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Abstract 

 

Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along 

with the hip).  Due to rising healthcare costs associated with OA, it is important to fully 

understand the disease and how it progresses in the knee. One symptom of knee OA is 

the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role 

in painting the biomechanical picture of the knee. This work attempts to quantify the 

cartilage thickness of healthy male and female knees using statistical shape models 

(SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from 

magnetic resonance imaging (MRI) and estimation algorithms from computer 

tomography (CT) or x-rays are proposed to facilitate the efficient development and 

accurate analysis of future treatments related to the knee. Cartilage morphology results 

suggest distinct patterns of wear in varus, valgus, and neutral degenerative knees, and 

examination of contact regions during the deep knee bend activity further emphasizes 

these patterns. Segmentation results were achieved that were comparable if not of higher 

quality than existing state-of-the-art techniques for both femoral and tibial cartilage. 

Likewise, using the point correspondence properties of SSMs, estimation of articulating 

cartilage was effective in healthy and degenerative knees. In conclusion, this work 

provides novel, clinically relevant morphological data to compute segmentation and 

estimate new data in such a way to potentially contribute to improving results and 

efficiency in evaluation of the femorotibial cartilage layer. 
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Chapter 1 

Introduction 

 

 

1.1 Osteoarthritis of the Knee 

Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability 

(along with the hip). Clinically, OA is defined as [1]: 

 

“OA diseases are a result of both mechanical and biological events that 

destabilize the normal coupling of degradation and synthesis of articular cartilage 

chondrocytes and extracellular matrix, and subchondral bone. Although they may 

be initiated by multiple factors, including genetic, developmental, metabolic and 

traumatic, OA diseases involve all of the tissues of the diarthrodial joint. 

Ultimately, OA diseases are manifested by morphologic, biochemical, molecular 

and biomechanical changes of both cells and matrix which lead to a softening, 

fibrillation, ulceration, loss of articular cartilage, sclerosis and eburnation of 

subchondral bone, osteophytes, and subchondral cysts. When clinically evident, 

OA diseases are characterized by joint pain, tenderness, limitation of movement, 

crepitus, occasional effusion, and variable degrees of inflammation without 

systemic effects.” 

 

Per the definition, there are many potential causes of primary OA, but in general, the 

presentation is often idiopathic - due to natural wear. While it is difficult to identify a 
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single underlying cause for most OA cases, with the exception of those caused by direct 

trauma or pre-existing joint malalignment, the existence of several risk factors have been 

well documented.  

 Age and body weight are two of the most strongly correlated risk factors for OA 

of the knee. The importance of muscle strength and ligament quality on knee joint 

stability is obvious. Sharma, et al. showed that various factors affect knee joint stability, 

including varus-valgus laxity’s degradation with age [2]. As expected, muscle strength in 

the quadriceps also decreases with age [3].The degradation of stabilizing components 

with increased age partially explains the results of one longitudinal study suggesting that 

patients in the highest age bracket are approximately 2.4 times more likely to develop 

knee OA [4].With an aging population, it is no surprise that costs for OA related 

healthcare are on the rise.  

Body weight is also strongly associated with the risk of OA, especially in the knee 

as it experiences forces that are three to seven times more than body weight. The medial 

compartment of the knee joint is almost nine times more likely than the lateral 

tibiofemoral compartment to develop OA due to the medial compartment’s bearing 

approximately 50% more load than the lateral side of the knee. In addition to 

compartmental differences, the lateral meniscus bears nearly 70% of the lateral load 

while the medial meniscus carries only 50% of the medial load [5]. The medial 

tibiofemoral cartilage not only experiences more load in general, but a larger ratio of the 

load lies on the cartilage tissue.  In a great example of form following function, Li, et al. 

[6] suggest that tibiofemoral cartilage is thicker in regions of cartilage-to-cartilage 
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contact by up to 40%. Joint instability and increased forces caused by excessive force 

loading from increases in body weight or patient age can cause failure of the stressed 

cartilage by exceeding load limits or unbalanced loading. Western populations are 

becoming increasingly obese, further increasing the demand for OA treatment and 

driving up healthcare costs.  

 One clue as to what causes the cartilage degradation associated with OA of the 

knee is the method of cartilage repair. Articulating cartilage tissue is a porous matrix 

supported by fibrous tissue. The level of hydration fluctuates with the amount of pressure 

on the tissue – hydrostatic pressure assists in supporting load, while energy is dissipated 

with displacement of interstitial fluid. Through normal activity, molecules in the 

interstitial fluid are critical for proper repair and sustenance of damaged cells in the 

cartilage matrix. The loading patterns consistent with daily activity under normal 

conditions provide a regular loading and unloading of the joint. The natural movement of 

interstitial fluid across and into/out of the cartilage matrix caused by the natural load 

pattern consistent with walking or light exercise provides an optimal pattern of 

degeneration and repair in a normally balanced knee joint. When static load is excessive 

(obesity) or energy is improperly dissipated or distributed (joint malalignment, surface 

incongruities), the cartilage surface may degrade without the proper balance of tissue 

regeneration [7],[8],[9]. If left alone, this degeneration can cause fibrillation of the 

articulating surfaces, lesions, and eventually full “bone-on-bone” joint failure. 

 In addition to cartilage degradation, the bony tissue also undergoes significant 

changes in cases of knee OA. Calcified growths near the cartilage boundaries, known as 
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osteophytes, are indicative of OA progression. These bony growths are irregular in shape 

and not well understood, but are believed to be caused by the presence of various growth 

factors introduced by processes initialized by cartilage loss [10],[11],[12],[13] – though 

additional work suggests they can appear as part of the natural aging process [14], [15]. 

Current standard of care dictates at least a single view radiograph (XR) to determine 

disease progression. As soft tissues are difficult or impossible to distinguish using XR, 

the osteophyte size and multiplicity – along with joint space characteristics – are used in 

most OA scoring systems. There are some references which show clear patterns to 

osteophyte growth – suggesting non-random growth, and thus, some predictable 

underlying factors may help determine location. Nagaosa, et al. showed that osteophyte 

location on XRs relative to the bones of the knee follows distinct patterns [16]. Any 

osteophyte growth negatively affects the congruity of the articulating surfaces, causing 

increased friction and additional abnormal wear, accelerating joint space deformation. 

Treatment of OA is currently confined to alleviation of symptoms. In most cases, 

the most prominent symptom is pain. In the early stages of the disease, stabilization of 

the afflicted joint through physical training can provide some relief, but in most cases, the 

patient must rely on administration of analgesic medicine of varying strength to maintain 

a reasonable standard of living. Eventually, joint mobility is reduced to the point wherein 

some level of surgical intervention is required.  
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1.2 Clinical Significance 

 With swift technological advancements, the field of medical imaging is making 

the transition from manual analytical tools to automated analysis processes. This 

transition is a critical step towards reducing healthcare costs associated with imaging 

procedures. Manual bottlenecks in the imaging workflow are becoming increasingly 

apparent as the flow of information becomes more efficient with the widespread 

deployment of picture archiving and communication systems (PACS) and radiology 

information systems (RIS). One 2006 study of European hospitals found a wide variation 

of the implementation rates of PACS systems from 10% in France to 70% in Finland with 

a mean of approximately 33% [17]. The Healthcare Information and Management 

Systems Society (HIMSS) 2009 annual report indicates that roughly 75% of US hospitals 

had at least one radiology PACS system in use in 2008, which is an increase of 50% in 

2006 [18]. This rapid rise in PACS implementation was driven by advances in medical 

technology, as well as an aging population, such that improvements in image resolution, 

coupled with the prospect of increasing numbers of imaging procedures require advanced 

methods of image storage and retrieval. Multi-detector row computed tomography (CT) 

scanners are capable of producing upwards of 1,000 images in only a few seconds, while 

analysis is limited by the efficiency of the physician in traversing the images. One area in 

special need of automated analysis tools is the orthopedic field, especially given the 

available forecasts of needed care. 

The number of total knee replacements (TKRs) is expected to rise 673% by 2030 

from 2005 numbers, and the number of revisions is expected to double by 2015 [19]. Due 
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to these increasing demands on orthopedic surgeons, efficiency in workflow must be 

achieved in all applicable areas. Surgeons use medical images for pre-operative planning, 

surgical navigation and in the design of customized surgical tools. Researchers and those 

involved in the development of novel treatments and management planning require 

accurate assessments of patient anatomy to determine efficacy of the proposed method of 

intervention. Effective surgical planning, including implant sizing, placement strategies, 

and, if desired, patient-specific cutting guide design, requires accurate reproductions of 

the patient anatomy. The patient anatomy, in the case of the knee, is often represented by 

three-dimensional (3D) models, consisting of a series of connected vertices defining the 

bone surface and/or the articulating cartilage surface. In surgical cases, these models are 

most often constructed by technicians manually tracing the outlines of the anatomical 

surfaces on the CT or MRI images. This manual segmentation process is time consuming, 

expensive, and can delay a much-needed surgical procedure. For researchers evaluating a 

proposed treatment, the time and labor required for the manual segmentation of many 

cases is often cumbersome and can become prohibitive. In addition to economic 

considerations, one study by Desmeules, et al. suggests that significant wait times can 

result not only in increased pain in the affected knee, but can also increase stress and pain 

in the contralateral knee [20]. This study makes apparent the need for removing any 

existing bottlenecks in the surgical workflow, of which manual segmentation and 

landmarking are a major contributing factor. 

There are many treatments in development for OA. These include, but are not 

limited to, cartilage restoration, chondrocyte implantation and stem cells [21]. One major 
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challenge lies in assessing the efficacy of these treatments in a large population. While 

several biomarkers have been identified which may serve as indicators for OA, such as in 

[22-24], the ultimate standard for a promising treatment is stopping deformation of bone 

and cartilage in the affected joint. In other words, stopping osteophyte growth and 

cartilage degeneration or even reversing this process. A front view XR, as seen in Figure 

1, allows for a quick assessment of joint spacing and alignment, but gives no indication 

of cartilage health, which requires a more detailed 3D imaging scan, such as MRI, 

contrast-enhanced CT, or XR via arthrography. 

 

 

Figure 1. Close up view of frontal radiograph. Note only bone information is visible, and 

little direct information regarding cartilage is present in the image. 

 

 Unfortunately, this added information increases time required for analysis, and if 

volumetric measurements of cartilage or bone are required, it may take many hours per 

case to perform. Several methods of semi- and fully-automated segmentation for bone 
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and cartilage from MRI have been proposed with this problem in mind, but none have 

sufficiently resolved the problem of segmentation in OA knees. 

In addition to tracking disease progression, regardless of application, automated, 

reproducible segmentation of the articulating knee surface can aid in disease 

classification. There are several existing classification systems, the most popular being 

the Kellgren and Lawrence (KL) score [25] and Western Ontario and McMaster 

Universities index (WOMAC) [26]. The WOMAC index is more difficult to define, as it 

is derived from the patient answers to many questions designed to assess overall pain and 

mobility. The WOMAC score is independent of joint appearance and can serve as an 

indicator of disease progression, but it is not a reliable indicator of actual joint damage.  

The KL scoring system seeks to assign a score from 0-4, 0 being healthy and 4 

being most severe, derived from features extracted from 2D XR images. Table 1 defines 

the criteria for each score.  

Table 1. Kellgren and Lawrence grading criteria for osteoarthritis. 

KL Score Criteria 

0 Healthy appearance 

1 Doubtful joint space narrowing, possible 

osteophytic lipping 

2 Definite presence of osteophytes, some 

joint space narrowing 

3 Multiple osteophytes, definite joint space 

narrowing, mile sclerosis and bone 

deformation 

4 Large osteophytes, significant narrowing, 

severe sclerosis and bone deformation 

 



 
9 

A major shortcoming of these classification systems is that they are subjective in 

nature and, in the case of the KL score, rely on measurements made from 2D imaging 

technology, which may obscure manifestations of OA, depending on the view and pose. 

The subjective nature essentially makes this scoring system inadequate for multi-user 

studies in research or a “go/no-go” system for determining surgical candidacy clinically. 

Accurate 3D reconstruction of patient anatomy can serve as a foundation for the 

development of a quantitative method of OA disease classification. 

A major motivation for developing automated segmentation tools for the bones and soft 

tissue is to aid in the assessment of joint disease, especially OA. With this in mind, the 

National Institutes of Health have funded a major multi-center prospective, observational 

study of knee OA, the Osteoarthritis Initiative (OAI). The OAI dataset consists of 4,796 

participants at baseline and follow up at 12, 24, 36 and 48 months. Each follow up 

includes a sagittal MRI for quantifying cartilage volume and thickness.  A non-exposed 

control group consisting of 122 patients exhibited no signs of OA at baseline. This 

abundance of data has led to numerous publications regarding OA of the knee, but the 

manual or semi-automatic methods of knee segmentation and cartilage tracking makes 

analysis across the entire cohort nearly impossible. Much work has been published 

utilizing a subset of the cohort.  

