quite well, mean JSW having better overall correlation with the 

manual measurements.

Nearest neighbor JSW measurement had good correlation with the manual measurements 

when the measurements were done with the training dataset. However, the performance on 

the lateral side of the joint was quite poor when the measurements were done with the 

training dataset. The issue arises from the relatively low tissue contrast of the lateral femoral 

condyle, which results in poor binarization of the joint tissues. When the JSW is measured 

using the disk method, sufficient amount of the joint is properly binarized, leading to more 

accurate results when compared to the nearest neighbor method. The nearest neighbor method 

performance could be improved by more accurate binarization of the joint space. Fine tuning 

the binarization could improve the results significantly. Example results are shown in figure 

18 with ROI placements.
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Figure 18. Automatic JSW measurements. Figure a) shows results from well aligned model. Left-most image 
shows manual JSW measurement and the manually placed tibial ROIs. Middle image shows joint masks 
obtained from the binarized joint image with the ASM delineation. JSW was measured by fitting disk shaped 
kernels to the area denoted by the yellow mask. Right-most image show JSW measurements from binary 
contours obtained from the joint image. The binary pixels were classified using the ASM delineation. Lateral 
JSW was measured to be 4.516 mm (manual), 4.740 mm (mean result from the mask) and 4.884 mm (nearest 
neighbor pixels from the binary contours). Corresponding medial JSW values are 3.083 mm, 1.898 mm and 
2.621 mm. Figure b) shows results from the poorly aligned model (see figure 16.). Despite the lacking accuracy 
of the ASM alignment, the JSW measurements are consistent with the manual measurement. Lateral JSW was 
measured to be 4.515 mm (manual), 4.559 mm and 5.420 mm. Corresponding JSWs on the medial side were 
1.953 mm. 2.701 mm and 1.635 mm.

8.3 Automatic ROI placement

The ROI placements were done automatically based on the delineation results. The centers of 

the ROIs were close to the GT placements, while the Dice coefficients were quite low. The 

Dice coefficients suffered due to the misalignment of the ROIs, as the GT ROIs were placed 

on rotated images. The ROI placement could be further improved by using landmarks from 

the tibial ASM. Using multiple landmarks to select the ROI location, for example by voting 

for the center location, could yield significantly higher accuracy. However, this was beyond 

the scope of this study. Example ROI placements are shown in figure 18 and closer 

examination of the ROI overlap is shown in figure 19. The automatic ROI selection could be 

improved by utilizing the method used by Podsiadlo et al in [15]. Since the automatic ROI 

placement was a secondary goal of this study, implementation of the more advanced method 

was omitted.
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Figure 19. Comparison between the manually (blue) and automatically placed ROIs (cyan). The images were 
rotated when the during the manual ROI placements, which impacts the similarity metrics. Good agreement 
between the manual and automatic ROI placements was still achieved when the ASM alignment was good (top 
image). If the automatic delineation performed poorly, the ROI placement suffered as well (bottom image). The 
automatic method places the larger subchondral ROI immediately below the smaller ROI, which also impacts 
the performance, since it does not take the possible overlap into the account. 

8.4 Limitations of the study

The biggest limitation of this study was the use of single dataset obtained using the same x-

ray machine and imaging parameters. Evaluating the models using different dataset would 
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make it possible to test how well the models generalize to images obtained using different 

imaging parameters. The joint localization and joint space delineation methods will likely 

require the use of different model parameters, since the contrast between the different tissues 

and background may change depending on x-ray machine and imaging parameters used in the 

data acquisition. However, the model parameters can be easily adjusted for new datasets and 

controls for these can be added to the software in the future. Furthermore, combining more 

advanced models with the delineation algorithm may improve the results further. 

Constructing a more advanced landmark feature descriptors could provide more accurate 

results and faster converge for the ASM, although this may increase the computational cost. 

The automatic ROI placement should be improved, for example by utilizing the same 

methods used by Podsiadlo et al in [15]. Another option would be to use multiple landmarks 

from the ASM to select the ROI localization and orientation.

Further improvements to the performance could be obtained by using CNNs to segment tibia 

and femur. CNNs can achieve human level performance in many image analysis tasks, 

although they require large amounts of training data. Training neural networks also requires 

significant amount of computational power not required by the methods utilized in this study. 

Despite this, the CNNs may be more attractive alternative to traditional image processing and 

computer vision methods in the future for automatic analyses as availability of data increases 

and computer become faster.

Traditional image processing and computer vision methods can be used in semi-automatic 

annotation of images. Manually obtained GT datasets typically suffer from intra- and inter-

observer variability, which can be alleviated using local image features. Features, such as 

image gradients, can be obtained from a small region around a manually selected location and 

used to refine the manual annotation. This would reduce the variability, as the final 

annotation would be constructed using automatic and repeatable methods. Automated 

analyses can also be used to obtain initial approximation of the desired results, which can 

later be manually refined. Future improvements to the radiograph software developed here 

should include refinement of the manual annotations using image gradients, as well as the 

option to manually tune the obtained results. These features were beyond the scope of this 

study. The source code for the algorithms implemented here will be freely available for other 

researchers on github (https://github.com/jfrondel/KneeAnalyzer).
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9. Conclusions

Decrease in the joint space width is an indicator of knee OA and accurate diagnostic tools are 

important in early detection of the disease. A fully automated ASM based method for joint 

space delineation and measurement from plain radiographs was developed and implemented 

in this study. The automatically obtained results agree well with manual joint space 

measurements. Furthermore, a method for tibial ROI selection was included in the 

algorithms. Algorithms developed here were implemented in open source software with 

robust visualization tools for the results. The low computational cost and easily explainable 

model features make the automatic tools used here accessible to larger research community.
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