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Abstract

Nowadays, image processing and 3D shape analysis are an integral part of clini-
cal practice and have the potentiality to support clinicians with advanced analysis
and visualization techniques. Both approaches provide visual and quantitative in-
formation to medical practitioners, even if from different points of view. Indeed,
shape analysis is aimed at studying the morphology of anatomical structures, while
image processing is focused more on the tissue or functional information provided
by the pixels/voxels intensities levels. Despite the progress obtained by research in
both fields, a junction between these two complementary worlds is missing. When
working with 3D models analyzing shape features, the information of the volume
surrounding the structure is lost, since a segmentation process is needed to obtain
the 3D shape model; however, the 3D nature of the anatomical structure is repre-
sented explicitly. With volume images, instead, the tissue information related to the
imaged volume is the core of the analysis, while the shape and morphology of the
structure are just implicitly represented, thus not clear enough.

The aim of this Thesis work is the integration of these two approaches in order to in-
crease the amount of information available for physicians, allowing a more accurate
analysis of each patient. An augmented visualization tool able to provide informa-
tion on both the anatomical structure shape and the surrounding volume through a
hybrid representation, could reduce the gap between the two approaches and provide
a more complete anatomical rendering of the subject.

To this end, given a segmented anatomical district, we propose a novel mapping of
volumetric data onto the segmented surface. The grey-levels of the image voxels are
mapped through a volume-surface correspondence map, which defines a grey-level
texture on the segmented surface. The resulting texture mapping is coherent to the
local morphology of the segmented anatomical structure and provides an enhanced
visual representation of the anatomical district. The integration of volume-based and
surface-based information in a unique 3D representation also supports the identifi-
cation and characterization of morphological landmarks and pathology evaluations.
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The main research contributions of the Ph.D. activities and Thesis are:

• the development of a novel integration algorithm that combines surface-based
(segmented 3D anatomical structure meshes) and volume-based (MRI volumes)
information. The integration supports different criteria for the grey-levels map-
ping onto the segmented surface;

• the development of methodological approaches for using the grey-levels map-
ping together with morphological analysis. The final goal is to solve problems
in real clinical tasks, such as the identification of (patient-specific) ligament
insertion sites on bones from segmented MR images, the characterization of
the local morphology of bones/tissues, the early diagnosis, classification, and
monitoring of muscle-skeletal pathologies;

• the analysis of segmentation procedures, with a focus on the tissue classifi-
cation process, in order to reduce operator dependency and to overcome the
absence of a real gold standard for the evaluation of automatic segmentations;

• the evaluation and comparison of (unsupervised) segmentation methods, final-
ized to define a novel segmentation method for low-field MR images, and for
the local correction/improvement of a given segmentation.

The proposed method is simple but effectively integrates information derived from
medical image analysis and 3D shape analysis. Moreover, the algorithm is general
enough to be applied to different anatomical districts independently of the segmen-
tation method, imaging techniques (such as CT), or image resolution. The volume
information can be integrated easily in different shape analysis applications, tak-
ing into consideration not only the morphology of the input shape but also the real
context in which it is inserted, to solve clinical tasks. The results obtained by this
combined analysis have been evaluated through statistical analysis.
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Chapter 1

Thesis Overview

1.1 Images and 3D models in medicine

Medical imaging is a broad term used to define the technologies which permit the visualization
of the human body. Thanks to the information content brought by images, imaging techniques
have been extensively used for diagnosis, monitoring, and treatment purposes. Technological
development brought the creation and improvement of different types of imaging procedures.
Namely, medical images can be categorized into two main classes: morphological images, which
permit to observe the internal composition of the human body, and functional images, which
provide information on the functioning principle of the organs.

In both cases, images are created by the interaction of a form of energy with the anatomical
structures, or human body. This interaction results in a physical quantity that must reproduce,
with its spatio-temporal distribution, the distribution of other physical quantities in the structure
(e.g. density, acoustic impedance, or composition of the tissues). For this reason, depending
on the form of energy and the interaction studied, the image will bring different informative
content since it will provide measures of a distinct physical property of the structure. As a result,
each image will be a partial representation of reality, no matter the technology that provided it.
[CDV12]

In recent years, technological innovation has permitted the development of 3D imaging, able to
obtain not only a section of the human body but a series of them, showing a volumetric represen-
tation of the structures of interest. Indeed, the intrinsic 3D nature of the body’s internal structure
can be represented through a stack of cross-sectional images, leading to an increase of infor-
mation. Such an amount of informative content implies that physicians and radiologists must
analyze and interpret a much higher quantity of data with respect to a single 2D slice [WD19].
Unfortunately, abnormalities can be small compared to the overall size of the image, posing the
problem of how to navigate and examine the volume image in an efficient way. Indeed, visual-
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ization instruments able to highlight pathological evidence, even if small, help the radiologist in
the evaluation of volume images and their high quantity of informative content, focusing his/her
attention on the most relevant areas.

Along with the development of 3D imaging technologies recent years have seen a huge develop-
ment of Computer Graphics, Computer Vision, and image processing techniques. Consequently,
the reconstruction of the 3D object from images had represented a big source of research also
in the medical field. Numerous techniques to extract 3D models from images have been pro-
posed and adapted to the use in medicine and their definition, analysis, and usage in diagnostic
processes boosted a relevant amount of research, with many and still open problems.

The main underlying innovation process is related to the possibility of devising the so-called 3D
Patient-Specific Models (3D PSMs), which are computational reconstructions of the anatomy,
mirroring accurately the patient’s organs in the 3D space, with the aim to support digital and
complete simulations of the patient’s clinical state. The introduction of these models could have
a huge impact on different aspects of medical practice. Indeed, anatomical variability (both inter
and intra-subject) has always been one of the most established challenges in medical data analy-
sis. If the evolution of pathologies could be linked and correlated with the evolution of 3D PSMs,
the diagnosis, follow-up, and analysis processes could rely on quantitative and well-documented
facts. Also, it happens frequently that in the early stages of pathologies, morphological abnor-
malities are difficult to identify as normality is documented by a general 3D model of the organ
or structure, such as an anatomical atlas, that hardly reflects the intrinsic variability of the human
body. 3DPSM could work, instead, as personalized atlases of the patient able to provide specific
and personalized information about the body state.

The application of such models is, nowadays, sought in almost any application of medical prac-
tice from teaching, computer-aided diagnosis to virtual surgery, and biomechanical simulations.
Moreover, with the introduction and diffusion of Virtual or Augmented Reality systems, the use
of 3D-PSMs will be further applied in the near future. The challenge is to integrate and pos-
sibly fuse adequately all sources of data and information and devise a presentation of 3DPSM
suitable to support the various healthcare fields, from radiology to cardiology and neurology.
3DPSMs are therefore seen as a core ingredient to support new personalized care approaches,
whose adoption is highly recommended and fostered by the scientific community.

1.2 Motivations

The development of medical image analysis and 3D shape modeling favored largely the progress
in the field. Due to the complexity, importance, and delicacy of the healthcare environment, the
development of patient-specific approaches is still challenging and nourishes very lively research
areas. Almost all medical branches nowadays require the use of image and/or model visualiza-
tion techniques and quantitative analysis tools that can support the diagnosis and monitoring of
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Figure 1.1: Summary of the proposed framework.

the patient’s situation. One of the main challenges is the high variety of anatomical structures
that compose the human body and the diversification of markers that characterize pathological
conditions of the different anatomical districts.

Medical image analysis is a fundamental base for the definition of 3D PSMs, which, in turn, leads
to personalized therapy and interventions [NK10]. As previously mentioned the techniques ap-
plied to generate 3D PSMs are various, meaning that different medical imaging techniques are at
the root of 3D PSMs generation. Indeed, starting from an image scanning and proceeding with
post-processing techniques it is possible to obtain a surface model with a plethora of segmenta-
tion methods [VP02].

With the growth of 3D visualization techniques, the necessity and the potentiality of assisted
interpretation tools soon raised as well. The huge quantity of information that needs to be ana-
lyzed within a 3D volume image or surface model is one of the main reasons that supported this
research branch. Moreover, the limited time that can be dedicated to the analysis of images and
models, especially in the medical field, makes the presence of efficient visualization and inter-
pretation instruments even more needed. Since the interpretation of such exams can influence the
health of the subject or the patient, even the variation of the observer can impact the result, in-
deed a perceptual error, lack of training and fatigue are aspects that must not be underestimated.

1.3 Research goals, contributions, and novelties

Image features and descriptors are derived from signs inside an image and are typically repre-
sented as alphanumeric data. The two main classes of visual features contained in an image are
photometric (or texture-based) features and geometric features. The first class is based on color
and texture cues and typically do not need many operations to be extracted, since they are present
on the raw pixels/voxels intensities. The second class, instead, exploits shape-based signs that
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cannot be directly linked to pixels/voxels intensities but need to be deducted with proper pro-
cessing.

In the medical field, texture-based features are particularly relevant since they can mirror the
fine details contained in the image. Moreover, some of those features are below the threshold of
applicability of the human eye but do not go unnoticed by computers. Indeed, usually, radiology
images are described by grey-levels pixel intensities. The human eye is able to categorize an
extremely low range of shades. For this reason, the computer-aided extraction of texture features
is fundamental. On the one hand, the image raw data are not able to provide direct information
on the shape of the imaged object since the 3D nature of the structure is still represented only
implicitly. On the other hand, texture information is extremely useful to provide information on
the tissue composition or the functionality of the anatomical structure being imaged.

Shape-based features aim to highlight edges, contours, joints, and other cues from the image. In
this case, typically, the first step consists of the extraction of a proper shape representation from
the pixels/voxels intensities to represent the 3D nature of the object explicitly. This is done with
three well-known operations: region-of-interest detection, segmentation, and grouping. Geomet-
rical features are fundamental and typically reliable in the detection of lesions. Nevertheless,
the requirement of a segmentation process is the major obstacle to their use in clinical prac-
tice, since anatomical structure are embedded in complex and variable backgrounds that make
the automatic segmentation quite challenging. Moreover, the segmentation process isolates the
anatomical structures from the volumetric context in which they are immersed. This means that
by changing perspective from volumes to surfaces, the volumetric information is lost.

We are, then, in front of two rather separate worlds that are equally relevant for the improvement
of the clinical practice: on the one side, the possibility to retrieve information from the raw
pixels values, on the other hand, the possibility to study a shape extracted from the image, that
is, from its context. Huge developments have been made on both aspects but what is missing is
an approach that, in a unique method, combines volume-based and surface-based information,
to render the complete patient’s situation. Indeed, most of the researches has addressed the
improvement of Computer Graphics or image processing techniques separately.

1.3.1 Research questions and goals

In the context of 3D medical data and visualization methods applied to the clinical practice, the
research proposed in this Thesis will focus on the gap between the world of shape analysis and
texture processing. Different branches of the medical field could take advantage of integration
among those heterogeneous kinds of data. From Computer-Aided Diagnosis to surgical planning
and follow-up of patients, the visual information of the subject’s health status is fundamental. In
particular, rheumatology, dealing often with chronic or degenerative diseases, is one of the medi-
cal fields that could benefit from an integration of surface and volume information. Searching for
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the possibility to integrate the information belonging to each separate approach, the main ques-
tion that represented the starting point of this work was: is it possible to devise an approach
to represent segmented surfaces augmented with information about their volumetric con-
text? To address this question (Chapter 4), a hybrid representation, based on a data structure
that functions as a bridge between surface and volume, can be obtained mapping the volume’s
grey-levels onto the 3D model.

Nevertheless, the possibility to quantify information, rather than just visualizing them is as well
extremely crucial in the medical field. The more information can be retrieved in an accurate
modality, the better the situation will be studied. For this reason, the other open problem analyzed
(Chapter 5) in this Thesis started from the following question: Is it possible to apply together
methods of shape analysis and texture analysis on the integrated approach result, in order
to make medical tools more reliable and accurate?

Further analysis of the real case applications of the proposed approach highlighted the problem
of identifying key information needed by physicians to improve the diagnosis and follow-up
process. Indeed, the research focused on how additional information on ligaments, articulation
regions, tissue erosion, and segmentation phase could be extracted through an integrated ap-
proach (Chapters 5, 6). Indeed, the last question that this research addresses is: which kind of
information is it possible to retrieve from the integrated model in real practice?

The answers to these three research questions are the main contribution of this Thesis, which aims
to facilitate the work of physicians and surgeons especially in the field of rheumatic diseases.

Research goals The main research goal of this Ph.D. Thesis is the study and development of
innovative methods for the integration of surface-based with volume-based information of seg-
mented anatomical districts, for the identification of landmarks and/or ligament insertion sites,
and the improvement of segmentation techniques, with applications to computer-assisted diagno-
sis and biomedicine (Fig. 1.1). Indeed, the integration of heterogeneous clinical data, in particular
of volume images information, with morphological information retrieved from shape analysis,
has been the first focus of the project. The integration has been performed through a mapping of
the grey-levels of the volume image onto the 3D surface model extracted from the image itself.
With this integration, a novel enhanced visualization method of 3D patient-specific anatomical
models have been developed. A method that can be applied to different human body anatomical
structures and without restriction on how the 3D surface models are obtained from the images.
The integration of these methods is supported by a simple but effective graphical user inter-
face. In a field that is constantly changing and where reliability and accuracy are more than ever
necessary, the simplicity of the applicability to real cases is often the aspect that will favor an
innovation.
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1.3.2 Research contributions and novelties

The combination of shape analysis techniques with the information provided by the texture of
the model permitted to extend the application of the visualization tool in different areas, each of
which represents a different contribution. Indeed the overall contributions of this work are:

• the development of a novel algorithm for integrating surface-based (i.e., segmented 3D
meshes of anatomical structures) and volume-based (i.e., original MRI volume) informa-
tion, based on different criteria for mapping grey-level values onto the segmented surface;

• the development of methodological approaches and algorithms for the use of grey-levels
mapping in morphological analysis of the segmented anatomical structures, and the imple-
mentation of software and graphical user interfaces to perform analysis and evaluation of
the results. Addressed applications are:

– the identification of (patient-specific) ligament insertion sites and articulation areas
on bones from segmented MR images, that allows the characterization of the local
morphology of bones/tissues, and the early diagnosis and classification of muscle-
skeletal pathologies. The identification and characterization of anatomical areas
through the help of the integrated method represents an application where the limits of
shape analysis alone can be overcome with the use of image information. Landmark
identification represents a huge challenge in the analysis of the anatomical structures.
Indeed, the intra- and inter-subject high variability have always represented a big
obstacle in pursuing this scope. Often anatomical landmarks, such as articulation
regions, are not placed in areas with particular morphological characteristics. Thus,
an analysis based solely on shape features will fail in the identification. With the
additional information given by the gray levels of the texture, it is possible to retrieve
some clues on where the landmark can be placed for the specific patient.

– the analysis of multiple segmentations of a given anatomical district in order to re-
duce operator dependency and to overcome the absence of a real gold standard for
the evaluation of automatic segmentations. The segmentation analysis, carried over
by the information added to the surface by the texture, permits to evaluate where the
boundaries of the structure have been placed. Since segmentation has always repre-
sented one of the most challenging areas of medical image processing, the possibility
to understand the structures placed around the segmented object provide helpful in-
formation for further anatomical analysis.

– the evaluation and comparison of (unsupervised) segmentation methods, in collabo-
ration with Prof. Silvana DellePiane and Marco Trombini (Ph.D. student) at UNIGE-
DITEN.

– the application of the integration result for follow-up analysis and monitoring of the
patient. The possibility to provide support on the analysis of follow-up situations
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in patients is one of the main problems of the clinical practice, especially for de-
generative or recurrent diseases. The contribution of the developed techniques also
includes the correction of possible errors through the use of integrated information
and augmented visualization.

Research novelties As the main novelties and contributions of the Thesis with respect to pre-
vious work in the biomedical domain, the proposed approach:

1. effectively integrates information derived from medical images and 3D shape analysis;

2. applies to different anatomical districts independently of the acquisition methodology (e.g.,
MR, CT) and of the 3D segmentation methods;

3. has potential applications in the diagnosis process and easy integration with already estab-
lished clinical workflows.

1.4 Thesis structure

The Thesis is divided into two parts. The first part describes the motivation, background, state of
the art, and the main approach developed (Chapters 1, 2, 3, 4). The second part focuses on the
clinical application of the integration approach results (Chapters 5, 6, 7).

Chapter 2 contains an overview of the state-of-the-art techniques involved in the different as-
pects addressed in the research. The topics that intersect and provide the basis for this work are:
segmentation, semantic annotation, shape characterization, and anatomical landmark identifica-
tion.

Chapter 3 provides an overview of the specific case-studies addressed in the Thesis. In par-
ticular, the focus is on the description of the selected data sets of MR images, with an analysis
of the various components and related information. Moreover, the Chapter provides both the
anatomical and pathological background relevant to the overall understanding of the work.

Chapter 4 presents the novel method developed for the integration of surface-based and volume-
based medical data, along with the various data structures involved and developed. Furthermore,
the Chapter provides an analysis of the results, with the description of the integration’s clinical
relevance.

Chapter 5 focuses on the clinical application of the integration method. In particular on both
early diagnosis and monitoring support. Ligaments insertion sites and articulation regions are
characterized using a combination of texture and shape analysis methods in order to augment
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the information provided to rheumatologists. Moreover, follow-ups analysis is taken into con-
sideration given the degenerative nature of most rheumatic diseases and, thus, the importance
associated with the monitoring phase.

Chapter 6 discusses the analysis of the segmentation from both an anatomical and an evaluation
point of view, considering state-of-the-art evaluation methods and the challenging aspects of
medical segmentation. In this context, the Chapter presents a solution for the visual description
of the tissues distribution around the segmented object, which indirectly provides information
on the segmentation decisions. Moreover, in the Chapter are described the main results of the
development of an unsupervised segmentation evaluation method, in collaboration with Professor
Dellepiane and Marco Trombini, University of Genova.

Finally, Chapter 7 summarizes the results of the work in terms of novelties and contributions,
providing also the possible future directions of this research.

1.5 Future directions

Regarding the study on the segmentation results and evaluation, starting from the work developed
with the University of Genova, the idea is to define a novel segmentation method for low-field
MR images and for the local correction/improvement of a given segmentation.

Moreover, even if in this Thesis has been performed a statistical analysis of the results, a wider
clinical validation could further support our conclusions. This research could benefit from clin-
ical evaluation of the results, not only for the carpal district but also for other musculoskeletal
structures.

Moreover, future work will focus on the improvement of the follow-up exams integration ap-
proach. The idea is to move toward a fully automatic parameter setting, integrated with a quan-
titative measure of the erosion. A higher number of monitoring exams, increasing the data set
related to the single patient, could help the automatic adjustment of the parameter.

Finally, since the method can be applied to different imaging techniques, and given the progress
of medical imaging toward image fusion techniques, a valid perspective could be to proceed in
this direction. A 2-years research fellowship at CNR-IMATI and in collaboration with Esaote
SPA on a research project focused on image fusion will be a good opportunity to expand the
work described in this Thesis. The title of the research is, ”Image-fusion study and development
of innovative approaches to fusion, analysis, and visualization of MRI low field images and
ultrasound for the improvement of musculoskeletal pathologies diagnosis” and it will permit to
extend the application of the method developed to other imaging techniques and scenarios.
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1.6 Publications

The contribution described in the previous paragraph have been published in:

International Journal paper:

• M. Paccini, G. Patané, M. Spagnuolo Analysis of 3D Segmented Anatomical Districts
through Grey-Levels Mapping. Published in Elsevier Computers & Graphics volume 91
pp 179-188 Special Section on 3DOR 2020. This paper regards the description of the
mapping method developed and the different real clinical applications considered. In par-
ticular, the article concerns articulation regions analysis, ligament insertion identification,
and follow-up analysis. Chapters 4 and 5 addresses the content of this paper.

SCOPUS & WoS Journal indexing. DOI: https://doi.org/10.1016/j.cag.2020.07.015

Conference proceedings:

• Imon Banerjee, Martina Paccini, Enrico Ferrari, Chiara Eva Catalano, Silvia Biasotti,
and Michela Spagnuolo Feature-based Characterization of Patient-specific 3D Anatomical
Models. Published in Italian Chapter Conference 2019 - Smart Tools and Applications
in Graphics, STAG 2019. This article concerns the integration of machine learning meth-
ods with geometrical analysis for characterizing anatomical landmarks on patient-specific
3D carpal bone models. Geometrical features, extracted from the 3D model, constitute
the input to a machine-learning algorithm. The goal is to identify anatomical landmarks
on new patient’s bones, finding which set of features performs better in the anatomical
characterization.

SCOPUS indexing. DOI: https://doi.org/10.2312/stag.20191362

• M. Paccini, G. Patanè, M. Spagnuolo Mapping grey-levels on 3D Segmented Anatomical
Districts. Poster presented at Italian Chapter Conference 2019 - Smart Tools and Appli-
cations in Graphics, STAG 2019. Which describes the mapping method and the early
results obtained. The content of this publication is described in Chapter 4
SCOPUS indexing. DOI: https://doi.org/10.2312/stag.20191371

• M. Paccini, G. Patanè, M. Spagnuolo Comparison and Integration of Erosion Evalua-
tion Methods in Rheumatic Degenerative Diseases. Conference poster presented at Italian
Chapter Conference 2020 - Smart Tools and Applications in Graphics, STAG 2020.
This poster focuses on the analysis of follow-up with a comparison between different ap-
proaches: geometry-based approach, texture-based approach, and integration of geometric
and texture information. Chapter 5 addresses the topic presented in this poster.

SCOPUS indexing. DOI: https://doi.org/10.2312/stag.20201249
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Chapter 2

Volume Images and Surface Models
Analysis in Radiology

2.1 Introduction

In medicine, imaging techniques are currently one of the most used and important tools for di-
agnosis and monitoring, especially in the radiological field, where images represent the core in-
strument and starting point of different medical evaluations. Compared to the consumer domain,
medical images present several challenges: they contain various and subtle features that result
relevant for medical diagnosis and, thus, need to be correctly assessed and deepened. Moreover,
given the delicacy of the purposes for which medical images are provided, the interpretation
accuracy must be maintained at high levels while maximizing efficiency. Indeed, with the in-
creasing of exams number and of the information provided by each exam, the time-consuming
operations that must be carried on to properly analyze all the acquired data must be supported by
automatic or semi-automatic instruments.

In this context, the term Computer-Aided Diagnosis (CAD) systems include a class of method-
ologies that have been studied and improved for years now. Such systems are designed to show
the perceptual component of the data in order to favor the interpretation of the underlying infor-
mation. Another class of methodologies that have been established in the past years to support
the radiology interpretation is Content-Based Image Retrieval (CBIR), which aims to find simi-
larities in image content. The role of such a branch of research is particularly interesting in terms
of efficiency in image analysis and support to CAD systems. At the root of CAD and CBIR sys-
tems, there is the necessity to analyze the information contained in the image data and to extract
image features or descriptors, which represent texture, spatial and geometric characteristics of
the input image.
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Medical image analysis can be thought of as a means toward a variety of goals. The investigation
of image content, indeed, has been studied for many years and today a huge amount of clinical
tasks is performed automatically or semi-automatically, from image segmentation (Section 2.2)
and shape characterization (Section 2.3) to landmark identification (Section 2.4). Moreover, with
the development of Computer Graphics techniques (e.g., iso-surface extraction, segmentation) it
is possible to extract 3D shape models, which support an improved visualization and analysis
of the case study. For this reason, 3D models are used as support of image analysis along with
image processing algorithms. The segmentation can be performed using both algorithms that
work on images, as well as shape models. In the same way, shape characterization and landmark
identification take advantage of image processing and shape models.

Processing medical images, however, represents a challenge for three main reasons. Firstly, the
image obtained can be of poor quality, as some image scanning techniques use harmful radia-
tion to produce the desired signal; indeed, it is necessary a trade-off between acquisition speed
and quantity of radiation transmitted to the patient. Moreover, patient physiological movements,
such as respiratory or cardiac motion, or involuntary changes in position can introduce artifacts
in the resulting image. Secondly, for all the principal imaging techniques there is a huge quantity
of settings that lead to a large variety of image appearance and intensity distributions. For this
reason, the automatic or semi-automatic solution to clinical problems should be as general as
possible, in order to apply to different scanning modalities. Last but not least, human anatomy
is highly complex: it presents various tissues and organs different in shape, size, and composi-
tion that appear in different manners on the image. Moreover, the anatomy of each individual
presents its peculiarity and is subjected to changes over time. The variability of human anatomy,
indeed, is not just an inter-subject but also an itra-subject issue. For those three main reasons,
the automation of clinical tasks through image analysis is still an open and productive branch of
research.

