We use the largest complete sample of 64 galaxy clusters (HIghest X-ray FLUx
Galaxy Cluster Sample) with available high-quality X-ray data from Chandra, and
apply 16 cool-core diagnostics to them, some of them new. We also correlate
optical properties of brightest cluster galaxies (BCGs) with X-ray properties.
To segregate cool core and non-cool-core clusters, we find that central cooling
time, t_cool, is the best parameter for low redshift clusters with high quality
data, and that cuspiness is the best parameter for high redshift clusters. 72%
of clusters in our sample have a cool core (t_cool < 7.7 h_{71}^{-1/2} Gyr) and
44% have strong cool cores (t_cool <1.0 h_{71}^{-1/2} Gyr). For the first time
we show quantitatively that the discrepancy in classical and spectroscopic mass
deposition rates can not be explained with a recent formation of the cool
cores, demonstrating the need for a heating mechanism to explain the cooling
flow problem. [Abridged]Comment: 45 pages, 19 figures, 7 tables. Accepted for publication in A&A.
Contact Person: Rupal Mittal ([email protected]