With the goal of standardizing nomenclature regarding OA of the knee and 

cartilage, Eckstein, et al. divided the knee anatomy into various compartments after 

consultation with experts [27]. This proposed nomenclature has been used to successfully 

quantify changes in cartilage thickness and bone structure in the presence of OA for a 



 
10 

variety of purposes using OAI data [28], [29], [30], [31], [32], [33]. Wirth, et al. used this 

nomenclature to assess cartilage loss in 396 OA patients [34] and to define a novel 

method of reporting cartilage loss using supposed ordered values [35]. While these 

studies provide valuable information on localizing and quantifying cartilage changes due 

to OA, the compartments described provide little local resolution and may be difficult to 

localize on a per patient basis, requiring manual identification of landmarks. Thus, a 

solution which can automate landmark selection to aid in articulating surface region 

identification, while improving resolution of cartilage analysis on the bone surface, can 

provide a consistent framework for joint analysis, independent of imaged pose or user. 

 

1.3 Segmentation State-of-the-Art 

 Segmentation of bone and cartilage from 3D images is a major topic of research. 

Current medical segmentation methods can be classified as intensity-based, edge-based, 

region-based or deformable [36]. It is important to mention that a globally optimal 

segmentation solution for an in vivo joint has not been presented thus far, and that most 

solutions in literature rely on multiple methods to determine patient-specific anatomy. 

Often the bone is treated separately from the cartilage, as the appearance and modeling of 

the patient bone in MRI is much different than the cartilage, requiring different 

considerations for accurate segmentation. Fripp, et al. published two articles; the first of 

which utilized deformable shape models to constrain the shape and pose of the bones in 

the knee joint (femur, tibia and patella) [37]. From the bone segmentation, intensity and 

first derivative values near the segmented area, 3D surface models were used to identify 
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the bone-cartilage interface, or the area where the cartilage contacts the surface of the 

bone. The second paper used the bone-cartilage interface (BCI) as a foundation from 

which the cartilage was segmented using edge (first-order gradient) and intensity 

information, coupled with a global tissue classifier and cartilage thickness model [38].  

 One of the more interesting methods recently developed is the graph search and 

graph cut method. This involves defining a network of nodes connected with edges that 

define the “cost” of cutting each edge. The problem of optimally cutting edges to achieve 

good segmentation results was presented by Yin, et al. [39] with a method called Layered 

Optimal Graph Image Segmentation of Multiple Objects and Surfaces (LOGISMOS). 

This method treats the surfaces to be segmented as thin-sheets, which have some 

interaction constraints as defined by user-tailored cost functions. It was shown to work 

well with healthy and OA knees, but was sensitive to the initial bone segmentation and 

local changes in cartilage intensity. One difficulty of this method is extracting the 

complex cost functions needed as input to the algorithm – extraction and storage of 

multiple volumetric cost functions requires time and extensive memory. These could be 

probability maps for cartilage location and thickness, statistical models for intensity or 

edge maps derived from gradient information.  

 The two previously described methods can be thought of as 3D methods, meaning 

the operations are performed on the volumetric data, resulting in surfaces which outline 

the patient anatomy. In addition to extracting surface information, the labeling of the 

image data may be performed on the voxels themselves. An examples of a3D method 

includes the work of Pakin, et al. [40] who used a region-growing segmentation method, 
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followed by 2-class intensity-based local clustering, then 3D deformable models for 

cartilage separation. Their accuracy was 98.87%, and they reported sensitivity 66.22%, 

and specificity 99.56%. Grau, et al. [41] is another example where researchers used 3D 

method, proposing a general purpose, watershed-based algorithm that incorporated 

region-growing and edge existence probability mapping to limit expected over-

segmentation. They tested their algorithm on datasets, producing average sensitivity, 

specificity, and Dice Similarity Coefficient (DSC) of 91.4%, 99.84%, and 0.84. In [42], a 

combination of binary k-nearest neighbor (kNN) classifiers are used to classify voxel 

elements of the medial femoral and tibial cartilage and the background, according to a set 

of selected image multi-scale features, including intensity, position, image derivatives, 

and eigen values and vectors of the Hessian. They achieved average sensitivity, 

specificity, and DSC of 83.9%, 99.9%, and 0.80, respectively. More recently, Wang, et 

al. utilized a global tissue classification using iterative semantic forests with a unique 

anatomical correspondence distance measure. They reported achieving 0.850 femoral 

DSC and 0.837 patellar DSC [43]. 

Examples of 2D methods include the work of Tang, et al. [44], who used  

Directional Gradient flow vector snakes to extract the cartilage surface of individual 

slices, Soloway, et al. [45], who used Active Shape Models (ASMs) and achieved a mean 

segmentation error of 0.58 pixels, and Dodin, et al. [46], who performed 2D textural 

analysis that involved filtering cartilage tissue using intensity and texture homogeneity 

analysis. Their results are further refined using a Bayesian test to discard synovial fluid 

outliers. They achieved a DSC of 0.84. The output of 2D methods is usually a series of 
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contours, which require further processing, such as 3D triangulation to create the required 

3D model. Utilizing 3D methods, on the other hand, does not require additional 

processing, possibly leading to increased surface model accuracy.  

 In general, it is preferable to operate in 3D to maintain surface smoothness and 

global shape. Some challenges of operating in 3D include increased computational 

complexity, often by an order of magnitude or more, and constraining a global shape. The 

most promising technique for shape constraint is the use of SSMs or ASMs. These utilize 

a priori information to define parameters which control location of supposed landmarks. 

These landmarks lie in the same location of the shape in each instance of the shape 

model, making them ideal for localizing and storing information about the anatomical 

position of some feature or landmark relative to the shape model surface (e.g., cartilage 

location and thickness). This point correspondence property makes SSMs a good 

candidate for use as a base for building a cartilage segmentation method. This has been 

applied to several applications, including the papers by Fripp, et al. for the knee [37],[38]. 

While there are many different approaches to using SSMs or appearance models, (both 

include shape and appearance information), regardless of if they are surface or volume 

oriented, the general approach is the same. The vast majority of methods first seek to 

identify the easier anatomy – in the case of the knee, the bony anatomy – and then seek to 

define some computational methods around this initial segmentation for extracting the 

cartilage. Interestingly, there is little work combining the point correspondence of a 

surface atlas with the feature classification used with volumetric atlases, as in [42].  
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 Segmentation of the bone from CT is somewhat well solved, at least when the 

bone is healthy. Merkl, et al. used deformable models to guide an edge-based 

segmentation approach with good results for the long bone in CT [47]. Segmentation 

from CT of bony anatomy is often much easier than a comparable MRI case, as the 

nature of the imaging modality makes the bone contours readily apparent and relatively 

easily  discernible - both visually and via algorithmic methods. In fact, many times a 

reasonable result can be obtained through heuristic methods using intelligent application 

of basic image processing techniques, such as thresholding and region growing. Calder, 

et al. have recently proposed an iterative probabilistic method for discerning bony 

structures from CT using appearance similarity of bone and surrounding tissues [48]. 

Vasilache, et al. segmented injured pelvis bony tissue from CT scans using a combination 

of several more basic processing techniques [49]. 

 In the more difficult scenario of segmentation from MRI, there has been much 

progress. Schmid, et al. describe a method of MRI segmentation using ASMs constrained 

by principal component (PC) forces and Markov Random Fields forces derived from 

image data to achieve a segmentation, reporting a root mean squared error (RMSE) of 

1.44 mm [50]. The algorithm described is computationally complex and requires multiple 

parameter initializations and has not been realized on OA bones. As mentioned before, 

Fripp, et al. proposed a method using ASMs similar to that of Merkl and Mahfouz, 

although tissue characterization was used to guide detection of nearby edges [37]. They 

segment bone and tissue using global models initialized with global threshold to guide 

the first level of ASM segmentation. After initial segmentation, the tissue model is 
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updated to include tissue properties obtained from the first segmentation. This global 

method works well when the bone is healthy and local deformities are minimal, but in 

cases of OA or other diseases, this can cause errors in the segmentation, as the tissue 

models become inaccurate in areas of pathological change. The authors also reported 

failures due to poor contrast between bone and soft tissue, similar to those seen in Figure 

2. 

 

 

Figure 2. Axial slice of knee MRI. Notice poor contrast between anterior bone and soft 

tissues. This makes accurate segmentation difficult in this region. 
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Several methods have been proposed for MRI bone segmentation using various schemes 

aside from ASMs, such as graph cut [51], [52], and texture-based [53] methods. These 

methods have demonstrated good ability to segment bone from soft tissue, but errors in 

segmentation tend to result in irregular surfaces, which differ widely from expected 

anatomy. These irregularities make the resulting surface reconstructions unsuitable as an 

anchor for cartilage segmentation or as an input to patient-specific surgical planning. One 

advantage of ASM segmentation is that the resulting segmentation is constrained to the 

shape space. 

 

1.4 Segmentation Challenges 

  An interested party may wonder, what is so difficult about segmentation (or 

estimation) of articulating cartilage? From a computer vision perspective, the difficulties 

are many. First and foremost, the structural nature of the tissue, which can be thought of 

as a “thin-sheet” laying on the bone surface, clearly makes identifying the boundary 

difficult, specifically in regions of contact. As a result, today’s state-of-the-art 3D 

imaging modalities (CT, MRI) have resolutions which, when used in practice, are often 

taken very near (or even below) the Nyquist sampling frequency required to adequately 

represent the cartilage with image voxels. This problem is less of an issue with CT, as 

multi-detector scanners are able to achieve resolution on the order of tenths of a 

millimeter in less than a minute for large scan regions. The advantages of CT must be 

weighed with the disadvantages, such as requiring a contrast agent for visualization of 

cartilage boundary, which has been known to rarely cause adverse reactions in patients, 
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and perhaps most importantly, the exposure to radiation can be quite significant [54]. 

MRI has the distinct advantage of being non-ionizing, but it is considerably more time 

consuming and expensive. Also, in many orthopedic acquisition protocols, slices are 

acquired in the sagittal direction with sufficient in-plane resolution to adequately capture 

anatomical features (often less than half of a millimeter). Unfortunately, slice thickness is 

often captured at 2 mm and interpolated to 1 mm as a post-processing step, making small 

changes on the articulating surface due to disease difficult to reconstruct from image data. 

Therefore, any regions of the cartilage which are not oriented orthogonally to the sagittal 

plane and are less than 2 mm may not be reproducible. Figure 3 gives an example of the 

thin-sheet appearance in MRI. 
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Figure 3. Cartilage as it appears in MRI. Notice the poor contrast in contact areas, as 

well as the thin-sheet appearance of the tissue – sometimes only a few pixels in width. 

  

Another difficult challenge when segmenting the cartilage is the lack of contrast between 

cartilage tissue and surrounding soft tissues. While there are many existing protocols for 

imaging the articulating cartilage, the myriad of tissue types in contact with the 

articulating surface at any given time make choosing a protocol which differentiates 

cartilage across the entire surface while maintaining desired properties for diagnosis is 

not achievable at this time. As such, one or more cartilage-to-soft tissue contact regions 

may leave the cartilage boundary ambiguous in the image data, as in Figure 4, due to the 
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similar structural content of the tissues. This is especially evident in the posterior 

condyles and, perhaps more obviously, in the tibiofemoral and patellofemoral contact 

regions.  

 

 

Figure 4. Poor contrast at cartilage-soft tissue interface in posterior femoral condyle 

increases segmentation difficulty. 

  

Finally, the structural nature of cartilage makes detection of the boundary difficult in that 

the laminar structure of the tissue often causes many “false” edges within the tissue. This 

is especially clear in the posterior condyles and the patellar groove. This property of the 
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tissue also means that it the appearance of the tissue is not often globally consistent, 

making global feature classification inefficient. The task becomes doubly difficult as the 

cartilage laminar layers further deteriorate and fibrillation and lesions significantly alter 

the tissue appearance. Figure 5 shows some examples of the laminar tissue structure. 

 

 

Figure 5. Laminar properties of images cartilage tissue in the patellar groove. Notice the 

appearance of a double layer. 

  

Segmentation of the cartilage alone is one matter, but often it is desirable to have 

representative models of both the cartilage and the bone. Segmentation of the bone is 

fairly straightforward from CT, unless the bone has significant osteophytes, but can be 

quite difficult when segmentation is required from MRI volumes. Of course, the 

appearance of the bone and ease of segmentation is dependent upon the chosen protocol, 

but many orthopedic MRI protocols are designed with imaging the cartilage and bone 
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lesions in mind, which can leave the appearance and contrast of the cortical bone 

suboptimal, especially in regions where the bone does not contact the cartilage (at the 

bone-cartilage interface, the boundary is easily identified). Figure 2 and Figure 6 show 

the poor contrast on the anterior portion of the femur and at the tibia tuberosity, 

respectively. This occurs because cortical bone has low signal in this particular MRI 

protocol, due to the relatively low water content. When fat suppression is included in the 

imaging protocol, fat and ligaments also appear similar to cortical bone, thus at contact 

regions between these particular tissue types, there is little contrast and the boundaries are 

difficult to differentiate.  

 

 

Figure 6. Poor contrast on anterior of tibia where patellar tendon is near the bone. 
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1.5 Estimation of Cartilage Thickness 

 Despite the wealth of patient-specific information provided by today’s 3D image 

technology, many arthroplasty patients never undergo imaging with CT or MRI. All 

patients, however, receive XR imaging. It should also be noted that, despite the radiation 

exposure, CT (without contrast agent) as an imaging modality would be preferable to 

MRI due to cost considerations. Also, if a patient has any ferromagnetic material 

implanted in the body, they are not likely candidates for undergoing MRI imaging. The 

problem with both CT and XR is that the permittivity of cartilage is essentially the same 

as that of all the surrounding soft tissues, meaning there is no perceivable difference 

between cartilage and surrounding tissues in the image data, making accurate cartilage 

segmentation virtually impossible. As can be seen in Figure 7, there is virtually no 

distinguishable cartilage tissue visible in CT images. 
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Figure 7. Cartilage as visible in CT images. Notice little to no contrast for the majority of 

the cartilage tissue boundaries. It is not possible to accurately segment cartilage from CT 

images without the aid of some injectable contrast agent. 