It is well known, that Artificial Intelligence approaches, such as machine learning and deep
learning are widely applied to various medical branches. In particular, it is evident how these
techniques have spread in every aspect of medical image analysis. The application of learning
methods, especially deep learning, to the medical field has seen a rapid growth between 2015
and 2016. However, despite their quite recent use in the clinical environment, such approaches
have shown remarkable performance improvements and outstanding results. Nevertheless, it is
also clear that learning algorithms present several challenges and drawbacks, especially in the
medical image analysis field. The first problem is the lack of large data sets associated with a
relevant annotation. In fact, other than the difficulty to obtain the annotation of a wide data set
from experts, often, such annotation can be noisy, limiting the algorithm development. Another
typical challenge is called class imbalance and is linked to the fact that the anatomy of interest,
or the lesion to be identified, occupies only a small portion of the image. This leads to biases in
the trained networks toward the backgrounds since most of the image patches belong to it, while
small organs and abnormalities should have greater importance [HJHK19]. When dealing with
small data sets, overfitting represents a possible problem. This means that the trained model is
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able to capture patterns in the training set but tends to fail with unprocessed instances [HJHK19].
Besides, once more, the medical field represents a peculiar environment since useful information
for the final goal, often, are contained not only in the images but also in other data: patient history,
age, demographics, and so on. Thus, a proper balance between image and clinical features
relevance must be found [LKB+17]. For these, and other challenges, different solutions have
been proposed and are currently being studied [LKB+17], [HJHK19]. Such solutions, however,
are focused on the image analysis scope and do not consider the integration of image information
with 3D shape model analysis.

This Chapter aims to provide an overview of the principal goals of image analysis and 3D models
in the radiology environment with a focus on the main applications that will be later treated in this
thesis. Finally, we discuss how the clinical practice paradigm is changing toward a personalized
approach. A specific literature review for each application in relation to the case-studies can be
found in the introduction of the relative Chapters of the thesis.

2.2 Image segmentation overview

In general terms, the segmentation consists in the process of image partition in distinct and
homogeneous regions, in order to obtain an efficient representation of the region of interest.
Since it does not exist a generic and automatic image segmentation, the type of image and its
content highly affect the performances of current segmentation algorithms. This problem is even
more felt in medical images, due to the high variability of anatomical districts in terms of tissues,
features, pathologies, patients’ characteristics.

The main methods for the segmentation of medical images can be subdivided in the following
classes [FM16]:

• threshold bases methods;

• region based methods;

• clustering and classification methods;

• deformable models methods.

Threshold based methods These approaches assume that different objects in the image have
different intensity values. Thus, the intensities of objects are compared with respect to one or
more thresholds. In the single threshold case, we talk about global thresholding. It is the case
of images that present a bimodal histogram, where a single threshold is enough to separate the
background from the foreground. When leveraging more than one thresholds, we refer to local
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thresholding. Usually, more than one threshold is required in presence of abnormalities or when
the goal is to separate different types of objects at the same time [FM16]. This approach does
not provide any spatial or location information since the thresholds are usually extracted from
an analysis of the image histogram. This is the main reason why thresholding methods are quite
sensitive to noise and inhomogeneities; indeed, there is the possibility that the pixels identified
through thresholding are not contiguous.

In global thresholding, all the pixels above the threshold are set equal to one, while those ones
below the threshold are set equal to zero. Considering f(x, y) the intensity of the pixel positioned
in (x, y), T the threshold value, the global thresholding can be described as [GWE04]:

g (x, y) =

{
1 f (x, y) ≥ T

0 otherwise
, (2.1)

where g(x, y) is the resulting binary value of the pixel.

The core difference between the various algorithms resides in the method used to identify the
proper value of the threshold automatically. The Otsu thresholding methods [Ots79] is one of
the most established and used algorithms: it assumes that the image histogram is bimodal and
recursively finds the optimal threshold value as the one that minimizes the overlap between object
and background.

In local thresholding, instead, the value of the threshold changes through the space of the image,
according to the following condition

g (x, y) =

{
1 f (x, y) ≥ T (x, y)

0 f (x, y) < T (x, y)
. (2.2)

The local threshold is computed considering both local and global information such as statistical
properties as in [SK07], or even dividing the image into sub-images [Cha16]. Local thresholding
techniques can also compensate for changes in the image illumination that represent one of the
obstacles for the application of global thresholding approaches [Cha16].

Even if these methods are particularly indicated for images that are characterized by homoge-
neous regions and where the separation between background and foreground is well defined, they
have problems with low contrasted images or in presence of noise. In this case, the integration
of the threshold approach with other techniques able to refine the result could be a solution as
proposed in [ZYCO10] and [BHR+15].

Region-based methods Region-based methods divide the image into different regions, which
are obtained by merging neighboring pixels according to predefined similarity criteria such that:

• every region is spatially connected;
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• the union of the regions composes the whole image (exhaustive property);

• the regions are not overlapping;

• every region satisfy a homogeneity criterion;

• two and not neighboring regions do not satisfy the homogeneity criterion.

The region growing [AB94] algorithm is one of the most famous techniques in the field of seg-
mentation methods. It is an iterative method that requires at least one seed located in the region
of interest of the image. Given the seed, the method proceeds to compare it to neighboring pix-
els, adding them to the region if they satisfy the similarity criterion. The process stops when
no other pixel of the image can be added to the region. This method is simple and intuitive
but the result highly depends on the seed initialization that can be automatized through the use
of a Clustering algorithm. This technique is also quite error-prone if the image present low
contrast and high noise. In this case, new features for similarity criterion improvement can be
introduced [SCW12].

Clustering and classification methods Classification methods typically take advantage of
training data and can be either supervised or unsupervised. The training data is exploited to find
characteristic patterns in the image, then the classifier able to recognize those patterns is used to
cluster the image pixels in the feature space. A clusterization consists in the division of the data
to have high intra-class similarity and low inter-class similarity. Usually, what determines the
value of similarity is an appropriate distance measure [FM16].

The Fuzzy C-means (FCM) clustering methods are typically unsupervised and able to divide the
input data into two or more clusters, meaning that FCM algorithms can perform the segmentation
of more than one object at the same time. Relying the decision on the distance between the
analyzed data point and the cluster, the algorithm assigns each data point to a cluster center.
Thus, the nearer is the data point to a cluster center the higher is the possibility for that data
point to acquire the membership to that cluster center. Since this algorithm applies recursive
processing of the input data, its cost is rather high. For this reason, different, faster, and more
robust variations of these techniques have been studied; for a comparison of improved FCMs,
we refer the reader to [CK16].

Markov Random Field (MRF) is another approach to image segmentation that performs data
clustering. It introduces spatial information into the clustering procedure reducing the problem
of image noise influence as well as the problem of overlapping clusters. The application of MRF
to images was proposed in [GG84] through the use of tags associated with the nodes of a graph-
based representation of the image. Those tags are applied through an optimization process that
corresponds to a maximum posterior probability. The segmentation of such graph representation,
then, consists of an appropriate cutting of the graph.
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Artificial Neural Networks (ANN) are at the core of most of the machine learning and deep learn-
ing approaches that, nowadays, are applied to an extremely high variety of tasks. Among those
different problems, solved with the use of artificial intelligence (AI) techniques, the segmenta-
tion of medical images is one of the most studied [MSZ11]. The architecture of those algorithms
is usually based on a network, whose input nodes receive the features that will be processed,
through mathematical operation, in the following layers of the net (hidden layers). Finally, the
result is extracted at the output nodes. The complexity of the network depends on the number,
the connections, and the sequence of hidden layers. Indeed, hidden layers, allow the modeling of
non-linear dependencies in the input data. These techniques, other than providing an end-to-end
approach to the segmentation process, are also non-parametric approaches since no parametric
distribution of the data is assumed. Through the use of ANNs, it is possible to create a high va-
riety of AI algorithms from the simplest machine learning approach to the most articulated deep
learning method. A description of the most important and recent deep learning based algorithms
for image segmentation can be found in [MBP+20]. A focus on the medical images highlights
how Convolutional Neural Networks (CNNs), U-nets, fully Convolutional Neural Networks (fC-
NNs), and Recurrent Neural Networks (RNNs) are the most diffused and studied networks for
segmentation purposes. A description of their architecture, working principles, and applications
is presented in [LKB+17] and [HJHK19].

Deformable models methods Deformable models are used to segment anatomical structures
in medical images exploiting a connected and continuous mode, which takes into account an
a-priori knowledge about location, size, orientation, and shape of these structures [FM16]. The
deformability of such models permits their adaptation to the significant variability of biological
structures. The general idea is to evolve a curve, subject to constraints based on the character-
istics of the object to be segmented, deforming it from an initial configuration until it fits the
edges of the object. The two main classes of deformable models are parametric models, which
describe the contour through the use of parametric curves, and geometric models, which describe
the contour movement implicitly as the evolution of the levels of a function. Indeed, in the geo-
metric case, the contour evolves to fit and track objects of interest by modifying the underlying
embedding function instead of modifying the parametric curve function. Since these methods
are quite sensitive to the initialization phase, especially in problems where the boundaries of
different objects are closed to each other, the seeds represent the initial points from which the
contours evolve and have to be accurately placed.

In literature, there are different approaches for the definition, evolution, and control of the curves.
The first approaches were based on Snakes, later Active Contour [KWT88] and Active Region
have been proposed. With the development of research in the field, Geodesic Active Contour have
been developed [CKS97]. Finally, the use of active shape models has been introduced, starting
the application of models based on a-priori knowledge of the anatomy [Lev00]. Knowledge-
based techniques allow the user to overcome problems related to low contrast or high noise level,
which are the main source of errors in segmentation algorithms. For this reason, the use of
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Statistical Shape Models and Active Shape Models for the segmentation of volume images have
become well-established segmentation techniques [HM09].

2.3 Shape characterization for Semantic Annotation

Generally, we can talk about two main standard classes of visualization methods for a medical
volume data set: surface rendering and volume rendering. Volume rendering is typically used
for the 3D visualization of the volume through its original grey-levels, thus providing informa-
tion on density or tissue composition. Surface rendering techniques provide a 3D visualization
of object’s surfaces starting from a segmented image and highlighting the morphology of the
segmented regions.

The value brought by the 3D reconstruction is not limited to the sole visualization but extends to
the extraction of other valuable characteristics of the segmented image (Section 2.3.1). Thanks
to technology development, it is also possible to formalize the knowledge on the field in order to
support the analysis and the automatic reasoning on this wide range of data. Indeed, computer-
aided medicine exploits such a structured organization of the digital data, through the application
of knowledge and visualization technologies. To perform comprehensive reasoning, the knowl-
edge of anatomical structure is not enough, as the formalization should take into account tempo-
ral changes in anatomical structure, functional behavior, and pathologies of organs and systems.
In particular, the comparison of clinical images from different patients with similar anatomical
or pathological characteristics can help not only the diagnosis phase but also treatment planning
and monitoring (Section 2.3.2). To perform such a comparison, it is necessary to annotate images
exploiting clinical ontologies. In recent years, the use of ontologies in the medical practice has
evolved, thanks to a huge work of research on how to efficiently utilize them in patient-specific
data management, clinical decision-support systems, and patient healthcare planning.

In this context, ontologies are used for the management of structural and functional information
obtained by medical data. Some ontologies have been developed with a computational frame-
work for clinical diagnosis support [PA06] or for human anatomy and organ functional behavior
study [PBJ+09] and with properly developed scale levels for the support of specific pathologies,
such as musculoskeletal ones. Moreover, a survey on recent approaches to the access and pre-
sentation of medical data has been presented in order to describe how knowledge-driven data
organization may support real clinical task management [BCRS14].

In the clinical field, the annotation process consists of associating information related to the ap-
plication domain to a volume image or a 3D surface model of an anatomical structure, providing
a link between conceptual and geometric levels. In this case, the conceptual level is represented
by the medical knowledge, while the geometric level can consist of pixels, voxels, and triangles
that belong to a region of interest for the physician. The semantic annotation is a process that
does not belong exclusively to the medical field, indeed it has been studied in different research
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areas along with the multi-scale representation. However, once more, the clinical environment
presents particular challenges since usually the data to be considered are heterogeneous, volu-
metric, and highly variable. Image or shape characterization is a fundamental requirement for a
correct annotation process.

2.3.1 Shape-based characterization: a review in anatomy

Shape characterization has been a widely studied topic in the field of 3D shape modeling, where
surfaces are typically represented as triangular meshes or point-clouds. The majority of the ap-
proaches to shape segmentation can be seen as optimization methods of the segmentation of
a triangular mesh, where the criteria used for the optimization concerns some geometric prop-
erty [Sha08]. Region growing, clustering, spectral analysis techniques, are the main methods to
approach the optimization problem. Those methods typically involve a homogeneity criterion
based on geometric properties that characterize the segmented element. In the work presented
by [HS97], implicit methods identify the contours of the regions of interest and work on the
properties that characterize the shape changes. The basic hypothesis, here, is that the shape is
perceived through the identification of its relevant parts, characterized by the lines on the shape
on which a drastic change in the curvature occurs.

Thanks to the development of the 3D shape analysis framework, it is now possible to quantify the
deformation of a structure shape into another in terms of the variation of real functions. This has
changed the perspective of similarity assessment and opened new possibilities. Indeed, while the
classical approaches to similarity mainly quantify it as a numerical score, map-based methods
also define (dense) shape correspondences. The work by [BCBB16], presents the theoretical
foundations underlying these approaches and a classification based on their most salient features,
such as the kind of structure and invariance properties they capture, or the distances and the
output modalities according to which the similarity between shapes is assessed and returned.
The same paper also describes the usage of these methods in a number of 3D shape application
domains, among which annotation and segmentation.

As an example, regarding the characterization of anatomical districts, a study for the annotation
of functional parts, considers the extraction of different geometry features to guide the identi-
fication of the region of interest on the bone [BCPS16]. Moreover, the work introduces two
novel features able to describe not only the single bone morphology but also the whole district
characteristics.

2.3.2 Image-based characterization

If the annotation is performed exploiting volume images, then a fundamental step, similar to
what happens for 3D shape models, is to retrieve information on the image in order to identify
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the region of interest that has to be annotated. Even in this case, there are different ways to
perform the task, as described in [ARN+11]. The paper points out that, if the center of the
characterization is the image, then the features will focus on visual property, whether local or
global. The similarity between sets of features helps to identify the clinically relevant parts of
the image and to characterize them. Where, as similarity, is intended the distance between the
sets of features: a shorter distance indicates higher similarity. The selected metric depends on
the type of features or descriptors and on their representation. The descriptors used in this field
can be general, as color, texture, pixel gradient, or histograms, which do not need any prior
domain-specific knowledge in order to be computed.

As for the model-based anatomical characterization, in recent years, different researches have
been conducted in image-based characterization. Since most of the features are related to tex-
ture and color, the characterization is focused mostly on the tissue that composes the district,
rather than on the geometrical features presented by the morphology. Anyhow, the information
retrieved from this kind of characterization is considered for the annotation process.

Examples of the type of information provided by an image-based characterization in the radi-
ology environment can be found in works such as the one proposed by [LYV+12]. The paper
presents a semi-automatic imaging technique that provides quantitative characterization of bone
marrow edema pattern (BME) in wrist joints of patients with Rheumatoid Arthritis (RA), in-
cluding volume, signal intensity changes, and perfusion properties. The characterization of bone
density comparing two imaging techniques results, instead, have been studied by [WCK+14].
Those are just two focused examples of the high variety of anatomical characterizations that can
be performed on medical images.

2.4 State of the art on anatomical landmark identification

In radiology, regions or points of an anatomical structure that present peculiar shape character-
istics or functional importance are called landmarks. Their accurate localization on each patient
or subject has huge importance in different medical areas. The search of those points of refer-
ence on each subject can be seen as a part of the anatomical characterization since it provides
the placement of regions associated with specific clinical knowledge. Indeed, such points pro-
vide information on the functionality and morphology of the anatomical structure of interest.
Landmarks are relevant, first of all, as a guidance and a reference for surgical planning and inter-
ventions. Moreover, diagnosis and monitoring of patient status benefit from the correct location
of such reference points. In literature, it is well established that accurate localization of 3D
landmarks is fundamental in different clinical aspects [SRA09]. The usefulness of such refer-
ences goes from biomechanical studies and computer-integrated surgery (both for the planning
and the navigation of execution phase) to the design and positioning of customized implants
and prostheses (e.g. [GKT+14]). They are also extremely helpful for joint kinematics study
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(e.g., [MMPL07], [ML17]), deformities assessment (e.g., [HBGD18]), and registration in shape
models [HM09].

Landmark identification is another task that can benefit from both image content extraction (Sec-
tion 2.4.2) and 3D model morphology evaluation (Section 2.4.1). Thus, both images and 3D
shape models can be considered useful instruments to support the landmark identification task.
The main challenges related to landmarks identification are linked to the fact that these landmarks
are influenced by bone morphology, and hence prior knowledge of anatomical landmarks helps
in identify them precisely. Moreover, since landmarks are not clearly identifiable discrete points,
but rather small or large areas, there is always a positional uncertainty to deal with [SRA09].

Since the manual localization of landmarks is error-prone and extremely time-consuming, the
research related to automatic localization methods is highly active. Automated approaches
(e.g. [PHAN06], [YZY+15]), mitigate the inter and intra-rater variability exploiting an objec-
tive and efficient process without manual interference. Therefore, many automated localization
methods have been proposed, with varying degrees of robustness, reliability, and generaliza-
tion potential. Although the automatic methods achieve high accuracy, they are either dependent
heavily on initial manual localization or likely lack of geometric distinctiveness in the prediction.

2.4.1 3D Shape models for landmarks identification

Some of the clinically relevant anatomical points are placed in regions with a peculiar mor-
phological characteristic. In this case, exploiting a 3D model that mimics the anatomy of the
specific subject can be considered the best way to identify such landmarks accurately. Indeed the
advances in medical imaging, image analysis, and computational capabilities permit to explore
shape properties in order to support landmark localization.

Surface regions can be classified based on their shapes exploiting different geometric measures
such as curvatures, extreme points, and higher-order derivatives. Surfaces can be classified into
various regions such as ridges, umbilicus, and singular lines [SRA08]. Self-contained frame-
works to generate landmarks on surfaces extracted from volumetric data can be found in the
literature. As an example, the pipeline presented in [ZBLR17], is composed of three phases:
surface construction, crest line extraction, and landmark identification. Examples of studies ap-
plied to human anatomy, and regarding the identification of reference points on 3D models have
been proposed in [EHPP04]. In this work, the authors use predefined templates to locate land-
marks on 3D hip models for surgery planning. In this case, however, it is necessary to accurately
morph and register the atlas model with the patient model. A method for extracting anatomical
landmarks on the cylindraceous body surface, in particular for extraction of curvatures, has been
presented in [LKD04]. The paper provides an evaluation of prominent features on the foot and
lower leg surface, which could be used in motion analysis or in medical treatment. In this work,
the surface is scanned by FastSCAN (Polhemus, Colchester, Vermont, USA) and is described
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by scattered three-dimensional surface points. The method consists of several steps producing
a parameterized representation of the foot surface with regularly distributed data points, each
providing coordinates, derivatives, and curvatures, thus allowing the maps of mean and Gaussian
curvature to be plotted. To separate convexity from concavity, the Koenderink shape index is
applied, and by checking curvature maps, the landmarks are characterized and discriminated.

In literature different methods to identify anatomical landmarks on images through the use of 3D
models are present, an overview can be found in [SKH+09]. The paper analyzes three different
approaches, with different degrees of generality in terms of applicability to other anatomical
landmarks and of required amount of training data. The first method is problem-specific and
based on the convex hull of the pelvis. The second method is a more generic approach based on
a statistical shape model, including the landmarks of interest, for every training shape. The third
method presents the most generic approach, where only a small set of training landmarks was
required.

A systematic approach to identify anatomical landmarks on a knee joint has been studied by
[SRA09]. It is based on their general geometric characteristics (curvature analysis) and the ad-
jacency relationship between the landmarks (rules). Another study focuses on the extraction of
anatomical features curve (AFC) from 3D hip bone models through the use of Computer Graph-
ics methods [LQZ15]. In particular, they use direct curvature scale space-based technique to
extract anatomical feature points (AFP) in every contour, using anatomical structure informa-
tion as prior knowledge so that only AFPs are extracted. Then, corresponding AFPs are linked
in different contours and AFC is generated. Moreover, anatomical landmarks have been used
to guide prosthesis placement [dARF+17], with an automated workflow for femoral orientation
and landmark extraction from a 3D surface mesh. The method concentrates on parameters that
allow the surgeon to establish the correct position of bony cuts to restore leg length, and femoral
offsets such as the femoral neck axis, the femoral middle diaphysis axis, both trochanters, and
the center of the femoral head. Moreover, the definition of the medullary canal endosteal wall
is used to position the prosthesis’ stem. The final goal is to implement prosthesis alignment and
sizing methods to provide the surgeon with presurgical information about the performance of
each of the patient-specific femur-implant couplings

2.4.2 Use of image analysis for landmarks identification

Other than on the 3D shape models, the anatomical landmarks can be identified also directly on
images, especially in those cases where the relevant feature is not characterized by a peculiar
morphology, but rather by a relevant functional property or specific tissue. Indeed, anatomical
landmarks can be defined on different tissue interfaces in medical images according to various
clinical routines or studies [XDH+15].

The search for automatic methods for anatomical landmark identification has been going on for

29



years. Some works rely on the use of traditional image processing techniques, such as in the
neurological field (e.g. [PHAN06]). In [WR06], the localization of anatomical landmarks in
3D MR and 3D CT images is based on 3D parametric intensity models that are directly fitted to
3D images. To efficiently model tip-like, saddle-like, and sphere-like anatomical structures, the
authors introduce analytic intensity models based on the Gaussian error function in conjunction
with 3D rigid transformations as well as deformations. Moreover, a new method for the selection
of an optimal 3D ROI size for the effective fitting of a deformable model exploits the detection of
the image gradient in the neighborhood of the landmark position. The proposed algorithm auto-
matically initializes the model parameter through the use of differential properties (e.g., gradient
and curvature) as well as other properties of the landmark structure in the image. Moreover,
there are examples of approaches for cardio-vascular applications, such as the work presented
by [EWvK+16].

Many other automatic approaches, instead, rely on the use of expanding machine learning and
deep learning techniques. Indeed, In recent years, ground-breaking advancements with neural
networks have been achieved in various domains, allowing for automatic learning of discrimina-
tive features for the problem. A survey of discriminative learning methods for appearance mod-
eling, as well as their corresponding search strategies, has been presented by [Zho14], which
discusses how they leverage the anatomical context embedded in the medical image for more
effective and more efficient detections. Convolutional neural network (CNN) and graph cut opti-
mization have been used in a novel framework to automatically locate femur landmarks from the
3D MR images [YZY+15]. Here, during the process of localization, both the global shape and
local surface curvatures are taken into consideration, because they define the geometric features
of landmarks. Another work objective, instead, has been to develop a new scheme of landmark
detection, capable of dealing with MR images with various contrasts, patient positioning, and
health conditions of the knee joint [XDH+15]. As a learning-based technique, the proposed
method uses a set of manually placed landmarks to describe their appearance characteristics
and, then, applies a boosting system to combine detection results obtained using different sets of
training landmarks.

To the class of learning approaches belongs a work that follows a different paradigm by simul-
taneously modeling both the object appearance and the parameter search strategy as a unified
behavioral task for an artificial agent [GGM+16]. In particular, the method combines the advan-
tages of behavior learning, achieved through reinforcement learning, with effective hierarchical
feature extraction, achieved through deep learning. Given only a sequence of annotated images,
the agent can automatically and strategically learn optimal paths that converge to the sought
anatomical landmark location as opposed to exhaustively scanning the entire solution space.
Moreover, an approach based on the combination of two recurrent neural networks in a coarse-
to-fine approach has been developed [APAC17]. The first network determines a candidate neigh-
borhood by analyzing the complete given image volume. The second network localizes the actual
landmark precisely and accurately in the candidate neighborhood. As previously mentioned, the
problem with learning approaches in medicine is the lack of accurate and reliable data-sets that
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are the core of an unbiased and complete training phase. Overall, the most common techniques
among learning approaches seem to rely on 2D imaging classification with CNNs. However, re-
cently, different studies proposed modified learning processes for a direct localization with good
results. An overview of the latest approaches can be found in [LKB+17].
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Chapter 3

Research Context and Case-Studies

3.1 Data set overview

In this Chapter, we focus on computational methods to support the study, diagnosis, and monitor-
ing of rheumatic diseases, based on the integration of image processing and Computer Graphics
techniques. Even if the method developed (Chapter 4) is quite general in terms of the input
anatomical district and imaging modalities, it is important to focus on the specific contest on
which the work has been developed. Traditionally, it is possible to identify four main types of
imaging modalities according to the technology used to obtain them (Fig. 3.1):

In particular, the data set on which the research has been conducted is composed of Magnetic
Resonance Images (MRI) of patients monitored in the Academic Division of Rheumatology of
the University of Genoa. Magnetic resonance (MR) scans do not constitute a risk for patients
since they use non-ionizing radiation. MR imaging provides both functional and anatomical in-
formation. This technology permits to exhibit soft tissue in high resolution evaluating the relax-
ation times of water molecules exposed to a magnetic field and radio-frequency pulse [WAAV19].
Therefore, it acquires physical quantities characteristic of the tissue with a deep understanding
of soft tissues. (see Section 3.2 for an overview of MRI principles). MRIs’ acquisitions in the
data set are performed with a 0.2T (low-field) extremely dedicated machine (Artoscan, Esaote)
using 3D T1 weighted sequences with reconstruction on the axial and sagittal plane [TCB+15].

