5,556 research outputs found

    A BTP-Based Family of Variable Elimination Rules for Binary CSPs

    Get PDF
    International audienceThe study of broken-triangles is becoming increasingly ambitious , by both solving constraint satisfaction problems (CSPs) in polynomial time and reducing search space size through value merging or variable elimination. Considerable progress has been made in extending this important concept, such as dual broken-triangle and weakly broken-triangle, in order to maximize the number of captured tractable CSP instances and/or the number of merged values. Specifically, m-wBTP allows to merge more values than BTP. k-BTP, WBTP and m-BTP permit to capture more tractable instances than BTP. Here, we introduce a new weaker form of BTP, which will be called m-fBTP for flexible broken-triangle property. m-fBTP allows on the one hand to eliminate more variables than BTP while preserving satisfiability and on the other to define new bigger tractable class for which arc consistency is a decision procedure. Likewise, m-fBTP permits to merge more values than BTP but less than m-wBTP

    New schemes for simplifying binary constraint satisfaction problems

    Get PDF
    Finding a solution to a Constraint Satisfaction Problem (CSP) is known to be an NP-hard task. This has motivatedthe multitude of works that have been devoted to developing techniques that simplify CSP instances before or duringtheir resolution.The present work proposes rigidly enforced schemes for simplifying binary CSPs that allow the narrowing of valuedomains, either via value merging or via value suppression. The proposed schemes can be viewed as parametrizedgeneralizations of two widely studied CSP simplification techniques, namely, value merging and neighbourhoodsubstitutability. Besides, we show that both schemes may be strengthened in order to allow variable elimination,which may result in more significant simplifications. This work contributes also to the theory of tractable CSPs byidentifying a new tractable class of binary CSP

    Examining alternatives to wavelet de-noising for astronomical source finding

    Full text link
    The Square Kilometre Array and its pathfinders ASKAP and MeerKAT will produce prodigious amounts of data that necessitate automated source finding. The performance of automated source finders can be improved by pre-processing a dataset. In preparation for the WALLABY and DINGO surveys, we have used a test HI datacube constructed from actual Westerbork Telescope noise and WHISP HI galaxies to test the real world improvement of linear smoothing, the {\sc Duchamp} source finder's wavelet de-noising, iterative median smoothing and mathematical morphology subtraction, on intensity threshold source finding of spectral line datasets. To compare these pre-processing methods we have generated completeness-reliability performance curves for each method and a range of input parameters. We find that iterative median smoothing produces the best source finding results for ASKAP HI spectral line observations, but wavelet de-noising is a safer pre-processing technique. In this paper we also present our implementations of iterative median smoothing and mathematical morphology subtraction.Comment: 7 pages, 4 figures, 3 colour figures. Accepted as part of the Publications of the Astronomical Society of Australia's special issue on source finding and visualisatio

    The Galaxy Population of Abell 1367: The Stellar Mass-Metallicity Relation

    Full text link
    Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red sequence lenticular galaxies and blue cloud galaxies, low mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally-driven gas flows toward the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red sequence or blue cloud galaxies, at fixed stellar mass, with location within the cluster.Comment: 15 pages, 10 figures, MNRAS in pres

    Walking near a Conformal Fixed Point: the 2-d O(3) Model at theta near pi as a Test Case

    Full text link
    Slowly walking technicolor models provide a mechanism for electroweak symmetry breaking whose nonperturbative lattice investigation is rather challenging. Here we demonstrate walking near a conformal fixed point considering the 2-d lattice O(3) model at vacuum angle θπ\theta \approx \pi. The essential features of walking technicolor models are shared by this toy model and can be accurately investigated by numerical simulations. We show results for the running coupling and the beta-function and we perform a finite size scaling analysis of the massgap close to the conformal point.Comment: 5 pages, 4 figure

    What is a Cool-Core Cluster? A Detailed Analysis of the Cores of the X-ray Flux-Limited HIFLUGCS Cluster Sample

    Full text link
    We use the largest complete sample of 64 galaxy clusters (HIghest X-ray FLUx Galaxy Cluster Sample) with available high-quality X-ray data from Chandra, and apply 16 cool-core diagnostics to them, some of them new. We also correlate optical properties of brightest cluster galaxies (BCGs) with X-ray properties. To segregate cool core and non-cool-core clusters, we find that central cooling time, t_cool, is the best parameter for low redshift clusters with high quality data, and that cuspiness is the best parameter for high redshift clusters. 72% of clusters in our sample have a cool core (t_cool < 7.7 h_{71}^{-1/2} Gyr) and 44% have strong cool cores (t_cool <1.0 h_{71}^{-1/2} Gyr). For the first time we show quantitatively that the discrepancy in classical and spectroscopic mass deposition rates can not be explained with a recent formation of the cool cores, demonstrating the need for a heating mechanism to explain the cooling flow problem. [Abridged]Comment: 45 pages, 19 figures, 7 tables. Accepted for publication in A&A. Contact Person: Rupal Mittal ([email protected]

    The Complete Local Volume Groups Sample - I. Sample Selection and X-ray Properties of the High-Richness Subsample

    Get PDF
    We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically-selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei, and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least 4 optically bright (log L_B>=10.2 LBsol) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65kpc and with luminosity >10^41 erg/s, while a further 3 groups host smaller galaxy-scale gas halos. The X-ray bright groups have masses in the range M_500=0.5-5x10^13 Msol, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200x10^41 erg/s. We find that ~53-65% of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30% of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ~35% of their dominant early-type galaxies host AGN with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (L_X,R500<10^42 erg/s) with no concentrated cool core, or highly disturbed. This leads us to suggest that ~20% of X-ray bright groups in the local universe may still be unidentified.Comment: Accepted for publication by MNRAS, 25 Manuscript pages with 6 tables and 10 figures, plus 30 pages of appendices. v2 corrects minor typographical errors identified at proof stag
    corecore