 

At least one study has shown that there is some correlation between tibiofemoral joint 

space width in the medial compartment, as measured on anterioposterior (AP) XR views, 

and cartilage thickness [55]. It has also been shown that relative cartilage thickness 

correlates with load distribution on the articulating surface [6]. At the time of this writing, 

there is no available work assessing the correlation between bony features, such as 

surgical measurements and widths with cartilage thickness. As a goal, the ability to 

predict the cartilage thickness based only on information available through cost effective 

imaging, such as CT and XR, would serve as a major contribution to the field by reducing 

imaging costs. In general, the workflow for all modalities can be seen in Figure 8. 
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Figure 8. General flow from input of image data to segmentation and/or estimation of 

bone and cartilage data.  

 

 

1.6 Contributions 

The following list of contributions that are found in this work were developed using 

many sources of data, including the OAI for imaging data, CMR for segmentation of 

imaging data and the bone atlas foundations. My individual contributions are: 

1. High resolution morphological analysis of tibiofemoral cartilage using statistical 

shape modeling of bone surfaces as  foundation 

2. Cartilage morphology of healthy and OA knees 

a. Divided OA knees by KL classification and compartment of defect 

b. Normalized wear patterns for degenerative cases 

3. Kinematic analysis of cartilage wear in degenerative cases 

a. Comparison of cartilage wear for varus, valgus and neutral osteoarthritic 

knees in contact regions at various flexion angles during deep knee bend 

4. Novel cartilage segmentation algorithm for MRI knee images 
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a. Using SSM of cartilage and knee, network of local classifiers (~2000 for 

femur and ~1200 for tibia) at surface landmarks defined 

b. Accuracy shown to be as good as or better than current state-of-the-art 

5. Unique division of classifier training data for degenerative cases 

a. Examined varus, valgus, neutral and division by KL scoring 

6. Defined novel framework for estimation of cartilage from bones only 

 

1.7 Organization of Dissertation 

Chapter 2 of this work details different methods for static imaging of the knee joint and 

their applications. Specifically, subtleties related to this work are highlighted for XR, CT 

and MRI imaging modalities.  

Chapter 3 describes segmentation methods of the bony anatomy, specifically, those based 

on statistical shape modeling techniques. The specific shape model based segmentation 

used as the foundation of the cartilage analysis in this work, adapted from previous 

efforts, is given in detail. 

Chapter 4 proposes the cartilage analysis methodology, built on the SSM of the bony 

anatomy. Morphological features of the tibiofemoral cartilage compartments are reported 

for varus, valgus and neutral osteoarthritic cases, as well as for normal and healthy knees. 

A kinematic analysis of the morphological changes due to OA is reported. 

Chapter 5 details a novel, local tissue classification for cartilage segmentation using the 

point correspondence of the statistical shape model. 

Chapter 6 details the cartilage estimation framework from the cartilage statistical 

modeling presented in Chapter 4. 
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Chapter 7 provides conclusions based on this work, as well as proposing future directions 

of research based on the proposed methods. 
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Chapter 2  

Imaging of the Knee Joint 

The availability and use of diagnostic imaging for all procedures has rapidly risen 

over the last couple of decades [56]. While the information provided by these procedures 

can be extremely valuable, the costs associated with imaging are rising as well. For the 

diagnosis of OA, it would be ideal if every patient could undergo state-of-the-art MRI 

imaging procedures, but diagnostic quality must be balanced with costs. Therefore, it is 

important that accurate, patient-specific information can be extracted from the best 

resolution 3D modalities, as well lower XR costs. In this chapter, a brief overview of 

available imaging procedures for the knee is given, as well as some discussion of the 

advantages and disadvantages of each. 

 

2.1 Imaging of Bony Anatomy 

Imaging of bony anatomy and imaging the cartilage tissue require separate 

considerations. In general, CT and XR provide adequate bone visualization, but sacrifice 

cartilage appearance. A basic XR imaging system consists of a beam source, which 

generates and focuses the XR beam and a digital sensor, or film, placed so that the beam 

passes through the body before hitting the sensor. The sensor is excited relative to the 

strength of the beam hitting it, so that a weaker beam results in lower excitement and a 

stronger beam (unattenuated) results in a stronger excitation. The level of attenuation is 

directly mapped to image intensity (higher attenuation appears brighter in the images). 

The level of attenuation as the beam passes through the body is dependent on the 
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characteristics of the tissues along the beam path. In general, denser tissues (e.g., bone) 

will cause more attenuation. The tissue mass attenuation coefficients give some idea of 

expected contrast between tissues on resultant images. 

 

Table 2. Mass attenuation coefficient for various tissues at 10 KeV (from 

http://physics.nist.gov/PhysRefData/XrayMassCoef). 

Tissue Mass Attenuation Coeff. 

Adipose Tissue 3.268 

Skeletal Muscle 5.356 

Soft Tissue 5.379 

Cortical Bone 28.51 

 

  

As can be seen in Table 2, the attenuation coefficients of soft tissues are very 

similar to one another, and dissimilar to hard tissue, like cortical bone. In reality, this 

coefficient varies with beam energy – higher energy results in lower attenuation – and 

image contrast is dependent on many factors, such as beam hardening and blurring. In 

general, understanding beam attenuation and its relationship with image intensity reveals 

why imaging bony anatomy with XR-based modalities is sufficient for most cases, but if 

cartilage or other soft tissues require direct assessment, the poor contrast makes MRI a 

more suitable imaging modality. 
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2.1.1. CT and X-Ray  

 XR is generally considered the standard imaging technique for assessing joint 

damage. One of the more widely used osteoarthritic scoring systems, the KL score, is 

assessed by considering osteophyte growth and joint space on radiograph. Some imaging 

sites have access to long-film XR which can be used to assess overall joint alignment by 

including the hip, knee and ankle in a single frame while bearing weight, as in Figure 9. 
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Figure 9. Long-film XR allows imaging of total leg in a weight-bearing position, allowing 

estimate of hip-knee-ankle lines. Left image is AP view, right is lateral. 
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Every patient undergoing joint evaluation will receive an XR because it is cost effective, 

radiation exposure is low, and it is available in most clinics.  From XR, the clinician is 

able to quickly assess joint health, but is limited by the 2D nature of the images if a 

feature of interest is occluded due to the image direction.  

 For some applications, sub-millimeter resolution is required in 3D. The most cost 

effective and accurate modality for this is CT, which is essentially many XR images 

processed to provide a 3D reconstruction of the imaged volume. Computer tomography is 

ideal for imaging the bony anatomy because, as with XR, the physics of the modality 

allow strong contrast between bone and surrounding soft tissue. The 3D information 

allows accurate quantification of joint structure and spacing across the entire articulating 

surface, assuming the protocol is chosen such that axial resolution is sufficient to image 

the space between the contact surfaces. The disadvantages of CT are that the amount of 

radiation received by the patient can be quite significant and, as with XR, the cartilage 

tissue is difficult to distinguish due to extremely poor contrast. 

 

2.1.2 MRI 

 Appearance of bone and features of interest can vary greatly in MRI imaging. The 

choice of protocol and tissue structure significantly influence image appearance and the 

ability to distinguish interesting features. For bone, interesting features are often lesions 

and edema related to OA (Figure 10), as well as the more obvious osteophyte growth and 

changes related to osteolysis. Damage to the cartilage surface is often directly related to 

the formation of edema in the subchondral bone. 
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Figure 10. A subchondral lesion on MRI images of patient with osteoarthritis. This knee 

was given a grade of KL 3. 
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It is important to realize that MRI imaging is used most often for imaging soft tissue, as 

the water content of the cortical bone is relatively low, which causes it to virtually always 

appear black. However, the trabecular bone is readily visible in T1-weighted images or 

similar, as in Figure 11. 

 

 

Figure 11. MRI image showing example of scanning protocol with image properties of 

light trabecular bone and dark cortical bone. The cortical bone appears as a thin black 

outline around the trabecular tissue. Accurate bone segmentation would require 

outlining both the trabecular and cortical bone tissue. 

 

  

One study used a similar protocol to segment the “bone” using graph-cut methods, but 

actually only segmented the trabecular bone. Therefore, if patient-specific models had 

been required for measurement, the results would have seemed quite small. Essentially, 

the trabecular bone will appear similar to adipose tissue in most MRI protocols. This 

becomes somewhat problematic when using fat suppression to further highlight cartilage 
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tissue, as this causes the entire bone region to appear dark, as well as surrounding 

ligaments and adipose tissue, making bone boundaries difficult to detect, as in Figure 2. 

 

2.2 Imaging Knee Joint Cartilage 

In cases of OA, it is highly desirable to assess the health of both bone and cartilage 

tissues. Choosing a modality which balances cost, patient risks and imaging capability 

can be challenging given the properties of available modalities. This section describes the 

cartilage imaging capabilities of the most commonly used imaging modalities to highlight 

the many different appearances cartilage can take in orthopedic practice. 

 

2.2.1 MRI 

As of now, if the cartilage itself is to be directly assessed visually and in a non-invasive 

manner, MRI is the only available modality capable of providing the desired information. 

Modern MRI capabilities move the challenge from one of capability to one of choice. In 

other words, there are many options relating to MRI acquisition protocol and scanner 

choice which can affect the image quality as it relates to cartilage contrast-to-noise ratio. 

With judicious choice of scanner and acquisition protocol, the cartilage tissue (and even 

non-morphological information regarding underlying structure) can be accurately 

assessed. 

 The simplest and often least controllable aspect of imaging is the scanner. Most 

often, consideration is given to two major aspects of the instrument – magnetic field 

strength and magnet design. The strength of the magnetic field directly affects the signal-

to-noise ratio with higher strength magnets corresponding to improved signal-to-noise. 
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Low-field strength scanners have been shown to limit diagnostic effectiveness of OA 

[57], [58], [59]. This is due to the low contrast-to-noise properties of the cartilage – being 

a fairly thin structure, as well as having material properties similar to the surrounding 

joint fluid, makes delineation of the tissue highly dependent on signal-to-noise ratio 

(SNR) properties. Standard field strength of 1.0 T to 1.5 T is sufficient for most 

diagnostic needs and is most often used in studies assessing OA diagnostic capability 

with MRI. A stronger field strength of 3.0 has been shown to improve diagnostic 

capability [60], [61], as well as volumetric cartilage measurements [62] and is the 

strength of choice for the OAI study. Higher field strengths, such as 7.0 T, are used 

almost exclusively for research purposes and have shown somewhat diminishing returns 

in terms of image improvement [63]. 

 The other scanner consideration is the configuration of the magnet, either 

considered open or closed. A closed magnet most often relies on a table system to pass 

the patient through the magnetic bore. These systems are the most common systems in 

use and tend to give the best SNR, but are limited by allowing acquisition only in the 

supine position. Additionally, obese patients or those experiencing extreme 

claustrophobia may require a more open configuration. Open MRI systems were, until 

recently, often of much lower field strength, usually 0.2 T, reducing SNR,  thereby also 

reducing the ability to assess morphologic changes to cartilage tissue. However, modern 

systems are on the order of 1.0 – 1.5 T and depending on configuration, can allow 

imaging of weight-bearing knees, providing valuable static information on mechanical 

properties of the joint [64]. In general, the SNR of modern open systems should provide 
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images suitable for assessment and segmentation processing. The major consideration 

then lies in the choice of acquisition protocol, as this is usually the predominant factor in 

determining image characteristics. 

 There are numerous available image protocols tailored to obtain optimal cartilage 

visibility and contrast in the resultant images. In practice, not every modern protocol is 

available at acquisition time, and good results are often obtained using any fluid 

sensitive, fat suppressed sequencing protocol, as well as fast spin echo (FSE) [63]. 

Popular specific protocols include proton density, T2-weighted FSE, 3D spoiled gradient 

echo (SPGR), fast low-angle shot (FLASH) and dual echo steady-state (DESS) [58]. The 

OAI acquires all images at 3.0 T using 3D DESS with thin sections, obtaining nearly 

isotropic voxels permitting excellent assessment characteristics in all three common 

reconstruction directions (i.e., sagittal, axial and coronal). For this study, all subjects were 

from the OAI datasets, but images obtained from any sequence which provides similar 

cartilage contrast, as well as those having dark bone and lighter intensity cartilage, should 

be adequate. Interestingly, the researcher may find that the best sequence protocol for 

diagnosis is insufficient or incompatible with the developed algorithm(s). Also worth 

noting is that gadolinium enhanced arthrography is possible in MRI and has been shown 

to be a good tool for assessing joint disease [65], [66], although the procedure is not often 

used due to the invasive nature of the injection. There are tools currently under 

development to simulate the effects of contrast through novel sequencing protocols, but 

these are new and not often available in practice. 
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2.2.3 CT and X-Ray 

As previously mentioned, all patients receive XR when being evaluated for OA of 

the knee. Standing XR allows indirect evaluation of cartilage health in a load-bearing 

knee, although the tissue itself is not visible on XR. Additionally, the lack of cartilage on 

the resultant images means XR is not a valuable tool for assessing early stages of OA 

degeneration, as absence of findings cannot be considered lack of evidence of OA [63]. 