The MRIs of the 118 subjects are associated with their segmentation performed by medical doc-
tors. 108 subjects suffer from degenerative rheumatoid illnesses at different stages, while 10 of
them are healthy subjects. In particular, the examinations were performed between August 2014
and January 2015, each including the hand and the wrist districts (Section 3.3). Among the MR
images examined, besides the healthy controls, the patients are affected by either Rheumatoid
Arthritis (RA), Psoriatic Arthritis (PSA), Gout, Palindromic Rheumatism (PR), Systemic SCle-
rosis (SSC) (Section 3.4). The patients affected by RA are divided into three groups according to
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Figure 3.1: Core difference between the image technologies used in the medical practice along
with examples of the resulting images.

disease duration, with 8 patients for each group. The first group has a disease duration of fewer
than 6 months, the second group between 6 and 36 months, and the third group longer than 36
months. Furthermore, for 6 patients a follow-up examination is available [TCB+15].

The segmentations are carried out by experts, exploiting a CAD (Computer-Aided Diagnosis)
system called RheumaSCORE [PCVV14], developed by Softeco Sismat S.r.l.. This system sup-
ports the rheumatologists during the segmentation operation, through a semi-automatic tool for
bone detection, volume measurement, and 3D reconstruction of the segmented structures. More-
over, the system supports the visualization of the MR images and the selection of the anatomical
structure to be segmented. These features of the CAD system help to select the seed point for the
initialization of the segmentation, to correct the segmentation during the process, and to refine
the results. Moreover, the bone surface is automatically reconstructed during the segmentation
process using the Marching Cubes algorithm [LC87].

This data set was available through the Patient Browser: a web application that has been de-
veloped by Softeco Sismat S.r.l., to assist and support the user in the diagnosis and follow-up
processes of rheumatic diseases. It is a web-based framework that permits to store, search, and
visualize MR images and medical data, as well as to access different diagnostic measurements.
The basic functionalities include the possibility to [TCB+15]:
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Figure 3.2: (a) Concept of spin as a spinning nucleus, where I is the value of the nuclear spin that
can assume only discrete integer or half-integer values ranging from 0 to 8 [Spi]. (b) Magnetic
field associated with the dipole, where the vector µ describes the tendency of the nucleus to
interact with the external magnetic field [Maga].

• share the data analyzed through RheumaSCORE as 3D models, segmented data, and MRI
exams;

• upload and store patient studies exported from RheumaSCORE;

• browse and visualize the results of different patient studies;

• display and compare diagnostic measurement;

• download the original images, segmentation results, and diagnostic measurements.

We will now focus on the description of the different information and content that can be retrieved
and exploited from such a data set. Firstly, we will describe the particular imaging technology
used to acquire the images that compose the data set. Then, we will focus on the description of
the anatomical district that has been at the center of the study, namely the carpal district, followed
by an analysis of the implication of rheumatic diseases on such district.

3.2 MRI basics and system

MRI is one of the most used and studied techniques in different branches of medical practice.
Its success is due to the capability of acquiring both functional and anatomical images without
harmful radiations. Indeed, the trade-off between the number of acquisitions and the possible
injuries is no longer a problem in this case. With Computed Tomography (CT) or Positron
Emission Tomography (PET), images show either between anatomical or functional information,
unless image fusion technologies are involved. This means that the fields of application of MRI
technology go from the ones where an accurate description of the anatomy of the subject is
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needed, to others where the information required are related to organs or systems functionality
or metabolism.

When dealing with medical images it is important to know the standard protocols for image
communication (Section 3.2.2). Moreover, to better understand the characteristics of the low-
field system (Section 3.2.1) and the informative content of MR images used in this work (Sec-
tion 3.2.3), it is necessary to briefly describe what composes an MRI system and its functional
principles. The core principle on which the MRI is founded is called Nuclear Magnetic Res-
onance and was discovered by Bloch and Purcell in 1946. From this discovery, the technique
evolved until it was applied in the clinical environment in the ’70s. The nuclear magnetic reso-
nance is the phenomenon for which the nuclei of certain atoms demonstrate the ability to absorb
and re-emit radiofrequency energy when placed in a magnetic field [TSS15]. This phenomenon
is exploited by employing a strong magnetic field that forces protons in the body to align with
that field. A radiofrequency pulsed current is used to stimulates the protons, which spin out of
equilibrium, straining against the pull of the magnetic field. When the radiofrequency field is
switched off, the MRI sensors detect the energy released as the protons realign with the magnetic
field. The time it takes for the realignment, as well as the amount of energy released, changes
depending on the environment and the nature of the tissue. Physicians are then able to distinguish
between various types of tissues based on these magnetic properties [Magb].

Going deeper into the working principles of MRI, first of all, the nuclei suitable for MRI ac-
quisitions present an odd number of protons or neutrons, meaning that they must have a nuclear
charge. Usually, the nuclei of Hydrogens are considered, since they are composed of a single
proton. Moreover, Hydrogens are largely present in all biological material and exhibit relatively
high MR sensitivity. The fundamental property of such nuclei is called spin and depends on
the number of protons. The spin can be thought of as the nucleus spinning around its axis.
In reality, the nucleus does not spin in the classical meaning but its constituent parts induce a
magnetic moment, thus generating a local magnetic field with north and south poles [GTC+15]
(Fig. 3.2). In normal conditions, such magnetic moments present random directions, canceling
each other out, and thus the net magnetic vector is zero. With the application of an external
magnetic field, usually called B0, the nuclei present one of two possible orientations: parallel
or antiparallel to the external field. Parallel alignment is the lower energy state and is thus the
preferred alignment, whereas antiparallel alignment is the higher energy state. Thus, a net mag-
netization vector (Mz) aligned to the external magnet results from the difference between the two
populations [VGWdB+99] (Fig. 3.3 (a)). The nuclei will not be exactly aligned but will rotate, or
precess, around the B0 axis, with a fixed frequency of rotation called Larmor frequency (Fig. 3.3
(b)). The Larmor equation defines such frequency as proportional to the magnetic field strength:

ω0 = γB0, (3.1)

where γ represents the gyromagnetic constant that is specific for the nucleus considered and
gives an idea of the magnitude of the magnetic moment of the nucleus given its spin. Thus,
Hydrogen nuclei will precess with the same frequency inside a unique magnetic field. The phase
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Figure 3.3: (a) [VGWdB+99] Generation of a net magnetization vectorMz due to the application
of an external field B0 influencing the directions of the nuclei magnetic moments. (b) Precession
of the nucleus spin axes around the direction of the external field [BGH+11].

of the precession, instead, is different for each nucleus.

To obtain an informative signal from the spins, the direction of the magnetization vector must
be changed, and the excitation operation is performed to this scope. Indeed, the application of
a second radiofrequency (RF) magnetic field, called, B1, perpendicular to B0 excites the nuclei
possessing spin. Usually, B1 is applied in pulses that last microseconds [GTC+15]. Such RF
excitation energy is provided at the exact Larmor frequency (also called resonance frequency)
and causes two different phenomena: first, enough protons absorb energy to jump from the
parallel state to the higher level of the antiparallel state, and second, the spins are forced to
precess in phase.

The overall effect is that the net magnetization (Mz) flips 90° from the positive z-axis to the trans-
verse plane. Moreover, Mz in the transverse plane rotates around B0 at the Larmor frequency.
This rotating transverse magnetization can be measured because it will induce an alternating
current (AC) in the receiver coil placed around the patient [VGWdB+99].

After the excitation phase (RF signal is turned on), a return to equilibrium phase starts (RF signal
is turned off). Indeed, when the RF transmitter is switched off, the spins will search the equilib-
rium state, meaning that the ones in a high energy state will go back to low energy. This causes
the magnetization to decay over time, producing a decreasing magnitude of Mz in the transverse
plane. Since Mz is responsible for the signal in the receiver coil, this signal will decrease accord-
ing to the decay of Mz (Fig. 3.4). This phenomenon is called Free induction decay (FID) and the
time that the signal employs to return to equilibrium is called relaxation time. In particular two
independent types of relaxations take place. One type is called longitudinal relaxation, which
regards the process of realignment to B0 and is characterized by the T1 relaxation time. T1 rep-
resents the time required for the system to recover 63% of its equilibrium value after a 90° RF
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Figure 3.4: [CHC+13] Applicatin of a 90° RF pulse producing the transverse magnetization,
followed by the relaxation phase where nuclei fall out of phase and the transverse magnetization
deminish returning to the equilibrium.

pulse, and has a specific value for each type of tissue (Fig. 3.5 (a)). The second type of relaxation
is called transverse relaxation and regards the spins precessing around the magnetization vector.
The exited spins precess completely in phase but, after the RF signal is switched off, begin to
dephase due to small differences in the Larmor frequency, induced by random local magnetic
inhomogeneities (due to spin-spin interaction), and inhomogeneity of the main static magnetic
field B0. As a result, the observed signal starts to decrease taking the name of transverse relax-
ation or spin-spin relaxation. T2 is the relaxation time of this process and corresponds to the time
it takes for dephasing to decay the signal to 37% of its original value. More precisely, the overall
de-phasing is often called T2∗ relaxation, which combines the effect of T2 relaxation and addi-
tional de-phasing caused by local inhomogeneities in the applied magnetic field. T2 relaxation
is the result of spin-spin interactions and due to the random nature of molecular motion, this
process is irreversible. T2∗ relaxation considers a more rapid decay of the FID signal [Rid10].
Even T2 depends on the tissue but generally is shorter than T1 [VGWdB+99].(Fig. 3.5 (b))

For the generation of an image, it is required also the information of the spatial localization of
the signal, meaning the position of the Hydrogen nuclei inside the patient. To do so, MR systems
leverage slice selection, frequency encoding, and phase encoding. A magnetic gradient is added
along the main magnetic field (in caudal to cranial direction) to perform slice selection, in this
way, since the Larmor frequency depends on the local strength of the magnetic field, a narrow
band of frequencies will only excite a thin slice of spins through the body. Thus, changing
the excitation frequency, another parallel slice will be acquired subsequently. Moreover, using
combinations of gradients in all three directions, it is possible to acquire a slice in any arbitrary
direction.

Once the slice selection is performed, frequency, and phase encoding permit to identify a specific
point within a slice, namely the single pixel. With phase encoding, is intended a short temporary
change in the magnetic field applied between the RF excitation and the readout of the signal,
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Figure 3.5: (a) T1 relaxation time [Rid15], (b) T2 relaxation time [Rid10].

that influences the frequency of precessing resulting in a shift in the precessing phase of the
spins, dependent on the duration of this gradient switch. When this process is repeated changing
the duration of the temporary gradients, signals with different phase encoding can be acquired.
Then, the frequency encoding permits to identify the pixel inside a specific phase encoding. Such
frequency encoding is obtained by applying a gradient during the readout of the signal, resulting
in a specific shift of the resonance frequency.

The integration of phase and frequency information allows the creation of a grid in which each
pixel has a defined combination of phase and frequency codes. K-space is the name that has
been given to such a grid. Finally, a Fast Fourier Transform, performed in both the frequency
and phase directions, converts the data into a curve that represents the intensity of each pixel as
a function of the frequency (Fig. 3.6).
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Figure 3.6: Spatial encoding of MRI images requires:(a) slice selection, (b) phase encoding,
(c) frequency encoding applied to identify the location of the pixel emitting the received sig-
nal [VGWdB+99].

The evocation of a second AC signal permits to save important acquisition time and to modify
the contrast in the images depending on the T1 and T2 values of the tissue. For this reason,
usually, a second RF pulse is applied in order to flip the spin by 180° and reverse the dephasing
process. As the spins rephase, the amplitude of the AC signal increases, and this signal, called
the echo, is measured at its maximum (time of echo = TE). The kind of MRI techniques that
use this combination of a 90° and 180° pulse to generate the echo signal are called spin-echo
sequences (Fig. 3.7) [VGWdB+99].

Since T1 and T2, are dependent on the specific tissue, MRI is optimal for the contrast between
different soft tissues with respect to other imaging techniques. In particular, it permits to regu-
late the contrast of the resulting image through the control of Time of Repetition (TR), namely
the time that passes between two repetitions of RF pulses. Indeed, if TR is smaller than the
time required for total longitudinal relaxation, then the contrast will be mainly influenced by the
difference in T1 values of the tissues. While, if TR and TE are quite long, the contrast will be
depending on T2 differences. Finally, a combination of long TR and short TE will focus the
contrast on the differences in proton density of the tissues [VGWdB+99].

All the parameters and processes that have been described in this Chapter must be considered
when acquiring an MRI volume. Part of them is automatically selected by the system, others are
set by the expert acquiring the image.

3.2.1 Low-field MRI

As it happens for all the imaging techniques applied in medicine, there are various kinds of MRI
acquisition processes from which to choose. Depending on the needs, some are more suited than
others. One of the parameters to determine is the strength of the magnetic field of the image
scan. Indeed, in commerce, two principal groups of systems are available: with high or low-field
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Figure 3.7: [JKP+19] Spin echo typical acquisition sequence.

strength. Intuitively, high magnetic field strength provides additional signal and therefore enables
the reduction of imaging time and/or increase spatial resolution [Kle15]. In the following, we will
focus on the characteristics of low-field MRI scans, since the data set used for this work has been
acquired with such technology. Table 3.1 resumes the principal advantages and disadvantages of
low-field MRIs. Moreover, in rheumatology, the carpal district is highly studied and taken into
consideration for diagnosis and monitoring purposes through low-field MR images.

The first effect, that a smaller magnetic external field influences, is the Larmor frequency: with
smaller B0 the spin rotation is slower, which is an advantage for some specific application such
as mammograms, where the longer spin cycle permits to control better the small-time deviations
that change the signal. However, in other applications, such as angiography, this smaller Larmor
frequency implies longer acquisition time [Kle15].

A lower field strength influences also the RF signal, which in turn presents a lower frequency,
improving the RF pulses tissue penetration. As a consequence, the magnetic field produced by
RF (B1) will be more homogeneous. This characteristic is decisive for a good image quality
since it influences directly the spatial resolution. Indeed, spatial encoding is based on the appli-
cation of gradients and, thus, modulates the local field strength in order to have locally defined
resonance frequencies. In this way, with Fourier analysis of the resonance spectrum, each point
is represented by a specific resonance frequency. Inhomogeneities in the magnetic field interfere
with this process, worsening the image quality [Kle15].

The application of a low external field involves changes in T1 and, even if with less relevance, also
T2. Indeed, T1 (longitudinal or spin-to lattice relaxation) shortens along B0 while T2 (transver-
sal or spin-spin relaxation) is prolonged. This means that in sequences such as spin-echo (the
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Table 3.1: Advantages and disadvantages of low-field MRI scanning systems.
Advantages Disadvantages

Lower RF energy deposition Lower SNR
Lower energy consumption No spectroscopy
Better T1 contrast Inferior spectral fat saturation
Shorter T1 times
Less dielectric effect
Low maintenance
Better patient access/open design
Less motion artifacts

so-called T1 weighted sequences), the signal received from the tissues increases. Moreover, a de-
crease in T1 produces a consequent decrease in TR, which will increase the scan speed [Kle15].

The only potential harmful factor of MRI is the RF energy deposition, which can induce danger-
ous tissue heating. The maximum RF energy is limited to a value that causes less than 1◦C tissue
heating. Moreover, the Specific Absorption Rate, which expresses the percentage of electromag-
netic energy absorbed by the human body when it is exposed to an RF field, must not exceed 4
W/kg body weigth in 15 min. The SAR increases with the square of the field strength, thus, in
lower-field imaging, this problem is less present [Kle15].

An electromagnetic field, such as the one used for magnetic resonance, is composed of an elec-
tric component and a magnetic component that oscillate perpendicular to each other and to the
direction of wave propagation. The electric component can interact with the tissues as does the
magnetic one. This interaction is called dielettric effect. At a high level of the magnetic field, the
RF shorter wavelength interaction with tissues can create the dielettric artifacts, which results in
abnormal dark or bright areas. While, with a lower field, the image presents less possibility to
show such artifacts [Die].

The relation between signal strength and noise level called Signal to noise ratio (SNR) is the key
indicator of image quality. The noise must be reduced as much as possible, while the acquisition
of the signal must be optimized. Since the resonance signal increases with the field strength,
systems with high-fields present higher SNR and, thus better image quality. However, SNR is
influenced not only by field strength. A variety of other parameters are important such as receiver
bandwidth, echo spacing, and coil design. An optimal set of such a parameter can improve the
SNR of low-field MRI scans [Kle15].
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Figure 3.8: [Gib08] DICOM standard multi-document organization.

3.2.2 The DICOM standard

Nowadays, with the development of imaging techniques such as CT, PET, SPECT, MR, and oth-
ers, the use of numerical technologies is dominant in diagnostic imaging. Thus, the management
of medical images is inherently based on informatic technologies, making computers at the core
of generation, memorization, transmission, and access to those images. This process of digital-
ization of images has various advantages. First of all, numeric images memorization permitted a
reduction of costs, time, and size of the archiving, that now can handle different imaging modal-
ity in a structured and easy to access database with the possibility of easily generate copies of the
original image. Also, the transmission of images has clearly improved and permits the reception
of the exams at the same time as written texts in a fast and reliable way [CDV12].

The diffusion of images in a numeric form has permitted the application of Computer Graphics
techniques to improve the visualization of anatomical structures. Thanks to such methodologies,
the fruition of the information contained in the image is easier for the physician or surgeon
observing the structure. In order to completely take advantage of all the possibilities that numeric
images provide, it was necessary to determine a standard system for the transmission of those
images that could be used all over the world. For this reason, nowadays, all the companies
supplying equipment for the production of images, have assumed as communication protocol the
DICOM (Digital Imaging and COmmunications in Medicine) standard, in order to guarantee a
high interconnection and interoperation capability [CDV12].
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The DICOM standard is composed as a multi-part document made of 18 modules (Fig. 3.8). We
will describe briefly the most important parts. Part 3 Information object definitions specifies the
information objects to be exchanged and the definition of the semantics of each data element.
This part is very long due to the various existing imaging modalities, that require many technical
parameters. Part 4 Service Class specifications describe the services for exchanging information,
like the images themselves or other information useful to manage the images. Part 16 Content
Mapping Resource defines the terminology, specifically how existing terminological resources
can be used in DICOM, and how to reuse grouped content items in DICOM Structured Report-
ing documents. Part 5 Data structure and encoding describes how to organize the information
objects specified in Part 3 into a linear bitstream, in order to be sent over a network connection or
stored in a file. This comprehends all aspects related to image compression. Finally, Part 2 Con-
formance specifies how to claim conformance to the DICOM standard for a particular product,
meaning how to write the document called conformance statement in detail [Gib08].

This standard not only defines a transmission protocol for images but also regulates the mem-
orization of those images. It is precisely this last aspect that has been relevant in carrying out
the research activity of this Thesis. Indeed, the images contained in the data set were provided
as DICOM images, meaning that they were saved accordingly to DICOM rules. Together with
the image, this standard permits the achievement of different other pieces of information that
identify the patient, the exam parameters, and the image itself. Indeed the information of the
DICOM element is composed by [CDV12]:

• a tag that identifies the element and the group to which the packet belongs to. Where the
group is the DICOM entity associated with the data and the element the type of attribute
contained in the packet. As an example, group 0100 identify the patient entity, and in this
entity, element 0010 identifies the surname;

• a type indicator that identifies the format of the information memorization;

• the byte length of the transmitted information;

• the real principal information in the format indicated by the previous fields.

Besides the public tag, which is present in all the data saved through the standard, there are also
private tags, that are inserted by the specific company, and contain information that depend on
the specific implementation. However, such information can be fundamental for the processing
and correct visualization of the image [CDV12].

3.2.3 MRI pixel intensity informative content

It is sure, when talking about MRI, to encounter the concept of weighting. This term can be seen
as a label to describe MR sequences and images and identifies the source of signal differences,
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(a) (b)

Figure 3.9: T1 − weighted low field MRI of the carpal district. (a) 3D view, (b) 2D slice
representation.

namely the contrast, seen in an image. Usually, in clinical practice, the weighting concept is
described qualitatively. Indeed, an image is said to be weighted for a specific tissue property like
T1, T2, or proton density when the most important source of contrast on the image is that specific
property. However, the relation between tissue properties and the weighting sequence or image
can not be immediate. This means that even if an image is defined as T1−weighted, only part of
it may be, in fact, T1−weighted while other parts can be T2−weighted or ρ−weighted (where
ρ is the proton density) or even without any weighting. Moreover, assuming that the whole image
is T1 − weighted, the various tissue can present a different degree of weighting.

It must not be forgotten that the term weighting is usually associated with both the image and the
sequence, even if in real practice the weighting of a sequence may differ from that of the image
produced by it.

Despite these difficulties, the concept of weighting is fundamental in MR imaging since it relates
the contrast on images to differences or changes in tissue properties, which highlight and explain
the effects of the disease. As a result, weighting provides an essential link between observed con-
trast in diseases and pathologic processes believed to be responsible for the contrast [YBH+10].
Indeed, keeping in mind the different aspects of the weighting terminology just described, we
will describe the characteristics of T1−weighted images (the ones present in the data set used in
this work). Going deeper into a quantitative differentiation of the various weighting methods is
beyond the scope of this thesis, thus, we will rely on the concept that some excitation sequences,
appropriately designed, can emphasize the FID dependency from the three parameters: ρ, T1,
and T2, which means controlling the contrast of the image. In particular, T1 − weighting se-
quences tends to present a short time of echo (TE) and short time of repetition (TR) and relies on
the longitudinal relaxation of tissues net magnetization vector, namely the spin-lattice relaxation
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Figure 3.10: T1 − weighting and T2 − weighting pixels/voxels intensities in MRI.

time. Since fat tends to realign quickly its longitudinal magnetization to B0, it appears bright in
these images. Water and collagenous tissues, instead, present slower realignment and thus are
darker. Finally, tissues that present a high portion of minerals result in black.

Our work is focused on the analysis of the bones and articulation-related tissues of the most
analyzed districts in rheumatology: the carpal district. In Fig. 3.9, we show an example of the raw
images used in this work. The final result of the scan presents bright areas in correspondence of
the internal tissue of the bone and in the bone marrow since those structures are characterized by
a high percentage of fat. The final part of the bone toward the exterior, namely the cortical bone,
instead is rich in minerals and thus it presents as a back region contouring each bone. Outside
the bone then, with this low resolution, the synovial tissue is not clearly distinguishable from
the cortical bone but it is also represented by as highly dark voxels. The ligament and tendons,
which are prevalently collagenous tissues, result in different dark and intermediate grey-levels
(Fig. 3.10).

3.3 The carpal district

Since in the study and diagnosis of rheumatic diseases the carpus is one of the most affected
districts, it is useful to understand its anatomy. In the following, we discuss the main character-
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Figure 3.11: Wrist bones.

istics of the anatomical structures of the carpal district and its functionalities. The final aim is to
identify the right amount of information required to provide support in the diagnosis and moni-
toring of rheumatic pathologies, in order to bring interesting insights into the data interpretation
process. For this reason, we need to understand clearly what are the anatomical features and their
attributes that results important for the clinicians.

The carpus is the group of eight bones and associated soft parts forming the joint between the
forearm and the hand, articulating with the radius, with the ulna, and with the five metacarpal
bones [Dic00] (Fig. 3.11). The eight carpal bones are arranged in 2 rows in a lateral to medial
direction on the palmar surface:

• proximal row: scaphoid, lunate, triquetrum, pisiform bones;

• distal row: trapezium, trapezoid, capitate, hamate bones.

