27,356 research outputs found

    Gaussian expansion analysis of a matrix model with the spontaneous breakdown of rotational symmetry

    Full text link
    Recently the gaussian expansion method has been applied to investigate the dynamical generation of 4d space-time in the IIB matrix model, which is a conjectured nonperturbative definition of type IIB superstring theory in 10 dimensions. Evidence for such a phenomenon, which is associated with the spontaneous breaking of the SO(10) symmetry down to SO(4), has been obtained up to the 7-th order calculations. Here we apply the same method to a simplified model, which is expected to exhibit an analogous spontaneous symmetry breaking via the same mechanism as conjectured for the IIB matrix model. The results up to the 9-th order demonstrate a clear convergence, which allows us to unambiguously identify the actual symmetry breaking pattern by comparing the free energy of possible vacua and to calculate the extent of ``space-time'' in each direction.Comment: 23 pages, 20 figures, LaTe

    Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations

    Get PDF
    We have implemented the sweep algorithm for the variational optimization of SU(2) x U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab-initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit.Comment: Submitted to J. Chem. Phy

    Theta dependence of SU(N) gauge theories in the presence of a topological term

    Full text link
    We review results concerning the theta dependence of 4D SU(N) gauge theories and QCD, where theta is the coefficient of the CP-violating topological term in the Lagrangian. In particular, we discuss theta dependence in the large-N limit. Most results have been obtained within the lattice formulation of the theory via numerical simulations, which allow to investigate the theta dependence of the ground-state energy and the spectrum around theta=0 by determining the moments of the topological charge distribution, and their correlations with other observables. We discuss the various methods which have been employed to determine the topological susceptibility, and higher-order terms of the theta expansion. We review results at zero and finite temperature. We show that the results support the scenario obtained by general large-N scaling arguments, and in particular the Witten-Veneziano mechanism to explain the U(1)_A problem. We also compare with results obtained by other approaches, especially in the large-N limit, where the issue has been also addressed using, for example, the AdS/CFT correspondence. We discuss issues related to theta dependence in full QCD: the neutron electric dipole moment, the dependence of the topological susceptibility on the quark masses, the U(1)_A symmetry breaking at finite temperature. We also consider the 2D CP(N) model, which is an interesting theoretical laboratory to study issues related to topology. We review analytical results in the large-N limit, and numerical results within its lattice formulation. Finally, we discuss the main features of the two-point correlation function of the topological charge density.Comment: A typo in Eq. (3.9) has been corrected. An additional subsection (5.2) has been inserted to demonstrate the nonrenormalizability of the relevant theta parameter in the presence of massive fermions, which implies that the continuum (a -> 0) limit must be taken keeping theta fixe

    Lattice gauge theories simulations in the quantum information era

    Full text link
    The many-body problem is ubiquitous in the theoretical description of physical phenomena, ranging from the behavior of elementary particles to the physics of electrons in solids. Most of our understanding of many-body systems comes from analyzing the symmetry properties of Hamiltonian and states: the most striking example are gauge theories such as quantum electrodynamics, where a local symmetry strongly constrains the microscopic dynamics. The physics of such gauge theories is relevant for the understanding of a diverse set of systems, including frustrated quantum magnets and the collective dynamics of elementary particles within the standard model. In the last few years, several approaches have been put forward to tackle the complex dynamics of gauge theories using quantum information concepts. In particular, quantum simulation platforms have been put forward for the realization of synthetic gauge theories, and novel classical simulation algorithms based on quantum information concepts have been formulated. In this review we present an introduction to these approaches, illustrating the basics concepts and highlighting the connections between apparently very different fields, and report the recent developments in this new thriving field of research.Comment: Pedagogical review article. Originally submitted to Contemporary Physics, the final version will appear soon on the on-line version of the journal. 34 page

    Improving entanglement and thermodynamic R\'enyi entropy measurements in quantum Monte Carlo

    Full text link
    We present a method for improving measurements of the entanglement R\'enyi entropies in quantum Monte Carlo simulations by relating them with measurements of participation R\'enyi entropies. Exploiting the capability of building improved estimators for the latter allows to obtain very good estimates for entanglement R\'enyi entropies. When considering a full system instead of a bipartition, the method can be further ameliorated providing access to the thermodynamic R\'enyi entropies with high accuracy. We also explore a recently-proposed method for the reconstruction of the entanglement spectrum from entanglement R\'enyi entropies and finally show how potential entanglement Hamiltonians may be tested for their validity using a comparison with thermal R\'enyi entropies.Comment: 15 pages, 11 figure

    Pion mass dependence of the Kl3K_{l3} semileptonic scalar form factor within finite volume

    Full text link
    We calculate the scalar semileptonic kaon decay in finite volume at the momentum transfer tm=(mKmπ)2t_{m} = (m_{K} - m_{\pi})^2, using chiral perturbation theory. At first we obtain the hadronic matrix element to be calculated in finite volume. We then evaluate the finite size effects for two volumes with L=1.83fmL = 1.83 fm and L=2.73fmL= 2.73 fm and find that the difference between the finite volume corrections of the two volumes are larger than the difference as quoted in \cite{Boyle2007a}. It appears then that the pion masses used for the scalar form factor in ChPT are large which result in large finite volume corrections. If appropriate values for pion mass are used, we believe that the finite size effects estimated in this paper can be useful for Lattice data to extrapolate at large lattice size.Comment: 19 pages, 5 figures, accepted for publication in EPJ

    Series studies of the Potts model. I: The simple cubic Ising model

    Full text link
    The finite lattice method of series expansion is generalised to the qq-state Potts model on the simple cubic lattice. It is found that the computational effort grows exponentially with the square of the number of series terms obtained, unlike two-dimensional lattices where the computational requirements grow exponentially with the number of terms. For the Ising (q=2q=2) case we have extended low-temperature series for the partition functions, magnetisation and zero-field susceptibility to u26u^{26} from u20u^{20}. The high-temperature series for the zero-field partition function is extended from v18v^{18} to v22v^{22}. Subsequent analysis gives critical exponents in agreement with those from field theory.Comment: submitted to J. Phys. A: Math. Gen. Uses preprint.sty: included. 24 page

    On Nonperturbative Calculations in Quantum Electrodynamics

    Full text link
    A new approach to nonperturbative calculations in quantum electrodynamics is proposed. The approach is based on a regular iteration scheme for solution of Schwinger-Dyson equations for generating functional of Green functions. The approach allows one to take into account the gauge invariance conditions (Ward identities) and to perform the renormalization program. The iteration scheme can be realized in two versions. The first one ("perturbative vacuum") corresponds to chain summation in the diagram language. In this version in four-dimensional theory the non-physical singularity (Landau pole) arises which leads to the triviality of the renormalized theory. The second version ("nonperturbative vacuum") corresponds to ladder summation and permits one to make non-perturbative calculations of physical quantities in spite of the triviality problem. For chiral-symmetrical leading approximation two terms of the expansion of the first-step vertex function over photon momentum are calculated. A formula for anomalous magnetic moment is obtained. A problem of dynamical chiral symmetry breaking (DCSB) is considered, the calculations are performed for renormalized theory in Minkowsky space. In the strong coupling region DCSB-solutions arise. For the renormalized theory a DCSB-solution is also possible in the weak coupling region but with a subsidiary condition on the value of α\alpha.Comment: 31 pages, Plain LaTex, no figures. Journal version: some discussion and refs. are adde
    corecore