Work by Cibere suggests XR is a more apt tool for exclusion of alternative pathologies 

than as a tool for confirming existence of OA [67]. However, with XR being the least 

expensive and most common modality available, it is widely used for assessment of OA – 

specifically with the presence of osteophytes and assessment of joint space width.  

 XR is useful only for indirectly assessing cartilage thickness, which is 

accomplished by measurement of the joint space width. Joint space width (JSW) is 

defined dependent on the image view – most commonly AP with 20-35 degrees of 

flexion [68] – and is considered to be the minimum distance between femur and tibia in 

both lateral and medial compartments. It should be mentioned that a widely cited study 

by Buckland-Wright, et al. suggests JSW correlates with cartilage thickness only in the 

medial compartment and not the lateral [55]. In general, JSW is considered a standard 

indication of joint space narrowing, one of the signs of OA. An additional factor to be 

considered is that reproducing image views and JSW measurements on consecutive XR 

studies of the same patient is difficult and will result in random changes of measured 

JSW. Also, studies have shown that JSW can be caused by means other than cartilage 

degeneration, such as meniscal extrusion or subluxation [69-71]. Despite its limitations, 
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the cost, availability and traditional use of XR make it the most commonly used modality 

for assessing OA, although for some applications, the 2D nature of the technology is 

inadequate. 

 Occasionally, if 3D assessment is required and the patient is not able to undergo 

MRI, for reasons such as claustrophobia, obesity, pacemaker, or metal implant near the 

joint, CT is a viable alternative.  Using traditional CT, it is nearly impossible to delineate 

cartilage from soft tissue, depicted in Figure 7. However, cartilage is accurately imaged 

with the aid of injected contrast agents in a procedure known as arthrography. Here, the 

contrast agent is a diluted solution of some radio-opaque material, such as iodine, which 

fills the joint space, allowing identification of the outer boundary of the cartilage and 

defects in contact with the outer boundary. In such images, the contrast fills the joint 

space, causing the space to take on a much brighter intensity, providing contrast between 

the fluid and darker cartilage tissue. 

Studies have shown CT arthrography to be at least as accurate as MRI for 

assessing cartilage thickness [72, 73]. Additionally, CT arthrography does not decrease 

sensitivity of identification of chondral lesions as compared to MRI [74], although due to 

the nature of the contrast agent, subchondral lesions, which do not contact the joint space, 

are not visible via arthrography. In fact, in some cases CT may be more accurate due to 

the general better resolution of the scanner over MRI in current state-of-the-art systems.  

While CT is much faster than MRI, the arthrography procedure does have 

considerable risks in addition to the increased procedure time. These include adverse 

reactions to injection of the contrast agent, which could mean an allergic reaction to the 
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contrast solution, or increased risk of infection of the injection site, as well as pain and 

discomfort in the injected joint. This is in addition to the considerable exposure of 

patients to ionizing radiation. 

Cartilage surface can be visualized, however, with the use of contrast agents via 

arthrogram. Injection of a radio opaque contrast agent, such as iodine, into the knee joint 

space and waiting 30-60 minutes for the contrast agent to diffuse for full coverage of the 

anatomy, allows delineation of the cartilage boundaries. 
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Chapter 3  

Segmentation of Bony Anatomy 

3.1 Segmentation using SSM 

 OA affects most of the tissues of the joint, including cartilage, soft tissues and 

bone. Therefore, it is critical to automate the capture of as many of these anatomical 

features as possible when developing a segmentation process for the total knee joint. 

While many methods exist for segmentation of bony anatomy, it is imperative that the 

selected method take into consideration that the next segmentation process will benefit 

from the ability to use the bone segmentation as an initialization or reference, as in [39] 

or [38]. Obviously, if only the bone or cartilage anatomy is required, any number of 

methods can be chosen for the task. In general though, segmentation is useful only as a 

data generator for further analysis, thus a method with the following properties is ideal: 

the method should (1) make the next segmentation step easier while retaining accuracy, 

and (2) allow easy analysis of morphological differences across the dataset. For example, 

if a segmentation algorithm is able to quickly segment 30 bones, but a separate method is 

required for the cartilage and also requires manual analysis to determine morphological 

changes, then the “system” quickly becomes overly complex and inefficient.  

 One such method with the ideal properties is segmentation utilizing SSM, as 

introduced by Taylor and Cootes [75]. This has been used successfully to extract bone 

anatomy [37, 38, 47] in healthy patients. First, it is necessary to briefly explain the 

principles of a basic SSM, as it applies to bone.  
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3.1.1 Building the SSM  

The bone shape model is built upon a database of triangulated meshes which 

represent the surface of a bone. The statistical bone atlas is formed as described 

previously by Mahfouz, et al. [76]. In this process, the initial mean template mesh is 

chosen from the database. All subsequent bone models are then resampled to ensure the 

same number of vertices are present in addition to having identical connectivity. 

Additionally, the points on the template model have a one-to-one correspondence with 

points on other models in the database, which is nontrivial to achieve [77].  

The process of obtaining correspondence is a hierarchical one, consisting of linear 

and non-linear transformations. In the first step, the centroids of the template model and 

new bone model are aligned. Second, a rigid iterative closest point (ICP) registration is 

performed as described in [78], followed by an affine transformation. Finally, an iterative 

non-linear warping, called mutual correspondence warping (MCW) [47], is used to 

achieve final point correspondences after a smoothing step. 

Once correspondences are established, the shape model can be represented as a 

mean model, µ, computed as the mean of each of the N sets of corresponding vertices. 

Then a data matrix is constructed as: 

     ((  
   

   
    

   
   

 )    ) (1) 

              (2)  

               (3) 
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Here, mi is the feature vector associated with each of the B models, each having N points. 

The singular value decomposition is performed on M. By projecting a noisy model 

having the proper point correspondence onto the space defined by the eigenvectors, using 

some 1 ≤ k ≤ B PCs, an optimal estimate, in a least-squares sense, of the bone shape is 

obtained from the shape atlas. The percentage of shape variance captured in the 

projection increases monotonically with k. Therefore, as the model to be projected 

converges to the true anatomy, the number of PCs used for estimation is increased to 

refine the accuracy of the projection by increasing the allowed shape variation. Improved 

point correspondence can be attained using more complex point matching and PC 

methods, but this is out of the scope of the proposed project. 

A shape model can be reconstructed by optimizing the weights in a least-squared sense, 

so that the reconstruction is written as: 

 

     ∑     

 

   

 (4) 

 

The major properties that make SSM a valuable segmentation and modeling tool are the 

one-to-one point correspondence, allowing modeling and morphological comparison at 

fine resolution, and the PC projection, which, as described in the next section, allows 

shape constraint without complex deformation cost functions, as in active contours. 

Another important characteristic is allowable shape variance that is stored in the PCs with 

each subsequent PC contributing some percentage to the total available variance. Good, 
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although not exact, representations of a candidate bone using only a few PCs can now be 

reconstructed.  

 

3.1.2 Segmentation with SSM 

This section defines an iterative method for segmentation with SSM, building on the 

work by Merkl, et al. [47]. It should be noted that Fripp, et al. developed a similar method 

[37], although these surface atlases were combined, so that the pose between tibia, femur 

and patella, as well as the shapes, were included in a single atlas. It is this author’s 

opinion that utilizing separate atlases and registrations provides more system flexibility 

with respect to application. Examples of situations wherein it may be advantageous to 

incorporate separate atlases are when images containing only the femur or tibia can be 

used or when images provided are poorly positioned (e.g., from an open MRI 

configuration with some flexion).  Optimal shape from the shape model space can be 

found by iteratively deforming a noisy model and projecting it onto the shape model 

space (also referred to as the “atlas space”) to help constrain the shape to the segmented 

anatomy. Since available shapes in the atlas are limited to the span of the PC vectors, the 

patient-specific segmentation requires an additional step, where the final atlas projection 

is “relaxed,” so that each vertex is allowed to deform to the highest-scoring edge location. 

By using image edges, the segmentation method is independent of image intensity and 

can be used with CT and many MRI sequencing protocols.  

 The first modification to the method by Merkl, et al. lies in the registration of the 

surface atlas with the patient volume. The transformation TAP from the atlas to the patient 

space is the desired component, and the simplest way to find TAP is to use basic manual 
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input, where the operator identifies three anatomical landmarks on the patient images 

which correspond to atlas landmarks, as depicted in Figure 12. 
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Figure 12. Alignment landmarks on mean surface models (top) and selected on the MRI 

images for registration (middle and bottom images are femur and tibia, respectively). 

Transformation between best fit from atlas models and selected points is used for 

registration of atlas to patient volume. 
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These landmarks have previously been stored on the atlas mean bone, so that a simple 

correspondence solution can be solved to obtain the transformation of interest. It should 

be noted that the mean model may not match the patient anatomy very closely, resulting 

in a poor registration result. To avoid this, the registration should be performed for every 

bone in the surface atlas, and the registration resulting in the least error between 

anatomical points should be kept as the initial model. The transformation should be 

retained for the iterative step of the algorithm.  

 After registration is obtained, a projection of a noisy model onto the atlas space as 

a shape constraining low-pass filter of the image information iteratively determines the 

optimal shape from the atlas which matches the patient-specific anatomy. An example of 

the smoothing properties of atlas projection is shown in Error! Reference source not 

found.. 
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Figure 13. Examples of low-pass filtering properties of projection onto the atlas for 

femur (top) and tibia (bottom). Noisy models are on the left and model after projection 

onto the atlas is on the right. Notice significant reduction of noise. 

 

 

 



 
48 

The iterations converge when one of two things occurs, a preset maximum number of 

iterations is reached or convergence is achieved and the root mean squared error (RSME) 

between the current iteration and previous iteration is below some threshold.  

For each iteration, the following steps are performed: 

1) Calculate the normal directions to the surface at each vertex. This is done by 

averaging the normal directions of connected faces; normal directions should 

point away from the bone surface; normal directions for a sample bone are shown 

in Figure 14. 

 

Figure 14. Surface normals at each vertex. Sampling along these profiles is performed to 

determine the appropriate edge at each vertex. 
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2) Along each normal direction, sample locations are determined along the ray at a 

predefined step; this is usually some ratio, r (0 < r < 1), of the minimum voxel 

length. Sampling is performed so the midpoint of the samples is the current bone 

vertex. 

3) At each sample point, linearly (other methods are applicable, although not tested) 

interpolate image intensity. Image borders are replicated to avoid false edges. 

This step determines the signal used for edge detection. An example signal is 

shown in Figure 15. 
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Figure 15. Example intensity signal, smoothing and detected edge for bone segmentation. 
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4)  Image noise is removed by utilizing the Savitzky-Golay algorithm [79]. This 

filter defines a kernel, which can be used to approximate a local polynomial 

regression on the kernel window. By solving the regression with a single kernel, 

smoothing is fast while keeping strong edges. 

5) Edges are then taken as the local maxima of the magnitude of the first order 

image gradient. 

6) The signed edges are removed next. For MRI, locations where intensity moves 

from dark (inside the bone) to bright (soft tissue) are necessary to remove the 

signed edges. The opposite is true for CT.  

7) Edges are scored by gradient magnitude and distance from the bone. Distance 

weighting is done by multiplication with a Gaussian window centered about the 

midpoint. The window takes the form of: 

 
       

 
 
 
( 

 
   

)
 

 
(5) 

 

Here, alpha defines the window width and N is simply the total number of points. 

In this case, n is the index relative to the central point. It is possible to choose a 

different alpha for inside the vertex and one for outside, if it is desired to weight 

one side more strongly. Weighting is illustrated in Figure 15. 

8) Finally, if the statistics have been calculated (iteration > 2), each sample is given a 

likelihood of belonging to the boundary, based on self-intensity and the nearest 

two samples. For CT, this is intended to model the similarity of the bony 

boundary intensities across the anatomy. For MRI, this is intended to guarantee 
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the best possible results at the BCI surface. This step can be thought of as a 

dynamic local appearance model in the sense that the appearance model is 

updated with each iteration. 

9) The edge with the highest score based on the following scoring function is kept: 

           (6) 

 

Here, alpha (0 <= α <= 1) and beta (β = 1 – α) represent the respective weighting 

given to the gradient magnitude, G, and the appearance likelihood, L. The vertex 

is then moved at the location of the highest scoring edge. 

 

3.2 Anchor Point Refinement 

 Often, the appearance of the bone-soft tissue interface is poorly defined. This is 

especially apparent in regions where little to no cartilage is present from degeneration or 

in the anterior regions of the femur and tibia. The method developed for segmenting these 

regions accurately is a simple, semi-automated tool using supposed “anchor points,” 

which guides the segmentation by selecting a small cloud of points in the poorly-defined 

region. These points define the anticipated location of the true bone boundary, but work 

for all surface vertices within a given diameter – allowing local and non-local refinement 

in a short period of time.  
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3.3 Atlas Parameters 

The bone atlas is divided by gender and anatomy. The male statistical atlas 

contains 199 femur and 199 tibia, and the female atlas contains 112 femur and 115 tibia. 