In general, each carpal bone presents a quite spherical shape and different facets in order to
articulate with several nearby bones. Particularly, the bones belonging to the proximal row are
convex proximally, and concave distally, and the bones in the distal row are convex proximally
and flat distally [Ban16].

The carpus articulation is one of the most complicated human joints, indeed it comprehends

• intercarpal articulations: regard the articulations among the contiguous bones of the distal
row and the proximal row;
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Figure 3.12: Wrist movements.

• radiocarpal articulations: identify the articulations between the proximal row and ulna and
radious bones;

• carpo-metacarpal articulations: relative to the articulation between the distal row with the
five metacarpal bones;

• mid carpal articulations: involve the articulation between the distal and the proximal rows.

Such a high number of different articulations is the main reason for the remarkable mobility ad
fine movement allowed to this district (Fig. 3.12).

Ligaments perform a major role in stabilizing the whole carpus, indeed ligaments hold carpal
bones together despite the various articulations and movements. For this reason defects in liga-
ments, e.g, injury, or detachment, can cause carpal instability. Carpal ligaments can be catego-
rized as (Fig. 3.13):

• extrinsic ligaments, which bridge carpal bones to the radius or metacarpals;

• intrinsic ligaments which originate and insert on carpal bones.

Among the ligaments involved in the carpal district, the bigger are the ulnar collateral which
connects the ulna and triquetral bones, and the radial collateral which connects the pisiform and
radius to the scaphoid.
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Figure 3.13: Intrinsic (right) and extrinsic (left) ligaments of the wrist.

The muscles that act on the wrist movements originate in the forearm and are extensors of the
carpus, extensors of the fingers, flexors of the carpus, and flexors of the fingers. Only one long
tendon unites such muscles to the hand and passes through the wrist. While three nerves cross
the wrist going from the forearm to the hand: the radial nerve, median nerve, and ulnar nerve.

Important information to be provided to clinicians are related to the patient-specific positioning
and morphology of the anatomical district and functional landmark areas on the carpal bones.
Articulation regions, prominent features, ligaments origin, and insertion sites can all be consid-
ered valuable landmarks. However, the significance of different sorts of anatomical landmarks
relies upon the contextual investigation. For the carpal district, one of the most relevant types
of anatomical landmarks, are articulation regions and the ligament origin/insertion sites, since
they relate to the functionality of carpal anatomy. Moreover, in both ligaments and articulations
regions, the early signs of rheumatic pathology can be interpreted by experts in the field in order
to have a faster diagnosis and a tailored treatment plan.

3.4 Rheumatic pathologies

Rheumatic pathologies reside among the oldest diseases recognized by the medical community.
The classification of these pathologies can be difficult since their etiology is partly unknown and
their clinical representation is quite heterogeneous. However, the impact of those illnesses on
both individuals and society comprehends a decrease in the quality of life, a loss in productivity,
and an increased cost in healthcare. Those reasons brought to the necessity of controlling such
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Figure 3.14: Rheumatoid Arthritis anatomical deformation.

diseases, given also the progressively aging of in the population [San00]. The term rheumatic
diseases does not possess clear limits, indeed more than 100 different conditions are labeled as
rheumatic diseases.

Rheumatoid Arthritis (RA) is one of the most common and consists of a chronic inflammatory
disorder that affects the lining of joints, causing a painful swelling that can eventually result
in bone erosion and joint deformity (Fig. 3.14). This pathology starts, usually, from the small
joints and attacks multiple others throughout the body. Nowadays, a significant number of person
presents RA especially in their wrists, which makes it difficult for them to perform daily activi-
ties, given the importance of a well-functioning carpal district in everyday life movements. RA is
more common among women than men and can present itself at an early age but is more common
among elderly subjects. Experts confirm that RA disease can be characterized by the morpho-
logical changes of carpal bones and the whole district. Early-stage symptoms are: marginal
and central bone erosions, giant synovial cysts, regional osteoporosis, and widened joint space.
Late signs are bony fusion, destruction of joint spaces, destruction of bone ends, and joint de-
formity. Rheumatologists usually check the distribution of the inflamed joints as the first step in
RA diagnosis, since the presence of inflammation in the joint helps to distinguish Rheumatoid
Arthritis from other common types of arthritis that are not inflammatory, such as osteoarthritis.
The chronic inflammation leads to the formation of the synovial pannus with bone eroding ca-
pacity. Usually, in RA, erosions are marginal and localized at the bare area, the bone surface
within the synovial space, which is not protected by cartilage [TCB+15].

The data set contains patients with PSA, an inflammatory disorder characterized by the asso-
ciation of cutaneous psoriasis and inflammatory arthritis [TCB+15]. PSA can present different
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forms: a symmetrical polyarthritis similar to RA, an oligoarticular form, a spondylitic form char-
acterized by axial involvement, and a mutilans form. Bone erosions, unlike the ones observed in
RA, are not in the marginal area but in the central region of the articular surface.

Gout is another rheumatoid pathologies examined in the data set. It is a metabolic disease corre-
lated with hyperuricemia, and characterized by recurring acute arthritis at first, usually monoar-
ticular, and later by chronic deforming arthritis. The characteristic lesion of the chronic stage
is called tophus and consists of nodular deposits of monosodium urate monohydrate crystals
that can be found in cartilage, articular and periarticular tissues. The erosions of the gout are
well-defined, punched-out erosion, usually adjacent to the tophus, with overhanging edges.

PR, instead, is a particular form of inflammatory arthritis characterized by sudden and rapidly
developing arthritis episodes leaving no radiographic change. Such pathology may develop in
RA. Finally, among the pathologies present in the data set, SSC, represent a chronic systemic
connective tissue disorder. It is characterized by diffuse fibrosis of the skin and internal organs.
Joint involvement is frequent and can present distal phalange resorption, demineralization, joint
space narrowing, and erosions [TCB+15].

Nowadays, two of the most frequently used imaging techniques for the study of rheumatic dis-
eases are Computed Tomography (CT) and Magnetic Resonance (MR). Since MR permits to
acquire images non-invasively, it is commonly used both in diagnosis and monitoring phases.
Indeed, the use of imaging techniques represents a step to confirm the diagnosis and localize
possible erosion or osteoporosis. The origin of such erosive degeneration differs according to
the particular undergoing pathology, but the result is an anomalous change in the tissues’ com-
position and, as a consequence, in the bone morphology. However, visual inspection is a time-
consuming manual process, and inter-operator variability may influence the analysis. What can
help physicians and rheumatologists in the diagnosis and differentiation of rheumatic diseases is
an accurate and efficient system for the visualization of anatomical and physiological changes
that involve the disease. Moreover, experts confirm that the automatic identification of particu-
lar landmarks, that are most subjected to early symptoms (ligament insertions and articulation
areas), could help to obtain early and more patient-specific diagnosis.

50



Chapter 4

Grey-levels Mapping

4.1 Aim of the hybrid representation

The first aim of the integration method is to provide an efficient and augmented visualization tool
for supporting the diagnosis and monitoring of rheumatic pathologies. With the term augmented
we intend the possibility to add volume context information to the 3D shape model visualization
of anatomical structures. Typically medical visual data are approached through surface rendering
or volume rendering.

In particular 3D volume rendering (3DVR) is suitable for semitransparent object. Usually, it
is used as a visualization method where three-dimensional volumes are mapped to density and
color values in order to allow the viewer to recognize shapes and patterns within a material that,
in origin, was opaque [SC18]. Thus, the volume visualization provides a way to see through
the data, revealing complex 3D relationships [MB05]. Indeed, one of the great advantages of
3DVR is that it can provide all the necessary information in a single radiologic study in cases
that previously, with 2D representations, required two or more studies. 3DVR also permits to in-
teractively explore the imaging data and, thus, allows the clinician to assess more information on
the patient. All 3D-rendering techniques reveal a 3D volume of data in one or more 2D planes,
conveying the spatial relationships with the use of visual depth cues [DDM+19]. Generally, such
volume rendering techniques can be used also for the visualization of the 3D volume with its
original grey-levels (Section 4.2) (Fig. 4.1(a)). Surface rendering, instead, is useful for the 3D
visualization of objects’ surfaces starting from a binary image (which is the result of a segmenta-
tion process). In this case, the value of the 3D reconstruction goes beyond the sole visualization:
indeed, a reconstruction, is particularly useful for the analysis of morphological characteristics.
The 3D models, contrarily to volume rendering, explicitly represent the shape of the analyzed
structure (Section 4.2). Surface rendering is based on surface mesh representations instead of
mapping volume data directly to the viewport, as happened in volume rendering (Fig. 4.1 (b)).
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(a) (b)

Figure 4.1: Volume rendering (a) and surface rendering (b) of the hand.

The main reasons for the necessity of a surface rendering in the first place were basically two: it
was faster than volume rendering, since a mesh has a significantly lower memory footprint than
a volume data set, and it provided clearly recognizable images with depth cues such as those
caused by illumination [PB13]. These original advantages lost their relevance with the introduc-
tion of GPU rendering. Thus, even advanced volume rendering of typical medical data sets can
be performed in real-time. However, in the last years, the importance of surface rendering has
expanded in different areas such as biophysical simulation, interactive 3D visualization, and 3D
printing. The latter application regards the modeling and printing of relevant portions of human
anatomy to support in-depth collaborative discussions of treatment options [PB13].

Thus, the development of a new visualization modality that provides a hybrid between the two
rendering techniques was the very first goal of the integration proposed in this work (Section 4.3).
A correspondence map between the volume image and the surface model is one of the key el-
ements of the integration method, leading to the visualization of the image grey-levels directly
on the 3D segmented surface. For this reason, we refer to the integration method as grey-levels
mapping.

The therm efficent, instead, refers to the possibility to realize this integration exploiting a simple
methodology (the results of such methodology are presented in Section 4.4). Indeed, in clinical
applications, the simplicity aspect of the innovation is what brings such innovation to be actually
applied in practice. One reason may reside in the possibility to perform faster and less com-
plicated integrations with already existing tools. Moreover, highly complicated solutions often
require longer training for the final user. For these reasons, the efficiency term relates to the
augment of information provided by the approach to its simple implementation.

Since quantitative parameters can be extracted from both 3D models, regarding the morphology
of the structure, and from the 3D volume image, regarding the composition of the tissue, the
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Figure 4.2: Bones surfaces represented as triangular meshses.

integration of the two methods has been thought not only for visualization and rendering purposes
but also for a combined analysis to support diagnosis and monitoring processes. Indeed, the
presence of information from both the volume and the model, permits an integration between
shape analysis and image processing techniques, bringing to a quantitative evaluation of the
overall exam information. Such quantitative analysis has the scope of helping physicians to
explore the particularly interesting region or symptoms related to the pathology. Thus, the other
goals of the integration method regard the characterization of the carpal district anatomy and an
evaluation of the segmentation result in terms of tissue distribution around the bones surfaces, as
we will present and discuss in Chapters 5 and 6.

4.2 The bridge data sctucture

The key for correct and efficient integration of information between 3D surface models (Sec-
tions 4.2.1) and volume images (Section 4.2.2) is a data structure that could be intended as a
bridge between these two different data. The scope of the data structure is, indeed, to permit
the exploration of the volume image in the neighborhood of the surface, a task that requires the
correct location of the two data in the space.

4.2.1 Surface mesh

A surface in Computer Graphics is commonly defined as an orientable continuous two-dimensional
manifold embedded in R3, which describes the boundary surface of a non-degenerate 3D solid.
Where non-degenerate implies the absence of thin parts or features, such that the interior and
exterior of the solid are properly separated [BPK+07].

Among the different ways to represent a surface, one of the most used, studied, and diffused is
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Figure 4.3: [BPK+07] Non-manifold vertex in case of two-surface sheets meeting on it (left).
Non-manifold edge with more than two incident faces (center). Non-manifold configuratin han-
dled by most data structure (righ).

through a triangle mesh, as in the data set we used for this work.

Triangle meshes can be considered as a set of triangle without any particular mathematical struc-
ture, as happes in different geometry processing algorithms. However, each triangle defines a
linear segment of a piecewise linear surface representation, through its barycentric parametriza-
tion (Fig. 4.2). Indeed, every point p inside a triangle [a,b, c] can be considered as a barycentric
combination of the corner points [BPK+07]:

p = αa+ βb+ γc. (4.1)

With α + β + γ = 1. If we choose an arbitrary triangle [u,v,w] in the parameter domain, we
can define a linear mapping f : R2 → R3 with [BPK+07]:

αu+ βv + γw→ αa+ βb+ γc. (4.2)

A triangle mesh M consists of a geometric and a topological component. The topological
component can be described as a graph structure (simplicial complex) with a set of vertices
V = v1, ...., vV and a set of triangular faces connecting them F = f1, ..., fF , fi ∈ V × V ×
V [BPK+07]. Sometimes, however, the connetivity is represented in terms of the edges of the
respective graph for efficiency reasons. E = e1, ..., eE , ei ∈ V × V . Associating a 3D position
pi to each vertex vi the triangle mesh is embedded into R3:

P = p1, ...,pV ,pi := p(vi) =

x (vi)y (vi)
z (vi)

 ∈ R. (4.3)

In this way each face f ∈ F corresponds to a triangle in the 3D space, specified by its three vertex
positions. The resulting polygonal surface is still continuous, consisting of triangular pieces with
linear parametrization functions [BPK+07].

A triangle mesh is described as two-manifold if it does not contain non-manifold edges, non-
manifold vertices, nor self-intersections. Where a non-manifold edge is defined as an edge hav-
ing more than two incident triangles, while a non-manifold vertex is present when two surface
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(a) (b) (c)

Figure 4.4: Mesh description methods. (a) Indexed triangle sets option. (b) Toy example of the
correspondent mesh. (c) Description of the same mesh through list of triangles.

sheets are compressed together at that vertex. Non-manifold meshes create a problem for most
algorithms since around non-manifold configurations there is no well-defined local geodesic
neighborhood (Fig. 4.3). Thus, in this case, it is necessary to handle that non-manifold ver-
tices/edges prior to the application of the algorithm. Similar situations were present during the
data preparation for the integration algorithm and have been solved as will be described in the
next Paragraph.

The relation between the numbers of vertices (V ), edges (E) and faces (F ) in a closed, connected
and structured mesh is given by the Euler formula:

V − E + F = 2(1− g). (4.4)

Where g (genus) represents the number of handles of an object and usually is small with respect
to the number of elements. Thus, the right-hand side of the equation can be assumed as zero.
With this premise, and since each triangle is surrounded by three edges and that each edge is
incident to two triangles, then:

• the triangles are twice the vertices: F ≈ 2V ,

• the edges are three times the vertices. E ≈ 3V ,

• the average vertex number of incident edges is 6.

Mesh cleaning and repair It is important to consider the relation expressed by the Euler for-
mula (Equation 4.4) when analyzing the data structure or file format that is used for the mesh
description. Since wrist bones are particularly small, a mesh describing them is supposed to
comprehend a number of triangles in the thousands. Even in this case, in the data organization
phase, it was necessary to clean the files describing the mesh, since the structure used in the orig-
inal data was extremely redundant. Indeed, usually, one of the most efficient ways to represent
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Figure 4.5: 3D MRI volume.

the mesh is through indexed triangles sets. In this kind of representation, the mesh is described
through the use of two different lists: the first containing all the vertices 3D coordinates followed
by the list of triangles, described by triplets of the indices of the precedent list (Fig. 4.4 (a), (b)).
The set of vertex coordinates describes the geometry of the mesh, from which it is possible to
extract information like the volume surrounded by the surface or the total surface extension. The
list of triangles, instead, is commonly referred to as connectivity and describes the adjacency
relations. From this connectivity, it is possible to extract information like the presence of bound-
aries, the genus, or the manifoldness. Another way to describe a mesh is through the use of
separate triangles. In this case, each separate triangle is described through the use of its vertices
coordinates (Fig. 4.4 (b), (c)). This means that every element of the list consists of the 3D co-
ordinate of each vertex composing the triangle. The first problem of this kind of representation
is a high waste of space since each vertex is stored 6 times, while in the indexed triangles sets
each vertex is identified just one time. Indeed, considering that on average there are 2 triangles
per vertex, 3 vertices per triangle, 3 coordinates per vertex, and that to store the information of
a coordinate are required 4 bytes, the memory space involved can be high. Not to mention the
relevant slowdowns that an algorithm could encounter with such data description. Moreover, in
this way the adjacency is not explicit, making it difficult to search for neighbors on the surface.

In our data set, each mesh was originally saved through the use of separate triangles. Indeed, it
was very redundant and affected the algorithm performances. Thus we developed an automatic
conversion function in order to convert triangle strips into the indexed triangle set. The function
identifies the repetitions in the list of vertices and their index. After the elimination of the repeti-
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Figure 4.6: Analogy between the regular 3D grid describing the volume and the 2D stack of
slices composing the volume MRI.

tion, an opportune modification of the connectivity through the index information is applied, as
well as an update of the other vertices indexes, in order to obtain a final explicit connectivity list.

With the term model repair, is intended the task of removing artifacts from a geometric model
in order to produce an output model that is suitable for further processing. Where the definition
of what “model”, “artifact”, “suitable for further processing” highly depends on the problem at
hand. Usually, there is no single algorithm that is applicable in all situations [BPK+07].

A general classification of repair algorithms consists in surface-oriented or volumetric methods.
Surface oriented algorithms operate directly on the input mesh and try to explicitly identify and
resolve artifacts on the surface. These algorithms perturb the input model only minimally and
can preserve the model structure in areas that are not involved by the artifacts. In particular,
structure encoded in the connectivity of the input or material properties associated with triangles
or vertices are usually well preserved [BPK+07].

Volumetric algorithms, instead, convert the input model into an intermediate volumetric repre-
sentation from which the output model is extracted. With volumetric representation, is intended
any kind of partitioning of space into cells that allow each cell to be classified as either being
inside or outside. Then, the interface between inside and outside cells defines the topology and
the geometry of the corrected model. Due to their very nature, volumetric representations do not
allow for artifacts like intersections, holes, gaps or overlaps, or inconsistent normal orientations.
Moreover, the absence of complex edges and singular vertices can be guaranteed depending on
the type of extraction algorithm. Volumetric algorithms are typically fully automatic and usually,
they can be implemented very robustly. In particular, the discrete neighborhood relation of cells
permits to extract a consistent topology of the restored model. On the downside, given the conver-
sion to and from a volume, a re-sampling of the model is required and often introduces aliasing
artifacts, loss of model features, and destroys any structure that might have been present in the

57



Figure 4.7: Data structure of the input voxel grid. V(i, j, k) is the intensity of the voxel (i, j, k),
where i, j, k are the indices of the intervals on the X , Y , Z axis used to generate the grid
structure; c is the centroid of the voxel with coordinates (xc, yc, zc).

connectivity of the input model. Furthermore, the number of triangles in the output of a volumet-
ric algorithm is usually higher than the one of the input model, requiring a post-processing step
to reduce this redundancy. Another drawback is that the quality of the output triangles often de-
grades and has to be improved afterward. Finally, volumetric representations are quite memory
consuming [BPK+07].

Since in our data set case, the artifacts were limited only to non-manifold edges, their correction
directly on the surface was more than enough, without the need for volumetric algorithm imple-
mentation. Moreover, not all the models present in the data set showed artifacts, thus the number
of correction to be made were a totally controllable number. For these reasons, we based our
search for such non-manifold edges on the values of the normal to the surface on the vertices.
Typically surface normal whose components were exactly equal to 0 in each direction, could
indicate an artifact. Thus, every mesh was scanned for the presence of such anomalous surface
normals, that, if present, were located onto the surface. Once the exact position of the potential
artifact was identified, then through the use of Meshlab© tools, it was manually corrected, and
the new mesh description was saved.

Since the surfaces in our data set are obtained by experts, we consider them as ground-truth
without applying further processing, such as smoothing and re-meshing. Thus, we limited the
changes on the meshes to the cleaning and repair just described. Avoiding other processing can
maintain all the information included by the physicians without alteration in bones’ shape. This,
in turn, avoids the accidental insertion of deformations due to the mesh processing. Moreover,
this approach prevents from the elimination of actual deformations which are highlighted in the
original meshes obtained by the experts.

58



Figure 4.8: Main idea: map the grey-levels of the image voxels onto the segmented surface
through a volume-surface correspondence map, which defines a grey-level texture on the surface.
The texture links the image context to the 3D geometric representation of the segmented shape.

4.2.2 Volume image

Medical images such as MRIs are a typical example of volume data generated by sampled data
of real objects or phenomena. The volumetric data are treated usually as a set V of samples
(x, y, z, v), representing at each 3D location (x, y, z) the value of some property of the data. If
v can assume just two values, such as 0 indicating the background and 1 indicating the object,
then the volume is called binary. However, if the data can assume different values, then the
volume is multivalued, where v describes some property of the data such as density, color heat,
or pressure. Moreover, the value v may be a vector, as in the representation of the velocity at
each position [Kau96]. In our case, v is multivalued and represents the tissue composition given
by the MRI scan. The DICOM volume is constructed by a stack of 2D slices that, together, form
the whole volume. Here the term stack refers to a collection of 2D slices obtained by a multislice
acquisition characterized by the same orientation (Fig. 4.5).

The result is that V can be defined on a regular grid, meaning that the samples are taken with
regularly spaced intervals along all the three orthogonal axes [Kau96]. This implies that the
values of V an be stored in an array, called usually volume buffer or cubic frame buffer or
even 3D raster. Thus, V is the array of values V(x, y, z) defined at grid locations. The region
surrounding each sample and presenting a constant value is called volume cell or voxel. Each
voxel is a rectangular cuboid with six faces, twelve edges and height corners [Kau96] (Fig. 4.6).
Information regarding the dimension of the volume, of the single slice as well as the orientation
of the scan, can be found inside the tag of the DICOM header (Section 3.2.2). From those pieces
of information, it is possible to understand if we are in presence of an isotropic or anisotropic
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Figure 4.9: Initial visualization: superimposition of the volume image and the surface model.

scan. Particularly, looking at the Slice spacing attribute it is possible to understand how big is
each pixel dimension in space. Moreover, the thickness attribute provides information on the
distance between two slices. All this information together, supply the extensions of a voxel in
all the space dimensions. If such extensions are equal in every dimension, then the volume is
isotropic, if one or more of the dimensions are different from the others then we talk about an
anisotropic volume.

The image volume can be therefore thought also as a grid of voxels, each having dimension equal
to x-spacing × y-spacing × thickness, with a total number of voxel equal to N ×M × R where
M is the number of pixels in the x direction, N the number of pixels in the y direction and R the
number of pixels in the z direction. Given all these premises, the solution to correctly locate the
volume image in the space and to navigate the volume is to load the DICOM image into a 3D
grid structure whose elements have the same dimension as the image voxels (Fig. 4.7). In this
way, every grid cell has its 3D coordinates to locate it in space and each grid cell is associated
with a voxel and its grey-level.

Under these assumptions, V(i, j, k) is the volume voxel associated with the i − th, j − th and
k − th interval along the X , Y , and Z axis, c is the centroid of the voxel with coordinates
(xc, yc, zc).
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(a) (b)

Figure 4.10: Vertex-voxel correspondence identification. Orange cells are the correspondences
between the volume grid element (c) and a surface vertex (p), computed to obtain different map-
ping: (a,i)) Euclidean correspondence when the vertex lays strictly in a voxel, (a,ii) Euclidean
correspondence when the vertex lays in an ambiguous position (cell’s edge) and (b) internal and
external correspondences based on the distance from the normal to the surface (blue arrow) and
the voxel’s location (inside or outside the surface).

4.3 Single vertex correspondence identification algorithm

The input of the approach, indeed, consists of a 3D DICOM image volume and a 3D surface,
resulting from the segmentation of the volume. Concluded the first step, regarding the construc-
tion of a data structure that allows navigating the volume through the surface, we aim at coloring
the surface’s vertices with the volume’s grey values exploiting a mapping between the surface
and the volume (Fig. 4.8). Thus, it is necessary to find the correspondences between the volume
image and the segmented 3D surface. For the grey values mapping, three different criteria are
defined, according to the method chosen to identify the correspondences between the surface
vertices and the volume voxels.

The search is directed toward the image value on the surface or in the interior and exterior direc-
tion with respect to the surface. In this way, we look at the segmented structure as fully immersed
in its original volume. To this end, the surface and the volume must be superimposed to find the
vertex-voxel correspondence. Since the 3D surfaces are extracted from the MRIs, their reference
systems must be coherent, simplifying the superimposition step (Fig. 4.9).

Since we want to map onto the surface the grey values that are immediately outside or inside the
segmented surface, we have to decide how far from the surface we want to move and in which
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(a) (b) (c)

Figure 4.11: Surface mapping obtained with the vertex-voxel correspondence metrics: (a) Eu-
clidean mapping, (b) internal mapping, (c) external mapping.

direction. We have explored several options, each providing a slightly different insight.

