# Longitudinal static optical properties of hydrogen chains: Finite field extrapolations of matrix product state calculations 

Sebastian Wouters ${ }^{1}$, Peter A. Limacher ${ }^{2}$, Dimitri Van Neck ${ }^{1}$ and Paul W. Ayers ${ }^{2}$<br>${ }^{1}$ Center For Molecular Modeling, Ghent University, Ghent, Belgium<br>${ }^{2}$ Department of Chemistry, McMaster University, Hamilton, Ontario, Canada<br>Journal of Chemical Physics 136, 134110 (2012). [doi:10.1063/1.3700087] [arXiv:1202.0177v2]

## 1. Introduction

- Matrix product states (MPS) are the natural variational ansatzes for 1D non-critical systems.

$$
|\Psi\rangle=\sum_{\left\{i_{1} \ldots i_{L}\right\}} \sum_{\left\{k_{1} \ldots k_{L-1}\right\}} M_{k_{1}}^{i_{1}} M_{k_{1} k_{2}}^{i \quad} \ldots M_{k_{L-1}}^{i_{L}}\left|i_{1} \ldots i_{L}\right\rangle
$$

They can capture all relevant entanglement, at a much lower cost than exact diagonalization (ED).

- Chemists are interested in the non-linear optical (NLO) properties of quasi-1D systems.
- MPS calculations of NLO properties allow to

1. Assess approximative methods
2. Extrapolate highly accurate (quasi-ED accuracy) thermodynamic limit (TDL) data

## 4. Convergence

- $D\left(j_{L} N_{L}\right)=\operatorname{size}\left(\alpha_{L}\right)$ corresponds to a virtual dimension of $\left(2 j_{L}+1\right) D\left(j_{L} N_{L}\right)$ in a non-symmetry adapted MPS.
- The MPS ground state energy follows

$$
\ln \left(E_{D}-E_{\text {exact }}\right)=a-\kappa(\ln (D))^{2}
$$

with $D$ the total virtual dimension.
G. Chan et al., J. Chem. Phys. 116, 4462 (2002)

We have truncated $D\left(j_{L} N_{L}\right)$ of every symmetry sector to $D$


- For all applications in the paper, $D$ is chosen large enough for the MPS results to be indistinguishable from ED.


## 7. $\operatorname{CCSD}(\mathrm{T})$ accuracy

- Look at the relative deviation

- Large $R \rightarrow$ well separated $\mathrm{H}_{2}$ molecules
- Small $R \rightarrow$ delocalized electrons
- When going from large to small $R$ (small to large electron delocalization), $\operatorname{CCSD}(\mathrm{T})$ begins to fail as it cannot describe the correlation of a large number of electrons correctly. CCSD(T), the current reference for NLO properties, can hence be inadequate.


## 10. Conclusions

- Adding electron correlation approximately does not lead to a smooth transition from mean-field theory to MPS( $\approx E D)$.
- $\operatorname{CCSD}(T)$ results are consistently the closest to MPS( $\approx E D$ ).
- $\operatorname{CCSD}(\mathrm{T})$ however gives inadequate results for excitations involving a large number of electrons, e.g. the second hyperpolarizability when the electron delocalization is large.
- Static NLO TDL data with ED accuracy can be extrapolated from MPS calculations, as long as the chain length exceeds the typical length scale of an optical excitation.


## Acknowledgements

Research Foundation Flanders (S.W.)

- Swiss National Science Foundation (P.A.L.)
- NSERC (P.W.A.)
- Stevin Supercomputer Infrastructure at Ghent University
- Sharcnet $\in$ Compute Canada national HPC platform


## 2. Quantum chemistry vs. condensed matter

The theory of quantum chemistry is known. In the non-relativistic regime \& for quasi-instantaneous electron motion (Born-Oppenheimer approximation):

$$
\hat{H}=-\frac{1}{2} \sum_{i \in \mathrm{el} .} \vec{\nabla}_{i}^{2}-\sum_{i \in \mathrm{el}: A \in \text { nucl. }} \frac{Z_{A}}{\left|\vec{R}_{A}-\vec{r}_{i}\right|}+\sum_{i<j \in \mathrm{el.}} \frac{1}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
$$

- To allow implementation on a computer, a finite basis set has to be chosen as orbital degrees of freedom. The Hamiltonian can then be written in $2^{\text {nd }}$ quantization as:

$$
\hat{H}=\sum_{i, j \in \mathrm{orb}} T_{i j} \sum_{\sigma} \hat{\mathrm{a}}_{i \sigma}^{\dagger} \hat{a}_{j \sigma}+\frac{1}{2} \sum_{i, j, k, l \in \mathrm{orb} .} V_{i j k l} \sum_{\sigma \tau} \hat{\mathrm{a}}_{i \sigma}^{\dagger} \hat{a}_{j \tau}^{\dagger} \hat{a}_{l \tau} \hat{a}_{k \sigma}
$$

- Due to the general two-body interaction, it is hard to keep track of all matrix elements (in contrast to condensed matter systems). Several tricks exist though.