All atlases of the same anatomy have point correspondence. The femoral atlas bones have 

4,120 points, and the tibial atlas bones have 4,812 points. For all bones, variance is 

shown as a function of PC count in Figure 16 and Figure 17. 
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Figure 16. Cumulative variance of PCs for the femur SSM. 

 

Figure 17. Cumulative variance of principal components for tibia SSM. 
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3.4 Use of Segmented Bones 

The goal of these bone segmentation steps is to provide an accurate patient-

specific bone for each case with atlas correspondence that can be used as an anchor for 

cartilage analysis and segmentation. These analyses and segmentations permit modeling 

the cartilage at each corresponding vertex from the surface atlas, described in subsequent 

chapters. 
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Chapter 4 

Morphological Changes in Osteoarthritic Knees 

 

4.1 Cartilage Thickness Distribution 

 Osteoarthritis of the knee brings about many changes in the affected joint, ranging 

from fluctuations in cartilage distribution, development of osteophytes, or subchondral 

edemas. Ultimately, these changes lead to, or are brought about by, abnormal kinematic 

motion. These kinematic changes alter the distribution of stresses on the articulating 

surface, often leading to suboptimal load distribution. As a knee moves through the 

various degrees of flexion, the femorotibial contact regions progress from the central 

compartments of the femur surface to a posterior position. Movement on the contact area 

on the tibial surface is slightly more complex, but has been defined in several studies. It is 

likely that this contact pattern, and deviations from the described pattern, can give insight 

into degenerative changes in OA knees.  

In healthy patients, the cartilage thickness is higher in regions which undergo the 

majority of stresses during normal gait [80]. Furthermore, Li, et al. showed that the 

cartilage-to-cartilage contact regions were associated with the thickest cartilage [6].  

Wirth and Eckstein, et al. further studied cartilage loss in the femorotibial joint in OA 

subjects by segmenting the cartilage plates and assigning regions for examination [81, 

82]. The regions on the articulating surfaces, defined for the femur and the tibia, were 

located relative to manually selected landmarks as described in [27]. The findings by 

Wirth suggest that centrally located compartments of both joints undergo the majority of 
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cartilage wear. There are, however, some shortcomings in the works of Wirth and 

Eckstein, such as poor resolution and reduced study reproducibility due to manually 

defined landmarks – both of which can be overcome using SSMs. Mahfouz et al. have 

used high resolution SSM of the bony anatomy to perform morphological analyses [83] 

across gender and ethnicities [84, 85] . Similar SSM of the bone can be used to drive the 

morphological cartilage analyses, not unlike Fripp [86], who used SSM for cartilage 

segmentation and Williams [87], who used some form of SSM for morphological 

analysis, but reported overly thick cartilage (approximately 25 mm in patellar groove). 

Tibiofemoral contact regions are relatively small when compared with overall 

articulating surface size. The problematic issue of resolution lies in the comparison of 

results from the kinematic data to the rather large compartments used in the analysis by 

Wirth. For example, the contact regions of the medial tibia appear to lie partially inside 

the central tibial plate and one or more of the surrounding regions. Therefore, it is 

unknown if the cartilage wear is in regions associated with contact areas about which data 

is currently known. This work seeks to answer several questions regarding morphological 

cartilage analysis and changes related to OA. First, the cartilage wear maps will be 

generated for varus, valgus and neutral knees. Second, these wear patterns will be 

generated using high resolution methods by utilizing SSMs and associated point 

correspondences. Finally, these wear patterns will be associated with known kinematic 

contact regions. 
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4.2 Methods 

4.2.1 Subject Selection 

All subjects were from the existing OAI, jointly sponsored by the National 

Institutes of Health, the National Institute of Arthritis and Musculoskeletal and Skin 

Diseases and the pharmaceutical industry.  The OAI acquires all images at 3.0 T using 

3D DESS with thin sections, obtaining nearly isotropic voxels, allowing for excellent 

assessment characteristics in all three common reconstruction directions (i.e., sagittal, 

axial and coronal). Voxel size for all images was 0.7 mm x 0.365 mm x 0.365 mm, 

providing adequate resolution for segmentation of cartilage anatomy. Image sizes were 

384 x 160 x 160. Healthy subject were those with KL score of 0, while degenerative 

subjects were considered as KL score of 1 or above. For healthy subjects, 40 male and 40 

female were used – divided by gender, with demographics as listed in Table 3.  

 

Table 3. Subject demographics for healthy cartilage dataset. 

 Caucasian 
Male 

Caucasian 
Female 

Average Age (years) 63 63 

Age Range (years) 47 - 76 45-77 

Number Right 26 30 

Number Left 14 10 

Average Year of Birth 1942 1942 

 

 

For cases with degeneration in one or both tibiofemoral compartments, the demographics 

of all selected patients are listed in Table 4. 
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Table 4. Subject demographics for cartilage datasets with degeneration. 

 Caucasian 
Male 

Caucasian 
Female 

Average Age 
(years) 

63 65 

Age Range (years) 48 - 78 46-78 

Number Right 19 19 

Number Left 3 7 

Average Year of 
Birth 

1942 1940 

 

 

The total number of patients in each group, as divided by compartment of wear and KL 

score is listed in Table 5 and Table 6. 

 

Table 5. Makeup of male subject dataset by KL score and compartment of degeneration. 

Male KL1 KL2 KL3 Total 

Varus 5 3 2 10 

Valgus 2 1 5 8 

Neutral 2 1 1 4 

Total 9 5 8 22 

     

 

Table 6. Makeup of female subject dataset by KL score and compartment of 

degeneration. 

Female KL1 KL2 KL3 Total 

Varus 5 2 3 10 

Valgus 2 4 4 10 

Neutral 1 3 2 6 

Total 8 9 9 26 
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Data for these analyses are from the OAI public use data set(s). The OAI is a public-

private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-

AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of 

Health, a branch of the Department of Health and Human Services, and conducted by the 

OAI Study Investigators. Private funding partners include: Merck Research Laboratories; 

Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector 

funding for the OAI is managed by the Foundation for the National Institutes of Health. 

This manuscript was prepared using an OAI public use data set and does not necessarily 

reflect the opinions or views of the OAI investigators, the NIH, or the private funding 

partners. 

 

4.2.2 Cartilage Thickness Calculation 

For all cases in the dataset, cartilage thickness was calculated at each location belonging 

to the possible BCI on the bone surfaces from the statistical atlas. This was done using a 

multi-tiered, semi-automated segmentation approach consisting of automatic bone 

segmentation, as described in Chapter 3, followed by a manual cartilage segmentation 

step, and finally, processing of the segmented labels as depicted in Error! Reference 

source not found.. 
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Figure 18. Semi-automatic segmentation of bone and cartilage from MRI images from 

the OAI dataset. The first step is to utilize the segmentation algorithm in Chapter 3 to 

segment the bone and cartilage data. Any remaining errors are then manually segmented 

using available tools. The resulting labels after the manual step represent the bone and 

the bone + cartilage. Subtraction of the two labels allows accurate cartilage 

reconstruction while guaranteeing accurate BCI for thickness and location calculations. 
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For each case, after the resulting bone model has been converted to have atlas 

correspondence, the bone segmentation is used as the “anchor” for cartilage thickness and 

bone-cartilage interface determination. Cartilage thickness at each vertex on the bones 

must now be determined. For each BCI vertex, vi, defined as a bone vertex with cartilage 

present along the normal direction from the bone, there is an associated thickness 

statistics (mean and standard deviation), as well as probability, of cartilage being present. 

Cartilage thickness for each subject is calculated as follows: 

1) Use atlas based segmentation with anchor points to segment the bone data with 

point correspondence with the statistical atlas (Chapter 3). 

2) Add cartilage layer to bone segmentation using semi-automatic segmentation 

tools. 

3) Subtract bone + cartilage mask from bone mask to obtain cartilage mask only. 

4) Project rays normal to the bone surface and sample cartilage mask at sufficiently 

high frequency (0.1 mm in this case) at every bone vertex. 

5)  Add all vertices with at least one sample point inside of the cartilage mask to the 

BCI list. 

6) For each vertex profile, extract first intersection point and next intersection point 

with a subsequent miss. The distance between these two points corresponds to 

cartilage thickness at the vertex. 

 

This procedure was conducted for all cases in the dataset, and each bone vertex has an 

associated cartilage thickness. Mean thickness was determined at each vertex for each 
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dataset. Osteoarthritic data was divided by affected compartment and classification, 

whereas healthy data was divided by gender. 

 

4.2.3 Cartilage Thickness Analysis 

For each case in the pathological datasets, the thickness at each vertex was normalized by 

the mean healthy thickness of the associated gender (male knees normalized by healthy 

male thickness, female by healthy female). This gave a mean fractional wear associated 

with each vertex for all OA cases, mean cartilage thickness maps were generated for all 

data.  

 

4.3 Results 

4.3.1 Healthy Cartilage 

The following images give quantitative maps of the cartilage at each vertex on the 

statistical atlas. From these results, a standard to which degenerative cartilage may be 

compared has been established. 
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Figure 19. Mean cartilage thickness for Caucasian male femur. 

 

 

 

 

Figure 20. Standard deviation of cartilage thickness for Caucasian male femur. 

 



 
66 

 

Figure 21. Probability map for femoral cartilage presence on Caucasian male femur. 

 

 

 

 

Figure 22. Mean thickness (left), standard deviation (middle) and probability (right) of 

Caucasian male tibia cartilage. 
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Figure 23. Mean cartilage thickness for Caucasian female femur. 

 

 

 

 

Figure 24. Standard deviation of cartilage thickness for Caucasian female femur. 
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Figure 25. Probability of cartilage presence for Caucasian female femur. 

 

 

 

 

Figure 26. Mean thickness (left), standard deviation (middle) and probability (right) of 

Caucasian female tibia cartilage. 

 

 

Table 7. Global quantitative results for cartilage tissue in healthy male and female. 

Gender Bone Volume (voxels) Mean thickness (mm) 

Male Femur 1.627 * 10
5 

1.93 

Female Femur 1.114 * 10
5 

1.59 

Male Tibia 6.420 * 10
4 

1.42 

Female Tibia 4.285 * 10
4 

1.16 
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4.3.2 Osteoarthritic Cartilage Maps 

The following cartilage maps represent those found in various degrees of 

degeneration, as divided by compartment and classification level (KL). In addition to 

basic statistics, the normalized fraction of the healthy mean map is likewise reported. 

 

 

 

Figure 27. Mean cartilage thickness of KL-1 grade femur. 

 

 



 
70 

 

Figure 28. Standard deviation of cartilage thickness for KL-1 grade femur. 

 

 

 

 

Figure 29. Normalized fraction of mean healthy (KL-0) thickness for KL-1 grade femur. 
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Figure 30. Cartilage for KL-1 grade tibia. 

 

 

 

 

Figure 31. Mean cartilage thickness for KL-2 grade femur. 
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Figure 32. Standard deviation of cartilage thickness for KL-2 grade femur. Note that 

despite thickness map appearing to be nearly normal, the deviation in the patellofemoral 

region is high. 

 

 

 

 

Figure 33. Probability of cartilage presence for KL-2 grade femur. Note some patches of 

missing cartilage in the medial compartment. 
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Figure 34. Normalized fraction of mean healthy (KL-0) thickness for KL-2 grade femur.  

 

 

 

 

Figure 35. Cartilage for KL-2 grade tibia. 
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Figure 36. Mean cartilage thickness for KL-3 grade femur. 

 

 

 

 

Figure 37. Standard deviation of cartilage thickness for KL-3 grade femur. 
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Figure 38. Probability of cartilage presence in KL-3 grade femur. Notice the higher 

probability of missing cartilage than in KL-2 femurs, as expected. 

 

 

 

 

Figure 39. Normalized fraction of mean healthy (KL-0) cartilage thickness for KL-3 

femur. 
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Figure 40. Cartilage for KL-3 grade femur. 

 

 

 

Figure 41. Mean femoral cartilage thickness for cases with varus defects. Note thin 

cartilage in medial tibiofemoral compartment. 
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Figure 42. Standard deviation of femoral cartilage thickness for cases with varus defects. 

 

 

 

Figure 43. Probability of femoral cartilage for varus knees. 
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Figure 44. Normalized fraction of healthy thickness for femoral cartilage in varus knees. 

Note significant cartilage wear in the medial tibiofemoral compartment, which is 

expected in knee joints with varus malalignment. 

 

 

 

 

Figure 45. Cartilage for tibia in varus knees. Note majority of tibia wear is in the medial 

compartment. 
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Figure 46. Mean femoral cartilage thickness in knees with valgus defects. Note that the 

femoral cartilage looks nearly healthy. 

 

 

 

 

Figure 47. Standard deviation of femoral cartilage thickness in knees with valgus defects. 
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Figure 48. Probability of femoral cartilage in valgus knees. 

 

 

 

 

Figure 49. Normalized fraction of healthy thickness for valgus knees. Note the lateral 

wear is mainly in the posterior compartment of the femur. 
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Figure 50. Cartilage for tibia in valgus knees. Note that most of the tibiofemoral wear is 

in the lateral tibia compartment. 

 

 

 

 

Figure 51. Mean femoral cartilage thickness in knees with defects in both compartments. 
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Figure 52. Standard deviation of femoral cartilage thickness in knees with defects in both 

medial and lateral compartments. 

 

 

 

 

Figure 53. Probability of femoral cartilage in knees with defects in both medial and 

lateral compartments. 
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Figure 54. Normalized fraction healthy thickness in knees with defects in both 

compartments. 