• Euclidean mapping if the surface vertex p gets the grey-level of the voxel V closest to p
with respect to the Euclidean distance;

• internal mapping when the closest voxels are searched only inside the surface, that is,
inside the object’s volume;

• external mapping when the closest voxels are searched only outside the surface, that is,
outside the object’s volume.

For the Euclidean distance, given a surface vertex p the closest voxel Vi is defined as the cen-
troid ci such that d(p, ci) := min‖p− ci‖2, for all voxels, that is, for all centroids ci. Given the
grid structure and considering the definition of Euclidean distance, the nearest centroid will be
the one relative to the voxel containing the surface vertex. The volume is embedded in space
through the grid, defined by 3D coordinates, thus, the best way to locate the voxel that contains
a surface mesh vertex p is to navigate the grid structure. Since each voxel V(i, j, k) is identified
by the i − th, j − th, z − th intervals along the X , Y , and Z axis, we identify the voxel con-
taining p by searching the intervals that contain the coordinates of the vertex p. This situation
applies when the vertex is strictly inside a single voxel (Fig. 4.10(a, i)). If the vertex lies on a
grid node, a grid edge, or a grid element’s face, then respectively, 8, 4, or 2 centroids will present
the same minimum Euclidean distance from the considered vertex. In this implementation of
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Figure 4.12: Mean grey-levels value graph for each bone (numbered from 1 to 8). Blue cor-
responds to internal mapping, red to Euclidean mapping, and green to external mapping. Blue
values are higher since internal mapping explores the volume toward the bone marrow. External
mapping is darker since the tissues outside the bone result in black or dark grey. Euclidean map-
ping, corresponding to the volume grey-levels in the surface location, lays in between the others.

the algorithm, all the centroids identified will be considered equally correspondent to the vertex
(Fig. 4.10(a, ii)).

The other mappings applicable, as listed above, are based on the distance from the normal to the
surface. These mapping methods can distinguish between the volume inside the surface and the
volume outside it. To remain close to the surface, a small neighborhood of voxel surrounding
each vertex is considered. Here, we compute the dot product between the surface normal at a
vertex and the vector connecting the vertex to the centroid of a voxel. A positive dot-product
indicates a voxel outside, while a negative one, a voxel inside the surface. Then, for all the
vertices that belong to the neighborhood, the vertex-voxel distance is computed as: d(p, c) =
‖n ∧ epc‖ / ‖n‖, where n is the normal to the surface of the selected vertex and epc is the vector
connecting the vertex to the grid centroid epc = p − c. The centroid that presents minimum
distance from the normal and lays inside the surface will be the correspondent one in terms of
internal mapping. Whereas the centroid that presents the minimum distance from the normal,
among the ones that are outside the surface, will be the correspondent one in terms of external
mapping.

These correspondences have to be computed for all the vertices that constitute the bone surface.
Thus, each vertex is considered separately and, once all the vertices are associated with the
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(a) (b) (c)

Figure 4.13: Application of the mapping algorithm to the hand district: (a) Euclidean mapping,
(b) external mapping, and (c) internal mapping.

correspondent voxel, the texture mapping begins.

Computational costs During the search for vertex-voxel correspondence, it is easy to incur in
a relevant growth of the computational cost. This is particularly evident for Euclidean correspon-
dence since the other correspondences, based on the distance from the normal, are computed in
a small neighborhood of centroids. The surface mesh is composed of k vertices and the volume
grid dimension is N = A × B × C. The method used by the algorithm takes advantage of the
data structure: identifying the nearest centroid as the one belonging to the voxel containing the
vertex. In this case, the computational cost for a single vertex-voxel correspondence search will
be O( 3

√
N), since the search is performed separately in each dimension of the grid. This method

is the one applied since, with respect to a kd-tree (O(N logN)), permits to easily identify and
deal with the ambiguous situations mentioned previously.

4.4 Texture mapping

At this point, every vertex of the surface is associated with a corresponding centroid and, thus
with a corresponding voxel. Since the volume grid element is representative of a volume voxel,
it contains information about the grey-level of that voxel. The grid volume element is identified
by its index inside the volume. To perform the actual mapping, each vertex is associated with the
same grey-level owned by the correspondent voxel which, in turn, is the grey-level of the centroid
of the grid volume element. The only exception arises when, in the Euclidean mapping corre-
spondence, the surface vertex belongs to one of the ambiguous position described previously.
Since all the centroids that present minimum Euclidean distance from the vertex are considered
as equally relevant, in these cases, a mean of the correspondent voxels’ grey-levels is performed
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and associated with the vertex.

Computer Graphics considerations The result of the grey-levels mapping is the addition of
the color information to the triangulation structure: each vertex coordinate is associated with
its specific color, representative of the information contained in the image. In particular, the
Euclidean mapping is representative of the volume in the location of the 3D surface. For this
reason, provides information on the structures that are crossed by the surface. The internal and
external mapping explore the volume in the neighborhood of the surface, defining the internal or
external normal directions from surface vertices. The information brought by these two methods
are related to the volume composition inside and outside the surface, providing insights on the
gradient variation of the grey-levels. The volume knowledge mapped on the surface exploiting
the texture, provides an enhanced visualization method able to integrate heterogeneous data.
Moreover, this integrated solution can be used as the starting point for different scopes such
as shape analysis, shape segmentation, and object classification. The texture information can
be easily integrated into those analyses with the awareness that now, such texture, represents a
direct link to the real volume context.

The method applies also to different image resolutions, indeed, the 3D grid that bridges the vol-
ume field to the surface field can adapt the single grid element of the same size as the image
voxel. This means that if a higher image resolution is provided as input then the result will be
more accurate in reflecting, through the texture information, the anatomical structures surround-
ing the surface.

Mapping voxels’ grey-levels into the mesh vertices permits the enhancement of the visualization
through the 3D surface models. Other approaches for the representation of the surface exist and
could be applied for the integration of volume image information on surfaces. However, the
method described in 4.2 is more direct and permits to take full advantage of the 3D surface ob-
tained by experts from the volume segmentations. Since the texture obtained by our method rep-
resent the real density of the volume, the added information can simply but effectively improve
shape analysis techniques. A comprehensive 3D visualization is still a key component of medical
analysis and Computer Graphics techniques can extract additional relevant details. In particular,
evaluating the performed segmentation exploiting texture gradient values can provide a 3D de-
scription of the object in terms of the context in which it is inserted. 3D shape descriptors with
the additional information provided by the texture allow the extraction of density characteristics
from articular regions. This density information, in turn, enriches shape analysis and semantic
segmentation. A shape comparison method based on distance definition can be improved by the
computation of texture changes. Shape characterization via landmark identification can also take
advantage of the mapped surface.
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Clinical aspects considerations The proposed approach supports the integration of the sur-
face shape model with the image volume grey-levels and provides to physicians and surgeons an
augmented 3D representation of the bone surface. The combination of district density informa-
tion and shape characteristics can overcome the limits of visualization methods that are based
exclusively on volume processing. From a first analysis, the method performs as expected. The
mapped bones result clearer if the direction of the search is addressed toward the interior of the
bone, and darker when looking outside the bone. The Euclidean mapping result less smooth
since it is relative to the edge between different tissue (Figs. 4.11, 4.12). These observable differ-
ences have a huge relevance since every type of mapping carries different information. Changing
the mapping means exploring the volume in a different way and thus, retrieving different tissue
information. For each possible clinical application is then important to choose the appropriate
mapping method. This pipeline can be easily applied in other anatomical districts such as hip,
shoulder, or ankle articulations. Indeed, the proposed method is general enough to be applied
to other segmented data sets, such as the metacarpal and phalanx bones, independently from the
method adopted to extract the surface model (Fig. 4.13).
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Part II

Applications and Clinical Studies
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Chapter 5

Clinical Applications of Grey-levels
Mapping

5.1 Clinical aspects of early diagnosis in rehumatology

Rheumatic pathologies are numerous and present differences between one another thus, treat-
ments, have to be tailored in order to provide the highest benefit for the specific patient. An early
diagnosis and a proper differentiation of the pathology characteristics help the rheumatologist to
select the right treatment from the very beginning. According to expert rheumatologists, the lig-
ament insertion sites are regions that show clues on the type of rheumatic illness even in the early
pathology onset and for this reason, their localization is a clinically relevant task. The identifi-
cation of the ligament insertion must consider the anatomical structures involved (Section 5.1.1)
and the key hypothesis on their role in the pathology discrimination (Section 5.1.2). Moreover,
often, the first tissues to show slightly more advanced symptoms of the pathology are located
in the articulation regions. The complex structure of the articulations that characterize the wrist
makes it one of the most complex districts of the human body (Section 5.1.3).

Exploiting the mapping method described in Chapter 4 we propose a ligament insertions local-
ization method based on the analysis of the 3D surface texture (Section 5.2).

The study of the wrist complicated anatomical structure can benefit from both shape descriptors
and texture analysis. Thus, we propose an integration of the information retrievable from both
aspects, aimed at the characterization of articulation regions, discussing the results obtained
(Section 5.3).

In an advanced stage of the pathology, usually, early symptoms degenerate in the erosion of bone
tissue which, in turn, is a key index of the evolution of the pathology (Section 5.4).

68



Figure 5.1: [ADD+14] Tissue composition of fibrocartilaginous different zones.

Erosion sites identification can base either on image information or morphological information
(Section 5.5). However we propose an integrated method able to consider both aspects (Section
5.6).

5.1.1 Ligament insertions

The musculoskeletal system is structured in order to provide support and stability to the human
body and makes possible the organized set of human movements. Overall, this system consists
of bones, muscles, cartilages, tendons, ligaments, and other connective tissues that together form
the functional organ system [ADD+14]. Thinking in engineering terms, tendons and ligaments
can be associated with machines with multiple moving parts (e.g., fibrils, fibers, and fascicles),
which performs a force transfer to and from the skeleton. Indeed, ligaments and tendons are
involved in load distribution to perform movement patterns [BTR+06]. In particular, tendons and
ligaments, constituted by connective tissues, join the bone in specialized interfaces that form the
insertion sites, which formally are known as enthesis. Here, tendons/ligaments (TL), integrate
their structure with the one of the bone to facilitate joint motion [ADD+14]. Indeed, the insertion
sites help to transmit the tensile load from soft tissues to the bone, thus allowing the proper
transmission of contractile forces from the muscle belly to the respective skeletal attachment,
while simultaneously dissipating force away from the enthesis itself [ADD+14].
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Figure 5.2: [ADD+14] The four zones of the enthesis on an histological section of a mouse
supraspinatus.

Overall, the role of the enthesis is triple:

1. anchorage of soft tissues to bone;

2. stress dissipation;

3. promotion of bone growth.

The enthesis can be described on the basis of the tissues they involve. In particular there are
two main classes of entheses: fibrous and fibrocartilaginous. The majority of the human body
entheses are fibrocartilaginous which, other than being more commonly studied, are also more
frequently injured than fibrous insertions [ADD+14]. Fibocartilaginous entheses are found in
the apophyses and epiphyses of long bones, on the short bones of the hands and feet, and are
common also in the spine. Fibrous enthesis, instead, are typical of TL that attach to metaphyses
and diaphyses of long bones [BM01].

Fibrous enthesis This type of insertion is characterized by dense fibrous connective tissue and
is typically present in large surface areas where they pierce mineralized collagen fibers. They
can be classified as bony if the TL inserts directly in the bone, or periosteal if the TL connects
to the periosteum. This type of enthesis has received less attention than the fibrocartilaginous
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Figure 5.3: Carpal bones relations in wrist movements.

one since it is less common in the human body and never presented a high rate of injury cases
[ADD+14].

Fibrocartilaginous enthesis As the name suggests, Fibrocartilaginous entheses, are character-
ized by fibrocartilage, they are more common in the human body and present a higher tendency
to be injured for overuse. This kind of insertion is particularly interesting for our work since it
is the most present in the carpal district. Typically, this enthesis can be divided into four distinct
zones creating a structurally continuous gradient that goes from uncalcified tendon to calcified
bone. Fig. 5.1 presents the fibrocartilaginous enthesis with the relative tissue composition, and
Fig. 5.2 shows a typical fibrocartilaginous insertion.

For the purposes of this work, it is important to consider also the bone side of the attachment.
Indeed, in the TL insertion area, the bone is constituted by fibrous tissue. This kind of bone tissue
is the first to be deposited both during growth and bone fracture healing, but then it is substituted
by lamellar bony tissue. The only region that continues to present the fibrous tissue is, indeed,
the insertion site. In this kind of tissue, the collagen fibers present relevant dimensions and are
distributed without a particularly defined orientation.
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(a) (b)

Figure 5.4: (a) Histogram of the grey-levels mapped on the surface vertex. (b) Thresholds iden-
tifying the grey-level range associated with ligaments insertion: 75th percentile (red), and maxi-
mum of brightness allowed to remain in the dark gray region (blue).

5.1.2 Enthesis localization in the case-study

The carpal district constitutes a challenge even in the description of the TL enthesis localiza-
tion. Indeed, the presence of a high number of small bones requires also the cooperation of a
high number of tendons and ligaments for both stabilization and movement control. However,
rheumatologists confirm the importance of the identification of those insertions for diagnostic
purposes. Even if the enthesis is commonly understood as the junction between a TL or a joint
capsule to the bone, there are good reasons to support the idea that entheses can present com-
plex anatomy, described through the analysis of the TL-bone junction itself. The reason for that
is due to the possible presence of adjacent tissue specializations in both the TL and the bone
that are functionally related. From this analysis, the concept of enthesis organ has been pro-
posed [BM01]. This concept is extremely important for clinicians, especially rheumatologists
since it can help to explain and differentiate patterns of injury or even explain why the symptoms
associated with a particular enthesopathy are diffuse [BTR+06].

The term enthesopathy refers to the involvement of the entheses in any pathological process,
such as inflammatory, metabolic, traumatic, or degenerative. Indeed enthesopathy has been well
recognized as a feature of a variety of systemic rheumatic disorders [SRB+15].

In spondyloarthropathies, enthesitis can be considered a significant clinical manifestation and
important to pathogenesis; in particular, enthesitis helps the diagnosis of Psoriatic Arthropathy
or juvenile enthesitis-related arthritis [SR17]. According to the study proposed by [KEA+18],
35−50% of patients with PsA reported the presence of enthesitis and enthesitis presented in PsA
more than in other forms of arthritis such as Rheumatoid Arthritis, Ankylosing Spondylitis (AS),
and Osteoarthritis. Furthermore, entheses may be the main target of the disease process in many
prevalent rheumatic conditions.
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(a)

(b)

Figure 5.5: (a) Anatomical atlas of the ligament insertion sites on the trapezium and scaphoid
bones of a healthy subject. (b) Result of our analysis on a 3D segmented bone: red regions
represent ligament insertion sites estimation, green areas highlight articulation regions.

Given these premises, it is evident that the study of enthesitis is fundamental for pathology dif-
ferentiation and analysis of the disease’s gravity. One of the difficulties in the evaluation of en-
thesitis is their localization. Since the enthesis is located very close to the synovium its location
uncertainty often makes clinical diagnosis problematic [KEA+18]. However, through the use of
imaging techniques such as MRI, the localization of the insertion sites and thus, the evaluation
of enthesitis, can be improved.

5.1.3 Articulation regions

The different bones that compose the carpus allow variable movement of the wrist and, conse-
quently of the hand. This aspect implies the presence of different surface areas involved in the
articulations. Fig 5.3 gives an idea of the structures involved in some of the possible movements
performed by the carpal district. The study of the kinematics of a healthy, as well as a patho-
logical, district is relevant in clinical practice and it benefits from knowledge about functional
subparts of the individual bone. Ligament insertion sites positioning (Section 5.1.2), and area of
articulation regions are examples of such relevant subparts.
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Figure 5.6: Anatomical landmarks on carpal bones: (a) articulation facets between hamate (yel-
low) and capitate (pink); (b) hook of hamate, prominent bony feature (orange).

To have a complete idea of the functional subpart status and organization, it is necessary to
analyze not only every single bone but also the complete carpus setting since the location of
functional regions is highly dependent on the inter-carpal spatial arrangement. The identification
of the functional sub-parts through the visualization of 2D images is a common practice in the
medical field. Some computer-guided studies have been performed to imitate the same process
made by physicians through the analysis of anatomical shapes, considering the 2D perspective
of scan images. However, the presence of a projection in 2D of anatomical structure can cause
gaps due to occlusions. Especially for the carpal bones, where different shapes and variable ori-
entations and overlaps are involved. Indeed, more views are needed to analyze and comprehend
the bone structures.

Thanks to Computer Graphics development, Patient-specific 3D anatomical models (3D-PSMs)
have been widely spread and applied in clinical research. 3D PSMs are 3D computational recon-
structions of a patient’s anatomy, which mirror the accurate appearance of the patients’ organs
in the 3D space. The 3D-PSMs are expected to be extremely useful in many applications such
as biomechanical simulation, Computer-assisted Diagnosis and Surgery, prosthesis fitting, and
legal medicine. In the last decade, a lot of geometric techniques for 3D shape analysis have been
developed [ABM+06] and also applied to 3D PSMs. However, traditional geometric descriptors
are not enough to identify the high-level functional features since:

• the anatomical features often belong to regions that do not have a strong geometric char-
acterization, i.e., the markers of functional landmarks (articulation areas) are usually fea-
tureless flat regions;

• the definition of these features is intrinsically vague; indeed, features cannot be coded or
identified by any mathematical formulation;

• landmarks are highly variable among individuals;
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• shape alteration makes the anatomical shape characterization more challenging, due to the
presence of pathological conditions.

These facts suggest that the analysis of the shape of bones should be coupled, with the co-
analysis of all the elements of a district with the aim of identifying interoperability properties that
model the articulation functionality. A study by [BPF+19] proposed a research in this direction,
developing a characterization that considers also the functional interdependencies, which are
particularly relevant in complex districts such as the wrist.

5.2 Ligament insertion localization with texture analysis

In the diagnosis of rheumatoid diseases, the ligaments’ insertion sites are relevant areas for physi-
cians as they help to classify the underlying pathology at its early stages and to start a patient-
specific therapy. A visualization instrument able to identify the location of those insertion areas
is particularly useful to support physicians in the early diagnosis of different pathologies of the
carpal districts. The proposed approach takes advantage of the grey-levels mapping result (Chap-
ter 4), in order to focus on both the MRI information and the 3D visualization of the enthesis
locations. The identification of ligament insertion sites is indeed performed on the mapped sur-
faces but basing on the grey-levels since ligament insertions are not related to any particular
morphology characteristics. However, the possibility to exploit the surface information during
the grey-levels mapping phase helps in focusing the research on the image region that can actu-
ally present the insertion site, without the need of analyzing the entire volume.

To identify the insertions on the surface by the mapping result, the range of grey-levels charac-
terizing the different tissues have to be analyzed. Indeed, given the tissue composition of the
enthesis region (Section 5.1.1), and considering that the images are low-field, it is plausible to
identify an approximative range of grey-levels that could represent the insertion site. In a T1
weighted MRI, the tissues outside the bone marrow are represented as black or dark grey vox-
els. The original MRIs are 12-bit images with 4096 grey-levels, normalized between 0 and 1.
Focusing on the histogram of one bone mapping and excluding the black vertices (which are the
majority), more than half of the remaining vertices are characterized by grey-levels between 0
and 0.3, with variations that depend on the single bone (Fig. 5.4 (a)).

To find the proper range of grey-levels that characterize the ligament insertions, some consid-
erations must be made. In correspondence to those regions, the composition of the bone tissue
changes with respect to the regions where ligaments are not involved. Indeed, the cortical bone,
in the presence of ligaments, is characterized by fibrous bone tissues, while lamellar bone tissue
is predominant in the rest of the bone. For those reasons, the grey-level of ligament insertions
should belong to the brighter range among the dark grey-levels. To automatize the process and
customize it for each patient, we base our subdivision on the histogram of each bone. Given the
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histogram, we calculated the 75th percentile and considered it as the threshold: above the value
are the grey-levels indicating a ligament insertion, below the value, all other tissues. Moreover,
we add a second roof threshold placed at value 0.35 to remain in the area of dark grey-levels
(Fig. 5.4 (b)).

Ligament insertion sites localization results Good results have been obtained in the prelim-
inary study developed. In Fig. 5.5(a), the ligaments insertion regions according to anatomical
atlases [sit20] are coherent to those identified by our method (Fig. 5.5(b)). In this case, the real
subject is taken from the healthy cluster present in the data set. Since the volumes are low-field
MR images, the regions are not accurately defined. Nevertheless, physicians need to approxi-
mately identify the region where they can find the ligaments insertions to the bones considering
the specific patient.

5.3 Articulation region characterization

Characterizing a shape means building a computational description able to preserve the most
representative elements of the shape, usually a few basic types, along with their relationships
and their invariants [FS98]. In this context, mathematics plays a key role to handle the com-
plexity of digital shapes, in particular, differential topology provides a setting able to formalize
several problems related to shape analysis and description. In this scenario, methods have been
derived to analyze the shape of an object according to the properties of real functions defined
on it. The added value of these approaches is that different functions can be used according to
the properties and invariants that one aims to capture, thus providing a flexible shape description
framework. Examples of popular functions used in object analysis and matching are distance
functions, curvature-based and geodesic-based functions, Laplace eigenfunctions and distribu-
tion maps [BDF+08, BFF+07]. Then, the geometric/topological information related to the shape
is compactly stored into descriptors [BCA+16], for instance, adopting feature vectors [BKS+05],
graph-based descriptions (e.g. Reeb graphs [BGSF08]), or maps [HWG14].

Unfortunately, given a collection of 3D models, a single property is not likely to provide a good
organization of the data, or at least it could be not informative enough [HZG+12]. To address
this limitation, a recent path of research aims to derive high-level information by analyzing single
objects in the context of larger collections of models: the idea is to derive information not only
from the object itself but also from its relation with the other ones in the collection [HWG14].
This is the case, for example, of the co-segmentation of a set of 3D objects, [WAvK+12, HFL12,
KHS10], i.e. the segmentation of the objects as a whole into consistent semantic parts with part
correspondences.

These 3D shape analysis techniques are meant to derive semantic (high-level) information from
low-level properties exploring their relation with the other objects in the collection [OLGM11,
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Table 5.1: Bone-based properties: a list of state-of-the-art methods.
Characterisation of a single bone

Distance-based
Distance from the centre-of-mass (CM) Spatial distribution of the object with respect to its centre of mass (barycentre).
Distance from a principal axis (LD) [BB13] Spatial distribution of the object with respect to its main axis.

Distance from a principal plane (PD) [BB13]
Surface symmetry with respect to the plane through the bary-centre and with the principal axis
as its normal vector.

Distance from the convex-hull (CV) Punctual distance between the shape vertices and the object convex-hull (crumpliness [CRC+02]).
Geodesic distance from random surface samples (GD) [HSKK01] Average geodesic distance where the source points are randomly distributed.

Geodesic distance with the farthest point sampling (GD FD) [MD03]
Average geodesic distance where the source points are distributed
sampling algorithm.

Curvature-based
Gaussian Curvature (GC) [PS06] Product of the principal curvatures.
Mean Curvature (MC) [PS06] Half the sum of the principal curvatures.
Shape Index (SI) [KvD92] Ratio between Gaussian and Mean curvatures.

Spectral-based
3rd, 4th, 6th and 7th Eigen vectors [PP93] 3rd,4th, 6th and 7th Eigen vectors computed from the Eigen decomposition of Laplace-Beltrami operator.

HZG+12, KLM+12, ROA+13]. The goal is to facilitate exploration and content search as well as
to understand their overall categorization and summarize their content [LMS13]. Here, seman-
tics refers to the meaning, or functionality, of an object in a given context. The key challenge
is that shapes can vary in different ways, and users may be interested in different types of vari-
ations [KLM+12, KLM+13]. Examples of applications are: semantic annotation, which is the
automatic or semi-automatic labeling of objects (or parts of objects) [BAC+16]; attribute trans-
fer techniques, which study how to automatically transfer labels from a single object (or part of
an object) to sets of unknown objects [KBB+13]; the structuring of 3D large data sets to enable
navigation and retrieval, which is often achieved by exploiting also the pairwise similarities be-
tween the rest of the data set models [HSS+13]. In all these approaches, a major issue is how to
interpret such implicit knowledge. In general, the use of prior knowledge might be inevitable;
anyway, the recent advances in learning techniques have achieved state-of-the-art performance
in Computer Vision applications [CMS12]. These techniques represent a possible solution to de-
termine automatically the weights of the different shape features on the basis of context (e.g., the
shape classes of a database) [BB13, TDVC13], design class-specific or application-specific shape
descriptors [BMM+15] or extend deep learning techniques to geometry [MRB+16, BBL+17].