## 5. Finite field extrapolations

- E.g. the longitudinal static 2nd hyperpolarizability $\gamma_{z z z z}$.
- For centrosymmetric systems, its value can be obtained with the following minimal finite difference formula:

$$
\gamma_{z z z z}=\left(\frac{-6 E(0)+8 E(F)-2 E(2 F)}{F^{4}}\right)_{F \rightarrow 0}
$$

where $E(F)$ is the energy when an electric field $F$ is applied in the longitudinal direction.

- Values for $F$ have to be chosen with care:

1. Too small values enhance energy errors.
2. Too large values cause higher order effects.

- The error on $\gamma_{\text {zzzz }}$ for finite values of $F$ is of $\mathcal{O}\left(F^{2}\right)$. This effect can eliminated with the extrapolation

8. TDL data extrapolation

- $\gamma \propto M^{a(M)}$ is often proposed.
-a( $M$ ) depends on $M$. For small $M$, the possibility for optical excitations opens and $a(M)$ is large. For large $M$, the chain can fully contain optical excitations and $a(M)$ tends to 1 .
- Estimate the exponent:

$$
a^{\gamma}(M)=\frac{\ln \left(\gamma_{z z z Z}^{M P S}(M)\right)-\ln \left(\gamma_{z z z Z}^{M P S}(M-1)\right)}{\ln (M)-\ln (M-1)}
$$

$$
\begin{array}{lll}
4.0 \\
3.5 \\
3
\end{array}
$$

- If $a(M) \approx 1$, it's reasonable to assume:

$$
\frac{\gamma_{z z z 2}^{M P S}(M)}{M}=a_{0}+\frac{a_{1}}{M}+\frac{a_{2}}{M^{2}}+\frac{a_{3}}{M^{3}}
$$

- From this equation:

$$
\begin{aligned}
& \Delta \gamma_{z z z Z}^{M P S}(M)=\gamma_{z z z z}^{M P S}(M)-\gamma_{z z z Z}^{M P S}(M-1) \\
& =a_{0}+\frac{b_{2}}{M^{2}}+\frac{b_{3}}{M^{3}}+\mathcal{O}\left(M^{-4}\right)
\end{aligned}
$$

By using both, the extrapolation accuracy can be assessed.

## 3. $S U(2) \otimes U(1)$ invariant MPS

- Spin and particle number are conserved for chemical systems under influence of an electric field.
- Global symmetry can be imposed on the MPS by requiring that each $M$-tensor is an irreducible tensor operator of the imposed symmetry groups

S. Singh et al., Phys. Rev. A 82, 050301 (2010)

The Wigner-Eckart (WE) theorem can be used to work with reduced MPS tensors.

- Because both $\hat{a}_{m}^{\dagger}$ and $(-1)^{\frac{1}{2}-m} \hat{a}_{m}$ transform as irreducible tensor operators of $S U(2) \otimes U(1)$, partial contractions of Hamiltonian terms can be stored in reduced form too. Our code hence contains no spin projections.
- Advantages of symmetry:

1. Only the relevant part of the Hilbert space is scanned
2. Tensors acquire a sparse block structure
3. The WE theorem allows to work with reduced tensors
4. Virtual dimension requirements become smaller
5. Less sweeps are needed

## 6. The raw data

We used

- 3 H-chain configurations: $R_{f}=2$ a.u. and $R$ varies

Different chain lengths: $H_{2 M}$ ( $M_{2}$ molecules)

- 5 levels of theory: HF, MP2, CCSD, CCSD(T) \& MPS
- 2 basis sets: STO-6G \& 6-31G (Löwdin transformed for locality)

$\gamma_{z z z z}^{H F}$ has no fixed relative position. The other methods have.
- Adding electron correlation approximately does not lead to a smooth transition from mean-field theory to MPS ( $\approx E D$ ).
$-\operatorname{CCSD}(\mathrm{T})$ results are consistently the closest to $\mathrm{MPS}(\approx E D)$.


## 9. Extrapolated MPS data

| Quantity | Basis set | R [a.u.] | $q(M) / M$ | $\Delta q(M)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\alpha_{z z}$ [a.u.] | STO-6G | 2.5 | 17.41 | 17.41 |
|  |  | 3.0 | 9.464 | 9.462 |
|  |  | 4.0 | 5.733 | 5.733 |
|  | 6-31G | 2.5 | 39.00 | 39.20 |
|  |  | 3.0 | 21.27 | 21.27 |
|  |  | 4.0 | 13.55 | 13.55 |
| $\gamma_{\text {zzzz }}\left[10^{3}\right.$ a.u.] | STO-6G | 2.5 | 52.64 | 52.74 |
|  |  | 3.0 | 6.953 | 6.945 |
|  |  | 4.0 | 0.9303 | 0.9301 |
|  | 6-31G | 2.5 | $410.8{ }^{(a)}$ | $424.0{ }^{(a)}$ |
|  |  | 3.0 | 48.52 | 48.45 |
|  |  | 4.0 | 8.275 | 8.269 |

(a) $a^{\gamma}(M)$ is still rather large