 

 

 

 

Figure 55. Cartilage for tibia with defects in both medial and lateral compartments. 
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Table 8. Quantitative statistics for all divisions of degenerative cartilage tissues. Of note 

is the inability to tell differences by examining only the mean thickness, but that the 

standard deviation gives some indication of degeneration. 

Degenerative 
Type 

Anatomy Mean 
Volume 
(voxels) 

Volume std. dev. 
(voxels) 

Mean 
thickness 

(mm) 

Fraction of 
Healthy (%) 

KL-1 Femur 1.265E+05 3.776E+04 1.637 ± 0.882 96.7 ± 65.7 

KL-2 Femur 1.315E+05 3.403E+04 1.697 ± 0.886 99.7 ± 101 

KL-3 Femur 1.297E+05 3.780E+04 1.725 ± 0.964 119.7 ± 209 

Neutral Femur 1.377E+05 4.283E+04 1.724 ± 0.844 123 ± 299  

Varus Femur 1.259E+05 3.510E+04 1.609 ± 0.854 100 ± 106  

Valgus Femur 1.280E+05 3.400E+04 1.758 ± 1.033 111 ± 282  

KL-1 Tibia 4.613E+04 1.396E+04 1.143 ± 0.912 93.4 ± 81.3 

KL-2 Tibia 4.438E+04 1.348E+04 1.173 ± 0.935 100 ± 126  

KL-3 Tibia 4.404E+04 1.747E+04 1.130 ± 0.793 128 ± 163  

Neutral Tibia 4.528E+04 1.492E+04 1.178 ± 0.854 125 ± 170  

Varus Tibia 4.688E+04 1.472E+04 1.175 ± 0.920 104 ± 88.3 

Valgus Tibia 4.251E+04 1.538E+04 1.067 ± 0.856 93.9 ± 123 
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4.4 Kinematic Evaluation of Pathological Wear 

To evaluate kinematic contributions to pathology (or vice versa), the contact maps at 

various flexion angles were generated on the tibia SSM. Four subjects underwent a 

fluoroscopy procedure during a deep knee bend activity. Patient-specific, 3D models 

were segmented from CT scans each of the subjects. Each model was registered to the 

fluoroscopic frames using a previously described 3D-to-2D registration method [88] at 

the flexion angles of 0°, 20°, 40°, 60°, 80°, 100°, and 120°. For each angle, the contact 

map was identified on the tibia after conversion of the patient-specific tibia model to 

SSM correspondence. Additionally, cartilage was estimated using the method described 

in Chapter 6 for the 0° pose. The contact map was identified using the closest 10% of all 

points on each condyle of the femur and projecting onto the tibia SSM. Figure 56 shows 

the division of the femoral atlas into medial and lateral compartments.  
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Figure 56. Division of the medial and lateral condylar vertices on the mean femoral atlas 

model. The division plane was taken as the mean model point with normal direction 

along the principal axis pointing in the most ML direction. 

 

Regularization of the contact region was performed for each region by calculating the 

probability of each atlas landmark as belonging to the contact region, and finding the 

probability weighted mean vertex on the mean tibia for each region. This was done using 

the following equation: 

 
   

∑   
     

∑   
 

 

 (7) 

 

Where   
  is the probability that vertex vi belongs to the contact region. The overall 

contact region was then estimated as the two ring neighboring set (union of neighbors of 

the neighbors of vµ). Contact regions for all angles of flexion are seen in Figure 57. 
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Figure 57. All contact regions starting at 0° flexion on the top left and continuing in 20° 

increments in a serpentine fashion to the right. Each new color represents current 

contact region overlaid on previous regions. 

 

 

 

 

 

At each vertex in each contact region for medial and lateral compartments, the mean 

fraction of healthy thickness for each degenerative category (varus, valgus and neutral) 

was determined. The following plots show statistics for each flexion angle in each 

compartment and for each degenerative category. 
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Figure 58. Fraction of healthy thickness for contact regions at each flexion angle in the 

lateral tibia compartment. Each subplot represents a different category of knee 

alignment. Notice that in the varus and neutral knees, degeneration is present in the 

lateral compartment, but to a lesser extent than for valgus knees. 
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Figure 59. Fraction of healthy thickness for contact regions at each flexion angle in the 

medial tibia compartment. Each subplot represents a different category of knee 

alignment. Notice that in the valgus knee, there is little to no wear in the medial 

compartment, possibly suggesting that the lateral compartment is experiencing the vast 

majority of the loading. 
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4.4 Conclusions 

This chapter has proposed a novel method for the examination of cartilage 

morphology with both high precision and resolution. Using this method, accurate maps of 

healthy and pathological cartilage maps were generated, illustrating the difference 

between gender and wear patterns. The results for varus and valgus knees corresponded 

with conclusions presented by the paper by Eckstein, et al. [82], which concluded that in 

valgus knees, cartilage wear tends to be focused on extreme (inner and outer) 

compartments of the femur, and even more so on the lateral tibia. This is in contrast with 

varus knees, where the medial femoral compartment experiences approximately the same 

level of wear as the medial tibial compartment. 

Moreover, association of the cartilage wear region with early kinematic data may shed 

some light as to which activities patients with early onset OA should avoid and which 

activities tend to cause damage in varus/valgus malaligned knees. In a world with 

growing orthopedic related costs, this can provide valuable insight into OA treatment. 

Clearly, in valgus cases, the vast majority of loading occurs on the lateral compartments, 

and nearly no degeneration is present in the medial tibia compartment. Additionally, the 

association of wear with flexion angle suggests the majority of wear occurs between 20° 

and 60° flexion. This work is the first of which the author is aware that relates flexion 

angles with cartilage wear patterns in different cases of knee malalignment, and results 

suggest that much can be learned from a larger study. To improve accuracy, subjects 

should undergo MRI, so that patient-specific cartilage pads can be accurately segmented, 

instead of estimated as conducted in this work. The inclusion of the femur in the next 
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phase of the study may reveal more about cartilage wear as it relates to subject 

kinematics. 
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Chapter 5 

Local Supervised Learning for Cartilage Segmentation 

 

This chapter describes a novel tissue classification method that uses the point 

correspondence property of SSMs to anchor individual classifiers that can be used to 

account for local changes in tissue properties. In other words, the point correspondence 

characteristic of the SSM allows definition of a classifier for each vertex on the BCI, 

permitting a local tissue classifier to be defined with high resolution at each vertex. When 

combined, this surface classification scheme can be used to accurately model local 

changes in tissue properties which can negatively affect global classification methods. 

The assumption here is that pathological and morphological changes are not randomly 

distributed, and indeed existing literature suggests cartilage thickness is distributed to 

provide adequate support in regions which experience the most stress in normal activities 

[6]. Additionally, distinct lesion development patterns have been reported [89]. While 

these patterns would be very difficult to model globally, locally supervised learning 

methods may capture the pathological changes due to OA in an implicit way.  The 

method for defining the classifiers is below with application to cartilage tissue 

segmentation.  

 

5.1 Classifiers and Point Correspondence 

The overall classification system requires that a classifier be defined at each vertex of the 

anchoring surface, whether it is simple (Naïve Bayes) or complex (support vector 

machine). In this work, the anchoring surface is a bone segmented as in Chapter 3, which 
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has retained point correspondence with the atlas. Thus, each vertex vi defining the 

anchoring surface has associated with it a soft (or hard, if no probability is desired) 

classifier,   
 . The dataset features and targets must now be defined.  

For each vertex, vi, on the surface, we define a direction normal to that surface. Along 

this direction, a profile, Pi, is defined. Pi consists of n points with each point having an 

associated feature vector,   
 , where j ϵ [0, n]. Each feature vector,   

  is used as an input 

for classifier   
  and is given a target value, tj

i
. For cartilage classification this target 

value is given value “1” if the location of   
  corresponds to a cartilage sample and value 

“0” if not. To regularize the classifier, vertices belonging to the neighborhood,   
 , are 

classified by the central vertex and all vertices,     
 . The parameter k controls the size 

of the neighborhood, where   
  contains all vertices directly connected to vi.   

  contains 

all vertices touching every vertex in   
 , with the exception of the original vertex, vi, and 

so on for increasing k. Thus, larger k corresponds to more global classification. Figure 60 

shows the size of various neighborhoods. 
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Figure 60.Various neighborhoods of a vertex. The central vertex of the green 

neighborhood is the origin vertex, vi. Green vertices correspond to   
 ,yellow to   

 , and 

so on. Larger neighborhoods reduce local tissue modeling. 

 

 

5.2 Extracting Feature Vectors and Targets 

One unique challenge in defining classifiers at each vertex is of extracting the feature 

vectors and targets for each profile Pi. As stated before, the direction of the profile is 

along the direction normal to the surface, passing through the vertex vi. Each profile is 

then sampled, this work uses every 0.1 mm, or approximately 1/3 of the shortest voxel 

dimension. Here, we sample the profile uniformly, at 0.1 mm, extending out from the 

anchoring bone until 101 samples are obtained. This guarantees we exceed the maximum 

cartilage thickness of the databases (~8 mm).  

To extract accurate profiles and cartilage labels, the dataset was prepared by semi-

automatically segmenting bone surface models using the technique described in Chapter 
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3. The cartilage was then added to each bone manually and the resulting binary label was 

subtracted from the bone binary label, leaving only the cartilage label.  

 

5.2.1 Defining the Bone-Cartilage-Interface and Cartilage Labels 

The BCI consists of the vertices with correspondence to the statistical atlas that have at 

least one instance of cartilage in their associated normal profiles, P. For each case in the 

dataset, the set of BCI points is found by intersection of the profile points with the 

cartilage binary label. If a profile contains any profile points inside the label (inside of a 

voxel labeled as cartilage), then the associated vertex is added to the BCI set, the union of 

all individual BCI sets. The cartilage thickness at each vertex can simply be defined as 

the distance from the originating vertex to the farthest point labeled as cartilage on the 

profile. This definition allows a general way of modeling thickness and likelihood of 

cartilage (or any other tissue) above a reference surface.  

 

5.2.2 Extracting Features 

For a given profile belonging to the BCI, feature vectors are extracted at each sample 

point. The feature vector is extracted from patient pose and image information 

simultaneously. Each feature vector consists of a combination of image and surface 

information. For this work, 11 total features were used. These are: 

 Image intensity (linearly interpolated) 

 First order difference along x-axis 

 First order difference along y-axis 
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 First order difference along z-axis 

 Second order difference along x-axis 

 Second order difference along y-axis 

 Second order difference along z-axis 

 Distance from origination surface 

 Distance to adjacent surface 

 First order difference along the profile 

 Edge labeled value 

For this work, the edge-labeled value defines the “region” that the current sample is in 

along the profile. Each region is identified by detected edges, taken as inflection points in 

the first order profile. For example, between the beginning of the profile and the first 

detected edge, all points are given edge label 0, between first detected edge and second 

are given edge label 1 and so on. The idea being that cartilage has a layered structure, 

which can begin to deteriorate in OA patients, so that in healthy patients the boundary 

may reside at the end of region 0 or 1; however, in degenerative patients, the boundary 

label can be higher.  This value varies across the anatomy, making relying on a global 

edge detection method unreliable.  The philosophy is illustrated in Figure 61. 
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Figure 61. Edge labeled region values (red) as detected from the intensity profile along 

the normal direction (green). Cartilage label is shown in blue for reference. In this 

example, edge region 0 corresponds to the cartilage tissue. 

 

Preprocessing steps for feature extraction include image diffusion for denoising [90] and 

Savitzky-Golay filtering [79] to smooth first order difference along the profile direction. 

All features were normalized to zero mean and unit variance. 

 

5.2.3 Choice of Classifier 

For this work, a soft classification system was desired so that the results could be 

analyzed from a probabilistic perspective, as well as a hard classifier perspective. It 

should be noted that many classifiers were tested, including support vector machine [91] 

(many types) and relevance vector machine [92], but none were found to be as effective 

as a simple, or efficient, Naïve Bayesian classification scheme. This is consistent with 
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existing literature, as the Naïve Bayesian classifier is often found to be as good as or 

better than state-of-the-art classification schemes in real world applications [93-95].  

 

5.2.4 Classification of Points along a Profile 

For vertex, vi, we seek to classify each point in the associated 1D profile, Pi as “1” for 

cartilage or “0” for other tissue. To include the neighborhood information in the 

classification scheme, each feature point in Pi, is classified using all classifiers in the 

neighborhood   
  for a total of |  

 | posterior probabilities, where |  
 | is the number of 

vertices in   
 . Because each vertex in   

 has a unique Euclidean distance to the central 

vertex, vi, the posterior probabilities are weighted by the inverse distance to the central 

vertex. Intuitively this is equivalent to saying that the ability of a classifier to predict 

cartilage tissue likelihood decreases with the distance to the location being classified. For 

this work results were examined using majority voting for each point, inverse distance 

weighted voting, mean posterior probability, inverse distance weighted mean posterior 

probability, and a single surface classifier (not including neighboring classifiers). Using a 

soft classifier, the edge with the highest probability was taken as the cartilage boundary. 