Shape characterization methods can be applied also on 3D surfaces representing anatomical
structures, like the ones considered in this Thesis (Section 5.3.1). Starting from feature-based
characterization we propose an integration with tissue information retrievable from the grey-
levels mapping results (Section 5.3.2).

5.3.1 Feature-based carpal characterization

By discussing with the domain experts, we derived that the most relevant anatomical landmarks
of carpal bones in the context of Musculoskeletal Diseases (MSD) diagnosis and treatment are:
articulation facet - zone of the bone that participates in articulation, contact area - zone of the
bone that is adjacent with the neighboring bones within the district, and prominent bony feature
- zone of the bone that exhibits typical morphological characteristics (e.g., protrusions, concavi-
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Figure 5.7: The shadow map descriptor represents the shadow projected from a bone on its
adjacent one. The directional light source is opposite to the normal of the surface on which the
shadow is drawn.

ties). Among these anatomical landmarks, frequently, the articulation facets and contact areas of
the carpal bones belong to a relatively flat region, while prominent bony features have peculiar
morphological characteristics that are geometrically well characterized. We present the example
of hamate and capitate bones in Fig. 5.6, where the articulation facets belong to geometric fea-
tureless regions and therefore are not well characterized via morphological properties, while the
protruded bony feature - hook of hamate, can be easily described by geometric functions (e.g.
distance from the center of mass). For this reason, the analysis of the single bones with standard
geometric properties is relevant as the analysis of the articulation district as a whole. Indeed,
state-of-the-art methods for shape analysis can be applied also to 3D PSMs of the interested
bones, thus this group of properties can also be named bone-based, since they are computed by
considering only the shape of an individual 3D bone model.

Table 5.1 lists the state-of-the-art properties that revealed to be particularly useful for the case-
study, since they can complement each other in terms of their sensitivity to feature types, and
as a result, can derive high-level information. Purely geometric properties are relevant for char-
acterizing prominent bone features that are morphologically well-characterized. However, these
geometric characterization techniques are not fully suitable to identify the functional features
of carpal bones that often belong to the geometric featureless and/or flat regions. The prop-
erties that are able to characterize the functional parts (articulation and contact areas) of the
patient-specific 3D models, can be called district-based properties. These measures integrate
the whole district perspective with the individual shapes of the bones. The semantics behind the
articulation and adjacency relations between the carpal bones has been modeled in the Carpus
ontology [BAC+16] which is specifically designed to support computational analysis of patient-
specific 3D carpal bones. This formalism represents the anatomical information in a form that is
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Figure 5.8: Conceptualisation of the articulatesWith relation in the Carpus Ontology on
the left, Corresponding visualisation on the 3D model on the right.

able to support reasoning, inference, and assertion. Particularly, when such knowledge is associ-
ated directly with the patient 3D data, it allows for dynamic navigation of the 3D geometry, with
the possibility to extend the reasoning to the geometric aspects.

Algorithm 1 Shadow map computation
1: procedure SHADOW MAP COMPUTATION (BONES[8])
2: Input: Bones[8]← 8 carpal bone triangulations (.off)
3: R[8][8]← Articulation Matrix
4: Output:ShadowMap[8]← array of scalar values
5: for <i = 1 to 8> do
6: for <j = 1 to 8> do
7: if (i! = j and R[i][j] = 1) then
8: Shadow[i]← PROJECTION(Bone[i], Bone[j])
9: DrawContour(Shadow[i]) . contour based on the pre-defined range

10: procedure COMPUTESHADOW(Model1, Model2)
11: KDTree← BuildKDTree(Model2)
12: for each vertexk of Model1 do
13: CloseP ← FindClosestPoint(vertexk, KDTree)
14: SquareDis← EuclideanDistance(vertexk, CloseP )
15: if SquareDis < Shadow[i][k] then
16: Shadow[Model1][k]← SquareDis

Shadow map: Is one of the district-based properties able to describe wrist articulations. It is a
scalar function that characterizes the articulation areas of the carpal bones following the intuition
that the articulation regions are the areas of the bones which face to each other, and these areas
can be defined as the shadow cast by each bone onto the adjacent ones (see Fig.5.7). The shadow
map represents this information, capturing not only information on the shape of the individual
bones but also about their spatial arrangement in the whole district. The input is constituted by
the eight 3D carpal bone models in the same coordinate system Bone[8] = {B1, B2, ....B8} and
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Figure 5.9: The computation of the Shadow map applied on: (a) models segmented from MRI
images; (b) models segmented from CT images; (c) a pathological case affected by Rheumatoid
Arthritis stage 3 (pinker areas indicates higher values of the shadow map).

(a) (b)

Figure 5.10: (a) Shadow map on the wrist district, (b) shadow map analysis result: distinction
between bone regions identified as articular facets (yellow) and regions free from articulation
interaction (red).

.
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(a) (b) (c)

Figure 5.11: (a) Histogram of grey-levels in the capitate bone articulation facets, (b) grey-levels
histogram related to zones not involved in any articulation, (c) external mapping of the capitate
bone: in the articulation facets, (orange arrows) it results brighter.

the articulation matrix R[8][8], which is defined by the Carpus Ontology as R[i][j] = 1 when
Bone[i] articulatesWith Bone[j] (Fig.5.8), and R[i][j] = 0 otherwise. To compute the
Shadow map we adopt the concept of orthographic projection where the shadow is projected
by a point light source and the directional light source directed opposite to the normal of the
surface on which the shadow is drawn. The main idea is the following: we take the Bone[i], and
then project its approximate shadow Si,j on another bone surface Bone[j] which is defined by a
generalised cone Ci,j ⊂ R3 that marks the maximum region of space compatible with Bone[j]
and Bone[i]. Note that the shadow of Bone[i] is projected onto Bone[j] only if R[i][j] = 1.
Following this approach, we compute the ShadowMap[8] vector, which describes the shadows
projected onto all the eight carpal bones. Algorithm 1 presents the pseudo-code to compute the
Shadow Map from the carpal bones.

We present results of the Shadow map computation in Fig. 5.9 (healthy and pathological data
set), where the bone surfaces are colored according to the triangle-wise scalar value of the Shad-
owMap function and the contours are drawn based on a predefined scalar value range. In Fig. 5.9,
we also represent the shadow map computation on a pathological data set (RA stage 3) where,
regardless of the fact that the bone surfaces are mostly eroded, the descriptor provides an accept-
able characterization by coupling the bone geometry with the spatial arrangement. However, the
Shadow map fails to produce a reasonable characterization solely when the spatial arrangement
of the district is significantly altered due to some typical pathological conditions, e.g. advanced
carpal collapse, missing bone, complex fracture.

5.3.2 Integration of shape and grey-levels analysis results

The shadow map descriptor can be easily integrated with the grey-level mapping method ( Chap-
ter 4). The idea is to provide a more complete characterization of the district, describing not
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Figure 5.12: Boxplot of the grey-levels distributions for each bone in articulation areas (a) com-
pared to the distributions of the non-articulation areas (o). The articulation areas show a wider
range and often higher median value. The distribution of the articulation regions results sig-
nificantly different from the non-articular region distribution except for pisiform and trapezium
bones.

only shape features but also the relative volume information. Indeed, our textured surfaces of
bones integrate this descriptor with the information of the tissue surrounding the bone surface.
This integration is particularly indicated for areas, such as the articulation zones, which are often
affected by early symptoms of a rheumatic pathology. The shape information of the articulation
areas are indicated by the shadow map on the 3D PSM (Fig. 5.10)) and volume grey-levels are
depicted from the mapped surface. In this case, since the relevant areas analyzed are intuitively
outside the bone, the best result to integrate tissue information will be given by an analysis of the
external mapping. Furthermore, we can compare the external mapping results in those regions
with respect to the results in non-articulating areas.

It results that the mapping method is able to discriminate the articulation facets, not only by
shape analysis (shadow map descriptor computation) but highlights those regions also with
changes in the mapped color. In the articulation facets (Fig. 5.11(c)), the external mapping
result brighter than in other regions, due to the tissues that compose this kind of joints. This
is not just a visual response: the grey-levels histograms of the articulation facet is embracing
a wider range of brighter grey-levels in comparison with the histogram of other regions of the
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(a) (b) (c)

Figure 5.13: Registration process result. (a) Original situation, (b) after centroid translation, (c)
final result obtained with ICP.

same bone (Fig. 5.11(a,b)). These considerations are confirmed by the analysis of the whole
district. Fig. 5.12 shows the distribution of the grey-levels through boxplots. For each bone,
the left boxplot (a) represents the distribution in correspondence of articulation facets, while the
right boxplot (o) shows the distribution outside the articulation regions. A one-way ANOVA test
has been performed on each bone to demonstrate the statistically significant difference between
articulation and non-articulation regions. All the bones present an articulation region grey-level
distribution significantly different from the non-articulation one, except for the Pisiform and the
Trapezium case. However, the Trapezium presents a wider range, as expected, in the articulation
grey-level distribution. The Pisiform bone, instead, can easily result as an outlier since it is the
smallest bone of the district and presents just one articulation site. Indeed, considering the over-
all district, the articulation areas actually present a different grey-level distribution with respect
to the non-articulation regions.

5.4 Clinical aspects of rheumatic pathologies monitoring

In Rheumatology, as well as in most medical branches, follow-up exams are commonly used to
analyze degenerative diseases. These exams consist of the control of the patient’s status over
time. The importance of follow-up analysis resides in their support to the study of the pathology
development which, in turn, brings to personalized adjustments of the therapy. Different degen-
erative pathologies, in the rheumatological domain, bring to a deformation of the bones, usually
linked to an erosion process. The origin of such erosive degeneration differs according to the par-
ticular undergoing pathology, but the result is an anomalous change in the tissues’ composition
and, as a consequence, in the bone morphology. Patients that present a similar situation suffer
from severe pain and difficulties in the mobility of the interested joints, as a consequence of the
damaged bones relations. Since an erosion can deform the shape of a bone, an effective strategy
is to scan and analyze the anatomical district in order to identify morphological changes in 3D
surface models, focusing the analysis on geometric anomalies with respect to the normal case.
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(a) (b)

Figure 5.14: Erosion localization (on two different subjects) based on the geometric analysis
through distance distribution thresholding. Blue regions indicate healthy bones and red regions
locate potential erosions. The red rectangles indicate erosions identified by experts.

Morphological changes in degenerative diseases are usually related to a previous degeneration
of tissues. This means that the composition of the structures around the bone and in the bones
themselves mutate, and such degeneration can be detected in the input images. Thus, the iden-
tification and evaluation of erosion regions have been studied in literature through the use of fo
shape analysis (Section 5.4.2) and image processing (Section 5.4.1). We propose a comparison
between two approaches (Section 5.5) calling the first geometry-based and the second texture-
based. The geometry-based approach is based on the geometric differences on the 3D segmented
surfaces, without considering tissue information. The texture-based approach identifies degen-
erations in the tissue composition through an analysis of the changes in grey-levels. Moreover,
to provide higher accuracy, we propose an integration method that exploits both the information
retrieved from the shape analysis and from the texture (Section 5.6).

5.4.1 Image-based erosion identification methods

Medical images constitute the basic instrument and the starting point to perform radiography
analysis, which, in turn, are at the core of monitoring and diagnosing rheumatic diseases. Bone
erosion represents a well-established indicator of such diseases. Nowadays, two of the most fre-
quently used imaging techniques for the study of rheumatic diseases are Computed Tomography
(CT) and Magnetic Resonance (MRI). It has been found that, for erosion detection, the MRI exam
provides a higher sensitivity with respect to CT [DEH+08]. A study regarding 7 years follow-up
analysis compares three different imaging techniques in their capacity to identify bone erosion
and synovitis [SHO+06]. Another work presented a similar comparison but in a smaller period
of time [BBS+02]. This study regards a 2 years follow-up in presence of a specific therapy and
compares two imaging methods in the ability to highlight erosion sites. However, in all these

84



Figure 5.15: Workflow of the analysis of the same patient over time.

studies the identification of critical sites, such as erosion or synovitis, was performed by experts.
This kind of manual identification is error-prone and time-consuming, especially with 3D images.
Furthermore, the identification performed by experts is influenced by their previous knowledge
and expertise. For the aforementioned reasons, the study of automatic or semi-automatic identi-
fication of erosion sites in images has been widely studied in recent years. Indeed, the analysis
and quantification of image features through processing techniques are largely used in the study
of rheumatic diseases, [HVvdH+15], [LPBK08]. Previous work exploits the use of active shape
models and snakes to individuate the erosion site [GPM16, LHS+06]. Moreover, a compar-
ison [FKS+18] of automatic, semi-automatic, and manual methods in the estimation of bone
erosion from images has concluded that manual erosion segmentation underestimates the extent
of the damage. With the diffusion of Artificial Intelligence techniques, bone erosion has been
identified in end-to-end systems [MHT+18], [RRSD19]. Unfortunately, in the radiology envi-
ronment large and reliable data sets for training machine learning or deep learning algorithms
are not fairly widespread.

5.4.2 Shape-based erosion identification methods

Since bone erosion not only modifies the tissue composition but also involves the bone mor-
phology, accurate analysis of the bone shape provides information on the eventual presence of
erosion sites on the bone surface. Thanks to Computer Graphics, 3D surface models are extracted
from volumetric images to accurately represent the anatomy of the patient and 3D morphological
analysis provides results that are comparable to image analysis. The evolution of erosion sites
on wrist bones exploiting shape analysis on 3D models has been analyzed in a follow-up study
[BTZ+15]. The features considered in this kind of studies regard changes in the geometry of the
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(a) (b)

Figure 5.16: Grey-levels mapping comparing the surface texture derived from the MRI at base-
line time (a) to the one derived from the MRI at follow-up time (b). Both mappings are performed
on the 3D surface at follow-up. Changes in texture mirror the degeneration of the tissue com-
position. Light blue values are associated with darker gray-levels and pink regions to brighter
intensities.

3D shape. Indeed, leveraging parameters extracted from a 3D shape or from a comparison of
various shapes, it is possible to support general radiology also on follow-up exams [BCPS16].
In this scenario, the work in [JLBC15] quantifies point-wise changes in surface morphology of
the bones of the wrist. After the atlas selection, a non-linear registration method is applied to
warp the corresponding bones of individuals in the population, on the basis of a regularized l2

distance minimization. Where, as atlas we intend a representation for characterizing anatomy
and anatomical variation, thus a model of the expected anatomy [DCdBdMW04]. Through the
computation of a displacement field, the authors were able to show local differences in bone
shape, and thus to track bone erosion evolution in Rheumatoid Arthritis.

5.5 Comparison of erosion evaluation method on the case-
study

Considering that both image texture and shape analysis can provide insights on the erosion pro-
cess, we studied a comparison of a geometry-based approach, which performs a geometric anal-
ysis of 3D segmented surfaces, and a texture-based approach, which analyses changes of the
grey-levels in a neighbor of the bone surface. Moreover, we propose a combination of the two
approaches, showing how it could overcome the limitation of the single ones taken separately.
The carpal district is one of the most used for the diagnosis of rheumatic diseases since it is one
of the first to show symptoms of the pathology. As described in Chapter 3.1, for each subject
in the data set is also present a 3D surface model obtained from the MRI segmentation. Among
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(a) (b)

(c) (d)

Figure 5.17: Bone erosion evolution in time: (a,c) volume at time t1, (b,d) volume at time t2. At
time t2 the Scaphoid presents an erosion (red circle in (b)). (c,d) Relation between the surface
mesh at time t2 with the volume, before (c) and after (d) the bone erosion.

those are present 6 follow-up exams, thus, for the relative subjects, it is possible to analyze how
the pathology has progressed. Usually, in this case, with baseline time is intended the moment
of the first exam/image scan, namely t1. While the follow-up time indicates the second exam,
performed after a few months or years (t2). We now describe the three approaches chosen to
study the erosion processes developed due to the pathology.

Geometry-based follow-up analysis In order to evaluate the differences in the geometry of
each bone over time, we consider exclusively the 3D surface models of the carpal district at
baseline time and the one at follow-up time. The analysis is carried out by a registration of the
two carpal districts followed by an evaluation of local distances in order to localize shape changes
and, thus, eroded regions. The registration of the district at baseline and follow-up is based on
the Iterative Closest Point algorithm. A centroid translation is performed prior to the ICP al-
gorithm [BM92] since the latter is designed to align partially overlapping meshes. In this way,
the centroid translation coarsely superimposes the two districts and the following ICP refines the
alignment. In Fig. 5.13, we show the registration between a baseline 3D surface (light blue) and
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(a) (b)

Figure 5.18: (a) Difference between the external mapping of volume at time t1 and external
mapping of volume at time t2. The erosion area (red) presents a major change of texture (higher
difference in mapping values). (b) Distribution of the distances of each vertex of the mesh at
time t2 from the mesh at time t1; high values of distance (red), typical of erosion regions, corre-
sponds to the erosion depicted in (a).

a follow-up surface (red). Then, we compute the Hausdorff distance between the two districts
to identify which bone could present an erosion. Ideally, the higher the distance, the higher the
probability to find an erosion. Calling X1 the 3D bone surface at t1 and X2 the registered 3D
surface at t2, we identify eroded bones by their Hausdorff distance is computed as: d(X1,X2) :=
max{dX1(X2), dX2(X1)}. Where dX1 (X2) := maxx∈X1 {miny∈X2 {‖x− y‖2}} . The mini-
mum distance is calculated using a KD-Tree algorithm.

This general analysis is followed by a local evaluation of the distribution of the minimum distance
of each vertex of the surface at t2 from the vertices of the surface at t1. The results obtained in
terms of distance distribution are then normalized to [0, 1] in order to be comparable with the
results obtained with the texture approach described further in this Section. The regions of the
bone where the morphology has changed the most, present a higher level of distances (near to 1)
in the distribution, highlighting possible erosion processes. To help physician in localizing the
erosion on each bone, we set as threshold: T = dX1 + 3 ∗ σdX1

, were σdX1
and dX1 represent the

standard deviation and the mean of the distance distribution, respectively. In this way, vertices
that have a distance higher than T are considered as belonging to erosion, and the remaining
vertices are classified as healthy (Fig. 5.14).

Texture-based follow-up analysis The volume images in the data set are T1 weighted MRIs,
whose voxel values have been normalized between 0 (black) and 1 (white). The grey-levels
present in the image result from the signal received from the tissues, which is linked to their
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(a) (b)

Figure 5.19: Analysis of the changes in the distribution of grey-levels after the development of
erosion. (a) Comparison of the hamate and scaphoid bones external mapping before the erosion
(baseline exam): the two distributions can be considered equal. (b) Comparison of hamate bone
(healthy) and scaphoid bone (eroded) in the follow-up exam: the erosion significantly changes
the distribution of the scaphoid grey-levels. The two distributions can no longer be considered
equal.

composition (Chapter 3.2.3). The erosion typically results from a previous mutation of tissue,
whose origins can be different depending on the disease. Once the degeneration affects the bone
tissue, then start the erosion, which usually destroys the cortical bone at first, and then proceeds
with the internal layers. This means that, on the image, if an erosion presents itself over time,
it can be identified through an analysis of the changes of voxels’ intensities. Since significantly
eroded bones present a higher Hausdorff distance, eroded regions are easily identified and it is
possible to evaluate the grey-levels mapping locally on the single bone of interest. The distri-
bution of the minimum distance of each vertex of the surface at time t2 from the vertices of the
surface at time t1 highlights the region of the bone where the morphology has changed the most,
possibly due to an erosion process. In this location, the analysis of the texture mapped on the
surface can confirm and evaluate the erosion (see the pipeline in Fig. 5.15). The surface used
for the analysis is the follow-up mesh because at time t2 the pathological situation will be worse
than at time t1. Thus, localizing and evaluating the erosion region through volume changes is
more discriminating on this surface. This solution permits to focus exclusively on the regions of
the volume image that are near the bone surface by mapping the grey-levels in the neighborhood
of the surface onto the 3D shape model. After properly co-registering the t2 surface on the t1
surfaces, the volume grey-levels at time t1 are mapped on the surface at time t2, exploiting the
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Figure 5.20: Texture difference values near to -1 can be associated with the healing process of
the bone due to the therapy. The red circle indicates an erosion site where the eroded volume at
baseline time was higher than the eroded volume at follow-up time.

grey-level mapping described in Chapter 4. Moreover, the grey-levels at time t2 are mapped
on the surface at time t2 as well. In this way, the follow-up model can show either the volume
situation at time t1 and time t2. In particular, we focus on the grey-levels immediately outside
the segmented surface (Fig. 5.16), because often the erosion results from a degeneration of ar-
ticulation regions. Figs. 5.17(a,b) show the volume situation at time t1 and time t2. Registering
the t2 mesh on the volume at time t1 (Fig. 5.17(c)) and comparing it to the mesh at time t2 on
the volume at time t2 (Fig. 5.17(d)), is evident that there are changes in the bone tissue. Those
changes are highlighted coherently in the mapped mesh.

The variations in texture are highlighted by computing the difference between the grey-levels
mapped from the baseline MRI and the ones mapped from the follow-up MRI. A higher value
of difference indicates a region where the tissue has been substantially damaged, probably in
relation to an erosion process. A color map associated with the difference values can describe
the distribution of the changes in terms of tissue modification directly on the 3D surface. This
confirms that the grey-levels mapping algorithm is useful, not only for global evaluation but is
also coherent with local changes. It helps the classification of bone erosion sites on the surface
and supports the bone object comparison over time. Indeed, the tissue information provided by
the texture, confirm the findings supported by the shape analysis and correct misleading informa-
tion that arises from the morphological comparison. As an example in Fig. 5.18(b), besides the
red area (erosion), another region of the bone present slightly high distance values (yellow) from
the geometrical analysis. Although Fig. 5.18(a), in the same areas, do not exhibit a deep change
as for the erosion case. Thus, the distance values are to be attributed to the variability introduced
by the registration phase. To verify that the presence of erosion can actually change significantly
the distribution of grey-levels, we compared a healthy bone with the eroded one before and after
the development of the erosion. In Fig. 5.19, the Scaphoid external mapping is compared to the
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Figure 5.21: Pipeline of the follow-up integration method.

Hamate external mapping using a qq-plot. At time t1 (Baseline exam), the plot results lay on the
bisector line, thus the two distributions can be considered equal (Fig. 5.19(a)). The same com-
parison is performed in the follow-up exam, after the development of the erosion in the Scaphoid
bone. In this case, the two distributions can no longer be considered equal (Fig. 5.19(b)). Indeed
the change in the grey-level distribution is significant.

5.6 Erosion identification integration method

The first approach described in Section 5.5 focuses exclusively on the geometric differences
that occur over time, without considering the tissue information. Whereas, the second method is
centered on the degeneration of tissue composition. In the following, we will present two possible
approaches that aim to integrate the information extracted from the two methods seen so far. The
analysis of the local distance distribution between the district’s bone at baseline and at follow-up
associates, to each vertex composing a bone model at follow-up time, the value of the distance
from the nearest vertex of the baseline correspondent bone. Similarly, from the texture analysis,
each vertex of the follow-up district is associated with the value of the difference between the
image information at baseline and follow-up. In this way, each vertex composing the surface
model of the follow-up is associated with a feature vector, characterized by geometrical and
texture information. In particular, the texture information present intensities in [−1, 1] since they
are obtained from the difference of gray levels between 1 and 0. A value of texture nearer to 1,
indicates a major change in the intensity of the image voxels and, thus, a radical change in tissue
composition over time. A value of texture nearer to -1, instead, could indicate a healing process,
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(a) (b)

Figure 5.22: Scaphoid bone follow-up analysis of a patient with Rheumatoid Arthritis. Compar-
ison of the erosion region identified by the experts (a) with the result of the geometrical analysis
(b). The erosion is correctly identified (circle), but the distance distribution shows higher values
also in an area that does not present erosion (arrow).

where the extension of an existing erosion has decreased due to the therapy [BTZ+15]. As an
example Fig. 5.20 shows the identification of an erosion where the texture provides negative
values. In correspondence of that region, in the data set evaluated by experts, the eroded volume
is 171mm3 at baseline time and 57mm3 at follow-up time, indicating a reduction of the erosion.
In this case, the bone tissue, probably due to the therapy, has healed over time, bringing the value
of texture difference near to -1. The value of the distance, instead, can vary from 0 to 1 depending
on the entity of the geometric deformation.