5.2.5 Regularization by SSM 

Finally, to utilize the prior information present in the atlas for regularizing the 

classification output, the result of the majority voting method was projected onto a 

cartilage thickness SSM using a leave-one-out approach with the input data. This SSM 

was then used to project the classification output of the majority voting method onto the 

atlas space. 
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5.3 Segmentation Results 

5.3.1 Datasets of Healthy Knees 

The dataset of normal knees consisted of 40 Caucasian males and 40 Caucasian females 

from the OAI public dataset healthy control cohort. Supervised classification was 

performed using the leave-one-out method for femur and tibia separately. The datasets 

were separated by gender.  

 

5.3.2 Datasets of Osteoarthritic Knees 

For OA classification, the baseline data was divided two distinct ways to analyze impact 

on classification accuracy. First, the data was divided by KL grading, and classification 

was performed. Independently, the same data set was divided by deformity location 

(medial, lateral or bilateral), and classifiers were built for each deformity region. The data 

consisted of the same data as in Chapter 4. 

 

 

 

 

5.3.3 Error analysis 

Classifier accuracy, surface distance error, DSC [96] are reported. The DSC between two 

volumes was calculated as: 

  

 
    

       

       
 (8) 
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Where the intersection represents the number of overlapping voxels and the sum 

represents the sum of the number of total voxels belonging to each volume. 

 

5.3.4 Healthy Results 

Sample segmentations for femur and tibia are shown in Error! Reference source not 

found. and Figure 63. Table 9 and Table 10 list results for all healthy segmentation 

methods.  

 

 

Figure 62. Sample segmentation for a healthy femoral case. 
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Figure 63. Example segmentation of tibia cartilage.  
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Table 9. Segmentation results for femoral cartilage of healthy male and female subjects. 

  Inv. Distance 
Prob. 

Inv. Distance 
Voting 

Majority 
Voting 

Mean 
Probability 

Atlas 
Projection 

Single 
Classifier 

H
ea

lt
h

y 
M

al
e 

Signed Error (mm) 0.010 -0.106 -0.056 0.061 -0.165 -0.211 

RMSE (mm) 0.585 0.501 0.501 0.606 0.412 0.472 

Std. Dev. Error (mm) 0.816 0.686 0.683 0.840 0.452 0.632 

Max Error (mm) 5.525 5.510 5.408 5.493 3.947 5.545 

DSC 0.862 0.878 0.878 0.856 0.885 0.879 

Volume Fraction 1.007 1.080 1.044 0.971 1.116 1.153 

       

H
ea

lt
h

y 
Fe

m
al

e
 Signed Error (mm) -0.055 -0.120 -0.083 -0.019 -0.140 -0.202 

RMSE (mm) 0.480 0.439 0.437 0.492 0.350 0.404 

Std. Dev. Error (mm) 0.673 0.613 0.607 0.687 0.406 0.555 

Max Error (mm) 6.040 5.980 5.858 5.965 4.551 6.010 

DSC 0.866 0.874 0.875 0.861 0.887 0.877 

Volume Fraction 1.043 1.094 1.062 1.012 1.115 1.169 
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Table 10. Segmentation results for tibial cartilage of healthy male and female subjects. 

  Inv. 
Distance 

Prob. 

Inv. 
Distance 
Voting 

Majority 
Voting 

Mean 
Probability 

Atlas 
Projection 

Single 
Classifier 

H
ea

lt
h

y 
M

al
e 

Signed Error (mm) -0.196 -0.219 -0.198 -0.176 -0.196 -0.231 

RMSE (mm) 0.497 0.482 0.482 0.501 0.426 0.481 

Std. Dev. Error (mm) 0.751 0.728 0.728 0.755 0.508 0.726 

Max Error (mm) 6.535 6.513 6.508 6.535 4.252 6.518 

DSC 0.848 0.850 0.851 0.847 0.856 0.849 

Volume Fraction 1.173 1.196 1.176 1.155 1.169 1.207 

       

H
ea

lt
h

y 
Fe

m
al

e
 Signed Error (mm) -0.221 -0.227 -0.191 -0.192 -0.212 -0.229 

RMSE (mm) 0.384 0.382 0.377 0.378 0.370 0.383 

Std. Dev. Error (mm) 0.619 0.614 0.603 0.608 0.456 0.614 

Max Error (mm) 7.135 7.065 6.505 6.610 4.147 7.065 

DSC 0.848 0.847 0.851 0.852 0.844 0.846 

Volume Fraction 1.238 1.247 1.209 1.208 1.223 1.249 
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For all healthy femurs, the best DSC was achieved using majority voting with projection 

onto the statistical thickness atlas. DSC achieved was 0.887 for female femur cartilage 

and 0.885 for male femur cartilage. Using the SSM to regularize the classification result 

also achieved the best overall RMS error for each gender: 0.412 ± 0.452 mm for male and 

0.350 ± 0.402 mm for female femoral cartilage. 

For all healthy tibias, best DSC was 0.856 using SSM projection for the male tibia and 

0.852 using neighborhood mean probability for the female tibia. For both male and 

female tibia, best RMS error was achieved using SSM projection (0.426 ± 0.502 mm and 

0.370 ± 0.456 mm, respectively). 

The mean segmented thickness for each gender can be seen in Figure 64,Figure 65,Figure 

66, and Figure 67. 
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Figure 64. Comparison of true mean cartilage thickness (above) and segmented mean 

thickness (below) as segmented using SSM projection method for healthy male femur. 

The overall patterns agree closely, with some apparent oversegmentation seen as a 

thicker cartilage pad. 
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Figure 65. Mean cartilage thickness of male tibia (left) compared with the mean 

thickness of segmented cartilage (right) using SSM projection method. 
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Figure 66. Mean cartilage thickness of healthy female femur (top row) compared to 

segmented female femur (bottom row) as segmented using the SSM method. 

 



 
108 

 

Figure 67. Mean cartilage thickness of healthy tibia (left) compared to mean segmented 

thickness (right) as by SSM projection method. The medial compartment appears nearly 

identical, but there is some oversegmentation in the lateral compartment. 

 

 

5.3.5 Osteoarthritic Results 

All segmented results are reported in Table 11,  

Table 12, Table 13, and Table 14.  As expected, best accuracy was decreased with each 

ascending level of degeneration for both femur (0.855 DSC for KL1 to 0.829 for KL3) 

and tibia (0.817 DSC for KL1 to 0.783 for KL3). Dividing the degenerative data by 

classification yielded mean DSC for all cases of 0.844 for the femur and 0.801 for the 

tibia. Dividing the degenerative data by compartment of wear yielded DSC of 0.851 for 

the femur and 0.806 for the tibia. 
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Table 11. Segmentation results for the femoral cartilage as divided by KL score.  

 

 Inv. 
Distance 

Prob. 

Inv. 
Distance 
Voting 

Majority 
Voting 

Mean 
Probability 

Atlas 
Projection 

Single 
Classifier 

K
L1

 

Signed Error (mm) 0.333 0.258 0.288 0.357 0.280 -0.177 

RMSE (mm) 0.667 0.632 0.628 0.674 0.461 0.478 

Std. Dev. Error (mm) 0.857 0.822 0.821 0.864 0.477 0.618 

Max Error (mm) 5.288 5.300 5.300 5.288 4.373 5.706 

DSC 0.783 0.804 0.799 0.776 0.824 0.855 

Volume Fraction 0.748 0.803 0.780 0.729 0.780 1.144 

       

K
L2

 

Signed Error (mm) 0.347 0.263 0.294 0.369 0.253 -0.185 

RMSE (mm) 0.717 0.681 0.674 0.721 0.480 0.521 

Std. Dev. Error (mm) 0.891 0.852 0.850 0.896 0.511 0.652 

Max Error (mm) 6.507 6.460 6.460 6.500 5.871 6.887 

DSC 0.777 0.798 0.794 0.771 0.820 0.848 

Volume Fraction 0.742 0.803 0.779 0.724 0.803 1.149 

       

K
L3

 

Signed Error (mm) 0.202 0.153 0.172 0.216 0.171 -0.112 

RMSE (mm) 0.438 0.419 0.414 0.440 0.327 0.334 

Std. Dev. Error (mm) 0.831 0.797 0.793 0.835 0.553 0.625 

Max Error (mm) 7.482 7.488 7.488 7.482 7.041 7.547 

DSC 0.761 0.781 0.777 0.754 0.784 0.829 

Volume Fraction 0.746 0.807 0.781 0.724 0.777 1.167 
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Table 12. Cartilage segmentation results for the degenerative tibia dataset as divided by KL score. 

 

 Inv. 
Distance 

Prob. 

Inv. 
Distance 
Voting 

Majority 
Voting 

Mean 
Probability 

Atlas 
Projection 

Single 
Classifier 

K
L1

 

Signed Error (mm) 0.168 0.094 0.131 0.184 0.088 -0.201 

RMSE (mm) 0.499 0.475 0.466 0.499 0.371 0.446 

Std. Dev. Error (mm) 0.762 0.716 0.713 0.764 0.461 0.635 

Max Error (mm) 5.381 5.244 5.250 5.388 3.887 5.500 

DSC 0.786 0.809 0.804 0.782 0.817 0.817 

Volume Fraction 0.805 0.891 0.848 0.788 0.900 1.232 

       

K
L2

 

Signed Error (mm) 0.182 0.102 0.146 0.201 0.119 -0.216 

RMSE (mm) 0.543 0.525 0.512 0.544 0.433 0.489 

Std. Dev. Error (mm) 0.800 0.766 0.758 0.804 0.515 0.648 

Max Error (mm) 5.180 5.207 5.173 5.193 3.614 5.233 

DSC 0.766 0.788 0.783 0.759 0.780 0.802 

Volume Fraction 0.804 0.892 0.844 0.782 0.872 1.239 

       

K
L3

 

Signed Error (mm) 0.164 0.080 0.126 0.181 0.107 -0.252 

RMSE (mm) 0.557 0.537 0.522 0.558 0.444 0.517 

Std. Dev. Error (mm) 0.786 0.752 0.744 0.788 0.519 0.695 

Max Error (mm) 5.188 5.218 5.194 5.141 3.986 6.388 

DSC 0.752 0.773 0.769 0.748 0.767 0.783 

Volume Fraction 0.814 0.906 0.857 0.795 0.876 1.283 
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Table 13. Segmentation Results for femoral cartilage using degenerative dataset divided by compartment of wear. 

 

 Inv. 
Distance 

Prob. 

Inv. 
Distance 
Voting 

Majority 
Voting 

Mean 
Probability 

Atlas 
Projection 

Single 
Classifier 

V
al

gu
s 

W
ea

r 

Signed Error (mm) 0.189 0.139 0.157 0.203 0.160 -0.131 

RMSE (mm) 0.413 0.395 0.390 0.416 0.321 0.318 

Std. Dev. Error (mm) 0.820 0.787 0.781 0.826 0.532 0.630 

Max Error (mm) 6.250 6.217 6.217 6.250 5.342 6.611 

DSC 0.771 0.791 0.788 0.764 0.784 0.833 

Volume Fraction 0.754 0.818 0.794 0.735 0.785 1.190 

       

V
ar

u
s 

W
ea

r 

Signed Error (mm) 0.313 0.238 0.266 0.334 0.263 -0.187 

RMSE (mm) 0.654 0.623 0.616 0.660 0.430 0.461 

Std. Dev. Error (mm) 0.849 0.815 0.811 0.856 0.474 0.601 

Max Error (mm) 6.765 6.765 6.755 6.760 6.117 6.875 

DSC 0.790 0.811 0.805 0.783 0.833 0.859 

Volume Fraction 0.757 0.814 0.790 0.738 0.791 1.155 

       

N
eu

tr
al

 W
ea

r Signed Error (mm) 0.392 0.309 0.345 0.418 0.278 -0.151 

RMSE (mm) 0.716 0.676 0.671 0.723 0.499 0.496 

Std. Dev. Error (mm) 0.903 0.867 0.866 0.908 0.539 0.645 

Max Error (mm) 7.040 7.040 7.040 7.040 6.559 7.080 

DSC 0.781 0.805 0.798 0.772 0.819 0.865 

Volume Fraction 0.717 0.776 0.747 0.695 0.792 1.127 
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Table 14. Cartilage segmentation results for degenerative tibia divided by compartment of wear. 

 

 Inv. 
Distance 

Prob. 

Inv. 
Distance 
Voting 

Majority 
Voting 

Mean 
Probability 

Atlas 
Projection 

Single 
Classifier 

V
al

gu
s 

W
e

ar
 

Signed Error (mm) 0.152 0.067 0.112 0.168 0.083 -0.249 

RMSE (mm) 0.549 0.525 0.515 0.550 0.440 0.514 

Std. Dev. Error (mm) 0.813 0.776 0.769 0.814 0.516 0.719 

Max Error (mm) 4.622 4.744 4.628 4.539 3.192 5.311 

DSC 0.734 0.761 0.756 0.731 0.762 0.772 

Volume Fraction 0.819 0.919 0.867 0.800 0.900 1.295 

       

V
ar

u
s 

W
e

ar
 

Signed Error (mm) 0.180 0.102 0.138 0.197 0.114 -0.206 

RMSE (mm) 0.490 0.460 0.448 0.492 0.379 0.435 

Std. Dev. Error (mm) 0.774 0.723 0.716 0.777 0.487 0.647 

Max Error (mm) 5.960 5.920 5.955 5.990 4.615 6.840 

DSC 0.794 0.819 0.816 0.789 0.811 0.824 

Volume Fraction 0.805 0.892 0.853 0.786 0.874 1.236 

       

N
eu

tr
al

 W
ea

r 

Signed Error (mm) 0.253 0.181 0.220 0.272 0.134 -0.122 

RMSE (mm) 0.527 0.500 0.492 0.530 0.441 0.438 

Std. Dev. Error (mm) 0.752 0.709 0.704 0.757 0.497 0.601 

Max Error (mm) 4.840 4.990 4.940 4.810 3.555 5.210 

DSC 0.766 0.795 0.787 0.760 0.781 0.835 

Volume Fraction 0.727 0.804 0.761 0.707 0.866 1.137 
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5.4 Conclusions 

In this chapter, a novel segmentation method was proposed using SSM as an 

anchor to define a high resolution map of local tissue classifiers for cartilage 

segmentation. A second unique contribution is the division of degenerative training data 

by KL classification and compartment of wear. The hypothesis that division by wear 

compartment may yield better results was confirmed with higher DSC being achieved 

using this method. The reason for this is that the local tissue classifier may encode 

implicit information regarding the degenerative wear pattern, including local changes in 

thickness and local appearance changes due to pathology. Overall results compare 

favorably to existing state-of-the-art, as seen in Table 15. 