Fig. 5.21 shows a flow-chart of the two options leveraged to integrate the information provided
by the geometry to the ones provided by the texture. The core difference between the two types of
integration resides in how the information of the texture is combined with the relative information
on the distance. The first option is to multiply the value of the geometry information to the one
of the texture information for each vertex. In this way, if a variation in geometry is associated
with a high variation in texture (value near to 1), then the result will be a higher total value.
Whereas, if a geometry change is not associated with a major change in texture (value next to 0)
then the influence of the geometry variation will be diminished, bringing to a lower total value.
In this way the erosion sites will be highlighted only if texture as well as geometry, show a major
variation, confirming that the bone has developed both a change in morphology and in tissue
composition.

As a second option, we consider a linear combination of geometric and texture information.
Calling d2 the distribution of the distances obtained by the geometry analysis and with d1 the
distribution of the texture changes in the grey-levels analysis, the resulting distribution will be
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(a) (b)

Figure 5.23: Inaccuracies of the registration method (a) with the relative influence on the identi-
fication of erosion regions (b).

given by d1 + eps ∗ d2 where ε is in the interval [0,+∞). Varying the value of ε, it is possible to
give more emphasis to the geometric or the texture information. If the clinician wants to surely
identify all erosions, even the smaller, ε will be increased. A low ε is more suitable for the
identification of larger and persistent erosions. Finally, an interactive visual representation of the
integrated results is achieved by changing ε and helps the user to better analyze the input data.

It is presumable that the relevance of the geometry to the final result, managed by ε, has a cor-
relation with the stage of the pathology. Thus the manual setting of the parameter permits the
physician and the rheumatologist to adjust the visualization accordingly to their previous knowl-
edge on the case, that is the type of rheumatic disease and the relative mechanism of erosion
development. Moreover, the expert adjustment of the parameter could be guided by the duration
of the pathology for following monitoring exams.

Results and discussion As already explained, the carpal area represents one of the most com-
plicated skeletal districts of the whole human body. It is constituted by eight small bones that
articulate with each other in a small space extension. Such a complicated arrangement is fun-
damental for the high number of fine movements that the wrist can perform. Since the wrist
represents one of the districts that mostly suffer from damages due to rheumatic pathologies, it is
usually studied by physicians as a reference point for the analysis of the evolution of the disease.
One of the most used techniques for this purpose is the analysis of low-field MRI such as the
ones exploited in our data set. The highly complicated anatomical structure and the low-field
images represent the core challenges of the approaches presented in this Chapter.

Regarding the geometry-based analysis, in Fig. 5.22 we compared the identification of erosion
sites performed by experts in the field with the result of the geometry-based analysis. In this
case, the erosion site is correctly identified by the geometrical analysis, which presents a partic-
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Figure 5.24: Erosion localization results in the texture-based approach. The erosion is correctly
identified (circle) but other healthy areas (arrow) are false-positives due to low image resolution.
Blue and light blue colors represent negative texture values (blue corresponds to -1); green areas
present values near to 0. Yellow and red represent increasing values where red corresponds to 1.

ularly high value of distance distribution in the exact location indicated by the experts. However,
the results show also the presence of false positives: areas of the bone that are classified as ero-
sion but are actually healthy regions. This misclassification is related to the inaccuracies of the
registration process. Indeed, it is presumable that even the registration phase of the geometrical
approach could bring errors in the evaluation since most of the wrist bones are small and do not
present relevant shape features. In particular, the rounded and symmetric shape of most of the
bones affects the accuracy of the alignment of the district. According to Fig. 5.23, in the region
where the two bones are not well aligned, the geometrical analysis shows a possible erosion site.
Indeed, in the area which presents a less accurate alignment, the distance distribution presents
higher values than expected, even if no erosion process is involved. Nevertheless, if an erosion
process is actually present it hardly goes unnoticed in the geometrical analysis.

Regarding the image texture analysis, the difference between the texture at baseline and follow-
up times shows an inhomogeneous behavior. It is clear, though, that the higher values of differ-
ence in texture are located in an erosion region. This result is coherent with what expected since
a major change in tissue composition implies a higher value of difference between the texture
at the two different times. As for the geometrical approach, even in this case, the location of
the erosion is correctly identified, however, a series of false-positive are present, even if charac-
terized by lower values of difference with respect to the real erosion locations (Fig. 5.24). The
inhomogeneities, as well as the false positives, can be explained by the resolution of the MRI
images. Indeed, the experiments of this study are performed using a low-field T1 weighted MRI,
which implies that the resulting scans have a low resolution. This factor influences the results
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(a) (b) (c)

Figure 5.25: Comparison of the (a) geometry-based approach, (b) texture-based approach, and
(c) their integration through the multiplication of the geometric and texture intensities, on the
same follow-up district. Warm colors represent the higher intensity values (red as the highest
values), cold colors represent the smaller values in the distribution. The red circle indicates the
small erosion identified by the geometry-based approach but not by the integration method.

(a) (b) (c)

Figure 5.26: Linear combination: d1 + ε ∗ d2 where d1 is the texture distribution and d2 is the
geometry distribution integration method varying the value of ε (a) ε = 1, (b) ε = 0.5, (c) ε = 0.2.
Warm colors correspond to higher intensity values of the distribution (red as highest value); cold
colors represent smaller value in the distribution.

obtained in the search for erosion using a texture-based approach, thus increasing the resolution
could lead to more precise and accurate results.

The integration methods are thought to merge the information provided by the geometrical anal-
ysis with the ones extracted from the texture analysis. In Fig. 5.25, we compare the results
obtained from geometric, texture, and integration approaches. In this case, the integration is ob-
tained using the multiplication option. As visible, the false positives, in the integration approach,
are no longer present since just the areas that present an actual erosion show higher values. The
overall result is, indeed, more homogeneous, indicating that geometry and texture information
compensate each other, discarding misleading classifications due to low image resolution or reg-
istration inaccuracies. Nevertheless, the integration result could miss some newly developed and
small erosions, as it is possible to see in the example reported in Fig. 5.25. Here the red circles
indicate the small erosion that is underlined by the geometrical approach but is not particularly
evident in the texture changes. This suggests that the erosion could be at its beginning, implying
a minor change in geometry and a small change in the cortical bone tissue, which could be still
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partly intact.

The integration approach that considers the linear combination of the texture and geometry, is
more flexible compared to the multiplication approach. Indeed, varying the value of ε, it is pos-
sible to regulate the result based on the necessity. Fig. 5.26, presents three different integration
results according to the variation of the ε value and shows that by diminishing the relevance of
the geometric information (ε = 0.5, ε = 0.2), the values lead to a more homogeneous result.
This means that the false positive areas decrease in number along with the reduction of geomet-
ric information relevance. However, an excessive reduction of the relevance of the geometrical
information brings also to the presence of false negatives, that is the misclassification of erosion
regions as healthy areas. Overall, this second approach permits to adjust the focus of the search
and to reach the desired trade-off between false negatives and false positives.

The presence of false positives shows to the physician a worsened situation and, thus, a higher
level of bone degeneration with respect to reality. Whereas, the presence of false-negatives in-
duces an underestimation of pathology progression gravity. Indeed, the false-positives or false-
negative could alter the result of the therapy performance analysis, thus the identification of a
trade-off between the two is important.

The possibility to manually change the value of ε provides also the opportunity to support the
quantitative evaluation metrics used for erosion in rheumatic diseases. As an example, the
OMERACT Rheumatoid Arthritis MRI Scoring system (RAMRIS) and the EULAR-OMERACT
Rheumatoid Arthritis MRI reference image atlas, are established standards for synovitis, bone
edema, and bone erosion scoring guided by standard reference images [ØEM+]. The bone ero-
sion, in particular, is evaluated separately for each bone and the scale is 0 − 10, based on the
proportion of eroded bone compared to the assessed bone volume, judged on all available im-
ages. Where 0 corresponds to no erosion; 1 to 1 − 10% of bone eroded; 2 to 11 − 20%, and so
on. In this way, the erosion gravity is indicated by the (1-10) score. With a manual tuning of ε,
given the score, it could be possible to assess the level of erosion with higher precision inside
each scoring class, showing interactively the result of the evaluation on the 3D model.

Finally, it is important to underline that both integrations between geometry-based and texture-
based analysis proposed in this Section do not need any previous knowledge regarding the ana-
lyzed district. Indeed, the methods do not require the computation of mean shapes or atlases in
order to perform the follow-up analysis. The only requirements are the images and segmentation
at the two points of time to be compared, making the analysis deeply patient-specific. More-
over, the integration methods are quite general, since they can be applied to different anatomical
structures, independently on how the bone models are obtained and on the imaging technique.
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Chapter 6

Grey-levels Mapping for Segmentation

6.1 Evaluation and comparison of segmentation methods

As introduced in Chapter 2, the scope of image segmentation is to partition a digital image into
meaningful regions, considering both visual content and local properties of homogeneity and
contrast. Thanks to extensive research in the field, many different approaches, and algorithms
for image segmentation have been developed. However, few methods assess whether one al-
gorithm produces a more accurate segmentation than another, whether we consider a particular
image or set of images, or for a whole class of images. In this context, we present an overview of
methods for the evaluation of segmentation algorithms; this analysis will lead us to (i) propose a
novel approach that provides physicians with tissue information related to the segmentation (Sec-
tion 6.2) and (ii) develop an unsupervised evaluation method (Section 6.3), based on the method
described in Chapter 4. Designing a good measure for segmentation quality is a well-known hard
problem and we can apply different criteria for the definition of a good segmentation. The criteria
that define a segmentation are often application-dependent and hardly explicable, however, for
many applications the difference between a favorable segmentation and an inferior one is notice-
able. Segmentation evaluation has been studied less than segmentation approaches. Nowadays,
the evaluation of the effectiveness of a segmentation method is commonly conducted through
subjective evaluations, which imply a visual comparison, performed by a human, of the image
segmentation results for different segmentation algorithms. This process has intrinsic limits due
to the evaluation of a small number of segmentation methods. Another common method is the
supervised evaluation, where a segmented image is compared against a manually segmented
or pre-processed reference image. Such an image must be provided by experts and used for
comparison with the segmentation to be evaluated [ZFG08]. Different problems arise from this
situation: in addition to subjectivity, previous knowledge of the expert could bias the results,
especially when the lack of visual information is filled by Gestalt unconscious mechanisms, such
as reification. This kind of evaluation method requires user assistance, thus resulting unfeasible
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Figure 6.1: [ZFG08] Calssification of segmentation evaluation methods.

in many vision applications. Given these premises, it is clear that unsupervised methods are
necessary in order to achieve an objective comparison of different segmentation methods and
different parameterizations of a single method. An important constraint is the independence of
the unsupervised methods from human visual comparisons or of a comparison with a manually-
segmented or pre-processed reference image [ZFG08].

Previous works on the evaluation and comparison of segmentation methods can be divided hi-
erarchycally [ZFG08] (Fig. 6.1). The first two main categories are subjective evaluation and
objective evaluation, depending on whether the evaluation is performed visually by a human or
not. Nowadays, subjective evaluation is the most used method in medical image analysis. Sub-
jective evaluations require a visual exam performed by a human, with all the problems that can
derive from such a solution. First of all, visual or qualitative evaluation is inherently dependent
on the person who analyses the image. Indeed, subjective evaluation scores may vary signifi-
cantly from one expert to another, since each person has his/her own standard for assessing the
quality of segmentation. Furthermore, the results of the evaluation may depend also on the order
in which evaluators analyze the segmentation results. For these reasons obtaining an unbiased
judgment of the accuracy and effectiveness of a segmentation algorithm is a difficult task and re-
quires a large visual evaluation study. Indeed, a large set of test images, as well as a high number
of expert evaluators, must be involved to provide a visual comparative evaluation without any
particular bias. The set of test images must contain a sufficient number of examples representa-
tive of the category of images that the segmentation algorithm will analyze. Following the same
principle, also the group of human evaluators must be sufficiently large in order to represent the
typical human observer. In medicine, obtaining such a high number of images is particularly
challenging given ethical and privacy issues, especially if the data set requires validations by
experts or bioethics committees. Moreover, it is necessary to establish well-defined guidelines to
reduce the presence of favoritism between different algorithms and parameterizations [ZFG08].
It is clear now that such subjective methods are not suitable for a real-time system with the scope
of deciding between different segmentation algorithms, or even different parameterizations of a
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single segmentation algorithm.

In the objective evaluation some methods analyze the impact of segmentation on larger appli-
cations, while others look at the segmentation method independently. Indeed, it is plausible to
divide objective evaluation methods into system-level evaluation and direct evaluation. Indeed,
system-level evaluation methods represent an alternative way to intend the evaluation of segmen-
tation. They examine the impact of different segmentation methods on the overall system. In this
approach, the goodness of a segmentation method is valued on the basis of the empirical system
results. However, this type of evaluation method is indirect. Indeed, the system-level results
from different segmentation methods just mean that the characteristics of the results were more
favorable in that particular system.

Basing on whether the method itself or the generated results are being examined, the direct eval-
uation can be further subdivided into analytical methods and empirical methods. In particular,
analytical methods judge the goodness of the segmentation not on the output of the algorithm, but
on certain properties of the algorithm itself: processing strategy, processing complexity, resource
efficiency, and segmentation resolution. Indeed, it is important to notice that these methods eval-
uate algorithmic and implementation properties, which are usually independent of the final result
of the segmentation process. Finally, the empirical methods can be divided into supervised meth-
ods, if they require a ground truth reference image, or unsupervised method if not.

With supervised methods we intend the evaluation of segmentation algorithms by comparison
of the results with a manually-segmented gold-standard. This kind of evaluation is also known
as empirical discrepancy methods or relative evaluation methods since the degree of similarity
between the human and machine segmented images determines the quality of the segmented
image. One potential advantage of supervised methods over unsupervised methods is that the
direct comparison of a segmented image and a reference image provides a finer resolution of
evaluation, thus, discrepancy methods are commonly used for objective evaluation. Different
discrepancy measures have been proposed for segmentation evaluation. The earliest discrepancy
methods were based on the number of misclassified pixels with respect to the reference im-
age, and associated penalties proportional to the distance to the closest pixel that was correctly
identified in the region [YMB77]. An alternative is to base the discrepancy method on the differ-
ences in the feature values measured from the result of the segmentation and the reference image
[Z+17]. These methods have been developed over the years in order to solve problems where
the number of objects to be segmented is different from the objects presented in the reference
image. There are also a variety of discrepancy methods for the evaluation of edge-based image
segmentation methods [PGAN16]. Finally, the evaluation can be based on a multi-dimensional
fitness/cost space with multiple discrepancy metrics, in contrast with other evaluation methods
that are based on a single discrepancy metric [EMT02].

Unsupervised evaluation methods are also known as stand-alone or empirical goodness meth-
ods and do not need a reference image, but instead evaluate a segmented image depending on
if it matches a set of characteristics of segmented images interpreted by humans. The capacity
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to work without reference images permits unsupervised evaluation to work on a wide range of
conditions (or systems) and with many different types of images. The key advantage of this
method is that it does not require a manually-segmented reference image as a gold standard for
the evaluation. This aspect is fundamental for general-purpose segmentation applications where
a large variety of images with unknown content and no ground-truth need to be segmented.
Unsupervised objective evaluation methods offer the ability to automatically set the segmen-
tation algorithm parameters and thus allow self-tuning. Usually, the segmentation parameters
are selected manually exploiting the set of parameters that generate the best overall segmen-
tation results on test images. In this way, the parameters for the segmentation algorithm are
determined during system development, prior to system deployment. However, these parameters
might reveal inappropriate for the segmentation of later images. Thus, it would be ideal to have a
self-tuning segmentation method able to adjust the segmentation parameters dynamically. Only
unsupervised evaluation methods offer this ability for any generic image since they do not need a
reference image [ZFG08]. These characteristics make this kind of evaluation method particularly
suited for automatic control of real-time systems.

In order to perform an unsupervised evaluation, it is necessary to define the criteria that discrimi-
nate the goodness of a segmentation result. Those criteria were described already in 1985 [HS85]
as Characteristic criteria, that regard the objects in the image, and Semantic criteria, that regard
the possibility that each region is considered a single object by humans:

• regions should be uniform and homogeneous with respect to some characteristics (charac-
teristic criterion);

• adjacent regions should have significant differences with respect to the characteristic on
which they are uniform (characteristic criterion);

• region interiors should be simple and without holes (semantic criterion);

• boundaries should be simple, not ragged, and be spatially accurate (semantic criterion).

Various segmentation evaluations are based on the characteristic criteria since semantic criteria
tend to be application-dependent or object-dependent. In practice, the principal metrics used
in the evaluation of the segmentation can be generally divided into three categories: the ones
measuring intra-region uniformity, inter-region disparity, and semantic cues of objects. These
metrics can also be combined exploiting weighted sums of inter-region and intra-region metrics
or through the division of intra-region metrics by inter-region metrics, to give a composite ef-
fectiveness measure [ZFG08]. We underline that all the categories presented in this Section are
not mutually exclusive since an evaluation method can result from the combination of techniques
belonging to different categories.
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Figure 6.2: 3D segmented surface (red) superimposed to the volume slices: in some regions, the
darker tissues constituted by synovial structures and cortical bone lie inside the surface (green
arrows).

6.2 Tissue relation with segmented surfaces

Evaluation of grey-levels gradient To further study the segmented objects in the context of
medical images, we compare the grey-levels of the voxels outside and inside the surface. Thus,
we present the application of the grey-levels mapping, described in Chapter 4, to a specific clin-
ical problem. Once obtained the Euclidean, external, and internal mappings, the grey-levels
comparison is achieved subtracting, for each surface vertex pi the value of the external mapping
to the internal mapping. Given the voxels intensities relation with the tissue composition (Sec-
tion 3.2.3), if the edge of the bone is placed between the cortical and the marrow bone tissue, then
the internal mapping should be brighter than the external mapping, leading to a positive value. If
the edge is placed outside the cortical tissue, then darker internal mapping grey-levels will make
the difference negative. The reason why the segmentation analysis is based on the comparison
between internal mapping and external mapping is due to the high anatomical variability and the
low resolution of the images, which make unreliable the use of a global threshold to distinguish
between dark and bright grey-levels. Indeed, by comparison, the internal mapping evaluation is
patient-specific and scan-specific.

Results and discussion An analysis of the mapped gray levels provides information regard-
ing the choices made in the segmentation phase, and thus regarding the tissue relation with the
segmented object. Fig. 6.2 shows that, in certain regions, the cortical bone tissue is included in
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(a) (b) (c)

Figure 6.3: (a) Internal mapping results on the scaphoid bone: darker areas on the surface indicate
that the volume voxels internal to the bone are darker. (b) External mapping result: in the same
region where the internal mapping results darker, the external mapping is brighter. (c) Difference
between internal and external mappings: red areas indicate the vertex with a negative difference
value, and thus, the presence of cortical tissue inside the surface.

the segmentation, while in other regions it is excluded from the bone object. The proposed map-
ping can exhibit, directly on the 3D surface model, the choices taken in the segmentation phase.
In this way, huge information regarding the anatomical structures that will be expected inside
and outside the bone is provided to the observer. If the cortical bone is comprehended in the
3D surface, outside of it there will be ligaments, tendons, and articulation tissue directly. If the
cortical bone is excluded, then immediately outside the surface there will be the cortical region
and, only after that, all the others. The edge position of the segmentation can be appreciated in
both internal and external mapping, as depicted in Fig. 6.3(a,b), and visualized directly on the
surface (Fig. 6.3(c)). This kind of information can not be deducted from the sole surface since
the surface itself is derived from a binary image.

The absolute value of the difference between the internal and the external mappings can be useful
to quantify how the choices taken during the segmentation phase influence the mapping result.
Indeed, the absolute difference can be considered as a measure of the difference between the
tissues inside and outside the bone. A higher difference indicates that the edge of the object
has been located between two well distinct tissue; a smaller difference indicates that the edge
of the object is placed between tissues that are not clearly distinguishable. The latter situation
happens when the cortical bone is considered as part of the bone itself. Fig. 6.4 shows the
cumulative histograms of the absolute difference in two hamate bones: the blue one presents
a higher portion of cortical bone considered as part of the object w.r.t. the red one. The blue
cumulative histogram shows a steeper trend, indicating that a higher portion of the bone presents
a low difference between inside and outside. The red cumulative histogram, instead, shows a
gradual growth, meaning that a larger portion of the segmentation edge has been placed between
two distinct tissues.
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Figure 6.4: Cumulative histogram (CH) of the absolute difference between internal and external
mapping. Both CHs refers to a hamate bone. The blue one presents a higher portion of cortical
bone inside the bone surface. The red one presents a higher portion of cortical bone outside the
surface. The red more gradual trend in the left part of the graph indicates that its segmentation
edges are placed in a clearer tissue interface position w.r.t the blue one.

6.3 Unsupervised segmentation evaluation proposal

In the clinical application of segmentation processing, expert radiologists or physicians perform-
ing the image segmentation insert involuntarily their previous knowledge. In the particular case-
study treated in this Thesis (the carpal district) doctors tend to estimate the cortical surface and
use the cortical-trabecular interface as a starting point for the segmentation process. This is a
direct consequence of the combination of a-priori knowledge and data, which yields the edge of
the segmented bones to include dark voxel other than the bright ones.

Usually, an automatic segmentation method, instead, is completely based on the grey-levels of
the volume and represents better the interface between cortical and trabecular bone. This out-
come discrepancy between the manual and automatic segmentation may lead to errors in the
evaluation of the segmentation result when the ground-truth is obtained from different experts’
segmentations. Therefore, in collaboration with the University of Genova (Professor Silvana
Dellepiane and Marco Trombini), we developed an automatic method for unsupervised evalua-
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Figure 6.5: Pieline of the developed unsupervised segementation evaluation method.

tion of manual and automatic volume segmentation, which aims at finding a user-independent
evaluation of segmented results exploiting the integration of volume- and surface-based analy-
sis. The pipeline of the developed method can be seen in Fig. 6.5. The main objective of this
application is to evaluate if the surface extracted from a segmented volume is coherent with local
contrast information regarding the interface between the internal and external voxels of a Re-
gion Of Interest (ROI). It is this quantitative objective evaluation that can be considered a valid
measure to evaluate segmentation accuracy and to compare different segmentation results. The
core of this evaluation is then the reliable gradient since its measure provides information on the
variation of the grey-levels across the surfaces, in the direction normal to the segmented surface.
Usually, the best location of the interface between voxel inside and outside the ROI corresponds
to the local maximum contrast. Thus, it is possible to think about the comparison between two
different segmentations in terms of a statistical analysis of the local gradient values.

The segmentation considered through the development and testing of this unsupervised eval-
uation method were both manual and automatic segmentation. As manual segmentation, we
exploited the ones present in the data set (described in Chapter 3), performed by medical ex-
perts in MR volumes evaluation, by using the tool RheumaSCORE (Softeco Sismat S.r.l.). The
automatic approach applied corresponds to the method in [GD15]. It consists of a graph-based,
unsupervised, and adaptive method, which therefore does not require any a-priori knowledge.
Here, at first, the volume is mapped into a connected, undirected, and vertex-weighted graph.
Then, a cost function, which assigns cost values to the vertices rather than to the edges of the
graph, is defined. In this manner, the algorithm does not consider the length of the path con-
necting nodes, i.e. the dimension of the object to segment, but only their difference in terms of
grey-level. Then, based on a specific propagation mechanism, the method finds a Minimum Path
Spanning Tree (MPST), and graph-cut yields to the segmentation.

The proposed evaluation method consists of mapping a gradient measure onto the bone surface,
extracted with the marching cubes algorithm [LC87], from the segmented bone. Since the input
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(a) (b)

Figure 6.6: Gradient outer estimation mapping on (a) the whole district and (b) the hamate bone,
obtained from automatic (a,b left) and manual segmentation (a,b right). The gradient values
reside between 0 and 1, where higher values correspond to the yellow areas of the colormap,
while lower values to blue.

(a) (b)

Figure 6.7: Gradient Euclidean estimation mapping on (a) the whole district and (b) the hamate
bone, obtained from automatic (a,b left), and manual segmentation (a,b right). The gradient val-
ues reside between 0 and 1, where higher values correspond to the yellow areas of the colormap,
while lower values to blue. As expected the automatic segmentation presents more yellow areas.

images are binary, the selected iso-value is 1 and the segmented bones are represented as 3D
triangle meshes, that can undergo the grey-levels mapping algorithm (Chapter 4).

Instead of mapping the raw volume grey-levels onto the surfaces, the images are pre-processed
through morphological processing, in particular applying dilation and erosion operations [SS00].
Indeed, a way to reduce the human factor influence on segmentation is to apply a pre-processing
operation on the images, especially when the starting volume is scanned with low-intensity field
tomography that makes the ground-truth development even harder. The effect of morphological
dilation and erosion is the reduction of small differences between segmentation results since
both dilation and erosion take into account information related to a voxel neighborhood. Thus,
the gradient measure obtained from pre-processed images benefits of a better localization of the
actual separation between cortical and trabecular bone tissues (bright and dark areas). Indeed,
the morphological dilation and erosion operations are performed on the raw volume, before the
mapping application, in order to extend bright and dark areas, respectively.
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Once obtained these two pre-processed volumes, the mappings of the voxel values are performed
on the surface mesh. Thus, the two resulting volumes are used separately as input to the mapping
phase, which associates each vertex of the triangle mesh with the grey-level of its closest voxel.
The result of the mapping phase consists of two differently colored surfaces, one obtained from
the dilated volume and one from the eroded volume, such results are subtracted from one another.
The computation of their difference provides a sort of grey-level gradient measure on each vertex
of the triangle mesh. The estimated gradient in each mesh node results in the difference between
the dilated and eroded grey-levels. All the different mapping criteria presented in Chapter 4 are
applied, in order to obtain different gradient estimations. In particular, we exploited:

• Euclidean mapping of the dilated and eroded volumes, obtaining the Euclidean estimation;

• Internal mapping of both dilated and eroded volumes, obtaining the inner estimation;

• External mapping of the dilated and eroded volumes, resulting in the outer estimation;

• A gradient obtained from the difference of dilated gray levels from the external mapping
and eroded grey-levels from the inner mapping, obtaining the so-called bidirectional esti-
mation

Intuitively, high gradient values indicate that the surface is in correspondence with the cortical-
trabecular interface. While low gradient values mean that the grey-levels of the eroded and the
dilated volume are similar, which, in turn, can be due to a local inaccuracy of the segmentation
or to the presence of tendon insertion. Thus, to summarize, the higher the gradient value, the
better the segmentation (Figs. 6.6, 6.7)

Finally, the quality of the segmentation is measured through a global analysis of the mapped
gradient, where further considerations on the local mapping permit to understand the possible
presence of low gradient values.

We expect that a globally good segmentation should be characterized by a higher presence of
large gradient values along with small occurrences of low gradient values. Indeed, segmentation
errors are associated with low gradient values since they represent a minor variation between
inner and outer voxels. The presence of local errors is searched among the smallest histogram
percentiles, bringing the analysis of the segmentation result as well as the comparison between
different segmentation, to focus on local statistics. For these reasons, at first, the comparison
of segmentation results is performed using the Cumulative Gradient Histogram (CGH), which
maps the various percentile values. Then, the focus of the comparison between two segmentation
results is moved to the low percentiles of the CGH. The best segmentation is represented by the
CGH that presents lower values in the left part since this indicates that it has less small gradient
surface points.

This application of the grey-levels mapping to unsupervised segmentation evaluation can be con-
sidered innovative since:
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Figure 6.8: Cumulative gradient histograms (CGH) results. The blue curves refer to the auto-
matic segmentation while the red ones to the manual segmentation. (a) Result with the Euclidean
estimation, (b) with the outer, (c) with the inner, and (d) with a mapping algorithm performed
considering the distance from the normal to the surface without differentiating between inside
and outside.

• it results in a novel unsupervised approach;

• it presents the integration of volume and surface information into a novel framework,
through the definition of the gradient measures and their mapping;

• the processing steps are conducted in both the voxel and surface levels;

• the algorithm uses 3D Mathematical Morphology (MM) with the novel scope of pre-
processing step for gradient analysis;

• the regularization brought by MM pre-processing reveals able to reduce the noise effects.

Results and discussion The validation phase was conducted on the set of MRI contained in
the data set described in Chapter 3. Here, the size of each slice in the coronal plane is 256 ×
256, while moving in the longitudinal direction, the number of slices is between 90 and 120.
As just reported, the CGH already provides a visual idea of the segmentation results, where a
worse separation of trabecular and cortical bones are indicated by a steep trend in the left part
of the CGH, since a significant quantity of the estimated gradient levels resides in lower values
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Figure 6.9: Average difference values with respect to the quartiles (Qrt) and percentiles (Prt).

(Fig. 6.8). On the contrary, a more gradual trend indicates the presence of a relevant portion of
higher values, thus, better separation of trabecular and cortical bones. Quantitative results are
presented in Fig. 6.9

Moreover, it is possible to notice how gradient values corresponding to gradient CGH percentiles
are influenced by the adopted mapping criteria. Overall the Euclidean estimation proved to be
the most suitable estimation criterion for the current purpose. Indeed, it shows the highest ratio
between the gradient from the automatic segmentation and the gradient from the manual one in
the lowest percentiles. This indicates that different mesh nodes present a low gradient across
the surface in the manual approach result, confirming the assumption according to which the
medical operators tend to include dark voxels to the ROI, as a consequence of their expertise. The
automatic approach, instead, presents a high surface gradient, performing better in the cortical-
trabecular interface. This is linked to the clear separation between bright and dark voxels.

In the outer estimation of the gradient, the two segmentation results tend to overlap along with
the gradient values with respect to the analyzed percentiles. The explanation of this can be found
in the area that the external mapping considers. Indeed, the outer estimation focuses on external
voxels, thus moving away from the cortical-trabecular interface in the external direction. This
results in the reduction of the bias since pathological areas, e.g. tendon insertions, are not clearly
visible as moving away from the bones borders. The inner estimation, conversely from the outer
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estimation, focuses on the interior voxels, thus balancing the estimation error performed by the
human user.

Finally, bidirectional estimation shows a similar result to Euclidean estimation. Here, both the
segmentation techniques benefit from the separate focus on external and interior voxels, thus
the difference between the surface gradient is reduced. This can be reconducted to the limited
number of dark voxels that are included in the manual segmentation. Nevertheless, if more dark
voxels were included, then the resulting gradient estimation would be much lower, thus more
distinguishable from the automatic one.

Overall, from the performed tests, the Euclidean criteria results as the most suitable to distinguish
segmentation methods in their ability to identify the cortical-trabecular interface. This implies
that the Euclidean criteria can differentiate a segmentation method that focuses on the grey-levels
of the image (such as an automatic method), from an approach influenced by a-priori knowledge.
The results presented demonstrate how the evaluation method proposed is able o show the general
segmentation performance in terms of tissue interface localization. Moreover, a local evaluation
on each segmentation can be performed and supported by the enhanced visualization method,
localizing the regions of the single segmented structure where the borders actually coincide with
the tissue interface, and those where this does not happen. This kind of analysis and evaluation, if
extended to a properly wide data set, can provide information and identify the typical tissue and
anatomy criticality. That information, in turn, could be exploited for the correction of automatic
and semi-automatic segmentations. A further step in this direction could lead to the development
of an automatic method able to benefit from the evaluation proposed in this Chapter. To this
end, learning approaches, guided by the information retrieved from our unsupervised evaluation
method could be considered.
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Chapter 7

Contributions and Future Work

The work described in this Thesis moves towards the development of an integrated approach
aimed at the combination of heterogeneous medical data. This direction of research brought to
the study of different interdisciplinary fields, due to the link between all the subjects involved. A
clear idea of the working principles of imaging technology is necessary to understand the infor-
mation contained in the image pixels and their relevance in the clinical applications (Chapter 3).
Moreover, image analysis algorithms and medical image standard must be considered in order to
extract relevant regions of the image itself. Since the core of the work aims at combining image
and shape analysis, Computer Graphics techniques are involved in the integration and manip-
ulation of the 3D models with the volume images (Chapter 4). Finally, for a relevant clinical
application of the developed tool both notion on the anatomy of the structures and the possible
pathologies evolution must be known, in order to provide physician useful information other than
an augmented visualization tool (Chapters 5, 6). Thus, the Thesis does not limit to image and
shape analysis but covers image technologies’ principles, image properties extraction, anatomy,
and pathology notion, and graphics principles both in volume and surface rendering.

7.1 Thesis contributions to anatomical representation and clin-
ical applications

The main contribution of this research work is the development of a mapping method able to
integrate volume images and 3D PSMs (Chapter 4), in order to improve the visualization of 3D
models with volumetric information for different clinical tasks (Fig 7.1). An appropriate bridge
data structure, followed by a correspondence search and coloring of mesh vertices, allows us to
obtain a 3D textured patient-specific model of a given anatomical district. Different mapping
criteria are evaluated depending on:
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Figure 7.1: Overview of the novel approach: MR images and segmentation of the hand-wrist
district, textured surfaces by mapping grey-level onto the bone surfaces, identification of tissue
distribution inside the surface (darker blue correspond to darker tissues in the original volume;
while brighter toward yellow and red correspond to brighter tissues in the original volume).

• extent: how far from the surface we analyze the distribution of grey-levels;

• direction: if we map gray values from inside or outside the segmented surface;

• selection criteria: used to define a representative grey value for the texture element.

On the basis of these characteristics, we developed 3 different mapping options: Euclidean map-
ping, internal mapping, and external mapping. The result of the mapping method is indeed a
3D shape model where the vertices of the triangulated mesh are associated with the grey-levels
obtained from the analysis of surface-volume correspondences.

The proposed algorithm is simple but effectively integrates information derived from medical
image analysis and 3D shape analysis. The method developed is quite general since it applies to
different anatomical districts independently of the segmentation method. The proposed approach
is also applicable to different imaging techniques, such as CT, and higher resolution images can
only improve the promising results obtained with low-field MRIs. The volume information can
be integrated easily in different shape analysis applications, which take into consideration not
only the morphology of the input shape but also the real context in which it is inserted. Often, in
the medical field, the possibility to integrate a tool with an already existing workflow is the key
to the success of the tool itself, which brings to possible actual application in clinical practice.

We identified the medical problems that most benefit from the use of the proposed approach and
tried to find a way to support those applications with the information provided by the mapping
method. Specifically, we compared and merged these pieces of information with the ones pro-
vided by shape analysis. We have demonstrated that, given the 3D model resulting from the
grey-levels mapping, it is possible to execute comparative evaluations, between the results ob-
tained from the shape analysis and the ones obtained from the texture evaluation (Chapter 5).

111



Moreover, the shape analysis results have been useful to pursue a more focused analysis of the
texture information, as happens in the characterization of the articulation regions. Shape de-
scriptors that aim to semantically segment the shape, are improved and supported by the texture
analysis. This means that the mapping result is able to perform not only a general analysis but
also local discrimination of tissues and anatomical features. Furthermore, we also demonstrated
how a real integration of information can bring more homogeneous overall results, with a clearer
visualization interface for physicians.

The application of the mapping method can bring information also on the pre-processing of the
image, this means that the method can bring further information about the patient situation and
can be thought of as a means for the evaluation of the image processing performed before the
surface extraction (Fig. 7.2) (Chapter 6).

Articulation region analysis Since the carpus is one of the most complicated articulation dis-
tricts in the human body, a good characterization of the various articulation region in a patient-
specific fashion is relevant for the analysis of the subject. To describe those areas, we combined
the information provided by the shape analysis descriptor with the ones provided by the texture
mapped on the 3D surface (Chapter 5). The shape descriptor chosen for this purpose was the
Shadow map, which captures not only information about the shape of the individual bones, but
also about their spatial arrangement in the whole district. Through the Shadow map, we iden-
tified the articulation regions on each bone, and then we performed a comparison of the texture
in the identified regions (with respect to the non-articulation areas). From a statistical analysis,
we found that the texture in the articulation regions is statistically different from the region not
involved in the articulation.

Fllow-up analysis In the treatment of degenerative rheumatoid diseases, for physicians, it is
crucial to evaluate the progression of the pathology over time. To support this kind of evaluation,
we focused on the identification of erosion sites on bones, merging geometrical analysis with
the information provided by texture changes in time (Chapter 5). Shape analysis techniques
can indicate where on the surface, a relevant change in morphology appears. An analysis of
the grey-levels, instead, indicates which kind of tissue presented alteration, without the need
of referring back to the whole volume image. First, we registered the bones at baseline time,
with the ones at follow up time (barycenter translation + ICP). Then, we computed the Hausdorff
distance between the bones at baseline time and at follow-up time, identifying which bones could
present an erosion site (the higher the distance, the more probable is the presence of erosion).
From the distance distribution, we highlighted the region on the bones where the erosion is
placed. Comparing the distance distribution with the difference of the texture at baseline and
follow-up time we found that the texture difference is higher in the same regions identified by
the distance distribution. Moreover, the texture difference does not present high values in those
regions where the distance distribution provides misleading information due to inaccuracies of
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the registration process. For this reason, we further performed a comparison between different
approaches: geometry-based approach, texture-based approach, and integration of geometric and
texture information.

Ligament insertions identification We performed a preliminary study on the identification
of the ligament insertion locations from patient data. Indeed, ligament insertion analysis is im-
portant for early diagnosis and classification of the pathology. Since the insertion is not strictly
linked to a region with particular shape features, we focused on the analysis of the texture his-
togram, identifying a patient-specific and bone-specific range of grey-levels that could corre-
spond to a ligament insertion. We based this range on anatomical and tissue composition reasons.
The results look promising since the ligament insertions indicated by the anatomical atlas find a
correspondence in our method on real patient data (Chapter 5).

Segmentation analysis In medicine, the segmentation process is a challenging task to be per-
formed both if conducted automatically or manually. One main problem is the operator depen-
dency when it is performed manually. The second issue is the absence of a real gold standard for
the evaluation of segmentation performed automatically. Thus, an analysis of the results of the
segmentation, based on the analysis of the textured shape model, provides objective information
on the tissues included and excluded from the shape. To study the segmented objects, we com-
pared the grey-levels of the voxels outside and inside the surface. The comparison consisted of
subtracting, for each surface vertex, the value of the external mapping to the internal mapping. It
results that if the edge of the bone is placed between the cortical and the bone marrow tissue, then
the internal mapping should be brighter than the external mapping, leading to a positive value. If
the edge locates outside the cortical tissue, then darker internal mapping grey-levels will make
the difference negative (Chapter 6).

Segmentation evaluation As regards the segmentation evaluation, we are carrying on a collab-
oration with Prof. Silvana DellePiane and Marco Trombini (Ph.D. student) at UNIGE-DITEN.
We developed a method to evaluate and compare different segmentation results in an unsuper-
vised fashion. In this way, the absence of an objective gold standard can be overcome. The
proposed approach is based on the integration of volume-based and surface-based analysis and
is tested on Magnetic Resonance volumes of the wrist district. We combined the computation of
the texture gradient with volume image pre-processing (dilation and erosion) in order to provide
an analysis of the quality of the segmentation. Starting from the segmented volume of a bone,
the corresponding surface is extracted and its quality is estimated based on gradient properties,
measured in the volume, and mapped onto the surface. Various mapping techniques along with
morphological operators are proposed in order to reduce the error in the gradient estimation, and
the segmentation is evaluated through a statistical analysis of the mapped gradient. We tested
the result of this evaluation method on the data set (presenting manual segmentation) and on
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Figure 7.2: Overview of the developed framework.

the segmentation performed by the automatic method developed by Prof. Dellepiane and Marco
Trombini at UNIGE. Our evaluation algorithm was able to distinguish between different seg-
mentation methods and to provide an objective analysis of the results (Chapter 6).

All the information retrieved from the analysis of the 3D augmented PSMs have been discussed
with an expert rheumatologist and are known problems of everyday medical practice. The possi-
bility for a physician to have all the information in a unique visualization is extremely useful, not
only for a 3D better visualization given by the 3D shape model but also for a time-saving point
of view. Indeed, the grey-levels mapped on the surface automatically focalize the attention of
the expert on the relevant areas of the volume data. With a 3D volume image, indeed, the mole
of information that a radiologist has to examine is way higher, and manually evaluating every
part of the image can be time-consuming and error-prone. The mapping algorithm, as a visual-
ization tool, permits to avoid this situation by providing the volume information in a controlled
neighborhood of the bone surface.

7.2 Research and development directions

Segmentation method development On the basis of the work developed with the University
of Genova the idea is to define a novel segmentation method for low-field MR images and for the
local correction/improvement of a given segmentation. The good results obtained from the eval-
uation method described in Chapter 6 are promising premisses for the development of such an
automatic segmentation method or, at least, to a reliable tool for the adjustment of automatically
preformed segmentations.

Clinical validation Even if the statistical analysis performed in this work and explained in
Chapters 5 and 6, supported the expectations we had from our method, a wider clinical vali-
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dation could be an ulterior support to our conclusions. Indeed, this research could benefit from
clinical evaluation of the results, not only for the carpal district but also for other musculoskeletal
structures. This implies the presence of a wider data set that, in medicine, is not as straightfor-
ward as in other fields. A questionnaire concerning the result obtained by our work and other
potential use of the visualization and evaluation tool could support the clinical validation. More-
over, this questionnaire could focus also on other needs felt by radiologists that didn’t come out
in the early stages of this research.

Automatization of the follow-up approach In Chapter 5 we presented a comparison of dif-
ferent approaches to support the medical follow-up analysis in radiology, with a special focus
on erosion development in rheumatic diseases. In that scenario, the presence of false positives
presents to the physician a worsened situation and, thus, a higher level of bone degeneration,
with respect to reality. Whereas, the presence of false-negatives induces an underestimation of
pathology progression gravity. Indeed, the presence of false-positives or false-negative could al-
ter the result of the therapy performance analysis, thus the identification of the trade-off between
the two is important.

Even if the geometry and texture integration proposed already supports the analysis of follow-up
as enhanced visualization methods, future work will be focused on the improvement of the in-
tegration method toward a fully automatic approach with a quantitative measure of the erosion.
Since our study is based on the presence of two exams: one at baseline and one at follow-up, the
automatizing process would be easier in presence of more than one follow-up exams, especially
for a comparison thought to be extremely patient-specific. A higher number of exams, other than
helping the automatic adjustment of the ε parameter, could allow a more complete clinical val-
idation. Moreover, testing different registration methods for the geometry-based analysis could
improve the results obtained with higher accuracy.

Image fusion-extention Since the method developed can be applied to different imaging tech-
nologies and given the progress of medical imaging toward image fusion techniques, a valid
perspective could be to proceed in this direction. With this in mind, I started a 2-years research
fellowship at CNR-IMATI and in collaboration with Esaote SPA on a research project focused
on image fusion, which will be a good opportunity to expand the work described in this Thesis.
The title of the research is, ”Image-fusion study and development of innovative approaches to fu-
sion, analysis, and visualization of MRI low field images and ultrasound for the improvement of
musculoskeletal pathologies diagnosis”. Thus, it will open the opportunity to extend the applica-
tion of the method developed with this research to other kinds of imaging techniques. Moreover,
it will be an occasion, not only to apply our method to various data types but also to evaluate
its performances and possible development in different scenarios. Indeed, the possibility to ex-
plore a volumetric image with the guidance of a 3D surface model could be interesting in many
medical branches.
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Spagnuolo, and Bianca Falcidieno. Computational methods for understanding
3d shapes. Computers & Graphics, 30(3):323–333, 2006.

[ADD+14] John Apostolakos, Thomas JS Durant, Corey R Dwyer, Ryan P Russell, Jef-
frey H Weinreb, Farhang Alaee, Knut Beitzel, Mary Beth McCarthy, Mark P
Cote, and Augustus D Mazzocca. The enthesis: a review of the tendon-to-bone
insertion. Muscles, ligaments and tendons journal, 4(3):333, 2014.

[APAC17] Simon Andermatt, Simon Pezold, Michael Amann, and Philippe C Cattin.
Multi-dimensional gated recurrent units for automated anatomical landmark
localization. arXiv preprint arXiv:1708.02766, 2017.

[ARN+11] Ceyhun Burak Akgül, Daniel L Rubin, Sandy Napel, Christopher F Beaulieu,
Hayit Greenspan, and Burak Acar. Content-based image retrieval in radiology:
current status and future directions. Journal of digital imaging, 24(2):208–222,
2011.

[BAC+16] Imon Banerjee, Asan Agibetov, Chiara Eva Catalano, Giuseppe Patané, and
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M. Spagnuolo. 3D shape description and matching based on properties of real
functions. In Eurographics 2007, Tutorial Notes, pages 949–998, 2007.

[BGH+11] Leonard J Bond, Jeffrey W Griffin, RV Harris, Kayte M Denslow, and Traci L
Moran. Evaluation of non-nuclear techniques for well logging. Technical re-
port, Pacific Northwest National Lab.(PNNL), Richland, WA (United States),
2011.

[BGSF08] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for
shape analysis and applications. Theoretical Computer Science, 392(1–3):5–
22, 2008. doi: 10.1016/j.tcs.2007.10.018.

117



[BHR+15] Marco Boegel, Philip Hoelter, Thomas Redel, Andreas Maier, Joachim
Hornegger, and Arnd Doerfler. A fully-automatic locally adaptive threshold-
ing algorithm for blood vessel segmentation in 3d digital subtraction angiogra-
phy. In 2015 37th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), pages 2006–2009. IEEE, 2015.

[BKS+05] B. Bustos, D. A. Keim, D. Saupe, T. Schreck, and D. V. Vranić. Feature-based
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[MRB+16] Jonathan Masci, Emanuele Rodolà, Davide Boscaini, Michael M. Bronstein,
and Hao Li. Geometric deep learning. In Niloy J. Mitra, editor, SIGGRAPH
ASIA 2016, Macao, December 5-8, 2016 - Courses, pages 1:1–1:50. ACM,
2016.

[MSZ11] Mostafa Jabarouti Moghaddam and Hamid Soltanian-Zadeh. Medical image
segmentation using artificial neural networks. Artificial Neural Networks-
Methodological Advances and Biomedical Applications, pages 121–138, 2011.

[NK10] Maxwell Lewis Neal and Roy Kerckhoffs. Current progress in patient-specific
modeling. Briefings in bioinformatics, 11(1):111–126, 2010.

[ØEM+] Mikkel Østergaard, J Edmonds, F McQueen, C Peterfy, M Lassere, B Ejbjerg,
P Bird, P Emery, H Genant, and P Conaghan. Annals of the rheumatic diseases,
(suppl 1):i3–i7.

[OLGM11] Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and Niloy J. Mitra. Explo-
ration of continuous variability in collections of 3d shapes. ACM T. Graphic.,
30(4):33:1–33:10, 2011.

[Ots79] Nobuyuki Otsu. A threshold selection method from gray-level histograms.
IEEE transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

[PA06] Mihail Popescu and Gerald Arthur. Ontoquest: A physician decision support
system based on ontological queries of the hospital database. In AMIA Annual
Symposium Proceedings, volume 2006, page 639. American Medical Informat-
ics Association, 2006.

[PB13] Bernhard Preim and Charl P Botha. Visual computing for medicine: theory,
algorithms, and applications. Newnes, 2013.

[PBJ+09] Olivier Palombi, Guillaume Bousquet, David Jospin, Sahar Hassan, Lionel
Reveret, and François Faure. My corporis fabrica: a unified ontological, geo-
metrical and mechanical view of human anatomy. In 3D Physiological Human
Workshop, pages 209–219. Springer, 2009.

[PCVV14] Patrizia Parascandolo, Lorenzo Cesario, Loris Vosilla, and Gianni Viano. Com-
puter aided diagnosis: state-of-the-art and application to musculoskeletal dis-
eases. In 3D Multiscale Physiological Human, pages 277–296. Springer, 2014.

125



[PGAN16] Karen Panetta, Chen Gao, Sos Agaian, and Shahan Nercessian. A new
reference-based edge map quality measure. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 46(11):1505–1517, 2016.

[PHAN06] KN Bhanu Prakash, Qingmao Hu, Aamer Aziz, and Wieslaw L Nowin-
ski. Rapid and automatic localization of the anterior and posterior commis-
sure point landmarks in mr volumetric neuroimages1. Academic radiology,
13(1):36–54, 2006.

[PP93] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and
their conjugates. Experimental mathematics, 2(1):15–36, 1993.

[PS06] Konrad Polthier and Markus Schmies. Straightest geodesics on polyhedral
surfaces. In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, pages 30–38,
New York, NY, USA, 2006. ACM.

[Rid10] John P Ridgway. Cardiovascular magnetic resonance physics for clinicians:
part i. Journal of cardiovascular magnetic resonance, 12(1):71, 2010.

[Rid15] John P Ridgway. Relaxation times, gradient echoes and spin echoes. In Car-
diovascular MR Manual, pages 31–41. Springer, 2015.

[ROA+13] Raif M. Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen,
Frédéric Chazal, and Leonidas Guibas. Map-based exploration of intrinsic
shape differences and variability. ACM T. Graphic., 32(4):72:1–72:12, 2013.

[RRSD19] Janick Rohrbach, Tobias Reinhard, Beate Sick, and Oliver Dürr. Bone ero-
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