 

Table 15. Segmentation results from the proposed method compared with state-of-the-art. 

Best healthy result and best degenerative result are highlighted in bold.  

Author Number of Cases Mean DSC 

Femur 

Mean DSC 

Tibia 

Shan [97] 12 Healthy, 6 Degen 0.782 0.826 

Folkesson [42] 51 Healthy, 63 Degen 0.77 0.81 

Fripp [38] 20 Healthy 0.848 0.826 

Lee [98] 10 Degen 0.825 0.808 

Yin [39] 48 healthy, 12 Degen 0.84 0.8 

Wang [43] 176 Degen (88 subjects) 0.847 0.837 

Proposed 80 Healthy 0.886 0.851 

Proposed 26 Degen 0.851 0.806 
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Further improvement can likely be obtained by refining the training sets to include more 

cases in each degenerative group. Additionally, the simple classification method can be 

further refined by feature selection at each vertex, which should improve overall accuracy 

of the classifier. In conclusion, the proposed method has been shown to perform as well 

as, and in many cases, better than the current state-of-the-art.  
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Chapter 6  

Cartilage Estimation 

 Often, the standard of care imaging of OA patients is limited to available 

modalities such as XR, or, if the case is severe and metal hardware (e.g., screws, trauma 

plates, etc.) are present, CT. These modalities fail to capture cartilage tissue properties, 

making accurate segmentation of the cartilage impossible to compute directly. Therefore, 

an estimation of cartilage thickness and location must be made using a priori information 

regarding a known model of the cartilage, as well as the available bone shape and pose.  

Many applications attempt to estimate the cartilage layer with a uniform thickness at 

approximate locations, or just avoid it altogether. Clearly, as seen in Figure 68, the 

cartilage layer is anything but uniform. This is especially true in pathological cases. 
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Figure 68. Caucasian male mean femur thickness. Note stark difference in cartilage 

thickness across the surface. Clearly, approximating the thickness as uniform will not 

suffice for most applications. 

 

 

 Additionally, any surgical landmarks which would normally be placed on the cartilage 

surface, such as distal and posterior femoral landmarks, will be quite different if placed 

on the bone surface as opposed to the appropriate position as dictated by the cartilage 

layer. This difference can adversely affect the accuracy of planning measurements (e.g., 

posterior-condylar axis or spherical axis). This work proposes a novel method for 

estimation of cartilage thickness by constructing SSMs of the bone (Chapter 3) and 

cartilage models (Chapters 4 and 5) and using pose information to produce full cartilage 

models. By building the thickness model with OA patient cartilage layers and dividing 

the data into compartmental wear patterns, the overall deformities in the cartilage can be 

modeled in a manner sufficient for estimation. Estimation of both healthy and 

pathological cartilage will be explored. 
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6.1 Building the a priori Information 

The first step to building the estimation model was to build the database of a 

priori information. Here, the same dataset as described in Section 4.2 was used. Models 

were built for levels 1-3 on the KL scale and for healthy patients separately. The bone 

segmentations, described in Chapter 3, with atlas correspondence were used to anchor the 

cartilage model and to guarantee a level of point correspondence. Then, the thickness 

model was defined as a vertex and thickness pair for the union of all bone-cartilage 

interface points across all subjects. For OA patients, data was divided by deformity 

location, as this gave the best prediction results during classification. 

 

6.1.1 Calculating the Cartilage Thickness and Location Model 

The cartilage thickness and locations are as described in Chapter 4. Additionally, 

a cartilage atlas was built using PCA as the bone, but with thickness as the input instead 

of 3D models. The first PC of this atlas is linearly related to the mean thickness, or scale 

of the cartilage layer. Other PCs are more difficult to conceptualize, but contribute in a 

monotonically decreasing way to overall thickness variation of the cartilage layer. 

 

6.2 Estimation Methods 

6.2.1 Constructing the Initial Estimate 

The initial estimate of the cartilage is constructed starting with the segmented bones in 

the imaged pose. For this work, all data was obtained from the OAI MRI database, so that 
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the imaged pose represents the leg in full extension while the patient is in the supine 

position. An example of this bone configuration is depicted in Figure 69. 

 

 

Figure 69. Segmentation of MRI image results in the SSM bone models in the appropriate 

pose. 

 

 

The cartilage SSM was then used to approximate the patient-specific cartilage as follows: 

1) For all vertices on the bone model, the model surface normal was calculated at 

each.  

2) Using the cartilage SSM as a lookup table all vertices belonging to the BCI, VBCI, 

were found.  

3) At each vertex,        , the bone surface vertex was moved along the normal the 

distance of the mean thickness at v as defined by the mean cartilage model. 

4) Each BCI vertex was tested on both the new cartilage femur and the tibia models 

for being internal to the articulating model.  

5) For all internal points, thickness was reduced by some factor, p, where 0 < p < 1. 
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6) Steps 5 and 6 were repeated until there were no internal points or until cartilage 

thickness at all internal points was very near 0. 

7) Results were regularized by projection of resulting thickness onto cartilage SSMs 

(femur and tibia, respectively). 

 

6.3 Results 

Estimation results for all cases can be seen in Table 16. For healthy cases, the mean DSC 

was 0.848 for the femur and 0.800 for tibia. For degenerative cases divided by KL score, 

estimation DSC was 0.790 for the femur and 0.716 for the tibia. When degenerative data 

was divided by compartment of wear, DSC was 0.796 for the femur and 0.720 for the 

tibia. In general, estimation of the cartilage tended to underestimate the cartilage volume. 
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Table 16.Results from cartilage estimation for the femur and tibia.  

  Healthy 
Male 

Healthy 
Female 

KL1 KL2 KL3 Neutral Varus Valgus 

Fe
m

u
r 

Signed Error (mm) 0.047 0.038 0.047 0.050 0.066 0.054 0.046 0.062 

RMSE (mm) 0.061 0.049 0.059 0.063 0.082 0.067 0.057 0.077 

Std. Dev. Error (mm) 0.038 0.031 0.036 0.038 0.048 0.040 0.034 0.045 

Max Error (mm) 0.240 0.197 0.220 0.212 0.258 0.243 0.208 0.253 

DSC 0.847 0.848 0.814 0.807 0.751 0.793 0.817 0.772 

Volume Fraction 0.904 0.887 0.853 0.859 0.803 0.846 0.856 0.817 

         

Ti
b

ia
 

Signed Error (mm) 0.051 0.043 0.049 0.054 0.059 0.053 0.049 0.057 

RMSE (mm) 0.066 0.055 0.062 0.071 0.075 0.068 0.062 0.074 

Std. Dev. Error (mm) 0.042 0.034 0.038 0.045 0.046 0.042 0.039 0.047 

Max Error (mm) 0.226 0.181 0.213 0.233 0.237 0.231 0.214 0.256 

DSC 0.803 0.796 0.754 0.724 0.672 0.720 0.749 0.687 

Volume Fraction 0.883 0.862 0.831 0.813 0.738 0.796 0.810 0.779 
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Figure 70, Figure 71, Figure 72, and Figure 73 show the mean thickness as estimated next 

to the true mean thickness for the healthy dataset. The overall pattern is consistent with 

the gold standard thickness, though there is some apparent undersegmentation in the 

medial compartment of all sets.  

 

 

Figure 70. Mean thickness of the femoral cartilage for healthy males (top) compared with 

the mean estimated thickness for healthy males (bottom). 
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Figure 71. Mean thickness of the tibia cartilage for healthy male (left) compared to 

estimated mean thickness for healthy males (right). 
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Figure 72. Mean thickness for healthy female femur (top) compared to estimated mean 

thickness of healthy female femur (bottom). 
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Figure 73. Mean thickness of healthy female tibia (left) compared with estimated mean 

thickness of healthy female tibia (right). 

 

6.4 Conclusions 

A novel method for estimation of cartilage using SSM was described, and results 

in healthy knees were slightly less accurate than the automated segmentation described in 

Chapter 5; although, these were still acceptable considering no image information was 

used to define the cartilage layer. This has potential applications when a subject is 

imaged using the more available, and less expensive, modalities of XR fluoroscopy, DXR 

or CT – none of which provide image information regarding the cartilage thickness, 

unless a contrast agent is injected prior to imaging. Research and further analysis should 

be conducted in the application of this method to degenerative knees, as the resulting 

accuracy was less than the accuracy in healthy knees – specifically, in the medial 

compartment.  
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Chapter 7 

Conclusion and Recommendations 

 

With a rapid demand for orthopedic procedures, including those involving the knee, there 

comes an increasing necessity in understanding the biomechanics and morphology of the 

associated joints. This work focused on the knee, as it undergoes significant loading 

during normal activities. This significant loading suggests that effective treatments, 

specifically those involving prostheses, of OA of the knee will be required to meet the 

biomechanical challenges of the joint. A full analysis of the joint should include both the 

hard (bone) and soft (cartilage and ligaments) of the joint. Much previous kinematic work 

focuses on using the bony anatomy as reference, ignoring cartilage. As seen in Chapter 4, 

however, the cartilage surface is not congruent to the bone surface, suggesting changes in 

morphology of the articulating surface of the bone which will affect biomechanics. Thus, 

it is important to acquire accurate cartilage thickness, even if the soft tissue is not visible 

in the subject images. This work sought to propose methods for effectively modeling 

cartilage morphology and using said models as a foundation for segmentation (if the 

cartilage is visible) and estimation (if no cartilage visual information is available). In 

doing so, the cartilage thickness need not be ignored in subsequent kinematic studies or 

surgical planning. 

 In regards to cartilage morphology, there are clear wear patterns in varus and 

valgus knees, suggesting perhaps that predictable biomechanical changes are to blame for 

malalignment. Due to the high-resolution nature of the surface and thickness, SSMs 

permit easy visualization of the cartilage morphology in addition to facilitating the 
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normalization of pathological morphology. This conflicts with previous works by 

Eckstein and Wirth, where the cartilage wear pattern was difficult to localize due to large 

divisions of the cartilage compartments. Future work should seek to increase the number 

of subjects for pathological analysis, while refining analysis by KL score in conjunction 

with pathological compartments. An interesting set of questions may be: How do 

varus/valgus cartilage thicknesses progress with KL score? Can these regions be related 

to known kinematic patterns, possibly suggesting activities to avoid if at risk of cartilage 

loss? 

 In Chapter 5, the cartilage segmentation algorithm proposed used the point 

correspondence of the atlas to define local classifiers at each BCI vertex on the bone. 

Segmentation is critical as available data increases quickly. For instance, the OAI dataset 

consists of roughly 4,500 subjects which undergo MRI imaging on both knees at one year 

follow ups. Without improvements to automatic and semi-automatic segmentation 

methods, it would be nearly impossible to analyze such a large dataset. The proposed 

method could be improved by refining the segmentation process through feature 

refinement and increasing the number of training subjects. Despite using such a simple 

classifier, through careful division of the datasets and exploitation of the point 

correspondence of the bone, SSM results were obtained that were as good as or better 

than current state-of-the-art methods. Additionally, such a method could be used to 

classify any difficult object in close and predictable proximity to an adjacent, more easily 

segmented object.  
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 As imaging costs escalate, and a growing number of OA cases is anticipated, the 

method for estimating cartilage thickness proposed in Chapter 6 of this work has the 

potential to advance imaging options with more accuracy at decreased expense. 

Currently, most diagnostic imaging options consist of XR, digital fluoroscopic XR or CT 

– none of which capture cartilage tissue information. Conversely, the method  discussed 

herein has been determined to be fairly accurate at estimating healthy cartilage tissue, but 

more work is needed to refine estimation in general and, specifically, in pathological 

cases. In most cases, underestimation on the medial compartment of both femoral and 

tibial cartilage suggests improvement can be made just by examination of this region. 

Future work should examine kinematic differences between estimated cartilage and true 

cartilage thickness, while refining the estimation process. 

 In summary, this work proposed methods of cartilage modeling to aid in the  

development of novel segmentation and estimation methods for imaging, specifically 

those emphasized in the application of diagnosis and treatment of OA of the knee. Using 

such methods as depicted here, a better picture of the cartilage surface is revealed, 

permitting use of cartilage thickness in applications, such as kinematic modeling and 

surgical planning that have been previously neglected. 
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